Decision Tree Induction Using Genetic
Programming

Gokhan Tur and Halil Altay Guvenir
Department of Computer Engineering and Information Science
Faculty of Engineering, Bilkent University, 06533 Bilkent, Ankara, Turkey
{tur,guvenir }@cs.bilkent.edu.tr

Abstract. A decision tree induction algorithm using genetic programming (GP) is
presented. The best decision tree is defined as the one which achieves maximum accuracy
with minimum number of internal nodes. In this approach every individual is a decision
tree candidate. The results are satisfactory in the sense that it can find the optimum
solution, i.e. the best decision tree, for a small sized dataset. For the dataset related to
American Congress, this algorithm can reach an accuracy of 97.3%. Solutions to unknown
or noise data are also proposed in this framework.

Keywords. Machine Learning, Genetic Programming, Decision Trees, Genetic Algo-
rithms, Artificial Intelligence

1 Introduction

Genetic algorithms (GA), by combining the survival of the fittest among string structures,
(called individuals) with a randomized genetic information exchange, try to form a search
algorithm similar to the evolution process in the nature. Algorithm begins with a popula-
tion of randomly generated individuals, and the “fitness” of each individual is measured.
The fittest individuals in the first generation have a higher number of offsprings in the
second generation. GA is covered in detail in [2] and [3].

Genetic programming (GP) is a method of “Adaptive Automatic Program Induction”,
originally created by John Koza and James Rice of Stanford University [4]. GP is similar
to GA, except that, individuals are no longer strings, but parse trees of the programs.
The programs are composed of elements from a function-set and a terminal-set, which are
typically fixed sets of symbols selected to be appropriate for the solution of problems in
the domain of interest. Initial population is created randomly. The genetic information
exchange is done by taking randomly selected subtrees in the individual programs and
exchanging them. This corresponds to the crossover operation in GA. Because of the

closure property of the functions and terminals, this genetic crossover operation always
produces syntactically legal parse trees. A random change in the individuals, mutation
also takes role in this algorithm, but not so frequent.

As an example, consider a function set of f = {4, —, X, /} and terminal set of ¢t = {a, b, c}.
Consider a program that computes ‘a + (b x ¢)’. The parse tree of such a program would
be as shown in Figure 1. Note that this parse tree is considered to be one individual.
Its internal nodes are predefined functions of the terminals in the leaves. The function
set, the terminal set, and the fitness function is completely dependent on the specific GP
application, and there is no limit in the number of arguments.

Figure 1: A parse tree example.

Decision trees are first used in Machine Learning by Quinlan [5]. The main usage of
decision trees is classification (assigning things to categories or classes determined by
their properties). A decision tree is a structure that is either a leaf indicating a class, or
a decision node that specifies some test to be carried out on a single attribute value.

A decision tree can be used to classify a case by starting at the root of the tree and
moving through it until a leaf is encountered. At each non-leaf decision node, the case’s
outcome for the test at the node is determined and attention shifts to the root of the
subtree corresponding to this outcome. When this process finally (and inevitably) leads
to a leaf, the class of the case is predicted to be that recorded at the leaf [5].

Most of the decision tree induction algorithms use greedy heuristics, which select at each
step whatever test contributes most to accuracy. For example, C4.5 algorithm selects
the attribute that maximizes the information gain ratio. Other algorithms, like EG2,
CS-ID3, or IDX introduces costs of the tests besides information gain ratio. In fact, using
greedy heuristics is a limitation of these algorithms, because they suffer from the horizon
effect. This term is taken from the literature on chess playing games. Suppose that a

chess playing program has a fixed three-move lookahead depth and it finds that it will lose
its queen in three moves if it follows a certain branch of the game tree, so it can choose
another branch in which it will lose its pawn instead. But now, again lose of the queen
can be three moves ahead. So the program foolishly sacrifices its pawn. This is the same
situation in all of the hill-climbing algorithms [6].

These algorithms also need to prune the resulting decision tree. Pruning is removing
those parts of the tree that do not contribute to classification accuracy on unseen cases,
producing something less complex and thus more comprehensible [5]. As stated in the
definition of the pruning operation, decision trees, created by the greedy algorithms are
too complex that test cases can be misclassified, and these trees can not be easily handled
by humans. Another reason is that, sacrifying some accuracy can result in a lot of benefit
in the number of tests. So it is somehow necessary to balance these two issues: number
of tests (in fact, number of internal nodes in the tree) and accuracy of the tree.

Although the idea of using genetic algorithms in the induction of decision trees is a
very new concept, classification algorithms using genetic algorithms exist in the literature
since 1986. In order to overcome the horizon effect, Turney uses genetic algorithm in the
construction of a decision tree [6], but it uses EG2 algorithm. Genetic algorithm is only
used in finding out the parameters existing in EG2, and it has nothing in the number of
tests.

The following section intrduces an alternative approach to the induction of decision trees,
then experimental evaluation of this approach is presented in Section 3. The last section
concludes the overall presentation.

2 Algorithm

A more effective way of overcoming the limitations of standard greedy decision tree in-
duction algorithms can be the usage of genetic programming. Each individual of the
population in GP can be a decision tree. The functions to be used in the GP are the
attributes of the decision tree and classes form the terminal set.

Consider the following example: There is a dataset of 10 senators, and their votes on five
different areas of law. This vote can be either yes(y) or no(n). There are two classes of
senators. Republicans and Democrats. Each voting is considered to be an attribute of a
senator, so the resulting table is given in Table 1.

In fact, this is an artificial dataset and corresponds to the decision tree in Figure 2.

Since each attribute can hold just 2 values (yes and no), it is not necessary to define
them, each left branch means no, each right branch means yes. So using an ordered tree
is enough to hold that information. Terminal set has two elements: republican, democrat
The interesting point is that, functions (in fact the attributes) to be used in the genetic
programming does not return any value, because they are simply the decision points of
the tree. If an attribute can have more than 2 values, nothing has changed.

| CLASS | A0 |Al[A2][A3]A4]

democrat | n |y | n |y | vy
democrat | 'y | n | v | v | vy
democrat | n |y | v | v | ¥y
democrat | ' y | n | n |y |y
democrat | n |y | n |y | vy
republican | n | n | y | n | n
republican | n | n | v | v | n
republican | vy | n | n | n | n
republican | n | n | y | n | ¥y
republican | vy | n | y | n | ¥y

Table 1: Voting Dataset

The only problem left is the fitness function. As stated before, the fitness function must
contain both the accuracy of the decision tree and the number of tests for each sample.
Accuracy is the ratio of the number of correct classifications to the total number of samples
tried on a given decision tree. The second component, i.e. the size of the decision tree
can be found by calculating the internal nodes.

The selection of the more important one is critical: the accuracy or the size of the tree.
So the following fitness function is used:

fitness =1- (w X numberofintlrnalnodes—l—l + (1 o w) X GCCUTGC?})
The weight (w) varies between 0 and 1. The algorithm tries to make the fitness function
minimum, i.e. 0. It can be seen that the value of the fitness function varies also between
0 and 1. It both tries to maximize the accuracy and minimize the number of internal
nodes. The effect of w, in the formula is discussed in the next section, as well as other
issues.

Upto this point, we did not care about any noise in the dataset. This problem is solved
as follows: If we have any attribute that is wrong indeed, the algorithm does not suffer
from it, because it only wants to increase the accuracy, so if such values are not too much,
this is not a big problem. But if the value of an attribute is not known, then this is
a problem, because the algorithm does not know, from which branch it must continue,
when it reaches that attribute in the decision tree. Such attributes must be ignored. This
is done by traversing all of the subtrees of that internal node. If any branch leads to a
leave, which is the same as in the training dataset, then it is accepted, but if neither of
them reaches such a solution, then it is considered to be a wrong sub-decision tree for
that instance. Of course, this could lead us to an exponentially growing search space, but
if the ratio of such instances are very few, it is acceptable. (in fact, only 4.1% of the data
is missing in the dataset used in the experiments.)

Figure 2: A decision tree.

democrat

3 Empirical Evaluation

The algorithm is implemented using the SGPC (Simple Genetic Programming in C),
which is developed by Walter Alden Tackett and Aviram Carmi in 1993. In fact, it does
the same thing as the application developed by Koza and Rice in LISP and provided to
the public, but this version is faster due to the usage of C in the implementation. It
requires two datasets, one for the evaluating the fitness of the population, and the other
is for validating the result. So, first dataset corresponds to a training set, and the other
to a test dataset. According to the application of the fitness function to the data in the
training dataset, the best decision tree in that generation is found, and then applied to
the testing dataset in order to validate the result. In the implementation, the population
is consisted of 100 individuals.

This approach is first tried on an artificial dataset, in fact the dataset shown in Table
1. The corresponding subtree is found after 40 generations, and running time is 12.13
seconds. It is the best decision tree, and its fitness is 0 if w is 0, and 1 — 2

3, a relatively
high value if w is 1, i.e. if accuracy has no importance.

Then this approach is tried for the actual dataset of the voting in the congress. It is the
1984 United States Congressional Voting Records Database, taken from the Congressional
Quarterly Almanac, 98th Congress, 2"¢ session 1984, Volume XL: Congressional Quarterly
Inc. Washington, D.C., 1985, by Jeftf Schlimmer. This dataset includes votes for each of
the U.S. House of Representatives Congressmen on the 16 key votes identified by the
CQA. The CQA lists 9 different types of votes: voted for, pired for, and announced
for (these three simplified to yes), voted against, paired against, and announced against
(these three simplified to no, voted present, voted present to avoid conflict of interest, and

did not vote or otherwise make a position known (these three simplified to an unknown
disposition). The number of instances is 435 (267 democrats, 168 republicans), and the
number of attributes is 16 + classname = 17 (all boolean valued). The actual names of
the attributes are as follows:

—_

Class Name: 2 (democrat, republican)
Handicapped-infants: 2 (y,n)
Water-projest-cost-sharing: 2 (y,n)
Adoption-of-the-budget-resolution: 2 (y,n)
Physician-fee-freeze: 2 (y,n)
El-salvador-aid: 2 (y,n)
Religious-groups-in-schools: 2 (y,n)
Anti-satellite-test-ban: 2 (y,n)

e S T o R

Aid-to-nicaraguan-contras: 2 (y,n)

—_
]

. Mx-missile: 2 (y,n)

—_
—_

. Immigration: 2 (y,n)

—_
[\

. Synfuels-corporation-cutback: 2 (y,n)

—_
w

. Education-spending: 2 (y,n)

—_
S

. Superfund-right-to-sue: 2 (y,n)

—_
(@4

. Crime: 2 (y,n)

—_
D

. Duty-free-exports: 2 (y,n)

17. Export-administration-act-south-africa: 2 (y,n)

This dataset is divided into 2 parts, 300 instances are used in training and 135 in the
testing. The accuracy of the decision tree is found using the testing dataset.

The results are dependent on the parameter w, weight in the fitness function. For weights
0.00, and 0.25, i.e. where accuracy is more important, the algorithm finds out a solution
with an accuracy of 97.3% with only one internal node. This result is obtained by ex-
amining 100 x 5 = 500 decision tree candidates for a weight of 0.25, and 100 x 9 = 900
candidates for a weight of 0.00. Each examination is done on the 300 instances. The
whole process is done in less than 4 seconds. Table 2 shows the best results and the
running time of the algorithm to obtain these results. Note that an accuracy of 62.3% for
a weight of 0.75 is nothing but choosing everyone as a democrat (There are 267 democrats
among 435 senators in Congress). A more explanatory chart is given in Figure 3.

‘ Weight ‘ Best Accuracy (%) ‘ Running Time (secs) ‘

w = 0.00 97.3 3.69
w = 0.25 97.3 1.91
w = 0.50 85.0 0.19
w = 0.75 62.3 0.32

Table 2: The best results for each weight (w) parameter

100 I v »
90 —&— w=0.00
80 T ——w=0.25

70 T —4&— w=0.50

60 T —X4—w=0.75
50 T

40 +

»
»
>

Best Accuracy (%)

30 T
20 T
10 T

Number of Generations

Figure 3: The results of the GP application.

—— w=0.00
——w=0.25
—&— w=0.50
—X—w=0.75

Running Time (secs)

1 4 7 10 13 16 19 22 25 28 31

Number of Generations

Figure 4: Running time with respect to number of generations.

35

3041 ——w=0.00
—l— w=0.25
25 4+ —&— w=0.50
——w=0.75

Average Accuracy (%)

Number of Generations

Figure 5: Number of internal nodes with respect to number of generations.

50

49 ¢ /’/’/‘/T ——w=0.00
—m—w=0.25
—A— w=0.50
—%—w=0.75

Average Accuracy (%)

Number of Generations

Figure 6: Accuracy in percentage with respect to number of generations.

The second experiment on this dataset is the calculation of average accuracy, average
number of nodes and running time with respect to various w (weight in the fitness func-
tion) values. Note that, although a best result is found for a given weight, the average
accuracy increases more slowly. This is a typical case in all genetic algorithms. The aver-
age number of nodes increases proportional to the number of generations. The reason is
that, the decision trees created are becoming more complex after some generations, and
that is also the main reason for the non-linearly increasing running time of the algorithm.
Figures 4, 5,and 6 summarize these results.

4 Conclusion and Future Research

Decision trees can be created using genetic programming. The results are satisfactory, in
the sense that it can find the optimum solution, i.e. the best decision tree, for a small sized
dataset. For the dataset related to American Congress, the best accuracy is 97.3% with
an internal node size of 1, the result of Quinlan for the same test dataset of 135 instances
is 94.8% with an internal node size of 25 before pruning, and 97% with an internal node
size of 7 after pruning. For both issues, the results of our approach is better. Of course,
the same algorithm must be tested on other various datasets. The intuition is that, it
must be better than other decision tree induction algorithms, using greedy searches. The
reason behind is that, this approach does not suffer from the horizon effect and can find
alternative solutions, without looking at the same optimum.

Also, this approach is not so slow. It finds out the best solution for each weight parameter
in a couple of seconds.

Since, it is the first attempt of using a genetic programming in the construction of decision
trees, it is only implemented to datasets whose all attributes are nominal. For example,
in the dataset used in the experiments, the attributes can be yes (y), no (n), or missing
(7). Handling of other kind of attributes is an open research area.

Behaviour of this approach to noise is also explained. Alternative solutions to this problem
may be provided. In fact, this is the same behaviour that Turney handles delayed tests
in a decision tree [6].

This apporach is not specific to decision tree induction, there can be many areas that are
suitable for genetic programming. A recent example is 4-Operations [1].

One interesting point is that, in the very first generations, algorithm finds out the best
result, and then only very small improvements are possible. This is contradictory to the
typical genetic algorithm behavior.

Genetic Programming is known to have some restrictions in some applications. Fortu-
nately, this is not the case for the induction of decision trees.

Including other features, such as costs of the tests or costs of misclassification errors, which
are especially important in medical applications, into the decision tree may be interesting.

References

[1] T. Aytekin, E.E. Korkmaz, and H.A. Guvenir. An application of genetic programming
to the 4-op problem using map trees. pages 28-40, Armidale, Australia, November
1994. Workshop on Evolutionary Computation in Association with 7'h Australian
Joint Conference on Artificial Intelligence.

[2] D. E. Goldberg. Genetic Algorithms in Search Optimization, and Machine Learning.
Addison Wesley, 1989.

[3] J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, 1975.

[4] J. Koza and J. Rice. Genetic Programming on the Programming by means of Natural
Selection. The MIT Press, Cambridge, 1992.

[5] J. R. Quinlan. C4.5 Programs for Machine Learning. Morgan Kaufmann Publishers,
Inc., 1993.

[6] P. D. Turney. Cost sensitive classification: Emprical evaluation of a hybrid genetic
decision tree induction algorithm. Journal of Artificial Intelligence Research, page 369
409, 2 1995.

