NONSYMMETRIC SKYLINE VERSUS COMPRESSED SPARSE ROW
FORMAT IN DIRECT METHODS FOR MARKOV CHAINS

TUGRUL DAYAR!

Abstract. This paper investigates the implementation of Gaussian Elimination (GE) and Grassmann—
Taksar—Heyman (GTH) algorithms for Markov chains in nonsymmetric skyline (NSK) and compressed sparse
row (CSR) formats. Numerical experiments are carried out using three real life applications. Implementations
that allocate space for both lower— and upper—triangular factors result in faster GTH solvers. Specifically,
the CSR implementation of the GTH algorithm for the nontransposed linear system of equations gives the
smallest run—time among different GTH implementations considered. For GE, the experiments suggest the
CSR implementation for the transposed system of equations as the appropriate choice.

Key words. Markov chains, sparsity schemes, skyline storage, decomposability, Gaussian elimination,
Grassman—Taksar—-Heyman method, stationary probability

1 Introduction

Markovian modeling and analysis is extensively used in many disciplines in evaluating the perfor-
mance of existing systems and in analyzing and designing systems to be developed. The stationary
behavior of Markovian systems is uncovered by solving

P =7, |7l =1, (L.1)

where P is the one-step stochastic transition probability matrix (viz. discrete—time Markov chain
— DTMC) and = is the unknown stationary probability distribution vector of the system under
consideration. By definition, rows of P and elements of @ sum up to 1.

In what follows, boldface capital letters denote matrices, boldface lowercase letters denote col-
umn vectors, italic lowercase and uppercase letters denote scalars. The typewriter style font is
used for arrays. o represents a row or column vector of all zeros depending on the context. The
convention of representing probability distributions by row vectors is adopted.

Equation (1.1) may also be viewed as a homogeneous linear system with singular coefficient

matrix A = T — PT and unknown vector z = n1 as in

Az =o, ||z|; = 1. (1.2)

A is a singular M—matrix (see [2]) with 0 column sums, and the unique null vector of unit 1-norm
is sought. Solving (1.2) is crucial in computing performance measures for Markovian systems. For
queueing systems, these measures may be the average number of customers, the mean waiting time,
or the blocking probability for a specific queue. In communication systems, they may be the total
packet loss rate, the probability of an empty system, or any other relevant measure.

Of special interest to us are nearly completely decomposable (NCD) Markov chains [4], [11],
[19], irreducible stochastic matrices that can be ordered so that the matrix of transition proba-
bilities has a block structure in which the nonzero elements of the off-diagonal blocks are small
compared with those of the diagonal blocks. Such matrices often arise in queueing network anal-
ysis, large scale economic modeling, and computer systems performance evaluation. If P is the

!Department of Computer Engineering and Information Science, Bilkent University, 06533 Bilkent, Ankara, Turkey
(tugrul@bilkent.edu.tr).

stochastic transition probability matrix of a NCD Markov chain, then it may be written in the
form P = diag(P11,P22,...,Pnn) + E, where P, ;’s are the square diagonal blocks of P and N
is the number of NCD blocks. The quantity ||E||o is referred to as the degree of coupling and it is
taken to be a measure of the decomposability of the matrix (see [8]). If it were zero, then P would
be reducible. Small perturbations in the transition probabilities of NCD chains may lead to consid-
erable changes in the stationary probabilities; hence, these chains are known to be ill-conditioned.
NCD Markov chains that appear in applications are quite large and sparse, possibly having more
than tens of thousands of states. For such large chains, direct methods can generate immense fill-in
during the triangularization phase of the solution process, and due to storage limitations and very
long execution times they become impractical. Extensive numerical experiments suggest iterative
aggregation—disaggregation (IAD) as the method of choice for large NCD Markov chains (see [10],
[3], [14], [18], [16], [19], [5])-

In [5], a modified version of Gaussian elimination (GE) has been used to enforce stability and
to improve accuracy in the aggregation and disaggregation phases of the IAD algorithm. The only,
yet significant, drawback of the so—called Grassman—Taksar-Heyman (GTH) method [7], [9], [15],
[12], [5] seems to be the extra time it takes to execute in a compressed sparse row (CSR) format [6],
[13], [1], [19] (also known as the Harwell-Boeing format). As indicated in [5], p. 294, the difficulty
with the CSR format lies in the fact that unlike GE it is not possible to implement the GTH
method for the transposed form of the equations in (1.2) using delayed row updates. The aim of
this paper is to introduce the nonsymmetric skyline (NSK) sparse storage format [6], [13], [1] to
the Markov chain domain and to show that the implementation of the GTH method in the NSK
format mitigates the problems associated with the CSR format by performing the reduction phase
‘in place’. The NSK format is suitable for the GTH method because provision for fill-in is made at
the outset with no need for expanding and compacting rows that are updated during the reduction
phase.

The paper is organized as follows. The next section provides a background on the CSR and NSK
formats. The third section gives the GE and GTH algorithms for the NSK format and discusses
related implementation issues. The real life applications investigated appear in section four with
the results of the numerical experiments in section five. The last section summarizes the results.

2 CSR and NSK storage formats for Markov chains

The choice of the CSR format for Markovian solvers (see the MARkov Chain Analyzer, MARCA,
in [17], for instance) is motivated by its simplicity, generality, and widespread use. The CSR format
makes no assumptions about the nonzero structure of the matrix under consideration and it stores
only the requisite elements. Space for the diagonal elements of A in equation (1.2) is always spared
since they are all nonzero in exact arithmetic. If n is the number of states in A (viz. order of A)
and nz the number of nonzero elements, then only nz floating—point and nz 4+ n + 1 integer storage
locations are used with the CSR storage format. For sparse matrices, this implies considerable
savings over n? floating—point storage locations of a two—dimensional array (see [1], pp. 58-59).
In the CSR format, nonzero elements of the coefficient matrix are stored in a floating—point
array of length nz row by row, elements of row ¢ preceeding those of row 7 + 1. The column index
of each nonzero element is stored in the same location as its floating—point value, this time in an
integer array of length nz. Finally, in order to have access to rows, the starting location of each
row of A in the floating—point array is stored in an integer array of length n. To facilitate the
computation of the number of nonzero elements in the last row, an extra element whose value is
equal to nz + 1 is appended to this integer array effectively making its length n + 1. Details of the

CSR format for Markov chains may be found in [19], pp. 151-155.

On the other hand, the NSK sparse storage format is a special type of variable-band storage
format composed of two substructures (see [13], pp. 7-8). In this format, the lower—triangular part
of a nonsymmetric coefficient matrix is stored in row—oriented skyline (viz. profile, envelope) format
(see [6], pp. 149-150, 204-205) and the upper—triangular part is stored in column—oriented skyline
format (i.e., its transpose stored in row—oriented skyline format). The lower— and upper—triangular
parts may be linked together through the diagonal elements as suggested in [13], p. 8, though there
are a multitude of ways by which this can be accomplished.

The basic row—oriented skyline format is a straightforward approach to storing the triangular
parts of A. Each row of the lower—triangular part and the corresponding column of the upper-
triangular part are stored contiguously in a floating—point array a. When storing row i of the
lower—triangular part, one starts with the first (i.e., lowest column—indexed) nonzero element in the
row and stores all elements up to and including the diagonal element a;;. Right after row 7, column
i of the upper—triangular part is stored starting from the first (i.e., lowest row—indexed) nonzero
element in the column up to, but excluding, a;;. Consequently, the floating—point array a contains
row 1 of the lower—triangular part followed by column 1 of the upper-triangular part, followed by
row 2 of the lower—triangular part followed by column 2 of the upper-triangular part, etc. Note that
column 1 of the upper-triangular part is necessarily empty and is not stored. All floating—point
coefficients stored, whether they are zero or nonzero, form the profile of A. Any zeros within the
variable band are stored explicitly because this part of the matrix usually fills in totally during the
triangularization phase. In fact, if each row in the lower—triangular part and each column in the
upper—triangular part have a nonzero ahead of the diagonal, all elements in between the nonzero
elements and the diagonal fill in. However, unlike the CSR format, column indices of entries in the
profile need not be stored. As we shall see, the column indices may be derived easily by an indirect
addressing step. Nevertheless, an integer array ia of length 2n + 1 needs to be allocated. The first
n + 1 elements of ia are pointers to the starting locations of rows in a in the same vein with the
CSR format. The remaining n elements contain the locations of the diagonal elements of A in a.

The following example shows the contents of the floating—point array a and the integer array
ia of the NSK sparse storage format for a 5 x 5§ NCD Markov chain.

Example 2.1 Let

08 -04 0 0 -0.05
0.75 0.7 -055| 0 0
A=1-PT = 0 -03 06 | 0 0
005 0 -005|05 0

0 0 0 |-0.5 0.05

Here P is a NCD Markov chain with 2 NCD blocks and a degree of coupling 0.05; the profile of A
for the NSK format is given by

X X X
X X X X
Profile(A) = X X X1,
X X X X X
X X

where an X represents an entry for which storage is allocated in the nonsymmetric skyline repre-
sentation. For this example, the contents of the real array a and the integer array ia are given
by

| 1] 2 3 4|5 6 7|8 9 10 11|12 13 14 15 16 17

a || a1,1| a1 G222 a1,2| asz 2 a3;3 a2,3| A4 (4,2 (4.3 a4,4| a54 Q55 Q1,5 42,5 G35 (4.5

[1 2 3 4 5 6]7 8 9 10 11
a1 2 5 8 12 18[1 3 6 11 13

The first n (=5) elements of ia are pointers to the starting locations of rows of A in a, and
ia(n+1)—1 (=17) gives the amount of floating—point storage allocated in a. The last n elements
of ia provide pointers to the diagonal elements of A in a. Observe that explicit zeros need to
be stored in a(15), a(16), and a(17) since the first nonzero element in column 5 of A appears
in row 1 and ag5,as35,a4,5 are all zero. Analogously, a zero is stored in a(9) because the first
nonzero element in row 4 is to the left of a4 3. Hence, an integer array of length 2n + 1(= 11) and
a floating—point array of length ia(n + 1) — 1 are required. Here ia(n + 1) — 1 is greater than or
equal to nz (=14) with equality rarely being achieved.
The column index of the first nonzero element in row ¢ of A is given by

t— (ia(n+ 1 +7) — ia(v)), (2.1)
whereas the row index of the first nonzero element in column j may be computed as
j—(ia(j+1)—1-1ia(n+1+7)). (2.2)

In the latter, ia(j + 1) — 1 is the location in a of the last element above the diagonal in column j.
If all elements above the diagonal in column j are zero, then j — (ia(j+1)—1—ia(n+14+7))=j
as expected. For instance, in Example 2.1, the column index of the first nonzero element in row 3
is 3-(6-5)=2 and the row index of the first nonzero element in column 4 is 4-(12-1-11)=4.

The next section provides a brief overview of the GE and GTH algorithms for Markov chains in
the CSR format. It also discusses the motivation behind choosing the NSK sparse storage format
and presents the GE and the GTH algorithms for the NSK format comparing and contrasting with
the CSR format along the way.

3 GE and GTH algorithms for the NSK format

The CSR implementations of GE and the GTH method are available for both the linear system in
equation (1.2) and its nontransposed version (see [5]). From this point on, we refer to the form of
the system in (1.2) ‘transposed’ and the system

B =o, |7l =1, (3.1)

where B = I — P, ‘nontransposed’. Equation (1.2) represents a homogeneous linear system with
singular coefficient matrix A that may be written as the product of a nonsingular lower—triangular
matrix and a singular upper—triangular matrix. The CSR implementations of GE for equations
(1.2) and (3.1) in MARCA perform row reductions with delayed updates. Since the last row of
the upper-triangular factor is necessarily zero, the reduction phase of GE needs to be carried up
to row n — 1; there is no need for row n to be eliminated. With the transposed system, only the
upper—triangular factor needs to be kept.

The notation in Table 1 is used in Algorithms 1, 2, and 3 to enhance the readability of the
pseudo—code. The portion on the left of the first two algorithms is at a higher level of abstraction.

TABLE 1
Notation for Algorithms 1, 2, and 3
Ailiy i1, Submatrix of A confined in between rows iy,4; and columns jy, j2,
where 1 <41 <123 <mand 1< j; <js < n.
Whenever 4; = i3 (j1 = j2), we drop iz (j2).

k Step number in the reduction phase; for convenience it starts from 2.
krow_first ~ Column index of the first nonzero element in row k.

Jeol_first Row index of the first nonzero element in column j.

M first Maximum of krow_first and jcol_first-

keot_first Row index of the first nonzero element in column k.
trow_first ~ Column index of the first nonzero element in row .
N first Maximum of kcol_first and irow_first-

ALGORITHM 1
Row Doolittle decomposition in the NSK format for the system in (1.2)

For k:=2ton do

o If k < n,
O krow_first := k — (ia(n+ 14 k) — ia(k))
oForj:=1tok—1do
o If k£ < n, update Ay .51 0 Jeol_first :=J — (ia(j+1)—1—ia(n+ 14 7))
O Mfirst = max(krow_ﬁrstajcol_fz'rst)

- . J-1 .
O Qhj = Ahj = Ve, WAL
O ak,j 1= Gkj/aj;

i kcol_first =k — (1a(k + 1) -1- ia(n + 1+ k))
o For ¢ := keoi_first to k do
oIf (k<mnori<k),
0 Gpow_first := 1 — (1a(n 4+ 14 ¢) — ia(7))
O Nfirst += max(kcol_firstyiTow_fiTst)
a; 101

o Update Ay (except ay,p,)

1—1
l:nfirst

0 G = Gk —

The code fragment to the right of a curly left bracket is the detailed (i.e., blown—up) version of
the abstract statement pointed to by the tip of the curly left bracket. We should remark that A is
supplied to Algorithms 1 and 2 in the NSK format and is overwritten during the triangularization
process. The indirect addressing step (see Equations (2.1) and (2.2)) employed in accessing the ele-
ments of A is not shown in order not to complicate the code further. The back solve corresponding
to Algorithms 1 and 2 is given by Algorithm 3.

The GE implementation in the NSK format is provided solely for comparison purposes. As
described in [5], p. 293, the CSR format GE for the nontransposed system has no discernible
advantage over the transposed implementation; therefore the nontransposed implementation is not
included in the numerical experiments in §5. Besides, rather than obtaining the upper—triangular
factor through delayed row updates, this time we use row Doolittle decomposition (see [6], p. 204)
that seems to be better suited to the NSK format (see Algorithm 1). With this form of the

implementation, we update Ajq.x—1 and Aj.;; at step k. Since, the upper-triangular factor is
singular, the last row in A need not be updated. The two if-statements in Algorithm 1 are used
to this effect. Moreover, both of the inner products may be programmed so that they commence
by multiplying two nonzero entries. See how mys and ny;,s; are computed in Algorithm 1. Yet,
another advantage of the row Doolittle variant is that the first inner product is vectorizable [6],
p. 202.

If the first inner product in Algorithm 1 is not vectorized, we would expect Algorithm 1 to take
slightly more time than the CSR format GE with delayed row updates for the tranposed system.
There are two reasons for this. First, even though the inner products are guaranteed to commence
with the multiplication of two nonzero elements, in the early steps of the Doolittle decomposition
(i.e., for small k) some of the other multiplications in the inner products may involve zero operands.
Second, the extra indirect addressing step used to access the column elements in the inner products
(i.e., a;; and a;, respectively) is likely to slow down the algorithm further. Since rows are not
expanded and compacted, we do not employ a temporary floating—point work array (of length n)
in Algorithm 1. We believe row Doolittle decomposition in the NSK format should still result in a
competitive solver.

The GTH method is essentially GE with pivot corrections. For the transposed system, the pivot
element at step k is computed by taking the negated sum of the column elements below the pivot.
This stems from the fact that, at step k the unreduced square matrix Ag., i is also an M-matrix
with 0 column sums just like the original coefficient matrix. As indicated in [5], p. 294, the GTH
method achieves high relative accuracy but poses a significant problem for the CSR format. With
the tranposed system, Ay., r must have been updated at the beginning of step k. Hence, delayed
row updates cannot be used. The solution suggested in [5] that avoids storing the lower—triangular
factor introduces substantial overhead by expanding, updating, and compacting rows in temporary
floating—point storage. On the other hand, one needs to store both lower— and upper—triangular
factors if delayed row updates are used in the GTH reduction of the nontranposed system. Drawing
from this line of study, we conclude that the execution time of the GTH method in the CSR format
is not likely to improve over the implementation provided for the nontransposed system in MARCA.

The rationale behind choosing the NSK format as a suitable sparse representation for the
GTH method is that it does not require any assumptions regarding the nonzero structure of the
coefficient matrix other than it be sparse. Most importantly, contrary to banded storage formats,
the NSK format does not impose an upper limit on the maximum bandwidth of the coefficient
matrix. Thus, space to store the nonzero multipliers and the upper—triangular factor is spared at
the outset extenuating the problems associated with the GTH algorithm for both transposed and
nontransposed systems.

Algorithm 2 gives the GTH reduction in the NSK format for the tranposed system and employs
the additional notation in Table 2.

Step k of Algorithm 2 starts by storing the pivot row Aj_q k., in y, a temporary floating—point
array (of maximum length n—1). Then the lower—triangular part (including the diagonal elements)
and the strictly upper-triangular part of the square submatrix Ay., k., are updated. Accessing the
elements of the pivot row involves extra indirect addressing (see Equations (2.1) and (2.2)). For that

TABLE 2
Additional notation for Algorithm 2
y Temporary floating—point array used to store the pivot row Ajy_j k., at step k.

z Temporary floating—point array used to store the multiplier column Ay, 1 at step k.
o Floating—point variable used to compute the corrected diagonal ay j at step k.

ALGORITHM 2
Row GTH reduction in the NSK format for the system in (1.2)

e Correct ay 3 { ®a11 = — Ei;&l a1

e Fork:=2ton—-1do

o For j:=k ton do

o Store pivot Tow Ajp_q iy { 0 y(j)i=a
= k_17.7

O 0=

o For1:=k ton do

o Update multiplier a; ;_1;
store a; k1 in z

0 k-1 = G jk—1/Ck—1k-1
0 2(1) 1= aj k1

—N—

(If (v # k and z(z) Z 0),
> For j:= k to ¢ do
o Update A; . (except a;;)
P e P { Caiy = ai; — 2(i)y())

If(t>kand j=k)o:=0+4a;;
oForj:=k+1ton do

o If y(4) # 0,
> a; ;= Q55 — EZ ky() ()

S Qg = —0O

o Update Ay.j_1,;

o Correct ay,

matter, it is convenient to keep the pivot row in y while Aj.,, z.n, is updated. Since A is stored in the
NSK format, we choose to update the lower—triangular part of Ag., ., row by row and its upper—
triangular part column by column. When the multiplier column Ay, x—1 in the lower—triangular
part is updated, the multipliers are stored in z, a temporary floating—point array (of maximum
length n — 1), so that they are readily available during the update of the upper—triangular part.
The floating—point arrays y and z are used to speed up the algorithm in the NSK format by evading
the overhead of the indirect addressing step. The elements of Agyy.,r are summed up in o. The
pivot element ay j is corrected using -o at the end of step k, and therefore excluded from the update
(see the second if-statement in Algorithm 2). Observe that unlike GE, the elements in A, -1
should be updated, because they contribute to the computation of pivot elements in future steps.
The last diagonal element a,, may be skipped since it eventually turns out to be zero. The test

z(1) # 0 in the first if-statement and the test y(¢) # 0 in the third if-statement of Algorithm 2
check for a nonzero multiplier and for a nonzero pivot row element, respectively.

We expect Algorithm 2 to execute faster than the GTH reduction of the transposed system in the
CSR format and to execute timewise comparatively with the GTH reduction of the nontransposed
system in the CSR format. An intuitive explanation is the following. Since the implementation
in the CSR format for the nontransposed system needs to accomodate the lower—triangular factor
and the upper—triangular fill-in, it spends time with bookkeeping operations to find out if there
is sufficient space. Such bookkeeping operations are nonexistent in Algorithm 2. Moreover, even
though delayed row updates are used with the GTH method for the nontransposed system in the
CSR format, expanding, updating, and compacting rows of both triangular factors in the format is

TABLE 3
Additional notation for Algorithm 3

p Temporary floating—point array used to store the stationary vector.
s Floating—point variable that holds a running sum of the stationary vector elements.

ALGORITHM 3
Back solve in the NSK format for Algorithms 1 and 2

e p(n):=1.0d — 16;
e s:=p(n);
e For j := n downto 2 do
<& jcol_fiTSf = .] - (la(.] + 1) -1- ia(n +1+]))7
o For @ := Jeor_first to j — 1 do
o p(i):= p(i) — ai,j *p(j);
op(j —1):=p(- 1/aj-1,j-1;
os:=s+p(7—1);
e For j:=1tondo
o p(J) :=p(j)/s;

most likely to have a detrimental effect on the execution time of the algorithm. On the other hand,
the indirect addressing expressed by equations (2.1) and (2.2) seems to be the most significant
drawback of the NSK format. The indirect addressing involved in the CSR format is not as
complicated, frequent, and therefore not as time—consuming as that of the NSK format.

The back solve corresponding to Algorithms 1 and 2 for the NSK format is given in Algorithm 3
(see Table 3 for additional notation). The back solve in Algorithm 3 nicely fits to the NSK format.
At the beginning, the last element in the temporary floating—point array (i.e., p(n)) is set to a value
on the order of machine epsilon in double precision. The running sum s is initialized to p(n); then
the back solve starts executing. At step j, column j of the upper—triangular factor (excluding the
diagonal elements) is accessed starting from the first nonzero entry (see how jeoi_first is computed)
and multiplied with p(j). Following this, p(j — 1) is obtained through the division of this element
by a;_1 ;—1. After all steps are over, the temporary floating-point array p is normalized to give the
stationary distribution.

In the next section we consider three real life applications arising in the Markov modeling area
and that are NCD.

4 Applications

This section includes a description of the applications we used in our experiments. The fact that
the GTH algorithm provides a relatively more accurate solution is extensively dealt with in the
literature [7], [9], [15], [12], [5]. For that matter, we have not sought instances of the applications
that are extremely ill-conditioned. Rather the intent is to show that the NSK implementation
of the GTH algorithm results in a competitive solver compared with the CSR implementations
considered in [5] for a variety of Markov chains with different average bandwidths and nonzero
structures.

The first application is chosen from the high—speed networking area [20]. The second application
is the interactive computer system that comes up quite often and that is recently investigated in
[5], p. 298. The third application is from the telecommunications area. Applications two and three
appear in [18], pp. 444, 446, respectively, and we do not wish to consider the details of them further.
However, we think the first application needs to be explained more and the rest of this section is
devoted to that.

Broadband Integrated Services Digital Networks (B-ISDNs) are to support multiple types of
traffic such as voice, video, and data. The Asynchronous Transfer Mode (ATM) is the transport
technique of choice for B-ISDNs by the standards committees. In this mode of operation, all
information is carried using fixed size packets (called ‘cell’s) so as to share the network among
multiple classes of traffic. Since multiclass traffic will be carried on B-ISDNs, different quality of
service requirements will be imposed by different applications.

One type of congestion control for ATM networks deals with discarding cells at ATM buffers
in order to guarantee a prespecified cell loss rate. One bit in each ATM cell header is reserved to
assign the space priority of cells. This bit indicates whether the given cell is high priority or low
priority. Priority cell discarding is a buffer management scheme in which higher priority cells are
favored in receiving buffer space. An efficient technique for determining the cells to be discarded
when congestion occurs is the complete buffer sharing scheme with pushout thresholds [20].

The analysis and simulation results of the complete buffer sharing scheme with pushout thresh-
olds is given in [20]. In the system under consideration, there are two classes of traffic arriving to an
ATM buffer of size K. Time is divided into fixed size slots of length equal to one cell transmission
time. The arrival of traffic class [(= 1,2) to the buffer is modelled as a Bernoulli process with
probability of cell arrival p; in a slot.

The states of the corresponding queueing system may be represented by the ordered pair (¢, j),
where ¢ and j are the number of class 1 and class 2 cells in the buffer, respectively. Let k(=i + 7)
denote the total number of cells in the buffer at state (¢,5). Then, a natural state space ordering
that places the states with the same number of total cells in the buffer (i.e., k) consecutively, gives
rise to a block matrix with YK (k+1) = (K + 1)(K +2)/2 states. The first block consists of the
state (0,0) (i.e., the state in which the buffer is empty), the second block has states (0,1), (1,0),
the third block has states (0,2), (1,1), (2,0), and so on. The kth block has k + 1 states. That is,
we have the following ordering:

(0,0) < (0,1) < (1,0) < (0,2) < (1,1) < (2,0) < (0,3) < (1,2) < (2,1) < (3,0) < --- < (K,0)

During a time slot, no cells, one cell, or two cells may arrive. If one or two cells arrive, this
happens at the beginning of a slot. A cell departure occurs by the end of the slot if the buffer
has at least one cell at the beginning of the slot. Hence, an arriving cell cannot be transmitted
before the end of the next slot. With these assumptions, a cell is discarded iff two cells arrive to
a full buffer. The pushout threshold for class 2 cells is given by T3 and the pushout threshold of
class 1 cells is given by Ty(= K — T3). If two cells arrive to a full buffer (i.e., i + j = K), then a
class 2 cell is discarded if j > 15, otherwise a class 1 cell is discarded if 7 < T5. When j = T5, the
lower priority traffic class cell is discarded. One may view the system as if there is temporary space
to store up to two arrivals while the buffer is full and a decision as to which class of cell will be
discarded is made. The state transitions corresponding to space priority buffer management with
pushout thresholds in ATM networks are given in Table 4.

To simplify the model, we assume that the head of the queue (i.e., the cell that will be leaving
the buffer at the end of the current time slot — if there was one to begin with) is a type 1 cell with
probability ¢/(i 4+ j) and it is a type 2 cell with probability j/(i + 7).

TABLE 4

State transitions for the threshold pushout scheme in ATM networks

Block State transition Condition Event Probability
transition from (7, j) to
k—k-1 (i—1,7) i>0 No arrivals, 77 (1 =p1)(1 = p2)
class 1 departure
(1,7 —1) Ji>0 No arrivals, (1= p1)(1 = p2)
class 2 departure
k—k (i—1,7+1) i>0 Class 2 arrival, #(1 — p1)p2
class 1 departure
(i—-1,7+1) i>0,j <7y, Class 1, 2 arrivals, %plpz
1+ =K class 1 departure
(i—-1,7+1) t>0,j =15, Class 1, 2 arrivals, %plpz
1+ =K Ti <1 class 1T departure
(7,7) i=0,j=0,K>1 Class 2 arrival, (1= p1)p2
no departure
(7, 7) t>0 Class 1 arrival, %pl(l — p2)
class 1 departure
(,4) j>0 Class 2 arrival, Z—i—y(l — p1)p2
class 2 departure
(,4) i>0,7> 1Ty, Class 1, 2 arrivals, %plpz
i+j=K class 1 departure
(,4) t>0,j =15, Class 1, 2 arrivals, %plpz
t+3=K,T1 >1T, class 1 departure
(,4) 0<j<Ty,i4+j=K Class 1, 2 arrivals, Z-—_Jﬁplpz
class 2 departure
(,4) j>0,5="1s, Class 1, 2 arrivals, Z-—_%Plpz
i+ =K,Ti <1y class 2 departure
(7, 7) i=0,j=0,K=0 Always 1
+1,;-1) j>0 Class 1 arrival, Z.—_Jgpl(l — p2)
class 2 departure
(i+1,j—1) j>Thi+j=K Class 1, 2 arrivals, =pips
class 2 departure
+1,5-1) j>0,5="1s, Class 1, 2 arrivals, Z-—_%Plpz
t+3=K,T1 >1T, class 2 departure
k—k+1 (i, +1) i=0,j=0,K>1 Class 2 arrival, (1= p1)p2
no departure
(1,7 +1) i>0i+j< K Class 1, 2 arrivals, %plpz
class 1 departure
(1,7 +1) i=0,j=0,K=1 Class 1, 2 arrivals, pips
T =1 no departure
G+1,75) i=0,j=0K>1 Class 1 arrival, pi(1—p2)
no departure
(I+1,5) J>0i+j< K Class 1, 2 arrivals, Z-—_%Plpz
class 2 departure
(i+1,7) i=0,j=0,K=1 Class 1, 2 arrivals, pi1ps
T, =0 departure
k—k+2 (i+1,7+1) i=0,j=0,K>1 Class 1, 2 arrivals pi1ps

no departure

10

The DTMC corresponding to these assumptions is block tridiagonal (with the exception of
the first row of blocks) where each diagonal block is tridiagonal and has a different block size.
Depending on the selected threshold, the nonzero elements in the last row of blocks change making
it very difficult to apply analytical solution techniques to such a system with control.

The performance measures of interest for this application are the drop probabilities and the
average number of type 1 and type 2 cells in the buffer at steady state. These measures may be
computed once we obtain 7.

Results of the numerical experiments for all three applications are given in the next section.

5 Numerical Experiments

Experiments with GE and GTH algorithms are carried out in CSR and NSK storage formats on
a SUN SPARC 1000. Some of the routines used are part of the software package MARCA (see
[17]). All routines are written in Fortran and compiled in both double—precision and quadruple—
precision floating—point arithmetic. For each problem solved, we employ five different solvers (see
Table 5). GTH,.s, uses the nontransposed system of equations given in (3.1); all other solvers
use the transposed system of equations. GT H.s. shifts the contents of the work arrays when
expanding/compacting rows; GT H ., stores the multiplier matrix. We remark that the timing of
the GT H . algorithm has been improved over the implementation discussed in [5], p. 294. This
is achieved by reordering the loop that corrects the pivot element in the reduction phase.

For each problem solved, we provide the measures in Table 6 to help with the assessment of
the results. The decomposability parameter v may be taken as an approximation of the degree of
coupling; it is used to determine the strongly connected components in the transition probability
matrix P by simply ignoring the elements that are less than the suggested value. For each problem,
we give the smallest possible v and the corresponding number of blocks, V. The matrices supplied
to the solvers GE, s and GT H 4 are converted to the NSK format from the CSR format (see
Trmap in Table 6), which is our default format for storing matrices. One way to get around this
conversion is to generate the Markov chain in the NSK format (however unnatural it is). Coefficient
matrices input to the solvers are already in transposed form. Therefore, the solver GT H .5, needs to
retranspose the input matrix back to the original nontransposed form in equation (3.1). Moreover,
the relative error in the solution is computed as |7 — 7||2/||7 |2, where 7 is the quadruple—precision
solution and 7 is the double—precision solution. Both « and & are normalized so that their 1-norms
are unity. We do not provide the residual error (i.e., Err,.s = |7 — &||2) because in all problems
each solver provides a solution with a residual error on the order of machine epsilon (i.e., 10716) or
less.

We should also remark that in all problems considered the number of states are between 500 and
5,500. For problems with smaller state spaces, the run—time patterns are not as revealing as they are
for larger problems. Furthermore, in each problem we give the amount of storage allocated for the
NSK and CSR formats at the outset so that we have an appreciation for the memory requirements
of the implementations.

TABLE 5
Solvers used

GFE.s, Gaussian elimination in CSR

GTH., Grassmann—-Taksar—-Heyman algorithm in CSR
GTH,.ss Grassmann—Taksar-Heyman algorithm for (3.1) in CSR
GFE, ;L Gaussian elimination in NSK

GTH,s; Grassmann—-Taksar—-Heyman algorithm in NSK

11

TABLE 6
Notation for parameters of numerical methods

n Order of the stochastic transition matrix, P
nz Number of nonzero elements in the matrix
0% (Smallest) decomposability parameter

N Number of blocks corresponding to v

bWymin ~ Minimum bandwidth of I — PT

bwgy,y Average bandwidth of T — PT

bWimary Maximum bandwidth of I — PT

S Solver used

Tsowver Time spent in S, (in CPU seconds)

Trap Time spent to convert PT from the CSR format to the NSK
format, (in CPU seconds)

nzu Number of nonzero elements in the upper—triangular factor
Mflops Number of Megaflops in §
Errra |7 — & [2/[|7 |2

5.1 Application 1

The first application we consider is the complete buffer sharing scheme with pushout thresholds for
ATM networks discussed in §4.

(a) In this part we use the following parameters:
K =35, p1 =0.99, p, =0.15, T, = 5.

The NSK format requires 31,749 double—precision and 1,333 integer storage locations.

The CSR format requires 4,379 double—precision and 5,046 integer storage locations.

The GTH,, solver ends up with 15,575 nonzero elements in the lower—triangular factor
(bandwidth of I — P ranges between 5 and 72; its average bandwidth is 48.6).

TABLE 7
Results for Application 1(a):
n =666, nz =4,379, v =107 N =2 | [bwmin — bwpnaz] = [2 — 72], bwgy, = 46.8

H S “ Tsotver | Trap | nzu | M flops | Err,.g “
GFes 0.25 16,240 0.44 | 0.36 E — 15
GTH s, 4.82 16,242 0.66 | 0.16F — 14
GTH, s 0.38 15,578 0.66 | 0.15F — 14
G F sk, 0.34 | 0.41 | 16,835 0.45| 0.37E - 15
GTH, sk 0.72 | 0.41 | 16,835 0.47 | 0.16 F — 14

(b) In this part we use the following parameters:
K =175, pp =0.9, po = 0.9, T, = 10.

The NSK format requires 295,529 double—precision and 5,853 integer storage locations.

The CSR format requires 19,879 double—precision and 22,806 integer storage locations.

The GT H s solver ends up with 146,375 nonzero elements in the lower—triangular factor
(bandwidth of I — P ranges between 5 and 152; its average bandwidth is 102.0).

12

TABLE 8
Results for Application 1(b):
n=2,926, nz = 19,879, 7 = 1072, N = 644 , [bwpin — bwas] = [2 — 152], by, = 100.1

H S “ Tsotver | Trap | nzu | M flops | Err.e “
GEesr 4.67 149,300 8.44 | 0.93E — 15
GTH ;| 10021 149,302 2721 0ttE =14
GTH s 6.73 146,378 12.72 | 0.11F — 14
GE, sk 6.38 | 8.04 | 152,075 8.58 | 0.88E — 15
GTH, sk 14.15 | 8.04 | 152,075 8.80 | 0.13E£ — 14

(c¢) In this part we use the following parameters:

K =100, p; = 0.9, pp = 0.9, T, = 10.

The NSK format requires 691,954 double—precision and 10,303 integer storage locations.
The CSR format requires 35,254 double—precision and 40,406 integer storage locations.

The GTH s solver ends up with 343,500 nonzero elements in the lower—triangular factor
(bandwidth of I — P ranges between 5 and 202; its average bandwidth is 135.3).

TABLE 9
Results for Application 1(c):
n=5,151, nz = 35,254, 7 = 1073, N = 23 , [bwmin — bWmas] = [2 — 202], btasy = 133.3

H S “ Tsotver | Trap | nzu | M flops | Err.e “
GEesr 14.59 348,650 26.24 | 0.38E — 14
GTH., | 330.69 348,652 39.50 | 0.22F — 14
GTHyeor || 20.71 343,503 39.50 | 0.22F — 14
GE, sk 19.88 | 25.21 | 353,600 26.57 | 0.34F — 14
GTH,sp, 45.32 | 25.21 | 353,600 27.08 | 0.22F — 14

5.2 Application 2

The second application we consider is the interactive computer system discussed recently in [5],
PP. 296-298.

(a) In this part we use the following parameters:

ne+n =15, A= (107", pipo(n) = 100(n/128)"5, papo(n) = 0.05,
1- P1— P2 = 0002, H1 = 02, M2 = 1/30

Here 1; 4+ n is the fixed number of processes in the computer system (i.e., closed queueing
network).

The NSK format requires 62,032 double—precision and 1,633 integer storage locations.

The CSR format requires 4,896 double—precision and 5,713 integer storage locations.

The GT H .5 solver ends up with 30,608 nonzero elements in the lower—triangular factor.

13

TABLE 10
Results for Application 2(a):
n =816, nz = 4,896, v =107, N =5 , [bwmin — bwpmaz] = [2 — 103], bwgy, = 75.9

H S “ Tsotver | Trap | nzu | M flops | Err,.g “
GFE. s 0.77 31,423 1.35 | 0.11F — 11
GTH s, 17.53 31,425 1.68 | 0.79F — 12
GTH, s 0.96 31,423 1.68 | 0.79F — 12
GFE sk 1.02 | 0.60 | 31,423 1.35 | 0.11F — 11
GTH, sk 1.55 | 0.60 | 31,423 1.38 | 0.79F — 12

(b) In this part we use the same parameters as in part (a) except
n: + n = 20.

The NSK format requires 222,211 double—precision and 3,543 integer storage locations.
The CSR format requires 11,011 double—precision and 12,783 integer storage locations.
The GT H .5 solver ends up with 110,220 nonzero elements in the lower—triangular factor.

TaBLE 11
Results for Application 2(b):
n=1,771, nz = 11,011, 7 = 104, N = 7, [bwmin — bwmas] = [2 — 170], gy, = 125.4

H S “ Tsotver | Trap | nzu | M flops | Err.e “
GFE. s 4.26 111,990 7.89 | 0.15FE — 11
GTH,., | 116.90 111,992 9.46 | 0.16 E — 11
GTH, s 5.24 111,990 9.46 | 0.16 £ — 11
GE, sk 5.98 | 2.85 | 111,990 7.89 | 0.13FE — 11
GTH, sk 8.10 | 2.85| 111,990 8.00 | 0.16 & — 11

(c¢) In this part we use the same parameters as in part (a) except

N+ n = 25.

The NSK format requires 613,912 double—precision and 6,553 integer storage locations.
The CSR format requires 20,826 double—precision and 24,103 integer storage locations.
The GT H .5 solver ends up with 305,318 nonzero elements in the lower—triangular factor.

TABLE 12
Results for Application 2(c):
n = 3,276, nz = 20,826, 7 = 104, N = 9, [bwmin — bmas] = [2 — 253], bwvey, = 187.3

H S “ Tsotver | Trap | nzu | M flops | Err.e “
GEesr 17.76 308,593 32.39 | 0.7T4F — 12
GTH., | 545.43 308,595 37.75 | 0.54E — 12
GTHyeor || 20.87 308,593 37.75 | 0.54E — 12
GE, sk 23.77 | 10.13 | 308,593 32.38 | 0.85E — 12
GTH,sp 31.32 | 10.13 | 308,593 32.69 | 0.54F — 12

14

(d) In this part we use the same parameters as in part (a) except
ne + 1 = 30.

The NSK format requires 1,428,416 double—precision and 10,913 integer storage locations.
The CSR format requires 35,216 double—precision and 40,673 integer storage locations.
The GT H .5 solver ends up with 711,480 nonzero elements in the lower—triangular factor.

TABLE 13
Results for Application 2(d):
n = 5,456, nz = 35,216, 7 = 1075, N = 2, [bwmin — bmas] = [2 — 353], bway, = 261.7

H S “ Tsotver | Trap | nzu | M flops | Err,.g “
GFE. s 57.31 716,935 | 104.95 | 0.19F — 11
GTH 1,989.25 716,937 | 119.82 | 0.29F — 11
GTH, s 67.22 716,935 | 119.82 | 0.29F — 11
GFEsk 77.84 | 28.84 | 716,935 | 104.94 | 0.19F — 11
GTH, sk 96.18 | 28.84 | 716,935 | 105.65 | 0.29F — 11

5.3 Application 3

The last application we consider is from the telecommunications area (see [18], p. 343 for details).

(a) In this part we use the following parameters:
K1=25, K2=50, a=0.6, p =1, 7 =0.05, h =0.85, A =5.

Here K1 and K2 are the maximum number of customers permitted into stations S1 and S2
respectively.

The NSK format requires 47,801 double—precision and 2,653 integer storage locations.

The CSR format requires 6,451 double—precision and 7,778 integer storage locations.

The GTH,, solver ends up with 23,400 nonzero elements in the lower—triangular factor
(bandwidth of I — P ranges between 2 and 75; its average bandwidth is 36.0).

TABLE 14
Results for Application 3(a):
n=1,326, nz = 6,451, 7 = 10~2, N = 826 , [bwin — bWmas] = [2 — 77], bar, = 36.1

H S “ Tsotver | Trap | nzu | M flops | Err.e “
GEesr 0.33 24,725 0.51 | 0.40FE — 12
GTH 8.51 24,727 1.39 | 0.32F — 12
GTHpesr 0.68 24,400 1.39 | 0.32F — 12
GFEsk 0.41 | 1.27 | 24,725 0.51 | 0.40FE — 12
GTH, sk 2.10 | 1.27 | 24,725 0.54 | 0.32E — 12

15

(b) In this part we use the same parameters as in part (a) except

K1=10, K2 = 220.

The NSK format requires 54,296 double—precision and 4,863 integer storage locations.

The CSR format requires 11,681 double—precision and 14,113 integer storage locations.

The GTH,.s solver ends up with 25,960 nonzero elements in the lower—triangular factor
(bandwidth of I — P ranges between 2 and 30; its average bandwidth is 22.3).

TABLE 15
Results for Application 3(b):
n=2,431, nz = 11,681, v = 1072, N = 371, [bWpin — bWmaz] = [2 — 32], bway, = 22.3

H S “ Tsotver | Trap | nzu | M flops | Err.e “
GEesr 0.26 28,390 0.35 | 0.32E — 12
GTH 21.75 28,392 3.31 | 0.46FE — 12
GTHpesr 1.37 28,335 3.30 | 0.46F£ — 12
GFEsk 0.31 | 4.21 | 28,390 0.35 | 0.32E — 12
GTH, sk 6.29 | 4.21 | 28,390 0.38 | 0.46FE — 12

Our first observation is related to the correlation between the decomposability parameter v and
the relative errors of GE and the GTH method. In all problems considered 7 is larger than 1076
and in none of the problems can GTH beat GE in terms of relative error. A similar observation
along these lines also appears in [5], p. 301. As it is mentioned at the beginning of §4, a comparison
of relative errors is not the aim of this paper; we therefore digress from the issue of accuracy to the
topic of interest.

Due to the symmetric (or almost symmetric) nonzero structure of the coefficient matrices in the
problems considered, the double—precision storage allocated for the NSK and GT H ., implementa-
tions are approximately the same and twice as much as that allocated for GF., and GT H.g.. The
total number of double precision entries allocated for NSK and GT H ., implementations divide al-
most evenly between the lower— and upper—triangular factors; remember that the lower—triangular
factor gets stored in these implementations. As expected (see §2), the NSK format consumes much
less integer storage than the CSR format.

The coefficient matrices in the first application have nonsymmetric nonzero structure (see nzu
in Tables 7, 8, and 9). A slightly larger number of nonzero elements is allocated for the upper—
triangular factor in the NSK format. On the other hand, a slightly smaller number of nonzero
elements is allocated for the upper—triangular factor in GT H 5. In all three parts of this applica-
tion, GT H 5 ends up taking approximately twice as much time as GT H ;.

In the second application, the nonzero structure of the coefficient matrices are symmetric.
Interestingly, the same number of nonzero elements gets allocated for the upper—triangular factors
in the CSR and NSK storage formats (see nzu in Tables 10, 11, 12, and 13). In other words, the
same amount of fill-in is generated by the reduction phase. In all four parts of this application,
the run—time of GT H,,,, is approximately one and a half times that of GT H ;.

The coefficient matrices in both parts of the third application have relatively smaller average
bandwidths compared with the first two applications. The smaller coefficient matrix in the first
part of this application has the larger average bandwidth. Just like the first application, we have
coefficient matrices with nonsymmetric nonzero structure. The run—time of GT H, g, is 3—4 times
that of GT H,.s- for this application (see Tables 14-15).

16

The following are other observations we made by inspecting the results of the experiments. In
all cases, GT H,csy (GT H.g) is the fastest (slowest) GTH implementation and G E,s, is the faster
GE implementation. The ratio of the run—times of GFE.s. and G F,, s ranges between 1.19 and 1.44,
the higher end corresponding to Application 2 and the Iower end corresponding to Application 3.
In each application considered, a relatively smaller average bandwidth implies a larger ratio of the
run—times of GT H,s, and GT H,.s-. In other words, a smaller profile causes G1 H, s to suffer
more (see Table 15, for instance). The ratio of the average bandwidth to the number of states in
Application 3.b is 0.009, the smallest of all problems; the ratio of the run—times of GT H, s and
GTH,.s is 4.59, the largest of all problems. The smallest ratio of the run—times of GT H,,; and
GTH,.s is obtained in Application 2.d as 1.43 (see Table 13). We forecast that for dense matrices
this ratio is likely to get closer to 1. In all parts of Applications 1 and 2, the ratio of the run—times
of GTH, s and GT H,s is between 1 and 2 (see Tables 7-13). A correlation also exists between
the ratio of the run—times of GT H ., and GE.,, and the average bandwidth for each application.
The largest ratio of the run—times of GT H,.;, and GE.s is obtained in Application 3.b as 5.27
(see Table 15). The smallest ratio of the run—times of GT H .5, and GE.g, is 1.17 of Application
2.d (see Table 13).

The number of megaflops for GFE, . and GFE. are equal in Application 2 and close to one
another in other applications. The number of megaflops for GFE,, is the smallest in Application
2.c (see Table 12). The number of megaflops for GT H s, is slighty larger than that of GFE, g in all
problems. This is due to the correction of the pivot element at each step. On the other hand, the
number of megaflops for GT H . is always less than that of GT H,,.s, and GT H.s.. This happens
because updates due to zero pivot row elements are accounted for in the CSR implementations
whereas there is a possibility of skipping (some of) the same zero pivot row element updates in
Algorithm 2. See the second if-statement which tests for a nonzero pivot row element.

6 Conclusion

Computing the stationary probability distribution of a Markov chain amounts to solving a homoge-
neous linear system of equations with singular coefficient matrix. A modified version of GE referred
to as the GTH method may be used to enforce stability and to improve accuracy in the solution
process. This paper addresses a significant drawback of the GTH method. The GTH algorithm
tends to run slower than the GE algorithm for a given problem in a sparse storage implementation.

We experimented with NSK and CSR format implementations of GE and GTH on three appli-
cations from the Markov modelling area. The coefficient matrices arising from these applications
suggest that Markov chains in real life tend to have a structure, which is influenced by the order
of generating the states. In our problems, the coefficient matrices were sparse and had relatively
small average bandwidths. Moreover, the matrices had, if not symmetric, almost symmetric nonzero
structure.

The NSK format allocates space for both lower— and upper—triangular factors at the outset and
performs the reduction ‘in place’. Hence, if it is possible to generate/store a Markov chain in the
NSK format, then it is guaranteed that sufficient space is allocated for the upper—triangular factor;
GE and GTH algorithms cannot terminate due to insufficient work space during the triangulariza-
tion phase. On the other hand, for each solver implemented in the CSR format, at the outset it is
possible to symbolically compute the maximum amount of storage necessary for the solver to run
to completion.

The CSR implementation of GE for the transposed system of equations, GFE.,,, results in the
faster GE solver though the NSK implementation, GF, g, is quite competitive never executing

17

longer than 1.5 times that of the CSR implementation. As for GTH, the CSR implementation for
the nontransposed system of equations, which accommodates the lower—triangular factor, GT H .5,
appears to be the fastest GTH solver. The CSR implementation of GTH for the transposed system
of equations, GT H.,., which does not store the lower—triangular factor, performs drastically slow.
The NSK implementation of GTH is not as competitive as its GE counterpart due to the more
frequent (complicated) indirect addressing involved. In conclusion, space is traded off for time
to improve the run—time of GTH; delayed row updates makes the faster CSR implementations
superior. When we need to use GTH, then the algorithm we should choose is GT H .5, When we
can get away with GE, we should use G Fs,.

Future work may focus on the effects of using the object—oriented paradigm in the design and
implementation of sparse formats for direct methods such as GTH.

Acknowledgements. The author is currently supported by the Scientific and Technical Re-
search Council of Turkey (TI“JBITAK) grant EEEAG-161; he gratefully acknowledges Professor
William J. Stewart for providing access to the software package MARCA and for the stimulating
discussions on sparse storage implementations of the GTH algorithm.

References

[1] R. BARRETT, M. BERRY, T. CHAN, J. DEMMEL, J. DoNaTO, J. DONGARRA, V. ELJKHOUT, R.
Pozo, C. ROMINE AND H. VAN DER VORST, Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, SIAM Press, Philadelphia, 1994.

[2] A. BERMAN AND R. J. PLEMMONS, Nonnegative Matrices in the Mathematical Sciences, Academic
Press, New York, 1979.

[3] W. L. Cao AND W. J. STEWART, lterative aggregation/disaggregation techniques for nearly uncoupled
Markov chains, J. Assoc. Comput. Mach., 32 (1985), pp. 702-719.

[4] P.-J. CourToOIS, Decomposability: Queueing and Computer System Applications, Academic Press, New
York, 1977.

[6] T. DAYAR AND W. J. STEWART, On the effects of using the Grassman-Taksar—-Heyman method in
iterative aggregation—disaggregation, STAM J. Sci. Comput., 17 (1996), pp. 287-303.

[6] I. S. DurF, A. M. ERISMAN AND J. K. REID, Direct Methods for Sparse Matrices, Oxford University
Press, London, 1986.

[7] W. K. GRASSMANN, M. I. TAKSAR AND D. P. HEYMAN, Regenerative analysis and steady state
distributions for Markov chains, Oper. Res., 33 (1985), pp. 1107-1116.

[8] W. J. HARROD AND R. J. PLEMMONS, Comparison of some direct methods for computing the stationary
distributions of Markov chains, STAM J. Sci. Statist. Comput., 5 (1984), pp. 453-469.

[9] D. P. HEYMAN, Further comparisons of direct methods for computing stationary distributions of Markov
chains, STAM J. Sci. Statist. Comput., 8 (1987), pp. 226—232.

[10] J. R. Koury, D. F. MCALLISTER AND W. J. STEWART, [terative methods for computing stationary

distributions of nearly completely decomposable Markov chains, SIAM J. Alg. Discrete Meth., 5
(1984), pp. 164-186.

[11] C. D. MEYER, Stochastic complementation, uncoupling Markov chains, and the theory of nearly re-
ducible systems, SIAM Rev., 31 (1989), pp. 240-272.

[12] C. A. O’CINNEIDE, Entrywise perturbation theory and error analysis for Markov chains, Numer. Math.,
65 (1993), pp. 109-120.

[13] Y. SaaD, SPARSKIT: A Basic Tool for Sparse Matriz Computation, Tech. Report CSRD TR 1029,
CSRD, University of Illinois, 1990.

18

[14] P. J. SCHWEITZER, A survey of aggregation-disaggregation in large Markov chains, in Numerical Solu-

[15] G.

tion of Markov Chains, W. J. Stewart, ed., Marcel Dekker, Inc., New York, 1991, pp. 63-88.

W. STEWART AND G. ZHANG, On a direct method for the solution of nearly uncoupled Markov
chains, Numer. Math.; 59 (1991), pp. 1-11.

[16] G. W. STEWART, W. J. STEWART AND D. F. MCALLISTER, A two-stage tteration for solving nearly

completely decomposable Markov chains, in The IMA Volumes in Mathematics and its Applications
60: Recent Advances in Iterative Methods, by G. H. Golub, A. Greenbaum, and M. Luskin, eds.,
Springer-Verlag, New York, 1994, pp. 201-216.

. J. STEWART, MARCA: Markov Chain Analyzer, A software package for Markov modeling, in Nu-

merical Solution of Markov Chains, W. J. Stewart, ed., Marcel Dekker, Inc., New York, 1991, pp.
37-61.

J. STEWART AND W. Wu, Numerical experiments with iteration and aggregation for Markov chains,
ORSA J. Comput., 4 (1992), pp. 336-350.

J. STEWART, Introduction to the Numerical Solution of Markov Chains, Princeton University Press,
New Jersey, 1994.

. TipPER, S. PAPPU, A. COLLINS AND J. GEORGE, Space priority buffer management for ATM

networks, in Asynchronous Transfer Mode Networks, Yannis Viniotis and Raif O. Onvural, eds.,

Plenum Press, New York, 1993, pp. 157-166.

19

