
BATCH LEARNING OFDISJOINT FEATURE INTERVALSa thesissubmitted to the department of computerengineering and information scienceand the institute of engineering and scienceof bilkent universityin partial fulfillment of the requirementsfor the degree ofmaster of science
byAynur Akku�sSeptember, 1996



I certify that I have read this thesis and that in my opinion it is fully adequate,in scope and in quality, as a thesis for the degree of Master of Science.Assoc. Prof. Halil Altay G�uvenir (Advisor)I certify that I have read this thesis and that in my opinion it is fully adequate,in scope and in quality, as a thesis for the degree of Master of Science.Asst. Prof. Kemal O
azerI certify that I have read this thesis and that in my opinion it is fully adequate,in scope and in quality, as a thesis for the degree of Master of Science.Asst.Prof. _Ilyas C� i�cekliApproved for the Institute of Engineering and Science:Prof. Mehmet BarayDirector of Institute of Engineering and Scienceii



ABSTRACTBATCH LEARNING OF DISJOINT FEATURE INTERVALSAynur Akku�sM.S. in Computer Engineering and Information ScienceSupervisor: Assoc. Prof. Halil Altay G�uvenirSeptember, 1996This thesis presents several learning algorithms for multi-concept descriptionsin the form of disjoint feature intervals, called Feature Interval Learning algo-rithms (FIL). These algorithms are batch supervised inductive learning algo-rithms, and use feature projections of the training instances for the representa-tion of the classi�cation knowledge induced. These projections can be general-ized into disjoint feature intervals. Therefore, the concept description learnedis a set of disjoint intervals separately for each feature. The classi�cation ofan unseen instance is based on the weighted majority voting among the localpredictions of features. In order to handle noisy instances, several extensionsare developed by placing weights to intervals rather than features. Empiricalevaluation of the FIL algorithms is presented and compared with some othersimilar classi�cation algorithms. Although the FIL algorithms achieve compa-rable accuracies with other algorithms, their average running times are muchmore less than the others.This thesis also presents a new adaptation of the well-known k-NN clas-si�cation algorithm to the feature projections approach, called k-NNFP fork-Nearest Neighbor on Feature Projections, based on a majority voting on in-dividual classi�cations made by the projections of the training set on eachfeature and compares with the k-NN algorithm on some real-world and arti�-cial datasets.Keywords: machine learning, supervised learning, inductive learning, batchlearning, feature projections, voting. iii



�OZETAYRIK �OZN_ITEL_IK B�OL�UNT�ULER_IN_I TOPLU �O�GRENMEAynur Akku�sBilgisayar ve Enformatik M�uhendisli�gi, Y�uksek LisansTez Y�oneticisi: Do�c. Dr. Halil Altay G�uvenirEyl�ul, 1996Bu tezde �oznitelik izd�u�s�umlerine dayal� yeni �o�grenme algoritmalar� sunulmu�s-tur. �Oznitelik B�ol�unt�ulerini �O�grenme (FIL) olarak isimlendirilen bu algorit-malar toplu, denetimli ve t�umevar�msal �o�grenme y�ontemlerini kullan�rlar ve�o�grenme �orneklerinin �oznitelik izd�u�s�umlerini s�n�
ama bilgisini �c�karmak i�cinkullan�rlar. Bu izd�u�s�umler ayr�k �oznitelik b�ol�unt�ulerine genellenir. B�oylece,�o�grenilen kavram tan�mlar� her �oznitelik i�cin ayr�k �oznitelik b�ol�unt�uleri �seklindeg�osterilir. Daha �once g�or�ulmemi�s bir �orne�gin s�n�
and�rmas� i�cin her �ozniteliktaraf�ndan bir �on s�n�
and�rma yap�l�r ve son s�n�
ama bu �on s�n�
and�rmalar�na�g�rl�kl� �co�gunluk oylamas�yla belirlenir. Hatal� �ornekleri tespit edebilmek i�cinb�ol�unt�ulere a�g�rl�k verilerek baz� de�gi�siklikler �onerilmi�stir. FIL algoritmalar�n�nbenzer sistemlerle uygulama sonu�clar� do�gal ve yapay veri k�umeleri �uzerindekar�s�la�st�r�lm��st�r. Bu algoritmalar�n do�gruluk oranlar� daha �oncekilere yak�nolmas�na ra�gmen ortalama �cal��sma s�ureleri �cok daha azd�r.Bu tezde literat�urde yayg�n olarak bilinen k en yak�n kom�su s�n�
and�rmaalgoritmas� (k-NN) yeniden tan�mlanm��st�r ve k-NNFP, �oznitelik izd�u�s�umleri�uzerinde k en yak�n kom�su s�n�
and�rmas�, olarak isimlendirilmi�stir. k-NNFPalgoritmas�nda s�n�
and�rma her �oznitelikten gelecek olan tahminler aras�ndan�co�gunluk oylamas� yap�larak belirlenir. k-NNFP ve k-NN algoritmalar�n�nkar�s�la�st�r�lmas� do�gal ve yapay veri k�umeleri �uzerinde yap�lm��st�r.Anahtar S�ozc�ukler: �o�grenme, t�umevar�msal �o�grenme, toplu �o�grenme, dene-timli �o�grenme, �oznitelik izd�u�s�umleri, oylama.iv
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Chapter 1IntroductionMachine learning has played a central role in arti�cial intelligence since 1980's,especially in modeling behavior of human cognition and human thought pro-cesses for problem solving strategies. The studies in machine learning suggestcomputational algorithms and analyses of such algorithms that suggest expla-nations for capabilities and limitations of human cognition. Learning can bedescribed as increasing the knowledge or skills in accomplishing certain tasks[13]. The learner applies inferences in order to construct an appropriate repre-sentation of some relevant reality.One of the fundamental research problems in machine learning is how tolearn from examples since it it usually possible to obtain a set of examples tolearn from. From a set of training examples, each labeled with its correct classname, a machine learns by forming or selecting a generalization of the trainingexamples. This process, also known as supervised learning, is useful for real-world classi�cation tasks, e.g. disease diagnosis, and problem solving tasks inwhich control decisions depend on classi�cation. Inductive learning refers tolearning from examples in which knowledge is acquired by drawing inductiveinference from the examples given. Acquiring knowledge involves operationsof generalizing, specializing, transforming, correcting and re�ning knowledgerepresentations [42, 43].Many of the tasks to which machine learning techniques are applied aretasks that humans can perform quite well. However, humans often cannot tell1



CHAPTER 1. INTRODUCTION 2how they solve these tasks. Inductive supervised learning is able to exploit thehuman ability to assign labels to given instances without requiring humans toexplicitly formulate rules that do the same. These training instances are thenanalyzed by inductive supervised algorithms to learn speci�c tasks.There are several di�erent methods by which a human (or a machine) canacquire knowledge [43]:� rote learning (learning by being programmed)� learning from instruction (learning by being told)� learning from teacher provided examples (concept acquisition)� learning by observing the environment and making discoveries (learningfrom observation and discovery)In this thesis, we will concern with concept acquisition. Concept acquisitioncan be de�ned as the task of learning a description of a given concept from aset of examples and counterexamples of that concept [13, 43]. Examples arerepresented usually by input vectors of feature values and their correspondingclass labels. Concept descriptions are then learned as relations among the givenset of feature values and the class labels.The ability to classify is another important facet of intelligence. The task ofa classi�cation algorithm is to predict correctly the class of an unseen test exam-ple from a set of labeled training examples or classi�cation knowledge learnedby a concept acquisition algorithm. Many supervised learning algorithms havebeen developed to perform classi�cation [5, 10, 28, 52, 58]. Classi�cation sys-tems require only a minimal domain theory and are based on training instancesto learn an appropriate classi�cation function.One of the central problems in classifying objects is distinguishing featuresthat are relevant to the target concept from that are irrelevant. Many re-searchers have addressed the issue of feature weighting in order to reduce theimpact of irrelevant features and to increase the impact of more relevant fea-tures in classi�cation tasks, by investigating feature weighting [2], and feature



CHAPTER 1. INTRODUCTION 3subset selection [38, 61]. Some classi�cation systems give equal importanceto all features. However, in real life, the relevance of features may not all bethe same. The algorithms which assign equal weights to all features are moresensitive to the presence of irrelevant features. In order to prevent the intrusivee�ect of irrelevant features, feature subset selection approaches are utilized inwhich the space of subsets of feature sets are considered to determine the rele-vant and irrelevant features. As a simple example, the learning algorithm is runon the training data with di�erent subsets of features, using cross-validation toestimate its accuracy with each subset. These estimates are used as an evalua-tion metric for directing search through the space of feature sets [6, 29, 38, 61].On the other hand, the disadvantage of using feature selection method is thatit treats features as completely relevant or irrelevant. In reality, the degree ofrelevance may not be just 0 or 1, but any value between them.Knowledge representation in exemplar-based learning models are either rep-resentative instances [2, 5], or hyperrectangles [58, 59]. For example, instance-based learning model retains examples in memory as points, and never changesthem. The only decisions that are made are what points to store and howto measure similarity. Several variants of this model have been developed[2, 3, 4, 5]. Nested generalized-exemplars model represents the learned knowl-edge as hyperrectangles [58, 59]. This model changes the point storage modelof the instance-based learning and retains examples in the memory as axis-parallel hyperrectangles.The Classi�cation by Feature Partitioning [27, 28, 65], and Classi�cationwith Overlapping Feature Intervals [67] algorithms are also exemplar-basedlearning algorithms based on generalized feature values. They are incrementalinductive supervised learning algorithms. Their basic knowledge representationis based on feature projections. Classi�cation knowledge in these algorithms isrepresented as sets of disjoint and overlapping feature intervals, respectively.The classi�cation of an unseen test example is determined through a weightedvoting scheme on classi�cations based on the individual feature predictions.Feature projections for knowledge representation allows faster classi�cation



CHAPTER 1. INTRODUCTION 4than other exemplar-based learning models since these projections can be or-ganized for faster classi�cation. Another important advantage of this repre-sentation is that it allows easy handling of missing feature values by simplyignoring them. The major drawback of this knowledge representation is thatdescriptions involving a conjunction between two or more features cannot berepresented. However, the reported results show that both techniques are suc-cessful by processing each feature separately [27, 28, 65, 67]. This thesis willinvestigate that whether it is possible to obtain more accurate concept descrip-tions in the form of disjoint feature intervals when they are learned in the batch(non-incremental) mode.As a preliminary work to this thesis, we have studied classi�cation of ob-jects on feature projections in a batch mode [7]. Classi�cation in this methodis based on a majority voting on individual classi�cations made by the pro-jections of the training set on each feature. We have applied the k-nearestneighbor algorithm to determine the classi�cations made on individual featureprojections. We called the resulting algorithm k-NNFP, for k-Nearest Neigh-bor on Feature Projections. The nearest neighbor (NN) algorithm stores alltraining instances in memory as points and classi�es an unseen instance as theclass of the nearest neighbor in the n-dimensional Euclidean space where n isthe number of features. The extended form of the NN algorithm to reduce thee�ect of the noisy instances is the k-NN algorithm in which classi�cation isbased on a majority voting among k nearest neighbors. The most importantcharacteristic of the k-NNFP algorithm is that the training instances are storedas their projections on each feature dimension. This allows the classi�cation ofa new instance to be made much faster than the k-NN algorithm. The votingmechanism reduces the intrusive e�ect of possible irrelevant features in clas-si�cation. Furthermore, the classi�cation accuracy of the k-NNFP algorithmincreases when the value of k is increased, which indicates that the process ofclassi�cation can incorporate the learned classi�cation knowledge better whenk increases.First, we treated all features as equivalent in the k-NNFP algorithm. How-ever, all features need not have equal relevance. In order to determine therelevances of features, the best method is to assign them weights. In this



CHAPTER 1. INTRODUCTION 5thesis, we propose two methods for learning feature weights for the learningalgorithms whose knowledge representation is feature projections. The �rstmethod is based on homogeneities of feature projections, called homogeneousfeature projections, for which the number of consequent values of feature pro-jections of a same class supports an evidence for increasing the probability ofcorrect classi�cation in the learning algorithm that uses feature projections asthe basis of learning. The second method is based on the accuracies of indi-vidual features, called single feature accuracy. In this approach, the learningalgorithm is run on the basis of a single feature, once for each feature. Theresulting accuracy is taken as the weight of that feature since it is a measureof contribution to classi�cation for that feature. The �rst empirical evaluationof these feature weighting methods on real world datasets will be investigatedin the k-NNFP algorithm in Section 3.4. These methods can be also appliedto other learning algorithms which use feature weights.In this thesis, we focused on the problem of learning multi-concept descrip-tions in the form of disjoint feature intervals following a batch learning strategy.We designed and implemented several batch algorithms for learning of disjointfeature intervals. The resulting algorithms are called Feature Intervals Learn-ing algorithms (FIL). These algorithms are batch inductive supervised learningalgorithms. Several modi�cations are made to the initial FIL algorithm, FI1, toinvestigate whether improvement for this method is possible or not. Althoughthe FIL algorithms achieve comparable accuracies with the earlier classi�ca-tion algorithms, the average running times of the FIL algorithms are much lessthan those.The FIL algorithms learn the projections of the concept descriptions overeach feature dimension from a set of training examples. The knowledge repre-sentation of the FIL algorithms is based on feature projections. The projectionsof training instances are stored in memory, separately in each feature dimen-sion. Concepts are represented as disjoint intervals for each feature. In the ba-sic FIL algorithm, an interval is represented by four parameters: lower bound,upper bound, representativeness count and associated class label. Lower andupper bounds of an interval are the minimum and maximum feature valuesthat fall into the interval respectively. Representativeness count is the number



CHAPTER 1. INTRODUCTION 6of the instances that the interval represents, and �nally the class label is theassociated class of the interval.In the FIL algorithms, each feature makes its local prediction by simplysearching through the feature intervals containing that feature value of the testinstance. The �nal prediction is based on the weighted majority voting amonglocal predictions of features. The voting mechanism reduces the negative e�ectof possible irrelevant features in classi�cation. Since FIL algorithms treat eachfeature separately, they do not use any similarity metric among instances forprediction unlike other exemplar-based models that are similarity-based algo-rithms. This allows the classi�cation of a new instance to be made much fasterthan similarity-based classi�cation algorithms.Since induction of multi-concept descriptions from classi�ed examples havelarge number of applications to real-world problems, we will evaluate FIL al-gorithms on some real-world datasets from the UCI-Repository [47]. For thispurpose, we have also compiled two medical datasets, one for the description ofarrhythmia characteristics from ECG signals, and the other for the histopatho-logical description of a set of dermatological illnesses.In summary, the primary contributions of this thesis can be listed as follows:� We formalized the concept of feature projections for knowledge represen-tation in inductive supervised learning algorithms.� We applied this representation to classical NN algorithm, compared k-NN and k-NNFP (the k-NN that uses feature projections). We shouldnote that the disadvantage of this representation does not a�ect the clas-si�cation of real-world datasets.� We presented several batch learning methods of disjoint feature intervalsfor assigning weights to features and intervals. We also presented twofeature weight learning methods.� We started the construction of two new medical datasets as an applicationarea, and a test bed for ML algorithms.



CHAPTER 1. INTRODUCTION 7This thesis presents and evaluates several batch learning methods in theform of disjoint feature intervals that use feature projections for knowledgerepresentation. In the next chapter, a summary of the previous concept learn-ing models are presented. In Chapter 3, feature projections for knowledge rep-resentation are discussed and some prior research is explained in detail. Thedetails of the FIL algorithms are described in Chapter 4. The construction offeature intervals on a feature dimension and classi�cation process is illustratedthrough examples, and several extensions of basic FIL algorithm are described.Complexity analysis and empirical evaluation of FIL algorithms are studied inChapter 5. Performance of the FIL algorithms on arti�cially generated datasets and comparisons with other similar techniques on real-world data sets arealso presented. The �nal chapter presents a summary of the results obtainedfrom the experiments in this thesis. Also an overview of possible extensions tothe work presented here is given as future work.



Chapter 2Concept Learning ModelsThe symbolic empirical learning has been the most active research area inmachine learning for developing concept descriptions from concept examples.These methods use empirical induction which is falsity-preserving rather thantruth-preserving inference. Therefore the results of these methods are generallyhypotheses which need to be validated by further experiments.Inductive leaning is the process of acquiring knowledge by drawing induc-tive inferences from teacher or environment-provided facts by generalizing, spe-cializing, transforming, correcting and re�ning knowledge representations [43].There are two major types of inductive learning: learning from examples (con-cept acquisition) and learning from observation (descriptive learning). In the-sis, we will concern ourselves with concept acquisition rather than descriptivegeneralization, which is the process of determining a general concept descrip-tion (a law, a theory) characterizing a collection of observations. In conceptacquisition, observational statements are characterizations of some objects pre-classi�ed by a teacher into one or more classes (concepts). Induced conceptdescription can be viewed as a concept recognition rule, in that, if an objectsatis�es this rule, then it belongs to the given concept [43].A characteristic description of a class of objects (conjunctive generalization)is typically a conjunction of some simple properties common to all objects inthe class. Such descriptions are intended to discriminate the given class from allother possible classes. On the other hand, a discriminant description speci�es8



CHAPTER 2. CONCEPT LEARNING MODELS 9one or more ways to distinguish the given class from a �xed number of otherclasses.Given a set of instances which are described in terms of feature valuesfrom a prede�ned range, the task of concept acquisition is to induce generalconcept descriptions from those instances. Concept descriptions are learnedas a relation among the given set of feature values and the class labels. Thetwo types of concept learning are single concept learning and multiple-conceptlearning.In single concept learning one can distinguish two cases:1. Learning from \positive" instances only.2. Learning from \positive" and \negative" examples (examples and coun-terexamples of the concept).In multiple-concept learning one can also distinguish two cases:1. Instances do not belong to more than one class, that is, classi�cations ofinstances are mutually disjoint.2. Instances may belong to more than one class, that is, classi�cations ofinstances are possibly overlapping.For concept learning tasks, one of the widely used representation tech-nique is the exemplar-based representation. Either representative instances orgeneralizations of instances form concept descriptions [5, 58]. Another usefulknowledge representation technique for concept learning is decision trees [52].Statistical concept learning algorithms also use training instances to induceconcept descriptions based on certain probabilistic approaches [21]. In thefollowing sections, these concept learning models are presented.



CHAPTER 2. CONCEPT LEARNING MODELS 10
Exemplar-Based Learning
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Nested Generalized 
    Exemplars

Generalized Feature
     Values

Feature Partitioning Overlapping Feature
     IntervalsFigure 2.1. Classi�cation of exemplar-based learning models.2.1 Exemplar-Based LearningExemplar-based learning was originally proposed as a model of human learningby Medin and Scha�er [41]. In the simplest form of exemplar-based learning,every example is stored in memory verbatim, with no change of representation.An example is de�ned as a vector of feature values along with a label whichrepresents the category (class) of the example.Knowledge representation of exemplar-based models can be maintained asrepresentative instances [2, 5], hyperrectangles [58, 59], or generalized values[27, 28, 67]. Unlike explanation-based generalization (EBG) [18, 45], little orno domain speci�c knowledge is required in exemplar-based learning.Figure 2.1 presents a hierarchical classi�cation of exemplar-based learningmodels. Instance-based learning (IBL) and exemplar-based generalization aretwo types of exemplar-based learning. For example, instance-based learningmethods [5] retain examples in memory as points, and never changes them.



CHAPTER 2. CONCEPT LEARNING MODELS 11On the other hand, exemplar-based generalization methods make certain gen-eralizations on the training instances. One category of the exemplar-based gen-eralization is the nested-generalized exemplars (NGE) model [58]. This modelchanges the point storage model of the instance-based learning and retainsexamples in the memory as axis-parallel hyperrectangles. Generalized Fea-ture Values learning models can be classi�ed as exemplar-based generalization,such as NGE. The examples of GFV learning models are the Classi�cation byFeature Partitioning (CFP), and the Classi�cation by Overlapping Feature In-tervals (COFI). In the CFP algorithm, examples are stored as disjoint intervalson each feature dimension. In the COFI algorithm, concept descriptions arerepresented in the form of overlapping feature intervals. In this thesis, we willstudy several batch learning methods whose knowledge representation is in theform of disjoint feature intervals that can be also categorized as GFV method.In the following sections, we will describe IBL, NGE, and GFV methods brie
y.GFV methods that use feature projections for knowledge representation will bediscussed in detail in Chapter 3 since this knowledge representation motivatedus to develop this thesis.2.1.1 Instance-Based Learning (IBL)Instance-based learning algorithms represent concept descriptions as a set ofstored instances, called exemplars, and with some information concerning theirpast performances during classi�cation [5, 8]. These algorithms extend the clas-sical nearest neighbor algorithm, which has large storage requirements [16, 17].All examples are represented as points on the n-dimensional Euclidean space,where n is the number of features. The concept descriptions can change aftereach training instance is processed. IBL algorithms do not construct exten-sional concept descriptions. Instead, concept descriptions are determined byhow the IBL algorithm's selected similarity and classi�cation functions use thecurrent set of saved instances. There are three components in the frameworkwhich describe all IBL algorithms as de�ned by Aha and Kibler [5]:1. The similarity function computes the similarity between two instances(similarities are real-valued).



CHAPTER 2. CONCEPT LEARNING MODELS 122. The classi�cation function receives the output of the similarity functionand the classi�cation performance records of the instances in the conceptdescription, and yields a classi�cation for instances.3. The concept description updater maintains records on classi�cation per-formance and decides which instance are to be included in the conceptdescription.These similarity and classi�cation functions determine how the set of in-stances in the concept description are used for prediction. So, IBL conceptdescriptions contain not only a set of instances, but also these two functions.Several IBL algorithms have been developed: IB1, IB2, IB3, IB4 and IB5[3, 5]. IB1 is the simplest one and it uses the similarity function computed assimilarity(x; y) = �qPnf=1 difff(f; x; y)2 (2.1)difff(f; x; y) = 8>>><>>>: jxf � yf j if f is linear0 if f is symbolic and xf = yf1 if f is symbolic and xf 6= yf (2.2)where x and y are the instances.IB1 is identical to the nearest neighbor algorithm except that it processestraining instances incrementally and simply ignores instances with missing fea-ture value(s). Since IB1 stores all the training instances, its storage requirementis quite large. IB2 is an extension of IB1, it saves only misclassi�ed instancesreducing storage requirement. On the other hand, its classi�cation accuracydecreases in the presence of noisy instances. IB3 aims to cope with noisy in-stances. IB3 employs a signi�cance test to determine which instances are goodclassi�ers and which ones are believed to be noisy. Once an example is deter-mined to be noisy, it is removed from the description set. IB2 and IB3 are alsoincremental algorithms. IB1, IB2, and IB3 algorithms assume that all featureshave equal relevance for describing concepts.



CHAPTER 2. CONCEPT LEARNING MODELS 13Extensions of these three algorithms [1, 3] are developed to remove somelimitations which occur because of certain assumptions. For example, conceptsare often assumed to� be de�ned with respect to the same set of relevant features,� be disjoint in instance space, and� have uniform instance distributions.To study the e�ect of relevances of features in IBL algorithms, IB4 hasbeen proposed by Aha [3]. In this study, feature weights are learned beingdependent on concepts; a feature may be highly relevant to one concept andcompletely irrelevant to another. So, IB4 has been developed as an extension ofIB3 that learns a separate set of feature weights for each concept. Weights areadjusted using a simple feedback algorithm to re
ect the relative relevancesof the features to describe instances. These weights are then used in IB4'ssimilarity function which is a Euclidean weighted-distance measure of the sim-ilarity of two instances. Multiple sets of weights are used because similarityis concept-dependent, the similarity of two instances varies depending on thetarget concept. IB4 decreases the e�ect of irrelevant features on classi�cationdecisions. Therefore, it is quite successful in the presence of irrelevant features.The problem of novelty is de�ned as the problem of learning when novelfeatures are used to help describe instances. IB4, similar to its predecessors,assumes that all the features used to describe training instances are knownbefore training begins. However, in several learning tasks, the set of describingfeatures is not known beforehand. IB5 [3], is an extension of IB4 that toleratesthe introduction of novel features during training. To simulate this capabilityduring training, IB4 simply assumes that the values for the (as yet) unusedfeature are missing. During training, IB4 �xes the expected relevance of thefeature for classifying instances. IB5 instead updates the weight of a featureonly when its value is known for both of the instances involved in a classi�cationattempt. IB5 can therefore learn the relevance of novel features more quicklythan IB4.



CHAPTER 2. CONCEPT LEARNING MODELS 14Also noise-tolerant versions of instance-based algorithms have been devel-oped by Aha and Kibler [4]. These learning algorithms are based on a form ofsigni�cance testing, that identi�es and eliminates noisy concept descriptions.2.1.2 Nested-Generalized Exemplars (NGE)Nested-generalized exemplar (NGE) theory is a variation of exemplar-basedlearning [58]. In NGE, an exemplar is a single training example, and a general-ized exemplar is an axis-parallel hyperrectangle that may cover several trainingexamples. These hyperrectangles may overlap or nest. Hyperrectangles aregrown during training in an incremental manner.Salzberg implements NGE in a program called EACH (Exemplar-AidedConstructor of Hyperrectangles) [59]. In EACH, the learner compares newexamples to those it has seen before and �nds the most similar generalizedexemplar in memory.NGE theory makes several signi�cant modi�cations to the exemplar-basedmodel. It retains the notion that examples should be stored verbatim in mem-ory, but once it stores them, it allows examples to be generalized. In NGEtheory, generalizations take the form of hyperrectangles in n-dimensional Eu-clidean space, where the space is de�ned by the feature values measured foreach example. The hyperrectangles may be nested one inside another to arbi-trary depth, and inner rectangles serve as exceptions to surrounding rectangles[58]. Each new training example is �rst classi�ed according to the existingset of classi�ed hyperrectangles by computing the distance from the exampleto each hyperrectangle. If the training example falls into the nearest hyper-rectangle, then the nearest hyperrectangle is extended to include the trainingexample. Otherwise, the second nearest hyperrectangle is tried. This is calledas second match heuristic. If the training example falls into neither the �rstnor the second nearest hyperrectangle, then it is stored as a new (trivial) hy-perrectangle.A new example will be classi�ed according to the class of the nearest hy-perrectangle. Distances are computed as follows: If an example does not fall



CHAPTER 2. CONCEPT LEARNING MODELS 15into any existing hyperrectangle, a weighted Euclidean distance is computed.If the example falls into a hyperrectangle, its distance to that hyperrectangle iszero. If there are several hyperrectangles having equal distances, the smallestof these is chosen. The EACH algorithm computes the distance between E andH, where E is a new data point and H is the hyperrectangle, by measuringthe Euclidean distance between these two objects as follows:DE;H = wHvuut nXf=1 (wf d(E;H; f)maxf �minf )2 (2.3)where d(E;H; f) = 8>>><>>>: Ef �Hf;upper Ef > Hf;upperHf;lower � Ef Ef < Hf;lower0 otherwise (2.4)where wH is the weight of the exemplar H, wf is the weight of the feature f ,Ef is the value of the fth feature on example E, Hf;upper or Hf;lower are theupper end of the range and lower end, respectively, on fth feature on exemplarH, maxf and minf are the minimum and maximum values of that feature,and n is the number of features recognizable on E.The EACH algorithm �nds the distance from E to the nearest face of H.There can be several alternatives to this, such as using the center of H. Ifthe hyperrectangle H is a point hyperrectangle, representing an individualexample, then the upper and lower values becomes equal.If a training instance E and generalized exemplar H are of the same class,that is, a correct prediction has been made, the exemplar is generalized to in-clude the new instance if it is not already contained in the exemplar. However,if the closest hyperrectangle has a di�erent class then the algorithm modi�esthe weights of features so that the weights of the features that caused the wrongprediction is decreased.The original NGE was designed for continues features only. Symbolic fea-tures require a modi�cation of the distance and area computations for NGE.
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1Figure 2.2. An example concept description of the EACH algorithm in a do-main with two features.In Figure 2.2, an example concept description of EACH algorithm is pre-sented for two features f1 and f2. Here, there are three classes, A, B andC, and their descriptions are rectangles (exemplars) as shown in Figure 2.2.It is seen that rectangle A contains two rectangles, B and C, in its region.Therefore, B and C are exceptions in the rectangle A. The NGE model allowsexceptions to be stored quite easily inside hyperrectangles, and exceptions canbe nested any number of levels. The test instance, that is marked as test inFigure 2.2, falls into the rectangle C, since it has smaller, so the prediction willbe the class value C for this test instance.2.1.3 Generalized Feature ValuesThe previously presented techniques categorized as generalized feature valuesunder exemplar-based generalization are the CFP [27, 28, 65], COFI [67], andk-NNFP [7] algorithms. Brie
y, the CFP and COFI algorithms are incrementalalgorithms based on feature partitioning and overlapping feature intervals, re-spectively. They use feature projections as the basis of learning. Classi�cationof unseen instances are based on voting among the individually predictions offeatures. The discussion of the CFP and COFI algorithms are presented inChapter 3 in more detail (Section 3.1 and 3.2).



CHAPTER 2. CONCEPT LEARNING MODELS 172.2 Decision TreesDecision trees are one of the most well known and widely used approaches forlearning from examples. This method was developed initially by Hunt, Marinand Stone [31], and later modi�ed by Quinlan [49, 50]. Quinlan's ID3 [52] andC4.5 [55] are the most popular algorithms in decision tree induction. Initially,ID3 algorithm has applied to deterministic domains such as chess and games[49, 50]. Later, ID3 algorithm has extended to cope with noisy and uncertaininstances rather than being deterministic [52].Decision tree algorithms represents concept descriptions in the form of treestructure. Decision tree algorithms begin with a set of instances and create atree data structure that can be used to classify new instances. Each instanceis described by a set of feature values, which can have either continuous orsymbolic (nominal) values, with the corresponding classi�cation. Each internalnode of a decision tree contains a test which indicates which branch to followfrom that node. The leaf nodes contain class labels instead of tests. A newtest instance is classi�ed by using the class label stored at the leaf node.Decision tree methods use divide and conquer approach. Each internalnode must contain a test that will partition the training instances. The mostimportant decision criteria in decision tree induction is how to decide the besttest. ID3, and its successor C4.5 use information-theoretic metrics to evaluatethe goodness of a test; in particular they choose the test that extracts themaximum amount of information from a set of instances, given the constraintthat only one feature will be tested.The recursive partitioning method of constructing decision trees continuesto subdivide the set of training instances until each subset in the partition con-tains instances of a single class, or until no tests o�er any further improvement.The result is often a very complex tree that \over�ts the data" by inferringmore structure than is justi�ed by the training instances. A decision tree isnot usually simpli�ed by deleting the whole subtree in favor of a leaf. Instead,the idea is to remove parts of the tree that do not contribute to classi�ca-tion accuracy on unseen instances, producing something less complex and thus



CHAPTER 2. CONCEPT LEARNING MODELS 18more comprehensible. This process is known as the pruning. There are basi-cally two ways in which the recursive partitioning method can be modi�ed toproduce simpler trees: deciding not to divide a set of training instances anyfurther, or removing retrospectively some of the structure built up by recursivepartitioning [55].The former approach, sometimes called stopping or prepruning, has theadvantage that time is not wasted in assembling structures that are not usedin the �nal simpli�ed tree. The typical approach is to look at the best way ofsplitting a subset and to assess the split from the point of view of statisticalsigni�cance, information gain, error reduction. If this assessment falls belowsome threshold then the division is rejected.Later, a simple decision tree approach, called 1R system, is proposed byHolte [30]. It is based on the rules that classify an object on the basis of asingle feature that is, they are 1-level decision trees, called 1-rules [30].The input of the 1R algorithm is a set of training instances. The output isconcept descriptions in the form of 1-rule. The 1R system can be treated asa special case of generalized feature values methods. These methods considerall features information whereas the 1R system uses only one feature. 1R triesto partition feature values into several disjoint feature intervals. Since eachfeature is considered separately in 1R system, missing feature values can besimply ignored instead of ignoring the instance containing missing value. TheFIL algorithms presented in this thesis also partition feature dimensions intodisjoint intervals. However, the FIL algorithms make �nal predictions basedon majority voting on individual classi�cations of all features rather than onefeature as in 1R system. During the training phase of the 1R system, disjointfeature intervals are constructed on each feature dimension. Then, one of theconcept descriptions on a feature is chosen as �nal concept descriptions, 1-rules,by selecting the one that makes the smallest error on the training dataset.Holte used sixteen datasets to compare 1R and C4 [52], and fourteen ofthe datasets were selected from the collection of UCI-Repository [47] [30]. Themain result of comparing 1R and C4 was an insight into the tradeo� between



CHAPTER 2. CONCEPT LEARNING MODELS 19simplicity and accuracy. 1R rules are only a little less accurate (about 3 per-centage points) than C4's pruned decision trees on almost all of the datasets.Decision trees formed by C4 are considerably larger in size than 1-rules. Holteshows that simple rules such as 1R are as accurate as more complex rules suchas C4.Another decision tree algorithm is T2 (decision trees of at most 2-levels)[12]. Its computation time is almost linear in the size of training set. The T2algorithm is evaluated on 15 common real-world dataset. It is shown that themost of these datasets, T2 provides simple decision trees with little or no lossin accuracy compared to C4.5.2.3 Statistical Concept LearningStatistical concept learning has been extensively studied for induction problems[21, 25, 69]. The main goal is to determine the classi�cation of a given instancebased on parametric or nonparametric techniques. The decision-making pro-cesses of humans are somewhat related to the recognition of patterns. Forexample the next move in chess game is based upon the present pattern onthe board, and buying or selling stocks is decided by a complex pattern ofinformation [25]. The goal of the pattern recognition is to clarify these com-plicated mechanisms of decision-making processes and to automate these func-tions using computers. Several pattern recognition methods, either parametricor nonparametric, have been presented in the literature [20, 21, 25, 69].Bayesian classi�er originating from work in pattern recognition is a proba-bilistic approach to inductive learning. This method estimates the (posterior)probability that an instance belongs to a class, given the observed feature val-ues for the instance. The classi�cation is determined by the highest estimatedposterior probability [21, 25]. Bayesian classi�ers assume that features are sta-tistically dependent. On the other hand, Naive Bayesian classi�er is one of themost common parametric classi�ers assuming independence of features.When no parametric structure can be assumed for the density functions,nonparametric techniques, for instance nearest neighbor method, must be used



CHAPTER 2. CONCEPT LEARNING MODELS 20for classi�cations [21, 25]. The nearest neighbor method is one of the simplestmethods conceptually, and is commonly cited as a basis of comparison withother methods. It is often used in case-based reasoning [62].This section is devoted to statistical concept learning methods becausethey have similarities to the FIL algorithms developed in this thesis First,Bayes Decision Theory and Naive Bayesian Classi�ers will be explained. Then,nearest neighbor methods with some variants will be discussed. Finally, a newversion of k nearest neighbor algorithm, k-NNFP, based on feature projectionswill be brie
y mentioned, and discussed in detail in Chapter 3 by comparingk nearest nearest neighbor techniques. In Chapter 5, the FIL algorithms willbe compared with these statistical methods.2.3.1 Bayes Decision Theory - Naive Bayesian Classi-�er (NBC)The goal of the Bayesian classi�cation is to determine the a posteriori proba-bilities P (Cjjx) where Cj is the class and x is the instance to be classi�ed. Aninstance x=< x1; x2; :::xn > is a vector of feature values where n is the num-ber of features. The a priori probability P (Cj) and the conditional densitiesP (xjCj) allows the use of Bayes rule to compute P (Cjjx).Let 
 = fC1; C2; ::; Ckg be the �nite set of k states of nature. Here each Cjcorresponds to a class in our terminology. Let the feature vector x be a vector-valued random variable, and let p(xjCj) be the state-conditional probabilitydensity function for x, that is, the probability density function for x conditionedon Cj being the state of nature. Finally, let P (Cj) be the a priori probabilitythat nature is in the state Cj. That is, P (Cj) is the proportion of all instancesof class j in the training set. Then the a posteriori probability P (Cjjx) can becomputed from p(xjCj) by Bayes rule [21]:P (Cjjx) = p(xjCj)P (Cj)p(x) (2.5)where



CHAPTER 2. CONCEPT LEARNING MODELS 21p(x) = kXj=1 p(xjCj)P (Cj): (2.6)Let A = f�1; �2; ::; �ag be the �nite set of a possible actions. Let �(�i; Cj)be the loss incurred for taking action �i when the state of nature is Cj . SinceP (Cjjx) is the probability that the true state of nature is Cj, the expected lossassociated with taking action �i isR(�ijx) = kXj=1�(�ijCj)P (Cjjx): (2.7)In decision theoretic terminology, an expected loss is called risk, and R(�ijx)is known as the conditional risk. Whenever we encounter a particular observa-tion x, we can minimize our expected loss by selecting the action that minimizesthe conditional risk. Now, the problem is to �nd a Bayes decision rule againstP (Cj) that minimizes the overall risk. A decision rule is a function �(x) thattells us which action to take for every possible observation. That is, for everyx, the decision function �(x) assumes one of the a values �1; �2; ::; �a. Theoverall risk R is the expected loss associated with a given decision rule. Tominimize the overall risk, we compute the conditional risk for i = 1; ::; a andselect the action �i for which R(�ijx) is minimum. The resulting minimumoverall risk is called the Bayes risk and is the best performance that can beachieved. R(�ijx) = kXj=1�(�ijCj)P (Cjjx) (2.8)The probability of error is the key parameter in pattern recognition. Thereare many ways to estimate error for Bayesian classi�ers. One of them is mini-mizing it. For example, if action �i is taken and the true state of nature is Cj,then decision is correct if i = j, and in error if i 6= j. A loss function for thiscase, called zero-one loss function is:



CHAPTER 2. CONCEPT LEARNING MODELS 22�(i; j) = 8<: 0 if i = j1 if i 6= j (2.9)The conditional risk becomesR(�ijx) =Xj 6=i P (Cjjx) (2.10)R(�ijx) = 1 � P (Cijx) (2.11)Note that P (Cijx) is the conditional probability that action �i is correct. Tominimize the average probability of error, one should maximize the a posterioriprobability P (Cj jx). For minimum error rate:Decide Ci if P (Cijx) > P (Cj jx) for all j 6= i:In summary, a Bayesian classi�er classi�es a new instance by applyingBayes' rule to determine the probability of each class given the instance,P (Cjjx) = p(xjCj)P (Cj)Pi p(xjCi)P (Ci) (2.12)The denominator sums over all classes and where P (xjCj) is the probabilityof the instance x given the class Cj. After calculating these quantities for eachclass, the algorithm assigns the instance to the class with the highest proba-bility. In order to make this expression operational, one must specify how tocompute P (xjCj). The Naive Bayesian Classi�er (NBC) assumes independenceof features within each class, allowing the following equalityP (xjCj) = nYf=1P (xf jCj): (2.13)An analysis of Bayesian classi�er has been presented [36]. Also a method,called Selective Bayesian Classi�er, has been proposed [37] to overcome the



CHAPTER 2. CONCEPT LEARNING MODELS 23limitation of the Bayesian classi�er for sensitivity to correlated features. SinceNBC considers each feature independently, this will form a basis for comparisonwith the FIL algorithms. The experimental results of these comparisons willbe presented in Chapter 5.2.3.2 Nearest Neighbor Classi�ers (NN)One of the most common classi�cation techniques is the nearest neighbor (NN)algorithm. In the literature, nearest neighbor algorithms for learning fromexamples have been studied extensively [17, 21]. Aha et al. have demonstratedthat instance-based learning and nearest neighbor methods often work as wellas other sophisticated machine learning techniques [5].The NN classi�cation algorithm is based on the assumption that exampleswhich are closer in the instance space are of the same class. An example isrepresented as a vector of feature values plus class label. That is, unclassi�edones should belong to the same class as their nearest neighbor in the trainingdataset. After all the training set is stored in memory, a new example is classi-�ed as of the class of the nearest neighbor among all stored training instances.Although several distance metrics have been proposed for NN algorithms [60],the most common metric is the Euclidean distance metric. Instances are rep-resented as a vector of feature values plus class label. The Euclidean distancebetween two instances x =< x1; x2; :::; xn; Cx > and y =< y1; y2; :::yn; Cy > onan n dimensional space is computed as:dist(x; y) = qPnf=1 diff(f; x; y)2 (2.14)diff(f; x; y) = 8>>><>>>: jxf � yf j if f is linear0 if f is nominal and xf = yf1 if f is nominal and xf 6= yf (2.15)Here diff(f; x; y) denotes the di�erence between the values of instances x, andy on feature f . Note that this metric requires the normalization of all featurevalues into a same range.



CHAPTER 2. CONCEPT LEARNING MODELS 24Although several techniques have been developed for handling unknown(missing) feature values [54, 55], the most common approach is to set them tothe mean value of the values on corresponding feature.Stan�ll and Waltz introduced the Value Di�erence Metric (VDM) to de�nethe similarity for symbolic-valued (nominal) features and empirically demon-strated its bene�ts [62]. The VDM computes a distance for each pair of thedi�erent values a symbolic feature can assume. It essentially compares therelative frequencies of each pair of symbolic values across all classes. Two fea-ture values have a small distance if their relative frequencies are approximatelyequal for all output classes. Cost and Salzberg present a nearest neighboralgorithm that uses a modi�cation of VDM, called MVDM (Modi�ed ValueDi�erence Metric) [15]. The main di�erence between MVDM and VDM isthat their method's feature value di�erences are symmetric. This is not thecase for VDM. A comparison of MVDM and Bayesian classi�er is presented in[56].A generalization of the nearest neighbor algorithm, k-NN, classi�es a newinstance by a majority voting among its k (� 1) nearest neighbors using somedistance metrics in order to prevent the intrusive e�ect of noisy training in-stances. This algorithm can be quite e�ective when the features of the domainare equally important. However, it can be less e�ective when many of thefeatures are misleading or irrelevant to classi�cation. Kelly and Davis intro-duced WKNN, the weighted k-NN algorithm, and GA-WKNN, a genetic algo-rithm that learns feature weights for WKNN algorithm [33]. Assigning variableweights to the features of the instances before applying the k-NN algorithmdistorts the feature space, modifying the importance of each feature to re
ectits relevance to classi�cation. In this way, similarity with respect to impor-tant features becomes more critical than similarity with respect to irrelevantfeatures. The study for weighting features in k-NN algorithm has shown thatfor the best performance the votes of the k nearest neighbors of a test exam-ple should be weighted in inverse proportion to their distances from the testexample [70].An experimental comparison of the NN and NGE (Nested Generalized Ex-emplars, a Nearest-Hyperrectangle algorithm) has been presented byWettschereck



CHAPTER 2. CONCEPT LEARNING MODELS 25and Dietterich [71]. NGE and several extensions of it are found to give pre-dictions that are substantially inferior to those given by k-NN in a variety ofdomains. An average-case analysis of k-NN classi�ers for Boolean thresholdfunctions on domains with noise-free Boolean features and a uniform instancedistance distribution is given by Okamoto and Satoh [48]. They observed thatthe performance of the k-NN classi�er improves as k increases, then reaches amaximum before starting to deteriorate, and the optimum value of k increasesgradually as the number of training instances increases.2.3.3 NN Classi�er on Feature Projections (NNFP)Another statistical approach is a new version of the k-NN classi�cation al-gorithm proposed in this thesis, which uses feature projections of traininginstances for classi�cation knowledge [7]. The classi�cation of an unseen in-stance is based on a majority voting on individual classi�cations made by theprojections of the training set on each feature. We have applied the k-nearestneighbor algorithm to determine the classi�cations made on individual featureprojections. We called the resulting algorithm k-NNFP, for k-Nearest Neighboron Feature Projections. The classi�cation knowledge is represented in the formof projections of the training data on each feature dimension. This allows theclassi�cation of a new instance to be made much faster than k-NN algorithm.The voting mechanism reduces the intrusive e�ect of possible irrelevant fea-tures in classi�cation. The k-NNFP algorithm is discussed in detail in Section3.3.



Chapter 3Feature Projections for KnowledgeRepresentationIn this chapter, feature projections for knowledge representation are discussedin detail. Given a set of training instances with correct class labels, knowledgefor representation of a concept description (or classi�cation) is maintained asthe projections of the training set on each feature dimension separately. Themost important advantage of this representation is that the projections of thefeature values can be sorted for each feature, and this reduces the time forthe computation of similarity to all training instances for nearest neighborlike techniques. An additional advantage is the easy and natural handling ofmissing feature values. The rationale behind this knowledge representation isthat humans maintain knowledge in this form, especially in medical domains.An example for this approach is presented, called CRiteria Learning System[66]. It aims to learn decision rules in the form of criteria tables as humans do.One of the shortcomings of feature projections is that descriptions involving aconjunction between two or more features can not be represented.This chapter discusses the CFP, COFI, and k-NNFP algorithms that usefeature projections for knowledge representation. Brie
y, the CFP and COFIalgorithms are based on feature partitioning and overlapping feature intervals,respectively. The most important property of these algorithms is that theyboth consider each feature separately in an incremental manner. The reportedresults show that both techniques are successful by processing each feature26



CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 27separately [27, 28, 65, 67]. The encouraging results of the CFP and COFIalgorithms motivated us for further investigation of feature projections as aform of knowledge representation from a di�erent point of view. We think thatmore accurate results can be obtained from these techniques if a batch learningstrategy is followed. After the discussion of the CFP and COFI algorithms, anew version of the classical k-NN algorithm which treats instances as featureprojections rather than points, called k-NNFP (k Nearest Neighbor on FeatureProjections) is presented. Next, an extension to it by weighting features forweighted-voting is presented.3.1 Classi�cation by Feature Partitioning (CFP)The CFP algorithm is a method for learning from examples that uses featureprojections for knowledge representation [27, 28, 65]. It is an incrementalsupervised inductive learning algorithm where instances are stored by theirfeature projections over each feature dimension. An instance is represented as avector of feature values plus a label that encodes the class of the instance. In thetraining phase, disjoint feature intervals of concept de�nitions are constructedby generalization and specialization. An interval is a basic unit of knowledgerepresentation in this algorithm. For each interval, lower and upper boundsof the feature values, the associated class, and the number of instances itrepresents are maintained.Initially, an interval is a point on a feature dimension. It can be extendedthrough generalization with other neighboring points in the same feature di-mension. In order to avoid overgeneralization, a parameter, called generaliza-tion limit (Df ), is given. Before generalizing an interval on a feature dimensionf to cover a new point, the distance between interval and the new point must beless than Df . Otherwise, new value forms a new point interval on that featuredimension. During training, if the feature value of a training instance falls intoan interval properly with the same class, the representativeness value is incre-mented by one. However, if it falls into an interval with a di�erent class thanthat of the instance, specialization of that interval is made by dividing it intosubintervals and inserting a point interval for the new value in between them.
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CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 29all feature weights are taken as 1. Assume that a new training example ismisclassi�ed by a feature f . Then the weight of that feature (wf) is decreasedby multiplying it by (1 - 4). Otherwise, it is increased by multiplying it by (1+ 4). Here, 4 is the global feature adjustment rate, given as a parameter toCFP.Classi�cation of an unseen instance is based on a vote taken among thepredictions made by each feature separately. The prediction of a feature isdetermined by the value of that instance on that feature. If it falls into aninterval with a known class, then the prediction is the class of that interval.If it falls on a point interval, the class with highest representativeness value ischosen among all the intervals at that point. If it doesn't fall in any interval,then no prediction for that feature is made. The e�ect of the prediction of afeature in the voting is proportional to the weight of that feature. The �nalclassi�cation is based on weighted majority voting among local predictions offeatures.In the CFP algorithm, feature intervals are constructed as disjoint set of fea-ture values. However, intervals may have common boundaries. In such cases,the representativeness values of the intervals are used to determine the predic-tion: the class label of the interval which has the maximum representativenessvalue is predicted.Several extensions to the CFP algorithm have been presented in order tohandle noisy values [64, 65] and determine the domain dependent parameters(Df and 4) of the CFP algorithm [27].In the noise-tolerant version of the CFP algorithm, feature intervals thatare believed to be introduced by noisy examples are removed from the memory[65]. A new parameter, called con�dence threshold (or level) is introduced tocontrol the process of removing the intervals from the concept description. Thecon�dence threshold and observed frequency of the classes are used togetherto decide whether an interval is noisy or not.In order to learn feature weights and domain dependent parameters of theCFP algorithm, a hybrid system, called GA-CFP, which combines a genetic
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Figure 3.2. Construction of intervals in the CFP algorithm by changing theorder of the training instances. Note that here the same set of instances inFigure 3.1., but in a di�erent order, is used as the training set: (a) after i3,i7,i5 and i6 are processed, (b) after all instances are processed.algorithm with the CFP algorithm has been developed [27]. The genetic algo-rithm is used to determine a very good set of domain dependent parameters(4 and Df for each feature) of the CFP, even when trained with a small setof the data set. An algorithm that hybridizes the classi�cation power of thefeature partitioning CFP algorithm with the search and optimization power ofthe genetic algorithm, called GA-CFP, requires more computations than theCFP algorithm, but achieves improved classi�cation performance.Figure 3.2 illustrates a limitation for the CFP algorithm. In order to seethe e�ect of the order of presentations of training instances, let us constructintervals by the CFP algorithm by changing the order of training instances.In this case, all instances with class C2 were processed before other instanceswith class C1 in the previous example, then the intervals would have beenconstructed as shown in Figure 3.2. Firstly, a range interval is constructed forthe class C2 from the �rst four instances as shown in Figure 3.2a, and thenthree point intervals are constructed for the last three instances of class C1 as inFigure 3.2b. The concept descriptions (intervals) in Figure 3.1 and Figure 3.2are very di�erent from each other although the same training instances wereprocessed. This indicates that the order of the instances is very important and
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CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 33Df = (current maxf � current minf) � g: (3.1)Here the current maximum and current minimum feature values are themaximum and minimum values of the related feature seen up to the currentexample and g is the generalization ration in the range [0; 1]. They are updatedby each new training example. Since current maximum and minimum of fea-tures change through out the training process, the COFI algorithm is a�ectedalso by the order of the training instances. In the �rst training instance, themaximum and the minimum values are equal to each other and they are the�rst feature values of the related feature of the training instance. Therefore,initially all the generalization distances are 0 for each feature. If the featurevalues of the next training instance are di�erent from the previous example'sfeature values, then one of the maximum and minimum value of the relatedfeature is updated so the generalization distance will also be updated.After deciding the generalization distance Df , the intervals should be up-dated according to Df . If the distance between the feature value of the newexample and the previously constructed intervals is greater than the Df , thenthe new example constructs a new point interval. Otherwise, representativenesscount of the interval containing it is incremented by 1. The COFI algorithmhandles both the linear and nominal feature values. However, the generaliza-tion process is applied only to linear type features. Nominal feature values arenot generalized, taking Df as 0 for nominal features.Figure 3.4 illustrates the construction of overlapping feature intervals in theCOFI algorithm. This sample training set with one feature and two classes.The incremental computation of Df;c for each class dimension is also shownin the Figure 3.4. For this example, on the C1 class dimension only pointintervals are constructed since the di�erence between feature values do notexceedDf;1. On the other hand, on the second class dimension, the last traininginstances' value forms a range interval since the di�erence between featurevalues is greater than Df;2.The classi�cation of an unseen test instance is based on a majority votingtaken among the individual predictions based on the votes of the features. The
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9Figure 3.6. An example of construction of intervals in the FIL Algorithmsusing the same set of training instances as in Figure 3.4 and Figure 3.5.constructed during the training process are unique whatever the order of thetraining instances is.3.3 K Nearest Neighbor Classi�cation on Feature Pro-jections (k-NNFP)In this section, a new approach to classi�cation is presented, which is based ona majority voting on individual classi�cations made by the projections of thetraining set on each feature [7]. We have applied the k-nearest neighbor algo-rithm to determine the classi�cations made on individual feature projections.We called the resulting algorithm k-NNFP, for k-Nearest Neighbor on FeatureProjections.The classi�cation knowledge is represented in the form of projections of thetraining data on each feature dimension. The classi�cation of an instance isbased on a voting taken on the classi�cations made on the basis of individualfeature projections.In Chapter 2, a brief introduction to k-NN algorithm and its several exten-sions were given. In the next subsection, the k-NNFP algorithm is described.Section 3.3.2 presents the complexity analysis and empirical evaluation of thek-NNFP and k-NN algorithms. Finally, Section 3.2.3 presents a summary ofthe k-NNFP algorithm and its applicability.



CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 363.3.1 The k-NNFP AlgorithmThis section presents the k-NNFP algorithm, a new classi�cation based onfeature projections using k nearest neighbor algorithm. First, the descriptionof the algorithm is given. Then the algorithm is explained through an exam-ple dataset. Later, the behavior of the algorithm on datasets with irrelevantfeatures will be given.3.3.1.1 Description of the k-NNFP AlgorithmThe implementation of the algorithm given here is non-incremental, namely, alltraining instances are taken and processed at once. An instance x is representedas x=< x1; x2; ::xn; Cx > where xis (1 � in) are the feature values and Cx isthe corresponding class label. An important characteristic of this algorithmis that instances are stored as their projections on each feature dimension. Inthe training phase, each training instance is stored simply as its projectionson each feature dimension. If the value of a training instance is missing for afeature, that instance is not stored on that feature.In order to classify an instance, a preclassi�cation separately on each fea-ture dimension is performed. During this preclassi�cation, we use the k-NNalgorithm on that single dimension. That is, for a given test instance t andfeature f , the preclassi�cation for k = 1 will be the class of the training in-stance whose value on feature f is the closest to that of the t. For a largervalue of k, the preclassi�cation is a bag (multiset) of classes of the nearest ktraining instances. In other words, each feature has exactly k votes, and givesthese votes for the classes of the nearest training instances. In some cases, es-pecially for nominal features, there may be ties to determine the �rst k nearestneighbors. In such cases ties are broken randomly. For the �nal classi�cationof the test instance t, the preclassi�cation bags of each feature are collectedusing bag union. Finally, the class that occurs most frequently in the collec-tion bag is predicted to be the class of the test instance. In other words, eachfeature has exactly k votes, and gives these votes for the classes of the nearesttraining instances. Also note that, since each feature is processed separately,



CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 37classify(t,k)/* t: test instance, k: number of neighbors */beginfor each class cvote[c] = 0for each feature f/* put k nearest neighbors of test instance ton feature f into Bag */Bag = kBag(f; t; k)for each class cvote[c] = vote[c] + count(c;Bag);prediction = UNDETERMINEDfor each class cif vote[c] > vote[prediction] thenprediction = creturn predictionend. Figure 3.7. Classi�cation in the k-NNFP algorithm.no normalization of feature values is needed.The k-NNFP algorithm is outlined in Figure 3.7. All the projections oftraining instances on linear features are stored in memory as sorted values. InFigure 3.7, the votes of a feature is computed by the function kBag(f; t; k),which returns a bag of size k containing the classes of the k nearest traininginstances to the instance t on feature f . The distance between the values on afeature dimension is computed using diff(f; x; y) metric as follows:diff(f; x; y) = 8>>><>>>: jxf � yf j if f is linear0 if f is nominal and xf = yf1 if f is nominal and xf 6= yf (3.2)Note that the bag returned by kBag(f; t; k) does not contain any UNDETER-MINED class as long as there are at least k training instances whose f valuesare known. Then, the number of votes for each class is incremented by thenumber of votes that a feature gives to that class, which is determined by the



CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 38count function. The value of the function count(c; Bag) is the number ofoccurrences of class c in bag Bag.The k-NNFP algorithm handles unknown feature values in a straight for-ward manner. If the value of a test instance for a feature f is missing, thenfeature f does not participate in the voting for that instance. The �nal votingis done between the features for which the test instance has a known value.That is, unknown feature values are simply ignored.3.3.1.2 An ExampleIn order to describe the classi�cation in the k-NNFP algorithm, consider thesample training dataset in Figure 3.8. In this dataset, the feature f0 is the onlyrelevant feature, and f1 is an irrelevant feature. There are three instances ofeach class A, B, and C in the training set. Let the test instance (< 5; 5 >) beof class B.For the test instance in Figure 3.8, the k-NN classi�cation, kBag valuesand �nal prediction for the k-NNFP algorithm are given in Table 3.1. As seenin Table 3.1, the k-NN algorithm will classify the test instance as C if k = 1,as C or A if k = 2, as C, A or B if k = 3, and as C if k = 4. On the other hand,the k-NNFP algorithm will classify the test instance correctly if k > 1. Thisexample shows that the k-NNFP algorithm will be una�ected in the presenceof irrelevant features.3.3.1.3 Handling Irrelevant FeaturesThe conclusion about the irrelevant features from the previous example canbe generalized. For an irrelevant feature f , the number of occurrences of aclass C in a bag returned by kBag(f; t; k) is proportional to the number ofinstances of class C in the training set. If there are equal number of instancesof each class in the training set, than the votes of an irrelevant feature will beequal for each class, and the �nal prediction will be determined by the votesof the relevant features. If the training instances are not equally distributed
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Figure 3.8. A sample training dataset and a test instance.among the classes, then the votes of an irrelevant feature will be for the mostfrequently occurring class.Table 3.1. For the test instance (< 5; 5 >) in Figure 2 the k-NN classi�cation,kBag values and �nal prediction of the k-NNFP algorithm.k-NNFPk k-NN f0 f1 Sum of Votes Prediction1 [C] [B] [C] [B,C] B or C2 [C,A] [B,B] [C,A] [A,B,B,C] B3 [C,A,B] [B,B,B] [C,A,C] [A,B,B,B,C,C] B4 [C,A,B,C] [B,B,B,A] [C,A,C,B] [A,A,B,B,B,B,C,C] B3.3.1.4 Handling Missing Feature ValuesThe k-NNFP algorithm handles unknown (missing) feature values by simplynot taking them into account. During batch training and classi�cation, the



CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 40features containing missing values are simply ignored. This is a natural ap-proach because in real life if nothing is known about a feature, it is usuallyignored. If all class dimensions give no prediction, then no prediction can bemade and the resulting prediction for the class is UNDETERMINED. This isan unexpected case since at least one feature value should be known.3.3.2 Evaluation of the k-NNFP AlgorithmSeveral measures of performance are possible. One performance measure of aclassi�cation algorithm is its classi�cation accuracy. For supervised conceptlearning tasks, the most commonly used classi�cation accuracy metric is thepercentage of correctly classi�ed instances over all test instances for a givendataset. The other performance measures are time and space complexities. Inthis section, the training and classi�cation complexities of the k-NNFP andthe k-NN algorithms are given. Next, an empirical evaluation of the algorithmis presented along with its comparison with the k-NN algorithm in terms ofclassi�cation accuracy for increasing values of k and running time.3.3.2.1 Complexity AnalysesSince all the training instances are stored in the memory in both k-NN and k-NNFP algorithms, the space required for training withm instances on a domainwith n features is proportional to m�n. That is, the space complexities of thesealgorithms are O(m � n).In the training, all instances are stored on each feature dimension as theirfeature projections. And then they are sorted once at the end. Since thesorting of m feature values has the time complexity of O(m logm) For a datasetcontaining m instances and n features the training time complexity of the k-NNFP is O(n �m � logm). On the other hand, the k-NN algorithm has the timecomplexity of O(m � n) for storing all instances in memory.The kBag(f; t; k) function, to determine the votes of a feature, �rst �nds thenearest neighbor of t on f and then next k � 1 neighbors around the nearest



CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 41neighbor. The time complexity of this process is O(logm + k). The �nalclassi�cation requires the votes of each of n features. Therefore, the averageclassi�cation time complexity of the k-NNFP algorithm is O(n � (k + logm)).On the other hand, in the k-NN algorithm, the classi�cation of a test in-stance requires the computation of its distance to m training instance on n di-mensions. Time complexity of computing the distance between two instancesis O(n). So, computing the distance to m training instances is O(m � n) .Sorting m instances according to their distances is O(m logm). Therefore, theclassi�cation time complexity of a single instance in the k-NN algorithm isO(m(n+ logm)), assuming m >> k.3.3.2.2 Empirical EvaluationHere, an empirical evaluation of the k-NNFP algorithm on both real-worlddata sets and arti�cially generated datasets is presented in order to show thee�ect of irrelevant features on the classi�cation accuracy. The results will becompared with that of the k-NN algorithm.Experiments with Real-World DatasetsThe k-NNFP and k-NN algorithms are evaluated on some real-world datasetswhich are widely used in the machine learning �eld, therefore comparisons willbe possible with other similar methods in future. The real-world datasets areselected from the UCI-Repository [47]. An overview of the datasets is given inAppendix A, and they are brie
y explained.Accuracy of an algorithm is a measure of correct classi�cations on a testset of unseen instances. There are several ways of measuring the accuracy ofan algorithm. In this study, we chose the 5-fold cross-validation technique.That is, the whole dataset is partitioned into 5 subsets. The four of the sub-sets is used as the training set, and the �fth is used as the test set, and thisprocess is repeated 5 times once for each subset being the test set. Therefore,each instance appears once in the test set, and four times in the training set.Classi�cation accuracy is the average of these 5 runs.



CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 42Table 3.2. Accuracy (%) and average running time (msec) of the k-NNFPalgorithm on real-world datasets.Data Set: bcancerw cleveland glass hungarian ionosphere iris liver musk winek=1 94.00 67.62 57.00 70.04 88.04 90.00 50.44 69.54 79.7k=2 94.56 72.28 62.14 70.70 88.02 92.00 53.92 71.40 90.4k=3 94.88 72.94 61.18 75.84 88.02 91.34 55.68 70.76 90.96k=4 95.72 77.56 60.74 73.80 87.46 92.64 58.84 71.40 93.24k=5 96.16 78.88 60.72 76.16 87.46 91.30 58.26 71.22 93.24k=6 96.00 77.86 63.54 72.76 87.78 91.88 61.16 69.96 95.48k=7 96.00 79.52 62.58 74.80 87.74 92.00 61.46 70.36 95.48k=8 96.14 79.18 63.98 73.76 86.90 92.66 61.76 69.96 96.04k=9 96.14 78.52 63.04 75.80 87.44 92.00 62.04 69.52 96.62k=10 96.14 78.86 64.90 72.76 87.46 94.02 62.90 69.10 96.62Avg. Time 340 740 94 266 477 40 1022 2654 282Table 3.3. Accuracy (%) and average running time (msec) of the k-NN algo-rithm on real-world datasets.Data Set: bcancerw cleveland glass hungarian ionosphere iris liver musk winek=1 95.00 80.52 68.66 75.50 84.62 93.98 63.48 73.10 94.40k=2 93.84 80.20 67.70 79.54 88.06 94.00 60.58 77.54 94.42k=3 96.28 82.50 66.76 81.58 83.78 94.68 66.66 70.18 96.60k=4 95.72 82.84 68.14 80.92 85.20 94.00 62.60 74.16 94.38k=5 96.58 83.80 66.30 82.26 83.20 94.66 64.92 67.88 96.04k=6 96.56 82.82 67.24 83.64 83.76 95.32 61.46 69.14 96.08k=7 96.26 82.50 65.36 83.28 82.34 94.66 64.64 65.58 96.04k=8 95.86 82.16 65.36 83.62 84.06 94.66 64.36 67.86 95.48k=9 95.56 82.82 65.34 82.94 82.62 94.66 67.54 65.16 96.04k=10 95.70 81.48 63.96 83.96 84.06 94.66 63.20 67.86 96.06Avg. Time 3216 7786 318 695 2335 105 2060 18520 615Table 3.4. The average time (in msec) required to train with 80% and testwith the 20% of the arti�cial datasets for increasing number of features.Number of features4 6 8 10 12 14k-NNFP 85 212 285 367 517 556k-NN 365 937 1257 1335 1472 1720



CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 43The accuracy of the k-NNFP in Table 3.2 and k-NN in Table 3.3 wereobtained for the speci�ed datasets for k = 1, 2, ... 10. These experiments showthat the classi�cation accuracy of the k-NNFP algorithm usually increaseswhen the value of k increases. This suggests that the k-NNFP algorithm canexploit the knowledge represented in the form of feature projections for highervalues of k. On the other hand, increase in the value of k does not resultin a parallel increase in the accuracy of the k-NN algorithm. Langley andSage's works on NN classi�ers suggest that many of the UCI datasets have fewirrelevant features, if any. Our experimental results also support this claim.Experiments on Arti�cial DataAs illustrated through an example in subsection 3.3.1, the k-NNFP algo-rithm is, in general, una�ected from the presence of irrelevant features in thedataset. Experiments with arti�cial datasets have important roles to play inthe study of irrelevant features. Hence, in order to empirically prove this claim,we have generated six datasets with increasing number of irrelevant featuresfrom zero to ten. Each of the datasets contain four relevant features, threeclasses with 100 instances each. A class is represented by a hyperrectangle infour (relevant) dimensional space, the values for irrelevant features are ran-domly generated. We have conducted 5-fold cross-validation experiments onthese six datasets, and compared the results of k-NNFP and k-NN algorithms.The accuracy results are plotted in Figure 3.9.As seen from these results, the decrease in the accuracy of the k-NNFPalgorithm when the number of irrelevant features increase is much less thanthat of the k-NN algorithm. Also we observed that the accuracy of the k-NNFP algorithm increases parallel to the increase in the value of k, whereasthe accuracy of the k-NN algorithm is not correlated with increase in the valueof k.The time required to train the k-NNFP and the k-NN algorithms with the80% of the data and test with the remaining 20% for these datasets are givenin Table 3.4. The comparison of the running times in this table agrees withthe time complexity analysis of these algorithms given in Section 3.3.2.1.
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# irrelevant features: 10Figure 3.9. Comparison of k-NN and k-NNFP on arti�cial datasets for in-creasing value of k. In all datasets there are 4 relevant features, 3 classesand 100 instances for each class. The accuracy results are obtained by 5 waycross-validation.



CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 453.3.3 DiscussionA new form of classi�cation method, called k-NNFP, has been presented. Thisalgorithm has been compared with the k-NN algorithm in terms of classi�cationaccuracy and time complexity on both real-world and arti�cially generateddatasets.In the k-NNFP algorithm, the classi�cation knowledge is represented inthe form of sets of projections of the training data separately on each featuredimension. The classi�cation of an instance is based on a majority votingtaken on the classi�cations made on the basis of individual feature projections.Since each feature is processed separately, there is no need for normalization offeature values. Also, for the same reason, the algorithm can simply ignore anymissing feature values that may appear both in training and test instances. Thee�ect of the missing and noisy feature values on the prediction accuracy of thek-NNFP algorithm will be investigated as a future work. As another directionfor future work, we plan to integrate a feature weight learning algorithm tok-NNFP.The k-NNFP algorithm is based on the assumption that each feature cancontribute the classi�cation process and the majority voting provides a correctclassi�cation when data contain many irrelevant features. The k-NNFP algo-rithm can provide better classi�cation accuracy than k-NN algorithm whena dataset contains many irrelevant features with respect to relevant ones.This claim has been justi�ed on arti�cially generated datasets. On real-worlddatasets, the k-NNFP algorithm achieves comparable accuracy with the k-NN algorithm. On the other hand, the average running time of the k-NNFPalgorithm is much less than that of the k-NN algorithm.The k-NNFP algorithm treats feature values independently, whereas the k-NN algorithm treats all instances as points in n-dimensional Euclidean space.The k-NNFP algorithm stores the feature projection of the training instancesin a sorted order. Therefore, the classi�cation of a new instance requires asimple search of the nearest training instance value. On the other hand, in thek-NN algorithm, a new search must be done for each test instance in the wholeEuclidean space.



CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 463.4 Weighting Features in k Nearest Neighbor Classi-�cation on Feature Projections (k-NNFP)We propose two methods for learning feature weights to improve the classi�ca-tion accuracy of the k-NNFP algorithm. The classi�cation of unseen examplesare made on the basis of feature projections by a majority voting among thek (� 1) predictions of each feature separately. We have treated all features asequivalent in this algorithm (Section 3.3). However, all features may not haveequal relevance, even some features may be completely irrelevant. In order todetermine features' relevances, the best method is to assign them weights. The�rst method is based on the homogeneity of feature projections for which thenumber of consequent values of feature projections of a same class supports anevidence for increasing the probability of correct classi�cation in the k-NNFPalgorithm. We called this method HFP (Homogeneous Feature Projections).The second method is based on the individual accuracies of features. We calledthis method SFA (Single Feature Accuracy). In this approach, the k-NNFPalgorithm is run on the basis of a single feature, once for each feature. Theresulting accuracy is taken as the weight of that feature since it is a measureof contribution to classi�cation for that feature. Empirical evaluation of thesefeature weighting methods in the k-NNFP algorithm on real world datasets isgiven.These feature weighting methods aim to investigate the e�ect of weightassigning to features in k-NNFP algorithm. In these methods, no domain-speci�c knowledge is used. These methods can be categorized according toWettshereck and Aha's �ve-dimensional framework's �rst dimension [72] asignorant and feedback, respectively, since homogeneity of feature projectionsweight setting does not use any feedback from the k-NNFP algorithm whereasthe second one uses feedback from k-NNFP algorithm. These methods modifythe voting mechanism of k-NNFP algorithm by incrementing the vote of thepredicted class by using the feature weight. These feature weighting methodscan be easily incorporated into other classi�cation algorithms that use featureweights.In this study, we aim to investigate the importance of features' contribution



CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 47to �nal classi�cation since to assign higher weights to more relevant features in-crease the reliability of voting. This study focused on the empirical evaluationsof feature weighting methods proposed on real-world datasets.Comparison of similar algorithms highlights dissimilarities that can explainobserved performance di�erences. Our experimental results show that weight-ing features in the k-NNFP algorithm improves the accuracy e�ectively in somereal-world datasets, especially for smaller k values. An explanation of observedperformance di�erences is presented in the third subsection.In the next subsection, the k-NNFP algorithm is given with its weightedversion, brie
y. In the subsequent subsection, a detailed descriptions of fea-ture weighting methods studied are given. The third subsection presents theempirical comparison of these methods on real-world datasets taken from theUCI-Repository [47]. The last subsection presents a summary of these featureweighting methods.3.4.1 The Weighted k-NNFP AlgorithmIn Section 3.3, the k-NNFP algorithm was introduced for classi�cation basedon feature projections using k nearest neighbor algorithm. Since all featurevalues are treated separately, there is no need for normalization of featurevalues. In the learning phase, each training instance is stored as its projectionson each feature dimension. If the value of a training instance is missing for afeature, that instance is not stored on that feature. The k-NNFP algorithmstores the feature projections of training instances in a sorted order. Therefore,the classi�cation of a new instance requires a simple search of the nearesttraining instance values on each feature. The classi�cation of an instance isbased on a majority voting taken on the classi�cations made on the basis ofindividual feature projections. In general, with the majority voting for �nalclassi�cation, the e�ect of irrelevant features may be reduced. On the otherhand, each feature can contribute to the classi�cation by its relevance. So,if we place weights on features before voting, this can provide more accurateresult for �nal class by re
ecting each feature's relevance in the classi�cation.The weighted k-NNFP algorithm is outlined in Figure 3.7. This algorithm



CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 48classify(t; k)/* t: test instance, k: number of neighbors */beginfor each class cvote[c] = 0for each feature f/* put k nearest neighbors of test instance ton feature f into Bag */Bag = kBag(f; t; k)/* each feature contributes proportional ot its weight */for each class cvote[c] = vote[c] + weight[f ] * count(c;Bag);prediction = UNDETERMINEDfor each class cif vote[c] > vote[prediction] thenprediction = creturn predictionend. Figure 3.10. Classi�cation in the weighted k-NNFP algorithm.was explained in Section 3.2.1.1. Here, the number of votes for each class isincremented by multiplying the weight of that feature by number of votes thata feature gives to that class, which is determined by the count function. Thevalue of count(c; Bag) is the number of occurrences of class c in bag Bag.3.4.2 Some Methods for Learning Feature WeightsTwo feature weighting methods are proposed for k-NNFP algorithm to seethe e�ect of irrelevant, and relevant features with relative relevancies. Firstly,the homogenity of feature projections method is discussed. Next, the secondmethod which is based on the single feature accuracy is presented.
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1Figure 3.12. Heterogeneous distribution on a feature dimension3.4.2.1 Weight Learning Based on Homogenity of ProjectionsThe basic motivation for this method comes from the k-NNFP algorithm itself.The assumption of the k-NNFP algorithm is that closer values on a feature di-mension are of the same class, distribution of trainig instances on a featuredimension is homogenious. That is, the projections of all training instances ofthe same class are grouped together. Figure 3.11 and Figure 3.12 illustrateshomogeneous and heterogeneous feature projections, respectively. In homo-geneous feature projections, the total number of consequent values of a sameclass can give a measure for its relevancy for classi�cation prediction. In k-NNFP algorithm, all seen feature values are stored in memory as sorted. Wecan determine the weight of a feature as follows: Initially, a count is set to 0,then for all sorted feature values, if the consequent feature value's class is sameas the previous one, then count is incremented. Therefore, feature weight canbe found by dividing that count by the total number of distinct feature valueson that feature. This can be summarized as follows:wf = PVfv=1 �(f;v)Vf (3.3)�(f; v) = 8<: 1 if Cv;f = Cv+1;f0 otherwise (3.4)All feature weights are computed using this formula. Here Cv;f denotes the



CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 50class label of vth value on feature dimension f , and Vf denotes the number ofdistinct values on feature dimension f . This equation always gives a value fora feature between 0 and 1, so it can be the probability of correct classi�cationfor that feature. These are incorporated with feature weights to allow thatmore important features contribute to classi�cation process more e�ectively.3.4.2.2 Weight Learning Based on Single Feature AccuracyThe second method is motivated from the work of Holte since each feature isprocessed individually in k-NNFP algorithm [30]. We called this method SFA(Single Feature Accuracy) since feature weights are learned from the accuracyof the k-NNFP algorithm of each feature individually. Holte reports the resultsof experiments measuring the performance of very simple rules on the datasetscommonly used in machine learning research. The speci�c kind of rules stud-ied is called 1-rules, which classify an object on the basis of a single feature.This study motivated us to examine the classi�cation accuracy of the k-NNFPalgorithm on the basis of a single feature. Therefore, those accuracies can beused as the weight of that feature since those accuracies re
ect how much eachfeature can contribute to the �nal classi�cation. However, a totally irrelevantfeature will have about 1=No of Classes accuracy, called random accuracy. Inorder to avoid random correct classi�cation, we subtract the random accuracyof a feature from the individual accuracies.3.4.3 Experiments on Real-World DatasetsAn empirical evaluation of two feature weighting methods, HFP and SFA, ispresented here along with their comparisons with unweighted version of thek-NNFP algorithm by 5-fold cross-validation.. The weighted versions of the k-NNFP algorithm are evaluated on some real-world datasets selected from thecollection of datasets provided in the UCI-Repository [47]. The characteristicsof these datasets are shown in Appendix A.The accuracy results of k-NNFP and its two weighted versions are givenin Table 3.5. In this table, the �rst row of each k value presents the k-NNFP



CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 51Table 3.5. Accuracies (%) of the k-NNFP (N) and its weighted versions usinghomogeneneous feature projections (HFP) and single feature accuracy (SFA)feature weighting methods.Data Set: bcancerw cleveland glass hungarian ionosphere iris liver wineN k=1 94.00 67.62 57.00 70.04 88.04 90.00 50.44 79.70HFP 94.28 67.62 57.92 68.70 88.32 89.98 50.42 87.58SFA 94.28 79.60 57.00 61.52 88.60 89.98 58.26 87.00N k=3 94.88 72.94 61.18 75.84 88.02 91.34 55.68 90.96HFP 95.02 72.92 62.14 77.88 88.02 94.02 56.52 94.36SFA 95.02 77.24 62.58 77.18 88.02 94.68 60.58 94.9N k=5 96.16 78.88 60.72 76.16 87.46 91.30 58.26 93.24HFP 96.02 80.18 59.78 77.86 87.18 93.32 57.96 94.38SFA 96.16 80.50 65.84 74.78 87.74 94.00 63.50 94.90N k=7 96.00 79.52 62.58 74.80 87.74 92.00 61.46 95.48HFP 94.96 79.20 63.06 76.86 87.80 93.34 61.44 95.52SFA 95.86 81.50 66.76 74.78 86.90 94.00 64.64 95.50N k=9 96.14 78.52 63.04 75.80 87.44 92.00 62.04 96.62HFP 96.28 79.18 63.06 78.20 87.74 94.02 62.32 96.62SFA 96.28 81.52 66.30 72.74 87.74 94.68 64.94 97.20algorithm results, the second row is the results of the HFP weight learning,and �nally the third row presents the results of SFA feature weighting method.These experiments showed that none of the weight learning algorithms im-proved the k-NNFP algorithm on the bcancerw and ionosphere datasets signif-icantly. This should be because all the features on these datasets are equallyrelevant. On the cleveland, liver, iris and glass (except k = 1) datasets, theweights learned by the individual accuracies always performed signi�cantly bet-ter than the others. The HFP weight learning method performed better thanthe other on the hungarian dataset, except k = 1. There were no signi�cantdi�erence between the two weight learning algorithms on the wine dataset.Our �ndings emphasize that weighted versions do not improve the k-NNFPalgorithm e�ectively in most of the real-world datasets. Langley & Sage con-cluded from their experiments with feature selection that a number of datasets in the UCI repository contain few or no irrelevant features [38].3.4.4 DiscussionA version of the well-known k-NN algorithm, that stores the classi�cationknowledge as the projections of the training instances on the features, calledk-NNFP algorithm, had been shown to be successful (Section 3.3). We have



CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 52presented two methods for determining the relative weights of features for usein the k-NNFP algorithm. The HFP method assigns a higher weight to featureson which the projections of instances of the same class are located close to eachother, resulting in a homogeneous distribution. The SFA method, on the otherhand, assigns a weight as the classi�cation accuracy that would have beenobtained if only that feature were used in the classi�cation.Our experiments revealed that these weighting methods assign low weightsto completely irrelevant features, and high weights to relevant ones. Further,among these two weight learning algorithms, the one that is based on theindividual accuracies learned weights that helped k-NNFP achieve higher ac-curacies. The reason for this success is due to the feedback received from theclassi�cation algorithm. We conclude that this weight learning method couldbe successful for other classi�cation algorithms that use feature weights. As afurther work we plan to investigate these weight learning methods on arti�cialdatasets.3.5 SummaryIn this chapter, feature projections for knowledge representation have beenpresented. The most important advantage of this representation is that sortedfeature values reduces the time for computation of similarity to all traininginstances for NN like techniques. In addition, since each feature is consid-ered separately, handling of missing feature values by simply ignoring them isnatural. Furthermore, this representation is plausible. The major drawback offeature projections knowledge scheme is that descriptions involving conjunctionbetween two or more features cannot be represented. However, prior researchon this representation, by the CFP and COFI algorithms, has shown that theyare successful in classi�cation of real-world tasks.The next chapter will introduce several batch learning methods for classi�-cation where knowledge is represented in the form of disjoint feature intervals.This is one of the primary contributions of this thesis.



Chapter 4Batch Learning of Disjoint FeatureIntervalsThis chapter is devoted to batch Feature Intervals Learning (FIL) algorithms.We have seen in the previous chapter that feature projections for knowledgerepresentation have become successful with the advantage of lower time re-quirement of classi�cation task and natural handling of missing feature values;despite its limited representation power. The CFP and COFI algorithms pre-sented in Chapter 3 are incremental supervised inductive learning algorithms(Section 3.1 and Section 3.2). Hence, the classi�cation knowledge learned bythese algorithms is sensitive to presentation order of training instances. InSection 3.3, we have presented a new classi�cation algorithm k-NNFP thatclassi�es unseen instances on the basis of feature projections in a batch mode.That is a variation of classical k-NN algorithm. This chapter is, therefore,devoted to developing batch learning of feature intervals and several modi�-cations that can improve their performance. Basic characteristics of the FILalgorithms are that they are batch supervised inductive learning algorithms,based on feature intervals for knowledge representation. Although classi�ca-tion is much faster in the k-NNFP algorithm, its storage requirements are quitehigh. The algorithms discussed in this chapter attempt to �nd more compactrepresentations of the training data by constructing feature intervals that repre-sent a collection of feature values that belong to the same class. More compactrepresentations lead to faster classi�cations and may increase the ability of theuser to understand decisions made by the classi�er.53
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uFigure 4.1. An example for an interval.The FIL algorithms described here are the FI1, FI2, FI3, and FI4 algorithmswith slight di�erences. First, we will explain the training and classi�cationprocess in the basic FIL algorithm, FI1, through examples and then present thedetails of the algorithms. This is followed by discussion of modi�ed algorithms(FI2, FI3, FI4). Finally, general characteristics of the FIL algorithms arediscussed classifying them according to some important dimensions in machinelearning.4.1 Basic De�nitionsFirst, we will give some necessary de�nitions before explaining the FIL algo-rithms.De�nition. An interval is a range of values of a feature dimension, suchthat all the training instances whose values for that feature fall into that rangehave the same class label.Figure 4.1 shows an example for a feature interval. This interval representedas < [xl; xu], r, C1 > on feature f indicates that, in the training set there arer instances whose f values lie in the range [xl; xu] and their class label is C1.De�nition. A point interval is an interval whose lower and upper boundsare the same.An example for a point interval is given in Figure 4.2. Here, there aretraining instances whose f values are x and their class label is C1. Otherneighboring feature values belong to di�erent classes from C1. There may bemore than one point interval at a same feature value.De�nition. A range interval is an interval whose lower and upper bounds
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f:Figure 4.3. An example for a multi-class point.are not equal (xl 6= xu).Figure 4.1 also illustrates a range interval. Range intervals contain severalfeature values belonging to a same class label.De�nition. A single-class point is a value on a feature dimension thatbelongs to the single class label.For example, x in Figure 4.2 is a single-class point on feature f . Neighboringsame single-class points are extended into intervals. But, point intervals maybe constructed at single-class points if the neighboring feature values belongto di�erent class labels.De�nition. A multi-class point is a value on a feature that belongs tomore than one class labels.Figure 4.3 illustrates an example for a multi-class point. That is, thereare r1 training instances of class C1, r2 training instances of class C2, and r3training instances of class C3 whose f values are x1. These can be representedin three point intervals:< [x1; x1]; r1; C1 >,< [x1; x1]; r2; C2 >,< [x1; x1]; r3; C3 >.



CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 564.2 Description of the FIL AlgorithmsIn this section, the training and classi�cation processes of the FIL algorithmswill be explained through examples. Then, the details of these algorithmswill be presented. Also voting-based classi�cation process will be illustratedthrough examples.4.2.1 The FI1 AlgorithmIn the training phase of the FI1 algorithm (basic FIL), learning task is per-formed by constructing disjoint feature intervals in a batch mode. All traininginstances are taken and processed at once. Feature intervals on each feature di-mension are constructed through generalization. Concept descriptions learnedare represented in the form of sets of disjoint feature intervals. For the classi�-cation task, each feature determines its own prediction (preclassi�cation) usingonly its local knowledge by searching the interval covering test example's valuefor that feature. The classi�cation of an instance is based on a majority votingtaken among the preclassi�cations made by each feature. The FIL algorithmscan handle both continuous (linear) and nominal valued features.4.2.1.1 Training in the FI1 AlgorithmThe input to the FI1 algorithm is a training set that contains examples rep-resented as vectors of feature values plus the corresponding class label. Anexample is represented as x=< x1; x2; ::; xn; Cx > where x1; x2; ::; xn are thecorresponding feature values of features f1; f2; ::; fn, and Cx is the associatedclass label of the example x where 1 � C � k, here k is the total number ofthe classes. Therefore, the dimension of the example vector i is n+ 1 where nis the number of features.Since the FI1 algorithm learns in a batch mode, it takes all training exam-ples and processes them at once. In the FI1 algorithm, the basic unit of theknowledge representation is an interval with four parameters:



CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 57< [lower bound; upper bound]; representativeness count; class label >Lower and upper bounds of an interval are the minimum and maximum fea-ture values that fall into the interval, respectively. Representativeness countis the number of the instances that the interval represents. Finally, the classlabel is the associated class of the interval. In other words, learned classi�-cation knowledge is represented as the set of feature intervals by generalizingneighboring same single-class points into intervals. Feature intervals are dis-joint. However, multi-class points remain as point intervals as in Figure 4.3.In that case, a set of point intervals (upper and lower bounds are equal) areconstructed for multi-class points. Otherwise, disjoint feature intervals aresingle-class intervals.Let us give an example to illustrate the training process of the FI1 algo-rithm. Here, training instances are represented also as vectors of feature valuesand the associated class as shown in Figure 4.4. Training set has 18 examplesdescribed with three linear features. There are there di�erent classes in thissample training set (C1, C2 and C3). First, feature projections on each featuredimension are displayed in Figure 4.4 for this sample training set. This corre-sponds to the process of presenting all training instances initially and storingthem in memory as sorted (if they are linear features) on each feature dimen-sion. That is the only information kept in the memory to construct featureintervals.Then, from this knowledge, initial point intervals are constructed with equallower and upper values. This is the same as feature projections shown inFigure 4.4, except additional information such as lower, upper bound values,representativeness count and associated class label. Since all features are linear,their intervals are generalized. Generalization process combines neighboringpoint intervals into a single interval if they are of the same class. The resultingconcept descriptions in the form of feature intervals is given in Figure 4.5.For example, the feature projections on the �rst feature dimension forms thefollowing set of feature intervals on f1 dimension:
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train(Training Set)begin sortTrainingData(Training Set) /* on each feature dimension */construct-intervals(Training Set)end.construct-intervals(Training Set)begin for each feature ffor each training instance iinitialize-point-intervals(f; i)if f is linear thengeneralize-point-intervals(f)/* if f is a nominal feature, no generalization is done */end.generalize-point-intervals(f)begin for each consecutive interval pairif their classes are same and they are single-class intervals thenjoin them into a range interval/* update lower, upper and representativeness values */end. Figure 4.6. Training process in the FI1 algorithm.
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CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 62no classi�cation can be made and the resulting decision for the class will beUNDETERMINED. Nevertheless, this case is quite unlikely to occur in real-worlddatasets.In order to determine the �nal classi�cation, the local vote of each fea-ture are summed up. The class which receives the the maximum vote is theclassi�cation for the test instance. This can be summarized as follows.classification(test) = c such that vc > vi for each i 6= c.Let us illustrate the classi�cation process of the FI1 algorithm by classifyingthe test instance < 2; 14; 9; C1 > according to the concept descriptionslearned by the FI1 algorithm in the training phase as shown in Figure 4.5.Each feature value of this test instance is indicated in Figure 4.7 by arrowson each feature dimension. Each feature makes a preclassi�cation for thisinstance. In the �rst dimension, the �rst feature value, 2, falls into the �rstinterval with class C1, < [1; 3]; 2; C1 >. Therefore, it predicts that the class ofthe test instance should belong to the class C1. The result of preclassi�cationof the second feature is again class C1 since the second feature value, 14, fallsinto the interval < 10; 15; 6; C1 >. The third feature makes no prediction sincethe third feature value, 9, is not contained by any interval. The vote vectorfor this test instance becomes < 2; 0; 0 >. Here, 2 votes for class C1 and novotes for classes C2, C3. The class which receives the maximumvote, C1 in thiscase, is determined as the �nal class prediction. Since the actual class valueof the test instance is also C1, the �nal prediction is a correct classi�cation.It should be noted that, for this example, equal feature weights are assumed.The classi�cation process of the FI1 algorithm is outlined in Figure 4.8. Someexperiments will be performed to investigate the e�ect of weighting features invoting mechanism in Chapter 5.



CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 63classify(test)beginfor each class cvote[c] = 0for each feature finterval = search-interval(f , testf)/* each feature contributes proportional to its weight */if class of interval 6= UNDETERMINED thenvote[class of interval] = vote[class of interval] + weight[f ];prediction = �rst classfor each class cif vote[c] > vote[prediction] thenprediction = cif vote[prediction] = 0 thenprediction = UNDETERMINED /* all features make no prediction */return predictionend.search-interval(f; value)beginif value on f is a single-class point thenreturn interval on that pointelse if value on f is multi-class point thenreturn interval with the highest representativeness countelse if value on f is contained in a range interval thenreturn interval on that valueelse /* no interval exists for that value */return UNDETERMINEDend. Figure 4.8. Classi�cation process in the FI1 algorithm.
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Figure 4.9. An Example for an incorrect classi�cation in the FI1 algorithmthat leads to the FI2 Algorithm.4.2.2 The FI2 AlgorithmFigure 4.9 illustrates classi�cation of another test example < 4; 16; 8; C1 >.In this case, features f2 and f3 make no predictions since projections on thesefeatures are not contained by any interval. The �rst feature value falls into amulti-class point of class C3. The FI1 algorithm determines the local predictionof the �rst feature according to the class that has the maximum representative-ness count. Hence, C3 will be predicted without considering the distributionof classes. This leads to a slight modi�cation in the FI1 algorithm, called FI2.Basic unit of knowledge representation in the FI2 algorithm is also intervalwith a slight di�erence: it uses relative representativeness count which is theratio of the representativeness count to the total number of training instancesof the corresponding class rather than absolute representativeness count.In this sample training set, there are three training instances of C1 classat this feature value, 4, whereas there are four instances of C3 class. So, therelative representativeness counts of intervals with class C1 and C2 are 3/5 and



CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 654/7, respectively. The relative representativeness count of C1 is greater thanthat of C2. If preclassi�cation on a feature dimension is made according to therelative representativeness count of multi-class points, this may be more fair,without always giving a chance to the classes that appear more frequently inthe training set. Therefore, the concept of relative representativeness countintroduces a modi�cation to classi�cation process of the FI1 algorithm. Aftertraining, only representativeness counts are divided by total number of cor-responding classes. This is a kind of normalization of class distributions andrequired for datasets with unequally distributed classes.The training process of the FI2 algorithm is identical to FI1 except that af-ter construction of intervals, each feature maintains relative representativenesscount rather than representativeness count, as outlined in Figure 4.10. Thedi�erence in the classi�cation process appears in the preclassi�cation of testvalues at multi-class points. The class of the interval which has the maximumrelative representativeness count is chosen as the prediction. This di�erence inthe classi�cation process is summarized in Figure 4.11.4.2.3 The FI3 AlgorithmSince learning is achieved in the batch manner, all training instances are knownbefore the construction of feature intervals in both FI1 and FI2 algorithms.Once they are constructed, the intervals having less representativeness countthan the one with maximum in the FI1 and relative representativeness in theFI2 algorithms are not used in the classi�cation process. This raises the fol-lowing question: Why do we store them? This motivated us to investigate amethod to store a single point interval in multi-class points.For this purpose, we tried to eliminate less likely contributing intervals toclassi�cation. The interval having the maximum representativeness count ischosen as the class of the interval on that multi-class point. The eliminationof the intervals with lower representativeness counts leads to the pruning ofpresumably noisy intervals. However, one should be careful in this pruning.For example, consider a multi-class point at value v with intervals



CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 66generalize-point-intervals(f)beginfor each consecutive interval pair/* update lower, upper and representativeness values */if their classes are the same and they are point intervals thenjoin them into a range interval/* normalization of class distributions among intervals */for each intervalrelative represent value = represent value of intervaltotal no of class of intervalend. Figure 4.10. Generalization of intervals in the FI2 algorithm.
search-interval(f; value)beginif value on f is a single-class point thenreturn interval on that pointelse if value on f is multi-class point thenreturn interval with the highest relative representativeness countelse if value on f is contained in a range interval thenreturn interval on that valueelse /* no interval exists for that value */return UNDETERMINEDend. Figure 4.11. Preclassi�cation process in the FI2 algorithm.
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1 1 Figure 4.12. Construction of feature intervals in the FI3 algorithm.< [v; v]; 50; C1 >,< [v; v]; 49; C2 >,< [v; v]; 2; C3 >.If we simply remove the last two intervals, we loose the information thatat this value v, C1 and C2 classes are equally possible. In order to establish abalance between intervals with high representativeness counts, we designed anew method for placing weights to intervals rather than features. To determinethe weight of a new point interval, two point intervals having maximum rep-resentativeness counts are found. Then, the weight of the interval is set to bethe di�erence between two maximum representativeness counts divided by thetotal number of representativeness counts of multi-class points at that featurevalue. We called this algorithm as FI3. An interval in the FI3 algorithm isrepresented as follows:< [lower bound; upper bound]; weight of interval; class label >Here, weight of the interval represents the vote of the interval when it con-tributes to classi�cation. All other information is the same as in the FI1



CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 68algorithm.The concept descriptions of the sample training set given in Figure 4.4learned by the FI3 algorithm is presented in Figure 4.12. Note that the storagerequirement of the FI3 algorithm is smaller than the FI1 and FI2 algorithmsif there are many multi-class points.In the preclassi�cation of feature f , its vote is for the class of interval asthe weight of interval containing the feature value of the test instance on thefeature dimension f . The classi�cation example in Figure 4.13 illustrates thebehavior of the FI3 algorithm. In this example, the class C3 will take 1 votefrom feature f3 since f3th value falls into a range interval and range intervalvotes are set to be 1. The �rst feature votes 1=8 vote for C3 since �rst featurevalue falls into a multi-class interval. The class C2 will take 1 vote from therange interval on feature f2. The vote vector becomes < 0; 1; 9=8 >. Finalclassi�cation is the class C3. Since the actual class of the test example is C3,the test instance will be correctly classi�ed by the constructed intervals asshown in Figure 4.13.The di�erences in the training and classi�cation algorithms are listed inFigure 4.14 and Figure 4.15. In the training, the weights of feature intervals arelearned in addition to their constructions. In the classi�cation, these weightsare used for feature votes.4.2.4 The FI4 AlgorithmIn the FI3 algorithm, initial single-class point intervals will have the maximumweight (=1). However, these can be noisy intervals as well. To decrease thee�ect of such intervals, normalization of these interval weights are required.This is done by dividing these weights to the total number of their classes in thetraining dataset. Figure 4.17 illustrates this by an example. The test instance< 8; 18; 3; C3 > will be tested according to the knowledge learned by the FI3algorithm. The value for f1 falls into the interval < [8; 8]; 1=6 ; C2 >. Theweight of this interval becomes 1=6 since there is only one training instancewhose f1th value is 8, but totally there are 6 training instances of class C2
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1 1 Figure 4.13. An example for classi�cation in the FI3 algorithm.in the whole dataset. So, the �rst feature predicts C2 with weight 1=6, thesecond feature makes no prediction and the third one predicts C3 with weight1, because all feature values that belong to the class C3 on feature f3 fall intothe same interval.The training process of the FI4 algorithm is identical to the FI3 algorithmexcept normalization of feature interval weights according to class distributionsin the training set. The normalization process is outlined in Figure 4.16. Theclassi�cation task is performed as in the FI3 algorithm using more reliablefeature interval weights.4.3 Characteristics of FIL AlgorithmsIn this section, general properties of learning methods are presented to char-acterize the FIL algorithms.
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construct-intervals(Training Set)beginfor each feature ffor each training instance iinitialize-point-intervals(f; i)if f is linear thengeneralize-point-intervals(f)/* if f is a nominal feature, no generalization is done */compute-interval-weights(f)end.compute-interval-weights(f)beginfor each intervalif range interval or single-class point thenweight of interval = 1else�nd the interval having maximum repr. countweightof interval = difference between two max: representativeness countstotal repr: countend. Figure 4.14. Training process in the FI3 algorithm.



CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 71classify(test)beginfor each class cvote[c] = 0for each feature finterval = search-interval(f, testf)/* each interval contributes proportional to its weight */if class of interval 6= UNDETERMINED thenvote[class of interval] =vote[class of interval] + weight of intervalprediction = �rst classfor each class cif vote[c] > vote[prediction] thenprediction = cif vote[prediction] = 0 thenprediction = UNDETERMINED /* no �nal prediction */return predictionend.Figure 4.15. Classi�cation process in the FI3 algorithm.compute-interval-weights(f)beginfor each intervalif range interval or single-class point thenweight of interval = 1else�nd the interval having maximum repr. countweight of interval = difference between two max: representativeness countstotal repr: count/* interval weights are normalized according to class distributions */for each intervaldivide weight of interval bytotal no of class of interval in training setend.Figure 4.16. Normalization of interval weights in the FI4 algorithm.
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Figure 4.17. An example of classi�cation in the FI4 algorithm.4.3.1 Knowledge RepresentationKnowledge representation is one of the most important dimensions in classify-ing machine learning techniques. Many learning systems acquire knowledge inthe form of rules. Another way to represent what is learned is with decisiontrees as in the ID3 and C4.5 algorithms [55]. On the other hand, knowledgerepresentation in exemplar-based learning models is sets of representative in-stances [1, 2, 5] or hyperrectangles which represent generalizations [58, 59].In Chapter 3, we presented a new knowledge representation in the form offeature projections. Generalization and specialization are made on the basisof feature projections. This introduces faster classi�cation of test instances bypreventing the similarity computation to each training instance because featureprojections can be sorted for continuous valued features. One shortcoming ofthis representation is that descriptions involving a conjunction between two ormore features cannot be represented. However, the prior research has shownthat this knowledge representation is quite powerful in the classi�cation of real-world tasks [65, 67]. The CFP and COFI algorithms use this representation to



CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 73learn concept descriptions in the form of disjoint feature intervals and overlap-ping feature intervals in an incremental manner [27, 28, 65, 67]. The k-NNFPalgorithm also uses this representation in order to classify test instances on thebasis of feature projections [7].The FIL algorithms also acquire concept descriptions by using feature pro-jections for knowledge representation. Learned concept descriptions are storedin memory in the form of disjoint feature intervals. These intervals are dis-joint (single-class) covering only single-class neighboring point. The multi-classpoints are represented a set of point intervals. Each interval contains upperand lower bounds, representativeness count that is the number of examplesthat interval represents, and the associated class label of the interval. Thenumber of intervals on a feature dimension depends on the training set, andthey are unique for the same training set being independent of presentationorder of training instances. At the worst case, if all examples have di�erentfeature values, the feature may be either nominal or linear, then the numberof intervals is equal to m � n where m is the number of instances, and n is thenumber of features.4.3.2 Inductive LearningInductive learning can be described as learning from facts that are provided bya teacher or an environment by drawing inductive inference. Acquiring knowl-edge involves operations of generalizing, specializing, transforming, correctingand re�ning knowledge representations [43]. Learning a concept usually meansto learn its description, i.e., a relation between the name of the concept and agiven set of features by making some inferences.The FIL algorithms perform the learning task from a set of training ex-amples and make generalizations on the feature projections to construct theconcept descriptions in the form of disjoint feature intervals.



CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 744.3.3 Supervised LearningSupervised learning has been the most widely studied learning paradigm in in-ductive learning systems, pattern classi�cation and system identi�cation [13].In this learning paradigm, the learner is asked to associate pairs of items. Forexample, in pattern classi�cation or concept acquisition, the �rst item is aninstance of some pattern or concept and the second item is the name of theconcept. In system identi�cation, the learner must reproduce the input-outputbehavior of some unknown system. Here, the �rst item of each pair is an in-put and the second item is the corresponding output. In machine learning,from a set of training examples, each labeled with its correct class name, amachine learns by forming or selecting a generalization of the training exam-ples.Unsupervised learning techniques try to estimate the class distributionssuccessively from unlabeled training instances.The FIL algorithms learn from examples provided, that is, the supervisedlearning paradigm is followed. Here, the �rst item is the feature values of aninstance and the second item is the class of that instance.4.3.4 Batch LearningQuinlan has pointed out two alternative learning strategies as incremental andbatch (non-incremental) [52]. Incremental learning aims to improve an internalmodel with each example it processes. Researchers who explore the incrementalapproach are typically concerned with developing plausible models of humanlearning, with agents that must interact with a dynamic environment, or withthe e�ciency of the learning mechanisms. On the other hand, batch learningattempts to construct concept descriptions after seeing all training instances tomaximize the performance of the learning system. In contrast to incrementallearning, researchers who employ batch learning strategy are concerned withautomating the process of knowledge acquisition for higher performance.A batch learning strategy usually assumes random access to the examplesin the training set. A learning system which follows this strategy searchesfor patterns and regularities in the training set in order to induce concept



CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 75descriptions. They may examine and re-examine the training set many timesbefore settling on a successful model. The most important advantage of thisapproach is that it is not sensitive to the order of the training examples.Despite the di�erences in motivation, researchers in both paradigms havemuch to learn from each other. Incremental and batch systems often use thesame basic learning operators and produce similar results. In many cases, onecan create incremental variations of non-incremental algorithms. Presumably,many incremental learning methods also have non-incremental counterparts.Batch learning strategy is employed in the FIL algorithms. Before training,all instances are presented as input to the algorithms. In the FIL algorithms,concept descriptions are represented in the form of disjoint feature intervals.The construction of intervals is unique for that training set, that is, they areindependent of presentation order of training instances.4.3.5 Domain Independence in LearningIn some learning methods, such as Explanation-Based Generalization (EBG),considerable amount of domain speci�c knowledge is required to construct ex-planations [18]. In EBG, domain speci�c knowledge is applied to formulatevalid generalizations from a single training example. The characteristic com-mon to these methods is their ability to explain why the training instance is amember of the concept being learned.In contrast, exemplar-based learning does not construct explanations. In-stead, it incorporates new examples into its experience by modifying its existingconcept representation in the memory. Because it does not convert examplesinto another representation form, it does not need a domain theory to explainwhat conversions are legal. A consequence of domain independence is thatsystems can be adapted to new domains quickly without any extra domainknowledge.The CFP and COFI algorithms use domain speci�c parameters. Theseparameters in the CFP algorithm are 4 (feature weight-adjustment rate) and



CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 76Df (generalization distances of features). In the COFI algorithm, the onlydomain dependent parameter is g (generalization ratio).The FIL algorithms are also exemplar-based learning algorithms, based ongeneralized feature values. Although they do not use parameters used as in theCFP and COFI algorithms, weights of features in the FI1 and FI2 algorithmsare given externally. In the FI3 and FI4 algorithms, there is no need for featureweights. Therefore, the FI3 and FI4 algorithms do not require any parameterto be provided externally.4.3.6 Multi-concept LearningMany early concept learning algorithms have been developed for exactly oneconcept. Later, many learning algorithms have been developed that inducemulti-concept descriptions from examples. The FIL algorithms have been de-signed for learning multi-concept descriptions as well.4.3.7 Properties of Feature ValuesThe features in a dataset may have nominal (categorical), or continuous (nu-merical) values. The term continuous is used in literature to refer to featurestaking on numerical values (integer or real), in general a feature with a linearlyordered set of attribute values. The FIL algorithms can handle both linear andnominal features. Linear features may take on values from �1 to 1 and theyare continuous. Nominal features take on discrete feature values, for example,color attribute of an object is a nominal feature, or binary values such as an-swers to yes/no questions are also nominal feature values. The only di�erencein handling linear features and nominal features is the generalization process.Generalization is applied only to linear features.
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; Information about the IRIS dataset
Features l l l l 
Classes  0 1 2Figure 4.18. An example for the information provided to the FIL algorithms.4.3.8 Handling Missing (Unknown) Feature ValuesOne of the most important advantages of the FIL algorithms is the handlingof missing feature values. There is no need to �ll in missing values in the FILalgorithms. This a�ects neither the construction of concept descriptions northe voting mechanism. In addition, this is a natural approach because in reallife if nothing is known about a feature, it can be ignored rather than assigningan average or expected value.4.4 User InterfaceWe have designed and implemented user interfaces for the FIL algorithms.These implementations have been done by using Motif user-interface toolkit.The FIL algorithms have been implemented in C language in Unix environment.The user can select a dataset from the 'Open' menu item. Then, with an initialtraining ratio training and testing sets are formed. User can enter the trainingratio from the menu item 'Train Ratio' as well. Figure 4.18 presents an examplefor the information given to the FIL algorithms about the dataset, iris in thisexample with number and types of features and number and names of classes.The feature intervals constructed during training phase of the algorithmsare displayed on each feature dimension assigning a di�erent color to each classlabel on the screen. Usage of colors provides users to better understand pre-dictions made by individual features. User can see the classi�cation of a singletest instance by performing classi�cation task step by step with \NEXT" but-ton. Also, all test instances can be classi�ed at once with \ALL" button. It isalso possible to see the previous examples and their classi�cations with \PRE-VIOUS" button. Classi�cation accuracy and no of correct classi�cations after
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Figure 4.23. Feature intervals constructed by the FI1 algorithm for the irisdataset.



CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 82classifying each test instance are displayed along with the current test examplefeature values and associated class label. Prediction of each feature with itsassociated weight: feature weights in the FI1 and FI2 algorithms and intervalweights in the FI3 and FI4 algorithms are also displayed. The constructedintervals can be saved into a text �le from the menu with corresponding lowerand upper bounds, associated class and representativeness and relative repre-sentativeness counts (in FI1 and FI2, respectively) or associated weights (inFI3 and FI4). The disjoint intervals of the iris dataset is as in the Figure 4.19,4.20, 4.21, 4.22.The concept descriptions for the iris dataset learned by the FI3 algorithmare presented in Figure 4.23.4.5 SummaryIn this chapter, details of the FIL algorithms has been presented. Their gen-eral characteristics are discussed considering important dimensions classifyingmachine learning techniques. Also, the user interface of all FIL algorithms aredescribed.In the FIL algorithms, a feature interval can be de�ned as generalized valuesthat may cover several feature values. Intervals (single-class) are disjoint, how-ever, at multi-class points, overlapping point intervals are constructed. Oncethe feature intervals are learned, a test example can be classi�ed on each featuredimension by means of these intervals by a voting scheme.The FIL algorithms assume that similar feature values have similar clas-si�cations. The voting mechanism in the FI1 and FI2 algorithms is basedon a weighted-voting scheme, with prior knowledge. However, without priorweights, features will have equal relevances for classi�cation decisions. On theother hand, although the FI3 and FI4 algorithms are based on weighted-votingscheme, these weights are set to intervals internally. Hence, the FI3 and FI4algorithms require no user tuning of parameters such as generalization ratioor global feature weight-adjustment rate. Their primary goal is to maintainperfect consistency with the initial training set.



Chapter 5Evaluation of the FIL AlgorithmsIn this chapter, both complexity analyses and empirical evaluations of the FILalgorithms are given. First, training and classi�cation of a single instancetime complexities are given. Next, the empirical evaluations are presented onsome real-world datasets for comparison with some similar algorithms such asNBC, CFP, k-NN, and k-NNFP. Later, the experiments on arti�cially gener-ated datasets are discussed. The goal of these experiments is to demonstrateperformances of the FIL algorithms. Also, some experimental results are pre-sented for the evaluation of the feature weighting methods proposed in thisthesis. Experiments described in this chapter are designed to determine thebehavior of the FIL algorithms on irrelevant features, noisy instances and miss-ing feature values.5.1 Complexity AnalysisIn this section, the FIL algorithms are analyzed in terms of space and timecomplexities. Time complexity analyses are presented for training process andclassi�cation of single test instance.Space Complexity Analysis: In the training phase of the FIL algo-rithms, disjoint feature intervals for concept descriptions are constructed oneach feature dimension. The space required for training with m instances ona domain with n features is proportional to m � n at worst case. However, on83



CHAPTER 5. EVALUATION OF THE FIL ALGORITHMS 84the average, it should be less than O(m � n) since feature intervals may con-tain several feature values. If the average number of intervals constructed ona feature dimension is i, then the average space complexity of the FIL algo-rithms will be O(i � n). If feature intervals contain several values, the storagerequirement of the FIL algorithms will be less than the k-NN and k-NNFP al-gorithms since k-NN stores all instances in memory as conjunctions of featurevalues and k-NNFP stores them as feature projections. Although the learnedfeature intervals will not be the same as the CFP algorithm since it learns in anincremental way, the storage requirement may be nearly the same. The NBCalso stores all training instances to �nd the class distributions.Time Complexity of Training: As mentioned before, all instances arestored on each feature dimension as their feature projections initially. Featureprojections on a feature dimension are sorted with time complexity O(m �logm). So, sorting all feature values has time complexity O(m � n � logm) forn features. Then disjoint feature intervals are constructed by examining thesesorted feature projections on each feature dimension with time complexityO(n � m). Therefore, the training time complexity of the FIL algorithms isO(n � m � logm + n � m) = O(n � m � logm) for training a dataset with minstances described by n features.Time Complexity of a Single Classi�cation: During the preclassi�-cation, the search-interval(f; value) searches the interval containing featurevalue of the test instance on the feature dimension f . by binary search todetermine the prediction of that feature. The number of intervals on a featuredimension is at most equal to the number of training instances, m. Hence,the worst case time complexity of this search process is O(logm) for a feature.Since the �nal classi�cation is based on the prediction of each feature, singleinstance classi�cation time complexity of the FIL algorithms is O(n � logm).We have presented training and classi�cation time complexities of the k-NNFP and k-NN algorithms in Section 3.3.2. The training complexity of the k-NNFP algorithm is nearly the same as the FIL algorithms whereas the trainingtime complexity of the k-NN algorithm is O(n �m) for just storing instances inmemory. Complexity analyses of FIL algorithms indicate that these algorithmsclassify unseen instances much more faster than the k-NN like algorithms.



CHAPTER 5. EVALUATION OF THE FIL ALGORITHMS 855.2 Empirical Evaluation of the FIL AlgorithmsIn this section, empirical evaluations of the FIL algorithms on real-world datasetswhich are widely used in the �eld of machine learning from the UCI-Repository[47] and two new datasets constructed in this thesis. We will also evaluate theFIL algorithms on arti�cial datasets. The �rst section describes the method-ologies used in the experiments. Next, the performance of the FIL algorithmson real-world datasets are presented. In the third section, some experimentsare described on arti�cial datasets.5.2.1 Testing MethodologyThis section brie
y describes the methodologies used in the machine learningexperiments. The goal of experiments is to better understand behaviors oflearning algorithms, hence their causes, as in other sciences. This will leadto empirical laws that can aid the process of theory formation and theoryevaluation.Improved performance is the major aim of learning algorithms [34]. Thesevarious performance measures are the natural dependent variables for machinelearning experiments, just as they are for studies of human learning. The ac-curacy and e�ciency of an algorithm can be measured by various performancemeasures. There are three important measures of evaluation for a learningalgorithm: accuracy, time and space complexities.For supervised concept learning tasks, the most commonly used metric isthe percentage of correctly classi�ed instances over all test instances. This met-ric cannot be used for unsupervised learning tasks like conceptual clustering,but this measure can be generalized as the average ability to predict attributevalues [23]. Accuracy of an algorithm is a measure of correct classi�cations on atest set of unseen instances. There are several ways of measuring the accuracyof an algorithm, in the literature the common techniques are cross-validation,leave-one-out and average of randomized runs.Cross-Validation: In this technique, dataset is partitioned into k mutually



CHAPTER 5. EVALUATION OF THE FIL ALGORITHMS 86disjoint subsets with the same cardinality. The k � 1 of these sets are usedas the training set, the remaining one is used as the test set. This process isrepeated k times once for each subset being the test set. Classi�cation accuracyis measured as the average accuracy on all the test sets. The union of the alltest sets equals to the whole dataset. This is called as k-fold cross-validation.Leave-one-out: This technique is a special case of k-fold cross-validationtaking k = m. That is, for a dataset containing m instances, training setcontains m� 1 instances whereas test set contains only 1 instance. Then, thisis repeated for all instances being test instance each time leading to m-foldcross-validation. It is an elegant and straightforward technique for estimatingclassi�er error rates. Evidence for the superiority of the leave-one-out approachis documented in the literature [22, 35]. While leave-one-out is a preferredtechnique, for large datasets it may be computationally expensive [32].Average of Randomized Runs: In this method, the algorithm is tested overrandomly selected training and testing sets. The important point is that train-ing and test sets must be disjoint. The test is repeated for a �xed number oftimes. The classi�cation accuracy is determined as the average accuracy acrossall trials.In the previous section, we have computed the time and space complexitiesof the FIL algorithms. In the following subsection, the performance of the FILalgorithms will be given in terms of classi�cation accuracy. In this thesis, 5-fold cross-validation technique is used to report the classi�cation accuracies ofFIL algorithms and compare them with other methods. 5-fold cross-validationenables the same disjoint training and testing sets each time for each algorithmin order to compare the results under same conditions. Disjoint training andtesting sets make sure that unseen test instances are classi�ed to measure theaccuracy of algorithms.



CHAPTER 5. EVALUATION OF THE FIL ALGORITHMS 87Table 5.1. Accuracy results (%) of the FIL algorithms on real-world datasets.SFA-FIx and HFP-FIx show the weighted versions of the FI1 and FI2 algo-rithms.Dataset FI1 SFA-FI1 HFP-FI1 FI2 SFA-FI2 HFP-FI2 FI3 FI4arrhythmia 55.08 55.08 55.08 55.00 55.08 55.08 55.08 55.68bcancerw 95.72 95.72 95.72 96.44 96.30 95.72 95.86 97.00cleveland 78.22 80.18 78.86 80.52 83.14 81.26 78.86 80.50dermatology 36.90 41.40 35.00 44.60 43.34 36.72 73.33 79.02diabets 65.76 66.16 65.50 64.84 63.80 65.50 68.74 69.76glass 49.88 49.92 43.86 49.50 53.22 48.96 56.98 45.36horse 64.12 65.48 64.38 73.64 74.46 64.38 65.24 76.36hungarian 69.02 70.04 69.36 80.94 81.92 68.15 68.00 75.48ionosphere 87.18 87.16 87.16 84.90 85.46 87.16 87.74 88.88iris 86.66 90.66 89.30 88.00 91.32 89.60 90.66 90.66liver 54.78 57.40 54.22 53.92 56.52 54.92 57.98 59.72musk 61.96 62.16 61.56 71.04 72.50 61.76 71.02 73.34wine 82.54 88.16 88.14 87.62 89.90 87.94 91.6 89.925.2.2 Experiments with Real-World DatasetsFor empirical evaluations of the FIL algorithms, some real-world datasets fromthe collection of UCI-Repository [47] and two new real-world datasets con-structed in this thesis are used . These domains provide the FIL algorithmswith opportunity of comparison with other similar learning algorithms. Alsothey demonstrate the applicability of the FIL algorithms to real-world prob-lems. The real-world datasets are explained in Appendix A. These datasets areused for the comparison of the FIL algorithms to the NBC, CFP, k-NN andk-NNFP algorithms. The FIL algorithms use feature weights learned by theHFP and SFA methods in the experiments described here. The CFP algorithmwas run for Df = 0:1 and 4 = 0.Table 5.1 presents the results of experiments on these real-world datasetswhich are conducted by using 5-fold cross-validation evaluation technique forthe FIL algorithms and SFA and HFP feature weighting methods. K is takenas 5 in these experiments since the k-NN and k-NNFP algorithms give almostthe best accuracies for k = 5. The results of experiments of the NBC, CFP,k-NN and k-NNFP algorithms are summarized in Table 5.2. Both FI1 and FI2algorithms achieve almost same accuracies. The FI3 and FI4 algorithms are



CHAPTER 5. EVALUATION OF THE FIL ALGORITHMS 88Table 5.2. Accuracy results (%) of the FI4, NBC, CFP, k-NNFP and k-NNalgorithms on real-world datasets.Dataset FI4 NBC CFP k-NNFP k-NN Baseline (%)arrhythmia 55.68 3.12 55.09 55.08 58.20 55bcancerw 97.00 97.28 95.71 96.16 96.58 66cleveland 80.50 80.52 74.24 78.88 83.80 54dermatology 79.02 43.98 35.64 59.42 91.64 27diabets 69.76 71.24 65.49 67.70 73.18 65glass 45.36 52.34 52.28 60.72 66.30 36horse 76.36 81.24 64.94 71.74 80.44 63hungarian 75.48 79.90 71.04 76.16 82.26 64ionosphere 88.88 87.74 87.47 87.46 83.20 64iris 90.66 92.00 86.66 91.30 94.66 33liver 59.72 60.30 56.23 58.26 64.92 58musk 73.34 2.10 60.28 71.22 67.88 57wine 89.92 95.50 86.44 93.24 96.04 40superior to the FI1 and FI2 algorithms. It is seen from the tables that FILalgorithms achieve high accuracies as much as previous algorithms on manyof these datasets. The k-NN algorithm gives maximum accuracy in almost alldatasets. The FI4 algorithm usually outperforms the other FIL algorithms.The SFA-FI2 algorithm gives high accuracy as much as the k-NN algorithmfor cleveland dataset. Also, the empirical evaluation of the CFP algorithm ispresented in [64] and the k-NN and k-NNFP algorithm in [7].Table 5.3 shows the average running times of the FIL algorithms acrossthe NBC, CFP, k-NNFP, and k-NN algorithms. Since all FIL algorithms givealmost equal average running times, they are represented in the table under thename FIL. It is seen that the running times of the FIL algorithms are relativelysmaller than the other algorithms. This veri�es the training and classi�cationtime complexities presented in Section 5.1. Although the classi�cation accuracydi�er about 5% points, the running time of the k-NN algorithm is much higherthan the other algorithms.



CHAPTER 5. EVALUATION OF THE FIL ALGORITHMS 89Table 5.3. The Average Time (msec) required for the FIL, NBC, CFP, k-NNand k-NNFP algorithms on real-world datasets.Dataset FIL NBC CFP k-NNFP k-NNarrhythmia 3,527 21,641 11,886 3,229 18,135bcancerw 399 925 340 364 3,276cleveland 221 214 292 217 772dermatology 183 197 347 189 528diabets 375 1,145 610 297 3,294glass 130 134 118 105 318horse 494 641 479 465 1,400hungarian 287 146 348 255 631ionosphere 596 882 1,232 522 2,339iris 45 17 250 44 108liver 129 148 267 114 607musk 3,477 9,529 11,279 2,740 18,744vehicle 586 4,787 818 2,012 14,441wine 113 79 73 299 6005.2.3 Experiments with Arti�cial DatasetsTo cope with noisy and incomplete data is an important criteria for a learn-ing system to be used in real-world applications [40]. One important pointfor a learning system is presence of irrelevant features [9]. Therefore, arti�-cial datasets are important to study the e�ects of irrelevant features, noise inthe domain, and missing feature values since arti�cial datasets allows to testthe system in a more controlled way. In order to empirically demonstrate thebehaviors of the FIL algorithms on arti�cial datasets, we conduct some ex-periments. Concept descriptions for these arti�cially generated datasets arerepresented in the form of possibly overlapping hyperrectangles. We will ex-plain how we generated these datasets in each section with the descriptions ofexperiments. Section 5.2.3.1 describes and presents the results of experimentswith increasing number of irrelevant features. Next, increasing noise level isstudied for the FIL algorithms. Then, increasing ratio of missing feature valuesis tested. In these experiments, the CFP algorithm was run for Df = 0:1 and4 = 0.
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k-NNFPFigure 5.1. Accuracy results of the FIL, CFP, NBC, k-NN, k-NNFP algorithmson domains with irrelevant attributes.5.2.3.1 Experiments with Increasing Number of Irrelevant FeaturesReal-world datasets may contain unequally relevant features. For example,medical domains usually contain more information than is actually required fordistinguishing one disease from others. Most probably some of these featuresare not as relevant as the others [39].The voting mechanism used in the FIL algorithms allows correct classi�ca-tions in the presence of irrelevant features to a certain extent.To investigate the behaviors of the FIL algorithms in the presence of irrele-vant features, we conducted a series of experiments. We generated six datasetswith increasing number of irrelevant features from zero to ten. Each instanceis described by four relevant features and a number of irrelevant ones. Conceptdescriptions are represented by hyperrectangles in four (relevant) dimensionalspace, the values for irrelevant features are randomly generated. These arti�-cial datasets are also used for the evaluation of k-NNFP and k-NN algorithmsin Section 3.2.2.2. We ran these algorithms 50 times on these six datasetsgenerated randomly each time. We have compared the average results of the



CHAPTER 5. EVALUATION OF THE FIL ALGORITHMS 91FIL algorithms on these arti�cial datasets with the average results of the CFP,NBC, k-NNFP and k-NN.The accuracy results of arti�cial datasets with increasing number of irrele-vant features are plotted in Figure 5.1. The FI1 and FI2 algorithms give aboutthe same accuracy results for these experiments. Similarly, the FI3 and FI4'sbehavior is almost the same in these experiments. Note that the feature valuesrange from 0 to 10 as continues. However, in order to have some multi-classpoints, values are generated between 0 and 100 as integers and divided by 10(i.e., 85 /10 = 8.5). As seen from the table, assigning weights to intervals out-performs the FI1 and FI2 algorithms in which features have equal relevance.The NBC algorithm achieves the greatest accuracy in the presence of irrelevantfeatures. The performance of the CFP algorithm is worse than the FI3 and FI4algorithms. The k-NNFP and k-NN algorithms' behavior on these datasets isalmost the same.5.2.3.2 Experiments with Increasing Noise LevelIn this section, noise tolerance of the FIL algorithms are investigated. Thereare two major types of noise that can be found in real-world datasets: feature(attribute) noise, and classi�cation noise [3, 11, 14, 24, 63]. Feature noise canbe de�ned as incorrect feature value information. Classi�cation noise involvescorruption of the class label of an instance.Quinlan demonstrated that feature noise, occurring simultaneously in allfeatures describing the instances, can result in faster degradation in classi�-cation accuracy than might noise only in the class label [51]. Therefore, westudied the feature noise in our experiments with arti�cial domains, where fea-ture values only in the training set are replaced with a randomly selected valuein the feature domain with a �xed probability, called noise ratio.The arti�cial dataset with four relevant features and no irrelevant featuresused in the experimentswith increasing irrelevant features is used in this sectionin order to study the e�ect of increasing noise level.Figure 5.2 presents achieved accuracy of the FIL algorithms for comparison
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k-NNFPFigure 5.2. Accuracy results of the FIL, CFP, NBC, k-NN, k-NNFP algorithmson domains with increasing noise level.to the CFP, NBC, k-NNFP and k-NN algorithms. The results are the averagesof the 50 runs of arti�cial datasets in which noisy feature values are randomlyreplaced with other possible values on that feature dimension. In this the-sis, to handle noisy feature values, we introduced the FI3 and FI4 algorithmsthat construct disjoint feature intervals by weighting them for classi�cation.The results of the experiments indicate that both FI3 and FI4 algorithms aresuccessful than the FI1 and FI2 algorithms. Actually, there is no signi�cantdi�erence among all the algorithms on noisy domains up to 60% noise level,the accuracy of the k-NN algorithm sharply decreased after this point. Otheralgorithms are robust up to 80% noise level.5.2.3.3 Experiments with Increasing Ratio of Missing ValuesMost of the real-world data sets contain missing attribute values. In the lit-erature, some methods are proposed to handle instances containing missingfeature values [26, 52, 53, 54, 55]. These methods can be summarized as:
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CHAPTER 5. EVALUATION OF THE FIL ALGORITHMS 94probability distribution of the known values of a feature. One advantage ofsimply ignoring missing feature values is that it allows reduction in trainingand classi�cation time.Figure 5.3 presents the accuracies obtained from the experiments with dif-ferent amounts of unknown (missing) attribute values. The k-NNFP algorithmachieved signi�cantly better accuracy than the others. The most a�ected al-gorithm by the presence of missing feature values is the k-NN algorithm, asexpected because it tries to �ll in missing values. Up to 70% missing value,FIL algorithms achieve the same accuracy. Therefore, the FIL algorithms arerobust to the missing feature values.5.3 SummaryThe results from the experiments in this chapter support the following conclu-sions.� faster classi�cation times with feature projections knowledge representa-tion� weighted-voting in the FIL algorithms is more tolerant to the presenceof irrelevant features� feature projections knowledge representation is quite successful in han-dling missing feature values.� k-NNFP and FIL algorithms are robust to the missing feature values (upto 70%).



Chapter 6Conclusions and Future WorkIn this thesis, a new classi�cation algorithm, called k-NNFP has been pre-sented. In this algorithm, the classi�cation knowledge is represented in theform of sets of feature projections of the training data separately on each fea-ture dimension. The classi�cation of an unseen instance is based on a majorityvoting taken on the classi�cations made on the basis of individual feature pro-jections.We have compared the k-NNFP algorithm with the k-NN algorithm interms of classi�cation accuracy and running time on both real-world and arti-�cial datasets. On real-world datasets, the k-NNFP algorithm achieves com-parable accuracy with the k-NN algorithm. On the other hand, the averagerunning time is much less than that of the k-NN algorithm. The majorityvoting in the classi�cation process of the k-NNFP algorithm reduces the intru-sive e�ect of the irrelevant features. This claim has been justi�ed on arti�cialdatasets.We treated all features as equivalent in the k-NNFP algorithm. However, allfeatures may not have equal relevance in real-world applications, even some fea-tures may be completely irrelevant. In order to determine features' relevances,two feature weight learning algorithm have been proposed for the learning al-gorithms that use feature weights. The �rst method, called HFP, assigns highweight values to features on which the projections of instances of the sameclass are located close to each other, resulting in homogeneous distribution.95



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 96The SFA method assigns a weight as the classi�cation accuracy that wouldhave been obtained if only that feature were used in the classi�cation. Thesetechniques have been evaluated on the weighted k-NNFP algorithm. The SFAmethod learned weights that helped the k-NNFP algorithm achieve higher ac-curacies. The reason for this success is due to the feedback received from thek-NNFP algorithm.In this thesis, we have also developed several batch learning algorithmscalled FIL algorithms for Feature Interval Learning. These algorithms usefeature projections of the training instances for the representation of the clas-si�cation knowledge induced. These are FI1, FI2, FI3, FI4 algorithms withslight di�erences. Linear feature projections are generalized into disjoint in-tervals during the training phase. The classi�cation of an unseen instance isbased on a majority voting among individual predictions of features. Featureprojections knowledge representation in these algorithms provide them withmuch faster classi�cation. In fact, majority voting reduces the intrusive e�ectof irrelevant features or noisy feature values.The FIL algorithms have been compared with the NBC, CFP, k-NN andk-NNFP algorithms empirically. The FI3 and FI4 algorithms are found tobe superior to the FI1 and FI2 algorithms. In addition, the FI1 and FI2algorithms gives better accuracies when the SFA feature weighting method isintegrated. Although the FIL algorithms achieve comparable accuracies withother algorithms about 5% less than the k-NN algorithm, their average runningtimes are much more less than the k-NN algorithm.Feature projections for knowledge representation has the following advan-tages for the learning algorithms:� plausible� no need for normalization of feature values� simply ignoring missing feature values� faster classi�cation times



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 97The major disadvantage of this representation is that concept descriptionsinvolving a conjunction between two or more features cannot be represented.Actually, the whole is more than sum of its components. Therefore, the FILalgorithms are applicable to concepts where each feature, independent of otherfeatures, can contribute to the classi�cation of the concept. In fact, this is thenature of the most real-world datasets. They are not applicable to domainswhere all of the concept descriptions overlap, or domains in which conceptdescriptions are nested.As a future work, we plan to investigate the HFP and SFA feature weightlearning algorithms on arti�cial datasets. For overlapping concept descrip-tions, batch learning algorithms whose knowledge representation is in the formof overlapping feature intervals can be developed. Another research directionis to investigate learning concept dependent feature weights for the learning al-gorithms that use feature projections for knowledge representation. Moreover,feature weights are learned using genetic algorithms.
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Appendix AReal-World DatasetsTable A.1. Comparison on some real-world datasets.# of # of Linear # of Unknown BaselineDataset Size Features Features Classes Values Accuracy(%) (%)arrhythmia 352 279 279 16 0.33 55bcancerw 699 10 10 2 0.25 66cleveland 303 13 6 2 0 54dermatology 157 34 34 6 0.07 27diabets 768 8 8 2 0 65glass 214 9 9 6 0 36horse 368 22 7 2 24 63hungarian 294 13 6 2 0 64ionosphere 351 34 34 2 0 64iris 150 4 4 3 0 33liver 345 6 6 2 0 58musk 476 166 166 2 0 57wine 178 13 13 2 0 40Table A.1 summarizes some properties of the datasets to be used in theexperiments. In this table, name of the real-world datasets are shown with thesize of the dataset, number of features, number of linear features, number ofclasses, percentage of the unknown attribute values, and the baseline accuracy.The baseline accuracy of a dataset is the accuracy that will be obtained bypredicting the class of any test instance as the class of the most frequentlyoccurring class. 105



APPENDIX A. REAL-WORLD DATASETS 106Arrhythmia: In this thesis, we construct two real-world datasets. One ofthem is arrhythmia dataset. The aim is to distinguish between the presenceand absence of cardiac arrhythmia and to classify it in one of the 16 groups.Class 01 refers to 'normal' ECG classes 02 to 15 refers to di�erent classes ofarrhythmia and class 16 refers to the rest of unclassi�ed ones. Currently, thereare 352 instances which are described by 279 feature values. There are severalmissing feature values. Class distribution of this datasets is very unfair as seenfrom Table A.1. Class 01 (normal) is the most frequent one. It is assumed thatno patient has more than one cardiac arrhythmia.Breast Cancer: Breast Cancer data set contains 273 patient records. Allthe patients underwent a surgery to remove tumors, all of them were followedup �ve years later. The objective here is to predict whether or not breastcancer would recur during that �ve year period. The recurrence rate is about30 %, and hence such prognosis is important for determining post-operationaltreatment. The data set contains nine variables that were measured, includingboth numeric and binary values. The prediction is binary: either the patientdid su�er a recurrence of cancer or not.Cleveland and Hungarian Data: Both datasets are about the heartdisease diagnosis. Each dataset is described with same features. Clevelanddata was collected from the Cleveland Clinic Foundation and Hungarian datawas collected from the Hungarian Institute of Cardiology.These databases contain 76 attributes originally, but in ML �eld 13 of themis used. All attributes are numeric valued and 6 of them have nominal values.The class is determined according to the presence of heart disease, that is, thisis binary classi�cation problem. There are no missing values in these datasetsfor the features that we have used.Dermatology: The second dataset constructed in this thesis current con-tains 157 instances described by 34 feature values to distinguish dermatologi-cal illnesses from histopathological descriptions for 6 classes (illnesses). Theseclasses are 1-Psoriaris, 2-Dermatit, 3-L. Planus, 4-Posea, 5-Kr.Dermatit, 6-P.Rubrapilaris. One of the features (age) take values between 0 and 100, whileother 35 features take values 0, 1, 2, 3.



APPENDIX A. REAL-WORLD DATASETS 107Diabets: This data set contains diabetes diseases collected from NationalInstitute of Diabetes and Digestive and Kidney Diseases. The diagnostic,binary-valued variable investigated is whether the patient shows signs of di-abetes according to World Health Organization criteria (i.e., if the 2 hourpost-load plasma glucose was at least 200 mg/dl at any survey examination orif found during routine medical care). The population lives near Phoenix, Ari-zona, USA. Several constraints were placed on the selection of these instancesfrom a larger database. In particular, all patients here are females at least21 years old of Pima Indian heritage. The data set contains records of 768patients with 8 features.Glass Data: This dataset consists of attributes of glass samples takenfrom the scan of an accident. The glass dataset contains 214 instances ofwhich belongs to one of six classes. In this dataset there are 9 features. Allfeature values are continuous.Horse Data: In this dataset there are 368 instances. Number of attributesis 22 and the number of classes is 2. Seven of these features are linear and �fteenof them are nominal. The 24% of the feature values is missing (unknown).Ionosphere Data: The radar data was collected by a system in GooseBay, Labrador. This system consists of a phased array of 16 high-frequencyantennas with a total transmitted power on the order of 6.4 kilowatts. Thetargets were free electrons in the ionosphere. Good radar returns are thoseshowing evidence of some type of structure in the ionosphere. Bad returnsare those that do not; their signals pass through the ionosphere. Receivedsignals were processed using an autocorrelation function whose arguments arethe time of a pulse and the pulse number. There were 17 pulse numbers for theGoose Bay system. Instances in this database are described by 2 attributes perpulse number, corresponding to the complex values returned by the functionresulting from the complex electromagnetic signal.Iris Flowers: Iris 
owers dataset from Fisher [23] consists of four integervalued continuous features and a particular species of iris 
ower. There arethree di�erent classes: iris virginica, iris setosa, iris versicolor. The four at-tributes measured were sepal length, sepal width, petal length and petal width.



APPENDIX A. REAL-WORLD DATASETS 108The dataset contains 150 instances, 50 instances of each three classes.Liver: This data set contains 345 instances and collected by BUPAMedicalResearch Ltd. Each instance constitutes the record of a single male individ-ual. There are 6 attributes and the �rst 5 variables are all blood tests whichare thought to be sensitive to liver disorders that might arise from excessivealcohol consumption. The last attribute presents drinks number of half-pintequivalents of alcoholic beverages drunk per day. The purpose of this data setis to determine whether patient has liver disorders or not. 276 of the instancesare used in training the remaining 69 are used in testing.Musk: This dataset describes a set of 92 molecules of which 47 are judgedby human experts to be musks and the remaining 45 molecules are judged to benon-musks. The goal is to learn to predict whether new molecules will be musksor non-musks. However, the 166 features that describe these molecules dependupon the exact shape, or conformation, of the molecule. Because bonds canrotate, a single molecule can adopt many di�erent shapes. To generate this dataset, the low-energy conformations of the molecules were generated and then�ltered to remove highly similar conformations. This left 476 conformations.Then, a feature vector was extracted that describes each conformation.This many-to-one relationship between feature vectors and molecules iscalled the \multiple instance problem". When learning a classi�er for this data,the classi�er should classify a molecule as musk if ANY of its conformations isclassi�ed as a musk. A molecule should be classi�ed as non-musk if NONE ofits conformations is classi�ed as a musk.Wine Data: This dataset is about recognizing wine types. This data isprovided by Pharmaceutical and Food analysis and technologies. The classesare separable. In a classi�cation context, this is a well-posed problem with\well behaved" class structures. This dataset is the result of the chemicalanalysis of wines grown in the same region in Italy but derived from threedi�erent cultures. The analysis determined the quantities of 13 constituentsfound in each of the three types of wines. The dataset contains 178 instances.All features are linear.


