Weighting Features in £ Nearest Neighbor
Classification on Feature Projections'

Aynur Akkug and H. Altay Guvenir

Department of Computer Engineering and Information Science
Bilkent University
Email : {akkus, guvenir}@cs.bilkent.edu.tr

BU-CEIS-9616

Abstract

This paper proposes two methods for learning feature weights to improve the clas-
sification accuracy of the k-NNFP algorithm. In the k-NNFP algorithm, instances are
stored as their projections on each feature dimension. The classification of unseen ex-
amples are made on the basis of feature projections by a majority voting among the k
(£ > 1) predictions of each feature separately. We have treated all features as equiv-
alent in this algorithm. However, all features may not have equal relevancy, even some
features may be completely irrelevant. In order to determine features’ relevances, the
best method is to assign them weights. The first method is based on the assumption of
homogeneous feature projections for which the number of consequent values of feature
projections of a same class supports an evidence for increasing the probability of correct
classification in the k-NNFP algorithm. The second method is based on the individual
accuracies of features. In this approach, the k-NNFP algorithm is run on the basis of a
single feature, once for each feature. The resulting accuracy is taken as the weight of that
feature since it is a measure of contribution to classification for that feature. Empirical
evaluation of these feature weighting methods in the k-NNFP algorithm on real world
datasets is given.

1 Introduction

One of the central problems when classifying objects is discriminating between features that
are relevant to the target concept and that are irrelevant. Many researchers have addressed the

1This project is supported by TUBITAK (Scientific and Technical Research Council of Turkey) under Grant
EEEAG-153.

issue of features’ relevancies in order to reduce the impact of irrelevant features and to increase
the impact of more relevant features in classification task by investigating feature weighting
(Aha, 1990), feature selection (Langley & Sage, 1994; Skalak, 1994). One of the most common
machine learning algorithms for which these methods are employed is the nearest neighbor
(NN) algorithm (Dasarathy, 1990). In k nearest neighbor (k-NN) algorithm, all training
instances are stored in the memory as points. It tests a new example finding the nearest
examples and makes prediction using k of them based on some similarity or distance measure.
Simple k-NN algorithm gives equal weight to all features. However, in real life, the relevance
of features may not be the same, some of them may be more important than the others.
The algorithms which assign equal weights to all features are more sensitive to the presence
of irrelevant features. In order to remove the negative effect of irrelevant features, feature
subset selection approaches are investigated in which the space of subsets of feature sets are
considered to determine the relevant and irrelevant features (John, Kohavi, Pfleger, 1994).
Briefly, the algorithm is run on the training data with different subsets of features, using
cross-validation to estimate its accuracy with each subset. These estimates are used as an
evaluation metric for directing search through the space of feature sets. Aha and Bankert
(1994), Langley and Sage (1994), Skalak (1993) have reported improved results in accuracy
over simple NN. On the other hand, the disadvantage of using feature selection method is that
it treats features as completely relevant or irrelevant. The degree of relevance may not be 0
or 1, it may be a value between them.

In previous distance-based classification methods, a numerical value is assigned to features
to modify the distance measure for each feature relevancy. Wettshchereck and Aha (1995)
presents a work on feature weighting methods introducing a five-dimensional framework. The
feedback dimension is the first dimension which concerns whether the feature weighting method
receives feedback from the induction algorithm trying to be improved. The weighting methods
that receive feedback are called feedback methods, and the ones which doesn’t receive any
feedback from are called ignorant methods. Incremental hill-climbers (Wettschereck & Aha,
1995), IB4 (Aha, 1992), and EACH’s weighting method (Salzberg, 1991) are categorized as
feedback method according to this framework. Continues optimizers under feedback method
consist of GA-WKNN (Kelly & Davis, 1991) and k-NNy gy (Wettschereck, 1994). The work
presented by Dietterich and Wettschereck (1995) consists of feature weighting by mutual
information categorized as ignorant methods.

In this paper, we propose two methods to investigate the effect of weight assigning to features in
k-NNFP algorithm. In these methods, domain-specific knowledge is not used. These methods
can be categorized according to this framework’s first dimension as ignorant and feedback
since homogeneity of feature projections weight setting does not use any feedback from the
k-NNFP algorithm whereas the second one uses feedback from k-NNFP algorithm. These
methods modify the voting mechanism of k-NNFP algorithm by incrementing the vote of the
predicted class by using the feature weight. We can easily incorporate the second method into
our own approach using cross-validation on a basis of single feature.

In previous work, we have introduced a new classification algorithm, called k&-NNFP, based

on majority voting on individual classifications made by the projections of the training set on
each feature (Akkug & Giivenir, 1996). K-nearest neighbor algorithm is used to determine the
classifications made on individual feature projections. We have compared k-NNFP algorithm
with the k-NN algorithm in terms of classification accuracy and time complexity on both
real-world and artificially generated datasets.

In k-NNFP algorithm, training instances are stored as their feature projections on each feature
dimension. The final classification is based on a majority voting taken on the classifications
made on the basis of individual feature projections by giving them equal weight for decision
(wy = 1 for all features). To a certain extent, the voting mechanism reduces the negative effect
of irrelevant features. However, after a certain extent, this bias can be a disadvantage allowing
redundant, irrelevant and other imperfect features to influence voting mechanism used. In this
study, our aim was to investigate the importance of features’ contribution to final classification
since to assign higher weights to more relevant features increase the reliability of voting. This
paper focused on the empirical evaluations of feature weighting methods proposed.

Comparison of similar algorithms highlights dissimilarities that can explain observed perfor-
mance differences. Our experimental results show that weighting features in the k-NNFP
algorithm improves the accuracy effectively in real-world datasets in some domains, especially
for smaller k values. to be worth, especially for smaller k£ values. An explanation of observed
performance differences is presented in section 4.

In the next section, the k-NNFP algorithm is given with its weighted version, briefly. In the
subsequent section, a detailed descriptions of feature weighting methods studied are given.
The forth section presents the empirical comparison of these methods on real-world datasets
along with a summary of results obtained from the experiments. The last section concludes
with an overview of possible extensions to the work reported here.

2 The Weighted k-NNFP Algorithm

The k-NNFP algorithm is introduced for classification based on feature projections using k
nearest neighbor algorithm. Our motivation for this algorithm is that the encouraging results
of classification by feature partitioning technique (Giivenir, Sirin, 1996). The basic assumption
of the k-NNFP algorithm is that each feature can contribute the classification process and the
majority voting provides a correct classification. The implementation of it is non-incremental.
Since all feature values are treated independently, there is no need for normalization of feature
values. In the learning phase, each training instance is stored as its projections on each
feature dimension. If the value of a training instance is missing for a feature, that instance is
not stored on that feature. The k-NNFP algorithm stores the feature projections of training
instances in a sorted order. Therefore, the classification of a new instance requires a simple
search of the nearest training instance values on each feature. The classification of an instance
is based on a majority voting taken on the classifications made on the basis of individual

feature projections. In general, with the majority voting for final classification, the effect of
irrelevant features may be reduced. On the other hand, each feature can contribute to the
classification by its relevance. So, if we place weights on features before voting, this can supply
more accurate result for final class by reflecting each feature’s relevance in the classification.

The weighted k-NNFP algorithm is outlined in Figure 1.

All the projections of training instances on linear features are stored in memory as sorted
values. In Figure 1, the votes of a feature is computed by the function kBag(f,t, k), which
returns a bag of size k containing the classes of the k nearest training instances to the in-
stance t on feature f. Distance between the values on a feature dimension is computed using
diff(f,x,y) metric as follows:

|zs —yg| if fis linear
diff(f,z,y) = 0 if fis nominal and z; = yy (1)
1 if fis nominal and z; # yy

Note that the bag returned by kBag(f,t, k) does not contain any UNDETERMINED class as
long as there are at least k training instances whose f values are known. Then, the number
of votes for each class is incremented by multiplying the weight of that feature by number of
votes that a feature gives to that class, which is determined by the count function. The value
of count(c, Bag) is the number of occurrences of class ¢ in bag Bayg.

3 Feature Weight Learning Methods

Two feature weighting methods are proposed for k-NNFP algorithm to see the effect of irrel-
evant, and relevant features with varing relevancies. In Section 3.1, the first method, called
homogenity, is discussed and the subsequent section presents the second method which is
based on the individual accuracies of the features .

3.1 Weight Learning Based on Homogenity of Projections

The main observation for this method comes from the k-NNFP algorithm itself. The basic
assumption of the k-NNFP algorithm is that closer values on a feature dimension are of the
same class. Namely, distribution of trainig instances on a feature dimension is homogenious.
That is, the projections of all training instances of the same class are grouped together.
Therefore, the total number of consequent values of a same class can give a measure for its
relevancy for classification prediction. In k&-NNFP algorithm, all seen feature values are stored
in memory as sorted. We can determine the weight of a feature as follows: Initially, a count
is set to 0, then for all sorted feature values, if the consequent feature value’s class is same
as the previous one, then count is incremented. Therefore, feature weight can be found by

classify(t, k):
/* t: test instance, k: number of neighbors */
begin
for each class c¢
votel[c] = 0

for each feature f
/* put k nearest neighbors of test instance t
on feature f into Bag */
Bag = kBag(f, t, k)
for each class c¢
votel[c] = vote[c] + weight[f] * count(c, Bag); \\
prediction = UNDETERMINED /#* class O */
for each class c¢
if votel[c] > vote[prediction] then
prediction = ¢

return (prediction)
end.

Figure 1: Classification in the weighted k-NNFP Algorithm.

dividing that count by the total number of distinct feature values on that feature. This can
be summarized as follows:

Vy
v=1% f,U
Lampolit 2)

Vy
1 lffcvf = C(U-I—l)f

0 otherwise

wf:

atro= | 3)

All feature weights are computed using this formula. Here C,, denotes the the class label
of vy, value on feature dimension f, and V; denotes the number of distinct values on feature
dimension f. This equation always gives a value for a feature between 0 and 1, so it can be
the probability of that feature in classification. This is incorporated with feature weights to
allow that more important features contribute to classification process effectively.

We have performed some experiments assigning weight to features by this method on real-
world taken from the UCI repository (Murphy, 1995). The results of this experiments will be
presented in Section 4.

Table 1: Comparison on some real-world datasets.

Data Set: bcancerw cleveland glass hungarian ionosphere iris liver wine
No. of Instances 273 303 214 294 351 150 345 178
No. of Features 9 13 9 13 34 4 6 13
No. of Classes 2 2 6 2 2 3 2 3
No. of Missing values 16 6 0 784 0 0 0 0
No. of Linear features 9 5 9 5 34 4 6 13

3.2 Weight Learning Based on Individual Accuracies of Features

The second method is motivated by the work of Holte (1993) since each feature is processed
independently in k-NNFP algorithm. Holte (1993) reports the results of experiments measur-
ing the performance of very simple rules on the datasets commonly used in machine learning
research. The specific kind of rules studied is called 1-rules, which classify an object on the
basis of a single feature. This study motivates us to examine the classification accuracy of the
k-NNFP algorithm on the basis of a single feature. Therefore, those accuracies can be used
as weight of that feature since those accuracies reflect how much each feature can contribute
to the final classification. However, to avoid random correct classification, we subtract the
random accuracy of a feature from the individual accuracies. The random accuracy is taken

as 1/No of Classes.

In order to investigate this method, we have performed some experiments on real-world. For
these experiments, feature weights are learned by running £-NNFP algorithm on the basis of a
single feature by 5-way cross-validation for each feature. These estimated accuracies are used
for the weights of corresponding features in k-NNFP algorithm. Since it takes feedback from
k-NNFP algorithm, it can be categorized as feedback method.

4 Experiments on Real-World Datasets

In this section, we present an empirical evaluation of two weighting methods: homogeneity
of feature projections and individual accuracies of features along with its comparison with its
unweighted version.

The weighted versions of the k-NNFP algorithm are evaluated on some real-world datasets
selected from the collection of datasets provided by the machine learning group at the Univer-
sity of California at Irvine (Murphy 1995). The properties of these datasets can be shown in
Table 1. In this table, name of the real-world datasets are shown with the size of the dataset,
number of features, number of classes, number of missing feature values, and number of linear
features.

Table 2: Accuracies (%) of the k-NNFP (N) and its weighted versions using homogeneity of
feature projections (H) and individual accuracies (A).

Data Set: bcancerw cleveland glass hungarian ionosphere iris liver wine
N k=1 94.0 67.62 57.0 70.04 88.04 90.0 50.44 79.7
H 94.28 67.62 57.92 68.7 88.32 89.98 50.42 87.58
A 94.28 79.6 57.0 61.52 88.6 89.98 58.26 87.0
N k=3 94.88 72.94 61.18 75.84 88.02 91.34 55.68 90.96
H 95.02 72.92 62.14 77.88 88.02 94.02 56.52 94.36
A 95.02 77.24 62.58 77.18 88.02 94.68 60.58 94.9
N k=b 96.16 78.88 60.72 76.16 87.46 91.3 58.26 93.24
H 96.02 80.18 59.78 77.86 87.18 93.32 57.96 94.38
A 96.16 80.5 65.84 74.78 87.74 94.0 63.5 94.9
N k=7 96.0 79.52 62.58 74.8 87.74 92.0 61.46 95.48
H 94.96 79.2 63.06 76.86 87.8 93.34 61.44 95.52
A 95.86 81.5 66.76 74.78 86.9 94.0 64.64 955
N k=9 96.14 78.52 63.04 75.8 87.44 92.0 62.04 96.62
H 96.28 79.18 63.06 78.2 87.74 94.02 62.32 96.62
A 96.28 81.52 66.3 72.74 87.74 94.68 64.94 97.2

In previous work, we have presented the performance of k-NNFP algorithm in terms of clas-
sification accuracy, the percentage of correctly classified instances over all test instances. In
that study, we have chosen 5-way cross-validation for measuring the accuracy of the k-NNFP
algorithm. In this study, we continue to get accuracies of weighted versions by 5-way cross-
validation. Our findings emphasize that weighted versions does not improve the k-NNFP
algorithm effectively in most of the real-world datasets. Langley & Sage (1994) concluded
from their experiments with feature selection that a number of data sets in the UCI repository
contain few or no irrelevant features.

The accuracy results of &-NNFP and its two weighted versions were observed and given in
Table 2. In this table, the first row of each k value presents the k-NNFP algorithm results,
the second row is the results of the homogeneity of feature projections weight learning, and
finally the third row presents the results of individual accuracies of features.

These experiments showed that the none of the weight learning algorithms improved the
k-NNFP algorithm on the bcancerw and ionosphere datasets significantly. This should be
because all the features are equally relevant. On the cleveland, liver, iris and glass (except
k = 1) datasets, the weights learned by the individual accuracies always performed significantly
better than the others. The weight learning method based on the homogeneity performed
better than the other on the hungarian dataset, except & = 1. There were no significant
difference between the two weight learning algorithms on the wine dataset.

5 Conclusions

A version of the famous k-NN algorithm, that stores the classification knowledge as the pro-
jections of the training instances on the features, called k-NNFP algorithm, had been shown
to be successful. In this paper, we have presented two methods for determining the relative
weights of features for use in the k&-NNFP algorithm. The first method, called homogeneity,
assigns a higher weight to features on which the projections of instances of the same class are
located close to each other, resulting in a homogeneous distribution. The second method, on
the other hand, assigns a weight as the classification accuracy that would have been obtained
if only that feature were used in the classification.

Our experiments revealed that these weighting methods assign low weights to completely irrel-
evant features, and high weights to relevant ones. Further, among these two weight learning
algorithms, the one that is based on the individual accuracies learned weights that helped
k-NNFP achieve higher accuracies. The reason for this success is due to the feedback received
from the classification algorithm. We conclude that this weight learning method could be
successful for other classification algorithms that use feature weights. As a further work we
plan to investigate these weight learning methods on artificial datasets.

References

Aha, D. W.(1990) A Study of instance-based algorithms for supervised learning tasks: Math-
ematical, empirical, and psychological evaluations. Doctoral dissertation, Department of In-
formation & Computer Science, University of California, Irvine.

Aha, D. W.(1992). Tolerating noisy, irrelevant and novel attributes in instance-based learning
algorithms. International Journal of Man-Machine Studies, 36(1), 267-287.

Aha, D. W. & Bankert, R. L. (1994). Feature selection for case-based classification of cloud
types: An empirical comparison. In D. Aha (Ed.) Case-Based Reasoning: Papers from the
1994 Workshop (TR WS-94-01). Menlo Park, CA: AAAI Press.

Akkug, A. & Giivenir, H. A. (1996). k Nearest Neighbor Classification on Feature Projections,
Proceedings of the 13" International Conference on Machine Learning. Lorenza Saitta (Ed.),
Bari, Italy: Morgan Kaufmann. pp. 12-19.

Dasarathy, B. V., (1990). Nearest Neighbor (NN) Norms, NN Pattern Classification Tech-
niques. IEEE Computer Society Press.

Giivenir, H. A., & Sirin, 1. (1996). Classification by Feature Partitioning, Machine Learning,
23:47-67.

Holte, C. R. (1993). Very Simple Classification Rules Perform Well on Most Commonly Used
Datasets, Machine Learning, 11:63-91.

John, G. H., Kohavi, R., & Pfleger, K. (1994). Irrelevant features and the subset selec-
tion problem. Proceedings of the 11°h International Conference on Machine Learning. New
Brunswick, NJ: Morgan Kaufmann. pp. 293-301.

Langley, P., & Sage, S. (1994). Oblivious decision trees and abstract cases, in ”Working Notes
of the AAAI-94 Workshop on Cased-Based Reasoning”, AAAIT Press, Seattle, pp. 113-117.

Murphy, P. (1995). UCI Repository of machine learning databases - Maintained at the De-
partment of Information and Computer Science, University of California, Irvine, Anonymous
FTP from ics.uci.edu in the directory pub/machine-learning-databases.

Salzberg,S. (1991). A nearest hyperectangle learning method. Machine Learning, 6, 251-276.

Skalak, D. B. (1994). Prototype and feature selection by sampling and random mutation hill-
climbing algorithms. Proceedings of the 11%% International Conference on Machine Learning.
New Brunswick, NJ: Morgan Kaufmann. pp. 293-301.

Wettschereck,D. (1994). A study of Distance-Based Machine Learning Algorithms, PhD The-
sis, Oregon State University.

Wettschereck, D., Aha W., D. (1995). Weighting Features, First International Conference on
Case-Based Reasoning, pp.

Wettschereck, D., Dietterich, T. G. (1995). An Experimental Comparison of the Nearest
Neighbor and Nearest-hyperrectangle Algorithms, Machine Learning, 9: 5-28.

