USING MULTIPLE SOURCES OF INFORMATION
FOR
CONSTRAINT-BASED
MORPHOLOGICAL DISAMBIGUATION

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING
AND INFORMATION SCIENCE
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Gokhan Tur
July, 1996

I certify that I have read this thesis and that in my opin-

1on 1t 1s fully adequate, in scope and in quality, as a thesis

for the degree of Master of Science.

Asst. Prof. Kemal Oflazer(Advisor)

I certify that I have read this thesis and that in my opin-

1on 1t 1s fully adequate, in scope and in quality, as a thesis

for the degree of Master of Science.

Assoc. Prof. Halil Altay Giivenir

I certify that I have read this thesis and that in my opin-
ion it is fully adequate, in scope and in quality, as a thesis

for the degree of Master of Science.

Asst. Prof. Ilyas Cicekli

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet Baray, Director of Institute of Engineering and Science

i

ABSTRACT

USING MULTIPLE SOURCES OF INFORMATION
FOR
CONSTRAINT-BASED MORPHOLOGICAL DISAMBIGUATION

Gokhan Tir

M.S. in Computer Engineering and Information Science

Supervisor: Asst. Prof. Kemal Oflazer

July, 1996

This thesis presents a constraint-based morphological disambiguation approach
that is applicable to languages with complex morphology—specifically agglutina-
tive languages with productive inflectional and derivational morphological phe-
nomena. For morphologically complex languages like Turkish, automatic morpho-
logical disambiguation involves selecting for each token morphological parse(s),
with the right set of inflectional and derivational markers. Our system com-
bines corpus independent hand-crafted constraint rules, constraint rules that are
learned via unsupervised learning from a training corpus, and additional statisti-
cal information obtained from the corpus to be morphologically disambiguated.
The hand-crafted rules are linguistically motivated and tuned to improve pre-
cision without sacrificing recall. In certain respects, our approach has been
motivated by Brill’s recent work [6], but with the observation that his trans-
formational approach is not directly applicable to languages like Turkish. Our
approach also uses a novel approach to unknown word processing by employing
a secondary morphological processor which recovers any relevant inflectional and
derivational information from a lexical item whose root is unknown. With this
approach, well below 1% of the tokens remains as unknown in the texts we have
experimented with. Our results indicate that by combining these hand-crafted,
statistical and learned information sources, we can attain a recall of 96 to 97%
with a corresponding precision of 93 to 94%, and ambiguity of 1.02 to 1.03 parses

per token.

Key words:Natural Language Processing, Morphological Disambiguation, Tag-

ging, Corpus Linguistics, Machine Learning

v

OZET

DEGISIK BILGI KAYNAKLARI KULLANARAK
BICIMBIRIMSEL BIRIKLESTIRME

rOKhan ifur

Bilgisayar ve Enformatik Mihendisligi, Yiksek Lisans
Tez Yoneticisi: Yrd. Do¢. Dr. Kemal Oflazer
Temmuz, 1996

Bu tezde, karmagik bicimbirimli dillerde (6zellikle tiretken yapim ve ¢ekim

eklerine sahip ¢ekimli ve bitigken dillerde) uygulanabilecek, kurallara dayanan
bir bigimbirimsel biriklegtirme yaklagimi sunulmaktadir. Tirkge gibi karmagik
bicimbirimsel yapiya sahip dillerde, otomatik bicimbirimsel biriklestirme, ke-
limelerin, dogru yapim ve ¢ekim eklerini igeren bicimbirimsel ¢6ztimlerini segmeyi
amaclar. Bu caligmada gergeklegtirilen sistem, metinlerden bagimsiz olarak elle
olugturulmusg kurallari, égrenilmis kurallari, ve biriklegtirilecek metinden elde
edilen ek istatistiksel bilgileri kullanarak bicimbirimsel biriklegtirme iglevini ger-
ceklegtirmektedir. FElle olugturulmug kurallar, anma’dan (recall) fedakarlik et-
meden duyarliligi (precision) artiracak sekilde diizenlenen dilbilimsel kurallar-
dan meydana gelmigtir. Sistemin tasariminin ¢ikig noktasi, Brill’in dontigim-
sel yaklagimiin Tirkce gibi dillerde direkt olarak uygulanamayacag gozlemi
olmustur. Ayrica bilinmeyen kelimelerin céziimlenmesinde, ikinci bir bicimbi-
rimsel islemci kullanilarak ve kelimelerdeki olasi yapim ve cekim ekleri belir-
lenerek coziimlemesi yapilmistir. Bu yaklasim sayesinde, deneylerde kullanilan
metinlerdeki kelimelerin %1’inden ¢ok daha azi ¢ozlimsiiz kalmistir. Elle olus-
turulmug ve ogrenilmig kurallar ile istatistiki bilgilerin birlestirilmesi sayesinde
tizerinde deney yaptigimiz metinlerde kelime bagina 1.02-1.03 ¢oztim diigerken

%96-%97 anma ve buna kargilik %93-%94 duyarhilik saglanmigtir.

Anahtar sézcikler: Dogal Dil Isleme, Bicimbirimsel Biriklestirme, Isaretleme,

Metinsel Dilbilimi, Otomatik (")érenme

To my family

Vi

ACKNOWLEDGEMENTS

I am very grateful to my supervisor, Assistant Professor Kemal Oflazer, who

has provided a stimulating research environment and invaluable guidance during
this study. His instruction will be the closest and most important reference in

my future research.

I would also like to thank Assoc. Prof. Halil Altay Gilivenir and Asst. Prof.

ilyas (igekli for their valuable comments and guidance on this thesis.

I would like to thank Xerox Advanced Document Systems, and Lauri Kart-
tunen of Xerox Parc and of Rank Xerox Research Centre (Grenoble) for providing
us with the two-level transducer development software on which the morphologi-
cal and unknown word recognizer were implemented. This research has been sup-

ported in part by a NATO Science for Stability Project Grant TU-LANGUAGE.

I would like to thank everybody who has in some way contributed to this study
by lending me moral, technical and intellectual support, including my colleagues
Mehmet Surav who taught me even how to use this editor, Kemal Ulkii, A.
Kurtulug Yorulmaz, Yiicel Saygin, Murat Bayraktar, and many others who are

not mentioned here by name.

I would like to thank to my family. I am very grateful for their moral support,
motivation and hope-giving. They are always with me, especially when I need

them. I dedicate this thesis to these persons.

Finally, I would like to thank to Ms. Dilek Z. Hakkani. I cannot forget her
invaluable technical and moral support which continued during my study. It is
Dilek and her friendship that deserve the biggest thanks for the existence of this

thesis.

Contents

Introduction

Tagging and Morphological Disambiguation

2.1 Approaches to Tagging and Morphological Disambiguation
2.1.1 Constraint-based Approaches
2.1.2 Statistical Approaches
2.1.3 Transformation-Based Tagging

2.2 Evaluation Metricso

Morphological Disambiguation

3.1 The Preprocessor
3.1.1 Tokenization
3.1.2 Morphological Analyzer
3.1.3 Lexical and Non-lexical Collocation Recognizer
3.1.4 Unknown Word Processor
3.1.5 Format Conversion

3.1.6 Projection Lo

vii

10

13

16

25

28

CONTENTS viii

3.2 Constraint Rules 48
3.3 Learning Choose Rules 51
3.3.1 Contexts induced by morphological derivation 54

3.3.2 lIgnoring Features oL 56

3.4 Learning Delete Rules 57
3.5 Using Context Statistics to Delete Parses 59
3.6 Using Root Word Statistics 59

4 Experimental Results 61
4.1 Discussion of Results, 68

5 Conclusions 72
A Sample Text 79
B The Collocation Database 80
B.1 Non-Lexicalized Collocations 80
B.2 Fixed Lexicalized Collocations 81
B.3 Inflectable Lexicalized Collocations 83

C Sample Preprocessed Text 86
D Hand-crafted Rules 101
D.1 Contextual Choose Rules 101

D.2 Lexical Delete Rules 113

CONTENTS

X

E Learned Rules 115
E.1 Learned Choose Rules 115
E.2 Learned Delete Rules 117

F Sample Disambiguated Text 119

List of Figures

1.1

2.1

2.2

2.3

3.1

3.2

The place of morphological disambiguation in an abstract context. 2
Transformation-Based Error-Driven Learning. 18
Learning Transformations. 20
Applying Transformations. 20
The structure of the preprocessor 30
The Collocation Database 39

List of Tables

2.1

2.2

2.3

24

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Comparison of the taggers 13
Lexical frequencies of the words 15

The first 5 transformations from the Wall Street Journal Corpus . 21

Results of the tagger L. 22
Statisticson Texts Lo 62
Average parses, recall and precision for text ARK 63
Average parses, recall and precision for text C270 63
Average parses, recall and precision for text ARK after applying

learned rules. Lo 64
Average parses, recall and precision for text 270 after applying
learned rules. Lo 64
Number of choose and delete rules learned from training texts. . . 65
Average parses, recall and precision for text C270, root word statis-

tics applied after hand-crafted initial rules 65

Average parses, recall and precision for text C270, root word statis-

tics applied after contextual statistics 66

Average parses, recall and precision for text EMBASSY 66

xi

LIST OF TABLES xii

4.10 Average parses, recall and precision for text MANUAL 66

4.11 Disambiguation results at the sentence level using rules learned

from C2000. 67

4.12 The distribution of the number of wrongly disambiguated tokens

in the sentences 67

4.13 The effectiveness of the unknown word processor 68

Chapter 1

Introduction

For morphologically complex languages like Turkish, automatic morphological
disambiguation involves selecting for each token, morphological parse(s) with the
right set of inflectional and derivational markers in the given context. We take a
token to be a lexical form occurring in a text, like a word, a punctuation mark, a
date, a numeric structure, etc. Such disambiguation is a very crucial component
in higher level analysis of natural language text corpora. For example, mor-
phological disambiguation facilitates parsing, essentially by performing a certain
amount of ambiguity resolution using relatively cheaper methods (e.g., Glingordii
and Oflazer [12], report that parsing with disambiguated text is twice as fast
and generates one half ambiguities in general.) Figure 1.1 shows the place of

morphological disambiguation in an abstract context.

Typical applications that can benefit from disambiguated text are:

e corpus analysis, e.g. to gather language statistics,

e syntactic parsing, e.g. prior reduction of sentence ambiguity,

e spelling correction, e.g. context sensitive selection of pronunciation,
e speech synthesis, e.g. selection of true spellings.

There has been a large number of studies in morphological disambiguation and

part-of-speech tagging — assigning every token its proper part-of-speech based

CHAPTER 1. INTRODUCTION 2

RAW TURKISH TEXT

L MORPHOLOGICAL ANALYSIS

‘ MORPHOLOGICAL DISAMBIGUATION

L

DISAMBIGUATED TURKISH TEXT

) T

Tagged Corpus Parsing Text-to-Speech

Figure 1.1: The place of morphological disambiguation in an abstract context.

upon the context it appears in — using various techniques. These systems have
used either a statistical approach where a large corpora has been used to train
a statistical model which then has been used to tag new text, assigning the
most likely tag for a given word in a given context (e.g., Church [7], Cutting et.
al [9], DeRose [10]), or a constraint-based approach, recently most prominently
exemplified by the Constraint Grammar work [15, 28, 29, 30], where a large
number of hand-crafted linguistic constraints are used to eliminate impossible
tags or morphological parses for a given word in a given context. Using the
constraint grammar, it is claimed that an English text can be morphologically
disambiguated with 99.77% recall and 95.54% precision!. This ratio is better
than all of the statistical approaches, which result in 96-97% accuracy. It is
also possible to use a hybrid approach, which disambiguate an English text with
98.5% accuracy. Brill [2, 4, 5] has presented a transformation-based learning
approach, which induces rules from tagged corpora. Recently he has extended this

work so that learning can proceed in an unsupervised manner using an untagged

!These metrics will be defined in detail in the next Chapter, but attaining both a 100%
recall and 100% precision concurrently is the ultimate desired goal.

CHAPTER 1. INTRODUCTION 3

corpus [6]. Levinger et al. [20] have recently reported on an approach that learns
morpho-lexical probabilities from untagged corpus and have used the resulting

information in morphological disambiguation in Hebrew.

In contrast to languages like English, for which there is a very small number of

possible word forms with a given root word, and a small number of tags associated

with a given lexical form, languages like Turkish or Finnish with very productive

agglutinative morphology where it is possible to produce thousands of forms (or

even millions [13]) for a given root word, and this poses a challenging problem

for morphological disambiguation. In English, for example, a word such as make

or set can be verb or a noun. In Turkish, even though there are ambiguities of

such sort, the agglutinative nature of the language usually helps resolution of

such ambiguities due to restrictions on morphotactics. On the other hand, this
very nature introduces another kind of ambiguity, where a lexical form can be
morphologically interpreted in many ways, some with totally unrelated roots and

morphological features, as will be exemplified in the next chapter.

The previous approach to tagging and morphological disambiguation for Turk-
ish text had employed a constraint-based approach [24, 19] along the general lines
of similar previous work for English [15, 26, 27, 28, 29, 30]. Although the re-
sults obtained there were reasonable, the fact that all constraint rules were hand
crafted, posed a rather serious impediment to the generality and improvement of

the system.

This thesis presents the morphological disambiguation of a Turkish text, based
on constraints. The tokens, on which the disambiguation will be performed are
determined using a preprocessing module, which will be covered in detail in Chap-

ter 3.

Although we have used a constraint-based approach, we also make use of some
constraint rules that are learned by a learning module. This module is capable of
incrementally proposing and evaluating additional (possibly corpus dependent)
constraints for disambiguation of morphological parses using the constraints im-
posed by unambiguous contexts. These rules choose or delete parses with specified
features. This learning is achieved using a corpus, which is first disambiguated

by the hand-crafted rules. In certain respects, our approach has been motivated

CHAPTER 1. INTRODUCTION 4

by Brill’s recent work [6], but with the observation that his transformational

approach is not directly applicable to languages like Turkish, where all tags as-

sociated with forms are not predictable in advance.

In our approach, we use the following sources of information:

e Linguistic constraints,

e Contextual statistics and

e Root word preference statistics.

The following chapter presents an overview of the morphological disambigua-
tion problem, highlighted with examples from Turkish in addition to the ap-
proaches to part-of-speech tagging and morphological disambiguation with the
evaluation metrics, like recall, precision and ambiguity. Chapter 3 describes the
details of our approach. The experimental results are presented in Chapter 4,

with a discussion on the results. The last chapter concludes this thesis.

Chapter 2

Tagging and Morphological

Disambiguation

In almost all languages, words are usually ambiguous in their parts-of-speech
or other lexical features, and may represent lexical items of different syntactic
categories, or morphological structures depending on the syntactic and semantic
context. Part-of-speech (POS) tagging involves assigning every word its proper
part-of-speech based upon the context the word appears in. In English, for ex-
ample a word such as set can be a verb in certain contexts (e.g., He set the table
for dinner) and a noun in some others (e.g., We are now facing a whole set of
problems). According to Church, it is commonly believed that most words have
just one part-of-speech, and that the few exceptions such as set are easily disam-
biguated by the context in most cases [7]. But in contrast, lexical disambiguation
is a major issue in computational linguistics. Introductory texts are full of am-
biguous sentences, where no amount of syntactic parsing will help, such as in the

sentences:

Time flies like an arrow
NOUN VERB+4+AOR PREP DET NOUN
NOUN NOUN+PLU VERB DET NOUN

CHAPTER 2. TAGGING AND MORPHOLOGICAL DISAMBIGUATION 6

Flying planes can be dangerous
ADJ NOUN+PLU MODAL VERB ADJ
VERB NOUN+PLU MODAL VERB ADJ

In Turkish, there are ambiguities of the sort above. However, the agglutinative

nature of the language usually helps resolution of such ambiguities due to the
restrictions on morphotactics. On the other hand, this very nature introduces
another kind of ambiguity, where a whole lexical form can be morphologically
interpreted in many ways not predictable in advance. For instance, our full-scale
morphological analyzer for Turkish returns the following set of parses for the

word oysa:!

[N

[[CAT=CONN] [ROOT=oysall
(on the other hand)

2. [[CAT=NOUN] [ROOT=0y] [AGR=3SG] [POSS=NONE] [CASE=NOM]
[CONV=VERB=NONE] [TAM1=COND] [AGR=3SG]]

(if it is a vote)

3. [[CAT=PRONOUN] [ROOT=0] [TYPE=DEMONS] [AGR=3SG] [POSS=NONE] [CASE=NOM]
[CONV=VERB=NONE] [TAM1=COND] [AGR=3S5G]]
(if it is)

4. [[CAT=PRONOUN] [RO0T=0] [TYPE=PERSONAL] [AGR=3SG] [POSS=NONE] [CASE=NOM]
[CONV=VERB=NONE] [TAM1=COND] [AGR=3S5G]]

(if s/he is)

5. [[CAT=VERB] [RO0T=oy] [SENSE=P0S] [TAM1=DES] [AGR=3SG]]

(wish s/he would carve)

On the other hand, the form oya gives rise to the following parses:

!Glosses are given as linear feature value sequences corresponding to the morphemes (which
are not shown). The feature names are as follows: CAT-major category, TYPE-minor category,
ROOT-main root form, AGR -number and person agreement, POSS - possessive agreement, CASE
- surface case, CONV - conversion to the category following with a certain suffix indicated by
the argument after that, TAM1-tense, aspect, mood marker 1, SENSE-verbal polarity, DES- desire
mood, IMP-imperative mood, OPT- optative mood, COND-Conditional

CHAPTER 2. TAGGING AND MORPHOLOGICAL DISAMBIGUATION 7

1. [[CAT=NOUN] [ROOT=oya] [AGR=3SG] [POSS=NONE] [CASE=NOM]]
(Tace)

2. [[CAT=NOUN] [ROOT=0y] [AGR=3SG] [POSS=NONE] [CASE=DAT]]
(to the vote)

3. [[CAT=VERB] [RO0T=oy] [SENSE=P0S] [TAM1=0PT] [AGR=3SG]]

(let him carve)

and the form oyun gives rise to the following parses:

1. [[CAT=NOUN] [ROOT=oyun] [AGR=3SG] [POSS=NONE] [CASE=NOM]]
(game)

2. [[CAT=NOUN] [ROOT=0y] [AGR=3SG] [POSS=NONE] [CASE=GEN]]
(of the vote)

3. [[CAT=NOUN] [ROOT=0y] [AGR=3SG] [P0SS=2SG] [CASE=NOM]]

(your vote)

4. [[CAT=VERB] [RO0T=oy] [SENSE=P0S] [TAM1=IMP] [AGR=2PL]]

(carve it!)

However, the local syntactic context may help reduce some of the ambiguity

above, as in:?

sen-in oy-un
PRON(you)+GEN NOUN(vote)+POSS-2SG
‘your vote’

oy-un reng-i

NOUN(vote)+GEN NOUN(color)+POSS-3SG

‘color of the vote’

2With a slightly different but nevertheless common glossing convention.

CHAPTER 2. TAGGING AND MORPHOLOGICAL DISAMBIGUATION 8

.
NOUN(game) NOUN(color)+POSS-3SG
‘game color’

using some very basic noun phrase agreement constraints in Turkish. In the

first case, the two word form a simple noun phrase (NP) and the constraints

are such that the possessive marking on the second form has to be the same as

the agreement of the first instance, which is also case marked genitive, while in

the second case, ambiguity still can not be resolved, since both color of the vote

and game color readings are possible. Such ambiguities can be resolved, using

the root word preference statistics. Obviously in other similar cases, it may be

possible to resolve the ambiguity completely.

There are also numerous other examples of word forms where productive

derivational processes come into play:®

geliSindeki

(at the time of his/your coming)

1. [[CAT=VERB] [RO0T=gel] [SENSE=P0S]
(basic form)
[CONV=NOUN=YIS] [AGR=3SG] [P0SS=2SG] [CASE=L0C]
(participle form)
[CONV=ADJ=REL]]

(final adjectivalization by the relative ‘‘ki’’ suffix)

2. [[CAT=VERB] [RO0T=gel] [SENSE=P0S]
(basic form)
[CONV=NOUN=YIS] [AGR=3SG] [P0SS=3SG] [CASE=L0C]
(participle form)
[CONV=ADJ=REL]]

(final adjectivalization by the relative ‘‘ki’’ suffix)

Here, the original root is verbal but the final part-of-speech is adjectival. In

general, the ambiguities of the forms that come before such a form in text can be

3Upper cases in morphological output indicates one of the non-ASCII special Turkish char-
acters: e.g., G denotes g, U denotes 1, etc.

CHAPTER 2. TAGGING AND MORPHOLOGICAL DISAMBIGUATION 9

resolved with respect to its original (or intermediate) parts-of-speech (and inflec-

tional features), while the ambiguities of the forms that follow can be resolved

based on its final part-of-speech. Consider the noun phrase:

senin geligindeki gecikme
your come+INF+POUSS-2SG delay

‘the delay in your coming’

In this phrase, the previous word, senin (your) implies that the possessive

marker in the next token gelisindeki is 2SG, instead of 3SG, and the final category

of the token gelisindeki, i.e. adjective, implies that the next word gecikme (delay)

is a noun, instead of a verb with an imperative reading, meaning ‘do not be latel.

2.1 Approaches to Tagging and Morphological

Disambiguation

Part-of-speech taggers and morphological disambiguators generally use two kinds

of approaches:

o Constraint-based Approaches, where a large number of hand-crafted linguis-
tic constraints are used to eliminate impossible tags or morphological parses

for a given word in a given context.

o Statistical Approaches, where a large corpora is used to train a statistical

model which then to be used to tag a new text.

Brill introduced a method to induce the constraints from tagged corpora, called
transformation-based error-driven learning (2, 3, 4, 5]. Recently, this method is

extended so that, no tagged corpus is needed [6].

It is also possible to use some or all of these approaches together in a morpho-

logical disambiguation system, which we investigate in this thesis.

CHAPTER 2. TAGGING AND MORPHOLOGICAL DISAMBIGUATION 10

2.1.1 Constraint-based Approaches

The earliest tagger was developed in 1963 by Klein and Simmons [17], and this
was an initial categorial tagger rather than a disambiguator. Its primary goal
was to avoid the labor of constructing a very large dictionary; which was more

important in those days. Their algorithm uses a palette of 30 categories, and

it is claimed that, this algorithm correctly and unambiguously tags about 90%
of the words in several pages of the Golden Book Encyclopedia. The algorithm
first seeks each word in dictionaries of about 400 function words, and of about

1,500 words which are exceptions to the computational rules used. The program,

then, checks for suffixes and special characters as clues. Finally, context frame
tests are applied. These work on scopes bounded by unambiguous words, like
later algorithms. However, Klein and Simmons impose an explicit limit of three
ambiguous words in a row. For each such span of ambiguous words, the pair of
unambiguous categories bounding it is mapped into a list. This list includes all
known sequences of tags occurring between the particular bounding tags; all such
sequences of the correct length become candidates. The program then matches
the candidate sequences against the ambiguities remaining from earlier steps of
the algorithm. When only one sequence is possible, disambiguation is successful.
This approach works, because since the number of different POS categories is too
limited, and this reduces the ambiguity obviously, and also their test sample is
a very small text, a larger sample would contain both low frequency ambiguities

and many long spans with a higher probability.

The next important tagger, TAGGIT, was developed by Greene and Rubin in
1971 [11]. This tagger correctly tags approximately 77% of the million words in
the Brown Corpus (the rest is completed by human post-editors). TAGGIT uses
86 part-of-speech (POS) tags. TAGGIT first consults an exception dictionary
of about 3,000 words, which contains all known closed-class words among other
items. It then handles various special cases, such as special symbols, capitalized
words, etc. The word’s ending is then checked against a suffix list of about 450
strings. If TAGGIT has not assigned some tag(s) after these steps, the word is
tagged noun, verb or adjective in order that the disambiguation routine may have
something to work with. The disambiguation routine then applies a set of 3,300

context frame rules. Each rule, when its context is satisfied, has the effect of

CHAPTER 2. TAGGING AND MORPHOLOGICAL DISAMBIGUATION 11

deleting one or more candidates from the list of possible tags for one word. Each
rule can include a context of up to two unambiguous words on each side of the

ambiguous word to which rule is being applied.

TAGGIT is important in the sense that, it is the first tagger, that deals with

such a large and varied corpus. The decision of examining only one ambiguity at

a time with up to two unambiguous words on either side is derived from an ex-
periment made on a sample text of 900 sentences. Moreover, while less than 25%
of TAGGIT’s context frame rules are concerned with only the immediate preced-
ing or succeeding word, these rules were applied in about 80% of all attempts to

apply rules.

A very successful constraint-based approach for morphological disambiguation
was developed in Finland. From 1989 to 1992, four researchers — Fred Karlsson,
Arto Anttila, Juha Heikkila and Atro Voutilainen — from the Research Unit for
Computational Linguistics at the University of Helsinki participated in the ES-
PRIT II project No. 2083 SIMPR (Structured Information Management: Pro-
cessing and Retrieval). The task was to make an operational parser for running
English text, mainly for information retrieval purposes. The parsing framework,
known as Constraint Grammar was originally proposed by Karlsson upon which

the English Constraint Grammar description ENGCG was written [14].

In this framework, the problem of parsing was broken into seven subproblems
or modules, four of them are related to morphological disambiguation, the rest

are used for parsing the running text.

1. Preprocessing: This part deals with idioms and other more or less fixed
multi-word expressions like in spite of, etc. We have also a similar called,

preprocessor, which is defined in the next chapter.

2. Morphological Analysis: Koskenniemi’s two-level model was used in the mor-

phological analyzer [18].

3. Local Disambiguation: This step precedes context-based morphological dis-
ambiguation and deals with the local inspection of the current token without

invoking any contextual information. An example rule is: Choose the parse

CHAPTER 2. TAGGING AND MORPHOLOGICAL DISAMBIGUATION 12

which includes the minimum number of derivations. It is claimed that this

principle is very close to perfect.

4. Context—Dependent Disambiguation Constraints: Ambiguity is resolved us-
ing some context-dependent constraints. Each constraint is a quadruple
consisting of domain, operator, target and context condition(s). For exam-

ple:
(Qw=0 “PREP” (-1 DET))

state that if a word (@w) has a reading with the feature “PREP”, this very
reading is discarded (=0) if the preceding word (i.e. the word position -1)
has a reading with feature “DE']

The constraint-based morphological disambiguator for English was implemented
by Voutilainen [25, 26, 27, 28, 29, 30]. The present grammar consists of 1,100
constraints. Of all words, 93-97% became unambiguous and at least 99.7% of
all words retained the contextually most appropriate morphological reading with
1.04 morphological readings per word on the average after morphological disam-
biguation, and with an optionally applicable heuristic grammar of 200 constraints
resolves about half of the remaining ambiguities 96-97% reliably. These num-
bers also include errors due to the ENGTWOL lexicon which contains 80,000
lexical entries, and morphological heuristics, a rule-based module that assigns
ENGTWOL-style analyses to those words not represented in ENGTWOL itself.
Currently, ENGCG contains no module that disambiguates the remaining 2-4%.
If a blind-guessing module was used, the overall precision and recall of the en-
tire system with no ambiguity in the output would be claimed as 98% or a little

more4.

Later, Tapainen from Rank Xerox Research Center in France, and Voutilainen
combined ENGCG and Xerox Tagger. In a 27,000 word unseen text, they reached
an accuracy of about 98.5%, with no ambiguous word. This result is significantly

better than 95-97% accuracy which state-of-the-art statistical taggers reach alone.

There are several other part-of-speech disambiguators for English. Among

the best known are CLAWS1 by the UCREL team (Garside, Leech, Sampson,

4Definitions of recall and precision can be found in the Section 2.2

CHAPTER 2. TAGGING AND MORPHOLOGICAL DISAMBIGUATION 13

Marshall) and Parts-of-speech by Church.® An experiment was performed on 5
unseen texts, with a total of 2167 words. The results are summarized in the
Table 2.1.

Method Recall | Precision
CLAWS 96.95 96.95
Parts-of-speech 96.21 96.21
ENGCG 99.77 95.54

Table 2.1: Comparison of the taggers

Kuru6z and Oflazer’s work, deals with the morphological disambiguation of
Turkish by using some constraints [19, 24]. Although the results obtained there
are reasonable, the fact that all constraint rules are hand-crafted, has posed a
rather serious impediment to the generality and improvement of the system. But
this work is important in the sense that it formed a framework for this thesis, and
experiences gained in that work lead us to the ideas implemented and presented in
this thesis. It is claimed that their morphological disambiguator can disambiguate
about 97% to 99% of the texts accurately with very minimal user intervention,

but that system lacks many features of the approach presented in this thesis.

2.1.2 Statistical Approaches

In 1983, a tagging algorithm for Lancaster-Oslo-Bergen (LOB) Corpus, called
CLAWS was described [21]. The main innovation of CLAWS was the use of
a matrix of collocational probabilities, indicating the relative likelihood of co-
occurrence of all ordered pairs of tags. The matrix could be mechanically derived
from any pre-tagged corpus. CLAWS used a large portion of the Brown Corpus,
with 200,000 words. The tag set is very similar to TAGGIT, but somewhat
larger, at about 130 tags. The dictionary is derived also from the Brown Corpus.
It contains 7,000 rather than 3,000 entries and 700 rather than 450 suffixes.

When an ambiguous token is encountered, the algorithm computes the prob-

abilities of each path using a collocation matrix. Each path is a combination of

5Both of these systems are statistical, and will be mentioned in the following subsection

CHAPTER 2. TAGGING AND MORPHOLOGICAL DISAMBIGUATION 14

selecting one tag for each ambiguous token which occur side by side. The path

with the maximal probability is chosen.

Before the disambiguation, a program called IDIOMTAG is used to deal with
the idiosyncratic word sequences, like in-spite-of. This module tags approxi-

mately 1% of the running text.

CLAWS has been applied to the entire LOB Corpus with an accuracy of
between 96% and 97%. The contribution of IDIOMTAG is 3%.

Later, in 1988, DeRose [10] proposed an advanced version of CLAWS, called
VOLSUNGA. This algorithm reached an accuracy of 96% without an idiom list-

ing, and is claimed to be more time and space efficient than CLAWS.

Church has described a successful probabilistic tagger, which uses also a tagged
corpus, namely Brown Corpus [7]. This tagger makes use of both lexical and
contextual probabilities. The gist of this work can be explained best by an

example. Consider the sentence:®

6Church tells of an interesting story in an interview, which is published in the EACL special
of Ta!, the Dutch students’ magazine for computational linguistics [8].

One day I was going to give a tutorial to the speech guys on chart parsing. I just
put together a very tiny parser for pedagogical purposes, maybe a quarter inch of
code, I had the simplest possible grammar I could come up with, I’d use the simplest
possible sentence I could think of and I had a complete trace of the whole thing; we
could go through this in the lecture. The sentence I first picked was: ‘I saw a bird’.
What I did though, just for fun, I replaced my simple little lexicon with Webster’s
Dictionary, which I happened to have on line. I tried the sentence ‘I saw a bird’,
and it came out ambiguous. Not only was it what you would hope, but it also came
out as a noun phrase. ‘I’ and ‘a’ are letters of the alphabet, and ‘saw’ and ‘bird’
could both be nouns. So four nouns, and I had the rule that said: NP goes to any
number of nouns. So if that isn’t a good example, let me try an easier one. How
about ‘I see a bird’. That one couldn’t be ambiguous. Well, it turns out it’s exactly
the same. Why? Well, ‘see’ is listed in the Websters Dictionary as the holy See.
And it dawned on me that the problem here is, is that the dictionary is just full of
absurdly unlikely things. Look in the Brown corpus and ‘I’ and ‘a’ don’t appear as
nouns anywhere in it. The idea was that there was something fundamentally wrong
with the idea that everything that’s in the dictionary is on an equal footing.

At that point I started looking at these statistical methods for doing part of speech
tagging and they just cleaned up. At the time most people weren’t doing very well
with part of speech tagging. They had all declared it a solved problem. They had
also declared all of syntax a solved problem. I was told when I started working on
CL that it was no longer possible to get a PhD thesis in any kind of computational
syntax. All the problems have been solved. And then ten years after that... there
I was, really nervous about getting up in front of the ACL and saying that I had a
statistical method on part of speech. Not only of course was statistics heresy, but

CHAPTER 2. TAGGING AND MORPHOLOGICAL DISAMBIGUATION 15

I see a bird

The Iexical probabilities gathered for this sentence are as follows:

Word Parts of Speech

I PRONOUN (5837) NOUN (1)
see VERB (771) INTERJECTION (1)
a ARTICLE (23013) | PREPOSITION (French)(6)
bird NOUN (26)

Table 2.2: Lexical frequencies of the words

Church states that, for all practical purposes every word in a sentence is un-

ambiguous , however, according to the Webster’e Dictionary, every word is am-
biguous. This is the situation shown in this example sentence. The word [is said
to be a noun since it is a character in the alphabet; the word @ might be a French
preposition, and the word see can be used as an interjection. Also, these words
have some other readings in the dictionary. For example the word bird can also
be used as an intransitive verb, and « is also a noun since it is also a character
in the alphabet.

The lexical probability of a word is calculated in the obvious way. For example,
the lexical probability that see is a VERB is:

_ freq(VERB|see) 171
Prob(VERB)|see) = Freq(see) = s

The contextual probability, the probability of observing part of speech X given
the following two parts of speech Y and Z, is estimated by dividing the trigram
frequency XYZ by the bigram frequency YZ. Thus, for example, the probability
of observing a VERB before an ARTICLE and a NOUN is estimated as:

freq(VERB, ARTICLE, NOUN)
freq(ARTICLE, NOUN)

in addition to that I was talking about a problem that had long since been declared
solved. And here I was going to say : Well you may not like the methods, and you
may not have known it was a problem, but ...

CHAPTER 2. TAGGING AND MORPHOLOGICAL DISAMBIGUATION 16

A search is performed in order to find the assignment of part of speech tags
to words that optimizes the product of the lexical and contextual probabilities.
Conceptually, the search enumerates all possible assignments of parts of speech
to input words. For example, in the above example, there are 4 input words,

three of which are 2 way ambiguous, producing a set of 2*2%2*1=8 possible part

of speech assignments of input words. Each of them is then scored by the product

of the lexical probabilities and the contextual probabilities, and the best sequence

1s selected.

Church claims an accuracy of 95% to 99%. But there is no detail how these

percentages are obtained, and the given range is so large, that it is almost impos-

sible to make a comment on this system. But his system became very popular,

and formed the basis of statistical computational linguistics.

Among the other studies in developing automatically trained part of speech
taggers, that use Hidden-Markov-Models, Cutting et al., Merialdo, DeRose, and
chedel et al. can be considered [9, 10, 22, 31].

2.1.3 Transformation-Based Tagging

During his Ph.D. thesis in the University of Pennsylvania, Eric Brill presented an
innovative learning algorithm, called as transformation-based error-driven learn-
ing [2, 3, 4, 5]. A transformation is an instantiation of a predefined template,
depending on the application it is used in. The aim of this algorithm is to au-
tomatically discover the structural information about a language using corpus.
This approach has been applied to a number of natural language problems, in-
cluding part of speech tagging, prepositional phrase attachment disambiguation

and syntactic parsing.
In one sentence this approach can be explained as:
The distribution of errors produced by an imperfect annotator is exam-

ined to learn an ordered list of transformations that can be applied to

provide an accurate structural annotation.

CHAPTER 2. TAGGING AND MORPHOLOGICAL DISAMBIGUATION 17

Learning natural language from large corpora is not a new concept. It is worth-
while considering whether corpus-based learning algorithms can be implemented,

because of the following reasons:

e Building a knowledge base manually is a very expensive, difficult process,

e These knowledge bases have not been used effectively in structurally parsing

the sentences, except the highly restricted domains,

e The advent of very fast computers and the availability of annotated on-line

corpora.

Brill’s Algorithm

This algorithm starts with a small structurally annotated corpus and a larger
unannotated corpus, and uses these corpora to learn an ordered list of transfor-

mations that can be used to accurately annotate fresh text.

The system begins in a language-naive start state. From the start state, it is
given an annotated corpus of text as input and it arrives at an end state. In this
work, the end-state is an ordered list of transformations for each particular learn-
ing module. Transformations depend on predefined transformation templates.
The learner is defined by the set of allowable transformations, the scoring func-
tion used for learning and the search method carried out in learning. Basically,
greedy search is used in learning. At each stage of learning, the learner finds the
transformation whose application to the corpus results in the best scoring corpus.
Learning proceeds on the corpus, that results from applying the learned trans-
formation. This continues until no more transformations can be found whose
application results in improvement. Once an ordered list of transformations has
been learned, new text is annotated by simply applying each transformation, in

order, to the entire corpus.

Figure 2.1 summarizes the framework of this approach. Unannotated text is
first presented to the system. The system uses its prespecified initial state knowl-
edge to annotate the text. This initial state can be at any level of sophistication.

For example, the initial state can assume that, every unknown word is a noun.

CHAPTER 2. TAGGING AND MORPHOLOGICAL DISAMBIGUATION 18

Rather than manually creating a system with mature linguistic knowledge, the

system begins in a naive initial state and then learns linguistic knowledge auto-

matically from a corpus. After the text is annotated by the initial state annotator,
it is then compared to the true annotation assigned in the manually annotated

training corpus.

UNANNOTATED

TEXT

INITIAL
STATE

ANNOTATED
TEXT

LEARNER

Figure 2.1: Transformation-Based Error-Driven Learning.

In the empirical evaluation, Brill uses 3 different manually created corpora:
The Penn Treebank, original Brown Corpus and a corpus of old English. At most
45,000 words of annotated text were used in the experiments. By comparing the
output of the naive start state annotator to the true annotation indicated in the
manually annotated corpus, something can be learned about the errors produced
by the naive annotator. Transformations then can be learned which can be ap-
plied to the naively annotated text to make it resemble the manual annotation
more. A set of transformation templates specifying the types of transformations
which can be applied to the corpus is prespecified. In all of the learning modules

described in this dissertation, the transformation templates are very simple, and

CHAPTER 2. TAGGING AND MORPHOLOGICAL DISAMBIGUATION 19

do not contain any deep linguistic knowledge. The number of transformation

templates is also small. These templates contain uninstantiated variables. For

example, in the template:

Change a tag from X to Y, if the previous tag is Z.

X, Y and Z are variables. All possible instantiations of all specified templates

define the set of allowable transformations.

Some transformations result in better, and some result in worse accuracy. So
the system looks for the best transformation and adds it to its transformation

list. The criteria is the number of errors in the automatically annotated text.

Learning stops when no more effective transformations can be found, meaning
either no transformations are found that improve performance or none improve

performance above some threshold.

An example application of this algorithm is outlined in Figure 2.2. The ini-
tial corpus results in 532 errors, found by comparing the annotated corpus to a
manually annotated corpus. At time T-0, all possible transformations are tested.
Transformation T-0-1 (transformation T1 applied at time 0) is applied to the
corpus, resulting in a new corpus, Corpus 1.1. There are 341 errors in this cor-
pus. Transformation T-0-2, obtained by applying transformation T2 to corpus
C-0, results in Corpus-1-2, which has 379 errors. The third transformation re-
sults in an annotated corpus with 711 errors. Because Corpus-1-1 has the lowest
error rate, the transformation T1 becomes the first learned transformation, and
learning continues on Corpus-1-1. Figure 2.3 shows the resulting corpora at each

iteration of this algorithm.
Brill used both lexical and contextual information. The templates used in

lexical information is as follows:

e Change the most likely tag to X if:

— Deleting (adding) the prefix (suffix) x, |z| < 5 results in a word.

— The first (last) 1,2,3 or 4 characters of the word are x.

CHAPTER 2. TAGGING AND MORPHOLOGICAL DISAMBIGUATION 20

N\ e N\
Corpus-0 Corpus-1-1 T-1-1 Corpus-2-1
—
Errors=532 Errors=341 Errors=289
J - J
T-1-2
N e N
Corpus-1-2 \ Corpus-2-2
Errors=379 Errors=341
T_0_3 S _/ S _/
e ~
Corpus-1-3
Errors=711
" J
Figure 2.2: Learning Transformations.
Corpus-0 Corpus-1 Corpus-2

Figure 2.3: Applying Transformations.

CHAPTER 2. TAGGING AND MORPHOLOGICAL DISAMBIGUATION 21

— Adding the character string x as a prefix (suffix) results in a word (|z| <
5).

— Word Y ever appears immediately to the left (right) of the word.

— Character 7 appears in the word.

o All of the above transformations modified to say: Change the most likely
tag from Y to X if...

Some learned transformations are shown in Table 2.3.

From To Condition
? Plural Noun Suffix is ’s’
Noun Proper Noun | Appear at the start of sentence
? Past Part. Verb Suffix is ’ed’
? Cardinal Number Appear to the right of ’$’
? Present Part. Verb Suffix is 'ing’

Table 2.3: The first 5 transformations from the Wall Street Journal Corpus

After learning the lexical transformations, the next step is to use contextual
cues to disambiguate word tokens. This is nothing, but another application of

transformation-based error-driven learning. The following templates are used:

Change a tag from X to Y if:

e The previous (following) word is tagged as Z.

e The previous word is tagged as Z, and the following as W.
e The following (preceding) 2 words are tagged as Z.

e one of the 2 (3) preceding (following) words is tagged as Z.

e The word, two words before (after) is tagged as Z.

An example of a learned transformation is:

Change the tag of a word from VERB to NOUN if the previous word
is a DETERMINER.

CHAPTER 2. TAGGING AND MORPHOLOGICAL DISAMBIGUATION 22

Later in 1994, Brill extended this learning paradigm to capture relationships
between words by adding contextual transformations that could make reference

to the words as well as part-of-speech tags. Used transformation templates are

as follows:

Change a tag from X to Y if:

e The preceding (following) word is W.

e The current word is W and the preceding (following) word is X.

e The current word is W and the preceding (following) word is tagged

as 7.

Some results obtained from the experiments are summarized in Table 2.4:

Method Corpus Size | # Rules | Accuracy %
Statistical 64 K 6170 96.3
Statistical 1M 10000 96.7
w/o Lex. Rules 600 K 219 96.9
with Lex. Rules 600 K 267 97.2

Table 2.4: Results of the tagger

Transformation-based approach is different from other approaches in language

learning in the following aspects:

o There is very little linguistic knowledge, and no language-specific knowledge

built into the system.
e Learning is statistical, but only weakly so.
e The end-state is completely symbolic.

e A small annotated corpus is necessary for learning to succeed.

The run-time of the algorithm is O(|op| x |env| X |n|) where |op| is the number

of allowable transformation operations, |env| is the number of possible triggering

CHAPTER 2. TAGGING AND MORPHOLOGICAL DISAMBIGUATION 23

environments, and |n| is the training corpus size (the number of word types in the

annotated lexical training corpus). Applying the transformations to the corpus
runs in linear time, O(|T'| x |n|), where |T'| is the transformation size, and |n| is

the size of the test corpus.

The accuracy of the algorithm is not too high, it can reach only to 97%, this

1s almost the same as other statistical tagging methods. The important point

is that, his approach can be used with rule-based approaches, since it produces

rules with an order, but note that, this is a greedy algorithm, it suffers from

the horizon effect, that is, since you can see only one transformation ahead, you

cannot catch a better transformation, more than one step ahead.

Unsupervised Learning of Disambiguation Rules

In 1995, Brill improved this algorithm so that, it no longer requires a manually
annotated training corpus [6]. Instead, all needed is the allowable part-of-speech
tags for each token, and the initial state annotator tags each token in the corpus

with a list of all allowable tags.

The main idea can be explained best with the following example. Given the

sentence:

The can will be crushed.

using an unannotated corpus it could be discovered that of the unambiguous
tokens (i.e. that have only one possible tag) that appear after the in the corpus,
nouns are much more common than verbs or modals. From this, the following

rule could be learned:

Change the tag of a word from (modal OR noun OR verb) to noun if

the previous word is the.

Unlike supervised learning, in this approach, main aim is not to change the
tag of a token, but reduce the ambiguity, by choosing a tag for the words in a

particular context. So all learned transformations have the form:

CHAPTER 2. TAGGING AND MORPHOLOGICAL DISAMBIGUATION 24

Change the tag of a word from y to Y in context C

where y is a set of two or more part-of-speech tags, and Y is one of them.

Brill used 4 templates in his implementation:

Change the tag of a word from x to Y if:

e The previous tag is T.
e The next tag is T.
e The previous word is W.

° e next word 1s

The scoring function is also different from supervised approach. With unsu-
pervised learning, the learner does not have a gold standard training corpus with
which accuracy can be measured. Instead, unambiguous words are used in the
scoring. In order to score the transformation Change the tag of a word from x to

Y in context C, the following is done. Compute:

count(Y)

W X incontext(Z,C,)

R =argmazy

where Z € x,Z # Y. The score of the candidate rule is then computed as:

count(Y)

Score = incontext(Y,C) — W
coun

x incontext(R,C)

A good transformation for removing part-of-speech ambiguity of a word is the
one for which one of the possible tags appears much more frequently as measured
by unambiguously tagged words than all others in the context, after adjusting
for the differences in relative frequency between the different tags. In each learn-
ing iteration, the learner searches for the transformation which maximizes this

function. Learning stops when no positive scoring transformations can be found.

CHAPTER 2. TAGGING AND MORPHOLOGICAL DISAMBIGUATION 25

Brill reports an accuracy of 95.1%-96.0% in using unsupervised learning. Later
he has completed this work by combining both supervised and unsupervised learn-
ing approaches. In that case, he has reached an accuracy of 96.8% with a training

corpus size of 88,200 words.

The main advantage of unsupervised learning is that, it does not require a

manually tagged training corpus. Intuitively, it can be thought that using unam-
biguous words in the scoring result in very insufficient results, but if the algorithm
is modified as to terminate when the score is below some threshold, the learned

rules are very interesting.

2.2 Evaluation Metrics

The main intent of our system is to achieve a morphological ambiguity reduction in
the text by choosing for a given ambiguous token, a subset of its parses which are
not disallowed by the syntactic context it appears in. It is certainly possible that
a given token may have multiple correct parses, usually with the same inflectional
features or with inflectional features not ruled out by the syntactic context. These

can only be disambiguated usually on semantic or discourse constraint grounds.

We consider a token fully disambiguated if it has only one morphological parse
remaining after automatic disambiguation. We consider a token as correctly
disambiguated, if one of the parses remaining for that token is the correctintended

parse.”

In this thesis, we use the metrics of the ENGCG team from the University of
Helsinki:

Recall: The ratio “received appropriate readings/intended appropriate read-

ings”
Precision: The ratio “received appropriate readings/all received readings”

Thus, a recall of 100% means that all tokens have received an appropriate

Tt is certainly possible that, a parse that is deleted may also be a valid parse in that context.

CHAPTER 2. TAGGING AND MORPHOLOGICAL DISAMBIGUATION 26

reading, so initially before any disambiguation, (assuming no unknown words)

recall is 100%.8 A precision of 100% means that there is no superfluous reading,

noise in the output. If recall and precision are same, then this value is called
accuracy, which happens when all tokens have exactly one parse. The aim of a

morphological disambiguator or a tagger is 100% accuracy.

Let us explain these terms with an example. Consider the sentence:

bunun uzerinde duralim
PRONOUN (this)+GEN NOUN(on)+P0SS-3SG VERB(focus)+0PT+1PL PUNCT

‘Let’s focus on this.’

[[bunun,

[[cat:noun,root:bun,agr:’3SG’,poss: ’NONE’ ,case:gen],
[cat:noun,root:bun,agr:’3SG’,poss:’2SG’,case:nom],
[cat:pronoun,root:bu,type:demons,agr:’3SG’,poss: ’NONE’ ,case:gen],

[cat:verb,root:bun,sense:pos,taml:imp,agr:’2PL’]1]],

[’Uzerinde’,
[[cat:noun,root:’Uzer’,agr:’3SG’,poss:’2SG’,case:loc],

[cat:noun,root:’Uzer’,agr:’3SG’,poss:’3SG’,case:loc]]],

[duralIm,
[[cat:noun,stem: [cat:adj,root:dural] ,suffix:none,agr:’3SG’,poss:’15G’,case:nom
[cat:verb,stem: [cat:adj,root:dural] ,suffix:none,tam2:pres,agr:’1SG’],

[cat:verb,root:dur,sense:pos,taml:opt,agr:’1PL’]1]],

[, . g b
[[cat:punct,root:’.’]1]1]].

The output of an ideal morphological disambiguator, with a 100% recall and

precision would be as follows:

8In our system, we ignore the unknown words, called unknown also in the gold standard,
but their effect is negligible.

CHAPTER 2. TAGGING AND MORPHOLOGICAL DISAMBIGUATION 27

[[bunun,

[[cat:pronoun,root:bu,type:demons,agr:’3SG’,poss: ’NONE’ ,case:gen]]],

’Uzerinde’,

[[cat:noun,root:’Uzer’,agr:’3SG’,poss:’3SG’,case:locl]],

[duralIm,

[[cat:verb,root:dur,sense:pos,taml:opt,agr:’1PL’]]],

[,‘,’
[[cat:punct,root:’.’]1]1]].

In this case, the number of intended appropriate readings, received appropriate
readings and all received readings are same, namely 4, since there are 4 tokens.

Now, assume that, our morphological disambiguator has an output of:

[[bunun,

[[cat:noun,root:bun,agr:’3SG’,poss: ’NONE’ ,case:gen]]],

[’Uzerinde’,

[[cat:noun,root:’Uzer’,agr:’3SG’,poss:’3SG’,case:locl]],

[duralIm,
[[cat:verb,stem: [cat:adj,root:dural] ,suffix:none,tam2:pres,agr:’1SG’],

[cat:verb,root:dur,sense:pos,taml:opt,agr:’1PL’]1]],

[,‘,’
[[cat:punct,root:’.’]1]1]].

where, one token, bunun, is incorrectly disambiguated and another token duralim
has 2 parses. Now, the number of received appropriate readings is 3 out of 4
intended readings, because the parses of one token do not contain the correct
reading. So, recall is 3/4 or 66.67%. Totally, 5 parses are received, because one

token has one extra parse. So, precision is 3/5 or 60%.

Chapter 3

Morphological Disambiguation

The morphological disambiguation of a Turkish text, explained in this thesis is

based on constraints. The tokens, on which the disambiguation will be performed

are determined using a preprocessing module.

Given a new text annotated with all morphological parses of the tokens, the
initial choose and delete rules are applied first, then contextual and root word
preference statistics are applied, and last of all, the learned choose and delete

rules are used to discard further parses.

3.1 The Preprocessor

Early studies on automatic text tagging for Turkish had shown that some prepro-
cessing on the raw text is necessary before analyzing the words in a morphological
analyzer [19, 24].

This preprocessing module (shown in Figure 3.1) includes:
e Tokenization, in which raw text is split into its tokens, which are not neces-

sarily separated by blank characters or punctuation marks;

o Morphological Analyzer, which is used for processing the tokens, obtained

from the tokenization module, using the morphological analyzer;

28

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 29

o Lexical and Non-lexical Collocation Recognizer, in which lexical and non-

lexical collocations are recognized and packeted;

o Unknown Word Processor, in which the tokens, which are marked as un-

known after the lexical and non-lexical collocation recognizer, are parsed;

o Format Conversion, in which each parse of a token is converted into a hier-

archical feature structure;

e Projection, in which each feature structure is projected on a subset of its

features to be used in the training.

See Appendix A for a sample text, whose preprocessed form is presented in

Appendix C.

3.1.1 Tokenization

This module is used to divide up the raw text into its tokens. A token belongs

to one of:

e Words: e.g.,

evde (at home)

geliyorum (I am coming)

e Numeric structures: In most of the texts, numeric tokens are very fre-
quent. It is also possible to have suffixes after these numeric tokens, for
example, 32.si or 32.si, (of the 32"¢) are valid tokens we handle. The fol-
lowing numeric structures are handled in the tokenization and also in the

morphological analysis:

— Cardinals: e.g.,

32542432

1. [[CAT=ADJ] [TYPE=CARDINAL] [RO0T=32542432]]

2. [[CAT=ADJ] [TYPE=CARDINAL] [RO0T=32542432] [CONV=NOUN=NONE] [AGR=3SG]

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION

dOSSdD0ddddd

LEARNING
MODULE

RAW TEXT

TOKENIZATION

MORPHOLOGICAL
ANALYZER

LEXICAL AND
NON-LEXICAL
COLLOCATION
RECOGNIZER

UNKNOWN
WORD

PROCESSOR

LEARNED RULES

FORMAT
CONVERSION
(/PROJECTION)

Figure 3.1: The structure of the preprocessor

MORPHOLOGICAL
DISAMBIGUATION

MODULE

30

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 31

32.542.432’nin

1. [[CAT=ADJ][TYPE=CARDINAL] [RO0T=32.542.432’] [CONV=NOUN=NONE]
[AGR=3SG] [POSS=NONE] [CASE=GEN]]

2. [[CAT=ADJIITYPE=CARDINAL][RO0T=32.542.432°][CONV=NOUN=NONE]
[AGR=3SG] [P0SS=2SG] [CASE=GEN]]

— Ordinals: e.g.,
3783.

1. [LCAT=ADJ] [TYPE=0RDINAL][RO0T=3783.7]]

2. [[CAT=ADJ] [TYPE=ORDINAL][RO0T=3783.] [CONV=NOUN=NONE]
[AGR=3SG] [POSS=NONE] [CASE=NOM]]

1. [[CAT=ADJ] [TYPE=0ORDINAL][RO0T=3785.] [CONV=NOUN=NONE]
[AGR=3SG] [P0SS=3SG] [CASE=NOM]]
— Reals: e.g.,
0,23’ten

1. [[CAT=ADJ] [TYPE=REAL] [RO0T=0,23’] [CONV=NOUN=NONE]
[AGR=3SG] [P0SS=NONE] [CASE=ABLy]]

— Percentages: e.g.,
%7’sinin
1. [[CAT=ADJ] [TYPE=PERCENTAGE] [RO0T=7’] [CONV=NOUN=NONE]
[AGR=3SG] [P0SS=3SG] [CASE=GEN]]
— Time: e.g.,
23:15’te
1. [[CAT=ADJ] [TYPE=TIME] [RO0T=23:15"] [CONV=NOUN=NONE]
[AGR=3SG] [POSS=NONE] [CASE=L0Cy]]
— Ratios: e.g.,
3:5'1 (li¢ boli besi)

(of three over five)

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 32

1. [[CAT=ADJILTYPE=RATIO][RO0T=3:5’][CONV=NOUN=NONE]
[AGR=3SG] [POSS=NONE] [CASE=ACCy]]

2. [[CAT=NUMBER] [TYPE=RATIO] [RO0T=3:5"] [CONV=NOUN=NONE]
AGR=35G] [P0SS=35G] LCASE=NOM

3/5'1 (li¢ boli besi)
(of three over five)

1. [[CAT=ADJ][TYPE=RATIO][RO0T=3/5’][CONV=NOUN=NONE]
[AGR=3SG] [POSS=NONE] [CASE=ACCy]]

2. [[CAT=NUMBER] [TYPE=RATIO] [RO0T=3/5"] [CONV=NOUN=NONE]
AGR=35G] [P0SS=35G] LCASE=NOM

3/51 (beste t¢l)
(of three of five)

1. [[CAT=ADJ][TYPE=RATIO] [ROOT=3/5’] [CONV=NOUN=NONE]
[AGR=3SG] [POSS=NONE] [CASE=ACCy]]

2. [[CAT=NUMBER] [TYPE=RATIO] [ROOT=3:5’] [CONV=NOUN=NONE]
[AGR=3SG] [P0SS=3SG] [CASE=NOM]]

Note that, some tokens have more than one parses. For example 7’nin can
be used in the text as senin 7’nin (your 7) or 7’nin 2’si (2 of 7). It is no
different than the word evin , which can be used as senin evin (your house)
or evin solu (left of the house). Also, there is a problem in the reading of
ratios. Consider the token 2/4% (2 over 4), that can be read in Turkish
as iki boli déordi. It is also possible to read this token as 2//’si, that is
dortte ikisi, (two of four), and suffixation process according to the selected

pronounciation.

e Punctuation : All punctuation marks are behaved as a distinct token. The

apostrophe (’) is an exception, which separates the suffixes of proper nouns.
e Abbreviations : These are classified into 3 classes:

1. One capital letter followed by one or more small letters and a period.

e.g. Dr. Prof.

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 33

2. Capital letters, each followed by a period.
e.g. T.B.M.M.

3. One or two small letters followed by a period.

e.g. cm. m.

e Double quote : Double quote cannot be in a part of the token, it is a
punctuation marker. So, the occurrences like “ev”in are syntactically wrong,

and must be corrected as “evin”.

Our tokenizer is implemented using lex which reads raw text and sends its

output to the morphological analyzer.

3.1.2 Morphological Analyzer

We used the morphological analyzer developed by Oflazer [23], using the two-
level transducer development software developed by Lauri Karttunen of Xerox
PARC and of Rank Xerox Research Centre at Grenoble [16]. The morphological
analyzer has about 30,000 root words and about 35,000 proper names. It can
analyze about 2,000 words in one second in an Ultra-Sparc. Its output is a linear

feature value pair sequence for morphemes.

Mainly, it gives the legitimate parses of the words. On the average, Turk-
ish tokens have 2 such parses, because of the reasons described in the previous

chapter.

3.1.3 Lexical and Non-lexical Collocation Recognizer

This module behaves like a multi-word construct processor. Turkish, like other
languages, has many lexical and non-lexical collocations. Such a processor is
needed, because certain words, which appear together, may behave very different,
as a group. An example is the non-lexicalized collocation kosa kosa (running).
The morphological analyzer considers the word kosa (let him run) as an optative

verb, but if it is repeated, then, these two words together, have the grammatical

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 34

role of a manner adverb in the sentence. The output of the morphological analyzer

1s as follows:

koSa

[[CAT=VERB] [RO0T=koS] [SENSE=P0S] [TAM1=0PT] [AGR=35G]]

(let him run)
koSa

[[CAT=VERB] [R0O0T=koS] [SENSE=P0S] [TAM1=0PT] [AGR=3SG]]
(et him run)

The collocation recognizer composes these two words into a very simple form:

koSa koSa

[’koSa koSa’,[[[cat,adverb], [root, ’koSa koSa’]]]]

(running)

There are a number of such non-lexicalized forms, which are specified in the
collocation database and have already been defined by Oflazer and Kuruéz [24,
19]. Almost all of these collocations involve duplications, and have forms like
w+ 2 w+ y where w is the duplicated string comprising the root and certain
sequence of suffixes and z and y are possibly different (or empty) sequences of
other suffixes. The following is a list of non-lexicalized collocations for Turkish

that we handle in our preprocessor:

e duplicated optative and 3SG verbal forms functioning as manner adverb.

This is the one described above.

e aorist verbal forms with root duplications and sense negation, functioning
as temporal adverbs. For instance for the non-lexicalized collocation yapar

yapmaz, where items have the parses

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 35

[[CAT=VERB] [ROOT=yap] [SENSE=POS]
[TAM1=A0RIST] [AGR=3SG]]
(does)

[[CAT=VERB] [ROOT=yap] [SENSE=NEG]
[TAM1=AORIST] [AGR=3SG]]
(does not do)

respectively, the preprocessor generates the feature sequence

[[CAT=ADVERB] [ROOT=yapar yapmaz]]

(as soon as s/he does)

e duplicated verbal and derived adverbial forms with the same verbal root
acting as temporal adverbs, e.g.,
gitti gideli
went go+since

‘since he went’
e emphatic adjectival forms involving duplication and question clitic, e.g.,

giizel mi giizel
beautiful question-clitic beautiful

‘very beautiful’

e adjective or noun duplications that act as manner adverbs, e.g.,

hizh hizh
ADJ(fast) ADJ(fast)
AVDERB(fast’)

ev ev
house house

‘house by house’

e duplicated nominal forms, with word be between them, behaving as manner

adverb, e.g.,

ev be ev
house be house

‘house by house’

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 36

o duplicated verbal forms, first one has the suffix yip, and second has negative

sense, with necessitative modality, e.g.,

gelip gelmemesi

come+yip come+NEG+INF+P0OSS-3SG

‘“whether comes or do not come’

e idiomatic forms, which are never used singularly, like guril giril,

This module also recognizes lexicalized collocations. A typical example is the

group yant sira (besides). If these words are considered alone, we get the following

parses:

yanl

[[CAT=ADJ] [ROOT=yan] [CONV=NOUN=NONE] [AGR=3SG] [P0SS=NONE] [CASE=ACCy]]
(side+ACC)

[[CAT=ADJ] [ROOT=yan] [CONV=NOUN=NONE] [AGR=3SG] [P0SS=3SG] [CASE=NOM]]
(side+GEN)

sIra

[[CAT=NOUN] [RO0T=sIra] [AGR=3SG] [POSS=NONE] [CASE=NOM]]
(desk)

[[CAT=NOUN] [ROOT=sIr] [AGR=3SG] [POSS=NONE] [CASE=DATy]]
(secret+DAT)

The collocation recognizer output for these words is as follows:

yanl sIra

[’yanI sIra’,[[[cat,postp],[root,’yanI sIra’], [subcat,gen]]]]
(besides)

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 37

Such lexical collocations are also defined in the collocation database. They
are not allowed to take suffixes. Certain lexical collocations, like proper name
groups, compound verbs, or idiomatic groups can take suffixes. So such lexical
collocations are defined separately. Consider the collocation, Mustafa Kemal

Atairk’iun:

Mustafa

[[CAT=NOUN] [ROOT=mustafa’] [TYPE=RPROPER] [AGR=3SG] [P0SS=NONE] [CASE=NOM]]

[[CAT=NOUN] [RO0OT=kemV1’] [TYPE=RPROPER] [AGR=3SG] [POSS=NONE] [CASE=NOM]]

[[CAT=NOUN] [ROOT=kemV1] [AGR=3SG] [POSS=NONE] [CASE=NOM]]

AtatUrk’Un

[[CAT=NOUN] [ROOT=atatUrk’] [TYPE=RPROPER] [AGR=3SG] [POSS=NONE] [CASE=GEN]]

[[CAT=NOUN] [ROOT=atatUrk’] [TYPE=RPROPER] [AGR=3SG] [P0SS=2SG] [CASE=NOM]]

and as a whole, this word group has the same analyze as the last word, Atatirk in.

[’mustafa kemal atatUrk’’Un’,
L
[[cat,noun], [root, ’mustafa kemal atatUrk’’’], [type,rproper],

[agr,’3SG’], [poss,’NONE’], [case,gen]],

[[cat,noun], [root, ’mustafa kemal atatUrk’’’], [type,rproper],
[agr,’3SG’], [poss,’2SG’], [case,nom]]
1]

It is worthwhile noting that for the lexical collocations, the program tries to

find the longest group. For example, although both Mustafa Kemal and Mustafa

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 38

Kemal Atatirk are in the database, regardless of their order, if the longer one
exists in the text, the program chooses that one. In a previous study, Kuruoz

requires that shorter one must exist before the longer one, in the database [19].

Consider the lexical collocation of devam et (continue), if we can group these

words in one item, the morphological disambiguator’s work will be much easier

in such a sentence:

benim devam etmem artik imkansizlagmigta.
my continuation any more became impossible

‘it was impossible for me to continue any more.’

Morphological disambiguator will not deal with a wrong parse, benim devam

(my remedy), since devam etmem is already grouped as a unit.

Recognition of the dates and percentages are handled also in this module. In
the recognition of the dates, the maximum length of the date expression is tried

to packeted like:

2 Subat 1915°te

[[cat:date,root:’2 Subat 1915’’’ ,type:templ,
agr:’3SG’ ,poss:’NONE’ ,case:loc]]]

(on 2 February 1915)

The collocations in the form, the token yiizde (percent) followed by a numeric are

also recognized here, e.g.,

yUzde 12
[[cat:adj,root:’yUzde 12’ ,type:percentage]]

(12 percent)

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 39

Figure 3.2 summarizes the form of the collocation database. Also, this collo-

cation database can be seen in Appendix B

[COLLOCATION DATABASE]

\

Non-Lexicalized Collocations] ‘ Lexicalized Collocations

.

Fixed Inflected

Figure 3.2: The Collocation Database

This module also handles certain tokens, like punctuation marks and roman
numbers, which can not be handled in the morphological analyzer. The following

are some examples to such tokens:

[[cat:punct,root:’!’]]

XV.

[[cat:adj,root:’xv.’,type:ordinall]

While performing these functions, this module also gathers the following statis-
tics from the raw text:

e Number of tokens,

e Number of parses,

e Parse distribution, and

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 40

e Total calls to morphological analyzer.

These statistics are used mainly, when evaluating the experimental results, pre-

sented in the next chapter.

The output of this module for each sentence is in the form:

[token 1,[[parse 11],[parse 12],...,[parse 1il]],

[token 2, [[parse 21],[parse 22],...,[parse 2j]1],

[token n, [[parse ni1],[parse n2],...,[parse nk]]]

For instance, for the sentence

benim devam etmem artik imkansizlagmigta.
my continuation any more became impossible

‘it was impossible for me to continue any more.’

the output is as follows:

[’benim’,

[[[cat,noun], [root,’ben’],[agr,’3SG’], [poss,’NONE’], [case,nom],

[conv,verb,none], [taml,pres], [agr,’1SG’]],

[[cat,noun], [root,’ben’], [agr,’3SG’], [poss,’1SG’], [case,nom]],

[[cat,pronoun], [root,’ben’], [type,personall, [agr,’1SG’], [poss,’NONE’], [case,gen]],

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 41

[[cat,pronoun], [root,’ben’], [type,personal],[agr,’1SG’], [poss,’NONE’],

[case,nom], [conv,verb,none], [taml,pres], [agr,’1SG’]1]1]],

[’devam etmem’,

[[[cat,verb], [root,’devam ed’], [sense,neg], [taml,aorist], [agr,’1SG’]],
[[cat,verb], [root,’devam ed’], [sense,pos], [conv,noun,ma],
[type,infinitive], [agr,’3SG’], [poss,’1SG’], [case,nom]]]],

[’artIk’,

[[[cat,adj], [root,’artIk’]],

[[cat,adverb], [root,’artIk’]1]1]1],

[’ imkansIz1aSmIStI’,

[[[cat,noun], [root,’imkan’], [conv,adj,siz], [conv,verb,las],
[sense,pos], [taml,narr],[tam2,past], [agr,’3sSG’]]1]1],

.,

[[[cat,punct], [root,’.?]1]1]]

3.1.4 Unknown Word Processor

Although the coverage of our morphological analyzer for Turkish [23], with about
30,000 root words and about 35,000 proper names, is very satisfactory, it is in-
evitable that there will be forms in the corpora being processed that are not rec-

ognized by the morphological analyzer. These are almost always foreign proper

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 42

names, words adapted into the language and not in the lexicon, or very obscure

technical words. These are nevertheless inflected (using Turkish word forma-
tion paradigms) with inflectional features demanded by the syntactic context and
sometimes even go through derivational processes. For improved disambiguation,
one has to at least recover any morphological features even if the root word is un-
known. To deal with this, we have made the assumption that all unknown words

have nominal roots, and built a second morphological analyzer whose (nominal)

root lexicon recognizes ST where S is the Turkish surface alphabet (in the two-

level morphology sense), but then tries to interpret an arbitrary postfix of the

unknown word as a sequence of Turkish suffixes subject to all morphographemic

constraints. For instance when a form such as talkshowumun is entered, this

second analyzer hypothesizes the following analyses:

1. [[CAT NOUN] [ROOT talkshowumun]
[AGR 3SG] [P0SS NONE] [CASE NOM]]

2. [[CAT NOUN] [ROOT talkshowumu]
[AGR 3SG] [P0SS 2SG] [CASE NOM]]

3. [[CAT NOUN] [ROOT talkshowum]
[AGR 3SG] [P0SS NONE] [CASE GEN]]

4. [[CAT NOUN] [ROOT talkshowum]
[AGR 3SG] [P0SS 2SG] [CASE NOM]]

5. [[CAT NOUN] [ROOT talkshowu]
[AGR 3SG] [P0SS 1SG] [CASE GEN]]

6. [[CAT NOUN] [ROOT talkshow]
[AGR 3SG] [P0SS 1SG] [CASE GEN]]

which are then processed just like any other during disambiguation.!

ncidentally, the correct analysis is the 6! meaning of my talk show. The 5t one has the
same morphological features except for the root.

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 43

Another example is the token kermezdere’deki (at Kermezdere). Kermezdere
is a proper noun, and not known by the morphological analyzer. But it is possible
to guess, using the apostrophe and the suffixes de and ki. As a result unknown

word recognizer suggests the following parses for this token:

1. [[cat,noun],[root, ’kermezdere’],[agr,’3SG’], [poss, ’NONE’],
[type,proper], [case,locy], [conv,adj,rell]

2. [[cat,noun], [root,’kermezdere’], [agr,’3SG’], [poss, ’NONE’],

[type,proper], [case,locy], [conv,adj,rel],

[conv,noun,none], [agr,’3SG’], [poss, ’NONE’], [case,nom]]

This however is not a sufficient solution for some very obscure situations where
for the foreign word is written using its, say, English orthography, while suffix-
ation goes on according to its English pronunciation, which may make some
constraints like vowel harmony inapplicable on the graphemic representation,
though harmony is in effect in the pronunciation. For instance one sees the form
Carter’'a where the last vowel in C'arter is pronounced so that it harmonizes with

a in Turkish, while the e in the surface form does not harmonize with a.

We are nevertheless rather satisfied with our solution as in our experiments
we have noted that well below 1% of the forms remain as unknown and these are
usually item markers in formatted or itemized lists, or obscure foreign acronyms.
Our experimental results also indicate that more than 90% of the processed words,
which are not recognized by the morphological analyzer have got their intended

readings after the morphological disambiguation.

3.1.5 Format Conversion

The preprocessor then converts each parse into a hierarchical feature structure so
that the inflectional feature of the form with the last category conversion (if any)
is at the top level. Thus in the example above, gelisindeki, whose morphological

analysis is:

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 44

[[CAT VERB] [ROOT gel] [SENSE P0S]
[CONV NOUN YIS] [AGR 3SG]

[POSS 2SG] [CASE LOC]

[CONV ADJ REL]]

the following feature structure is generated.

[cAT ADJ T
[cAT NOUN i
AGR 35G
POSS 25G
CASE LOC
STEM
CAT VERB
STEM |ROOT gel
SENSE POS
| SUFFIX YIS |
| SUFFIX REL |

Consider again, the token imkansizlagmugt: (it had become impossible) in the

example sentence above. The feature structure for this token is as follows:

CAT VERB
SENSE POS
TAM1 NARR
TAM2 PAST

AGR 38G
CAT NOUN
STEM
STEM ROOT imkan
SUFFIX SIZ
| SUFFIX LAS

The root of this word is the noun imkan (possibility). The suffix siz makes an
adjective, converting it into the word impossible. Then the next suffix las makes
a verb, became impossible. The rest of the word defines the tense, aspect and
agreement of the verbal form. The output of the format conversion module for

the example sentence is as follows:

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 45

[benim,

[[cat:verb,stem: [cat:noun,root:ben,agr:’3SG’ ,poss: ’NONE’ ,case:nom],

suffix:none,tam2:pres,agr:’1SG’],

[cat:noun,root:ben,agr:’3SG’ ,poss:’1SG’ ,case:nom],

[cat:pronoun,root:ben,type:personal,agr:’1SG’ ,poss:’NONE’ ,case:gen],

[cat:verb,stem: [cat:pronoun,root:ben,type:personal,agr:’1SG’ ,poss: ’NONE’,

case:nom] ,suffix:none,tam2:pres,agr:’1SG’]1]],

[’devam etmem’,

[[cat:verb,root:’devam ed’,sense:neg,taml:aorist,agr:’1SG’],

[cat:noun,stem: [cat:verb,root:’devam ed’,sense:pos],

suffix:ma,type:infinitive,agr:’3SG’,poss:’1SG’,case:nom]]],

[artIk,

[[cat:adj,root:artIk],

[cat:noun,stem: [cat:adj,root:artIk],suffix:none,agr:’3SG’,poss: ’NONE’,case:nom],

[cat:adverb,root:artIk]]],

[imkansIzlaSmIStI,

[[cat:verb,stem: [cat:adj,stem: [cat:noun,root:imkan],suffix:siz],

suffix:las,sense:pos,taml:narr,tam2:past,agr:’3SG’]]1],

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 46

[[cat:punct,root:’.’]]]

3.1.6 Projection

In the learning modules, which will be explained in the sections 3.3 and 3.4, we

used projected parses of the tokens instead of using all of the features of a parse.

The motivation behind this is as follows: We need certain statistical information

in order to proceed in learning, such as the number of occurences of a certain
parse in a certain context unambiguously. Considering the whole parse would be
meaningless, because of the large number of features, including the root. In such

a case, although we have omitted the root, the performance of the learning would

have been well below satisfactory. On the other hand, if we have considered only
the category of the tokens, then there would have been no difference. So, we
decided to project each such feature structure on a subset of its features. The

features selected are

e inflectional and certain derivational markers, and stems for open class of

words,

e roots and certain relevant features such as subcategorization requirements

for closed classes of words such as connectives, postpositions, etc.

The set of features selected for each part-of-speech category is determined by
a template and hence is controllable, permitting experimentation with differing
levels of information. The information selected for stems are determined by the

category of the stem itself recursively.

Under certain circumstances where a token has two or more parses that agree
in the selected features, those parses will be represented by a single projected
parse, hence the number of parses in the (projected) training corpus may be
smaller than the number of parses in the original corpus. For example, the

feature structure above is projected into a feature structure such as:

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION

CAT ADJ
[cAT NOUN 1
AGR 35G
POSS 1SG

STEM CASE LOC
STEM [CAT VERB]

SUFFIX DIK

| SUFFIX REL

The sentence above

benim devam etmem artik imkansizlagmisti.

my continuation any more became impossible

‘it was impossible for me to continue any more.’

is projected as follows:

[benim,

[[cat:verb,stem: [cat:noun,agr:’3SG’,poss:’NONE’ ,case:nom]],

[cat:noun,agr:’3SG’,poss:’1SG’,case:nom],

[cat:pronoun,agr:’1SG’ ,poss:’NONE’,case:gen],
P g P g

[cat:verb,stem: [cat:pronoun,agr:’1SG’ ,poss: ’NONE’ ,case:nom]]1]],

[’devam etmem’,

[[cat:verb],

[cat:noun,agr:’3SG’,poss:’1SG’,case:nom]]],

[artIk,

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION

cat:adjl,
[cat:noun,agr:’3SG’ ,poss:’NONE’ ,case:nom],

[cat:adverbl]l],

[imkansIzlaSmIStI,

[[cat:verb,stem: [cat:adjl]]],

.,

[[cat:punct,root:’.’]1]]

3.2 Constraint Rules

The system uses rules of the sort

if LC and RC then choose PARSE
or

if LC and RC then delete PARSE

48

where LC and RC are feature constraints on unambiguous left and right contexts

of a given token, and PARSE is a feature constraint on the parse(s) that is (are)

chosen (or deleted) in that context if they are subsumed by that constraint.

Currently, the left and right contexts can be at most 2 tokens, hence we look

at a window of at most 5 tokens of which one is ambiguous. We refer to the

unambiguous tokens in the context as 1lc (left-left context) lc (left context),

rc (right context) and rrc (right-right context). Depending on the amount of

unambiguous tokens in a context, our rules can have one of the following context

structures, listed in order of decreasing specificity:

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 49

1. 1llc, 1l¢ ____ 1rc, rrc
2. 1llc, lc ____
____ T, rIc
3 lc ____ rc
4 1c ____
rc

To illustrate the flavor of our rules we can give the following examples. The

first example chooses parses with case feature ablative, preceding an unambiguous

postposition which subcategorizes for an ablative nominal form.

[11c:[1,1c: 0],

choose: [case:abl],

rc: [[cat:postp,subcat:abl]],rrc: [1]

candan once
* ADVERB(friendly) POSTP(before)
NOUN(soul)+ABL

A second example rule is

[1lc:[[cat:adj,type:determiner]],
lc:[[cat:adj,stem: [cat:noun]]],
choose: [cat:adj],

rc: [[cat:noun,poss:’NONE’]], rrc:[]].

bir odadaki kirmizi top
DET(a) NOUN(oda)+LOC+ADJ(ki) red ball
* ADVERB(only if)

which selects and adjective parse following a determiner, adjective sequence, and

before a noun without a possessive marker.

Another example rule is:

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 50

[11c:[],1c:[[agr:’2SG’,case:gen]],

choose: [cat:noun,poss:’2SG’],

rc: ,IIrC:

senin geliginin
your coming+POSS-25G
* your coming+POSS-35G

which chooses a nominal form with a possessive marker 2SG following a pronoun
with 2SG agreement and genitive case, enforcing the simplest form of noun—-noun

form noun phrase constraints.

Our system uses two hand-crafted sets of rules:

1. We use an initial set of hand-crafted choose rules to speed-up the learning
process by creating disambiguated contexts over which statistics can be col-
lected. These rules (examples of which are given above) are independent
of the corpus that is to be tagged, and are linguistically motivated. They
enforce some very common feature patterns especially where word order is
rather strict as in NP’s or PP’s.2 The motivation behind these rules is that
they should improve precision without sacrificing recall. These are rules
which impose very tight constraints so as not to make any recall errors. Our
experience is that after processing with these rules, the recall is above 99%
while precision improves by about 20 percentage points. Another important
feature of these rules is that they are applied even if the contexts are also
ambiguous, as the constraints are tight. That is, if each token in a sequence
of, say, three ambiguous tokens have a parse matching one of the context
constraints (in the proper order), then all of them are simultaneously dis-
ambiguated. In hand crafting these rules, we have used our experience from

an earlier tagger [24]. Currently we use 288 hand-crafted choose rules.

2. We also use a set of hand-crafted heuristic delete rules to get rid of any very
low probability parses. For instance, in Turkish, postpositions have rather
strict contextual constraints and if there are tokens remaining with multiple

parses one of which is a postposition reading, we delete that reading. Our

2Turkish is a free constituent order language whose unmarked order is SOV.

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 51

experience is that these rules improve precision by about 10 to 12 additional
percentage points with negligible impact on recall. Currently we use 43

hand-crafted delete rules.

Appendix D presents the hand-crafted choose and delete rules.

3.3 Learning Choose Rules

Given a training corpus, with tokens annotated with possible parses (projected
over selected features), we first apply the hand-crafted rules. Learning then goes
on as a number of iterations over the training corpus. We proceed with the

following schema which is an adaptation of Brill’s formulation [6]:

1. We generate a table, called incontext, of all possible unambiguous contexts
which contain a token with an unambiguous (projected) parse, along with
a count of how many times this parse occurs unambiguously in exactly the
same context in the corpus. We refer to an entry in table with a context C

and parse P as incontext(C, P).

2. We also generate a table, called count, of all unambiguous parses in the
corpus along with a count of how many times this parse occurs in the corpus.

We refer to an entry in this table with a given parse P, as count(P).

3. We then start going over the corpus token by token generating contexts as

we go.

4. For each unambiguous context encountered, C' = (LC,RC)® around an am-
biguous token w with parses Py, ... Py, and for each parse P;, we generate a

candidate rule of the sort
if LC and RC then choose P,

5. Every such candidate rule is then scored in the following fashion:

3Either of LC or RC may be empty.

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 52

(a) We compute

count(P;
Praz = argmazxp; (1 count(Fi),

count(P;)

incontext(C, P;).

(b) The score of the candidate rule is then computed as:

Score; = incontext(C,P;) — —2nih) .

count(Pmaxz)

incontext(C, Ppaz)

6. We order all candidate rules generated during one pass over the corpus,

along two dimensions:

(a) we group candidate rules by context specificity (given by the order in
Section 3.2),

(b) in each group, we order rules by descending score.

We maintain score thresholds associated with each context specificity group:
the threshold of a less specific group being higher than that of a more specific
group. We then choose the top scoring rule from any group whose score
equals or exceeds the threshold associated with that group. The reasoning
is that we prefer more specific and/or high scoring rules: high scoring rules
are applicable, in general, in more places; while more specific rules have more
strict constraints and more accurate morphological parse selections, We have
noted that choosing the highest scoring rule at every step may sometimes

make premature commitments which can not be undone later.

7. The selected rules are then applied in the matching contexts and ambiguity
in those contexts is reduced. During this application the following are also

performed:

(a) If the application results in an unambiguous parse in the context of the
applied rule, we increment the count associated with this parse in table
count. We also update the incontext table for the same context, and

other contexts which contains the disambiguated parse.

(b) We also generate any new unambiguous contexts that this newly disam-
biguated token may give rise to, and add it to the incontext table along

with count 1.

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 53

Note that for efficiency reasons, rule candidates are not generated repeatedly

during each pass over the corpus, but rather once at the beginning, and then

when selected rules are applied to very specific portions of the corpus.

8. If there are no rules in any group that exceed its threshold, group thresholds
are reduced by multiplying by a damping constant d (0 < d < 1) and

iterations are continued.

9. If the threshold for the most specific context falls below a given lower limit,

the learning process is terminated.

Some of the rules that have been generated by this learning process are given

elow:

1. Disambiguate around a coordinating conjunction:

[1lc:[1,1c: (1,
choose: [cat:noun,agr:3SG,case:nom] ,
rc: [[cat:conn,root:vel],

rrc: [[cat:noun,agr:3SG,poss:NONE]]]

kazan ve tencerede
NOUN(cauldron) CONN(and) NOUN(pot)+LOC
* ADJ(digging)

2. Choose participle form adjectival over a nominal reading:

[11c:[1,1c: 0,
choose: [cat:adj,suffix:yan],
rc:[[cat:noun,agr:3SG,poss:NONE]],
rrc:[[cat:noun,agr:3SG,poss:3SG]]1].

kazan yol iscisi
ADJ(digging) NOUN(road) NOUN(worker)+POSS-3SG
* NOUN(cauldron)

3. Choose a nominal reading (over an adjectival) if a three token compound

noun agreement can be established with the next two tokens:

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 54

[11c:[1,1c: 0,

choose:[cat:noun,agr:3SG,case:nom],

rc:[[cat:noun,agr:3SG,poss:3SG]1],
rrc: [[cat:noun,agr:3SG,poss:3SG]]]

kitap kapag1 resmi
NOUN(book) NOUN(cover)+POSS-3SG NOUN ((picture)+POSS-3SG
* NOUN(cover)+ACC * NOUN(picture)+ACC

3.3.1 Contexts induced by morphological derivation

The procedure outlined in the previous section has to be modified slightly in
the case when the unambiguous token in the rc position is a morphologically
derived form. For such cases one has to take into consideration additional pieces
of information. We will motivate this using a simple example from Turkish.

Consider the example fragment:

bir masa+dir.
a table+is

is a table

where the first token has the morphological parses:

1. [[CAT ADJ] [ROOT bir] [TYPE CARDINAL]]

(one)

2. [[CAT ADJ] [ROOT bir] [TYPE DETERMINERI]]
(a)

3. [[CAT ADVERB] [ROOT bir]]
(only/merely)

and the second form has the unambiguous morphological parse:

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 55

1. [LCAT NOUN] [ROOT masa] [AGR 3SG] [POSS NONE]
[CASE NOM] [CONV VERB NONE]
[TAM1 PRES] [AGR 3sSG]] (is table)

which in hierarchical form corresponds to the feature structure:

[CAT VERB]
TAM1 PRES
AGR 3SG
[CAT NOUN]
ROOT masa
STEM |AGR 3SG
POSS NONE
[CASE NOM |
SUFFIX NONE |

In the syntactic context this fragment is interpreted as

VP
NP +dir
/\
DET NOUN
| |
bir masa

where the determiner is attached to the noun and the whole phrase is then taken
as a VP although the verbal marker is on the second lexical item. If, in this
case, the token bir is considered to neighbor a token whose top level inflectional
features indicate it is a verb, it is likely that bir will be chosen as an adverb as it

precedes a verb, whereas the correct parse is the determiner reading.

In such a case where the right context of an ambiguous token is a derived form,

one has to consider as the right context, both the top level features of final form,

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 56

and the stem from which it was derived. During the set-up of the incontext table,
such a context is entered twice: once with the top level feature constraints of the
immediate unambiguous right-context, and once with the feature constraints of
the stem. The unambiguous token in the right context is also entered to the

count table once with its top level feature structure and once with the feature

structure of the stem.

When generating candidate choose or delete rules, for contexts where rc is

a derived form and rrc is empty, we actually generate two candidates rules for

each ambiguous token in that context:

1. 11 11c, 1c and rc then choose/delete P,.

2. if 11c, 1lc and stem(rc) then choose/delete P;.

These candidate rules are then evaluated as described above. In general all
derivations in a lexical form have to be considered though we have noted that

considering one level gives satisfactory results.

3.3.2 Ignoring Features

Some morphological features are only meaningful or relevant for disambiguation
only when they appear to the left or to the right of the token to be disambiguated.
For instance, in the case of Turkish, the CASE feature of a nominal form is only
useful in the immediate left context, while the POSS (the possessive agreement
marker) is useful only in the right context. If these features along with their
possible values are included in context positions where they are not relevant,
they “split” scores and hence cause the selection of some other irrelevant rule.
Using the maxim that union gives strength, we create contexts so that features
not relevant to a context position are not included, thereby treating context that

differ in these features as same.?

40bviously these features are specific to a language.

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 57

3.4 Learning Delete Rules

For choosing delete rules we have experimented with two approaches. One obvious

approach is to use the formulation described above for learning choose rules,

but instead of generating choose rules, pick the parses that score (significantly)
worse than and generate delete rules for such parses. We have implemented this

approach and found that it is not very desirable due to two reasons:

1. it generates far too many delete rules, and

2. 1t impacts recall seriously without a corresponding increase in precision.

The second approach that we have used is considerably simpler. We first re-
process the training corpus but this time use a second set of projection templates,
and apply initial rules, learned choose rules and heuristic delete rules. Then for
every unambiguous context C' = (LC,RC), with either an immediate left, or an
immediate right components or both (so the contexts used here are the last 3 in

Section 3.2), a score
incontext(C, P;)

count(P;)

for each parse P; of the (still) ambiguous token, is computed. Then, delete rules

of the sort

if LC and RC then delete P,

are generated for all parses with a score below a certain fraction (0.2 in our
experiments) of the highest scoring parse. In this process, our main goal is
to remove any seriously improbable parses which may somehow survive all the
previous choose and delete constraints applied so far. Using a second set of
templates which are more specific than the templates used during the learning
of the choose rules, we introduce features we were originally projected out. Our
experience has been that less strict contexts (e.g., just a 1c or rc) generate very
useful delete rules, which basically weed out what can (almost) never happen as
it is certainly not very feasible to formulate hand-crafted rules that specify what

sequences of features are not possible.

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 58

Some of the interesting delete rules learned here are:

1. Delete the first of two consecutive verb parses:

[11c:[],1c:[1,
delete: [cat:verb],

rc:[[cat:verb]],rrc:

yikanmis elbisedir
ADJ(washed) is..dress
* VERB(is washed)

2. Delete accusative case marked noun parse before a postposition that sub-

categorizes for a nominative noun:

[1lc:[1,1c: (1,
delete:[cat:noun,agr:3SG,poss:NONE,case:acc],

rc: [[cat:postp,subcat:nom]],rrc: [1].

kaz1 gibi
NOUN(excavation) ~ POSTP(like)
* NOUN(goose)+ACC

3. Delete the accusative case marked parse without any possessive marking, if
the previous form has genitive case marking (signaling a genitive—possessive

NP construction):

[1lc:[1,
lc:[[cat:noun,agr:3SG,poss:NONE,case:gen]],
delete:[cat:noun,agr:3SG,poss:NONE,case:acc],

rc:[1,rrc:[1].

gocugun kitabi
NOUN(child)+GEN NOUN(book)+POSS-35G
* NOUN(book)+ACC

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 59

3.5 Using Context Statistics to Delete Parses

After applying hand-crafted rules to a text to be disambiguated we arrive at a

state where ambiguity is about 1.10 to 1.15 parses per token (down from 1.70

to 1.80 parses per token) without any serious loss on recall. This state allows
statistics to be collected over unambiguous contexts. To remove additional parses
which never appear in any unambiguous context we use the scoring described
above for choosing delete rules, to discard parses on the current text based on
context statistics.” We make three passes over the current text, scoring parses in
unambiguous contexts of the form used in generating delete rules, and discarding
parses whose score is below a certain fraction of the maximum scoring parse, on
the fly. The only difference with the scoring used for delete rules, is that the
score of a parse P; here is a weighted sum of the quantity

incontext(C, P;)
count(P;)

evaluated for three contexts in the case both the 1c and rc are unambiguous.

3.6 Using Root Word Statistics

Using root word statistics is a well known technique, and mainly used in tagging
English texts. The idea beyond this technique is the following: Although most of
the words are ambiguous in the dictionary, for the real texts, generally, the usage

frequencies of these readings are very different. In the sentence:
I see a bird

the word see is ambiguous according to the Webster’s dictionary, it can be used

as the Holy See. But this reading is too rare that, it is possible to discard it.

Similarly, for Turkish, it is possible to detect such ambiguities left in the

sentence, and using a statistics database. A typical example for Turkish is the

5Please note that delete rules learned may be applied to future texts to be disambiguated,
while this step is applied to the current text on which disambiguation is performed.

CHAPTER 3. MORPHOLOGICAL DISAMBIGUATION 60

word ama (but). In a 2,000 sentence text, this word is used 270 times as a

connective, and never used in its old meaning, blind. So, it is possible to do this

operation automatically. Hand-crafted rules contain some similar Iexical issues,

like ama (but/blind), de (too/say) or diye (for that reason/let him say).

The functionality of this module is to resolve some ambiguities left using such

statistics. In fact, after the contextual statistics, the ambiguity is about 1.04
parses per tokens, and the parses of the ambiguities left are generally differ in
the roots and some features like type or voice. There is also another type of

tokens, which are still ambiguous: Most of the time, a lexicalized word, which is

considered as a separate parse is a derived reading of another parse. A typical
example for this is the word deyis (utterance). It can also be derived from the
verb de (to say), with a suffix yis, forming deyis (saying). In this case, the higher
level feature structures are generally the same, but one parse is derived, the other
is lexicalized. The root statistics have tendency to select the derived parse. This

is the major drawback of this method.

Some example tokens disambiguated using this module are:

[[cat:noun,root:g0ze,agr:3SG,poss:NONE,case:nom], (cell)

[cat:noun,root:g0z,agr:3SG,poss:NONE,case:dat]] (eye)

The root g6z (eye) is much more frequent than géze (cell), so géze may be

deleted.

[[cat:noun,root:alan,agr:3SG,poss:NONE,case:gen], (area)

[cat:noun,root:ala,agr:3SG,poss:NONE,case:gen]] (the one with red)

In this example above, the root alan is much more frequent, so it is chosen

instead of the other reading with the root ala.

This is a very practical and effective method, but unfortunately, it is very
dangerous to apply this on the earlier steps. It must be applied to the tokens,

which are still left ambiguous, when ambiguity is too low.

Chapter 4

Experimental Results

We have applied our learning system to four Turkish texts, two of them are pre-

viously unseen.! Table 4.1 gives some statistics on these texts. The first text
labeled ARK is a short text on near eastern archaeology. The second text from
which fragments whose labels start with C are derived, is a book on early 20
history of Turkish Republic. The third text, MANUAL is a technical manual,
originally translated from English. The last text, EMBASSY is a guideline doc-

ument for the embassy staff.

Given a new text annotated with all morphological parses of the tokens, the

disambiguation process goes through the following steps:

1. The initial hand-crafted choose rules are applied first. These rules always
constrain top level inflectional features, and hence, any stems from deriva-
tional processes are not considered unless explicitly indicated in the con-

straint itself.
2. The hand-crafted delete clean-up rules are applied.

3. Context statistics described in the preceding section are used to discard

further parses.

!During our experiments, we have used a tool developed by Nihat Ozkan as a senior project
in order to create a gold standard disambiguated text and compare an automatically disam-
biguated text with this gold standard. This tool has made the whole evaluation much faster
and easier.

61

CHAPTER 4. EXPERIMENTAL RESULTS

62

4. Root word preference statistics are used before applying the learned con-

straints.

5. The choose rules that have been learned earlier, are then repeatedly applied

to unambiguous contexts, until no more ambiguity reduction is possible.

During the application of these rules, if the immediate right context of a

token is a derived form, then the stem of the right context is also checked

against the constraint imposed by the rule. So if the rule right context con-

straint subsumes the top level feature structure or the stem feature structure,

then the rule succeeds and is applied if all other constraints are also satisfied.

6. Finally, the delete rules that have been learned are applied repeatedly to

unambiguous contexts, until no more ambiguity reduction is possible.

In Table 4.1, the tokens considered are that are generated after morphological

analysis, unknown word processing and any lexical coalescing is done. The words

that are unknown are those that could not even be processed by the unknown

noun processor. Whenever an unknown word had more than one parse it was

counted under the appropriate group.?

Distribution
of
Text Sentences | Tokens Morphological Parses
0 1 2 3 1 > 4
ARK 492 | 7,928 | 0.15% | 49.34% | 30.93% | 9.19% | 8.46% | 1.93%
(2400 2,407 | 39,800 | 0.03% | 50.56% | 28.66% | 10.12% | 8.16% | 2.47%
€270 270 5212 | 0.02% | 50.63% | 30.68% | 8.62% | 8.36% | 1.69%
EMBASSY 198 5177 | 0.09% | 43.94% | 34.58% | 9.60% | 9.46% | 2.33%
MANUAL 204 2756 | 0.65% | 49.01% | 31.70% | 6.37% | 8.91% | 3.36%

We learned rules from ARK itself, and on the first 500, 1000, and 2000 sentence
portions of C2400. C270 which was from the remaining 400 sentences of C2400
was set aside for testing. Gold standard disambiguated versions for ARK, C270

were prepared manually to evaluate the automatically tagged versions.

2For the text MANUAL, 18 of the tokens are left as unknown, but the roots of 16 of them
are the function keys, like f10. These tokens are said to be illegal by the morphological analyzer.

This is why the unknown word ratio is too high.

Table 4.1: Statistics on Texts

CHAPTER 4. EXPERIMENTAL RESULTS 63

Our results are summarized in the following set of tables. Tables 4.2 and

4.3 give the ambiguity, recall and precision initially, after hand-crafted rules are

applied, and after the contextual statistics are used to remove parses — all ap-
plications being cumulative. The rows labeled BASE give the initial state of
the text to be tagged. The rows labeled INITIAL CHOOSE give the state after
hand-crafted choose rules are applied, while the rows labeled INITIAL DELETE
give the state after the hand-crafted choose and delete rules are applied. The
rows labeled CONTEXT STATISTICS give the state after the rules are applied

and context statistics are used (as described earlier) to remove additional parses.

Disambiguation Ambiguity | Recall | Pre.
Stage (%) | (%)

BASE 1.828 | 100.00 | 54.69
INITIAL CHOOSE 1.339 | 99.28 | 74.13
INITIAL DELETE 1.110 | 99.08 | 88.91
CONTEXT STATISTICS 1.032 | 97.38 | 94.35

Table 4.2: Average parses, recall and precision for text ARK

Disambiguation Ambiguity | Recall | Pre.
Stage (%) | (%)

BASE 1.719 | 100.00 | 58.18
INITIAL CHOOSE 1.353 | 99.16 | 73.27
INITIAL DELETE 1.130 | 98.73 | 87.24
CONTEXT STATISTICS 1.038 | 96.70 | 93.15

Table 4.3: Average parses, recall and precision for text C270

Tables 4.4 and 4.5 present the results of further disambiguation of ARK, and
C270 using rules learned from training texts C500, C1000, C2000 and ARK.
These rules are applied after the last stage in the tables above.® The number of

rules learned are given in Table 4.6.%

Our next information source is the root word statistics, obtained by disam-

biguating the full version of the text C2400. In Section 3.6 the algorithm that

3Please note for ARK, in the first two rows, the training and the test texts are the same.
4Learning iterations have been stopped when the maximum rule score fell below 7.

CHAPTER 4. EXPERIMENTAL RESULTS

Disambiguation | Ambiguity | Recall | Pre.

Stage (%) (%)
Training Set ARK

LEARNED CHOOSE 1.029 | 97.31 | 94.52

LEARNED DELETE 1.027 | 97.20 | 94.63
Training Set C500

LEARNED CHOOSE 1.031 | 97.30 | 94.45

LEARNED DELETE 1.028 | 97.30 | 94.61
Training Set C1000

LEARNED CHOOSE 1.028 | 97.29 | 94.58

LEARNED DELETE 1.026 | 97.18 | 94.68
Training Set C2000

LEARNED CHOOSE 1.028 | 97.24 | 94.60

LEARNED DELETE 1.025 | 97.13 | 94.71

64

Table 4.4: Average parses, recall and precision for text ARK after applying

learned rules.

Disambiguation | Ambiguity | Recall | Pre.

Stage (%) (%)
Training Set ARK

LEARNED CHOOSE 1.035 | 96.64 | 93.36

LEARNED DELETE 1.029 | 96.40 | 93.71
Training Set C500

LEARNED CHOOSE 1.035 | 96.66 | 93.32

LEARNED DELETE 1.029 | 96.40 | 93.66
Training Set C1000

LEARNED CHOOSE 1.035 | 96.66 | 93.34

LEARNED DELETE 1.029 | 96.42 | 93.64
Training Set C2000

LEARNED CHOOSE 1.034 | 96.64 | 93.41

LEARNED DELETE 1.030 | 96.52 | 93.70

Table 4.5: Average parses, recall and precision for text 270 after applying learned

rules.

CHAPTER 4. EXPERIMENTAL RESULTS 65

Training | Choose | Delete
Text Rules | Rules

ARK 23 89
C500 11 113
C1000 29 195
2000 61 245

Table 4.6: Number of choose and delete rules learned from training texts.

uses these statistics is explained. But the main problem arises in the determina-

tion of the correct application place of this algorithm. So, we have made some

experiments, whose results are shown in Tables 4.7 and 4.8. Note that, all of the

parameters existing in contextual statistics, root-word statistics and the determi-
nation of the learned rules are chosen after some experimentation. For example,
the optimum ratios in the application of the contextual statistics, for each tour is

found experimentally. But there is no need to deal with the intermediate results.

Disambiguation Ambiguity | Recall | Pre.
Stage (%) | (%)

BASE 1.719 | 100.00 | 58.18
INITIAL CHOOSE 1.353 | 99.16 | 73.27
INITIAL DELETE 1.130 | 98.73 | 87.24
ROOT WORD STATISTICS 1.116 98.32 | 88.10
CONTEXT STATISTICS 1.031 | 96.44 | 93.52
LEARNED CHOOSE 1.027 | 96.40 | 93.84
LEARNED DELETE 1.023 | 96.21 | 94.06

Table 4.7: Average parses, recall and precision for text C270, root word statistics
applied after hand-crafted initial rules

We conclude from these numbers that, it will be much more better to apply
the root word statistics after the contextual statistics. So, the order of the steps
explained in the beginning of the previous chapter is completed. The suggested
order is applying the hand-crafted rules first, then contextual and root word

statistics, and last of all the learned rules.

We continued the disambiguation process of the two unseen texts, according

to this order. The results for these texts are presented in tables 4.9 and 4.10.

CHAPTER 4. EXPERIMENTAL RESULTS 66

Disambiguation Ambiguity | Recall | Pre.
Stage (%) | (%)

BASE 1.719 | 100.00 | 58.18
INITIAL CHOOSE 1.353 | 99.16 | 73.27
INITIAL DELETE 1.130 | 98.73 | 87.24
CONTEXT STATISTICS 1.038 | 96.70 | 93.15
ROOT WORD STATISTICS 1.034 | 96.66 | 93.50
LEARNED CHOOSE 1.029 | 96.60 | 93.81
LEARNED DELETE 1.024 | 96.40 | 94.11

Table 4.8: Average parses, recall and precision for text C270, root word statistics
applied after contextual statistics

Disambiguation Ambiguity | Recall | Pre.
Stage (%) (%)
BASE 1.982 | 100.00 | 50.526
INITIAL CHOOSE 1.384 | 97.00 | 69.94
INITIAL DELETE 1.192 | 96.77 | 80.73
CONTEXT STATISTICS 1.054 | 93.87 | 89.75
ROOT WORD STATISTICS 1.046 | 93.69 | 89.99
LEARNED CHOOSE 1.039 | 93.53 | 90.15
LEARNED DELETE 1.034 | 93.39 | 90.28

Table 4.9: Average parses, recall and precision for text EMBASSY

Disambiguation Ambiguity | Recall | Pre.
Stage (%) | (%)

BASE 1.719 | 100.00 | 58.18
INITIAL CHOOSE 1.340 | 98.22 | 73.25
INITIAL DELETE 1.152 | 97.74 | 84.81
CONTEXT STATISTICS 1.071 | 95.93 | 89.53
ROOT WORD STATISTICS 1.054 | 95.71 | 90.74
LEARNED CHOOSE 1.052 | 95.67 | 90.89
LEARNED DELETE 1.048 | 95.48 | 91.07

Table 4.10: Average parses, recall and precision for text MANUAL

CHAPTER 4. EXPERIMENTAL RESULTS 67

Tables 4.11 and 4.12 gives some additional statistical results at the sentence
level, for each of the test texts. The columns labeled UA/C and A/C give the

number and percentage of the sentences that are correctly disambiguated with

one parse per token, and with more than one parse for at least one token, respec-

tively. The columns labeled 1, 2, 3, and >3 denote the number and percentage

of sentences that have 1, 2, 3, and >3 tokens, with all remaining parses incor-

rect. It can be seen that well 60% of the sentences are correctly morphologically

disambiguated with very small number of ambiguous parses remaining.

Text Sentences
Total | UA/C | A/C | UA/C+A/C
ARK 494 || 44.53% | 19.64% 64.17%
€270 270 || 42.96% | 18.52% 61.48%
EMBASSY 198 || 21.21% | 12.12% 33.33%
MANUAL 204 || 34.80% | 24.51% 59.31%

UA /C : Percentage of the sentences, correctly and unambiguously
disambiguated.
A /C : Percentage of the sentences, correctly disambiguated with at least one
ambiguous token.

Table 4.11: Disambiguation results at the sentence level using rules learned from

C2000.

Text Sentences

Total 1 2 3 >3
ARK 494 |1 26.92% | 8.30% | 0.61% | 0.00%
C270 270 || 20.37% | 10.00% | 6.30% | 1.85%

EMBASSY 198 || 25.25% | 18.18% | 11.61% | 11.61%
MANUAL 204 | 26.47% | 11.77% | 0.00% | 2.45%

Table 4.12: The distribution of the number of wrongly disambiguated tokens in
the sentences

In order to see the effectiveness of the unknown word processor, we trace the
words that are processed by the unknown word processor through the morpholog-
ical disambiguation. As seen in Table 4.13, more than 90% of the tokens which
were unknown by the morphological processor, have got their correct reading

after the morphological disambiguation process.

CHAPTER 4. EXPERIMENTAL RESULTS 68

Text Tokens
Total | U | PU | CD | PU/U | CD/U
ARK | 7928 || 219 | 207 | 198 | 94.52% | 90.41%

U : Number of tokens, unknown by the morphological processor
PU : Number of unknown tokens, processed by the unknown word processor
CD : Number of unknown tokens, correctly disambiguated during the
morphological disambiguation

Table 4.13: The effectiveness of the unknown word processor

4.1 Discussion of Results

We can make a number of observations from our results: Hand-crafted rules go a
long way in improving precision substantially, but in a language like Turkish, one
has to code rules that allow no, or only carefully controlled derivations, otherwise
lots of things go massively wrong. Thus we have used very tight and conservative
rules in hand-crafting. Although the additional impact of choose and rules that
are induced by the unsupervised learning is not substantial, this is to be expected
as the stage at which they are used is when all the “easy” work has been done
and the more notorious cases remain. An important class of rules we explicitly
have avoided hand crafting are rules for disambiguating around coordinating
conjunctions. We have noted that while learning choose rules, the system zeroes
in rather quickly on these contexts and comes up with rather successful rules for
conjunctions. Similarly, the delete rules find some interesting situations which
would be virtually impossible to enumerate. Although it is easy to formulate
what things can go together in a context, it is rather impossible to formulate

what things can not go together.

We have also attempted to learn rules directly without applying any hand-
crafted rules, but this has resulted in a failure with the learning process getting
stuck fairly early. This is mainly due to the lack of sufficient unambiguous con-

texts to bootstrap the whole disambiguation process.

The unseen texts MANUAL and EMBASSY are morphologically disambiguated
with a very satisfactory recall and precision. Please also note that, EMBASSY is

CHAPTER 4. EXPERIMENTAL RESULTS 69

a very hard text, in the sense that MANUAL has 13.5 tokens per sentence on the
average while this number is more than 26 tokens per sentence for the text EM-
BASSY. That means EMBASSY contains more complex sentences, that is harder

to disambiguate. This is why the sentence level results are less satisfactory for

the text EMBASSY.

From analysis of our results we have noted that trying to choose one correct

parse for every token is rather ambitious (at least for Turkish). There are a

number of reasons for this:

e There are genuine ambiguities. The word o is either a personal or a demon-

strative pronoun (in addition to being a determiner). One simply can not

choose among the first two using any amount of contextual information.

e A given word may be interpreted in more than one way but with the same
inflectional features, or with features not inconsistent with the syntactic
context. This usually happens when the root of one of the forms is a proper
prefix of the root of the other one. One would need serious amounts of
semantic, or statistical root word and word form preference information for
resolving these. For instance, in

koyun siiriisi

koyun siirii+si

sheep herd+POSS-3SG
(sheep herd)

koy+un stiri-+si
bay+GEN herd+PO0OSS-35G
(bay’s herd)

both noun phrases are syntactically possible, though the second one is obvi-
ously nonsense. It is not clear how one would disambiguate this using just

contextual or syntactic information.

Another similar example is:

CHAPTER 4. EXPERIMENTAL RESULTS 70

kurmaya yardim etti
kur+ma+ya yardim et+ti
construct+INF+DAT help make+PAST
helped construct (something)
kurmay+a yardim et+ti
military-officer4+DAT help make+PAST
helped the military-officer

where again with have a similar problem. It may be possible to resolve
this one using subcategorization constraints on the object of the verb kur

assuming it is in the very near preceding context, but this may be very

unlikely as Turkish allows arbitrary adjuncts between the object and the

verb.

e Turkish allows sentences to consist of a number of sentences separated by
commas. Hence locating a verb in the middle of a sentence is rather difficult,
as certain verbal forms also have an adjectival reading, and punctuation is

not very helpful as commas have many other uses.

e The distance between two constituents (of, say, a noun phrase) that have to
agree in various morphosyntactic features may be arbitrarily long and this
causes occasional mismatches, especially if the right nominal constituent has

a surface plural marker which causes a 4-way ambiguity, as in masalar:.

masalarl
1. [[CAT NOUN] [ROOT masal [AGR 3PL]
[POSS NONE] [CASE Acc]]

(tables accusative)

2. [[CAT NOUN] [ROOT masa] [AGR 3PL]
[POSS 3SG] [CASE NOMI]
(his tables)

3. [[CAT NOUN] [ROOT masa] [AGR 3PL]
[POSS 3PL] [CASE NOMI]
(their tables)

CHAPTER 4. EXPERIMENTAL RESULTS 71

4, [[CAT NOUN] [ROOT masa] [AGR 3SGl]
P0OSS 3PL CASE NOM
(their table)

Choosing among the last three is rather problematic if the corresponding

genitive form to force agreement with is outside the context.

Among these problems, the most crucial is the second one which we believe
can be solved to a great extent by using the scoring mechanism in the application

of the hand-crafted rules. We have already designed the algorithm, and present

it in the next chapter.

Chapter 5

Conclusions

This thesis had presented a constraint-based morphological disambiguation ap-
proach, which combines a set of hand-crafted constraint rules, corpus statistics
and learns additional rules to choose and delete parses, from untagged text in
an unsupervised manner. We have extended the rule learning and application
schemes so that the impact of various morphological phenomena and features are

selectively taken into account.

Before the disambiguation process, a very robust preprocessing is implemented
on the raw text. After the tokenization module divides the text into its tokens, a
lexical and non-lexical recognizer captures the predefined lexical (e.g. devam et
(continue), Mustafa Kemal Atatiirk) and non-lexical (e.g. kosa kosa (running),
yapar yapmaz (as soon as s/he does)) collocations, and forms an intermediate
form of the text, containing its tokens with corresponding parses. A format
conversion is applied at this step, so that the inflectional feature of the parse,
with the last category conversion (if any) is at the top level, and as a result, a
hierarchical feature structure is obtained. The preprocessing phase also prepares

a projected form in order to be used in learning additional constraints.

We have applied our approach to morphological disambiguation of Turkish, a
free—constituent order language, with agglutinative morphology, exhibiting pro-

ductive inflectional and derivational processes. We have also incorporated a

72

CHAPTER 5. CONCLUSIONS 73

rather sophisticated unknown form processor which extracts any relevant inflec-
tional or derivational markers even if the root word is unknown. For a corpus,
containing 39,800 tokens, only 12 of them are left as unknown, which are gener-
ally foreign proper names, which take suffixes according to their pronunciation,
instead of spelling, and some words, which have spelling mistakes. When we trace
the tokens processed by the unknown word processor, we see that more than 90%

of them have received their intended readings.

Our results indicate that by combining these hand-crafted, statistical and

learned information sources, we can attain a recall of 96 to 97% with a corre-

sponding precision of 93 to 94% and ambiguity of 1.02 to 1.03 parses per token,

on test texts, however the impact of the rules that are learned is not significant

as hand-crafted rules do most of the easy work at the initial stages.

The results are also satisfactory, when we do the same experiments on two
unseen texts, which are on completely different topics. The recall we reach is
93-95% with a corresponding precision of 90-91% and ambiguity of 1.03 to 1.04

parses per token.

Note that these results are obtained from a certain application order of our
morphological disambiguation sources. We first apply the hand-crafted rules,
then contextual statistics and root-category statistics and terminate with the
learned rules. This order is very important in the sense that every source of
morphological disambiguation is effective on its right place. If root-category
statistics are applied as a first step, the result would be a disappointment unlike
the English case. Consider the token bir (DET(one) or ADVERB(if only)), which
is generally used as a determiner. If these statistical information is used initially,
all of the parses of this token would be assumed to be determiner, although it

has some adverbial readings, which is not too rare.

Our next aim is to improve the obtained results. We have some readily de-
fined ideas for an enhanced morphological disambiguation. We observe that after
applying the hand-crafted rules, we sacrifice about 1% from the recall, which is
a very high ratio for us, because the errors made on this step affects the success
of other steps, such as using context statistics for further disambiguation. The

success of the learned rules is also affected, because such rules are learned from

CHAPTER 5. CONCLUSIONS 74

the corpus, which is initially disambiguated by these hand-crafted rules. For
these reasons, we decide to make the initial disambiguation phase independent
from the order of the constraints. Instead of immediately choosing or deleting
a corresponding parse, which is the main cause of error in this phase, we keep
a score for each parse, and if a parse of a token is chosen, its score will be in-
cremented, and similarly if a parse is said to be deleted by some rule, its score

will be decremented. After this scoring operation is completed, the parses with

a very low score according to some ratio or difference will be deleted. Motivated

by Alshawi and Carter’s work [1], we want to incorporate weights for the contri-

butions of the preference constraints used in disambiguation. Using the weights,

the scores of the parses will be incremented or decremented according to the

weight of the constraint. For example a very strong constraint will have a higher
weight. These weights will be obtained according to manually created gold stan-
dard disambiguated texts. This method was applied to an English corpus ATIS
by Alshawi and Carter and got more successful results than those derived by a

labour intensive hand tuning effort.

Bibliography

[1] H. Alshawi and D. Carter. Training and scaling preference functions for
disambiguation. Computational Linguistics, 20(4):635-648, December 1994.

[2] E. Brill. A simple-rule based part-of-speech tagger. In Proceedings of the
Third Conference on Applied Natural Language Processing, Trento, Italy,
1992.

(3] E. Brill. A Corpus-Based Approach to Language Learning. PhD thesis,
University of Pennsylvania, 1993.

[4] E. Brill. Some advances in rule-based part of speech tagging. In Proceed-
ings of the Twelfth National Conference on Articial Intelligence (AAAI-94),
Seattle, Washinton, 1994.

[5] E. Brill. Transformation-based error-driven learning and natural language
processing: A case study in part-of-speech tagging. Computational Linguis-

tics, 21(4):543-566, December 1995.

[6] E. Brill. Unsupervised learning of disambiguation rules for part of speech
tagging. In Proceedings of the Third Workshop on Very Large Corpora, Cam-
bridge MA, June 1995.

[7] K. W. Church. A stochastic parts program and a noun phrase parser for un-
restricted text. In Proceedings of the Second Conference on Applied Natural
Language Processing, Austin, Texas, 1988.

[8] K. W. Church. I've got data coming out of my ears. In EACL special of Ta!,

the Dutch students’ magazine for computational linguistics, volume 2. 1993.

75

BIBLIOGRAPHY 76

[9] D. Cutting, J. Kupiec, J. Pedersen, and P. Sibun. A practical part-of-speech
tagger. In Proceedings of the Third Conference on Applied Natural Language

Processing, Trento, Italy, 1992.

[10] S. J. DeRose. Grammatical category disambiguation by statistical optimiza-
tion. Computational Linguistics, 14(1):31-39, 1988.

[11] B. B. Greene and G. M. Rubin. Automated grammatical tagging of En-
glish. Department of Linguistics, Brown University, Providence, Rhode Is-

and, 1971.

[12] Z. Gingordi and K. Oflazer. Parsing Turkish using the Lexical-Functional
Grammar formalism. Machine Translation, 11(4):293-319, 1995.

[13] J. Hankamer. Morphological parsing and the lexicon. In W. Marslen-Wilson,
editor, Lexical Representation and Process. MIT Press, 1989.

[14] F. Karlsson. Constraint grammar as a framework for parsing running text.
In Proceedings of COLING-90, the 13'h International Conference on Com-
putational Linguistics, volume 3, pages 168173, Helsinki, Finland, 1990.

[15] F. Karlsson, A. Voutilainen, J. Heikkila, and A. Anttila. Constraint
Grammar-A Language—Independent System for Parsing Unrestricted Text.
Mouton de Gruyter, 1995.

[16] L. Karttunen. Finite-state lexicon compiler. XEROX, Palo Alto Research
Center— Technical Report, April 1993.

[17] S. Klein and F. Simmons. Computational approach to grammatical coding

of English words. JACM, 10:334-347, 1963.

[18] K. Koskenniemi. Two-level morphology: A general computational model for
word form recognition and production. Number 11. Department of General

Linguistics, University of Helsinki, 1983.

[19] I. Kurudz. Tagging and morphological disambiguation of Turkish text. Mas-
ter’s thesis, Bilkent University, Department of Computer Engineering and

Information Science, July 1994.

BIBLIOGRAPHY 7

[20]

[21]

[22]

23]

[24]

M. Levinger, U. Ornan, and A. Itai. Learning morpho-lexical probabilities
from an untagged corpus with an application to Hebrew. Computational

Linguistics, 21(3):383-404, September 1995.

I. Marshall. Choice of grammatical word-class without global syntactic anal-

ysis: Tagging words in the Iob corpus. Computers in Humanities, 17:139-150,
I(]Eg‘;'

B. Merialdo. Tagging text with a probabilistic model. In IEEFE International

Conference on Acoustics, Speech and Signal Processing, 1991.

K. Oflazer. Two-level description of Turkish morphology. In Proceedings of
the Sixth Conference of the European Chapter of the Association for Com-
putational Linguistics, April 1993. A full version appears in Literary and
Linguistic Computing, Vol.9 No.2, 1994.

K. Oflazer and I. Kurudz. Tagging and morphological disambiguation of
Turkish text. In Proceedings of the 4" Applied Natural Language Processing
Conference, pages 144-149. ACL, October 1994.

P. Tapainen and A. Voutilainen. Tagging accurately - don’t guess if you know.
In Proceedings of the 4" Applied Natural Language Processing Conference,
October 1994.

A. Voutilainen. Three Studies of Grammar-Based Surface Parsing of Unre-
stricted English Text. PhD thesis, Univeristy of Helsinki, Helsinki, Finland,
May 1994.

A. Voutilainen. Morphological disambiguation. In F. Karlsson, A. Vouti-
lainen, J. Heikkila, and A. Anttila, editors, Constraint Grammar-A
Language—Independent System for Parsing Unrestricted Text, chapter 5.
Mouton de Gruyter, 1995.

A. Voutilainen. A syntax-based part-of-speech analyzer. In Proceedings of
the Seventh Conference of the European Chapter of the Association of Com-
putational Linguistics, Dublin, Ireland, 1995.

A. Voutilainen, J. Heikkila, and A. Anttila. Constraint Grammar of English.
University of Helsinki, 1992.

BIBLIOGRAPHY 78

[30] A. Voutilainen and P. Tapanainen. Ambiguity resolution in a reductionistic

parser. In Proceedings of FACL’93, Utrecht, Holland, 1993.

[31] R. Weischedel, M. Meteer, R. Schwartz, .. Ramshaw, and J. Palmucci. Copy-

ing with ambiguity and unknown words through probabilistic models. Com-

putational Linguistics, 19, 1993.

Appendix A

Sample Text

This sample text is consisted of sentences taken from the text ARK. Upper cases

indicate one of the non-ASCII special Turkish characters: e.g., G denotes g, U
denotes 1, I denotes 1, S denotes s, C denotes ¢, 0 denotes 6, and there is no other

capital letter used in the text.

arkeologlar, kazl yapmanln yanl slra, o kazl yerini Cevreleyen alanln
eski biCimini de yeniden kurmaya CallSIrlar. ilk evler, burada kuzey
Irak’ta kermezdere’deki proto neolitik dOnem evinde gOrUIdUGU gibi,
topraGa gOmUIU yuvarlak kulUbelerdi. taS ve tahta aletler arasInda,
iGne, dikiS iGnesi, blz, ok baSI, mlzrak ya da zIpkln uClarl, vb., bu-
lunuyordu. proto neolitik eriha’nln en dikkat Cekici Ozelliklerinden
biri, surlarIn iC taraflna yapISIk taS kuleydi. 10 m. Caplndaki kulenin
8 metrenin UstUnde bir bOIUmU bugUn de ayaktadlr. doGu tarafInda
1.7 m yUksekliGinde bir kapl, her biri tek bir taS bloGundan yapIlmIS
22 basamakll bir merdivene aClllr. tell brak’taki mO. 4. binyll tap-
InaGInda 300’U aSkIn (ayrlca parCa halinde binlerce) taS ya da piSmiS
kilden yapllmIS ”gOz putu” bulunmuStur. taplnakta, yUkseklikleri 2
ile 11 ¢m arasInda deGiSen bu adak simgelerinden 20,000 - 22,000 kadar
bulunduGu hesaplanmIStIr. niceliksel CallSmalar yapllacaGI zaman,
temsili nitelikte Ornekler elde etmenin temel yOntemlerinden biri el-

emedir. kumlu toprakta kuru eleme zaman zaman mUmkUndUr.

79

Appendix B

The Collocation Database

B.1 Non-Lexicalized Collocations

e.g. koSa koSa

[ROOT=_R] [SENSE=P0S] [TAM1=0PT] [AGR=3SG] [ROOT=_R] [SENSE=P0S] [TAM1=0PT] [AGR=3SG]
[[CAT=ADVERB] [ROOT=%s] [SENSE=POS] [TYPE=MANNER]]

e.g. yapar yapmaz

[ROOT=_R] [SENSE=P0OS] [TAM1=AORIST-AR] [AGR=3SG] [ROOT=_R] [SENSE=NEG] [TAM1=AORIST] [AGR=3SG]
[[CAT=ADVERB] [ROOT=%s] [SENSE=P0S] [TYPE=MANNER]]

[ROOT=_R] [SENSE=P0OS] [TAM1=AORIST-HR] [AGR=3SG] [ROOT=_R] [SENSE=NEG] [TAM1=AORIST] [AGR=3SG]
[[CAT=ADVERB] [ROOT=%s] [SENSE=P0S] [TYPE=MANNER]]

[ROOT=_R] [SENSE=P0OS] [TAM1=AORIST-R] [AGR=3SG] [ROOT=_R] [SENSE=NEG] [TAM1=AORIST] [AGR=3SG]
[[CAT=ADVERB] [ROOT=%s] [SENSE=P0S] [TYPE=MANNER]]

e.g. yaplp yapmama
[ROOT=_R] [CAT=VERB] [SENSE=POS] [CONV=ADVERB=YIP]

[ROOT=_R] [CAT=VERB] [SENSE=NEG] [CONV=NOUN=MA] [TYPE=INFINITIVE]
[[CAT=NOUN] [ROOT=%s]]

80

APPENDIX B. THE COLLOCATION DATABASE 81

e.g. gUrUL gUrUL

[WORD=_W] [CAT=DUP] [WORD=_W] [CAT=DUP]
CAT=ADVERB] [ROQT=Y%s

e.g. ev oev

[WORD=_W] [CAT=NOUN] [CASE=NOM] [WORD=_W] [CAT=NOUN] [CASE=NOM]
CAT=ADVERB] [ROQT=Y%s

e.g. glUzel gUzel

[WORD=_Ww] [CAT=ADJ] [WORD=_W] [CAT=ADJ]
[[CAT=ADVERB] [ROOT=Y%s]]

e.g. gUzel mi gUzel

[WORD=_W] [CAT=ADJ] [ROOT=mi] [WORD=_W] [CAT=ADJ]
[[CAT=ADJ] [ROOT=Y%s]]

e.g. ev be ev

[WORD=_W] [CAT=NOUN] [ROOT=be] [WORD=_W] [CAT=NOUN]
[[CAT=ADVERB] [ROOT=Y%s]]

B.2 Fixed Lexicalized Collocations

baS1I baSIna
[[CAT=ADJ] [ROOT=Y%s]]

hiC kimse

[[CAT=PRONOUN] [ROOT=%s]11

ne denli

[[CAT=ADVERB] [ROOT=Y%s]]

son derece

[[CAT=ADVERB] [ROOT=Y%s]]

APPENDIX B. THE COLLOCATION DATABASE

Simdiye dek
[[CAT=ADVERB] [ROOT=Y%s]]

okur yazar
[[CAT=ADJ] [ROOT=%s1]

okur - yazar
[[CAT=ADJ] [ROOT=%s1]

hiC olmazsa

[[CAT=ADVERB] [ROOT=Y%s]]

e 1 a

[[CAT=ADJ] [ROOT=Y%s]]

az kalsIn

[[CAT=ADVERB] [ROOT=Y%s]]

can havliyle

[[CAT=ADVERB] [ROOT=Y%s]]

allaha IsmarladIk
[[CAT=EXC] [ROOT=Y%s]]

tek tUk
[[CAT=ADJ] [ROOT=%s]]

Ote yandan
[[CAT=CONN] [ROOT=%s]]

ya da
[[CAT=CONN] [ROOT=%s]]

yanl sIra
[[CAT=POSTP] [ROOT=%s] [SUBCAT=GEN]]

he menem

[[CAT=ADJ] [ROOT=Y%s]]

ipe sapa gelmez

[[CAT=ADJ] [ROOT=Y%s]]

82

APPENDIX B. THE COLLOCATION DATABASE

))

[[CAT=PUNCT] [ROOT=%s]]

[[CAT=PUNCT] [ROOT=%s]]

geCmiS olsuna

CAT=ADVERB] [ROQT=Y%s

B.3 Inflectable Lexicalized Collocations

new york
adnan adlvar
mustafa kemal

evliya Celebi

dikkat CeK
ele al

yok ol
yararll ol
hedef ol
yol gOsterici ol
s0z konusu ol
yok ol
gUC1U ol
hazIr ol
C0zUm ol
geCerli ol
glucC ol
sorumlu ol
kUl ol

ait ol
zorunlu ol
tedavi ol
felC ol
taklit ed
para ed
baS ed

ismet inOnU
ali fuat
kemal atatUrk

bosna hersek

baSta gel
yol al

sahip ol
Onemli ol
yardImcI ol
yol al

sahne ol
arkadaS ol
yUrUrlUkte ol
Uye ol

baGlI ol
konu ol
SikayetCi ol
aday ol

son ol
mUteSekkUr ol
baSarIlI ol
kalaballk ol
altUst ol
tehdit ed
temin ed

yolculuk ed

kazIm karabekir
Cerkez ethem
hasan pulur
tUrk - iS

Onde gel
etkili ol
iliSkili ol
mUmkUn ol
deGiSik ol
uygun ol
fikir sahibi ol
sebep ol
elinde ol
teslim ol
kolay ol
harap ol
yasak ol
kaynak ol
alabora ol
mUteSekkir ol
dikkatli ol
hakim ol
alt Ust ol
devam ed
hareket ed
takdir ed

afyon karahisar

mustafa kemal atatUrk
mazhar mUfit kansu

amerikan airlines

karSI1Ik gel
g0ze Carp
rolU ol
neden ol
mevcut ol
felaket ol
mutlu ol
destek ol
belli ol

gUvence altInda ol

yeterli ol
kardeS ol
kayIp ol
kUs ol
boyun eG
Sart ol
engel ol

mahkum ol

gOzetim altIna al

hizmet ed
telefon ed
takip ed

APPENDIX B. THE COLLOCATION DATABASE

eS1ik ed temsil ed tahliye ed kabul ed
ifade ed rekabet ed hareket ed meSgul ed
inSa ed ziyaret ed iptal ed yardIm ed

tahmin ed terk ed tahammUl ed tatmin ed
gOzardI ed kontrol ed ilan ed hitap ed
itiraf ed iSgal ed mUcadele ed ihlal ed
g0C ed tedirgin ed merak ed ihanet ed
alay ed ithal ed ihraC ed seyahat ed
yerle bir ed yerlebir ed teSvik ed mUdahale ed
hitap ed davet ed arz ed iSaret ed
aktive ed tahrik ed teShis ed dua ed
iddia ed akIn ed teSekkUr ed istifa ed
tercih ed dans ed protesto ed sohbet ed
ikna ed yok ed s0z ed tedavi ed
dezenfekte ed ikram ed tahliye ed iptal ed
elde ed sInIrdISI ed istismar ed endiSe ed
fark ed veto ed maGlup ed havale ed
tolere ed ayIrt ed iade ed s0zUnU ed
yerinden ed yerlerinden ed garanti ed parafe ed
ateS ed imha ed idare ed ameliyat ed
idam ed not ed gOzardI ed tahsis ed
tercUme ed tahrip ed hayal ed rapor ed
mahkum ed modifiye ed rica ed akIn ed
merak ed hediye ed tanIklIk ed veda ed
Sikayet ed tavsiye ed tercih ed bertaraf ed
tesis ed tereddUt ed inkar ed empoze ed
ibadet ed dikkat ed zarar ed isabet ed
tahakkuk ed OncUlUk ed itibar ed kat ed

alt ed altUst ed alt Ust ed aGzInda sakIz ed
iltica ed Unit ed takviye ed yemin ed
sonuC al imza al gOrevden al Onlem al
g0ze al haber al satIn al esir al
dikkate al g0z OnUne al filme al konu al
sonuC al elinden al ele al tedavi altIna al
One sUr geri al karar al Ornek al
esas al askIya al koruma altIna al incelemeye al
ciddiye al bilgi al OvgU al zevk al

yer al yol al izin al nefes al
tavIr al hedef al zaman al oy al
eGitim al ilgi CeK ceza CeK acI CeK
fotoGraf CeK geri CeK sIkIntI CeK gUC1Uk CeK
oyun oyna rol oyna ortaya koy karSI koy

84

APPENDIX B. THE COLLOCATION DATABASE

85

el koy imza koy ambargo koy yasa koy
ele gelJ abayI yaK hiCe say sona er

gerek gOr gerek kal gerek duy kayda gel
yok ol var ol geri kal karST CIK

ortaya CIK

idealize ed

Appendix C

Sample Preprocessed Text

[[e,
[[cat:beginning of_sentencell],
[arkeologlar,

[[cat:noun,stem: [cat:noun,root:arkeoloji] ,suffix:og,agr: ’3PL’,poss: ’NONE’,case:nom],
[cat:verb,stem: [cat:noun,stem: [cat:noun,root:arkeoloji] ,suffix:og,agr: ’3SG’,
poss:’NONE’,case:nom] ,suffix:none,tam2:pres,agr:’3PL’]]],

L.,

[[cat:punct,root:’,’]1],

[kazI,

[[cat:noun,root:kazl,agr:’3SG’,poss: NONE’,case:nom],
[cat:noun,root:kaz,agr:’3SG’ ,poss: ’NONE’,case:acc],
[cat:noun,root:kaz,agr:’3SG’ ,poss:’3SG’,case:nom],
[cat:verb,root:kazI,sense:pos,taml:imp,agr:’2SG°1]],

[yapmanIn,

[[cat:noun,stem: [cat:verb,root:yap,sense:pos],suffix:ma,type:infinitive,
agr:’3SG’,poss:’NONE’,case:gen],

[cat:noun,stem: [cat:verb,root:yap,sense:pos],suffix:ma,type:infinitive,
agr:’3SG’,poss:’2SG’,case:gen]]],

[’yanI sIra’,

[[cat:postp,root:’yanI sIra’,subcat:gen]]],

L.,

[[cat:punct,root:’,’]1],

[o,

[[cat:adj,root:0,type:determiner],
[cat:exc,root:0o],

[cat:pronoun,root:o,type:demons,agr: ’3SG’,poss: ’NONE’,case:nom],

86

APPENDIX C. SAMPLE PREPROCESSED TEXT 87

[cat:pronoun,root:o,type:personal,agr: ’3SG’,poss: 'NONE’,case:nom]]],
[kazI,

cat:noun,root:kazl,agr: ,poss: ,case:nomJ,
LC kazI,agr:’3SG’,p *NONE’]

[cat:noun,root:kaz,agr:’3SG’,poss: ’NONE’,case:acc],

[cat:noun,root:kaz,agr:’3SG’ ,poss:’3SG’,case:nom],

[cat:verb,root:kazI,sense:pos,tami:imp,agr:’25G°]]],
yerini,

[[cat:noun,root:yer,agr: ’3SG’,poss:’2SG’,case:acc],

[cat:noun,root:yer,agr:’3SG’,poss: ’35G’,case:acc]]],
’Cevreleyen’,

cat:adj,stem: [cat:verb,root:’Cevrele’ ,sense:pos],suffix:yan s
[C dj [b 'C le’ 1,suffi 111
[alanIn,

cat:noun,root:alan,agr: ,poss: ,case:gen],
LC 1 gr:’3SG’,p *NONE’ gen]

[cat:noun,root:alan,agr:’3SG’,poss:’2SG’,case:nom],

[cat:noun,root:ala,agr:’3SG’,poss: ’NONE’,case:gen],
[cat:noun,root:ala,agr:’3SG’,poss:’2SG’,case:gen],
[cat:noun,stem: [cat:adj,stem: [cat:verb,root:al,sense:pos],suffix:yan],suffix:none,
agr:’3SG’,poss:’NONE’,case:gen],
[cat:noun,stem: [cat:adj,stem: [cat:verb,root:al,sense:pos],suffix:yan],suffix:none,
agr:’3SG’,poss:’2SG’,case:nom]]],
[eski,
[[cat:adj,root:eskil,
[cat:noun,stem: [cat:adj,root:eski],suffix:none,agr:’3SG’,poss: ’NONE’,case:nom],
[cat:verb,root:eski,sense:pos,tami:imp,agr:’2SG°1]],
[biCimini,
[[cat:noun,root:biCim,agr: ’3SG’,poss: ’25G’,case:acc],
[cat:noun,root:biCim,agr:’3SG’,poss: ’3SG’,case:accll],
[de,
[[cat:conn,root:de],
[cat:verb,root:de,sense:pos,taml:imp,agr:’2SG°1]1],
[yeniden,
[[cat:noun,stem: [cat:adj,root:yenil],suffix:none,agr:’3SG’,poss: 'NONE’,case:abl],
[cat:adverb,root:yeniden]]],
[kurmaya,
[[cat:noun,root:kurmay,agr:’3SG’,poss: 'NONE’,case:dat],
[cat:verb,root:kur,sense:neg,tami:opt,agr:’3SG’],
[cat:noun,stem: [cat:verb,root:kur,sense:pos],suffix:ma,type:infinitive,
agr:’3SG’,poss:’NONE’,case:dat]]],
[’CalISIrlar’,
[[cat:verb,root:’CallS’,sense:pos,taml: (aorist),agr:’3PL’]1]],
L.,
[[cat:punct,root:’.’]11],

APPENDIX C. SAMPLE PREPROCESSED TEXT 88

[#’
[[cat:end_of_sentencelll].

[[e,
[[cat:beginning of_sentencell],
ilk,
[[cat:adj,root:il1K],

[cat:noun,stem: [cat:adj,root:ilK],suffix:none,agr:’3SG’,poss: NONE’ ,case:nom],
[cat:adverb,root:i1K]1],
[evler,

[[cat:noun,root:ev,agr:’3PL’,poss: ’NONE’,case:nom],
g 1%

[cat:verb,stem: [cat:noun,root:ev,agr:’3SG’ ,poss:’NONE’,case:nom] ,suffix:none,
tam2:pres,agr:’3PL’]]1],
[[cat:punct,root:’, 117,

[burada,
[[cat:noun,root:bura,agr:’3SG’,poss: *NONE’,case:loc]]],
[kuzey,
[[cat:adj,root :kuzey],
[cat:noun,root:kuzey,agr:’3SG’,poss: ’NONE’ ,case:nom]]],
[’Irak\’ta’,
[[cat:noun,root:’Irak’,type:rproper,agr:’3SG’,poss: NONE’,type:proper,case:loc]]l],
[’kermezdere\’deki’,
[[cat:adj,stem: [cat:noun,root :kermezdere,agr:’3SG’ ,poss: ’NONE’ ,type:proper,case:loc],
suffix:rell,
[cat:noun,stem: [cat:adj,stem: [cat:noun,root:kermezdere,agr:’3SG’,poss: *NONE’,
type:proper,case:loc],suffix:rel],suffix:none,agr:’3SG’,poss: 'NONE’,case:nom],
[cat:adj,stem: [cat:noun,root:kermezDere,agr:’3SG’ ,poss: 'NONE’,type:proper,case:loc],
suffix:rell,
[cat:noun,stem: [cat:adj,stem: [cat:noun,root:kermezDere,agr:’3SG’,poss: *NONE’,
type:proper,case:loc],suffix:rel],suffix:none,agr:’3SG’,poss: ’NONE’,case:nom]]],
[proto,
[[cat:noun,root:proto,agr: ’3SG’ ,poss: ’NONE’,case:nom]]],
[neolitik,
[[cat:adj,root:neolitik],
[cat:noun,stem: [cat:adj,root:neolitik],suffix:none,agr:’3SG’,poss: ’NONE’,case:nom]]],
[dOnem,
[[cat:noun,root:dOnem,agr: ’3SG’ ,poss: *NONE’,case:nom]]],
[evinde,
[[cat:noun,root:evin,agr:’3SG’,poss: *NONE’,case:loc],
[cat:noun,root:ev,agr: ’3SG’,poss: ’2SG’,case:loc],

cat:noun,root:ev,agr: ,poss: ,case:loc s
[gr:’35G’,p ’38G’ locl]]

APPENDIX C. SAMPLE PREPROCESSED TEXT 89

g0rUlduGuU,
[[cat:adj,stem: [cat:verb,root:g0r,voice: (pass),sense:pos],suffix:dik,poss: ’3SG’],

[cat:noun,stem: [cat:verb,root:g0r,voice: (pass),sense:pos],suffix:dik,

agr:’3SG’,poss:’3SG’,case:nom]]],
[gibi,

[[cat:postp,root:gibi,subcat:nom]]],

L.,

[[cat:punct,root:’,’]1],

[topraGa,

[[cat:noun,root:toprak,agr:’3SG’,poss: NONE’,case:dat]]],
[gOmU1U,

[[cat:adj,root:gOmULU],

[cat:noun,stem: [cat:adj,root:gOmULU] ,suffix:none,

agr:’3SG’,poss:’NONE’,case:nom],

[cat:adj,stem: [cat:noun,root:g0mU],suffix:1i],
[cat:noun,stem: [cat:adj,stem: [cat:noun,root:g0mU],suffix:1i],suffix:none,
agr:’3SG’,poss:’NONE’,case:nom]]],
[yuvarlak,
[[cat:adj,root:yuvarlak],
[cat:noun,stem: [cat:adj,root:yuvarlak] ,suffix:none,agr:’3SG’,poss: ’NONE’,case:nom]]],
[kulUbelerdi,
[[cat:verb,stem: [cat:noun,root:kulUbe,agr: >3PL’,poss: ’NONE’,case:nom] ,suffix:none,
tam2:past,agr:’3sG°]1],
L.,
[[cat:punct,root:’.’]11],
[#,
[[cat:end_of_sentencel]l]].

[[e,
[[cat:beginning of_sentencelll],
[tas,

[[cat:adj,root:tas],
[cat:noun,root:taS,agr:’3SG’ ,poss: ’NONE’,case:nom],
[cat:verb,root:taS,sense:pos,taml:imp,agr:’25G6°]11],

[ve,

[[cat:conn,root:vell],

[tahta,

[[cat:adj,root:tahtal,
[cat:noun,root:tahta,agr:’3SG’,poss: NONE’ ,case:nom],
[cat:noun,root:taht,agr:’3SG’,poss: ’NONE’,case:dat]]],

[aletler,

[[cat:noun,root:alet,agr:’3PL’,poss: NONE’,case:nom],

APPENDIX C. SAMPLE PREPROCESSED TEXT 90

[cat:verb,stem: [cat:noun,root:alet,agr:’3SG’,poss: 'NONE’,case:nom] ,suffix:none,
tam2:pres,agr:’3PL’]]1],

[arasInda,

[[cat:noun,root:ara,agr: ’3SG’,poss:’3SG’,case:1loc]]],

.,

[[cat:punct,root:’,’]1],

[iGne,

[[cat:noun,root:iGne,agr:’3SG’,poss: *NONE’,case:nom]]],

L.,

[[cat:punct,root:’, 117,

[[cat:noun,stem: [cat:verb,root:diK,sense:pos],suffix:yis,agr:’3SG’,poss: 'NONE’,
case:nom],

[cat:verb,root:diK,voice:recip,sense:pos,tami:imp,agr:’25G°]1]1],

[iGnesi,
[[cat:noun,root:iGne,agr:’3SG’,poss:’3SG’,case:nom]]],

L.,

[[cat:punct,root:’,’]1],

[bIz,
[[cat:noun,root:blz,agr: ’3SG’,poss: ’NONE’,case:nom]]],

L.,

[[cat:punct,root:’,’]1],

Lok,
[[cat:noun,root:oK,agr:’3SG’ ,poss: ’NONE’,case:nom]]],

[basI,
[[cat:noun,root:baS,agr: ’3SG’,poss: ’NONE’ ,,case:acc],
[cat:noun,root:baS,agr:’3SG’ ,poss:’3SG’,case:nom]]],

L.,

[[cat:punct,root:’,’]1],

[mIzrak,

[[cat:noun,root:mIzrak,agr:’3SG’,poss: ’NONE’,case:nom]]],
g 1Y

[’ya da’,

[[cat:conn,root:’ya da’]]],

[zIpkIn,

[[cat:noun,root:zIpkIn,agr:’3SG’,poss: ’NONE’,case:nom]]],
[uClarI,

[[cat:noun,root:uC,agr: ’3PL’,poss: ’NONE’,case:acc],

g 1%
[cat:noun,root:uC,agr: ’3PL’,poss: ’3SG’,case:nom],
[cat:noun,root:uC,agr: ’3PL’,poss: ’3PL’,case:nom],
[cat:noun,root:uC,agr:’3SG’,poss: ’3PL’,case:nom]]],

g 1%
[””
[[cat:punct,root:’,’]1],

APPENDIX C. SAMPLE PREPROCESSED TEXT 91

[’vb.?,

[[cat:noun,root:’vb.E’,type:rproper,agr:’3SG’,poss: NONE’,case:nom]]],
[””

[[cat:punct,root:’, 117,

[bulunuyordu,

[[cat:verb,root:bulun,sense:pos,taml:progl,tam2:past,agr:’3SG’],
[cat:verb,root:bul,voice: (pass),sense:pos,taml:progl,tam2:past,agr:’35G6°]11],

.,

[[cat:punct,root:’. 117,

[#,

[[cat:end_of_sentencel]l]].

[Te,

[[cat:beginning of_sentencelll],

[proto,

[[cat:noun,root:proto,agr: ’3SG’ ,poss: ’NONE’,case:nom]]],

[neolitik,

[[cat:adj,root:neolitik],

[cat:noun,stem: [cat:adj,root:neolitik],suffix:none,agr:’3SG’,poss: ’NONE’,case:nom]]],
[’eriha\’nIn’,

[[cat:noun,root:eriha,type:rproper,agr:’3SG’,poss: ’NONE’,type:proper,case:gen],
[cat:noun,root:eriha,type:rproper,agr: ’3SG’,type:proper,poss: ’2SG’,case:gen]]],

[en,

[[cat:adverb,root:en],

[cat:noun,root:en,agr:’3SG’,poss: ’NONE’,case:nom]]],

[’dikkat Cekici’,
[[cat:adj,stem: [cat:verb,root: ’dikkat
CeK’,sense:pos],suffix:yici],

[cat:noun,stem: [cat:verb,root: ’dikkat
CeK’,sense:pos],suffix:yici,agr:’3SG’,poss: ’NONE’,case:nom]]],
[’0Ozelliklerinden’,

[[cat:noun,stem: [cat:adj,root:’0zel’],suffix:1ik,agr:’3PL’,poss:’25G’,case:abl],
[cat:noun,stem: [cat:adj,root:’0zel’],suffix:1ik,agr: ’3PL’,poss:’3SG’,case:abl],
[cat:noun,stem: [cat:adj,root:’0zel’],suffix:1ik,agr: ’3PL’,poss:’3PL’,case:abl],
[cat:noun,stem: [cat:adj,root:’0zel’],suffix:1ik,agr: ’3SG’,poss:’3PL’,case:abl],
[cat:noun,root:’0zellik’,agr:’3PL’,poss: ’2SG’,case:abl],
[cat:noun,root:’0zellik’,agr:’3PL’,poss: ’3SG’,case:abl],
[cat:noun,root:’0zellik’,agr:’3PL’,poss: ’3PL’,case:abl],
[cat:noun,root:’0zellik’,agr:’3SG’,poss: ’3PL’,case:abl]]],

[biri,
[[cat:noun,stem: [cat:adj,root:bir,type:cardinal] ,suffix:none,agr:’3SG’,poss: ’NONE’,

case:acc],

APPENDIX C. SAMPLE PREPROCESSED TEXT 92

[cat:noun,stem: [cat:adj,root:bir,type:cardinal],suffix:none,agr:’3SG’,poss: ’3SG’,
case:nom],
[cat:pronoun,root:biri,type:quant,agr: ’3SG’,poss: ’3SG’,case:nom]]],
L.,
[[cat:punct,root:’,’]1],
[surlarIn,
[[cat:noun,root:sur,agr: ’3PL’,poss: ’NONE’,case:gen],
[cat:noun,root:sur,agr:’3PL’,poss:’2SG’,case:nom]]],
fic,
[[cat:adj,root:1iJ],

[cat:noun,root:iJ,agr: ’3SG’,poss: NONE’,case:nom],

[cat:verb,root:iJ,sense:pos,taml:imp,agr:’2SG°1]1],
tarafIna,

[[cat:noun,root:taraf,agr: ’3SG’,poss:’25G’,case:dat],

[cat:noun,root:taraf,agr:’3SG’,poss: ’3SG’,case:dat]]],
[yapISIk,
[[cat:adj,root:yapISIk],
[cat:noun,stem: [cat:adj,root:yapISIk],suffix:none,agr:’3SG’,poss: ’NONE’,case:nom]]],
[tas,
[[cat:adj,root:tas],
[cat:noun,root:taS,agr:’3SG’,poss: ’NONE’,case:nom],
[cat:verb,root:taS,sense:pos,taml:imp,agr:’25G6°]11],
[kuleydi,
[[cat:verb,stem: [cat:noun,root:kule,agr:’3SG’,poss: NONE’,case:nom],suffix:none,
tam2:past,agr:’3sG°]1],
L.,
[[cat:punct,root:’.’]11],
[#,
[[cat:end_of_sentencell]].

[[e,
[[cat:beginning of_sentencell],
[’10°,
[[cat:adj,type:cardinal,root:’10°]11],
Um.”,
[[cat:noun,root:’m.E’,type:rproper,agr:’3SG’,poss: ’NONE’,case:nom]]],
[’CapIndaki’,
[[cat:adj,stem: [cat:noun,root:’Cap’,agr:’3SG’,poss: ’2SG’,case:loc],suffix:rel],
[cat:adj,stem: [cat:noun,root:’Cap’,agr:’3SG’,poss:’3SG’,case:loc],suffix:relll],
[kulenin,
[[cat:noun,root:kule,agr:’3SG’,poss: 'NONE’,case:gen],

[cat:noun,root:kule,agr:’3SG’,poss:’25SG’ ,case:gen]]],

APPENDIX C. SAMPLE PREPROCESSED TEXT 93

[’8”
[[cat:adj,type:cardinal,root:’8°]]],
metrenin,

[[cat:noun,root:metre,agr: ’3SG’ ,,poss: ’NONE’,case:gen],

[cat:noun,root:metre,agr: ’3SG’ ,poss:’2SG’,case:gen]]],

g 1Y g

’UstUnde’,

[[cat:noun,stem: [cat:adj,root:’UstUn’],suffix:none,agr:’3SG’ ,poss: ’NONE’,case:loc],

[cat:noun,root: ’Ust’,agr:’3SG’,poss: ’2SG’,case:loc],

[cat:noun,root:’Ust’,agr:’3SG’,poss: ’3SG’,case:loc]]],
[bir,
[[cat:adj,root:bir,type:cardinall,

[cat:adj,root:bir,type:determiner],
[cat:adverb,root:birl]],
(b01UnU,
[[cat:noun,root:b01Um,agr: ’3SG’ ,poss: *NONE’,case:acc],

[cat:noun,root:b01lUm,agr:’3SG’,poss: ’3SG’,case:nom],
[cat:noun,root:b0lU,agr:’3SG’,poss:’15SG’ ,case:accl]l],

[bugUn,

[[cat:adverb,root:bugln],
[cat:noun,root:bugln,type:temp2,agr:’3SG’,poss: *NONE’,case:nom]]],

[de,

[[cat:conn,root:de],
[cat:verb,root:de,sense:pos,taml:imp,agr:’2SG°1]1],

[ayaktadIr,

[[cat:verb,stem: [cat:noun,root:ayak,agr:’3SG’,poss: NONE’,case:loc],suffix:none,

tam2:pres,copula:’2’,agr:’35G’]1]1],

L.,

[[cat:punct,root:’.’]11],

[#,

[[cat:end_of_sentencel]l]].

[[e,
[[cat:beginning of_sentencelll],
[doGu,
[[cat:adj,root:doGul,
[cat:noun,root:doGu,agr:’3SG’,poss: *NONE’,case:nom]]],
[tarafInda,
[[cat:noun,root:taraf,agr: ’3SG’,poss:’25G’,case:loc],
[cat:noun,root:taraf,agr:’3SG’,poss: ’3SG’,case:loc]]l],
1.7,
[[cat:adj,type:real,root:’1.7°11],

[’m

APPENDIX C. SAMPLE PREPROCESSED TEXT 94

)
1)

[[cat:noun,root:mE,type:rproper,agr:’3SG’,poss: NONE’ ,case:nom]]],

[yUksekliGinde,

[[cat:noun,stem: [cat:adj,root:yUksek] ,suffix:1ik,agr:’3SG’,poss:’25G’,case:loc],
[cat:noun,stem: [cat:adj,root:yUksek],suffix:1ik,agr:’3SG’,poss:’3SG’,case:loc]]],

bir,

[[cat:adj,root:bir,type:cardinal],
[cat:adj,root:bir,type:determiner],
[cat:adverb,root:bir]l]],

(kapT,

[[cat:noun,root:kapl,agr:’3SG’,poss: NONE’,case:nom]]],
L.,

[[cat:punct,root:’,’]1],

her,

[[cat:adj,root:her,type:determiner]]],
[biri,
[[cat:noun,stem: [cat:adj,root:bir,type:cardinal] ,suffix:none,agr:’3SG’,poss: ’NONE’,
case:acc],
[cat:noun,stem: [cat:adj,root:bir,type:cardinall,suffix:none,agr:’3SG’,poss: ’3SG’,
case:nom],
[cat:pronoun,root:biri,type:quant,agr:’3SG’,poss: ’3SG’,case:nom]]],
[tek,
[[cat:adj,root:teK],
[cat:noun,stem: [cat:adj,root:teK],suffix:none,agr:’3SG’,poss: NONE’ ,case:nom]]],
[bir,
[[cat:adj,root:bir,type:cardinall,
[cat:adj,root:bir,type:determiner],
[cat:adverb,root:bir]l]],
[tas,
[[cat:adj,root:tas],
[cat:noun,root:taS,agr:’3SG’ ,poss: ’NONE’,case:nom],
[cat:verb,root:taS,sense:pos,taml:imp,agr:’25G6°]11],
[bloGundan,
[[cat:noun,root:blok,agr:’3SG’,poss:’2SG’,case:abl],
[cat:noun,root:blok,agr:’3SG’,poss:’35G’ ,case:abl]]],
[yapIlmIS,
[[cat:verb,root:yap,voice: (pass),sense:pos,taml:narr,agr:’3SG’],
[cat:adj,stem: [cat:verb,root:yap,voice:(pass),sense:pos,taml:narr],suffix:nonell],
0227,
[[cat:adj,type:cardinal,root:’22°]1]1],
[basamaklI,

[[cat:adj,stem: [cat:noun,root:basamak],suffix:1i],

APPENDIX C. SAMPLE PREPROCESSED TEXT 95

[cat

:noun,stem: [cat:adj,stem: [cat:noun,root:basamak],suffix:1i],suffix:none,

agr:’3SG’,poss:’NONE’,case:nom]]],
bir,
[[cat:adj,root:bir,type:cardinal],

[cat:

adj,root:bir,type:determiner],

[cat:

adverb,root:bir]]1],

[merdivene,

[[cat:noun,root:merdiven,agr:’3SG’,poss: ’NONE’,case:dat]]],
[aCIlIr,
[[cat:verb,root:al,voice: (pass),sense:pos,tami: (aorist),agr:’3SG’],
[cat:adj,stem: [cat:verb,root:aJ,voice: (pass),sense:pos,taml: (aorist)],suffix:nonell],
L.,
[[cat:punct,root:’.’]11],
[#,
[[cat:end_of_sentencell]].
[[e,
[[cat:beginning of_sentencell],
[tell,
[[cat:noun,root:tell,agr:’3SG’,poss: NONE’,case:nom]]],

[’brak\’taki’,

[[cat:

adj,stem: [cat:noun,root:brak,agr:’3SG’,poss: ’NONE’,type:proper,case:loc],

suffix:rell,

[cat:

noun,stem: [cat:adj,stem: [cat:noun,root:brak,agr:’3SG’,poss: *NONE’,type:proper,

case:loc],suffix:rel],suffix:none,agr:’3SG’,poss: ’NONE’,case:nom]]],

[mo,
[[cat

L.,
[[cat

[#,
[[cat

[[e,
[[cat
4.,
[[cat

adj,root:m0]11],

punct,root:’.’]1],

end_of_sentencel]]l].

beginning of_sentence]l],

adj,type:ordinal,root:’4.°]1]1],

[binyIl,

[[cat:

noun,root:binyIl,agr:’3SG’,poss: ’NONE’,case:nom]]],

[tapInaGInda,

[[cat:
[cat:

noun,root:tapInak,agr:’3SG’,poss: ’2SG’,case:loc],

noun,root:tapInak,agr:’3SG’,poss: ’3SG’,case:loc]]],

[’300\’U’,

APPENDIX C. SAMPLE PREPROCESSED TEXT 96

[[cat:noun,stem: [cat:adj,type:cardinal,root:’300\’’],suffix:none,
agr:’3SG’,poss:’NONE’,case:acc],

[cat:noun,stem: [cat:adj,type:cardinal,root:’300\’’],suffix:none,

agr:’3SG’,poss:’3SG’,case:nom]]],
aSkIn,
[[cat:noun,root:aSK,agr: ’3SG’ ,,poss: ’NONE’,,case:gen],

[cat:noun,root:aSK,agr:’3SG’ ,poss:’2SG’,case:nom],

[cat:postp,root:aSkIn,subcat:accl]],

[’(”
cat:punct,root:’(’ s
[ayrica,

[[cat:adverb,stem: [cat:adj,root:ayrI],suffix:ca,type:manner],
[cat:noun,root:ayrIC,agr:’3SG’,poss: NONE’ ,case:dat]]],
[parCa,

[[cat:noun,root:parCa,agr:’3SG’,poss: 'NONE’ ,case:nom]]],
1Y g 1Y
[halinde,
[[cat:noun,root:hVl,agr:’3SG’,poss:’2SG’,case:loc],
g 1Y
[cat:noun,root:hV1,agr:’3SG’,poss:’3SG’,case:loc]]],
g 1Y
[binlerce,
[[cat:adj,root:binlerce,type:cardinall,
[cat:noun,stem: [cat:adj,root:bin,type:cardinal],suffix:none,
] yp
agr:’3PL’,poss:’NONE’,case:equ]l],
[’)”
[[cat:punct,root:’)’1]],
[tas,

[[cat:adj,root:tas],
[cat:noun,root:taS,agr:’3SG’ ,poss: ’NONE’,case:nom],
[cat:verb,root:taS,sense:pos,taml:imp,agr:’2SG°]1]1],

1Y P,ag
[’ya da’,
[[cat:conn,root:’ya da’]]],
[piSmis,
[[cat:verb,root:piS,sense:pos,taml:narr,agr:’35G’],
1Y 1Y g
[cat:adj,stem: [cat:verb,root:piS,sense:pos,taml:narr],suffix:nonell],
[kilden,
[[cat:noun,root:kil,agr:’3SG’,poss:’NONE’,case:abl]l]],
g 1Y
[yapIlmIS,
[[cat:verb,root:yap,voice: (pass),sense:pos,taml:narr,agr:’3SG’],
yap 1Y 1% g
[cat:adj,stem: [cat:verb,root:yap,voice:(pass),sense:pos,taml:narr],suffix:nonell],
[)u)’
[[cat:punct,root:’"’11],
[g0z,

[[cat:noun,root:g0z,agr: ’3SG’ ,poss: ’NONE’,case:nom]]],

APPENDIX C. SAMPLE PREPROCESSED TEXT 97

[putu,
[[cat:noun,root:put,agr: ’3SG’ ,poss: ’NONE’ ,,case:acc],
[cat:noun,root:put,agr:’3SG’,poss:’3SG’,case:nom]]],

0,

[[cat:punct,root:’"’]1]1],

[bulunmuStur,
[[cat:verb,root:bulun,sense:pos,taml:narr,copula:’2’,agr:’3SG’],
[cat:verb,root:bul,voice: (pass),sense:pos,taml:narr,copula:’2’,agr:’35G6’]11],

L.,

[[cat:punct,root:’. 117,

[#,

[[cat:end_of_sentencellI].

[[QJ
[[cat:beginning of_sentencel]],

[tapInakta,

[[cat:noun,root:tapInak,agr: ’3SG’,poss: ’NONE’,case:locl]],
L.,

[[cat:punct,root:’,’]1],

[yUkseklikleri,

[[cat:noun,stem: [cat:adj,root:yUksek] ,suffix:1ik,agr:’3PL’,poss:’NONE’,case:acc],
[cat:noun,stem: [cat:adj,root:yUksek],suffix:1ik,agr: ’3PL’,poss:’3SG’,case:nom],
[cat:noun,stem: [cat:adj,root:yUksek],suffix:1ik,agr:’3PL’,poss:’3PL’,case:nom],
[cat:noun,stem: [cat:adj,root:yUksek],suffix:1ik,agr:’3SG’,poss:’3PL’,case:nom]]],

02,

[[cat:adj,type:cardinal,root:’2°]1]1],

[ile,
[[cat:conn,root:ile],
[cat:noun,root:il,agr: ’3SG’,poss: ’NONE’,case:dat],
[cat:postp,root:ile,subcat:nom]]],
0117,
[[cat:adj,type:cardinal,root:’11°]11],
em,
[[cat:noun,root:cmE,type:rproper,agr: ’3SG’,poss: ’NONE’,case:nom]]],
[arasInda,
[[cat:noun,root:ara,agr:’3SG’,poss:’3SG’,case:loc]]],
[deGiSen,

[[cat:adj,stem: [cat:verb,root:deGiS,sense:pos],suffix:yan],

[cat:adj,stem: [cat:verb,root:deG,voice:recip,sense:pos],suffix:yan]l],
[bu,
[[cat:adj,root:bu,type:determiner],

[cat:pronoun,root:bu,type:demons,agr:’3SG’,poss: ’NONE’,case:nom]]],
1Y yp g 1Y

APPENDIX C. SAMPLE PREPROCESSED TEXT 98

[adak,
[[cat:noun,root:adak,agr:’3SG’,poss: *NONE’,case:nom]]],

[simgelerinden,

[[cat:noun,root:simge,agr: ’3PL’,,poss: ’25G’ ,case:abl],

[cat:noun,root:simge,agr:’3PL’ ,poss: ’3SG’,case:abl],

[cat:noun,root:simge,agr: ’3PL’,poss:’3PL’,case:abl],
[cat:noun,root:simge,agr:’3SG’,poss: ’3PL’,case:abl]]],
[’20,000 - 22,000,
[[cat:adj,type:range,root:’20,000-22,000°]1],
[kadar,
[[cat:postp,root:kadar,subcat:dat,type:temp2]]1],
[bulunduGu,

[[cat:adj,stem: [cat:verb,root:bulun,sense:pos],suffix:dik,poss:’3SG’],

[cat:noun,stem: [cat:verb,root:bulun,sense:pos],suffix:dik,agr:’3SG’,poss:’3SG’,
case:nom],
[cat:adj,stem: [cat:verb,root:bul,voice:(pass),sense:pos],suffix:dik,poss:’3SG’],
[cat:noun,stem: [cat:verb,root:bul,voice: (pass),sense:pos],suffix:dik,
agr:’3SG’,poss:’3SG’,case:nom]]],

[hesaplanmIStIr,

[[cat:verb,stem: [cat:noun,root:hesab] ,,suffix:lan,sense:pos,taml:narr,
copula:’2’,agr:’35G’],
[cat:verb,root:hesapla,voice: (pass),sense:pos,taml:narr,copula:’2’,agr:’3s5G°]1]1],

L.,

[[cat:punct,root:’.’]11],

[#,

[[cat:end_of_sentencell]].

[[e,
[[cat:beginning of_sentencell],
[niceliksel,
[[cat:adj,root:niceliksel],
[cat:noun,stem: [cat:adj,root:niceliksel],suffix:none,agr:’3SG’,poss: ’NONE’,
case:nom]]],
[’CalISmalar’,
[[cat:noun,stem: [cat:verb,root:’CallS’,sense:pos],suffix:ma,
type:infinitive,agr:’3PL’,poss: ’NONE’,case:nom],
[cat:verb,stem: [cat:noun,stem: [cat:verb,root:’CallS’,sense:pos],suffix:ma,
type:infinitive,agr:’3SG’,poss: ’NONE’,case:nom],suffix:none,tam2:pres,agr:’3PL’]1]],
[yapIlacaGI,
[[cat:adj,stem: [cat:verb,root:yap,voice: (pass),sense:pos],suffix:yacak,poss:’3SG’],
[cat:noun,stem: [cat:verb,root:yap,voice: (pass),sense:pos],suffix:yacak,

agr:’3SG’,poss:’3SG’,case:nom]]],

APPENDIX C. SAMPLE PREPROCESSED TEXT 99

[zaman,

[[cat:noun,root:zaman,type:templ,agr:’3SG’,poss: ’NONE’,case:nom]]],
[””

[[cat:punct,root:’, 117,

temsili,

[[cat:adj,root:temsili],

[cat:noun,stem: [cat:adj,root:temsili],suffix:none,agr: ’3SG’,poss: ’NONE’,case:nom],

[cat:noun,root:temsil,agr:’3SG’,poss: NONE’,case:acc],

[cat:noun,root:temsil,agr:’3SG’,poss: ’3SG’,case:nom]]],
[nitelikte,

[[cat:noun,root:nitelik,agr:’3SG’,poss: ’NONE’,case:locl]],
[’Ornekler’,

[[cat:noun,root:’0Ornek’,agr:’3PL’,poss: ’NONE’,case:nom],

[cat:verb,stem: [cat:noun,root: ’0Ornek’,agr:’3SG’ ,poss: ’NONE’,case:nom] ,suffix:none,

tam2:pres,agr: ’3PL’],
[cat:verb,root: ’Ornekle’,sense:pos,taml: (aorist),agr:’35G’],
[cat:adj,stem: [cat:verb,root:’0Ornekle’,sense:pos,taml: (aorist)],suffix:nonell],
[’elde etmenin’,
[[cat:noun,stem: [cat:verb,root:’elde
ed’,sense:pos],suffix:ma,type:infinitive,agr:’3SG’,poss: ’NONE’,case:gen],
[cat:noun,stem: [cat:verb,root: ’elde ed’,sense:pos],suffix:ma,
type:infinitive,agr:’3SG’,poss:’2SG’,case:gen]]],
[temel,
[[cat:adj,root:temell,
[cat:noun,root:temel,agr:’3SG’,poss: NONE’ ,case:nom]]],
[yOntemlerinden,
[[cat:noun,root:yOntem,agr:’3PL’,poss: ’2SG’,case:abl],
[cat:noun,root:yOntem,agr: ’3PL’,poss:’35SG’,case:abl],
[cat:noun,root:yOntem,agr: >3PL’,poss:’3PL’ ,case:abl],
[cat:noun,root:yOntem,agr: ’3SG’ ,poss:’3PL’,,case:abl]]],
[biri,
[[cat:noun,stem: [cat:adj,root:bir,type:cardinal] ,suffix:none,agr:’3SG’,poss: ’NONE’,
case:acc],
[cat:noun,stem: [cat:adj,root:bir,type:cardinall,suffix:none,agr:’3SG’,poss: ’3SG’,
case:nom],
[cat:pronoun,root:biri,type:quant,agr:’3SG’,poss: ’3SG’,case:nom]]],
[elemedir,
[[cat:verb,stem: [cat:noun,stem: [cat:verb,root:ele,sense:pos],suffix:ma,type:infinitive,
agr:’3SG’,poss:’NONE’,case:nom] ,suffix:none,tam2:pres,copula:’2’,agr:’3SG’]1]],
L.,
[[cat:punct,root:’.’]11],
[#,

APPENDIX C. SAMPLE PREPROCESSED TEXT 100

cat:end_of_sentence .

[[QJ
[[cat:beginning of_sentencel]],

kumlu,

[[cat:adj,stem: [cat:noun,root:kum] ,suffix:1i],

[cat:noun,stem: [cat:adj,stem: [cat:noun,root:kum],suffix:1i],suffix:none,
agr:’3SG’,poss:’NONE’,case:nom]]],

[toprakta,

[[cat:noun,root:toprak,agr:’3SG’,poss: NONE’,case:loc]]],

(kuru,

[[cat:adj,root :kuru],

[cat:noun,stem: [cat:adj,root:kurul],suffix:none,agr:’3SG’,poss: ’NONE’,case:nom],

[cat:noun,root:kur,agr:’3SG’,poss: ’NONE’,case:acc],

[cat:noun,root:kur,agr:’3SG’,poss: ’3SG’,case:nom],
[cat:verb,root:kuru,sense:pos,tami:imp,agr:’2SG°1]],
[eleme,

[[cat:noun,root:elem,agr:’3SG’,poss: 'NONE’,case:dat],
[cat:verb,root:ele,sense:neg,taml:imp,agr:’2SG’],
[cat:noun,stem: [cat:verb,root:ele,sense:pos],suffix:ma,
type:infinitive,agr:’3SG’,poss: ’NONE’,case:nom]]],

[’zaman zaman’,

[[cat:adverb,root:’zaman zaman’]]],
[mUmkUndUr,

[[cat:verb,stem: [cat:adj,root :mUmkUn] ,suffix:none,tam2:pres,copula:’2’,agr:’3SG°]1]1],
L.,

[[cat:punct,root:’.’]11],

[#,

[[cat:end_of_sentencell]].

Appendix D

Hand-crafted Rules

D.1 Contextual Choose Rules

% Choose CONN at the beginning of the sentence

[11c:[],1c:[[cat:’beginning of_sentence’]],rc:[],rrc:[],choose: [cat:conn]].

% After a CONN, choose the CONN reading of *‘ki’’
[11c:[1,1c:[1,rc:[[cat:conn]],rrc:[]1,choose: [cat:conn],token:ki].

% Rules for handling the word ‘‘var’’

[11c:[1,1c:[,rc:[[cat:punct]l],rrc:[1,choose: [cat:adj],token:var].
[11c:[1,1c:[0,rc:[[cat:punct]],rrc:[1,choose: [cat:verb,stem: [cat:adj]l],token:vardIr].
[11c:[1,1c:[[case:nom]],rc:[[cat:punctl],rrc: 1,

choose: [cat:verb,stem: [cat:adj]],token:vardI].

[1lc:[[case:nom]],lc: [[cat:conn,root:del],rc:[[cat:punct]],rrc:[],

choose: [cat:verb,stem: [cat:adj]],token:vardI].
[1lc:[[case:nom]],lc:[[cat:conn,root:dal]l,rc:[[cat:punct]],rrc:[],

choose: [cat:verb,stem: [cat:adj]l],token:vardI].
[11c:[1,1c:[[case:nom]],rc:[],rrc:[],choose: [cat:verb,stem: [cat:adj]],token:varmIS].

[11c:[1,1c:[[case:nom]],rc:[],rrc:[],choose: [cat:verb,stem: [cat:adj]],token:varsal.

% Before end-of-sentence choose verb
[11c:[,1c:[0,rc:[[root: ’.?]1],rrc:[],choose: [cat:verb]].
[11c:[,1c:[0,rc:[[root: *?°]1],rrc:[],choose: [cat:verb]].
[11c:[,1c:[0,rc:[[root:’!?]1],rrc: [],choose: [cat:verb]l].
[11c:[],1c:[0,rc:[[root: ’...?]1],rrc:[],choose: [cat:verb]].

101

APPENDIX D. HAND-CRAFTED RULES

[11c:[],1c:[0,rc:[[root:

% Rules for handling the word ‘‘ol’’

102

»:27] ,rrc:[],choose: [cat:verbl].

[11c:
[11c:
[11c:

[1,1c:
[1,1c:
1,1c:

[[cat
[[cat
[[cat

:adjl],rc:
:adjll,rc:
:adjll,rc:

[d,rrc:
0,rrc:

0,rrc:

[1,choose:
[1,choose:

[1,choose:

[cat:
[cat
[cat

adj],token:olan].

:noun] ,token:olmak] .

:verb] ,token:olmuStur] .

[11c:
[11c:

[1,1c:
[1,1c:

[[cat
[[cat

:adjl],rc:
:adjll,rc:

[d,rrc:

0,rrc:

[1,choose:

[1,choose:

[cat
[cat

:verb] ,token:oldu].

:verb,root:0l]].

[11c:

[1,1c:

[[cat

:adjl],rc:

[d,rrc:

[1,choose:

[cat:

adj,stem: [cat:verb,root:ol],suffix:yan]].

[11c:
[11c:

[1,1c:
[1,1c:

[[cat
[[cat

:adjl],rc:
:adjll,rc:

[d,rrc:

],rrc:

[1,choose:

a1,

choose: [cat:noun,case:abl,stem: [cat

[11lc:[1,1lc:[[cat:adjl],rc:[],rrc: 1,

[cat

:verb,root:o0l] ,suffix

:noun,stem: [cat:verb,root:o0l],suffix:mal].

:dik]].

choose:[cat:noun,case:acc,stem: [cat

cat:adjll,rc: [, rrc:[1,
choose: [cat:noun,case:abl,stem: [cat
[11lc:[1,1lc:[[cat:adjl],rc:[],rrc: 1,

choose: [cat:noun,case:acc,stem: [cat

[11c:[1,1c:[[cat:adjl],rc:[0,rrc:[1,choose: [cat:noun,stem
[1,1c:
1,1c:
1,1c:
1,1c:
1,1c:
[1,1c:
1,1c:
1,1c:

[11c:
[11lc:
[11lc:
[11lc:
[11lc:
[11c:
[11lc:
[11lc:

[[case

[[case

[[case

[[case:

[[case:
[[case:

[[case:

[[case:nom]],rc:

:nom]],rc:

:nom]],rc:

:nom]],rc

nom]] ,rc:

nom]] ,rc:
nom]] ,rc:

nom]] ,rc:

[1,rrc

:0,rre:

[1,rrc:
[1,rrc:
[1,rrc:
[1,rrc:
[1,rrc:

[1,rrc:

:[1,choose

1,

[1,choose:
[1,choose:
[1,choose:
[1,choose:
[1,choose:

[1,choose:

:verb,root:ol],suffix

:verb,root:ol] ,suffix

:verb,root:ol] ,suffix

:[cat
[cat
[cat
[cat
[cat

[cat

choose: [cat:noun,stem: [cat:verb,root:o0l],suffix

% Rules for numeric
[1lc:[[cat:adj,type
rrc:[],choose: [cat

[1lc:[[cat:adj,type

tokens

:adj,type:cardinalll.

:cardinalll,lc: [[cat:adj,type:

[cat:

:dik]].

:yacak]].

:yacak]].
:[cat:verb,root:o0l],suffix:mak]].
:adj],token:olan].
:noun] ,token:olmak] .
:verb] ,token:olmuStur] .
:verb] ,token:oldu].
:verb,root:o0l]].
adj,stem: [cat:verb,root:ol],suffix:yan]].

:noun,stem: [cat:verb,root:ol],suffix:mall.

:mak]].

cardinall]l,rc:[[cat:adj,type:cardinall],

:cardinalll,lc: [[cat:adj,type:cardinall],

rc:[[cat:noun,agr:’3SG’,poss: ’NONE’ ,stem:nol],rrc:[],choose: [cat:adj,type:cardinall].

[11c:[1, 1lc:[[cat:noun,stem: [cat:adj,type:cardinall,case:loc,poss: ’NONE’]],rc:[],rrc:[],

choose: [cat:noun,stem: [cat:adj,type:cardinalll].

% Rules for handling tokens related to date

[11c
[11c
[11c
[11c

:[1,1c
:[1,1c
:[1,1c
:[1,1c

:[[cat:date]],rc:[]1, rrc:[]1, choose:[cat:noun,case:nom,agr:’3SG’],token:glnU].

:[[cat:date]],rc:[]1, rrc:[1, choose:[cat:adj],token:glUnlU].

: [[type:cardinall]l,rc:[],rrc: [],choose: [cat:noun,poss: ’3SG’],token:yIlI].

:[[type:cardinalll,rc:[],rrc:],

APPENDIX D. HAND-CRAFTED RULES

choose: [cat:noun,poss:’3SG’,case:loc],token:yIlInda].

type:cardinall]],rc:[],rrc:

H

choose: [cat:noun,poss:’3SG’,case:abl],token:yIlIndan].

,lc:[[type:cardinal]],rc:[],rrc:

H

choose: [cat:noun,poss: ’3SG’ ,case:gen] ,token:yI1lInIn].

% Choose the adjectival reading to the verbal reading, if the next

% token is a verb

[11c:[1,1c:[[cat:adj,stem: [cat:verb,taml

choose: [cat:verb,taml:pres]].

[11c:[1,1c:[[cat:adj,stem: [cat:verb,taml

choose: [cat:verb,taml:past]].

[11c:[1,1c:[[cat:adj,stem: [cat:verb,taml

choose: [cat:verb,taml:futurel].

tnarr]]],rc: [],rrc:[J,

:narr]]],rc:[1,rrc: 1,

:narr]]],rc:[1,rrc: [1,

[11c:[1,1c:[[cat:adj,stem: [cat:verb,taml
choose: [cat:verb,taml:narr]].
[11c:[1,1c:[[cat:adj,stem: [cat:verb,taml
choose: [cat:verb,taml:neces]].
[11c:[1,1c:[[cat:adj,stem: [cat:verb,taml
choose: [suffix:dik]].

tnarr]]],rc: [],rrc:[J,

:narr]]],rc:[1,rrc: [1,

:narr]]],rc:[1,rrc: 1,

% Rules for omitting the very infrequent reading for:

% For example ¢

‘ama’’ is also a noun, and ‘‘de’’ is a verb

[11c:[0,1c:[],rc:[1,xrrc:[],choose: [cat:conn,root:amal].

[11c:[0,1c:[],rc:[1,rrc:[],choose: [cat:conn,root:del].

[1lc:[1,1c:[0,rc:[],rrc: [1,choose: [cat:conn,root:yall.

[11c:[0,1c:[],rc:[1,xrrc:[],choose: [cat:conn,root:hattal].
[11c:[0,1c:[],rc:[1,rrc:[],choose: [cat:adverb],token:aslIndal.
[11lc:[1,1c:[0,rc:[],rrc:[1,choose: [cat:adverb],token:yalnIz].
[11lc:[1,1c:[,rc:[],rrc: [1,choose: [cat:postp,root:diyel].
[11c:[0,1c:[],rc:[1,xrrc:[],choose: [cat:adverb],token:hala].
[11c:[0,1c:[],rc:[1,xrrc:[],choose: [cat:adverb],token:iSte].
[11c:[0,1c:[],rc:[1,rrc:[],choose: [cat:verb],token:ise].

[11lc:[1,1c:[0,xc:[],rrc: [1,choose: [cat:pronoun,case:acc],token:bunu].

[11lc:[1,1c:[0,rc:[],rrc:[1,choose: [cat:pronoun] ,token:bunlar].

[11c:[1,1lc:[0,rc:[],rrc: [1,choose: [cat:pronoun] ,token:bunun].

[11c:[1,1lc:[0,rc:[],rrc: [1,choose: [cat:pronoun] ,token:onlar].

[11lc:[1,1c:[0,rc:[],rrc:[1,choose: [cat:pronoun] ,token:bizler].

[11c:[1,1c:[0,rc:[],rrc:[1,choose: [cat:pronoun] ,token:bizi].

[11c:[1,1c:[0,rc:[],rrc:[1,choose: [cat:pronoun] ,token:biz].

[11c:[1,1c:[0,rc:[],rrc:[1,choose: [cat:pronoun,case:acc],token:onlarI].

[11lc:[1,1c:[0,rc:[],rrc:[1,choose: [cat:pronoun,case:acc],token:bunlarl].

103

APPENDIX D. HAND-CRAFTED RULES 104

[11c:[1,1c:[d,rc:[d,rrc:[1,choose: [cat:pronoun,case:acc],token:birini].

[11c:[1,1c:[d,rc:[d,rrc:[1,choose: [cat:pronoun,case:acc],token:beni].

[11lc:[1,1lc:[0,rc:[],rrc:[1,choose: [cat:pronoun,case:acc],token:onul.

[11c:[1,1c:[d,rc:[d,rrc:[1,choose: [cat:pronoun,case:acc],token:’Sunu’].

[11c:[],1c:[0,rc:[1,rrc:[1,choose: [cat:pronoun,agr:’3PL’,poss: ’NONE’,case:nom]].

% A noun phrase, but the modified or specified word is a pronoun

% e.g. adamlardan bazIlarI
[11c:[1,1c:[[agr:’3PL’,case:abl]],rc:[],rrc:[],choose: [cat:pronoun,poss:’3PL’]].
[11c:[],1c:[[agr:’3PL’,case:abl]],rc:[],rrc:[],choose: [cat:pronoun,poss: ’3SG’]].
[11c:[],1c:[[agr:’3PL’,case:abl]],rc:[],rrc:[],choose: [cat:pronoun,poss: ’3PL’]].

[11c:[1,1c:[[agr:’3PL’,case:gen]],rc:[],rrc:[],choose: [cat:pronoun,poss:’3SG’]].
[11c:[[agr:’3PL’,case:abl]],lc: [[cat:adjl],rc:[],rrc:[],choose: [cat:pronoun,poss: ’3SG’]].
[11c:[[agr:’3PL’,case:gen]],lc: [[cat:adjl],rc:[],rrc:[],choose: [cat:pronoun,poss: ’3SG’]].

% Noun phrase combinations
[11c:[],1c:[[agr:’3PL’,case:abl]],rc:[],rrc: [],choose: [cat:noun,poss:’35G’]].
[1lc:[[cat:adj,type:determiner]],lc: [[cat:adj,stem: [cat:noun]]],rc: [[cat:noun,poss:’NONE’]],
rrc:[],choose: [cat:adjl].
[1lc:[[cat:adjl],lc:[[cat:adj,stem: [cat:noun],suffix:rell],rc: [[cat:noun,poss: ’NONE’]],
rrc:[],choose: [cat:adjl].
[11lc:[[cat:adjl],lc:[[cat:adj,stem: [cat:noun],suffix:rell],rc: [[cat:noun,poss:’3SG’]1],
rrc: [],choose: [cat:noun,agr: ’3SG’,case:nom,stem:nol].
[1lc:[[cat:adjl],lc:[[cat:adj,stem: [cat:noun],suffix:1i]],rc:[[cat:noun,poss:’NONE’]],
rrc:[],choose: [cat:adjl].
[1lc:[[cat:adjl],lc:[[cat:adj,stem: [cat:noun],suffix:1i]],rc:[[cat:noun,poss:’3SG’]1],
rrc: [],choose: [cat:noun,agr: ’3SG’,case:nom,stem:nol].
[1lc:[[cat:adjl],lc:[[cat:adj,stem: [cat:noun],suffix:1ik]],rc: [[cat:noun,poss:’3SG’]1],
rrc: [],choose: [cat:noun,agr: ’3SG’,case:nom,stem:nol].
[11c: [[cat:noun,agr:’3SG’,poss: 'NONE’,case:nom,stem:nol],
lc:[[cat:adj,stem: [cat:noun,stem:no],suffix:1il],rc: [[cat:noun,poss: ’NONE’]1],

rrc:[],choose: [cat:adjl].

% Rules for the problem word ‘‘ile’’

% Still not working correctly

[11c: [[cat:noun,agr:’3SG’,poss: 'NONE’,case:nom]],lc: [[cat:conn,root:ile]],rc: [],rrc: 1,
choose: [cat:noun,agr:’3SG’,poss: *NONE’]].

[11c: [[cat:noun,agr:’3SG’,poss: 'NONE’,case:nom]],lc: [[cat:conn,root:ile]],rc: [],rrc: 1,
choose: [cat:noun,agr:’3PL’,poss: *NONE’]].
[11c:[[cat:noun,agr:’3SG’,poss: 'NONE’,case:nom]],lc: [[cat:conn,root:ile]],rc: [],rrc:],
choose: [cat:noun,agr:’3SG’,poss:’3SG’]].

[11c:[[cat:noun,agr:’3SG’,poss: 'NONE’,case:nom]],lc: [[cat:conn,root:ile]],rc: [],rrc:],

APPENDIX D. HAND-CRAFTED RULES 105

choose: [cat:noun,agr:’3PL’,poss: ’3PL’]].

% Choose the pronoun reading, instead of any other

[11lc:[1,1c:[d,rc:[d,rrc:[1,choose: [cat:pronoun,case:dat]].
[11lc:[1,1c:[0,rc:[],rrc:[1,choose: [cat:pronoun,case:abl]l].

[11lc:[1,1c:[0,rc:[],rrc:[1,choose: [cat:pronoun,case:ins]].

[11lc:[1,1c:[d,rc:[d,rrc:[1,choose: [cat:pronoun,case:loc]].

[11c:[],1c:[1,rc:[],rrc:[]1,choose: [cat:pronoun,case:gen]].

% NOUN+CASE - POSTP+SUBCAT agreements
[1lc:[1,1lc:[[suffix:madan]],rc:[],rrc:[1,choose: [cat:postp,subcat:abl]l].

[11c:[1,1c:[d,rc:[[cat:postp,root:gibil],rrc:[1,choose: [cat:pronoun,case:gen]].
[11c:[],1c:[1,rc:[[cat:postp,root:kadar]],rrc:[],choose: [cat:pronoun,case:gen]].

[11c:[1,1c:[1,rc:[[cat:postp,root:iCin]],rrc: [1,choose: [cat:pronoun,case:gen]].

[11c:[1,1c:[d,rc:[[cat:verb,stem: [cat:postp,root:iCin]]],rrc:],
choose: [cat:pronoun,case:gen]].
[11lc:[1,1c:[0,rc:[[cat:postp,subcat:dat]],rrc:[]1,choose: [case:dat]].
[11lc:[1,1c:[0,rc:[[cat:postp,subcat:ins]],rrc:[],choose: [case:ins]].
[11c:[1,1c:[1,rc:[[cat:postp,subcat:gen]],rrc:[],choose: [case:gen]].
[11lc:[1,1lc:[0,rc:[[cat:postp,subcat:loc]l],rrc:[],choose: [case:1loc]].
[11lc:[1,1c:[0,rc:[[cat:postp,root:iCin]],rrc:[],choose: [case:nom]].
[11c:[1,1c:[1,rc:[[cat:postp,root:gibil],rrc: [],choose: [case:nom]].
[11lc:[1,1c:[0,rc:[[cat:postp,root:boyuncall,rrc:[]1,choose: [case:nom]].
[11lc:[1,1c:[0,rc:[[cat:postp,root:’Uzere’]],rrc:[1,choose: [case:nom]].
[11lc:[1,1c:[0,rc:[[cat:postp,root:diyel],rrc:[],choose: [case:nom]].
[11c:[1,1c:[0,rc:[[cat:postp,subcat:accl],rrc:[]1,choose: [stem: [type:cardinall,case:accl].
[11lc:[1,1c:[0,rc:[[cat:postp,subcat:accl],rrc:[]1,choose: [case:acc]].
[11lc:[1,1lc:[0,rc:[[cat:postp,subcat:abl]],rrc:[]1,choose: [case:abl]].

% Some POSTPs do not require CASE agreement, especially for tokens
% indicating date
[11c:[1,1c:[0,rc:[[cat:postp,root:sonra,subcat:abl]],rrc:[],
choose: [case:nom] ,token:yIl].
[11c:[1,1c:[0,rc:[[cat:postp,root:sonra,subcat:abl]],rrc:[],
choose: [case:nom] ,token:gUn].
[11c:[1,1c:[0,rc:[[cat:postp,root:sonra,subcat:abl]],rrc:[],
choose: [case:nom] ,token:ay].
[11c:[1,1c:[0,rc:[[cat:postp,root:sonra,subcat:abl]],rrc:[],
choose: [case:nom] ,token:saat].
[11c:[1,1c:[0,rc:[[cat:postp,root:sonra,subcat:abl]],rrc:[],
choose: [case:nom] ,token:hafta].

[11c:[1,1c:[0,rc:[[cat:postp,root:sonra,subcat:abl]],rrc:[],

APPENDIX D. HAND-CRAFTED RULES 106

choose: [case:nom] ,token:sUre].

[11c:[1,1c:[d,rc:[[cat:postp,root:’Once’,subcat:abl]],rrc:[],

choose: [case:nom] ,token:yIl].

[11c:[1,1c:[d,rc:[[cat:postp,root:’Once’,subcat:abl]],rrc:[],

choose: [case:nom] ,token:gUn].

[11c:[1,1c:[0,rc:[[cat:postp,root:’Once’,subcat:abl]],rrc:[],

choose: [case:nom],token:ay].
[11c:[1,1c:[0,rc:[[cat:postp,root:’Once’,subcat:abl]],rrc:[],
choose: [case:nom] ,token:saat].

[11c:[1,1c:[d,rc:[[cat:postp,root:’Once’,subcat:abl]],rrc:[],

choose:[case:nom],token:hafta].

[11c:[1,1c:[d,rc:[[cat:postp,root:’Once’,subcat:abl]],rrc:[],

choose: [case:nom],token:sUre].

[11c:[1,1c:[0,rc:[[cat:verb,stem: [cat:postp,root:sonra,subcat:abl]]],rrc:[],

choose: [case:nom] ,token:yIl].

[11c:[1,1c:[0,rc:[[cat:verb,stem: [cat:postp,root:sonra,subcat:abl]]],rrc:[],
choose: [case:nom] ,token:gUn].

[11c:[1,1c:[0,rc:[[cat:verb,stem: [cat:postp,root:sonra,subcat:abl]]],rrc:[],
choose: [case:nom] ,token:ay].

[11c:[1,1c:[0,rc:[[cat:verb,stem: [cat:postp,root:sonra,subcat:abl]]],rrc:[],
choose: [case:nom] ,token:saat].

[11c:[1,1c:[0,rc:[[cat:verb,stem: [cat:postp,root:sonra,subcat:abl]]],rrc:[],
choose: [case:nom] ,token:hafta].

[11c:[1,1c:[0,rc:[[cat:verb,stem: [cat:postp,root:sonra,subcat:abl]]],rrc:[],
choose: [case:nom] ,token:sUre].
[11c:[1,1lc:[,rc:[[cat:verb,stem: [cat:postp,root: ’Once’,subcat:abl]l]],rrc:[],
choose: [case:nom] ,token:yIl].
[11c:[1,1lc:[,rc:[[cat:verb,stem: [cat:postp,root: ’Once’,subcat:abl]l]],rrc:[],
choose: [case:nom] ,token:gUn].
[11c:[1,1lc:[,rc:[[cat:verb,stem: [cat:postp,root: ’Once’,subcat:abl]l]],rrc:[],
choose: [case:nom] ,token:ay].
[11c:[1,1lc:[,rc:[[cat:verb,stem: [cat:postp,root: ’Once’,subcat:abl]l]],rrc:[],
choose: [case:nom] ,token:saat].
[11c:[1,1lc:[,rc:[[cat:verb,stem: [cat:postp,root: ’Once’,subcat:abl]l]],rrc:[],
choose: [case:nom] ,token:hafta].
[11c:[1,1lc:[,rc:[[cat:verb,stem: [cat:postp,root: ’Once’,subcat:abl]l]],rrc:[],

choose: [case:nom] ,token:sUre].

% Rules for the word ‘‘Cok’’
[11c:[[case:abl,suffix:dik]],1lc:[[cat:adverbl],rc:[[cat:noun,stem:nol],rrc:[],
choose: [cat:adj],token: ’Cok’].

[11c:[1,1c:[0,rc:[[cat:adj,stem: [cat:noun]l]],rrc:[]1,choose: [cat:adj],token:’Cok’].

APPENDIX D. HAND-CRAFTED RULES 107

[11c:[1,1c:[d,rc:[[cat:verb,stem: [cat:adj,stem: [cat:noun]]]],rrc: [,

choose: [cat:adj],token: ’Cok’].
[11c:[1,1c:[J,rc:[[cat:adj,stem:nol],rrc: [1,choose: [cat:adverb],token: ’Cok’].
[11c:[1,1c:[d,rc:[[cat:verb,stem: [cat:adjl]],rrc:[]1,choose: [cat:adverb],token: Cok’].
[11c:[1,1c:[[case:abl]],rc:[[cat:postp,subcat:abl]l],rrc:[],

choose: [cat:adverb],token:daha].
[11c:[1,1c:[[case:abl]],rc:[[cat:postp,subcat:abl]],rrc:[],
choose: [cat:adverb],token:’Cok’].

[11c:[1,1c:[[case:abl]],rc:[[cat:postp,subcat:abl]],rrc:[],

choose: [cat:adverb],token:daha].
[11c:[1,1c:[[case:abl]],rc:[[cat:postp,subcat:abl]l],rrc:[],

choose: [cat:adverb],token: ’Cok’].

[11c:[1,1c:[[cat:noun,stem:no,case:abl]],rc: [],rrc:[]1,choose:[cat:postp]l,token:’Cok’].
[11c:[1,1c:[[cat:noun,stem: [cat:adj],case:abl]l],rc:[]1,rrc:[],

choose: [cat:postp],token: ’Cok’].
[11c:[1,1c:[0,rc:[[cat:noun,stem:nol],rrc:[1,choose: [cat:adj]l,token: ’Cok’].
[11c:[1,1c:[[cat:adverbl],rc:[[cat:noun,stem:nol],rrc:[]1,choose: [cat:adj],token:’Cok’].
[11c:[1,1c:[[cat:noun,suffix:mak,case:abll],rc: [[cat:adjl],rrc:[],

choose: [cat:adverb],token: ’Cok’].
[11c:[1,1c:[[cat:noun,suffix:mak,case:abl]],rc: [[cat:verb,stem: [cat:adjl]],rrc:[],
choose: [cat:adverb],token: ’Cok’].
[11c:[0,1c:[],rc:[[cat:adverbl],rrc:[],choose:[cat:adverb],token: ’Cok’].
[11c:[1,1c:[1,rc:[[cat:postp,root:gibil]l,rrc: [],choose: [cat:verb]l].
[1lc:[[cat:adverb,stem:nol],lc: [[cat:adj,stem:nol],rc: [[cat:nounl],rrc:[],

choose: [cat:adjl].

% VERB - CASE agreements
% Some verbs require certain case marked nouns before them,
% e.g. eve yOnelmek

[11c:[],1c:[[case:dat]],rc:[1,rrc: 1,

choose: [cat:noun,stem: [cat:verb,root:yapIS],suffix:mall.
[11c:[1,1c:[[case:dat]],rc:[],rrc:[],choose: [cat:verb,root:yapIS]].
[11c:[1,1c:[[case:dat]],rc:[],rrc:[1,choose: [stem: [cat:verb,root:yapIS]]].
[11c:[],1c:[[case:dat]],rc:[1,rrc: 1,

choose: [cat:noun,stem: [cat:verb,root:y0Onell],suffix:mall.
[11c:[1,1c:[[case:dat]],rc:[],rrc:[],choose: [cat:verb,root:yOnell].
[11c:[1,1c:[[case:dat]],rc:[],rrc:[1,choose: [stem: [cat:verb,root:yOnelll].
[11c:[],1c:[[case:acc]l],rc:[1,rrc: 1,

choose: [cat:noun,stem: [cat:verb,root:tarihle],suffix:mal].
[11c:[],1c:[[case:accl],rc:[],rrc:[],choose: [cat:verb,root:tarihle]].
[11c:[],1c:[[case:accl],rc:[],rrc:[],choose: [stem: [cat:verb,root:tarihle]]].
[11c:[],1c:[[case:nom]],rc:[1,rrc: 1,

APPENDIX D. HAND-CRAFTED RULES 108

choose: [cat:noun,stem: [cat:verb,root:tarihle],suffix:mal].

[11c:[1,1c:[[case:nom]],rc:[],rrc:[],choose: [cat:verb,root:tarihlel].

[11c:[1,1c:[[case:nom]],rc:[],rrc:[],choose: [stem: [cat:verb,root:tarihle]]].

% ADJ - CASE agreements

% NOUN - CASE agreements

% Some adjectives and nouns behave as POSTPs, and require certain case

% markings before them

% e.g. bana layIk, benim tarafImdan

[11c
[11c

:[,1c:[[case:dat]],rc:[1,rrc:[J,choose: [cat:adj]l,token:yapISIk].
:[0,1c:[[case:abl]],rc:[1,rrc:[],choose: [cat:adj]l,token: farklI].

[11c
[11c
[11c

:[,1c:[[case:abl]],rc:[1,rrc: [J,choose: [cat:adj]l,token: sorumlu].

:[[case:abl]],lc: [[cat:adverbl],rc:[],rrc:[],choose: [cat:adj],token:farklI].

:[1,1c:[[case:gen]],rc: [1,rrc:[1,

choose: [cat:noun,agr:’3SG’,poss: ’3SG’ ,case:dat],token:yerine].

[11c:[],1c:[[case:nom]],rc:[],rrc:],

choose: [cat:noun,agr:’3SG’,poss: ’3SG’,case:dat],token:yerine].

[11c:[1,1c:[[case:dat]],rc:[],rrc:[],choose: [cat:adj]l,token:yakIn].
:dat]],rc:[1,rrc:[1,choose: [cat:adj],token:layIk].
:dat]],rc:[],rrc: [1,choose: [cat:adj],token:aCIk].

[11c
[11c
[11c
[11c

:[1,1c
:[1,1c
:[1,1c
:[1,1c

:[[case
:[[case
:[[case

:[[case

choose: [cat .noun

:nom,stem: [cat:verb]l]],rc: [],rrc:[]1,choose: [cat:adj],token:halde].

:nom]],rc:[],rrc:[],

,agr:’3SG’,poss: ’3SG’,case:abl] ,token:tarafIndan].

% ADVERB - ADJ - NOUN

[11c:
[11c:
[11c:
[11c:
[11lc:
[11c:
[11lc:

1,1c:
[1,1c:
[1,1c:
[1,1c:
[1,1c:
[1,1c:
[1,1c:

[1,rc:
[1,rc:
[1,rc:
[1,rc:
[1,rc:
[1,rc:
[1,rc:

[[cat:
[[cat:
[[cat:
[[cat:
[[cat:
[[cat:
[[cat:

forms, for the tokens ‘‘en’’ and ‘‘daha’’

adjll,rrc:
adjll,rrc:
adjll,rrc:
adjll,rrc:
adjll,rrc:
adjll,rrc:
adjll,rrc:

choose: [cat:adverb],token:en].

[11c:[0,1c:[],rc:[[cat:adverb]l],rrc: [[cat:noun,stem: [cat:verbl]l],

choose: [cat:adverb],token:en].
[11c:[0,1c:[],rc:[[cat:adverb]l],rrc:[],choose: [cat:adverb],token:en].
[11c:[1,1c:[,rc:[[cat:adjl],rrc:[1,choose: [cat:adverb],token:en].
[11c:[1,1c:[,rc:[[stem: [cat:adjl]l],rrc: []1,choose: [cat:adverb],token:en].

[[cat
[[cat
[[cat
[[cat
[[cat
[[cat
[[cat

:noun,stem:nol]],choose: [cat:adverb],token:en].
:noun,suffix:1ik]],choose: [cat:adverb],token:en].
:noun,suffix:mal]l,choose: [cat:adverb],token:en].
:noun,stem:nol]],choose: [cat:adverb],token:daha].
:noun,suffix:1ik]],choose: [cat:adverb],token:daha].
:noun,suffix:mal]l,choose: [cat:adverb],token:daha].

:verb,stem: [cat :noun,suffix:mall],

% Noun phrases with one or more adjectives before a noun

% Note that instead of simple rules, we used very controlled rules to

% define the nouns and the adjectives

APPENDIX D. HAND-CRAFTED RULES 109

[11lc:[[cat:adj,stem:no]],lc: [[cat:adj,type:determiner]],rc: [[cat:noun,stem:nol],rrc:],

choose:[cat:adj,stem:nol].

[11c:[1,1c:[0,rc:[[cat:adj,stem:nol],rrc: [[cat:noun,case:dat,poss: ’NONE’,stem:nol],

choose: [cat:adj,type:determiner]].
[11c:[1,1c:[1,rc:[[cat:adj,stem:nol],rrc: [[cat:noun,case:gen,poss: ’NONE’,stem:nol],

choose: [cat:adj,type:determiner]].

[11c:[1,1c:[d,rc:[[cat:adj,stem:nol],rrc: [[cat:noun,case:abl,poss: ’NONE’,stem:no]],

choose: [cat:adj,type:determiner]].

[11c:[1,1c:[d,rc:[[cat:adj,stem:nol],rrc: [[cat:noun,case:ins,poss: ’NONE’,stem:nol],

choose: [cat:adj,type:determiner]].

[11c:[1,1c:[0,rc:[[cat:adj,stem:nol],rrc: [[cat:noun,case:loc,poss: ’NONE’,stem:nol],

choose: [cat:adj,type:determiner]].
[11c:[1,1c:[],rc:[[cat:adj,stem:nol],rrc: [[cat:noun,case:nom,stem:nol],

choose: [cat:adj,type:determiner]].

[11c:[1,1c:[d,rc:[[cat:adj,type:determiner]],rrc: [[cat:noun,stem:nol],

choose: [cat:adj,stem:nol].

[11lc:[1,1c:[0,rc:[[cat:adj,stem:nol],rrc: [[cat:noun,suffix:mall,

choose: [cat:adj,type:determiner]].

[11lc:[1,1lc:[0,rc:[[cat:adj,stem:nol],rrc: [[cat:noun,suffix:yis]],

choose: [cat:adj,type:determiner]].

[11lc:[1,1lc:[0,rc:[[cat:adj,stem:nol],rrc: [[cat:noun,suffix:1ik]],

choose: [cat:adj,type:determiner]].
[11c:[1,1c:[,rc:[[cat:adj,type:determiner]] ,rrc: [[cat:noun,stem:nol],

choose: [cat:adj,suffix:1i]].
[11c:[1,1c:[,rc:[[cat:adj,type:determiner]] ,rrc: [[cat:noun,stem:nol],

choose: [cat:adj,suffix:ik]].
[11c:[1,1c:[,rc:[[cat:adj,type:determiner]] ,rrc: [[cat:noun,stem:nol],

choose: [cat:adj,suffix:1ik]].
[11c:[1,1c:[[cat:adverb]l],rc:[[cat:adj,type:determiner]],rrc:[[cat:noun,stem:nol],
choose: [cat:adj,suffix:yanl].
[11c:[1,1c:[,rc:[[cat:adj,type:determiner]] ,rrc: [[cat:noun,stem:nol],

choose: [cat:adj,suffix:yanl].
[11c:[1,1c:[,rc:[[cat:adj,type:determiner]] ,rrc: [[cat:noun,stem:nol],

choose: [cat:adj,suffix:rell].
[11c:[1,1c:[,rc:[[cat:adj,type:determiner]] ,rrc: [[cat:noun,stem:nol],

choose: [cat:adj,stem: [cat:verb,taml:narr]]].
[11c:[],1c:[[cat:adj,type:determiner]],rc:[],rrc:[],choose: [cat:noun,case:gen,stem:nol].
[11c:[1,1lc:[[cat:adj,type:determiner]],rc:[],rrc:[]1,choose: [cat:noun,case:loc,stem:nol].
[11c:[1,1c:[[cat:adj,type:determiner]],rc:[],rrc:[]1,choose: [cat:noun,case:abl,stem:nol].
[11c:[1,1c:[[cat:adj,type:determiner]],rc:[],rrc:[]1,choose: [cat:noun,case:ins,stem:nol].
[11c:[1,1c:[[cat:adj,type:determiner]] ,rc:[],rrc:[]1,choose: [cat:adj,stem: [cat:noun]]].
[11c:[1,1c:[[cat:adj,type:determiner]] ,rc:[],rrc:[]1,choose: [cat:noun,stem:nol].

APPENDIX D. HAND-CRAFTED RULES 110

[11c:[1,1c:[[cat:adj,type:determiner]],rc:[],rrc:[1,choose: [cat:noun,suffix:mal].

[11c:[1,1c:[[cat:adj,type:determiner]],rc:[],rrc:[]1,choose: [cat:noun,suffix:yis]].

% A noun phrase, but the modified or specified word is a pronoun

% e.g. evlerin bazIlarI

[11c:[1,1c:[[agr:’3PL’,case:gen]],rc:[],rrc:[],choose: [cat:pronoun,poss:’3PL’]].

% Noun phrases in the form: NOUN+GEN-ADJ-NOUN+POSS

% Also noun phrases, which have verbal reading
% e.g. benim mavi kitabIm

[11c:[[agr:’1SG’,case:gen]l],lc: [[cat:adj,stem:nol],rc: [1,rrc:[],

choose: [cat:noun,poss:’15G’,stem:no]].
[11c:[[agr:’1SG’,case:gen]l],lc:[[cat:adj,stem:nol],rc: [1,rrc:[],

choose: [cat:verb,stem: [cat:noun,poss: ’1SG’,stem:nol]].

[11c:[[agr:’2SG’,case:gen]],lc: [[cat:adj,stem:nol],rc: [],rrc:[],
choose: [cat:noun,poss:’2SG’,stem:nol].
[11c:[[agr:’2SG’,case:gen]],lc: [[cat:adj,stem:nol],rc: [1,rrc:[],
choose: [cat:verb,stem: [cat:noun,poss: ’2SG’,stem:nol]].
[11c:[[agr:’3PL’,case:gen]],lc: [[cat:adj,stem:nol],rc:[1,rrc:[],
choose: [cat:noun,agr:’3PL’,poss:’3PL’,stem:nol].
[11c:[[agr:’3PL’,case:gen]],lc: [[cat:adj,stem:nol],rc: [1,rrc:[],
choose: [cat:noun,agr:’3PL’,poss:’3PL’,stem:nol].
[11c:[[agr:’3PL’,case:gen]],lc: [[cat:adj,stem:nol],rc:[1,rrc:[],
choose: [cat:noun,agr:’3PL’,poss:’3PL’ ,,suffix:ma]].
[11c:[[agr:’3PL’,case:gen]],lc: [[cat:adj,stem:nol],rc: [1,rrc:[],
choose: [cat:verb,stem: [cat:noun,agr:’3PL’,poss: ’3PL’,stem:no]]].
[11c:[[agr:’3PL’,case:gen]],lc: [[cat:adj,stem:nol],rc:[1,rrc:[],
choose: [cat:verb,stem: [cat:noun,poss: ’3PL’,stem:nol]].
[11c:[[agr:’3PL’,case:gen]],lc: [[cat:adj,stem:nol],rc: [1,rrc:[],
choose: [cat:verb,stem: [cat:noun,poss: ’3SG’,stem:nol]].
[11c:[[agr:’3PL’,case:gen]],lc: [[cat:adj,stem:nol],rc:[1,rrc:[],
choose: [cat:noun,agr:’3SG’,poss:’3PL’,stem:nol].
[11c:[[agr:’3PL’,case:gen]],lc: [[cat:adj,stem:nol],rc:[1,rrc:[],
choose: [cat:verb,stem: [cat:noun,agr:’3SG’,poss: ’3PL’,stem:nol]].
[11c:[[agr:’3PL’,case:gen]],lc: [[cat:adj,stem:nol],rc:[1,rrc:[],
choose: [cat:noun,poss:’3PL’,stem:nol].
[11c:[[agr:’3PL’,case:gen]],lc: [[cat:adj,stem:nol],rc:[1,rrc:[],
choose: [cat:verb,stem: [cat:noun,poss: ’3PL’,stem:nol]].
[11c:[[agr:’3PL’,case:gen]],lc: [[cat:adj,stem:nol],rc: [1,rrc:[],
choose: [cat:noun,poss:’3SG’,stem:nol].
[11c:[[agr:’3SG’,case:gen]l],lc: [[cat:adverb]],rc: [[cat:noun,poss:’3SG’]],rrc:[],
choose: [cat:adjl].

APPENDIX D. HAND-CRAFTED RULES

[11c:[[agr:’3SG’,case:gen]],lc: [[cat:adj,stem:nol],rc: [],rrc:[],

choose: [cat:noun,poss:’3SG’,stem:no]].

[11c:[[agr:’3SG’,case:gen]],lc: [[cat:adj,stem:nol],rc: [1,rrc:[],

choose: [cat:verb,stem: [cat:noun,poss:’35G’,stem:no]]].

[11c:[[agr:’1PL’,case:gen]],lc: [[cat:adj,stem:nol],rc: [1,rrc:[],

choose: [cat:noun,poss:’1PL’,stem:nol].

[11c:[[agr:’2PL’,case:gen]],lc:[[cat:adj,stem:nol],rc:[1,rrc:[],

choose: [cat:noun,poss:’2PL’,stem:nol].

% Noun phrases in the form: NOUN+GEN-NOUN-NOUN+POSS

% Also noun phrases, which have verbal reading

% e.g. benim kitap kapaGIm
[11c:[],1c:[[agr:’1SG’,case:genl],rc

:[[cat:noun,poss:?15G’]],rrc:[],

choose:[cat:noun,case:nom,stem:nol].

[11c:[1,1c:[[agr:’25G’,case:gen]],rc

:[[cat:noun,poss:’2SG’]],rrc:],

choose: [cat:noun,case:nom,stem:nol].

[11c:[],1c:[[agr:’3PL’,case:gen]],rc

111

:[[cat:noun,agr:’3PL’ ,poss:’3PL’]] ,rrc:[],

choose: [cat:noun,case:nom,poss: ’NONE’,stem:nol].

[11c:[],1c:[[agr:’3PL’,case:gen]],rc:[[cat:noun,poss:’3PL’]],rrc:[],

choose: [cat:noun,poss: ’NONE’,case:nom,stem:nol].

[11c:[],1c:[[agr:’3SG’,case:gen]],rc:[[cat:noun,agr:’3PL’,poss:’3SG’]],rrc:[],

choose: [cat:noun,agr:’3SG’,poss: 'NONE’,case:nom,stem:nol].

[11c:[],1c:[[agr:’1PL’,case:gen]],rc:[[cat:noun,poss:’1PL’]],rrc:[],

choose: [cat:noun,case:nom,stem:nol].

[11c:[],1c:[[agr:’2PL’,case:gen]],rc

:[[cat:noun,poss:’2PL’]],rrc:[],

choose: [cat:noun,case:nom,stem:nol].

[11c:[],1c:[[agr:’1SG’,case:gen]],rc
[11c:[],1c:[[agr:’2SG’,case:gen]],rc
[11c:[],1c:[[agr:’3PL’,case:gen]],rc

:[d,rrc

:[d,rrc

:[d,rrc:

choose: [cat:noun,agr:’3PL’,poss:’3PL’,stem

[11c:[],1c:[[agr:’3PL’,case:gen]],rc

:[d,rrc

:[1,choose: [cat:
:[1,choose: [cat:
a,

:nol].

:[1,choose: [cat:

[11c:[],1c:[[agr:’3PL’,poss: ’NONE’,case:gen]],rc:[],rrc:[],

choose: [cat:noun,poss:’3SG’,stem:nol].
[11c:[],1c:[[agr:’3PL’,poss: ’3SG’,case:gen]],rc:[],rrc:[],

choose: [cat:noun,poss:’3SG’,stem:nol].

[11c:[],1c:[[agr:’3PL’,case:gen]],rc
[11c:[],1c:[[agr:’3PL’,case:gen]],rc
[11c:[],1c:[[agr:’3SG’,case:gen]],rc
[11c:[],1c:[[agr:’3SG’,case:gen]],rc
[11c:[],1c:[[agr:’3SG’,case:gen]],rc

:[d,rrc
:[d,rrc
:[d,rrc

:[d,rrc

:[d,rrc:

choose: [cat:verb,stem: [cat:noun,poss: ’3SG’

:[1,choose: [cat:
:[1,choose: [cat:
:[1,choose: [cat:
:[1,choose: [cat:
a,

,stem:nol]].

[11c:[],1c:[[agr:’1PL’,case:gen]],rc:[],rrc:[],choose: [cat:

noun,poss

noun,poss:

noun,poss:

noun,poss:
noun,poss:
noun,poss:

noun,poss:

noun,poss

:71SG’ ,stem:nol].
’2SG’ ,stem:nol].

’3PL’,stem:no]l].

’3PL’ ,suffix:mall.

’3SG’ ,suffix:mall.

’3SG’ ,suffix:mall.
’3SG’,stem:nol].

:?’1PL’ ,stem:no]l].

APPENDIX D. HAND-CRAFTED RULES 112

[11c:[1,1c:[[agr:’2PL’,case:gen]],rc:[],rrc:[],choose: [cat:noun,poss:’2PL’,stem:no]].

% Some more rules for the token ‘‘ile’’

[11lc:[[cat:adj,stem:no]],lc: [[cat:conn,root:ilel],rc:[J,rrc:[]1,choose:[cat:adj,stem:nol].
[11lc:[1,1c:[0,rc:[[root:birliktel]],rrc:[]1,choose: [cat:postp,root:ilel].
[11c:[1,1c:[],rc:[[cat:verb,stem:nol],rrc:[]1,choose: [cat:postp,root:ilel].

% Some more noun phrase combinations

[11lc:[[cat:adj,stem: [cat:verb,tami:narr]]],1c:[[cat:adj,stem:nol],rc:[J,rrc: 1,

choose: [cat:noun, poss:’NONE’,stem:no]l].

[1lc:[[cat:adj,stem: [cat:verb],suffix:dik]],1lc: [[cat:adj,stem:nol]l,rc: [1,rrc:[],

choose: [cat:noun,poss: ’NONE’,stem:nol].
[11c:[1,1c:[[cat:adj,stem: [cat:verb],suffix:dik]],rc:[],rrc:[],
choose: [cat:noun, poss:’NONE’,case:abl,stem:nol].

[11c:[1,1c:[[cat:adj,stem: [cat:verb],suffix:dik]],rc:[],rrc:],

choose: [cat:noun, poss:’NONE’,case:nom,stem:nol].
[11c:[1,1c:[[cat:adj,stem: [cat:verb],suffix:dik]],rc:[],rrc:[],
choose: [cat:noun, poss:’NONE’,case:loc,stem:nol].
[11c:[1,1c:[[cat:adj,stem: [cat:verb],suffix:dik]],rc:[],rrc:[],
choose: [cat:noun, poss:’NONE’,case:ins,stem:nol].
[11c:[1,1lc:[[cat:adj,stem: [cat:verb,taml:narr]]],rc:[],rrc:],
choose: [cat:noun, poss:’NONE’,stem:nol].
[11c:[1,1lc:[[cat:adj,stem: [cat:verb],suffix:yacak]],rc:[],rrc:],
choose: [cat:noun, poss:’NONE’,stem:nol].
[11c:[],1c:[[cat:noun,agr:’3SG’,poss:’NONE’,case:nom,stem:nol],
rc:[[cat:noun,agr:’3SG’,poss: ’NONE’,case:nom,stem:nol],

rrc: [[cat:noun,poss:’3SG’,agr:’3SG’,case:nom,stem:nol],
choose: [cat:noun,case:nom,agr:’3SG’,poss:’3SG’,stem:nol].
[11c:[1,1c:[[cat:adj,stem:nol],rc: [1,rrc:],

choose: [cat:noun,stem:no,poss: ’NONE’,case:gen]].
[11c:[1,1c:[[cat:adj,stem:nol],rc: [1,rrc:],

choose: [cat:noun,poss: ’NONE’,stem:no,case:abl]].
[11c:[1,1c:[[cat:adj,stem:nol],rc: [1,rrc:],

choose: [cat:noun,poss: ’NONE’,stem:no,case:loc]l].
[11c:[1,1c:[[cat:adj,stem:nol],rc: [1,rrc:],

choose: [cat:noun,poss: ’NONE’,stem:no,case:ins]].
[11c:[1,1c:[[cat:adj,stem:nol],rc: [1,rrc:],

choose: [cat:noun,stem:no,poss: ’NONE’,case:nom]].
[1lc:[[cat:adj,type:cardinall]l,lc: [[cat:adj,type:cardinalll,rc: [],rrc: 1,
choose: [cat:noun,agr:’3SG’,poss: 'NONE’,,stem:nol].
[11c:[1,1lc:[[cat:adj,type:cardinall]l,rc: [1,rrc:[],

choose: [cat:noun,agr:’3SG’,poss: 'NONE’,,stem:nol].

APPENDIX D. HAND-CRAFTED RULES 113

[11c:[1,1c:[d,rc:[[cat:adj,stem:nol]],rrc: [[cat:noun,stem:nol],

choose: [cat:adj,type:cardinall].
[11c:[1,1lc:[[cat:adj,stem:nol],rc: [[cat:noun,poss:’3SG’]],rrc:],

choose: [cat:noun,agr:’35SG’,poss: ’NONE’,case:nom, stem:nol].

[IIc:[J,1c:[[cat:noun,stem:[cat:verb],suffix:mak,case:nom]],rc:[],rrc:],

choose:[cat:verb,agr:’35G’,stem: [cat:adj,stem:no]]].
[11lc:[1,1c:[[cat:noun,stem: [cat:verb],case:nom]],rc:[],rrc:[],

choose: [cat:verb,stem: [cat:noun,poss: NONE’ ,suffix:mak,case:loc]]].

[

% Rules for the connectives ‘‘ve’’ and ‘‘veya’’

[1lc:[[cat:adj,stem:nol]l,1lc: [[cat:conn,root:vel]l,rc:[],rrc:[],choose: [cat:adj,stem:nol].

[11c:[[cat:adj,stem:no]],lc: [[cat:conn,root:veyal]l,rc:[],rrc:[],choose:[cat:adj,stem:nol].

% Noun phrases, with no genitive case marking

[11c:[[cat:noun,agr:’3SG’,case:nom,stem:nol],
lc:[[cat:noun,agr:’3SG’,poss:’3SG’,case:nom,stem:nol],rc: [],rrc:[],

choose: [cat:noun,agr:’3PL’,poss:’3SG’,stem:nol].
[11c:[[cat:noun,agr:’3SG’,case:nomm,stem:nol],
lc:[[cat:noun,agr:’3SG’,poss:’3SG’,case:nom,stem:nol],rc: [],rrc:[],

choose: [cat:noun,agr:’3SG’,poss:’3SG’,stem:nol].
[11c:[],1c:[[cat:noun,agr:’3PL’,poss:’NONE’,case:nom,stem:nol] ,rc:[],rrc:[],
choose: [cat:noun,agr:’3SG’,poss:’3SG’,stem:nol].
[11c:[],1c:[[cat:noun,agr:’3SG’,poss:’NONE’,case:nom,stem:nol] ,rc:[],rrc:[],
choose: [cat:noun,stem:no,agr: ’3PL’,poss: ’3SG’]].
[11c:[],1c:[[cat:noun,agr:’3SG’,poss:’NONE’,case:nom,stem:nol] ,rc:[],rrc:[],
choose: [cat:verb,stem: [cat:noun,agr:’3PL’,poss:’35G’]]].
[11c:[],1c:[[cat:noun,agr:’3SG’,poss:’NONE’,case:nom,stem:nol] ,rc:[],rrc:[],
choose: [cat:adj,stem: [cat:noun,agr:’3PL’ ,poss:’3SG’]]].
[11c:[],1c:[[cat:noun,agr:’3SG’,poss:’NONE’,case:nom,stem:nol] ,rc:[],rrc:[],

choose: [cat:noun,agr:’3SG’,poss:’3SG’]].

% At the beginning of a sentence, choose adverbial reading

[11c:[1,1c:[[cat:’beginning of_sentence’]],rc:[],rrc:[],choose: [cat:adverb]].

D.2 Lexical Delete Rules

[delete: [poss:’25G’]1].

[delete: [cat:verb,voice:reflex]].

APPENDIX D. HAND-CRAFTED RULES 114

[delete:
[delete:
[delete:

[poss:?3PL’,agr:’3SG’]].
[taml:opt,agr:’3SG°]1].
[tami:imp]].

[delete:
[delete:
[delete:
[delete:

[case:equl].
[poss:’18G°]1].
[cat:verb,stem: [cat:postpl]l].

[cat:verb,stem: [cat:noun],suffix:lan]].

[delete:

[cat:verb,stem: [cat:noun] ,suffix:las]].

[delete:

[cat:verb,stem: [cat:adj],suffix:lan]].

[delete:
[delete:

[cat:verb,stem: [cat:adj],suffix:las]].

[cat:postp,root:sonrall.

[delete:
[delete:
[delete:

[cat:postp,root:’Once’]].
[cat:postp,root:karSI]].
[cat:postp,root:birliktel].

[delete:
[delete:
[delete:
[delete:
[delete:
[delete:
[delete:
[delete:
[delete:
[delete:
[delete:
[delete:
[delete:
[delete:
[delete:
[delete:
[delete:
[delete:
[delete:
[delete:
[delete:
[delete:
[delete:
[delete:
[delete:
[delete:
[delete:

[cat:postp,root:doGrull.
[cat:postp,root:baSkal].
[token:ayrIca,cat:noun]].
[stem: [stem]]].
[cat:noun,stem: [cat:adj],suffix:nonel].
[token:’hem’,cat:adverb]l].
[token: ’bir’,type:cardinalll.
[token:’bir’,cat:adverbl].
[token:’ben’,cat:noun]].
[token:gene,cat:noun]].
[type:realll.

[token: ’buglUn’,cat:noun]].
[token: ’gerCekte’,cat:noun]].
[token: ’Cok’,cat:adjl].
[token:’artIk’,cat:adjl].
[token: ’sonradan’,cat:noun]].
[token: ’geceleri’,cat:noun]].
[token: ’toptan’,cat:nounl].
[token:’biz’,cat:noun]].
[token:’ah’,cat:noun]].
[token:’ancak’,cat:conn]].
[token:’0yle’,cat:adjl].
[token:’akla’,case:ins]].
[token:’asla’,case:ins]].
[token:’oysa’,cat:verb]l].
[cat:verb,stem: [cat:noun,poss:’2SG’]1]1].

[root:’VT!’]1].

Appendix E

Learned Rules

E.1 Learned Choose Rules

Following choose rules are among the choose rules learned from C2000.

[11lc:[[cat:adjl],lc:[[cat:adj,type:determiner]],rc:[]1,rrc:[],

choose: [cat:noun,agr:’3SG’,poss: *NONE’]].
[11c:[],1c:[[cat:noun,agr:’3SG’,case:nom]],rc:[],rrc:[],

choose: [cat:noun,agr:’3SG’,poss:’3SG’]].
[11c:[1,1c:[[cat:adj,type:determiner]] ,rc:[],rrc:],

choose: [cat:noun,agr:’3SG’,poss: *NONE’]].
[11c:[],1c:[],rc:[[cat:noun,agr:’3SG’,poss:’3SG’]],rrc:[],

choose: [cat:noun,agr:’35G’,case:nom]].

[11c:[[cat:beginning of_sentencel]],lc:[[cat:adj,type:determiner]],rc:[],rrc:[],
choose: [cat:noun,agr:’3SG’,poss: *NONE’]].
[11c:[[cat:noun,agr:’3SG’,case:nom]],lc: [[cat:conn,root:vel]l,rc:[],rrc:[1,
choose: [cat:noun,agr:’3SG’,poss: *NONE’]].
[11c:[],1c:[1,rc:[[cat:conn,root:vel]l,rrc: [[cat:noun,agr:’3SG’,poss: NONE’]],
choose: [cat:noun,agr:’3SG’,case:nom]].
[11c:[[cat:adjl],lc:[[cat:noun,agr:’3SG’,case:nom]],rc:[],rrc:[],

choose: [cat:noun,agr:’3SG’,poss:’3SG’]].
[11c:[1,1c:[[cat:adjl],rc:[],rrc: []1,choose: [cat:noun,agr:’3SG’,poss: *NONE’]].
[11c:[[cat:adj,type:determiner]],lc: [[cat:noun,agr:’3SG’,case:nom]],rc:[],rrc:[],
choose: [cat:noun,agr:’3SG’,poss:’3SG’]].
[1lc:[[cat:adj,type:determiner]],lc:[[cat:adjl],rc:[1,rrc:],

choose: [cat:noun,agr:’3SG’,poss: *NONE’]].

115

APPENDIX E. LEARNED RULES 116

[11c:[[cat:noun,agr:’3SG’,case:nom]],1c: [[cat:noun,agr:’3SG’,case:nom]],rc:[],rrc:[],
choose: [cat:noun,agr:’3SG’,poss:’3SG’]].
[11c:[],1c:[1,rc:[[cat:noun,agr:’3SG’,poss:’3SG’]1],

rrc: [[cat:noun,agr:’3SG’,poss: 'NONE’]],
choose: [cat:noun,agr:’3SG’,case:nom]].

[11c:[1,1c:[d,rc:[[cat:noun,agr:’3SG’,poss: ’35G’]],

rrc: [[cat:noun,agr: ’3SG’,poss:’3SG’]],
choose: [cat:noun,agr:’35G’,case:nom]].

[11c:[1,1c:[0,rc:[[cat:adjl]l,rrc: [[cat:noun,agr:’3SG’,poss: ’NONE’]],

choose: [cat:adverb]].

[11c:[],1c:[],rc:[[cat:noun,agr:’3SG’,poss:’3SG’]],rrc: [[cat:adjl],

choose: [cat:noun,agr:’3SG’,case:nom]].
[11c:[],1c:[[cat:noun,agr:’3SG’,case:nom]],rc:[],rrc:[],
choose: [cat:noun,agr:’3PL’,poss:’3SG’]].
[11c:[1,1c:[d,rc:[[cat:noun,agr:’3PL’,poss: ’35G’]],rrc:[],

choose: [cat:noun,agr:’35G’,case:nom]].
[11c:[1,1c:[1,rc:[[cat:noun,agr:’3SG’,poss:’3SG’]],rrc: [[cat:adj,type:determiner]],
choose: [cat:noun,agr:’3SG’,case:nom]].
[11c:[1,1c:[1,rc:[[cat:adj,type:determiner]],rrc: [[cat:noun,agr:’3SG’,poss: NONE’]],
choose: [cat:adj,suffix:yan]l].

[11c:[[cat:beginning of_sentencel]],lc:[[cat:adjl],rc:[],rrc:[],

choose: [cat:noun,agr:’3SG’,poss: *NONE’]].
[11lc:[1,1c:[[cat:adjl]l,rc:[0,rrc:[1,choose: [cat:adj,type:determiner]].
[11c:[1,1c:[[cat:adjl],rc:[],rrc: []1,choose: [cat:noun,agr:’3PL’ ,poss: *NONE’]].
[1lc:[[cat:adj,suffix:1i]],1c:[[cat:adj,type:determiner]] ,rc:[],rrc:[],

choose: [cat:noun,agr:’3SG’,poss: *NONE’]].

[11c:[[cat:noun,agr:’3SG’,case:nom]],lc: [[cat:noun,agr:’3SG’,case:nom]],rc:[],rrc:[],
choose: [cat:noun,agr:’3SG’,poss: *NONE’ ,type:rproper]].
[11c:[1,1c:[1,rc:[[cat:adj,type:determiner]],rrc: [[cat:noun,agr:’3SG’,poss: NONE’]],
choose: [cat:adj,suffix:1i]].

[11c:[[cat:noun,agr:’3SG’,case:loc]],lc: [[cat:adj,type:determiner]],rc:[],rrc:[],
choose: [cat:noun,agr:’3SG’,poss: *NONE’]].
[11c:[],1c:[],rc:[[cat:noun,agr:’3SG’,poss:’3SG’]],rrc:[],

choose: [cat:noun,agr:’35G’,case:gen]].
[11lc:[1,1c:[,rc:[[cat:adjl],rrc:[1,choose: [cat:adverb]l].

[11c: [[cat:noun,agr:’3SG’,case:nom,type:rproper]],lc: [[cat:conn,root:vel]l,rc: [],rrc:[1,

choose: [cat:noun,agr:’3SG’,poss: *NONE’ ,type:rproper]].

APPENDIX E. LEARNED RULES 117

E.2 Learned Delete Rules

Following delete rules are among the delete rules learned from C2000 text.

delete:[cat:verb]].
[11c:[,1c:[],rc:[[cat:verbl],rrc:],

delete: [cat:noun,agr:’3PL’,poss: ’3SG’,case:ins]].
[11c:[],1c:[],rc:[[cat:verbl],rrc:],

delete: [cat:noun,agr:’3PL’,poss: ’3PL’,case:loc]].
[11c:[],1c:[],rc:[[cat:verbl],rrc:],

delete: [cat:noun,agr:’3PL’,poss: ’3PL’,case:acc]].

,1lc: L], rc: : ,rrc: L],
delete: [cat:noun,agr:’3PL’,poss: ’3PL’,case:abl]].
[11c:[],1c:[],rc:[[cat:verbl],rrc:],
delete:[cat:conn,root:ilel].
[11c:[1,1c:[1,rc:[[cat:pronoun,agr:’3SG’,poss:’35G’,case:nom]],rrc:[],
delete: [cat:noun,agr:’3PL’,poss: ’3PL’,case:abl]].
[11lc:[1,1c:[0,rc:[[cat:postp,subcat:nom]],rrc:[],
delete: [cat:noun,agr:’3SG’,poss: ’NONE’,case:accl].
[11lc:[1,1c:[0,rc:[[cat:postp,subcat:nom]],rrc:[],
delete: [cat:noun,agr:’3PL’,poss:’3PL’,case:nom]].
[11lc:[1,1c:[0,rc:[[cat:postp,subcat:ins]],rrc:[],
delete: [cat:noun,agr:’3PL’,poss:’3PL’,case:ins]].
[11lc:[1,1c:[0,rc:[[cat:postp,subcat:abl]l],rrc:[],
delete: [cat:noun,agr:’3PL’,poss: ’3PL’,case:abl]].
[11c:[1,1c:[],rc:[[cat:noun,agr:’3SG’,poss: 'NONE’,case:nom]],rrc:[],
delete: [cat:verbl].
[11c:[],1c:[],rc:[[cat:adverbl],rrc:[],
delete: [cat:pronoun,agr:’3SG’,poss: NONE’,case:nom]].
[11c:[0,1c:[],rc:[[cat:adverbl],rrc:],
delete: [cat:pronoun,agr:’3PL’,poss: ’3PL’,case:nom]] .
[11c:[0,1c:[],rc:[[cat:adverbl],rrc:],
delete: [cat:noun,agr:’3PL’,poss: ’NONE’,case:accl].
[11c:[0,1c:[],rc:[[cat:adverbl],rrc:],
delete: [cat:noun,agr:’3PL’,poss: ’3SG’,case:abl]].
[11c:[0,1c:[],rc:[[cat:adverbl],rrc:],
delete: [cat:noun,agr:’3PL’,poss:’3PL’,case:nom]].
[11c:[0,1c:[],rc:[[cat:adverbl],rrc:],
delete: [cat:noun,agr:’3PL’,poss: ’3PL’,case:loc]].

APPENDIX E. LEARNED RULES

[11c:[1,1c:[0,rc:[[cat:adverbl],rrc:[],
delete: [cat:noun,agr:’3PL’,poss: ’3PL’,case:dat]].

,rrc:

>

delete: [cat:noun,agr:’3PL’,poss: ’3PL’,case:acc]].
[11lc:[1,1lc:O,rc:[[cat:adjl],rrc: 1,
delete: [cat:verbl].

[11c:[1,1c:[[cat:postp,subcat:nom]],rc:[1,rrc:],

delete: [cat:pronoun,agr:’3SG’,poss: NONE’,case:nom]].

[11c:[1,1c:[[cat:postp,subcat:nom]],rc:[1,rrc:],
delete: [cat:postp,subcat:abl]].

[11lc:[1,1c:[[cat:postp,subcat:nom]] ,rc:[],rrc:[],

delete: [cat:noun,agr:’3PL’,poss: ’NONE’,case:acc]].
[11lc:[1,1c:[[cat:postp,subcat:nom]l] ,rc:[],rrc:[],

delete: [cat:noun,agr:’3PL’,poss: ’3SG’,case:nom]].

[11c:[1,1c:[[cat:postp,subcat:nom]],rc:[1,rrc:],
delete: [cat:noun,agr:’3PL’,poss:’3PL’,case:nom]].
[11lc:[1,1c:[[cat:postp,subcat:nom]l] ,rc:[],rrc:[],
delete: [cat:conn,root:nell.

[11c:[],1c:[[cat:adverbl],rc:[1,rrc: [,

delete: [cat:pronoun,agr:’3SG’,poss: NONE’,case:nom]].

[11c:[],1c:[[cat:adverbl],rc:[1,rrc: [,

delete: [cat:pronoun,agr:’3PL’,poss: ’3PL’,case:acc]l].
[11c:[],1c:[[cat:adverbl],rc:[1,rrc: [,

delete: [cat:noun,agr:’3PL’,poss: ’NONE’,case:accl].
[11c:[],1c:[[cat:adverbl],rc:[1,rrc: [,

delete: [cat:noun,agr:’3PL’,poss: ’3SG’,case:nom]].
[11c:[],1c:[[cat:adverbl],rc:[1,rrc: [,

delete: [cat:noun,agr:’3PL’,poss: ’35G’,case:dat]].
[11c:[],1c:[[cat:adverbl],rc:[1,rrc: [,

delete: [cat:noun,agr:’3PL’,poss:’3PL’,case:nom]].
[11c:[],1c:[[cat:adverbl],rc:[1,rrc: [,

delete: [cat:noun,agr:’3PL’,poss: ’3PL’,case:dat]].
[11lc:[1,1lc:[[cat:adjl],rc:[],rrc: 1,

delete: [cat:pronoun,agr:’3SG’,poss: NONE’,case:nom]].

[11lc:[1,1lc:[[cat:adjl],rc:[],rrc: 1,

delete: [cat:pronoun,agr:’3SG’,poss: ’3SG’,case:nom]] .
[11lc:[1,1lc:[[cat:adjl],rc:[],rrc: 1,

delete: [cat:noun,agr:’3PL’,poss: ’3SG’,case:nom]].
[11lc:[1,1lc:[[cat:adjl],rc:[],rrc: 1,

delete: [cat:noun,agr:’3PL’,poss: ’3SG’,case:ins]].
[11lc:[1,1lc:[[cat:adjl],rc:[],rrc: 1,

delete: [cat:noun,agr:’3PL’,poss: ’3PL’,case:abl]].

118

Appendix F

Sample Disambiguated Text

[[e,
[[cat:beginning of_sentencell],
[arkeologlar,
[[cat:noun,stem: [cat:noun,root:arkeoloji] ,suffix:og,agr: ’3PL’,poss: ’NONE’,case:nom]]],
L.,
[[cat:punct,root:’,’]1],
[kazI,
[[cat:noun,root:kazIl,agr:’3SG’,poss: NONE’,case:nom]]],
[yapmanIn,
[[cat:noun,stem: [cat:verb,root:yap,sense:pos],suffix:ma,
type:infinitive,agr:’3SG’,poss: ’NONE’,case:gen]]],
[’yanI sIra’,

[[cat:postp,root:’yanI sIra’,subcat:gen]]],

L.,
[[cat:punct,root:’,’]1],
fo,
[[cat:adj,root:0,type:determiner]]],
[kazI,

cat:noun,root:kazl,agr: ,poss: ,case:nom s
[C kazI,agr:’3SG’,p *NONE’ 111
[yerini,

cat:noun,root:yer,agr: ,poss: ,case:acc s
LC y gr:’3SG’,p 133G’ 111
[’Cevreleyen’,

cat:adj,stem: [cat:verb,root:’Cevrele’ ,sense:pos],suffix:yan s
[C dj [b 'C le’ 1,suffi 111
[alanIn,

cat:noun,root:alan,agr: ,poss: ,case:gen s
[C 1 gr:’35G’,p *NONE’ gen]]]

[eski,

119

APPENDIX F. SAMPLE DISAMBIGUATED TEXT 120

[[cat:adj,root:eskil]],
[biCimini,

[[cat:noun,root:biCim,agr: ’3SG’ ,poss: ’35G’,case:accl]l],

[de,
cat:conn,root:de ,
[yeniden,

[[cat:adverb,root:yeniden]]],

[kurmaya,

[[cat:noun,root:kurmay,agr: ’3SG’ ,poss: ’NONE’,case:dat]]],
[’CalISIrlar’,
[[cat:verb,root:’CallS’,sense:pos,taml:aorist,agr:’3PL’]]],
L.,

[[cat:punct,root:’.’]11],

[#,

[[cat:end_of_sentencell]].

[[e,
[[cat:beginning of_sentencell],
[ilk,
[[cat:adj,root:il1K]1]],
[evler,
[[cat:noun,root:ev,agr:’3PL’,poss: ’NONE’,case:nom]]],
L.,
[[cat:punct,root:’,’]1],
[burada,
[[cat:noun,root:bura,agr:’3SG’,poss: *NONE’,case:loc]]],
[kuzey,
[[cat:adj,root:kuzeyll],
[’Irak\’ta’,
[[cat:noun,root:’Irak’,type:rproper,agr:’3SG’,poss: NONE’,type:proper,case:loc]]l],
[’kermezdere\’deki’,
[[cat:adj,stem: [cat:noun,root :kermezdere,agr:’3SG’ ,poss: ’NONE’ ,type:proper,case:loc],
suffix:rell,
[cat:adj,stem: [cat:noun,root:kermezDere,agr: ’3SG’ ,poss: 'NONE’,type:proper,case:loc],

suffix:relll],

[proto,
[[cat:noun,root:proto,agr: ’3SG’ ,poss: ’NONE’,case:nom]]],
[neolitik,

[[cat:adj,root:neolitik]]1],

[dOnem,

cat:noun,root:d0Onem,agr: ,poss: ,case:nom s
[C do gr:’3SG’,p *NONE’ 111

[evinde,

APPENDIX F. SAMPLE DISAMBIGUATED TEXT 121

[[cat:noun,root:ev,agr:’3SG’,poss: ’3SG’,case:loc]]],
[g0rU1dUGU,

[[cat:noun,stem: [cat:verb,root:g0r,voice:pass,sense:pos],suffix:dik,

agr:’3SG’,poss:’3SG’,case:nom]]],
[gibi,

[[cat:postp,root:gibi,subcat:nom]]],

L.,

[[cat:punct,root:’,’]1],

[topraGa,

[[cat:noun,root:toprak,agr:’3SG’,poss: NONE’,case:dat]]],
[gOmU1U,

[[cat:adj,stem: [cat:noun,root:g0mU],suffix:1iJ]1],

[yuvarlak,

[[cat:adj,root:yuvarlak]]l],

[kulUbelerdi,

[[cat:verb,stem: [cat:noun,root:kulUbe,agr: ’3PL’,poss: ’NONE’,case:nom] ,suffix:none,
tam2:past,agr:’3sG°]1],

L.,

[[cat:punct,root:’.’]11],

[#,

[[cat:end_of_sentencell]].

[[e,
[[cat:beginning of_sentencell],
[tas,
[[cat:adj,root:tasS]]],
[ve,
[[cat:conn,root:vell]l,
[tahta,
[[cat:adj,root:tahtall],
[aletler,
[[cat:noun,root:alet,agr:’3PL’,poss: NONE’,case:nom]]],
[arasInda,
[[cat:noun,root:ara,agr:’3SG’,poss:’3SG’,case:loc]]],
L.,
[[cat:punct,root:’,’]1],
[iGne,
[[cat:noun,root:iGne,agr:’3SG’,poss: *NONE’,case:nom]]],
L.,
[[cat:punct,root:’,’]1],
[dikis,

[[cat:noun,stem: [cat:verb,root:diK,sense:pos],suffix:yis,agr:’3SG’,poss: ’NONE’,case:nom]]]
P y g P

APPENDIX F. SAMPLE DISAMBIGUATED TEXT 122

[iGnesi,
[[cat:noun,root:iGne,agr:’3SG’,poss:’3SG’,case:nom]]],
.7,

[[cat:punct,root:’, 117,

blz,
[[cat:noun,root:blz,agr: ’3SG’,poss: ’NONE’,case:nom]]],
L.,

[[cat:punct,root:’,’]1],

Lok,
[[cat:noun,root:oK,agr:’3SG’ ,poss: ’NONE’,case:nom]]],
[basSI,
[[cat:noun,root:baS,agr: ’3SG’ ,poss:’3SG’,case:nom]]],
.7,

[[cat:punct,root:’,’]1],

[mIzrak,

[[cat:noun,root:mIzrak,agr:’3SG’,poss: NONE’,case:nom]]],

[’ya da’,

[[cat:conn,root:’ya da’]]],

[zIpkIn,

[[cat:noun,root:zIpkIn,agr:’3SG’,poss: NONE’,case:nom]]],

[uClarI,

[[cat:noun,root:uC,agr:’3PL’,poss:’3SG’,case:nom]]],

L.,

[[cat:punct,root:’,’]1],

[’vb.?,

[[cat:noun,root:’vb.E’,type:rproper,agr:’3SG’,poss: NONE’,case:nom]]],
L.,

[[cat:punct,root:’,’]1],

[bulunuyordu,
[[cat:verb,root:bulun,sense:pos,taml:progl,tam2:past,agr:’3s5G’1]1],
L.,

[[cat:punct,root:’.’]11],

[#,

[[cat:end_of_sentencel]l]].

[[e,
[[cat:beginning of_sentencelll],
[proto,
[[cat:noun,root:proto,agr: ’3SG’ ,poss: ’NONE’,case:nom]]],
[neolitik,
[[cat:adj,root:neolitik]]1],

[’eriha\’nIn’,

APPENDIX F. SAMPLE DISAMBIGUATED TEXT 123

[[cat:noun,root:eriha,type:rproper,agr:’3SG’,poss: 'NONE’,,type:proper,case:gen]]],

[en,

[[cat:adverb,root:enl]],
[’dikkat Cekici’,
[[cat:adj,stem: [cat:verb,root: ’dikkat
CeK’,sense:pos],suffix:yicill],
[’0Ozelliklerinden’,
[[cat:noun,root:’0zellik’,agr:’3PL’,poss:’3SG’,case:abl]]],
[biri,
[[cat:pronoun,root:biri,type:quant,agr:’3SG’,poss:’3SG’,case:nom]]],
.7,
[[cat:punct,root:’, 117,
[surlarIn,
[[cat:noun,root:sur,agr: ’3PL’,poss: ’NONE’,case:gen]]],
fic,
[[cat:adj,root:iJ]1]],

[tarafIna,

[[cat:noun,root:taraf,agr: ’3SG’,poss:’35G’,case:dat]]],

[yapISIk,

[[cat:adj,root:yapISIk]]],

[tas,
[[cat:noun,root:taS,agr: ’3SG’,poss: ’NONE’,case:nom]]],
[kuleydi,

[[cat:verb,stem: [cat:noun,root:kule,agr:’3SG’,poss: NONE’,case:nom],suffix:none,
tam2:past,agr:’3sG°]1],

L.,

[[cat:punct,root:’.’]11],

[#,

[[cat:end_of_sentencell]].

[[e,

[[cat:beginning of_sentencell],

[’10°,

[[cat:adj,type:cardinal,root:’10°]11],

Um.”,

[[cat:noun,root:’m.E’,type:rproper,agr:’3SG’,poss: ’NONE’,case:nom]]],
[’CapIndaki’,

[[cat:adj,stem: [cat:noun,root:’Cap’,agr:’3SG’,poss: ’35G’,case:loc],suffix:rel]]],
[kulenin,

[[cat:noun,root:kule,agr:’3SG’,poss: *NONE’ ,case:gen]]],

0s’,

[[cat:adj,type:cardinal,root:’8°]1]1],

APPENDIX F. SAMPLE DISAMBIGUATED TEXT 124

[metrenin,
[[cat:noun,root:metre,agr: ’3SG’ ,poss: ’NONE’,case:gen]]],
’UstUnde’,

[[cat:noun,root:’Ust’,agr:’3SG’,poss: ’35G’,case:loc]]],

bir,

[[cat:adj,root:bir,type:determiner]]],

[(b01UmU,
[[cat:noun,root:b01Um,agr: ’3SG’ ,poss: *NONE’,,case:accl]l],
[bugUn,

[[cat:adverb,root:buglnll],

[de,

[[cat:conn,root:dell],

[ayaktadIr,

[[cat:verb,stem: [cat:noun,root:ayak,agr:’3SG’,poss: NONE’,case:loc],suffix:none,

tam2:pres,copula:’2’,agr:’3SG’]]],
["”
[[cat:punct,root:’.’]11],
[#’
[[cat:end_of_sentencelll].

[[e,
[[cat:beginning of_sentencell],
[doGu,
[[cat:noun,root:doGu,agr:’3SG’,poss: *NONE’,case:nom]]],
[tarafInda,
[[cat:noun,root:taraf,agr: ’3SG’,poss:’35G’,case:loc]]],
1.7,
[[cat:adj,type:real,root:’1.7°11],
[’m

)
1)

[[cat:noun,root:mE,type:rproper,agr:’3SG’,poss: NONE’ ,case:nom]]],

[yUksekliGinde,

[[cat:noun,stem: [cat:adj,root:yUksek],suffix:1ik,agr:’3SG’,poss:’3SG’,case:loc]]],
[bir,

[[cat:adj,root:bir,type:determiner]]],

[kapI,

[[cat:noun,root:kapl,agr:’3SG’,poss: NONE’,case:nom]]],
L.,

[[cat:punct,root:’,’]1],

[her,

[[cat:adj,root:her,type:determiner]]],

[biri,

APPENDIX F. SAMPLE DISAMBIGUATED TEXT 125

[[cat:pronoun,root:biri,type:quant,agr:’3SG’,poss:’3SG’,case:nom]]],
[tek,

[[cat:adj,root:teK]]],
[bir,

[[cat:adj,root:bir,type:determiner]]],

ta$S,

[[cat:adj,root:taSI]],

[bloGundan,
[[cat:noun,root:blok,agr:’3SG’,poss: ’35G’ ,case:abl]]],

[yapIlmIS,

[[cat:adj,stem: [cat:verb,root:yap,voice:pass,sense:pos,taml:narr],suffix:nonell],
227,

[[cat:adj,type:cardinal,root:’22°]1]1],

[basamaklI,
[[cat:adj,stem:[cat:noun,root:basamak],suffix:1iJ]1],

[bir,

[[cat:adj,root:bir,type:determiner]]],

[merdivene,

[[cat:noun,root:merdiven,agr:’3SG’,poss: ’NONE’,case:dat]]],
[aCIlIr,
[[cat:verb,root:al,voice:pass,sense:pos,taml:aorist,agr:’35G°]1]],
L.,

[[cat:punct,root:’.’]11],

[#,

[[cat:end_of_sentencell]].

[[e,
[[cat:beginning of_sentencell],
[tell,
[[cat:noun,root:tell,agr:’3SG’,poss: 'NONE’,case:nom]]],
[’brak\’taki’,
[[cat:adj,stem: [cat:noun,root:brak,agr:’3SG’,poss: ’NONE’,type:proper,case:loc],
suffix:relll],

[mo,
[[cat:adj,root:m0]1]],
L.,
[[cat:punct,root:’.’]11],
[#,

[[cat:end_of_sentencelll].

[Le,

[[cat:beginning of_sentencelll],

APPENDIX F. SAMPLE DISAMBIGUATED TEXT 126

[’4-”
[[cat:adj,type:ordinal,root:’4.’]]],
[binyIl,

[[cat:noun,root:binyIl,agr: ’3SG’,poss: ’NONE’,case:nom]]],
[tapInaGInda,

[[cat:noun,root:tapInak,agr:’3SG’,poss:’35SG’,case:loc]]],
[’300\’U’,

[[cat:noun,stem: [cat:adj,type:cardinal,root:’300\’’],suffix:none,

agr:’3SG’,poss: ’NONE’,case:acc]]],
[aSkIn,
[[cat:postp,root:aSkIn,subcat:accl]],
[’(”
[[cat:punct,root:’(’11],

[ayrica,

[[cat:adverb,stem: [cat:adj,root:ayrl],suffix:ca,type:manner]]],
[parCa,
[[cat:noun,root:parCa,agr: ’3SG’ ,poss: ’NONE’,case:nom]]],
[halinde,
[[cat:noun,root:hVl,agr:’3SG’,poss:’3SG’,case:loc]]],
[binlerce,
[[cat:adj,root:binlerce,type:cardinalll],
),
[[cat:punct,root:’)’1]],
[tas,
[[cat:noun,root:taS,agr: ’3SG’,poss: ’NONE’,case:nom]]],
[’ya da’,
[[cat:conn,root:’ya da’]]],
[piSmis,
[[cat:adj,stem: [cat:verb,root:piS,sense:pos,taml:narr],suffix:nonell],
[kilden,
[[cat:noun,root:kil,agr:’3SG’,poss: ’NONE’,case:abl]l]],
[yapIlmIS,
[[cat:verb,root:yap,voice:pass,sense:pos,taml:narr,agr:’35G6’],
[cat:adj,stem: [cat:verb,root:yap,voice:pass,sense:pos,taml:narr],suffix:nonell],
0,
[[cat:punct,root:’"’1]],
[g0z,
[[cat:noun,root:g0z,agr: ’3SG’ ,poss: ’NONE’,case:nom]]],
[putu,
[[cat:noun,root:put,agr: ’3SG’,poss:’3SG’,case:nom]]],
0,
[[cat:punct,root:’"’1]],

APPENDIX F. SAMPLE DISAMBIGUATED TEXT 127

[bulunmuStur,

[[cat

:verb,root:bulun,sense:pos,taml:narr,copula:’2’,agr:’356’]1]1],

[[cat
[#,

:punct,root:’.’1]7,

cat:end_of_sentence .

[[QJ
[[cat:beginning of_sentencel]],
tapInakta,
[[cat:noun,root:tapInak,agr:’3SG’,poss: ’NONE’,case:locl]],
[””
[[cat:punct,root:’,’]1],
[yUkseklikleri,
[[cat:noun,stem: [cat:adj,root:yUksek] ,suffix:1ik,agr:’3PL’,poss: ’NONE’,case:acc],
[cat:noun,stem: [cat:adj,root:yUksek],suffix:1ik,agr: ’3PL’,poss:’3SG’,case:nom],
cat:noun,stem: [cat:adj,root:yUksek],suffix:1ik,agr: ,poss: ,case:nom s
L [dj Uksek] ,suffix:1ik ’3PL’ ’3PL’ 111
[’2”
[[cat:adj,type:cardinal,root:’2°]1]1],
[ile,
[[cat:conn,root:ilell],
112,
[[cat:adj,type:cardinal,root:’11°]11],
[cm,
[[cat:noun,root:cmE,type:rproper,agr: ’3SG’,poss: ’NONE’,case:nom]]],
[arasInda,
[[cat:noun,root:ara,agr:’3SG’,poss:’3SG’,case:loc]]],
[deGiSen,
[[cat:adj,stem: [cat:verb,root:deGiS,sense:pos],suffix:yan],
[cat:adj,stem: [cat:verb,root:deG,voice:recip,sense:pos],suffix:yan]l],
[bu,
[[cat:adj,root:bu,type:determiner]]],
[adak,
[[cat:noun,root:adak,agr:’3SG’,poss: *NONE’,case:nom]]],
[simgelerinden,
[[cat:noun,root:simge,agr: ’3PL’,poss: ’35G’,case:abl]]],

[’20,000 - 22,000°,

[[cat
[kadar
[[cat

:adj,type:range,root: ’20,000-22,000°]1]],

>

:postp,root:kadar,subcat:dat,type:temp2]]1],

[bulunduGu,

[[cat

:adj,stem: [cat:verb,root:bulun,sense:pos],suffix:dik,poss:’3SG’],

APPENDIX F. SAMPLE DISAMBIGUATED TEXT 128

[cat:adj,stem: [cat:verb,root:bul,voice:pass,sense:pos],suffix:dik,poss:’3SG’]]1],

[hesaplanmIStIr,

[[cat:verb,root:hesapla,voice:pass,sense:pos,taml:narr,copula:’2’,agr:’3SG°]1]1],
["”

[[cat:punct,root:’.’]11],
[#,

[[cat:end_of_sentencel]]l]l].

[[e,
[[cat:beginning of_sentencell],
[niceliksel,
[[cat:adj,root:niceliksel]]],
[’CalISmalar’,

[[cat:noun,stem: [cat:verb,root:’CallS’,sense:pos],suffix:ma,

type:infinitive,agr:’3PL’,,poss: ’NONE’,case:nom]]],
[yapIlacaGI,

[[cat:adj,stem: [cat:verb,root:yap,voice:pass,sense:pos],suffix:yacak,poss: ’35G°]1]1],
[zaman,

[[cat:noun,root:zaman,type:templ,agr:’3SG’,poss: ’NONE’,case:nom]]],

L.,
[[cat:punct,root:’,’]1],
[temsili,
[[cat:adj,root:temsilil]],
[nitelikte,

[[cat:noun,root:nitelik,agr:’3SG’,poss: ’NONE’,case:locl]],
[’Ornekler’,

[[cat:adj,stem: [cat:verb,root: ’0Ornekle’,sense:pos,taml:aorist],suffix:nonell],
[’elde etmenin’,

[[cat:noun,stem: [cat:verb,root:’elde
ed’,sense:pos],suffix:ma,type:infinitive,agr:’3SG’,poss: ’NONE’,case:gen]]],
[temel,

[[cat:adj,root:temell]l],

[yOntemlerinden,

[[cat:noun,root:yOntem,agr:’3PL’,poss: ’3SG’,case:abl]]],

[biri,

[[cat:pronoun,root:biri,type:quant,agr:’3SG’,poss:’3SG’,case:nom]]],
[elemedir,

[[cat:verb,stem: [cat:noun,stem: [cat:verb,root:ele,sense:pos],suffix:ma,type:infinitive,

agr:’3SG’,poss:’NONE’,case:nom] ,suffix:none,tam2:pres,copula:’2’,agr:’3SG’]1]],
L.,
[[cat:punct,root:’.’]11],
[#,

APPENDIX F. SAMPLE DISAMBIGUATED TEXT 129

cat:end_of_sentence .

[Te,

[[cat:beginning of_sentencel]],

(kumlu,

[[cat:adj,stem: [cat:noun,root:kum],suffix:1i]]],
[toprakta,

[[cat:noun,root:toprak,agr:’3SG’,poss: NONE’,case:loc]]],

[kuru,

[[cat:adj,root:kurull],

[eleme,

[[cat:noun,root:elem,agr:’3SG’,poss: 'NONE’,case:dat]]],

[’zaman zaman’,

[[cat:adverb,root:’zaman zaman’]]],

[MUmkUndUr,

[[cat:verb,stem: [cat:adj,root :mUmkUn] ,suffix:none,tam2:pres,copula:’2’,agr:’3SG°]1]1],
L.,

[[cat:punct,root:’.’]11],

[#,

[[cat:end_of_sentencel]l]].

