BATCH LEARNING OF
DISJOINT FEATURE INTERVALS

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER
ENGINEERING AND INFORMATION SCIENCE
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

by
Aynur Akkus
September, 1996

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Halil Altay Givenir (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Kemal Oflazer

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst.Prof. Hyas (icekli

Approved for the Institute of Engineering and Science:

Prof. Mehmet Baray
Director of Institute of Engineering and Science

i

ABSTRACT

BATCH LEARNING OF DISJOINT FEATURE INTERVALS

Aynur Akkus
M.5. in Computer Engineering and Information Science

Supervisor: Assoc. Prof. Halil Altay Guvenir
September, 1996

This thesis presents several learning algorithms for multi-concept descriptions
in the form of disjoint feature intervals, called Feature Interval Learning algo-
rithms (FIL). These algorithms are batch supervised inductive learning algo-
rithms, and use feature projections of the training instances for the representa-
tion of the classification knowledge induced. These projections can be general-
ized into disjoint feature intervals. Therefore, the concept description learned
is a set of disjoint intervals separately for each feature. The classification of
an unseen instance is based on the weighted majority voting among the local
predictions of features. In order to handle noisy instances, several extensions
are developed by placing weights to intervals rather than features. Empirical
evaluation of the FIL algorithms is presented and compared with some other
similar classification algorithms. Although the FIL algorithms achieve compa-
rable accuracies with other algorithms, their average running times are much

more less than the others.

This thesis also presents a new adaptation of the well-known A-NN clas-
sification algorithm to the feature projections approach, called &-NNFP for
k-Nearest Neighbor on Feature Projections, based on a majority voting on in-
dividual classifications made by the projections of the training set on each
feature and compares with the £-NN algorithm on some real-world and artifi-

cial datasets.

Keywords: machine learning, supervised learning, inductive learning, batch

learning, feature projections, voting.

i1

OZET
AYRIK OZNITELIK BOLUNTULERINI TOPLU OGRENME

Aynur Akkus
Bilgisayar ve Enformatik Mihendisligi, Yiksek Lisans
Tez Yoneticisi: Dog¢. Dr. Halil Altay Guvenir
Eylil, 1996

Bu tezde oznitelik izdigimlerine dayali yeni 6grenme algoritmalar: sunulmus-
tur. Oznitelik Bolintilerini Ogrenme (FIL) olarak isimlendirilen bu algorit-
malar toplu, denetimli ve tiimevarimsal 6grenme yontemlerini kullanirlar ve
ogrenme orneklerinin 6znitelik izdigimlerini siniflama bilgisini ¢ikarmak i¢in
kullanirlar. Bu izdistimler ayrik oznitelik bolintilerine genellenir. Boylece,
ogrenilen kavram tanimlar: her 6znitelik i¢in ayrik oznitelik bolintileri seklinde
gosterilir. Daha once gorilmemig bir 6rnegin siniflandirmasi icin her 6znitelik
tarafindan bir 6n simiflandirma yapilir ve son siniflama bu 6n simiflandirmalarin
agirhikh ¢cogunluk oylamasiyla belirlenir. Hatali 6rnekleri tespit edebilmek i¢in
boliintiilere agirlik verilerek bazi degisiklikler 6nerilmistir. FIL algoritmalarinin
benzer sistemlerle uygulama sonuclar1 dogal ve yapay veri kiimeleri tizerinde
kargilagtirilmigtir. Bu algoritmalarin dogruluk oranlari daha oncekilere yakin

olmasina ragmen ortalama caligma siireleri ¢cok daha azdir.

Bu tezde literatiirde yaygin olarak bilinen £ en yakin komsu simiflandirma
algoritmasi (k-NN) yeniden tanimlanmigtir ve k-NNFP, 6znitelik izdigtimleri
tzerinde k en yakin komsu simiflandirmasi, olarak isimlendirilmigtir. k-NNFP
algoritmasinda siniflandirma her 6znitelikten gelecek olan tahminler arasindan
cogunluk oylamasi yapilarak belirlenir. A-NNFP ve k-NN algoritmalarinin

kargilastirilmasi dogal ve yapay veri kiimeleri tizerinde yapilmistir.

Anahtar Sozcikler: 6grenme, tiimevarimsal 6grenme, toplu égrenme, dene-

timli 6grenme, oznitelik izdistimleri, oylama.

v

ACKNOWLEDGMENTS

I would like to express my gratitude to Assoc. Prof. H. Altay Guvenir due
to his supervision, suggestions, and understanding throughout the development

of this thesis.

[am also indebted to Assist. Prof. Kemal Oflazer and Assist. Prof. Ilyas
(Jicekli for showing keen interest to the subject matter and accepting to read

and review this thesis.

I cannot fully express my gratitude and thanks to Savag Dayanik and my

parents for their morale support and encouragement.

I would also like to thank to Bilge Say, Yiicel Saygin, Gilgsen Demiréz and
Halime Biytkyildiz for their friendship and support.

This thesis was supported by TUBITAK (Scientific and Technical Research
Council of Turkey) under Grant EEEAG-153.

Contents

1 Introduction 1
2 Concept Learning Models 8
2.1 Exemplar-Based Learning 0L 10
2.1.1 Instance-Based Learning (IBL) 11

2.1.2 Nested-Generalized Exemplars (NGE) 14

2.1.3 Generalized Feature Values. 16

2.2 Decision Trees Lo 17
2.3 Statistical Concept Learning 19

2.3.1 Bayes Decision Theory - Naive Bayesian Classifier (NBC) 20

2.3.2 Nearest Neighbor Classifiers (NN) 23

2.3.3 NN Classifier on Feature Projections (NNFP) 25

3 Feature Projections for Knowledge Representation 26
3.1 Classification by Feature Partitioning (CFP) 27
3.2 Classification with Overlapping Feature Intervals (COFI) 31

vi

3.3 K Nearest Neighbor Classification on Feature Projections (k-
NNFEP) . oo 35
3.3.1 The k-NNFP Algorithm 36
3.3.2 Evaluation of the .-NNFP Algorithm 40
3.3.3 Discussiono 45

3.4 Weighting Features in k£ Nearest Neighbor Classification on Fea-
ture Projections (&-NNFP) 46
3.4.1 The Weighted k-NNFP Algorithm 47
3.4.2 Some Methods for Learning Feature Weights 48
3.4.3 Experiments on Real-World Datasets 50
3.4.4 Discussiono 51

3.5 Summaryo 52

4 Batch Learning of Disjoint Feature Intervals 53

4.1 Basic Definitions oo 54

4.2 Description of the FIL Algorithms 56
4.2.1 The FI1 Algorithm 56
4.2.2 The FI2 Algorithm 64
4.2.3 The FI3 Algorithm 65
4.2.4 The FI4 Algorithm 68

4.3 Characteristics of FIL Algorithms 69
4.3.1 Knowledge Representation 72
4.3.2 Inductive Learning L. 73

vii

4.3.3

4.3.4

4.3.5

4.3.6

4.3.7

4.3.8

Supervised Learning Lo
Batch Learningo 00
Domain Independence in Learning
Multi-concept Learning
Properties of Feature Values

Handling Missing (Unknown) Feature Values

4.4 User Interface

4.5 Summary ... e

5 Evaluation of the FIL Algorithms

5.1 Complexity Analysis oL

5.2 Empirical Evaluation of the FIL Algorithms

5.2.1

5.2.2

Testing Methodology

Experiments with Real-World Datasets

5.3 SUMMATY .« o v v v v vt e e e e e e

6 Conclusions and Future Work

A Real-World Datasets

viii

83

83

89

89

87

89

94

95

105

List of Figures

2.1

2.2

3.1

3.2

3.3

3.4

3.5

Classification of exemplar-based learning models.

An example concept description of the EACH algorithm in a

domain with two features.

Construction of intervals in the CFP algorithm: (a) after ¢; is
processed, (b) after ¢y is processed, (c) after i3 is processed, (d)

after all training instances are processed.

Construction of intervals in the CFP algorithm by changing the
order of the training instances. Note that here the same set of
instances in Figure 3.1., but in a different order, is used as the
training set: (a) after is,i7, 15 and ig are processed, (b) after all

instances are processed. Lo

Construction of the intervals in the FIL algorithms with using

the same dataset as used in Figure 3.1 and Figure 3.2.

An example of construction of intervals in the COFI algorithm:
(a) after ¢1, 12, 15 and ¢4 are processed, (b) after ¢5 and i are

processed. L e

An example of construction of intervals in the COFI algorithm
using the same set of training instances as in Figure 3.6, but in
a different order: a) after iy, ¢5, 13, and i are processed, b) after

19 and 74 are processed.o

X

28

3.6 An example of construction of intervals in the FIL Algorithms
using the same set of training instances as in Figure 3.4 and

Figure 3.5,o
3.7 Classification in the k-NNFP algorithm.
3.8 A sample training dataset and a test instance.

3.9 Comparison of £-NN and k-NNFP on artificial datasets for in-
creasing value of k. In all datasets there are 4 relevant features,
3 classes and 100 instances for each class. The accuracy results

are obtained by 5 way cross-validation.
3.10 Classification in the weighted k-NNFP algorithm.
3.11 Homogeneous distribution on a feature dimension

3.12 Heterogeneous distribution on a feature dimension

4.1 An example for an interval. 0000
4.2 An example for a point interval.
4.3 An example for a multi-class point.

4.4 A Sample Training Set and Feature Projections on Fach Feature

Dimension Lo
4.5 Construction of feature intervals in the FI1 algorithm.
4.6 Training process in the FII1 algorithm.
4.7 An example for classification in the FI1 algorithm..
4.8 Classification process in the FI1 algorithm.

4.9 An Example for an incorrect classification in the FI1 algorithm

that leads to the FI2 Algorithm.

4.10 Generalization of intervals in the FI2 algorithm.

35

39

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

5.1

5.2

3.3

Preclassification process in the FI2 algorithm.
Construction of feature intervals in the FI3 algorithm.
An example for classification in the FI3 algorithm.
Training process in the FI3 algorithm.
Classification process in the FI3 algorithm.
Normalization of interval weights in the FI4 algorithm.
An example of classification in the FI4 algorithm.
An example for the information provided to the FIL algorithms.
Intervals of iris domain on the first feature.
Intervals of iris domain on the second feature.
Intervals of iris domain on the third feature.
Intervals of iris domain on the fourth feature.

Feature intervals constructed by the FI1 algorithm for the iris

dataset.

Accuracy results of the FIL, CFP, NBC, k-NN, k-NNFP algo-

rithms on domains with irrelevant attributes.

Accuracy results of the FIL, CFP, NBC, k-NN, k-NNFP algo-

rithms on domains with increasing noise level.

Accuracy results of the FIL, CFP, NBC, k-NN and k-NNFP
algorithms on domains with increasing ratio of missing feature

values. .. .

xi

92

List of Tables

3.1

3.2

3.3

3.4

3.5

5.1

5.2

3.3

For the test instance (< 5,5 >) in Figure 2 the k-NN classifica-
tion, kBag values and final prediction of the k-NNFP algorithm.

Accuracy (%) and average running time (msec) of the k-NNFP

algorithm on real-world datasets.

Accuracy (%) and average running time (msec) of the A-NN

algorithm on real-world datasets.

The average time (in msec) required to train with 80% and test
with the 20% of the artificial datasets for increasing number of

features.

Accuracies (%) of the &-NNFP (N) and its weighted versions us-
ing homogeneneous feature projections (HFP) and single feature

accuracy (SFA) feature weighting methods.

Accuracy results (%) of the FIL algorithms on real-world datasets.
SFA-FIx and HFP-FIx show the weighted versions of the FI1 and
FI2 algorithms. o

Accuracy results (%) of the FI4, NBC, CFP, k-NNFP and £-NN

algorithms on real-world datasets.

The Average Time (msec) required for the FIL, NBC, CFP, k-
NN and A-NNFP algorithms on real-world datasets.

A.1 Comparison on some real-world datasets.

xii

39

List of Symbols and Abbreviations

CFP
COFI

EACH
FIL

FI1

FI2

FI3

Fl4
GA-CFP
H

Hy

Hy 1ower
H pper
HEP
IBL
IB1
IB2
IB3
IB4
IB5
ID3

k

k

: Classification by Feature Partitioning

: Classification by Overlapping Feature Intervals

: Label of the ¢th class

: Decision tree algorithm

: Decision tree algorithm

: Generalization distance for feature f in the COFI algorithm
: Euclidean distance between example £ and exemplar H
: An example

: fth feature value of the example F

: jth feature

: Generalization ratio

: Exemplar-Aided Constructor of Hyperrectangles

: Feature Interval Learning Algorithms

: Feature Interval Learning Algorithm

: Feature Interval Learning Algorithm

: Feature Interval Learning Algorithm

: Feature Interval Learning Algorithm

: Hybrid CFP Algorithm

: Hyperrectangle

: fth feature value of the exemplar H

: Lower end of the range for the exemplar H for feature f
: Upper end of the range for the exemplar H for feature f
: Homogeneous Feature Projections Feature Weighting Method
: Instance-based learning

: Instance-based learning algorithm

: Instance-based learning algorithm

: Instance-based learning algorithm

: Instance-based learning algorithm

: Instance-based learning algorithm

: Decision tree algorithm

: Number of classes in the dataset

: no of neighbors in £-NN and k-NNFP

x1il

Plwelx)

R(Oéi, X)
SFA
T2

X
wy
wg

IR

)‘(Oéiv wj)

: K Nearest Neighbor on Feature Projections

: Logarithm in base 2

: Number of training instances

: Maximum value for the feature f

: Minimum value for the feature f

: Number of features in the dataset

: Naive Bayesian Classifier

: Nested-Generalized FExemplars

: Nearest Neighbor Algorithm

: Conditional probability density function for x conditioned on given w;
: Prior probability of being class ¢ for an instance

: The posterior probability of an instance being class ¢ given the observed

feature value vector x

: Conditional risk

: Single Feature Accuracy Feature Weighting Method

: Agnostic PAC learning decision tree algorithm with at most two levels
: Instance vector

: Value vector of i¢th instance

: Weight of feature f

: Weight of exemplar H

: System whose input is training examples and output is 1-rule

: Weight adjustment rate of the CFP algorithm

: Loss incurred for taking action «; when the state of nature is w;

x1v

Chapter 1

Introduction

Machine learning has played a central role in artificial intelligence since 1980’s,
especially in modeling behavior of human cognition and human thought pro-
cesses for problem solving strategies. The studies in machine learning suggest
computational algorithms and analyses of such algorithms that suggest expla-
nations for capabilities and limitations of human cognition. Learning can be
described as increasing the knowledge or skills in accomplishing certain tasks
[13]. The learner applies inferences in order to construct an appropriate repre-

sentation of some relevant reality.

One of the fundamental research problems in machine learning is how to
learn from examples since it it usually possible to obtain a set of examples to
learn from. From a set of training examples, each labeled with its correct class
name, a machine learns by forming or selecting a generalization of the training
examples. This process, also known as supervised learning, is useful for real-
world classification tasks, e.g. disease diagnosis, and problem solving tasks in
which control decisions depend on classification. Inductive learning refers to
learning from examples in which knowledge is acquired by drawing inductive
inference from the examples given. Acquiring knowledge involves operations
of generalizing, specializing, transforming, correcting and refining knowledge

representations [42, 43].

Many of the tasks to which machine learning techniques are applied are

tasks that humans can perform quite well. However, humans often cannot tell

CHAPTER 1. INTRODUCTION 2

how they solve these tasks. Inductive supervised learning is able to exploit the
human ability to assign labels to given instances without requiring humans to
explicitly formulate rules that do the same. These training instances are then

analyzed by inductive supervised algorithms to learn specific tasks.

There are several different methods by which a human (or a machine) can

acquire knowledge [43]:

rote learning (learning by being programmed)

learning from instruction (learning by being told)

learning from teacher provided examples (concept acquisition)

learning by observing the environment and making discoveries (learning

from observation and discovery)

In this thesis, we will concern with concept acquisition. Concept acquisition
can be defined as the task of learning a description of a given concept from a
set of examples and counterexamples of that concept [13, 43]. Examples are
represented usually by input vectors of feature values and their corresponding
class labels. Concept descriptions are then learned as relations among the given

set, of feature values and the class labels.

The ability to classify is another important facet of intelligence. The task of
a classification algorithm is to predict correctly the class of an unseen test exam-
ple from a set of labeled training examples or classification knowledge learned
by a concept acquisition algorithm. Many supervised learning algorithms have
been developed to perform classification [5, 10, 28, 52, 58]. Classification sys-
tems require only a minimal domain theory and are based on training instances

to learn an appropriate classification function.

One of the central problems in classifying objects is distinguishing features
that are relevant to the target concept from that are irrelevant. Many re-
searchers have addressed the issue of feature weighting in order to reduce the
impact of irrelevant features and to increase the impact of more relevant fea-

tures in classification tasks, by investigating feature weighting [2], and feature

CHAPTER 1. INTRODUCTION 3

subset selection [38, 61]. Some classification systems give equal importance
to all features. However, in real life, the relevance of features may not all be
the same. The algorithms which assign equal weights to all features are more
sensitive to the presence of irrelevant features. In order to prevent the intrusive
effect of irrelevant features, feature subset selection approaches are utilized in
which the space of subsets of feature sets are considered to determine the rele-
vant and irrelevant features. As a simple example, the learning algorithm is run
on the training data with different subsets of features, using cross-validation to
estimate its accuracy with each subset. These estimates are used as an evalua-
tion metric for directing search through the space of feature sets [6, 29, 38, 61].
On the other hand, the disadvantage of using feature selection method is that
it treats features as completely relevant or irrelevant. In reality, the degree of

relevance may not be just 0 or 1, but any value between them.

Knowledge representation in exemplar-based learning models are either rep-
resentative instances [2, 5], or hyperrectangles [58, 59]. For example, instance-
based learning model retains examples in memory as points, and never changes
them. The only decisions that are made are what points to store and how
to measure similarity. Several variants of this model have been developed
[2, 3, 4, 5]. Nested generalized-exemplars model represents the learned knowl-
edge as hyperrectangles [58, 59]. This model changes the point storage model
of the instance-based learning and retains examples in the memory as axis-

parallel hyperrectangles.

The Classification by Feature Partitioning [27, 28, 65], and Classification
with Overlapping Feature Intervals [67] algorithms are also exemplar-based
learning algorithms based on generalized feature values. They are incremental
inductive supervised learning algorithms. Their basic knowledge representation
is based on feature projections. Classification knowledge in these algorithms is
represented as sets of disjoint and overlapping feature intervals, respectively.
The classification of an unseen test example is determined through a weighted
voting scheme on classifications based on the individual feature predictions.

Feature projections for knowledge representation allows faster classification

CHAPTER 1. INTRODUCTION 4

than other exemplar-based learning models since these projections can be or-
ganized for faster classification. Another important advantage of this repre-
sentation is that it allows easy handling of missing feature values by simply
ignoring them. The major drawback of this knowledge representation is that
descriptions involving a conjunction between two or more features cannot be
represented. However, the reported results show that both techniques are suc-
cessful by processing each feature separately [27, 28, 65, 67]. This thesis will
investigate that whether it is possible to obtain more accurate concept descrip-
tions in the form of disjoint feature intervals when they are learned in the batch

(non-incremental) mode.

As a preliminary work to this thesis, we have studied classification of ob-
jects on feature projections in a batch mode [7]. Classification in this method
is based on a majority voting on individual classifications made by the pro-
jections of the training set on each feature. We have applied the k-nearest
neighbor algorithm to determine the classifications made on individual feature
projections. We called the resulting algorithm k-NNFP. for k-Nearest Neigh-
bor on Feature Projections. The nearest neighbor (NN) algorithm stores all
training instances in memory as points and classifies an unseen instance as the
class of the nearest neighbor in the n-dimensional Euclidean space where n is
the number of features. The extended form of the NN algorithm to reduce the
effect of the noisy instances is the k-NN algorithm in which classification is
based on a majority voting among &k nearest neighbors. The most important
characteristic of the k&-NNFP algorithm is that the training instances are stored
as their projections on each feature dimension. This allows the classification of
a new instance to be made much faster than the &-NN algorithm. The voting
mechanism reduces the intrusive effect of possible irrelevant features in clas-
sification. Furthermore, the classification accuracy of the k-NNFP algorithm
increases when the value of k is increased, which indicates that the process of
classification can incorporate the learned classification knowledge better when

k increases.

First, we treated all features as equivalent in the k-NNFP algorithm. How-
ever, all features need not have equal relevance. In order to determine the

relevances of features, the best method is to assign them weights. In this

CHAPTER 1. INTRODUCTION 5

thesis, we propose two methods for learning feature weights for the learning
algorithms whose knowledge representation is feature projections. The first
method is based on homogeneities of feature projections, called homogeneous
feature projections, for which the number of consequent values of feature pro-
jections of a same class supports an evidence for increasing the probability of
correct classification in the learning algorithm that uses feature projections as
the basis of learning. The second method is based on the accuracies of indi-
vidual features, called single feature accuracy. In this approach, the learning
algorithm is run on the basis of a single feature, once for each feature. The
resulting accuracy is taken as the weight of that feature since it is a measure
of contribution to classification for that feature. The first empirical evaluation
of these feature weighting methods on real world datasets will be investigated
in the k-NNFP algorithm in Section 3.4. These methods can be also applied

to other learning algorithms which use feature weights.

In this thesis, we focused on the problem of learning multi-concept descrip-
tions in the form of disjoint feature intervals following a batch learning strategy.
We designed and implemented several batch algorithms for learning of disjoint
feature intervals. The resulting algorithms are called Feature Intervals Learn-
ing algorithms (FIL). These algorithms are batch inductive supervised learning
algorithms. Several modifications are made to the initial FIL algorithm, FI1, to
investigate whether improvement for this method is possible or not. Although
the FIL algorithms achieve comparable accuracies with the earlier classifica-
tion algorithms, the average running times of the FIL algorithms are much less

than those.

The FIL algorithms learn the projections of the concept descriptions over
each feature dimension from a set of training examples. The knowledge repre-
sentation of the FIL algorithms is based on feature projections. The projections
of training instances are stored in memory, separately in each feature dimen-
sion. Concepts are represented as disjoint intervals for each feature. In the ba-
sic FIL algorithm, an interval is represented by four parameters: lower bound,
upper bound, representativeness count and associated class label. Lower and
upper bounds of an interval are the minimum and maximum feature values

that fall into the interval respectively. Representativeness count is the number

CHAPTER 1. INTRODUCTION 6

of the instances that the interval represents, and finally the class label is the

associated class of the interval.

In the FIL algorithms, each feature makes its local prediction by simply
searching through the feature intervals containing that feature value of the test
instance. The final prediction is based on the weighted majority voting among
local predictions of features. The voting mechanism reduces the negative effect
of possible irrelevant features in classification. Since FIL algorithms treat each
feature separately, they do not use any similarity metric among instances for
prediction unlike other exemplar-based models that are similarity-based algo-
rithms. This allows the classification of a new instance to be made much faster

than similarity-based classification algorithms.

Since induction of multi-concept descriptions from classified examples have
large number of applications to real-world problems, we will evaluate FIL al-
gorithms on some real-world datasets from the UCI-Repository [47]. For this
purpose, we have also compiled two medical datasets, one for the description of
arrhythmia characteristics from ECG signals, and the other for the histopatho-

logical description of a set of dermatological illnesses.

In summary, the primary contributions of this thesis can be listed as follows:

o We formalized the concept of feature projections for knowledge represen-

tation in inductive supervised learning algorithms.

o We applied this representation to classical NN algorithm, compared k-
NN and A&-NNFP (the k-NN that uses feature projections). We should
note that the disadvantage of this representation does not affect the clas-

sification of real-world datasets.

o We presented several batch learning methods of disjoint feature intervals
for assigning weights to features and intervals. We also presented two

feature weight learning methods.

o We started the construction of two new medical datasets as an application

area, and a test bed for ML algorithms.

CHAPTER 1. INTRODUCTION 7

This thesis presents and evaluates several batch learning methods in the
form of disjoint feature intervals that use feature projections for knowledge
representation. In the next chapter, a summary of the previous concept learn-
ing models are presented. In Chapter 3, feature projections for knowledge rep-
resentation are discussed and some prior research is explained in detail. The
details of the FIL algorithms are described in Chapter 4. The construction of
feature intervals on a feature dimension and classification process is illustrated
through examples, and several extensions of basic FIL algorithm are described.
Complexity analysis and empirical evaluation of FIL algorithms are studied in
Chapter 5. Performance of the FIL algorithms on artificially generated data
sets and comparisons with other similar techniques on real-world data sets are
also presented. The final chapter presents a summary of the results obtained
from the experiments in this thesis. Also an overview of possible extensions to

the work presented here is given as future work.

Chapter 2

Concept Learning Models

The symbolic empirical learning has been the most active research area in
machine learning for developing concept descriptions from concept examples.
These methods use empirical induction which is falsity-preserving rather than
truth-preserving inference. Therefore the results of these methods are generally

hypotheses which need to be validated by further experiments.

Inductive leaning is the process of acquiring knowledge by drawing induc-
tive inferences from teacher or environment-provided facts by generalizing, spe-
cializing, transforming, correcting and refining knowledge representations [43].
There are two major types of inductive learning: learning from examples (con-
cept acquisition) and learning from observation (descriptive learning). In the-
sis, we will concern ourselves with concept acquisition rather than descriptive
generalization, which is the process of determining a general concept descrip-
tion (a law, a theory) characterizing a collection of observations. In concept
acquisition, observational statements are characterizations of some objects pre-
classified by a teacher into one or more classes (concepts). Induced concept
description can be viewed as a concept recognition rule, in that, if an object

satisfies this rule, then it belongs to the given concept [43].

A characteristic description of a class of objects (conjunctive generalization)
is typically a conjunction of some simple properties common to all objects in
the class. Such descriptions are intended to discriminate the given class from all

other possible classes. On the other hand, a diseriminant description specifies

CHAPTER 2. CONCEPT LEARNING MODELS 9

one or more ways to distinguish the given class from a fixed number of other

classes.

Given a set of instances which are described in terms of feature values
from a predefined range, the task of concept acquisition is to induce general
concept descriptions from those instances. Concept descriptions are learned
as a relation among the given set of feature values and the class labels. The
two types of concept learning are single concept learning and multiple-concept

learning.

In single concept learning one can distinguish two cases:

1. Learning from “positive” instances only.

2. Learning from “positive” and “negative” examples (examples and coun-

terexamples of the concept).

In multiple-concept learning one can also distinguish two cases:

1. Instances do not belong to more than one class, that is, classifications of

instances are mutually disjoint.

2. Instances may belong to more than one class, that is, classifications of

instances are possibly overlapping.

For concept learning tasks, one of the widely used representation tech-
nique is the exemplar-based representation. Either representative instances or
generalizations of instances form concept descriptions [5, 58]. Another useful
knowledge representation technique for concept learning is decision trees [52].
Statistical concept learning algorithms also use training instances to induce
concept descriptions based on certain probabilistic approaches [21]. In the

following sections, these concept learning models are presented.

CHAPTER 2. CONCEPT LEARNING MODELS 10

Exenpl ar- Based Lear i ng

[\

Instance-Based Learning Exenplar-Based Ceneralization

/N

Nested Generalized Generalized Feature
Exenpl ars Val ues

/ N\

Feature Partitioning Overlapping Feature
Intervals

Figure 2.1. Classification of exemplar-based learning models.

2.1 Exemplar-Based Learning

Exemplar-based learning was originally proposed as a model of human learning
by Medin and Schaffer [41]. In the simplest form of exemplar-based learning,
every example is stored in memory verbatim, with no change of representation.
An example is defined as a vector of feature values along with a label which

represents the category (class) of the example.

Knowledge representation of exemplar-based models can be maintained as
representative instances [2, 5], hyperrectangles [58, 59], or generalized values

[27, 28, 67]. Unlike explanation-based generalization (EBG) [18, 45], little or

no domain specific knowledge is required in exemplar-based learning.

Figure 2.1 presents a hierarchical classification of exemplar-based learning
models. Instance-based learning (IBL) and exemplar-based generalization are
two types of exemplar-based learning. For example, instance-based learning

methods [5] retain examples in memory as points, and never changes them.

CHAPTER 2. CONCEPT LEARNING MODELS 11

On the other hand, exemplar-based generalization methods make certain gen-
eralizations on the training instances. One category of the exemplar-based gen-
eralization is the nested-generalized exemplars (NGE) model [58]. This model
changes the point storage model of the instance-based learning and retains
examples in the memory as axis-parallel hyperrectangles. Generalized Fea-
ture Values learning models can be classified as exemplar-based generalization,
such as NGE. The examples of GFV learning models are the Classification by
Feature Partitioning (CFP), and the Classification by Overlapping Feature In-
tervals (COFI). In the CFP algorithm, examples are stored as disjoint intervals
on each feature dimension. In the COFI algorithm, concept descriptions are
represented in the form of overlapping feature intervals. In this thesis, we will
study several batch learning methods whose knowledge representation is in the
form of disjoint feature intervals that can be also categorized as GFV method.
In the following sections, we will describe IBL, NGE, and GFV methods briefly.
GFV methods that use feature projections for knowledge representation will be
discussed in detail in Chapter 3 since this knowledge representation motivated

us to develop this thesis.

2.1.1 Instance-Based Learning (IBL)

Instance-based learning algorithms represent concept descriptions as a set of
stored instances, called exemplars, and with some information concerning their
past performances during classification [5, 8]. These algorithms extend the clas-
sical nearest neighbor algorithm, which has large storage requirements [16, 17].
All examples are represented as points on the n-dimensional Euclidean space,
where n is the number of features. The concept descriptions can change after
each training instance is processed. IBL algorithms do not construct exten-
sional concept descriptions. Instead, concept descriptions are determined by
how the IBL algorithm’s selected similarity and classification functions use the

current set of saved instances. There are three components in the framework

which describe all IBL algorithms as defined by Aha and Kibler [5]:

1. The similarity function computes the similarity between two instances

(similarities are real-valued).

CHAPTER 2. CONCEPT LEARNING MODELS 12

2. The classification function receives the output of the similarity function
and the classification performance records of the instances in the concept

description, and yields a classification for instances.

3. The concept description updater maintains records on classification per-
formance and decides which instance are to be included in the concept

description.

These similarity and classification functions determine how the set of in-
stances in the concept description are used for prediction. So, IBL concept

descriptions contain not only a set of instances, but also these two functions.

Several IBL. algorithms have been developed: 1B1, IB2, IB3, IB4 and IB5

[3, 5]. IB1 is the simplest one and it uses the similarity function computed as

similarity(x,y) = —\/2?21 dif ff(f,2,y)? (2.1)
|zs —yg| if fis linear
difff(f,z,y) = 0 if fis symbolic and z; = ys (2.2)
1 if fis symbolic and x5 # y;

where x and y are the instances.

IB1 is identical to the nearest neighbor algorithm except that it processes
training instances incrementally and simply ignores instances with missing fea-
ture value(s). Since IB1 stores all the training instances, its storage requirement
is quite large. 1B2 is an extension of IB1, it saves only misclassified instances
reducing storage requirement. On the other hand, its classification accuracy
decreases in the presence of noisy instances. IB3 aims to cope with noisy in-
stances. IB3 employs a significance test to determine which instances are good
classifiers and which ones are believed to be noisy. Once an example is deter-
mined to be noisy, it is removed from the description set. IB2 and B3 are also
incremental algorithms. IB1, IB2, and IB3 algorithms assume that all features

have equal relevance for describing concepts.

CHAPTER 2. CONCEPT LEARNING MODELS 13

Extensions of these three algorithms [1, 3] are developed to remove some
limitations which occur because of certain assumptions. For example, concepts

are often assumed to

e be defined with respect to the same set of relevant features,
e be disjoint in instance space, and

e have uniform instance distributions.

To study the effect of relevances of features in IBL algorithms, IB4 has
been proposed by Aha [3]. In this study, feature weights are learned being
dependent on concepts; a feature may be highly relevant to one concept and
completely irrelevant to another. So, IB4 has been developed as an extension of
IB3 that learns a separate set of feature weights for each concept. Weights are
adjusted using a simple feedback algorithm to reflect the relative relevances
of the features to describe instances. These weights are then used in IB4’s
similarity function which is a Euclidean weighted-distance measure of the sim-
ilarity of two instances. Multiple sets of weights are used because similarity
is concept-dependent, the similarity of two instances varies depending on the
target concept. IB4 decreases the effect of irrelevant features on classification

decisions. Therefore, it is quite successful in the presence of irrelevant features.

The problem of novelty is defined as the problem of learning when novel
features are used to help describe instances. 1B4, similar to its predecessors,
assumes that all the features used to describe training instances are known
before training begins. However, in several learning tasks, the set of describing
features is not known beforehand. 1B5 [3], is an extension of IB4 that tolerates
the introduction of novel features during training. To simulate this capability
during training, IB4 simply assumes that the values for the (as yet) unused
feature are missing. During training, [B4 fixes the expected relevance of the
feature for classifying instances. IB5 instead updates the weight of a feature
only when its value is known for both of the instances involved in a classification
attempt. IB5 can therefore learn the relevance of novel features more quickly

than [B4.

CHAPTER 2. CONCEPT LEARNING MODELS 14

Also noise-tolerant versions of instance-based algorithms have been devel-
oped by Aha and Kibler [4]. These learning algorithms are based on a form of

significance testing, that identifies and eliminates noisy concept descriptions.

2.1.2 Nested-Generalized Exemplars (NGE)

Nested-generalized exemplar (NGE) theory is a variation of exemplar-based
learning [58]. In NGE, an exemplar is a single training example, and a general-
ized exemplar is an axis-parallel hyperrectangle that may cover several training
examples. These hyperrectangles may overlap or nest. Hyperrectangles are

grown during training in an incremental manner.

Salzberg implements NGE in a program called EACH (Exemplar-Aided
Constructor of Hyperrectangles) [39]. In EACH, the learner compares new
examples to those it has seen before and finds the most similar generalized

exemplar in memory.

NGE theory makes several significant modifications to the exemplar-based
model. It retains the notion that examples should be stored verbatim in mem-
ory, but once it stores them, it allows examples to be generalized. In NGE
theory, generalizations take the form of hyperrectangles in n-dimensional Eu-
clidean space, where the space is defined by the feature values measured for
each example. The hyperrectangles may be nested one inside another to arbi-
trary depth, and inner rectangles serve as exceptions to surrounding rectangles
[58]. Each new training example is first classified according to the existing
set of classified hyperrectangles by computing the distance from the example
to each hyperrectangle. If the training example falls into the nearest hyper-
rectangle, then the nearest hyperrectangle is extended to include the training
example. Otherwise, the second nearest hyperrectangle is tried. This is called
as second match heuristic. If the training example falls into neither the first
nor the second nearest hyperrectangle, then it is stored as a new (trivial) hy-

perrectangle.

A new example will be classified according to the class of the nearest hy-

perrectangle. Distances are computed as follows: If an example does not fall

CHAPTER 2. CONCEPT LEARNING MODELS 15

into any existing hyperrectangle, a weighted Fuclidean distance is computed.
If the example falls into a hyperrectangle, its distance to that hyperrectangle is
zero. If there are several hyperrectangles having equal distances, the smallest
of these is chosen. The EACH algorithm computes the distance between I and
H, where F is a new data point and H is the hyperrectangle, by measuring

the Euclidean distance between these two objects as follows:

Dpar = wHJ S (1.)

=1

)? (2.3)

maxy — ming
where
Ef - Hﬂupper Ef > Hﬂupper
d(E, H, f) == Hf,lower - Ef Ef < Hf,lower (24)

0 otherwise

where wy 1s the weight of the exemplar H, wy is the weight of the feature f,
Ey is the value of the fth feature on example E. Hj pper 01 Hy joer arve the
upper end of the range and lower end, respectively, on fth feature on exemplar
H, mazxy and min; are the minimum and maximum values of that feature,

and n is the number of features recognizable on F.

The EACH algorithm finds the distance from F to the nearest face of H.
There can be several alternatives to this, such as using the center of H. If
the hyperrectangle H is a point hyperrectangle, representing an individual

example, then the upper and lower values becomes equal.

If a training instance £ and generalized exemplar H are of the same class,
that is, a correct prediction has been made, the exemplar is generalized to in-
clude the new instance if it is not already contained in the exemplar. However,
if the closest hyperrectangle has a different class then the algorithm modifies
the weights of features so that the weights of the features that caused the wrong

prediction is decreased.

The original NGE was designed for continues features only. Symbolic fea-

tures require a modification of the distance and area computations for NGE.

CHAPTER 2. CONCEPT LEARNING MODELS 16

test , C

Figure 2.2. An example concept description of the EACH algorithm in a do-
main with two features.

In Figure 2.2, an example concept description of EACH algorithm is pre-
sented for two features f; and f,. Here, there are three classes, A, B and
C, and their descriptions are rectangles (exemplars) as shown in Figure 2.2.
It is seen that rectangle A contains two rectangles, B and (', in its region.
Therefore, B and ' are exceptions in the rectangle A. The NGE model allows
exceptions to be stored quite easily inside hyperrectangles, and exceptions can
be nested any number of levels. The test instance, that is marked as test in
Figure 2.2, falls into the rectangle ', since it has smaller, so the prediction will

be the class value C' for this test instance.

2.1.3 Generalized Feature Values

The previously presented techniques categorized as generalized feature values
under exemplar-based generalization are the CFP [27, 28, 65], COFI [67], and
k-NNFP [7] algorithms. Briefly, the CFP and COFI algorithms are incremental
algorithms based on feature partitioning and overlapping feature intervals, re-
spectively. They use feature projections as the basis of learning. Classification
of unseen instances are based on voting among the individually predictions of
features. The discussion of the CFP and COFI algorithms are presented in
Chapter 3 in more detail (Section 3.1 and 3.2).

CHAPTER 2. CONCEPT LEARNING MODELS 17

2.2 Decision Trees

Decision trees are one of the most well known and widely used approaches for
learning from examples. This method was developed initially by Hunt, Marin
and Stone [31], and later modified by Quinlan [49, 50]. Quinlan’s ID3 [52] and
C4.5 [55] are the most popular algorithms in decision tree induction. Initially,
ID3 algorithm has applied to deterministic domains such as chess and games
[49, 50]. Later, ID3 algorithm has extended to cope with noisy and uncertain

instances rather than being deterministic [52].

Decision tree algorithms represents concept descriptions in the form of tree
structure. Decision tree algorithms begin with a set of instances and create a
tree data structure that can be used to classify new instances. Each instance
is described by a set of feature values, which can have either continuous or
symbolic (nominal) values, with the corresponding classification. Each internal
node of a decision tree contains a test which indicates which branch to follow
from that node. The leaf nodes contain class labels instead of tests. A new

test instance is classified by using the class label stored at the leaf node.

Decision tree methods use divide and conquer approach. FEach internal
node must contain a test that will partition the training instances. The most
important decision criteria in decision tree induction is how to decide the best
test. ID3, and its successor C4.5 use information-theoretic metrics to evaluate
the goodness of a test; in particular they choose the test that extracts the
maximum amount of information from a set of instances, given the constraint

that only one feature will be tested.

The recursive partitioning method of constructing decision trees continues
to subdivide the set of training instances until each subset in the partition con-
tains instances of a single class, or until no tests offer any further improvement.
The result is often a very complex tree that “overfits the data” by inferring
more structure than is justified by the training instances. A decision tree is
not usually simplified by deleting the whole subtree in favor of a leaf. Instead,
the idea is to remove parts of the tree that do not contribute to classifica-

tion accuracy on unseen instances, producing something less complex and thus

CHAPTER 2. CONCEPT LEARNING MODELS 18

more comprehensible. This process is known as the pruning. There are basi-
cally two ways in which the recursive partitioning method can be modified to
produce simpler trees: deciding not to divide a set of training instances any
further, or removing retrospectively some of the structure built up by recursive

partitioning [55].

The former approach, sometimes called stopping or prepruning, has the
advantage that time is not wasted in assembling structures that are not used
in the final simplified tree. The typical approach is to look at the best way of
splitting a subset and to assess the split from the point of view of statistical
significance, information gain, error reduction. If this assessment falls below

some threshold then the division is rejected.

Later, a simple decision tree approach, called 1R system, is proposed by
Holte [30]. It is based on the rules that classify an object on the basis of a

single feature that is, they are 1-level decision trees, called I-rules [30].

The input of the 1R algorithm is a set of training instances. The output is
concept descriptions in the form of 1-rule. The 1R system can be treated as
a special case of generalized feature values methods. These methods consider
all features information whereas the 1R system uses only one feature. 1R tries
to partition feature values into several disjoint feature intervals. Since each
feature is considered separately in 1R system, missing feature values can be
simply ignored instead of ignoring the instance containing missing value. The
FIL algorithms presented in this thesis also partition feature dimensions into
disjoint intervals. However, the FIL algorithms make final predictions based
on majority voting on individual classifications of all features rather than one
feature as in 1R system. During the training phase of the 1R system, disjoint
feature intervals are constructed on each feature dimension. Then, one of the
concept descriptions on a feature is chosen as final concept descriptions, 1-rules,

by selecting the one that makes the smallest error on the training dataset.

Holte used sixteen datasets to compare 1R and C4 [52], and fourteen of
the datasets were selected from the collection of UCI-Repository [47] [30]. The

main result of comparing 1R and C4 was an insight into the tradeoff between

CHAPTER 2. CONCEPT LEARNING MODELS 19

simplicity and accuracy. 1R rules are only a little less accurate (about 3 per-
centage points) than C4’s pruned decision trees on almost all of the datasets.
Decision trees formed by C4 are considerably larger in size than 1-rules. Holte

shows that simple rules such as 1R are as accurate as more complex rules such

as C4.

Another decision tree algorithm is T2 (decision trees of at most 2-levels)
[12]. Its computation time is almost linear in the size of training set. The T2
algorithm is evaluated on 15 common real-world dataset. It is shown that the
most of these datasets, T2 provides simple decision trees with little or no loss

in accuracy compared to C4.5.

2.3 Statistical Concept Learning

Statistical concept learning has been extensively studied for induction problems
[21, 25, 69]. The main goal is to determine the classification of a given instance
based on parametric or nonparametric techniques. The decision-making pro-
cesses of humans are somewhat related to the recognition of patterns. For
example the next move in chess game is based upon the present pattern on
the board, and buying or selling stocks is decided by a complex pattern of
information [25]. The goal of the pattern recognition is to clarify these com-
plicated mechanisms of decision-making processes and to automate these func-
tions using computers. Several pattern recognition methods, either parametric

or nonparametric, have been presented in the literature [20, 21, 25, 69].

Bayesian classifier originating from work in pattern recognition is a proba-
bilistic approach to inductive learning. This method estimates the (posterior)
probability that an instance belongs to a class, given the observed feature val-
ues for the instance. The classification is determined by the highest estimated
posterior probability [21, 25]. Bayesian classifiers assume that features are sta-
tistically dependent. On the other hand, Naive Bayesian classifier is one of the

most common parametric classifiers assuming independence of features.

When no parametric structure can be assumed for the density functions,

nonparametric techniques, for instance nearest neighbor method, must be used

CHAPTER 2. CONCEPT LEARNING MODELS 20

for classifications [21, 25]. The nearest neighbor method is one of the simplest
methods conceptually, and is commonly cited as a basis of comparison with

other methods. It is often used in case-based reasoning [62].

This section is devoted to statistical concept learning methods because
they have similarities to the FIL algorithms developed in this thesis First,
Bayes Decision Theory and Naive Bayesian Classifiers will be explained. Then,
nearest neighbor methods with some variants will be discussed. Finally, a new
version of k nearest neighbor algorithm, k-NNFP, based on feature projections
will be briefly mentioned, and discussed in detail in Chapter 3 by comparing
k nearest nearest neighbor techniques. In Chapter 5, the FIL algorithms will

be compared with these statistical methods.

2.3.1 Bayes Decision Theory - Naive Bayesian Classi-
fier (NBC)

The goal of the Bayesian classification is to determine the a posteriori proba-
bilities P(C;|x) where C; is the class and x is the instance to be classified. An
instance x=< x1, ¥3,...x, > is a vector of feature values where n is the num-
ber of features. The a priori probability P(C;) and the conditional densities
P(x|C;) allows the use of Bayes rule to compute P(C}|x).

Let Q = {C1, Oy, .., C} be the finite set of k states of nature. Here each C
corresponds to a class in our terminology. Let the feature vector x be a vector-
valued random variable, and let p(x|C;) be the state-conditional probability
density function for x, that is, the probability density function for x conditioned
on C; being the state of nature. Finally, let P(C;) be the a priori probability
that nature is in the state C;. That is, P(C};) is the proportion of all instances
of class j in the training set. Then the a posteriori probability P(C;|x) can be
computed from p(x|C;) by Bayes rule [21]:

p(x|C;)P(C))

P(C5h) = PR

(2.5)

where

CHAPTER 2. CONCEPT LEARNING MODELS 21

p(x) =2 p(x|C;)P(C)). (2.6)

Let A = {a1,q,..,a,} be the finite set of a possible actions. Let A(ey, C})
be the loss incurred for taking action «; when the state of nature is C;. Since
P(C;|x) is the probability that the true state of nature is C;, the expected loss

associated with taking action «; is

k
Rasx) = 3 Mew|C5) P(C]x). (2.7)
7=1

In decision theoretic terminology, an expected loss is called risk, and R(«a;|x)
is known as the conditional risk. Whenever we encounter a particular observa-
tion x, we can minimize our expected loss by selecting the action that minimizes
the conditional risk. Now, the problem is to find a Bayes decision rule against
P(C;) that minimizes the overall risk. A decision rule is a function a(x) that
tells us which action to take for every possible observation. That is, for every
x, the decision function a(x) assumes one of the a values oy, as,..,a,. The
overall risk R is the expected loss associated with a given decision rule. To
minimize the overall risk, we compute the conditional risk for z = 1,..,a and
select the action «; for which R(«;|x) is minimum. The resulting minimum
overall risk is called the Bayes risk and is the best performance that can be

achieved.

k
Rlasx) = 3 Me|C;) P(C;x) (2.8)
7=1

The probability of error is the key parameter in pattern recognition. There
are many ways to estimate error for Bayesian classifiers. One of them is mini-
mizing it. For example, if action «; is taken and the true state of nature is C},
then decision is correct if 7 = j, and in error if ¢ # j. A loss function for this

case, called zero-one loss function is:

CHAPTER 2. CONCEPT LEARNING MODELS 22

o foiti=g
ali,j) = {1 oy (2.9)

The conditional risk becomes

R(ai|x) = §P(0j|x) (2.10)
Rlai|x) = 1 — P(C|x) (2.11)

Note that P(C;|x) is the conditional probability that action «; is correct. To
minimize the average probability of error, one should maximize the a posteriori

probability P(C;|x). For minimum error rate:
Decide C; if P(C;|x) > P(C;|x) for all j # 1.

In summary, a Bayesian classifier classifies a new instance by applying

Bayes’ rule to determine the probability of each class given the instance,

P(Cj]x) = g}i'j@iﬁ% (2.12)

The denominator sums over all classes and where P(x|C}) is the probability
of the instance x given the class C;. After calculating these quantities for each
class, the algorithm assigns the instance to the class with the highest proba-
bility. In order to make this expression operational, one must specify how to
compute P(x|C;). The Naive Bayesian Classifier (NBC) assumes independence

of features within each class, allowing the following equality

n

Pxicy) = 1 PG (2.13)

An analysis of Bayesian classifier has been presented [36]. Also a method,

called Selective Bayesian Classifier, has been proposed [37] to overcome the

CHAPTER 2. CONCEPT LEARNING MODELS 23

limitation of the Bayesian classifier for sensitivity to correlated features. Since
NBC considers each feature independently, this will form a basis for comparison
with the FIL algorithms. The experimental results of these comparisons will

be presented in Chapter 5.

2.3.2 Nearest Neighbor Classifiers (NIN)

One of the most common classification techniques is the nearest neighbor (NN)
algorithm. In the literature, nearest neighbor algorithms for learning from
examples have been studied extensively [17, 21]. Aha et al. have demonstrated
that instance-based learning and nearest neighbor methods often work as well

as other sophisticated machine learning techniques [5].

The NN classification algorithm is based on the assumption that examples
which are closer in the instance space are of the same class. An example is
represented as a vector of feature values plus class label. That is, unclassified
ones should belong to the same class as their nearest neighbor in the training
dataset. After all the training set is stored in memory, a new example is classi-
fied as of the class of the nearest neighbor among all stored training instances.
Although several distance metrics have been proposed for NN algorithms [60],
the most common metric is the Euclidean distance metric. Instances are rep-
resented as a vector of feature values plus class label. The Euclidean distance
between two instances © =< xy, T3, ..., T, Cy > and y =< y1,y2, ...4,, Cy > on

an n dimensional space is computed as:

dist(z,y) = VG diff(fya,y)? (2.14)
|zs —yg| if fis linear
diff(f,z,y) = 0 if fis nominal and x; = y; (2.15)
1 if fis nominal and x; # ys

Here di ff(f,x,y) denotes the difference between the values of instances x, and
y on feature f. Note that this metric requires the normalization of all feature

values into a same range.

CHAPTER 2. CONCEPT LEARNING MODELS 24

Although several techniques have been developed for handling unknown
(missing) feature values [54, 55], the most common approach is to set them to

the mean value of the values on corresponding feature.

Stanfill and Waltz introduced the Value Difference Metric (VDM) to define
the similarity for symbolic-valued (nominal) features and empirically demon-
strated its benefits [62]. The VDM computes a distance for each pair of the
different values a symbolic feature can assume. It essentially compares the
relative frequencies of each pair of symbolic values across all classes. Two fea-
ture values have a small distance if their relative frequencies are approximately
equal for all output classes. Cost and Salzberg present a nearest neighbor
algorithm that uses a modification of VDM, called MVDM (Modified Value
Difference Metric) [15]. The main difference between MVDM and VDM is
that their method’s feature value differences are symmetric. This is not the
case for VDM. A comparison of MVDM and Bayesian classifier is presented in
[56].

A generalization of the nearest neighbor algorithm, £-NN. classifies a new
instance by a majority voting among its k (> 1) nearest neighbors using some
distance metrics in order to prevent the intrusive effect of noisy training in-
stances. This algorithm can be quite effective when the features of the domain
are equally important. However, it can be less effective when many of the
features are misleading or irrelevant to classification. Kelly and Davis intro-
duced WKNN, the weighted k-NN algorithm, and GA-WKNN, a genetic algo-
rithm that learns feature weights for WKNN algorithm [33]. Assigning variable
weights to the features of the instances before applying the k-NN algorithm
distorts the feature space, modifying the importance of each feature to reflect
its relevance to classification. In this way, similarity with respect to impor-
tant features becomes more critical than similarity with respect to irrelevant
features. The study for weighting features in k-NN algorithm has shown that
for the best performance the votes of the k nearest neighbors of a test exam-
ple should be weighted in inverse proportion to their distances from the test

example [70].

An experimental comparison of the NN and NGE (Nested Generalized Ex-
emplars, a Nearest-Hyperrectangle algorithm) has been presented by Wettschereck

CHAPTER 2. CONCEPT LEARNING MODELS 25

and Dietterich [71]. NGE and several extensions of it are found to give pre-
dictions that are substantially inferior to those given by k-NN in a variety of
domains. An average-case analysis of k-NN classifiers for Boolean threshold
functions on domains with noise-free Boolean features and a uniform instance
distance distribution is given by Okamoto and Satoh [48]. They observed that
the performance of the k-NN classifier improves as k increases, then reaches a
maximum before starting to deteriorate, and the optimum value of k increases

gradually as the number of training instances increases.

2.3.3 NN Classifier on Feature Projections (NNFP)

Another statistical approach is a new version of the £-NN classification al-
gorithm proposed in this thesis, which uses feature projections of training
instances for classification knowledge [7]. The classification of an unseen in-
stance is based on a majority voting on individual classifications made by the
projections of the training set on each feature. We have applied the k-nearest
neighbor algorithm to determine the classifications made on individual feature
projections. We called the resulting algorithm £-NNFP, for k-Nearest Neighbor
on Feature Projections. The classification knowledge is represented in the form
of projections of the training data on each feature dimension. This allows the
classification of a new instance to be made much faster than k-NN algorithm.
The voting mechanism reduces the intrusive effect of possible irrelevant fea-
tures in classification. The k-NNFP algorithm is discussed in detail in Section

3.3.

Chapter 3

Feature Projections for Knowledge

Representation

In this chapter, feature projections for knowledge representation are discussed
in detail. Given a set of training instances with correct class labels, knowledge
for representation of a concept description (or classification) is maintained as
the projections of the training set on each feature dimension separately. The
most important advantage of this representation is that the projections of the
feature values can be sorted for each feature, and this reduces the time for
the computation of similarity to all training instances for nearest neighbor
like techniques. An additional advantage is the easy and natural handling of
missing feature values. The rationale behind this knowledge representation is
that humans maintain knowledge in this form, especially in medical domains.
An example for this approach is presented, called CRiteria Learning System
[66]. It aims to learn decision rules in the form of criteria tables as humans do.
One of the shortcomings of feature projections is that descriptions involving a

conjunction between two or more features can not be represented.

This chapter discusses the CFP, COFI, and k-NNFP algorithms that use
feature projections for knowledge representation. Briefly, the CFP and COFI
algorithms are based on feature partitioning and overlapping feature intervals,
respectively. The most important property of these algorithms is that they
both consider each feature separately in an incremental manner. The reported

results show that both techniques are successful by processing each feature

26

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 27

separately [27, 28, 65, 67]. The encouraging results of the CFP and COFI
algorithms motivated us for further investigation of feature projections as a
form of knowledge representation from a different point of view. We think that
more accurate results can be obtained from these techniques if a batch learning
strategy is followed. After the discussion of the CFP and COFI algorithms, a
new version of the classical k-NN algorithm which treats instances as feature
projections rather than points, called k-NNFP (k Nearest Neighbor on Feature
Projections) is presented. Next, an extension to it by weighting features for

weighted-voting is presented.

3.1 Classification by Feature Partitioning (CFP)

The CFP algorithm is a method for learning from examples that uses feature
projections for knowledge representation [27, 28, 65]. It is an incremental
supervised inductive learning algorithm where instances are stored by their
feature projections over each feature dimension. An instance is represented as a
vector of feature values plus a label that encodes the class of the instance. In the
training phase, disjoint feature intervals of concept definitions are constructed
by generalization and specialization. An interval is a basic unit of knowledge
representation in this algorithm. For each interval, lower and upper bounds
of the feature values, the associated class, and the number of instances it

represents are maintained.

Initially, an interval is a point on a feature dimension. It can be extended
through generalization with other neighboring points in the same feature di-
mension. In order to avoid overgeneralization, a parameter, called generaliza-
tion limit (Dy), is given. Before generalizing an interval on a feature dimension
f to cover a new point, the distance between interval and the new point must be
less than Dy. Otherwise, new value forms a new point interval on that feature
dimension. During training, if the feature value of a training instance falls into
an interval properly with the same class, the representativeness value is incre-
mented by one. However, if it falls into an interval with a different class than
that of the instance, specialization of that interval is made by dividing it into

subintervals and inserting a point interval for the new value in between them.

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 28

- c
Order of Training Instances 1
a) |
. X1
| 1 = <X4, c.>
|2 = <X2, c >
i, = <Xg, C > b)
I = <X,,c,>
4 4 1 c
I5: <X5’CZ> C) i
i = <Xg C€,> X1 Xj X2
i, =<X7,¢c,> c, C, C, G
d)

X; X3 X4 X5 Xg X7 X

Figure 3.1. Construction of intervals in the CFP algorithm: (a) after i is
processed, (b) after i3 is processed, (¢) after i3 is processed, (d) after all training
instances are processed.

The representativeness values of these new intervals are updated according to

their sizes.

Figure 3.1 shows the construction of intervals in the CFP algorithm. Let
us consider a training dataset with only one feature. The first instance forms
a point interval at the feature value x; on this feature dimension. After the
second instance, a range interval is constructed and its lower and upper bounds
are xp and x5, respectively, since these two instances have the same class,
as shown in Figure 3.1.b. Here, we assume that the generalization distance
is greater than the difference between x; and z,. The third instance with
different class, C, specializes the interval into two subintervals by inserting
a new point interval in between them. In Figure 3.1.c, the fourth one with
class 'y just increases the representativeness count of the interval that covers
it. Let us assume the next three instances belong to class (s, and their related
feature values are between x4 and x5. In this case, the interval [z3, 23] in Figure
3.1.b is subpartitioned into four intervals for class €y and point intervals are

constructed for the second class Uy as shown in Figure 3.1.d.

During the training process in the CFP algorithm, feature weights and fea-

ture intervals of each concept are learned in an incremental manner. Initially,

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 29

all feature weights are taken as 1. Assume that a new training example is
misclassified by a feature f. Then the weight of that feature (wy) is decreased
by multiplying it by (1 - A). Otherwise, it is increased by multiplying it by (1
+ A). Here, A is the global feature adjustment rate, given as a parameter to

CFP.

Classification of an unseen instance is based on a vote taken among the
predictions made by each feature separately. The prediction of a feature is
determined by the value of that instance on that feature. If it falls into an
interval with a known class, then the prediction is the class of that interval.
If it falls on a point interval, the class with highest representativeness value is
chosen among all the intervals at that point. If it doesn’t fall in any interval,
then no prediction for that feature is made. The effect of the prediction of a
feature in the voting is proportional to the weight of that feature. The final
classification is based on weighted majority voting among local predictions of

features.

In the CFP algorithm, feature intervals are constructed as disjoint set of fea-
ture values. However, intervals may have common boundaries. In such cases,
the representativeness values of the intervals are used to determine the predic-
tion: the class label of the interval which has the maximum representativeness

value is predicted.

Several extensions to the CFP algorithm have been presented in order to

handle noisy values [64, 65] and determine the domain dependent parameters

(Ds and A) of the CFP algorithm [27].

In the noise-tolerant version of the CFP algorithm, feature intervals that
are believed to be introduced by noisy examples are removed from the memory
[65]. A new parameter, called confidence threshold (or level) is introduced to
control the process of removing the intervals from the concept description. The
confidence threshold and observed frequency of the classes are used together

to decide whether an interval is noisy or not.

In order to learn feature weights and domain dependent parameters of the

CFP algorithm, a hybrid system, called GA-CFP, which combines a genetic

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 30

Order of Training Instances

3)

|3=<X , C,>

1= <X; 65>

|5-<X5,c2>

. C C

= <Xg C > 1 1 ¢
=X, 0,5) —— |
* X X
T <X Cp2

I2=<X2,cl>

Figure 3.2. Construction of intervals in the CFP algorithm by changing the
order of the training instances. Note that here the same set of instances in
Figure 3.1., but in a different order, is used as the training set: (a) after is,i7,
i5 and tg are processed, (b) after all instances are processed.

algorithm with the CFP algorithm has been developed [27]. The genetic algo-
rithm is used to determine a very good set of domain dependent parameters
(A and Dy for each feature) of the CFP, even when trained with a small set
of the data set. An algorithm that hybridizes the classification power of the
feature partitioning CFP algorithm with the search and optimization power of
the genetic algorithm, called GA-CFP, requires more computations than the

CFP algorithm, but achieves improved classification performance.

Figure 3.2 illustrates a limitation for the CFP algorithm. In order to see
the effect of the order of presentations of training instances, let us construct
intervals by the CFP algorithm by changing the order of training instances.
In this case, all instances with class 5 were processed before other instances
with class C} in the previous example, then the intervals would have been
constructed as shown in Figure 3.2. Firstly, a range interval is constructed for
the class (5 from the first four instances as shown in Figure 3.2a, and then
three point intervals are constructed for the last three instances of class ('; as in
Figure 3.2b. The concept descriptions (intervals) in Figure 3.1 and Figure 3.2
are very different from each other although the same training instances were

processed. This indicates that the order of the instances is very important and

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 31

C, C,Cp . c
I

X1 XgX, X; Xg X7 X

Figure 3.3. Construction of the intervals in the FIL algorithms with using the
same dataset as used in Figure 3.1 and Figure 3.2.

it affects the resulting concept descriptions considerably. The different concept
descriptions can classify a test instance as different classes. For example, the
test instance < xg, (7 > where x5 < xg < xg will be classified as C'; by the
intervals constructed in Figure 3.1 and as (3 according to feature intervals in

Figure 3.2.

The FIL algorithms offer a solution to this problem, by constructing inter-
vals in a batch mode, that is, seeing all the training instances at once, and
then processing them. Therefore, they construct intervals as independent of
the order of training instances. Since all training instances are known initially,
all feature values are sorted on each feature dimension in the form of point
intervals. Then, neighboring same class points are generalized to form range
intervals. Feature values at which there exist more than one class remain as
point intervals. The concept description learned by the FIL algorithms from
the same set of training instances is shown in Figure 3.3, independent of the
order of the training instances. In addition to sensitivity to the order of train-
ing instances, the CFP algorithm overgeneralizes intervals as in 3.1c. In this
case, intervals of concept (] are formed between point intervals of concept Cl.

However, one might expect that the range |5, 27] should belong to class C,.

3.2 Classification with Overlapping Feature Intervals
(COFI)

The COFT algorithm is another exemplar-based concept learning algorithm
that uses feature projections to generalize knowledge. It is an inductive su-

pervised learning algorithm. Classification knowledge learned is maintained

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 32

generalizationratio g=0.5

Order of Training Instances

a) | | C, D =15
1 4 1
=<t o || C, D =2.0
i =<4, C> 5 9 f2
2 1
T es) 1 | |
3 _
I 4_ < gv %> | 1
i = <10 ¢G> . C, b 2:3 0
i =<1, c»>

Figure 3.4. An example of construction of intervals in the COFT algorithm:
(a) after iy, 19, i3 and iy are processed, (b) after i5 and ig are processed.

in the form of overlapping feature intervals. The COFI algorithm makes gen-
eralizations to construct the concept descriptions from a set of preclassified
training instances. Concept descriptions learned by the COFT algorithm are

represented as intervals on the class dimensions for each feature.

In the training process, examples are processed one by one and the corre-
sponding intervals on each class dimension for each feature are constructed.
The COFT algorithm performs the learning task by constructing the projection
of the concepts over each class dimension for each feature, that is, the COFI
algorithm learns the overlapping feature intervals for each feature. Learning
overlapping feature intervals is done by storing the objects separately in each
class dimension for each feature as class intervals of values. Basic unit of the
representation is interval as in the CFP algorithm. An interval consists of four
parameters: lower and upper bounds, representativeness count and a class la-
bel. Lower and upper bounds of the interval are the minimum and maximum
feature values that fall into the interval respectively. Representativeness count
is the number of the instances that the interval represents, and finally the class

label is the associated class of the interval.

The first task of the training process is the estimation of the current gen-

eralization distances, Dy, for each feature f. They are found as follows:

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 33

Dy = (current_maxy — current_ming) * g. (3.1)

Here the current maximum and current minimum feature values are the
maximum and minimum values of the related feature seen up to the current
example and ¢ is the generalization ration in the range [0, 1]. They are updated
by each new training example. Since current maximum and minimum of fea-
tures change through out the training process, the COFI algorithm is affected
also by the order of the training instances. In the first training instance, the
maximum and the minimum values are equal to each other and they are the
first feature values of the related feature of the training instance. Therefore,
initially all the generalization distances are 0 for each feature. If the feature
values of the next training instance are different from the previous example’s
feature values, then one of the maximum and minimum value of the related

feature is updated so the generalization distance will also be updated.

After deciding the generalization distance Dy, the intervals should be up-
dated according to Dy. If the distance between the feature value of the new
example and the previously constructed intervals is greater than the Dy, then
the new example constructs a new point interval. Otherwise, representativeness
count of the interval containing it is incremented by 1. The COFI algorithm
handles both the linear and nominal feature values. However, the generaliza-
tion process is applied only to linear type features. Nominal feature values are

not generalized, taking D as 0 for nominal features.

Figure 3.4 illustrates the construction of overlapping feature intervals in the
COFTI algorithm. This sample training set with one feature and two classes.
The incremental computation of Dy, for each class dimension is also shown
in the Figure 3.4. For this example, on the C class dimension only point
intervals are constructed since the difference between feature values do not
exceed Dy;. On the other hand, on the second class dimension, the last training
instances’ value forms a range interval since the difference between feature

values is greater than Dy .

The classification of an unseen test instance is based on a majority voting

taken among the individual predictions based on the votes of the features. The

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 34

generalization ratio g=0.5

Order of Training Instances

9 | | C, D =4.5
1 10 1
| 1: <1, Cl> | | Q D :3. 0
i =<10, C> 5 11 fo
5 1
i =< 5, CQ> b) |
3 —
i ;T G2 1 4 10 G Df 1_4 5
] =<4, C> I -
I 2 1 .) C, b 2—3. 0
| 4— <9, C2>

Figure 3.5. An example of construction of intervals in the COFI algorithm
using the same set of training instances as in Figure 3.6, but in a different
order: a) after iy, ¢5, i3, and ¢ are processed, b) after i3 and ¢4 are processed.

vote of a feature is based solely on the value of the test instance for that feature.
The vote of a feature is not for a single class but rather a vector of votes, called
vote vector. The size of the vector is equal to the number of classes. An element
of the vote vector represents the vote given by the feature to the corresponding
class. The vote that a feature gives to a class is the relative representativeness
count of the class interval. The relative representativeness count is the ratio of
the representativeness count to the number of examples of the corresponding
class label. Since for most of the datasets, the instances are not distributed
normally in terms of their class values, this kind of normalization is required.
The vote vectors of each feature are added to determine the predicted class.
The class which receives the maximum vote is the final class prediction for the

test instance.

Generalization in the COFI algorithm is sensitive to the order of the train-
ing instances as shown in Figure 3.5, as in the CFP algorithm. Here, the order
of training instances are changed among same classes. We get a different con-
struction of overlapping intervals from this ordering of training instances, as

shown in Figure 3.5 since the initial generalization distances change.

The FIL algorithms construct disjoint feature intervals from the same train-
ing instances as independent of the order of the training instances, as seen

from the Figure 3.6. Since all feature values are known initially, the intervals

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 35

Figure 3.6. An example of construction of intervals in the FIL Algorithms
using the same set of training instances as in Figure 3.4 and Figure 3.5.

constructed during the training process are unique whatever the order of the

training instances is.

3.3 K Nearest Neighbor Classification on Feature Pro-
jections (k-NNFP)

In this section, a new approach to classification is presented, which is based on
a majority voting on individual classifications made by the projections of the
training set on each feature [7]. We have applied the k-nearest neighbor algo-
rithm to determine the classifications made on individual feature projections.
We called the resulting algorithm k-NNFP, for k-Nearest Neighbor on Feature

Projections.

The classification knowledge is represented in the form of projections of the
training data on each feature dimension. The classification of an instance is
based on a voting taken on the classifications made on the basis of individual

feature projections.

In Chapter 2, a brief introduction to k-NN algorithm and its several exten-
sions were given. In the next subsection, the k-NNFP algorithm is described.
Section 3.3.2 presents the complexity analysis and empirical evaluation of the
E-NNFP and k-NN algorithms. Finally, Section 3.2.3 presents a summary of
the k-NNFP algorithm and its applicability.

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 36

3.3.1 The ki-NNFP Algorithm

This section presents the k-NNFP algorithm, a new classification based on
feature projections using k nearest neighbor algorithm. First, the description
of the algorithm is given. Then the algorithm is explained through an exam-
ple dataset. Later, the behavior of the algorithm on datasets with irrelevant

features will be given.

3.3.1.1 Description of the .--NNFP Algorithm

The implementation of the algorithm given here is non-incremental, namely, all
training instances are taken and processed at once. An instance x is represented
as X=< Iy, T2,..2,,Cy > where z;s (1 < in) are the feature values and C, is
the corresponding class label. An important characteristic of this algorithm
is that instances are stored as their projections on each feature dimension. In
the training phase, each training instance is stored simply as its projections
on each feature dimension. If the value of a training instance is missing for a

feature, that instance is not stored on that feature.

In order to classify an instance, a preclassification separately on each fea-
ture dimension is performed. During this preclassification, we use the k-NN
algorithm on that single dimension. That is, for a given test instance ¢ and
feature f, the preclassification for & = 1 will be the class of the training in-
stance whose value on feature f is the closest to that of the t. For a larger
value of k, the preclassification is a bag (multiset) of classes of the nearest k
training instances. In other words, each feature has exactly k votes, and gives
these votes for the classes of the nearest training instances. In some cases, es-
pecially for nominal features, there may be ties to determine the first & nearest
neighbors. In such cases ties are broken randomly. For the final classification
of the test instance ¢, the preclassification bags of each feature are collected
using bag union. Finally, the class that occurs most frequently in the collec-
tion bag is predicted to be the class of the test instance. In other words, each
feature has exactly k votes, and gives these votes for the classes of the nearest

training instances. Also note that, since each feature is processed separately,

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 37

classify(t,k)
/* t: test instance, k: number of neighbors */
begin
for each class ¢
votelc] = 0
for each feature f
/* put k nearest neighbors of test instance ¢
on feature f into Bag */
Bag = kBag(f,t, k)
for each class ¢
votelc] = vote[c] + count(c, Bag);
prediction = UNDETERMINED
for each class ¢
if vote[c] > vote[prediction] then
prediction = ¢
return prediction
end.

Figure 3.7. Classification in the k-NNFP algorithm.
no normalization of feature values is needed.

The k-NNFP algorithm is outlined in Figure 3.7. All the projections of
training instances on linear features are stored in memory as sorted values. In
Figure 3.7, the votes of a feature is computed by the function kBag(f,t,k),
which returns a bag of size k containing the classes of the k nearest training
instances to the instance ¢ on feature f. The distance between the values on a

feature dimension is computed using deff(f, x,y) metric as follows:

|zs —yg| if fis linear
diff(f,x,y) = 0 if fis nominal and 2y = y; (3.2)
1 if fis nominal and z; # yy

Note that the bag returned by kBag(f,t, k) does not contain any UNDETER-
MINED class as long as there are at least k training instances whose [values
are known. Then, the number of votes for each class is incremented by the

number of votes that a feature gives to that class, which is determined by the

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 38

count function. The value of the function count(c, Bag) is the number of

occurrences of class ¢ in bag Bag.

The E-NNFP algorithm handles unknown feature values in a straight for-
ward manner. If the value of a test instance for a feature f is missing, then
feature f does not participate in the voting for that instance. The final voting
is done between the features for which the test instance has a known value.

That is, unknown feature values are simply ignored.

3.3.1.2 An Example

In order to describe the classification in the k-NNFP algorithm, consider the
sample training dataset in Figure 3.8. In this dataset, the feature fy is the only
relevant feature, and f; is an irrelevant feature. There are three instances of
each class A, B, and C in the training set. Let the test instance (< 5,5 >) be
of class B.

For the test instance in Figure 3.8, the k-NN classification, kBag values
and final prediction for the &-NNFP algorithm are given in Table 3.1. As seen
in Table 3.1, the k-NN algorithm will classify the test instance as C if £ = 1,
asCor Aif k=2,as C,Aor Bif k =3, and as Cif £ = 4. On the other hand,
the k-NNFP algorithm will classify the test instance correctly if £ > 1. This
example shows that the &-NNFP algorithm will be unaffected in the presence

of irrelevant features.

3.3.1.3 Handling Irrelevant Features

The conclusion about the irrelevant features from the previous example can
be generalized. For an irrelevant feature f, the number of occurrences of a
class C' in a bag returned by kBag(f,t,k) is proportional to the number of
instances of class €' in the training set. If there are equal number of instances
of each class in the training set, than the votes of an irrelevant feature will be
equal for each class, and the final prediction will be determined by the votes

of the relevant features. If the training instances are not equally distributed

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 39

fl
ol 5
1 1 IB : 1
1 1 (I) I 1
A 1 I I 1
8____9___'____7________'
1 1 I ¢ 1
1 1 I (I) 1
1 AI I I 1
6 [---"-0-L--- -
! 'test , C | !
1 1 . I o I 1
e
1 B ! ! 1
2----!.---@___1____'____!
AI 1 ! ! CI
O 1 1 : : o 1
| | 1 1 ':fo
0 2 4 6 8 10

Figure 3.8. A sample training dataset and a test instance.

among the classes, then the votes of an irrelevant feature will be for the most

frequently occurring class.

Table 3.1. For the test instance (< 5,5 >) in Figure 2 the k-NN classification,
kBag values and final prediction of the k-NNFP algorithm.

k-NNFP
k E-NN fo fi Sum of Votes Prediction
1 [C] [B] [C] B,C] Bor C
2 [C,A] [B,B] [C,A] [A,B,B,C] B
3 [C,A,B] [B,B,B] [C,A,C] [A,B,B,B,C,(C] B
4 [C,AB,C] [B,B,B,A] [C,A,C,B] [A,AB,B,B,B,C.,C] B

3.3.1.4 Handling Missing Feature Values

The k-NNFP algorithm handles unknown (missing) feature values by simply

not taking them into account. During batch training and classification, the

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 40

features containing missing values are simply ignored. This is a natural ap-
proach because in real life if nothing is known about a feature, it is usually
ignored. If all class dimensions give no prediction, then no prediction can be

made and the resulting prediction for the class is UNDETERMINED. This is

an unexpected case since at least one feature value should be known.

3.3.2 [Evaluation of the .--NNFP Algorithm

Several measures of performance are possible. One performance measure of a
classification algorithm is its classification accuracy. For supervised concept
learning tasks, the most commonly used classification accuracy metric is the
percentage of correctly classified instances over all test instances for a given
dataset. The other performance measures are time and space complexities. In
this section, the training and classification complexities of the &-NNFP and
the £-NN algorithms are given. Next, an empirical evaluation of the algorithm
is presented along with its comparison with the &-NN algorithm in terms of

classification accuracy for increasing values of k and running time.

3.3.2.1 Complexity Analyses

Since all the training instances are stored in the memory in both A-NN and k-
NNFP algorithms, the space required for training with m instances on a domain
with n features is proportional to m-n. That is, the space complexities of these

algorithms are O(m - n).

In the training, all instances are stored on each feature dimension as their
feature projections. And then they are sorted once at the end. Since the
sorting of m feature values has the time complexity of O(mlogm) For a dataset
containing m instances and n features the training time complexity of the k-

NNFP is O(n-m-logm). On the other hand, the k-NN algorithm has the time

complexity of O(m - n) for storing all instances in memory.

The kBag(f,t, k) function, to determine the votes of a feature, first finds the

nearest neighbor of £ on f and then next & — 1 neighbors around the nearest

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 41

neighbor. The time complexity of this process is O(logm 4+ k). The final
classification requires the votes of each of n features. Therefore, the average

classification time complexity of the k-NNFP algorithm is O(n - (k + logm)).

On the other hand, in the &-NN algorithm, the classification of a test in-
stance requires the computation of its distance to m training instance on n di-
mensions. Time complexity of computing the distance between two instances
is O(n). So, computing the distance to m training instances is O(m - n) .
Sorting m instances according to their distances is O(mlogm). Therefore, the
classification time complexity of a single instance in the k-NN algorithm is

O(m(n +logm)), assuming m >> k.

3.3.2.2 Empirical Evaluation

Here, an empirical evaluation of the k-NNFP algorithm on both real-world
data sets and artificially generated datasets is presented in order to show the
effect of irrelevant features on the classification accuracy. The results will be

compared with that of the k-NN algorithm.
Experiments with Real-World Datasets

The k-NNFP and &-NN algorithms are evaluated on some real-world datasets
which are widely used in the machine learning field, therefore comparisons will
be possible with other similar methods in future. The real-world datasets are
selected from the UCI-Repository [47]. An overview of the datasets is given in
Appendix A, and they are briefly explained.

Accuracy of an algorithm is a measure of correct classifications on a test
set of unseen instances. There are several ways of measuring the accuracy of
an algorithm. In this study, we chose the 5-fold cross-validation technique.
That is, the whole dataset is partitioned into 5 subsets. The four of the sub-
sets is used as the training set, and the fifth is used as the test set, and this
process is repeated 5 times once for each subset being the test set. Therefore,
each instance appears once in the test set, and four times in the training set.

Classification accuracy is the average of these 5 runs.

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 42

Table 3.2. Accuracy (%) and average running time (msec) of the k-NNFP
algorithm on real-world datasets.

Data Set: bcancerw cleveland glass hungarian ionosphere iris liver musk wine
k=1 94.00 67.62 57.00 70.04 88.04 90.00 50.44 69.54 79.7
k=2 94.56 72.28 62.14 70.70 88.02 92.00 53.92 71.40 90.4
k=3 94.88 72.94 61.18 75.84 88.02 91.34 55.68 70.76 90.96
k=4 95.72 77.56 60.74 73.80 87.46 92.64 5884 71.40 93.24
k=5 96.16 78.88 60.72 76.16 87.46 91.30 58.26 71.22 93.24
k=6 96.00 77.86 63.54 72.76 87.78 91.88 61.16 69.96 9548
k=7 96.00 79.52 62.58 74.80 87.74 92.00 61.46 70.36 95.48
k=8 96.14 79.18 63.98 73.76 86.90 92.66 61.76 69.96 96.04
k=9 96.14 78.52 63.04 75.80 87.44 92.00 62.04 69.52 96.62
k=10 96.14 78.86 64.90 72.76 87.46 94.02 6290 69.10 96.62

Avg. Time 340 740 94 266 477 40 1022 2654 282

Table 3.3. Accuracy (%) and average running time (msec) of the &-NN algo-
rithm on real-world datasets.

Data Set: bcancerw cleveland glass hungarian ionosphere iris liver musk wine
k=1 95.00 80.52 68.66 75.50 84.62 93.98 63.48 73.10 94.40
k=2 93.84 80.20 67.70 79.54 88.06 94.00 60.58 77.54 94.42
k=3 96.28 82.50 66.76 81.58 83.78 94.68 66.66 70.18 96.60
k=4 95.72 82.84 68.14 80.92 85.20 94.00 62.60 74.16 94.38
k=5 96.58 83.80 66.30 82.26 83.20 94.66 64.92 67.88 96.04
k=6 96.56 82.82 67.24 83.64 83.76 95.32 61.46 69.14 96.08
k=7 96.26 82.50 65.36 83.28 82.34 94.66 64.64 65.58 96.04
k=8 95.86 82.16 65.36 83.62 84.06 94.66 64.36 67.86 95.48
k=9 95.56 82.82 65.34 82.94 82.62 94.66 67.54 65.16 96.04
k=10 95.70 81.48 63.96 83.96 84.06 94.66 63.20 67.86 96.06

Avg. Time 3216 7786 318 695 2335 105 2060 18520 615

Table 3.4. The average time (in msec) required to train with 80% and test
with the 20% of the artificial datasets for increasing number of features.

Number of features

4 6 8 10 12 14

E-NNFP 85 212 285 367 517 356
k-NN 365 937 1257 1335 1472 1720

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 43

The accuracy of the k-NNFP in Table 3.2 and k-NN in Table 3.3 were
obtained for the specified datasets for k£ = 1, 2, ... 10. These experiments show
that the classification accuracy of the k-NNFP algorithm usually increases
when the value of k increases. This suggests that the &-NNFP algorithm can
exploit the knowledge represented in the form of feature projections for higher
values of k. On the other hand, increase in the value of £ does not result
in a parallel increase in the accuracy of the k-NN algorithm. Langley and
Sage’s works on NN classifiers suggest that many of the UCI datasets have few

irrelevant features, if any. Our experimental results also support this claim.
Experiments on Artificial Data

As illustrated through an example in subsection 3.3.1, the k-NNFP algo-
rithm is, in general, unaffected from the presence of irrelevant features in the
dataset. Experiments with artificial datasets have important roles to play in
the study of irrelevant features. Hence, in order to empirically prove this claim,
we have generated six datasets with increasing number of irrelevant features
from zero to ten. Each of the datasets contain four relevant features, three
classes with 100 instances each. A class is represented by a hyperrectangle in
four (relevant) dimensional space, the values for irrelevant features are ran-
domly generated. We have conducted 5-fold cross-validation experiments on
these six datasets, and compared the results of &-NNFP and k-NN algorithms.

The accuracy results are plotted in Figure 3.9.

As seen from these results, the decrease in the accuracy of the &-NNFP
algorithm when the number of irrelevant features increase is much less than
that of the £-NN algorithm. Also we observed that the accuracy of the k-
NNFP algorithm increases parallel to the increase in the value of k, whereas

the accuracy of the k-NN algorithm is not correlated with increase in the value

of k.

The time required to train the k&-NNFP and the £-NN algorithms with the
80% of the data and test with the remaining 20% for these datasets are given
in Table 3.4. The comparison of the running times in this table agrees with

the time complexity analysis of these algorithms given in Section 3.3.2.1.

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 44

100 100 00
098 1 098 1 098
096 1 096 1 096
094 v 094 094 1
082 082 092
090 090 090
088 088 1 0.8
086 086 086
084 1 084 084
S S S
> > >
@ 080 @ 080 @ 080
5 5 5
8078 8078 807
[@ [
076 1 076 1 076
074 1 074 1 074
0 1 0 1 0
070 o kNN 1 070 070
K-NNFP
068 1 068 068
066 irrelevant feaures 0 1 066 066
05 irrelevant features: 1 - -
062 1 062 1 062
gl gl 080
12 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10
k k
100 100 100
098 098 1 098
096 096 1 096
094 094 1 094
082 f 092 082
090 090 090
088 088 088
086 086 086
084 084 084
S S S
> > >
@ 080 @ 080 @ 080
5 5 5
8078 8078 8078
@ @ [
076 076 076 f..
074 1 074 074
0 1 0 0
070 o kNN 1 070 070 o kNN
K-NNFP NNFP
068 1 068 068
066) 1 066 066)
- #irrelevant features. 6 1 06t oge| Hirelevant features: 10
062 1 062 062
ol ol ol
12 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
k k k

Figure 3.9. Comparison of k-NN and k-NNFP on artificial datasets for in-
creasing value of k. In all datasets there are 4 relevant features, 3 classes
and 100 instances for each class. The accuracy results are obtained by 5 way
cross-validation.

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 45

3.3.3 Discussion

A new form of classification method, called £-NNFP, has been presented. This
algorithm has been compared with the k-NN algorithm in terms of classification
accuracy and time complexity on both real-world and artificially generated

datasets.

In the E-NNFP algorithm, the classification knowledge is represented in
the form of sets of projections of the training data separately on each feature
dimension. The classification of an instance is based on a majority voting
taken on the classifications made on the basis of individual feature projections.
Since each feature is processed separately, there is no need for normalization of
feature values. Also, for the same reason, the algorithm can simply ignore any
missing feature values that may appear both in training and test instances. The
effect of the missing and noisy feature values on the prediction accuracy of the
E-NNFP algorithm will be investigated as a future work. As another direction
for future work, we plan to integrate a feature weight learning algorithm to

kE-NNFP.

The E-NNFP algorithm is based on the assumption that each feature can
contribute the classification process and the majority voting provides a correct
classification when data contain many irrelevant features. The k-NNFP algo-
rithm can provide better classification accuracy than k-NN algorithm when
a dataset contains many irrelevant features with respect to relevant ones.
This claim has been justified on artificially generated datasets. On real-world
datasets, the k-NNFP algorithm achieves comparable accuracy with the k-
NN algorithm. On the other hand, the average running time of the k-NNFP
algorithm is much less than that of the &-NN algorithm.

The kE-NNFP algorithm treats feature values independently, whereas the k-
NN algorithm treats all instances as points in n-dimensional Fuclidean space.
The £-NNFP algorithm stores the feature projection of the training instances
in a sorted order. Therefore, the classification of a new instance requires a
simple search of the nearest training instance value. On the other hand, in the
k-NN algorithm, a new search must be done for each test instance in the whole

Euclidean space.

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 46

3.4 Weighting Features in k Nearest Neighbor Classi-
fication on Feature Projections (k-NNFP)

We propose two methods for learning feature weights to improve the classifica-
tion accuracy of the k-NNFP algorithm. The classification of unseen examples
are made on the basis of feature projections by a majority voting among the
k (> 1) predictions of each feature separately. We have treated all features as
equivalent in this algorithm (Section 3.3). However, all features may not have
equal relevance, even some features may be completely irrelevant. In order to
determine features’ relevances, the best method is to assign them weights. The
first method is based on the homogeneity of feature projections for which the
number of consequent values of feature projections of a same class supports an
evidence for increasing the probability of correct classification in the k-NNFP
algorithm. We called this method HFP (Homogeneous Feature Projections).
The second method is based on the individual accuracies of features. We called
this method SFA (Single Feature Accuracy). In this approach, the k-NNFP
algorithm is run on the basis of a single feature, once for each feature. The
resulting accuracy is taken as the weight of that feature since it is a measure
of contribution to classification for that feature. Empirical evaluation of these
feature weighting methods in the k-NNFP algorithm on real world datasets is

given.

These feature weighting methods aim to investigate the effect of weight
assigning to features in k-NNFP algorithm. In these methods, no domain-
specific knowledge is used. These methods can be categorized according to
Wettshereck and Aha’s five-dimensional framework’s first dimension [72] as
ignorant and feedback, respectively, since homogeneity of feature projections
weight setting does not use any feedback from the k-NNFP algorithm whereas
the second one uses feedback from k-NNFP algorithm. These methods modify
the voting mechanism of &-NNFP algorithm by incrementing the vote of the
predicted class by using the feature weight. These feature weighting methods
can be easily incorporated into other classification algorithms that use feature

weights.

In this study, we aim to investigate the importance of features’ contribution

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 47

to final classification since to assign higher weights to more relevant features in-
crease the reliability of voting. This study focused on the empirical evaluations

of feature weighting methods proposed on real-world datasets.

Comparison of similar algorithms highlights dissimilarities that can explain
observed performance differences. Our experimental results show that weight-
ing features in the k-NNFP algorithm improves the accuracy effectively in some
real-world datasets, especially for smaller k& values. An explanation of observed

performance differences is presented in the third subsection.

In the next subsection, the k-NNFP algorithm is given with its weighted
version, briefly. In the subsequent subsection, a detailed descriptions of fea-
ture weighting methods studied are given. The third subsection presents the
empirical comparison of these methods on real-world datasets taken from the
UCI-Repository [47]. The last subsection presents a summary of these feature
weighting methods.

3.4.1 The Weighted k-NNFP Algorithm

In Section 3.3, the k.-NNFP algorithm was introduced for classification based
on feature projections using k nearest neighbor algorithm. Since all feature
values are treated separately, there is no need for normalization of feature
values. In the learning phase, each training instance is stored as its projections
on each feature dimension. If the value of a training instance is missing for a
feature, that instance is not stored on that feature. The k-NNFP algorithm
stores the feature projections of training instances in a sorted order. Therefore,
the classification of a new instance requires a simple search of the nearest
training instance values on each feature. The classification of an instance is
based on a majority voting taken on the classifications made on the basis of
individual feature projections. In general, with the majority voting for final
classification, the effect of irrelevant features may be reduced. On the other
hand, each feature can contribute to the classification by its relevance. So,
if we place weights on features before voting, this can provide more accurate
result for final class by reflecting each feature’s relevance in the classification.

The weighted k-NNFP algorithm is outlined in Figure 3.7. This algorithm

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 48

classify(t, k)
/* t: test instance, k: number of neighbors */
begin
for each class ¢
votelc] = 0
for each feature f
/* put k nearest neighbors of test instance ¢
on feature f into Bag */
Bag = kBag(f,t, k)
/* each feature contributes proportional ot its weight */
for each class ¢
votelc] = vote[c] + weight[f] * count(c, Bag);
prediction = UNDETERMINED
for each class ¢
if vote[c] > vote[prediction] then
prediction = ¢
return prediction
end.

Figure 3.10. Classification in the weighted £-NNFP algorithm.

was explained in Section 3.2.1.1. Here, the number of votes for each class is
incremented by multiplying the weight of that feature by number of votes that
a feature gives to that class, which is determined by the count function. The

value of count(c, Bag) is the number of occurrences of class ¢ in bag Bag.

3.4.2 Some Methods for Learning Feature Weights

Two feature weighting methods are proposed for k-NNFP algorithm to see
the effect of irrelevant, and relevant features with relative relevancies. Firstly,
the homogenity of feature projections method is discussed. Next, the second

method which is based on the single feature accuracy is presented.

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 49

f I I W |l

Figure 3.11. Homogeneous distribution on a feature dimension

Cl C3 C2 C1C2C3 Cl C2
f N |1

Figure 3.12. Heterogeneous distribution on a feature dimension

3.4.2.1 Weight Learning Based on Homogenity of Projections

The basic motivation for this method comes from the &-NNFP algorithm itself.
The assumption of the &-NNFP algorithm is that closer values on a feature di-
mension are of the same class, distribution of trainig instances on a feature
dimension is homogenious. That is, the projections of all training instances of
the same class are grouped together. Figure 3.11 and Figure 3.12 illustrates
homogeneous and heterogeneous feature projections, respectively. In homo-
geneous feature projections, the total number of consequent values of a same
class can give a measure for its relevancy for classification prediction. In k-
NNFP algorithm, all seen feature values are stored in memory as sorted. We
can determine the weight of a feature as follows: Initially, a count is set to 0,
then for all sorted feature values, if the consequent feature value’s class is same
as the previous one, then count is incremented. Therefore, feature weight can
be found by dividing that count by the total number of distinct feature values

on that feature. This can be summarized as follows:

Vi
Zv:l o(fv) (33)

Vy

1 lf CU,f — Cv-l—l,f

0 otherwise

a(f,v) = { (3.4)

All feature weights are computed using this formula. Here (', ; denotes the

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 50

class label of v value on feature dimension f, and V; denotes the number of
distinct values on feature dimension f. This equation always gives a value for
a feature between 0 and 1, so it can be the probability of correct classification
for that feature. These are incorporated with feature weights to allow that

more important features contribute to classification process more effectively.

3.4.2.2 Weight Learning Based on Single Feature Accuracy

The second method is motivated from the work of Holte since each feature is
processed individually in k-NNFP algorithm [30]. We called this method SFA
(Single Feature Accuracy) since feature weights are learned from the accuracy
of the k-NNFP algorithm of each feature individually. Holte reports the results
of experiments measuring the performance of very simple rules on the datasets
commonly used in machine learning research. The specific kind of rules stud-
ied is called I-rules, which classify an object on the basis of a single feature.
This study motivated us to examine the classification accuracy of the k--NNFP
algorithm on the basis of a single feature. Therefore, those accuracies can be
used as the weight of that feature since those accuracies reflect how much each
feature can contribute to the final classification. However, a totally irrelevant
feature will have about 1/No of Classes accuracy, called random accuracy. In
order to avoid random correct classification, we subtract the random accuracy

of a feature from the individual accuracies.

3.4.3 Experiments on Real-World Datasets

An empirical evaluation of two feature weighting methods, HFP and SFA, is
presented here along with their comparisons with unweighted version of the
kE-NNFP algorithm by 5-fold cross-validation.. The weighted versions of the k-
NNFP algorithm are evaluated on some real-world datasets selected from the
collection of datasets provided in the UCI-Repository [47]. The characteristics

of these datasets are shown in Appendix A.

The accuracy results of &-NNFP and its two weighted versions are given

in Table 3.5. In this table, the first row of each k value presents the k-NNFP

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 51

Table 3.5. Accuracies (%) of the k-NNFP (N) and its weighted versions using
homogeneneous feature projections (HFP) and single feature accuracy (SFA)
feature weighting methods.

Data Set: bcancerw cleveland glass hungarian ionosphere iris liver wine
N k=1 94.00 67.62 57.00 70.04 88.04 90.00 50.44 79.70
HFP 94.28 67.62 57.92 68.70 88.32 89.98 50.42 87.58
SFA 94.28 79.60 57.00 61.52 88.60 89.98 58.26 87.00
N k=3 94.88 72.94 61.18 75.84 88.02 91.34 55.68 90.96
HFP 95.02 72.92 62.14 77.88 88.02 94.02 56.52 94.36
SFA 95.02 77.24 62.58 77.18 88.02 94.68 60.58 94.9
N k=5 96.16 78.88 60.72 76.16 87.46 91.30 58.26 93.24
HFP 96.02 80.18 59.78 77.86 87.18 93.32 57.96 94.38
SFA 96.16 80.50 65.84 74.78 87.74 94.00 63.50 94.90
N k=7 96.00 79.52 62.58 74.80 87.74 92.00 61.46 95.48
HFP 94.96 79.20 63.06 76.86 87.80 93.34 61.44 95.52
SFA 95.86 81.50 66.76 74.78 86.90 94.00 64.64 95.50
N k=9 96.14 78.52 63.04 75.80 87.44 92.00 62.04 96.62
HFP 96.28 79.18 63.06 78.20 87.74 94.02 62.32 96.62
SFA 96.28 81.52 66.30 72.74 87.74 94.68 64.94 97.20

algorithm results, the second row is the results of the HFP weight learning,

and finally the third row presents the results of SFA feature weighting method.

These experiments showed that none of the weight learning algorithms im-
proved the k-NNFP algorithm on the bcancerw and ionosphere datasets signif-
icantly. This should be because all the features on these datasets are equally
relevant. On the cleveland, liver, iris and glass (except k = 1) datasets, the
weights learned by the individual accuracies always performed significantly bet-
ter than the others. The HFP weight learning method performed better than
the other on the hungarian dataset, except & = 1. There were no significant

difference between the two weight learning algorithms on the wine dataset.

Our findings emphasize that weighted versions do not improve the k-NNFP
algorithm effectively in most of the real-world datasets. Langley & Sage con-
cluded from their experiments with feature selection that a number of data

sets in the UCI repository contain few or no irrelevant features [38].

3.4.4 Discussion

A version of the well-known k-NN algorithm, that stores the classification

knowledge as the projections of the training instances on the features, called

kE-NNFP algorithm, had been shown to be successful (Section 3.3). We have

CHAPTER 3. FEATURE PROJECTIONS FOR KNOWLEDGE REPRESENTATION 52

presented two methods for determining the relative weights of features for use
in the &-NNFP algorithm. The HFP method assigns a higher weight to features
on which the projections of instances of the same class are located close to each
other, resulting in a homogeneous distribution. The SFA method, on the other
hand, assigns a weight as the classification accuracy that would have been

obtained if only that feature were used in the classification.

Our experiments revealed that these weighting methods assign low weights
to completely irrelevant features, and high weights to relevant ones. Further,
among these two weight learning algorithms, the one that is based on the
individual accuracies learned weights that helped k-NNFP achieve higher ac-
curacies. The reason for this success is due to the feedback received from the
classification algorithm. We conclude that this weight learning method could
be successful for other classification algorithms that use feature weights. As a
further work we plan to investigate these weight learning methods on artificial

datasets.

3.5 Summary

In this chapter, feature projections for knowledge representation have been
presented. The most important advantage of this representation is that sorted
feature values reduces the time for computation of similarity to all training
instances for NN like techniques. In addition, since each feature is consid-
ered separately, handling of missing feature values by simply ignoring them is
natural. Furthermore, this representation is plausible. The major drawback of
feature projections knowledge scheme is that descriptions involving conjunction
between two or more features cannot be represented. However, prior research
on this representation, by the CFP and COFT algorithms, has shown that they

are successful in classification of real-world tasks.

The next chapter will introduce several batch learning methods for classifi-
cation where knowledge is represented in the form of disjoint feature intervals.

This is one of the primary contributions of this thesis.

Chapter 4

Batch Learning of Disjoint Feature

Intervals

This chapter is devoted to batch Feature Intervals Learning (FIL) algorithms.
We have seen in the previous chapter that feature projections for knowledge
representation have become successful with the advantage of lower time re-
quirement of classification task and natural handling of missing feature values;
despite its limited representation power. The CFP and COFI algorithms pre-
sented in Chapter 3 are incremental supervised inductive learning algorithms
(Section 3.1 and Section 3.2). Hence, the classification knowledge learned by
these algorithms is sensitive to presentation order of training instances. In
Section 3.3, we have presented a new classification algorithm &-NNFP that
classifies unseen instances on the basis of feature projections in a batch mode.
That is a variation of classical k-NN algorithm. This chapter is, therefore,
devoted to developing batch learning of feature intervals and several modifi-
cations that can improve their performance. Basic characteristics of the FIL
algorithms are that they are batch supervised inductive learning algorithms,
based on feature intervals for knowledge representation. Although classifica-
tion is much faster in the k-NNFP algorithm, its storage requirements are quite
high. The algorithms discussed in this chapter attempt to find more compact
representations of the training data by constructing feature intervals that repre-
sent a collection of feature values that belong to the same class. More compact
representations lead to faster classifications and may increase the ability of the

user to understand decisions made by the classifier.

33

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 54

f: X, <X,

Figure 4.1. An example for an interval.

The FIL algorithms described here are the FI1, FI2, FI3, and FI4 algorithms
with slight differences. First, we will explain the training and classification
process in the basic FIL algorithm, FI1, through examples and then present the
details of the algorithms. This is followed by discussion of modified algorithms
(FI2, FI3, FI4). Finally, general characteristics of the FIL algorithms are
discussed classifying them according to some important dimensions in machine

learning.

4.1 Basic Definitions

First, we will give some necessary definitions before explaining the FIL algo-

rithms.

Definition. An interval is a range of values of a feature dimension, such
that all the training instances whose values for that feature fall into that range

have the same class label.

Figure 4.1 shows an example for a feature interval. This interval represented
as < [z, x,], r, C7 > on feature f indicates that, in the training set there are

r instances whose f values lie in the range [2;, z,] and their class label is C.

Definition. A point interval is an interval whose lower and upper bounds

are the same.

An example for a point interval is given in Figure 4.2. Here, there are
training instances whose f values are = and their class label is C';. Other
neighboring feature values belong to different classes from ;. There may be

more than one point interval at a same feature value.

Definition. A range interval is an interval whose lower and upper bounds

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 99

rc

Figure 4.2. An example for a point interval.

f3C3
5 ¢,
I’lc1

f: I
X

Figure 4.3. An example for a multi-class point.
are not equal (x; # x,).

Figure 4.1 also illustrates a range interval. Range intervals contain several

feature values belonging to a same class label.

Definition. A single-class point is a value on a feature dimension that

belongs to the single class label.

For example, x in Figure 4.2 is a single-class point on feature f. Neighboring
same single-class points are extended into intervals. But, point intervals may
be constructed at single-class points if the neighboring feature values belong

to different class labels.

Definition. A multi-class point is a value on a feature that belongs to

more than one class labels.

Figure 4.3 illustrates an example for a multi-class point. That is, there
are ry training instances of class (1, ry training instances of class Cs, and r3
training instances of class C3 whose f values are xy. These can be represented

in three point intervals:
< [x1, 1], m1, C1 >,
< w1, @], r2, Cy >,

< [xlv xl]v rs, CY3 >.

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 56

4.2 Description of the FIL Algorithms

In this section, the training and classification processes of the FIL algorithms
will be explained through examples. Then, the details of these algorithms
will be presented. Also voting-based classification process will be illustrated

through examples.

4.2.1 The FI1 Algorithm

In the training phase of the FI1 algorithm (basic FIL), learning task is per-
formed by constructing disjoint feature intervals in a batch mode. All training
instances are taken and processed at once. Feature intervals on each feature di-
mension are constructed through generalization. Concept descriptions learned
are represented in the form of sets of disjoint feature intervals. For the classifi-
cation task, each feature determines its own prediction (preclassification) using
only its local knowledge by searching the interval covering test example’s value
for that feature. The classification of an instance is based on a majority voting
taken among the preclassifications made by each feature. The FIL algorithms

can handle both continuous (linear) and nominal valued features.

4.2.1.1 Training in the FI1 Algorithm

The input to the FI1 algorithm is a training set that contains examples rep-
resented as vectors of feature values plus the corresponding class label. An
example is represented as x=< w1, x3,..,2,, C; > where zq, 29, .., 2, are the
corresponding feature values of features fi, fs,.., f,, and C,. is the associated
class label of the example x where 1 < ' < k, here k is the total number of
the classes. Therefore, the dimension of the example vector ¢ is n + 1 where n

is the number of features.

Since the FII1 algorithm learns in a batch mode, it takes all training exam-
ples and processes them at once. In the FI1 algorithm, the basic unit of the

knowledge representation is an interval with four parameters:

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 57

< [lower bound, upper bound], representativeness count, class label >

Lower and upper bounds of an interval are the minimum and maximum fea-
ture values that fall into the interval, respectively. Representativeness count
is the number of the instances that the interval represents. Finally, the class
label is the associated class of the interval. In other words, learned classifi-
cation knowledge is represented as the set of feature intervals by generalizing
neighboring same single-class points into intervals. Feature intervals are dis-
joint. However, multi-class points remain as point intervals as in Figure 4.3.
In that case, a set of point intervals (upper and lower bounds are equal) are
constructed for multi-class points. Otherwise, disjoint feature intervals are

single-class intervals.

Let us give an example to illustrate the training process of the FI1 algo-
rithm. Here, training instances are represented also as vectors of feature values
and the associated class as shown in Figure 4.4. Training set has 18 examples
described with three linear features. There are there different classes in this
sample training set (C, Cy and C5). First, feature projections on each feature
dimension are displayed in Figure 4.4 for this sample training set. This corre-
sponds to the process of presenting all training instances initially and storing
them in memory as sorted (if they are linear features) on each feature dimen-
sion. That is the only information kept in the memory to construct feature

intervals.

Then, from this knowledge, initial point intervals are constructed with equal
lower and upper values. This is the same as feature projections shown in
Figure 4.4, except additional information such as lower, upper bound values,
representativeness count and associated class label. Since all features are linear,
their intervals are generalized. Generalization process combines neighboring
point intervals into a single interval if they are of the same class. The resulting
concept descriptions in the form of feature intervals is given in Figure 4.5.
For example, the feature projections on the first feature dimension forms the

following set of feature intervals on f; dimension:

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 58

TRAINING SET

i,= <110, 7, Cp i_lO: <10, 17,16, C,>
i,= <312 7, Cp> f11: <10, 17,18, Cy>
3= <4,10,10, C> o= < 4,17, 4, Cz
i 4= < 4,12, 10, C1> i13: < 4,17, 4, C3>
|5: < 4,15, 10, C1> i14: < 4,17, 1, C3>
ig= <4, 7, 7, Cp | 5= < 4,17, 4, Cg>
= <617, 7, Cp i 1= < 6,17, 4, C>
ig= < 6, 9,13, Cy> i17= < 6,19, 1, C3>
ig= < 8,17,15, Cy» i1g= < 9,19, 4, Cp
4C
032 203
2C CH Cqh2C
f R e
1 1 3 4 6 8 9 10
5C3 -
C C,2Cqy 2C1 C 4C, 3
fo 2 25t ! ! !
7 9 10 12 15 17 19
202
2C3 5C3 2¢cy 3C; Cy Cob cy
fq | | I I | L1 I
1 4 7 10 13 1516 18

Figure 4.4. A Sample Training Set and Feature Projections on Each Feature
Dimension

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 59

403
- 102 2C3
1 _ 301 2(12 1(3;21(‘332?2
f - |
1 1 3 4 6 8 9 10

54C3 .
c
2 3
fo s B] | |
7 9 10 12 15 17 19
2¢,
2c] 3Cq |
f | | ; :
3
7 10 13 1516 18

Figure 4.5. Construction of feature intervals in the FI1 algorithm.

{ <[1,3],2 Ci> <[4, 4],3 Ci> <[4, 4], 1, Cy >
<[4, 4,4, C3> <[6, 6], 2, C3 > <[6, 6], 3, C3 >
< [8, 8], 1, Cy > < [9, 9], 1, O3> < [10, 10], 2, Oy > }

The only range interval constructed on f; is the first interval since only
it contains neighboring single-class points that belong to the same class label
whereas the other ones are either multi-class points or neighboring single-class
points that do not belong to the same class. Multi-class points remain as point
intervals allowing more than one interval at the same feature value as shown in
Figure 4.5. Nominal features have only point (possibly multi-class) intervals.
This is because nominal values cannot be generalized. Figure 4.6 summarizes

the training process of the FI1 algorithm.

4.2.1.2 Classification in the FI1 Algorithm

The output of the training process of the FI1 algorithm is the concept de-

scriptions learned in the form of feature intervals. In the FI1 algorithm, the

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 60

train(Training Set)

begin
sortTrainingData(Training Set) /* on each feature dimension */
construct-intervals(Training Set)

end.

construct-intervals(Training Set)
begin
for each feature f
for each training instance @
initialize-point-intervals(f,¢)
if f is linear then
generalize-point-intervals(f)
/¥ if f is a nominal feature, no generalization is done */
end.

generalize-point-intervals(f)
begin
for each consecutive interval pair
if their classes are same and they are single-class intervals then
join them into a range interval
/* update lower, upper and representativeness values */
end.

Figure 4.6. Training process in the FII algorithm.

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 61

TEST : < 2,14, 9,C >

1
4C3
l 1cs 2c4 PREDI CTI ON
202 1C21C3 2C2

f 1 | | | c

1 6 8 9 10 1
f2 Cl
f : ?

3

1 4 7 10 13 1516 18

Fi nal d assification cq

Figure 4.7. An example for classification in the FI1 algorithm.

classification is based on a majority voting taken among the individual pre-
dictions of features. The classification of a feature is based not only on the
value of the test instance on that feature dimension but also on the feature
intervals constructed during the training phase. Each feature predicts only a
single class. FIL algorithms assume that features have different levels of rele-
vances. Assuming equal relevance is a special case of weighted-voting, i.e., each
feature contributes to voting process with equal weights. The feature weights
are given to the FIL algorithms externally by the user. If they are not given,
then all features assume equal weights (=1). So, each feature has the same

voting power in the determination of the final class prediction.

The classification on a feature is simply a search process on that feature
dimension. If the feature value of the test instance on that feature is contained
by an interval, then the prediction will become the class of that interval. If
it falls in a multi-class point, the class of the interval with the maximum
representativeness count will be predicted. Otherwise, if it is not contained
by any interval, then no prediction is made by that feature, hence no vote is

taken from that feature. If all feature dimensions give no predictions, then

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 62

no classification can be made and the resulting decision for the class will be
UNDETERMINED. Nevertheless, this case is quite unlikely to occur in real-world

datasets.

In order to determine the final classification, the local vote of each fea-
ture are summed up. The class which receives the the maximum vote is the

classification for the test instance. This can be summarized as follows.
classification(test) = ¢ such that v. > v; for each ¢ # c.

Let us illustrate the classification process of the FI1 algorithm by classifying
the test instance < 2, 14, 9, (7 > according to the concept descriptions
learned by the FI1 algorithm in the training phase as shown in Figure 4.5.
Each feature value of this test instance is indicated in Figure 4.7 by arrows
on each feature dimension. FEach feature makes a preclassification for this
instance. In the first dimension, the first feature value, 2, falls into the first
interval with class Cy, < [1,3],2,C; >. Therefore, it predicts that the class of
the test instance should belong to the class ;. The result of preclassification
of the second feature is again class 'y since the second feature value, 14, falls
into the interval < 10,15,6,Cy >. The third feature makes no prediction since
the third feature value, 9, is not contained by any interval. The vote vector
for this test instance becomes < 2,0,0 >. Here, 2 votes for class C'y and no
votes for classes 'y, C3. The class which receives the maximum vote, (7 in this
case, is determined as the final class prediction. Since the actual class value
of the test instance is also (', the final prediction is a correct classification.
It should be noted that, for this example, equal feature weights are assumed.
The classification process of the FI1 algorithm is outlined in Figure 4.8. Some
experiments will be performed to investigate the effect of weighting features in

voting mechanism in Chapter 5.

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 63

classify(test)
begin
for each class ¢
votelc] = 0

for each feature f
interval = search-interval(f, testy)
/* each feature contributes proportional to its weight */
if class of interval # UNDETERMINED then

vote[class of interval] = vote[class of interval] + weight]f];

prediction = first class
for each class ¢
if vote[c] > vote[prediction] then
prediction = ¢

if vote[prediction] = 0 then
prediction = UNDETERMINED /* all features make no prediction */

return prediction
end.

search-interval(f, value)
begin
if value on f is a single-class point then
return interval on that point
else if value on [is multi-class point then
return interval with the highest representativeness count
else if value on f is contained in a range interval then
return :nterval on that value
else /* no interval exists for that value */
return UNDETERMINED
end.

Figure 4.8. Classification process in the FI1 algorithm.

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 64

TEST : < 4,16, 8,C >

1
403
lcy, 3cC3 PREDI CTI ON
fq €3
fo 2
5
fa ?

Final Cd assification C3

Figure 4.9. An Example for an incorrect classification in the FI1 algorithm

that leads to the FI2 Algorithm.

4.2.2 The FI2 Algorithm

Figure 4.9 illustrates classification of another test example < 4, 16, 8, C; >.
In this case, features f, and f3 make no predictions since projections on these
features are not contained by any interval. The first feature value falls into a
multi-class point of class C'5. The FI1 algorithm determines the local prediction
of the first feature according to the class that has the maximum representative-
ness count. Hence, 3 will be predicted without considering the distribution
of classes. This leads to a slight modification in the FI1 algorithm, called FI2.
Basic unit of knowledge representation in the FI2 algorithm is also interval
with a slight difference: it uses relative representativeness count which is the
ratio of the representativeness count to the total number of training instances

of the corresponding class rather than absolute representativeness count.

In this sample training set, there are three training instances of 'y class
at this feature value, 4, whereas there are four instances of C5 class. So, the

relative representativeness counts of intervals with class Cy and C; are 3/5 and

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 65

4/7, respectively. The relative representativeness count of (' is greater than
that of Cy. If preclassification on a feature dimension is made according to the
relative representativeness count of multi-class points, this may be more fair,
without always giving a chance to the classes that appear more frequently in
the training set. Therefore, the concept of relative representativeness count
introduces a modification to classification process of the FI1 algorithm. After
training, only representativeness counts are divided by total number of cor-
responding classes. This is a kind of normalization of class distributions and

required for datasets with unequally distributed classes.

The training process of the FI2 algorithm is identical to FI1 except that af-
ter construction of intervals, each feature maintains relative representativeness
count rather than representativeness count, as outlined in Figure 4.10. The
difference in the classification process appears in the preclassification of test
values at multi-class points. The class of the interval which has the maximum
relative representativeness count is chosen as the prediction. This difference in

the classification process is summarized in Figure 4.11.

4.2.3 The FI3 Algorithm

Since learning is achieved in the batch manner, all training instances are known
before the construction of feature intervals in both FI1 and FI2 algorithms.
Once they are constructed, the intervals having less representativeness count
than the one with maximum in the FI1 and relative representativeness in the
FI2 algorithms are not used in the classification process. This raises the fol-
lowing question: Why do we store them? This motivated us to investigate a

method to store a single point interval in multi-class points.

For this purpose, we tried to eliminate less likely contributing intervals to
classification. The interval having the maximum representativeness count is
chosen as the class of the interval on that multi-class point. The elimination
of the intervals with lower representativeness counts leads to the pruning of
presumably noisy intervals. However, one should be careful in this pruning.

For example, consider a multi-class point at value v with intervals

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 66

generalize-point-intervals(f)
begin
for each consecutive interval pair
/* update lower, upper and representativeness values */
if their classes are the same and they are point intervals then
join them into a range interval

/* normalization of class distributions among intervals */

for each interval
represent value of interval
total no of class of interval

relative represent value =

end.

Figure 4.10. Generalization of intervals in the FI2 algorithm.

search-interval(f, value)
begin
if value on f is a single-class point then
return interval on that point
else if value on [is multi-class point then
return interval with the highest relative representativeness count
else if value on f is contained in a range interval then
return :nterval on that value
else /* no interval exists for that value */
return UNDETERMINED
end.

Figure 4.11. Preclassification process in the FI2 algorithm.

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 67

1C21C31C2

f | 1

1 8 9 10
fo
fa

Figure 4.12. Construction of feature intervals in the FI3 algorithm.
< [v,v],50,C1 >,
< [v,v],49,Cq >,
< [v,v],2,C5 >.

If we simply remove the last two intervals, we loose the information that
at this value v, ('} and (5 classes are equally possible. In order to establish a
balance between intervals with high representativeness counts, we designed a
new method for placing weights to intervals rather than features. To determine
the weight of a new point interval, two point intervals having maximum rep-
resentativeness counts are found. Then, the weight of the interval is set to be
the difference between two maximum representativeness counts divided by the
total number of representativeness counts of multi-class points at that feature
value. We called this algorithm as FI3. An interval in the FI3 algorithm is

represented as follows:
< [lower bound, upper bound], weight of interval, class label >

Here, weight of the interval represents the vote of the interval when it con-

tributes to classification. All other information is the same as in the FI1

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 68

algorithm.

The concept descriptions of the sample training set given in Figure 4.4
learned by the FI3 algorithm is presented in Figure 4.12. Note that the storage
requirement of the FI3 algorithm is smaller than the FI1 and FI2 algorithms

if there are many multi-class points.

In the preclassification of feature f, its vote is for the class of interval as
the weight of interval containing the feature value of the test instance on the
feature dimension f. The classification example in Figure 4.13 illustrates the
behavior of the FI3 algorithm. In this example, the class C5 will take 1 vote
from feature fs5 since fsth value falls into a range interval and range interval
votes are set to be 1. The first feature votes 1/8 vote for Cs since first feature
value falls into a multi-class interval. The class (5 will take 1 vote from the
range interval on feature f;. The vote vector becomes < 0,1,9/8 >. Final
classification is the class 3. Since the actual class of the test example is (s,
the test instance will be correctly classified by the constructed intervals as

shown in Figure 4.13.

The differences in the training and classification algorithms are listed in
Figure 4.14 and Figure 4.15. In the training, the weights of feature intervals are
learned in addition to their constructions. In the classification, these weights

are used for feature votes.

4.2.4 The FI4 Algorithm

In the FI3 algorithm, initial single-class point intervals will have the maximum
weight (=1). However, these can be noisy intervals as well. To decrease the
effect of such intervals, normalization of these interval weights are required.
This is done by dividing these weights to the total number of their classes in the
training dataset. Figure 4.17 illustrates this by an example. The test instance
< 8, 18, 3, C5 > will be tested according to the knowledge learned by the FI3
algorithm. The value for f; falls into the interval < [8, 8], 1/6 , Cy >. The
weight of this interval becomes 1/6 since there is only one training instance

whose fith value is 8, but totally there are 6 training instances of class (5

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 69

TEST : <4, 8, 3,Cp

PREDI CTI ON VOTE

f i B ' (:21IC31C; 2 Cc 1/ 8
1 1 3 4 8 9 10 3
102 lcl 1C3 1C3
f2 C2 1

Final d assification Cy

Figure 4.13. An example for classification in the FI3 algorithm.

in the whole dataset. So, the first feature predicts Cy with weight 1/6, the
second feature makes no prediction and the third one predicts C'5 with weight
1, because all feature values that belong to the class (5 on feature fs fall into

the same interval.

The training process of the FI4 algorithm is identical to the FI3 algorithm
except normalization of feature interval weights according to class distributions
in the training set. The normalization process is outlined in Figure 4.16. The
classification task is performed as in the FI3 algorithm using more reliable

feature interval weights.

4.3 Characteristics of FIL Algorithms

In this section, general properties of learning methods are presented to char-

acterize the FIL algorithms.

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS

70

construct-intervals(Training Set)
begin
for each feature f
for each training instance :
initialize-point-intervals(f,¢)
if f is linear then
generalize-point-intervals(f)
/¥ if f is a nominal feature, no generalization is done */
compute-interval-weights(f)
end.

compute-interval-weights(f)
begin
for each interval
if range interval or single-class point then
weitght of interval = 1
else
find the interval having maximum repr. count
werghtof interval =

dif ference between two max. representativeness counts

total repr. count

end.

Figure 4.14. Training process in the FI3 algorithm.

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 71

classify(test)
begin
for each class ¢
votelc] = 0

for each feature f
interval = search-interval(f, testy)
/* each interval contributes proportional to its weight */
if class of interval # UNDETERMINED then
vote[class of interval] =
vote[class of interval] + weight of interval

prediction = first class
for each class ¢
if vote[c] > vote[prediction] then
prediction = ¢

if vote[prediction] = 0 then
prediction = UNDETERMINED /* no final prediction */

return prediction
end.

Figure 4.15. Classification process in the FI3 algorithm.

compute-interval-weights(f)
begin
for each interval
if range interval or single-class point then
weight of interval = 1
else

find the interval having maximum repr. count
dif ference between two max. representativeness counts
total repr. count

weight of interval =

/* interval weights are normalized according to class distributions */
for each interval
divide weight of interval by
total no of class of interval in training set
end.

Figure 4.16. Normalization of interval weights in the FI4 algorithm.

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 72

TEST : < 8,18, 3, C3>

1

PREDI CTI ON
1/ 6::2 1/ 7:332/ GICZ
f c 1/ 6
1 8 9 10 2 ()
1/63C3 ll/?C
fo 1 1 s ? (0)
17 19
3/5 Cq 4/6Co
3 - S (1)
10

Final d assification Cg3

Figure 4.17. An example of classification in the FI4 algorithm.

4.3.1 Knowledge Representation

Knowledge representation is one of the most important dimensions in classify-
ing machine learning techniques. Many learning systems acquire knowledge in
the form of rules. Another way to represent what is learned is with decision
trees as in the ID3 and C4.5 algorithms [55]. On the other hand, knowledge
representation in exemplar-based learning models is sets of representative in-

stances [1, 2, 5] or hyperrectangles which represent generalizations [58, 59].

In Chapter 3, we presented a new knowledge representation in the form of
feature projections. Generalization and specialization are made on the basis
of feature projections. This introduces faster classification of test instances by
preventing the similarity computation to each training instance because feature
projections can be sorted for continuous valued features. One shortcoming of
this representation is that descriptions involving a conjunction between two or
more features cannot be represented. However, the prior research has shown
that this knowledge representation is quite powerful in the classification of real-

world tasks [65, 67]. The CFP and COFI algorithms use this representation to

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 73

learn concept descriptions in the form of disjoint feature intervals and overlap-
ping feature intervals in an incremental manner [27, 28, 65, 67]. The £-NNFP
algorithm also uses this representation in order to classity test instances on the

basis of feature projections [7].

The FIL algorithms also acquire concept descriptions by using feature pro-
jections for knowledge representation. Learned concept descriptions are stored
in memory in the form of disjoint feature intervals. These intervals are dis-
joint (single-class) covering only single-class neighboring point. The multi-class
points are represented a set of point intervals. Each interval contains upper
and lower bounds, representativeness count that is the number of examples
that interval represents, and the associated class label of the interval. The
number of intervals on a feature dimension depends on the training set, and
they are unique for the same training set being independent of presentation
order of training instances. At the worst case, if all examples have different
feature values, the feature may be either nominal or linear, then the number
of intervals is equal to m - n where m is the number of instances, and n is the

number of features.

4.3.2 Inductive Learning

Inductive learning can be described as learning from facts that are provided by
a teacher or an environment by drawing inductive inference. Acquiring knowl-
edge involves operations of generalizing, specializing, transforming, correcting
and refining knowledge representations [43]. Learning a concept usually means
to learn its description, i.e., a relation between the name of the concept and a

given set of features by making some inferences.

The FIL algorithms perform the learning task from a set of training ex-
amples and make generalizations on the feature projections to construct the

concept descriptions in the form of disjoint feature intervals.

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 74

4.3.3 Supervised Learning

Supervised learning has been the most widely studied learning paradigm in in-
ductive learning systems, pattern classification and system identification [13].
In this learning paradigm, the learner is asked to associate pairs of items. For
example, in pattern classification or concept acquisition, the first item is an
instance of some pattern or concept and the second item is the name of the
concept. In system identification, the learner must reproduce the input-output
behavior of some unknown system. Here, the first item of each pair is an in-
put and the second item is the corresponding output. In machine learning,
from a set of training examples, each labeled with its correct class name, a
machine learns by forming or selecting a generalization of the training exam-
ples. Unsupervised learning techniques try to estimate the class distributions

successively from unlabeled training instances.

The FIL algorithms learn from examples provided, that is, the supervised
learning paradigm is followed. Here, the first item is the feature values of an

instance and the second item is the class of that instance.

4.3.4 Batch Learning

Quinlan has pointed out two alternative learning strategies as incremental and
batch (non-incremental) [52]. Incremental learning aims to improve an internal
model with each example it processes. Researchers who explore the incremental
approach are typically concerned with developing plausible models of human
learning, with agents that must interact with a dynamic environment, or with
the efficiency of the learning mechanisms. On the other hand, batch learning
attempts to construct concept descriptions after seeing all training instances to
maximize the performance of the learning system. In contrast to incremental
learning, researchers who employ batch learning strategy are concerned with

automating the process of knowledge acquisition for higher performance.

A batch learning strategy usually assumes random access to the examples
in the training set. A learning system which follows this strategy searches

for patterns and regularities in the training set in order to induce concept

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 75

descriptions. They may examine and re-examine the training set many times
before settling on a successtful model. The most important advantage of this

approach is that it is not sensitive to the order of the training examples.

Despite the differences in motivation, researchers in both paradigms have
much to learn from each other. Incremental and batch systems often use the
same basic learning operators and produce similar results. In many cases, one
can create incremental variations of non-incremental algorithms. Presumably,

many incremental learning methods also have non-incremental counterparts.

Batch learning strategy is employed in the FIL algorithms. Before training,
all instances are presented as input to the algorithms. In the FIL algorithms,
concept descriptions are represented in the form of disjoint feature intervals.
The construction of intervals is unique for that training set, that is, they are

independent of presentation order of training instances.

4.3.5 Domain Independence in Learning

In some learning methods, such as Explanation-Based Generalization (EBG),
considerable amount of domain specific knowledge is required to construct ex-
planations [18]. In EBG, domain specific knowledge is applied to formulate
valid generalizations from a single training example. The characteristic com-
mon to these methods is their ability to explain why the training instance is a

member of the concept being learned.

In contrast, exemplar-based learning does not construct explanations. In-
stead, it incorporates new examples into its experience by modifying its existing
concept representation in the memory. Because it does not convert examples
into another representation form, it does not need a domain theory to explain
what conversions are legal. A consequence of domain independence is that
systems can be adapted to new domains quickly without any extra domain

knowledge.

The CFP and COFI algorithms use domain specific parameters. These

parameters in the CFP algorithm are A (feature weight-adjustment rate) and

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 76

Dy (generalization distances of features). In the COFI algorithm, the only

domain dependent parameter is g (generalization ratio).

The FIL algorithms are also exemplar-based learning algorithms, based on
generalized feature values. Although they do not use parameters used as in the
CFP and COFT algorithms, weights of features in the FI1 and FI2 algorithms
are given externally. In the FI3 and FI4 algorithms, there is no need for feature
weights. Therefore, the FI3 and FI4 algorithms do not require any parameter
to be provided externally.

4.3.6 Multi-concept Learning

Many early concept learning algorithms have been developed for exactly one
concept. Later, many learning algorithms have been developed that induce
multi-concept descriptions from examples. The FIL algorithms have been de-

signed for learning multi-concept descriptions as well.

4.3.7 Properties of Feature Values

The features in a dataset may have nominal (categorical), or continuous (nu-
merical) values. The term continuous is used in literature to refer to features
taking on numerical values (integer or real), in general a feature with a linearly
ordered set of attribute values. The FIL algorithms can handle both linear and
nominal features. Linear features may take on values from —oc to oo and they
are continuous. Nominal features take on discrete feature values, for example,
color attribute of an object is a nominal feature, or binary values such as an-
swers to yes/no questions are also nominal feature values. The only difference
in handling linear features and nominal features is the generalization process.

Generalization is applied only to linear features.

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 77

: Informati on about the | RIS dat aset
Features | | | |
Classes 01 2

Figure 4.18. An example for the information provided to the FIL algorithms.

4.3.8 Handling Missing (Unknown) Feature Values

One of the most important advantages of the FIL algorithms is the handling
of missing feature values. There is no need to fill in missing values in the FIL
algorithms. This affects neither the construction of concept descriptions nor
the voting mechanism. In addition, this is a natural approach because in real
life if nothing is known about a feature, it can be ignored rather than assigning

an average or expected value.

4.4 User Interface

We have designed and implemented user interfaces for the FIL algorithms.
These implementations have been done by using Motif user-interface toolkit.
The FIL algorithms have been implemented in C language in Unix environment.
The user can select a dataset from the "Open’ menu item. Then, with an initial
training ratio training and testing sets are formed. User can enter the training
ratio from the menu item "Train Ratio’ as well. Figure 4.18 presents an example
for the information given to the FIL algorithms about the dataset, iris in this

example with number and types of features and number and names of classes.

The feature intervals constructed during training phase of the algorithms
are displayed on each feature dimension assigning a different color to each class
label on the screen. Usage of colors provides users to better understand pre-
dictions made by individual features. User can see the classification of a single
test instance by performing classification task step by step with “NEXT” but-
ton. Also, all test instances can be classified at once with “ALL” button. It is
also possible to see the previous examples and their classifications with “PRE-

VIOUS” button. Classification accuracy and no of correct classifications after

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS

f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1
f:1

Figure 4.19. Intervals of iris domain on the first feature.

s:1

s:2

s:3

s:4

$:5

s:6

s:7

s$:8

s:9

s:10
s:11
s:12
s:13
s:14
s:15
s:16
s:17
s:18
s:19
s:20
s:21
$:22
$:23
s:24
$:25
$:26
8:27
$:28
s:29
$:30
s:31
$:32
$:33
s:34
$:35
$:36
$:37
$:38
$:39
s:40

1:4.3
1:4.9
1:4.9
1:4.9
1:5

1:5

1:5.1
1:5.2
1:5.2
1:5.4
1:5.4
1:5.5
1:5.6
1:5.6
1:5.7
1:5.7
1:5.8
1:5.8
1:5.8
1:5.9
1:6

1:6

1:6.1
1:6.1
1:6.2
1:6.2
1:6.3
1:6.3
1:6.4
1:6.4
1:6.5
1:6.5
1:6.6
1:6.7
1:6.7
1:6.8
1:6.8
1:6.9
1:6.9
l:7.1

u:4.8
u:4.9
u:4.9
u:4.9
u:d

u:d

u:b.1
u:h.2
u:h.2
u:b.4
u:b.4
u:h.b
u:h.6
u:h.6
w:h.7
w:h.7
u:h.8
u:h.8
u:h.8
u:h.9
u:6

u:6

u:6.1
u:6.1
u:6.2
u:6.2
u:6.3
u:6.3
u:6.4
u:6.4
u:6.5
u:6.5
u:6.6
w:6.7
w:6.7
u:6.8
u:6.8
u:6.9
u:6.9
u:7.9

78

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS

f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2
f:2

Figure 4.20. Intervals of iris domain on the second feature.

s:1

s:2

s:3

s:4

$:5

s:6

s:7

s$:8

s:9

s:10
s:11
s:12
s:13
s:14
s:15
s:16
s:17
s:18
s:19
s:20
s:21
$:22
$:23
s:24
$:25
$:26
8:27
$:28
s:29
$:30
s:31
$:32
$:33
s:34
$:35
$:36
$:37
$:38

1:2

1:2.2
1:2.2
1:2.3
1:2.3
1:2.4
1:2.5
1:2.5
1:2.6
1:2.6
1:2.7
1:2.7
1:2.8
1:2.8
1:2.9
1:2.9
1:2.9
1:3

1:3

1:3

1:3.1
1:3.1
1:3.1
1:3.2
1:3.2
1:3.2
1:3.3
1:3.3
1:3.3
1:3.4
1:3.4
1:3.5
1:3.6
1:3.6
1:3.7
1:3.8
1:3.8
1:3.9

u:2

u:2.2
u:2.2
u:2.3
u:2.3
u:2.4
u:2.5
u:2.5
u:2.6
u:2.6
w:2.7
w:2.7
u:2.8
u:2.8
u:2.9
u:2.9
u:2.9
u:3

u:3

u:3

u:3.1
u:3.1
u:3.1
u:3.2
u:3.2
u:3.2
u:3.3
u:3.3
u:3.3
u:3.4
u:3.4
u:3.5
u:3.6
u:3.6
w:3.7
u:3.8
u:3.8
u:4.4

79

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS

:3
:3
:3
:3
:3
:3
:3
:3
:3
:3
:3
:3
:3
:3

Figure 4.21. Intervals of iris domain on the third feature.

f:4
f:4
f:4
f:4
f:4
f:4
f:4
f:4
f:4
f:4
f:4
f:4
f:4

Figure 4.22. Intervals of iris domain on the fourth feature.

s:1
s:2
s:3
s:4
$:5
s:6
s:7
s$:8
s:9
s:10
s:11
s:12
s:13
s:14

s:2
s:3
s:4
$:5
s:6
s:7
s$:8
s:9
s:10
s:11
s:12
s:13

l:1

1:3.3
1:4.5
1:4.5
1:4.6
1:4.8
1:4.8
1:4.9
1:4.9
1:5

1:5

1:5.1
1:5.1
1:5.2

1:0.1
l:1

l:1.4
l:1.4
1:1.5
1:1.5
1:1.6
1:1.6
l:1.7
l:1.7
1:1.8
1:1.8
1:1.9

u:l.9
u:4.4
u:4.5
u:4.5
w:4.7
u:4.8
u:4.8
u:4.9
u:4.9
u:d

u:d

u:b.1
u:b.1
u:6.9

u:0.6
u:l.3
u:l.4
u:l.4
u:l.b
u:l.b
u:l.6
u:l.6
w:l.7
w:l.7
u:l.8
u:l.8
u:2.5

c:0
c:l
c:l
c:2
c:l
c:2
c:l
c:2
c:l
c:2
c:l
c:2

r:40
r:20
r:6
r:1
r:8
r:2
r:2
r:1
r:1
r:1
r:1
r:7
r:30

80

81

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS

AR RN
G $10900 40 Of

HOILIIT3
BN
HIERE0hE

£
lj

13883817 40 0)
1gaJnead 4o oy

LT

SHOTLILHM MOILD

7T 0 13988R[] 40 8J0[0]
0F tsda3E8) 40 0y
02T smdAUTR] J0 oy

HAG

[

(344

I

LHITA Fnih3

Figure 4.23. Feature intervals constructed by the FI1 algorithm for the iris

dataset.

CHAPTER 4. BATCH LEARNING OF DISJOINT FEATURE INTERVALS 82

classifying each test instance are displayed along with the current test example
feature values and associated class label. Prediction of each feature with its
associated weight: feature weights in the FI1 and FI2 algorithms and interval
weights in the FI3 and FI4 algorithms are also displayed. The constructed
intervals can be saved into a text file from the menu with corresponding lower
and upper bounds, associated class and representativeness and relative repre-
sentativeness counts (in FI1 and FI2, respectively) or associated weights (in
FI3 and FI4). The disjoint intervals of the iris dataset is as in the Figure 4.19,
4.20, 4.21, 4.22.

The concept descriptions for the iris dataset learned by the FI3 algorithm

are presented in Figure 4.23.

4.5 Summary

In this chapter, details of the FIL algorithms has been presented. Their gen-
eral characteristics are discussed considering important dimensions classifying

machine learning techniques. Also, the user interface of all FIL algorithms are

described.

In the FIL algorithms, a feature interval can be defined as generalized values
that may cover several feature values. Intervals (single-class) are disjoint, how-
ever, at multi-class points, overlapping point intervals are constructed. Once
the feature intervals are learned, a test example can be classified on each feature

dimension by means of these intervals by a voting scheme.

The FIL algorithms assume that similar feature values have similar clas-
sifications. The voting mechanism in the FI1 and FI2 algorithms is based
on a weighted-voting scheme, with prior knowledge. However, without prior
weights, features will have equal relevances for classification decisions. On the
other hand, although the FI3 and FI4 algorithms are based on weighted-voting
scheme, these weights are set to intervals internally. Hence, the FI3 and FI4
algorithms require no user tuning of parameters such as generalization ratio
or global feature weight-adjustment rate. Their primary goal is to maintain

perfect consistency with the initial training set.

Chapter 5

Evaluation of the FIL Algorithms

In this chapter, both complexity analyses and empirical evaluations of the FIL
algorithms are given. First, training and classification of a single instance
time complexities are given. Next, the empirical evaluations are presented on
some real-world datasets for comparison with some similar algorithms such as
NBC, CFP, k-NN, and &-NNFP. Later, the experiments on artificially gener-
ated datasets are discussed. The goal of these experiments is to demonstrate
performances of the FIL algorithms. Also, some experimental results are pre-
sented for the evaluation of the feature weighting methods proposed in this
thesis. Experiments described in this chapter are designed to determine the
behavior of the FIL algorithms on irrelevant features, noisy instances and miss-

ing feature values.

5.1 Complexity Analysis

In this section, the FIL algorithms are analyzed in terms of space and time
complexities. Time complexity analyses are presented for training process and

classification of single test instance.

Space Complexity Analysis: In the training phase of the FIL algo-
rithms, disjoint feature intervals for concept descriptions are constructed on
each feature dimension. The space required for training with m instances on

a domain with n features is proportional to m - n at worst case. However, on

83

CHAPTER 5. EVALUATION OF THE FIL ALGORITHMS 84

the average, it should be less than O(m - n) since feature intervals may con-
tain several feature values. If the average number of intervals constructed on
a feature dimension is ¢, then the average space complexity of the FIL algo-
rithms will be O(7 - n). If feature intervals contain several values, the storage
requirement of the FIL algorithms will be less than the £-NN and &-NNFP al-
gorithms since k-NN stores all instances in memory as conjunctions of feature
values and k-NNFP stores them as feature projections. Although the learned
feature intervals will not be the same as the CFP algorithm since it learns in an
incremental way, the storage requirement may be nearly the same. The NBC

also stores all training instances to find the class distributions.

Time Complexity of Training: As mentioned before, all instances are
stored on each feature dimension as their feature projections initially. Feature
projections on a feature dimension are sorted with time complexity O(m -
logm). So, sorting all feature values has time complexity O(m - n - logm) for
n features. Then disjoint feature intervals are constructed by examining these
sorted feature projections on each feature dimension with time complexity
O(n - m). Therefore, the training time complexity of the FIL algorithms is
On-m-logm +n-m) = O(n-m-logm) for training a dataset with m

instances described by n features.

Time Complexity of a Single Classification: During the preclassifi-
cation, the search-interval(f,value) searches the interval containing feature
value of the test instance on the feature dimension f. by binary search to
determine the prediction of that feature. The number of intervals on a feature
dimension is at most equal to the number of training instances, m. Hence,
the worst case time complexity of this search process is O(log m) for a feature.
Since the final classification is based on the prediction of each feature, single

instance classification time complexity of the FIL algorithms is O(n - log m).

We have presented training and classification time complexities of the k-
NNFP and k-NN algorithms in Section 3.3.2. The training complexity of the k-
NNFP algorithm is nearly the same as the FIL algorithms whereas the training
time complexity of the k-NN algorithm is O(n - m) for just storing instances in
memory. Complexity analyses of FIL algorithms indicate that these algorithms

classify unseen instances much more faster than the £-NN like algorithms.

CHAPTER 5. EVALUATION OF THE FIL ALGORITHMS 85

5.2 Empirical Evaluation of the FIL Algorithms

In this section, empirical evaluations of the FIL algorithms on real-world datasets
which are widely used in the field of machine learning from the UCI-Repository
[47] and two new datasets constructed in this thesis. We will also evaluate the
FIL algorithms on artificial datasets. The first section describes the method-
ologies used in the experiments. Next, the performance of the FIL algorithms
on real-world datasets are presented. In the third section, some experiments

are described on artificial datasets.

5.2.1 Testing Methodology

This section briefly describes the methodologies used in the machine learning
experiments. The goal of experiments is to better understand behaviors of
learning algorithms, hence their causes, as in other sciences. This will lead
to empirical laws that can aid the process of theory formation and theory

evaluation.

Improved performance is the major aim of learning algorithms [34]. These
various performance measures are the natural dependent variables for machine
learning experiments, just as they are for studies of human learning. The ac-
curacy and efficiency of an algorithm can be measured by various performance
measures. There are three important measures of evaluation for a learning

algorithm: accuracy, time and space complexities.

For supervised concept learning tasks, the most commonly used metric is
the percentage of correctly classified instances over all test instances. This met-
ric cannot be used for unsupervised learning tasks like conceptual clustering,
but this measure can be generalized as the average ability to predict attribute
values [23]. Accuracy of an algorithm is a measure of correct classifications on a
test set of unseen instances. There are several ways of measuring the accuracy
of an algorithm, in the literature the common techniques are cross-validation,

leave-one-out and average of randomized runs.

Cross-Validation: In this technique, dataset is partitioned into & mutually

CHAPTER 5. EVALUATION OF THE FIL ALGORITHMS 86

disjoint subsets with the same cardinality. The & — 1 of these sets are used
as the training set, the remaining one is used as the test set. This process is
repeated k times once for each subset being the test set. Classification accuracy
is measured as the average accuracy on all the test sets. The union of the all

test sets equals to the whole dataset. This is called as k-fold cross-validation.

Leave-one-out: This technique is a special case of k-fold cross-validation
taking & = m. That is, for a dataset containing m instances, training set
contains m — 1 instances whereas test set contains only 1 instance. Then, this
is repeated for all instances being test instance each time leading to m-fold
cross-validation. It is an elegant and straightforward technique for estimating
classifier error rates. Evidence for the superiority of the leave-one-out approach
is documented in the literature [22, 35]. While leave-one-out is a preferred

technique, for large datasets it may be computationally expensive [32].

Average of Randomized Runs: In this method, the algorithm is tested over
randomly selected training and testing sets. The important point is that train-
ing and test sets must be disjoint. The test is repeated for a fixed number of
times. The classification accuracy is determined as the average accuracy across

all trials.

In the previous section, we have computed the time and space complexities
of the FIL algorithms. In the following subsection, the performance of the FIL
algorithms will be given in terms of classification accuracy. In this thesis, 5-
fold cross-validation technique is used to report the classification accuracies of
FIL algorithms and compare them with other methods. 5-fold cross-validation
enables the same disjoint training and testing sets each time for each algorithm
in order to compare the results under same conditions. Disjoint training and
testing sets make sure that unseen test instances are classified to measure the

accuracy of algorithms.

CHAPTER 5. EVALUATION OF THE FIL ALGORITHMS 87

Table 5.1. Accuracy results (%) of the FIL algorithms on real-world datasets.
SFA-FIx and HFP-FIx show the weighted versions of the FI1 and FI2 algo-

rithms.

Dataset FI1 SFA-FI1 HFP-FI1 FI2 SFA-FI2 HFP-FI2 FI3 FI4
arrhythmia 55.08 95.08 95.08 55.00 95.08 95.08 55.08 55.68
bceancerw 95.72 95.72 95.72 96.44 96.30 95.72 95.86 97.00
cleveland 78.22 80.18 78.86 80.52 83.14 81.26 78.86 80.50
dermatology 36.90 41.40 35.00 44.60 43.34 36.72 73.33 79.02
diabets 65.76 66.16 65.50 64.84 63.80 65.50 68.74 69.76
glass 49 .88 49.92 43.86 49.50 53.22 48.96 56.98 45.36
horse 64.12 65.48 64.38 73.64 74.46 64.38 65.24 76.36
hungarian 69.02 70.04 69.36 80.94 81.92 68.15 68.00 75.48
ionosphere 87.18 87.16 87.16 84.90 85.46 87.16 87.74 88.88
iris 86.66 90.66 89.30 88.00 91.32 89.60 90.66 90.66
liver 94.78 57.40 54.22 53.92 56.52 54.92 97.98 59.72
musk 61.96 62.16 61.56 71.04 72.50 61.76 71.02 73.34
wine 82.54 88.16 88.14 87.62 89.90 87.94 91.6 89.92

5.2.2 Experiments with Real-World Datasets

For empirical evaluations of the FIL algorithms, some real-world datasets from
the collection of UCI-Repository [47] and two new real-world datasets con-
structed in this thesis are used . These domains provide the FIL algorithms
with opportunity of comparison with other similar learning algorithms. Also
they demonstrate the applicability of the FIL algorithms to real-world prob-
lems. The real-world datasets are explained in Appendix A. These datasets are
used for the comparison of the FIL algorithms to the NBC, CFP, &-NN and
E-NNFP algorithms. The FIL algorithms use feature weights learned by the
HFP and SFA methods in the experiments described here. The CFP algorithm
was run for Dy = 0.1 and A = 0.

Table 5.1 presents the results of experiments on these real-world datasets
which are conducted by using 5-fold cross-validation evaluation technique for
the FIL algorithms and SFA and HFP feature weighting methods. K is taken
as b in these experiments since the k-NN and A-NNFP algorithms give almost
the best accuracies for & = 5. The results of experiments of the NBC, CFP,
k-NN and £-NNFP algorithms are summarized in Table 5.2. Both FI1 and FI2

algorithms achieve almost same accuracies. The FI3 and FI4 algorithms are

CHAPTER 5. EVALUATION OF THE FIL ALGORITHMS 88

Table 5.2. Accuracy results (%) of the FI4, NBC, CFP, &--NNFP and k-NN

algorithms on real-world datasets.

Dataset F14 NBC CFP k-NNFP k-NN Baseline (%)
arrhythmia 55.68 3.12 55.09 55.08 58.20 55
bcancerw 97.00 97.28 95.71 96.16 96.58 66
cleveland 80.50 80.52 74.24 78.88 83.80 54
dermatology ~ 79.02 43.98 35.64 59.42 91.64 27
diabets 69.76 71.24 65.49 67.70 73.18 65
glass 45.36 52.34 52.28 60.72 66.30 36
horse 76.36 81.24 64.94 71.74 80.44 63
hungarian 75.48 79.90 71.04 76.16 82.26 64
ionosphere 88.88 87.74 8747 87.46 83.20 64
iris 90.66 92.00 86.66 91.30 94.66 33
liver 59.72 60.30 56.23 58.26 64.92 58
musk 73.34 2.10 60.28 71.22 67.88 57
wine 89.92 9550 86.44 93.24 96.04 40

superior to the FI1 and FI2 algorithms. It is seen from the tables that FIL
algorithms achieve high accuracies as much as previous algorithms on many
of these datasets. The k-NN algorithm gives maximum accuracy in almost all
datasets. The FI4 algorithm usually outperforms the other FIL algorithms.
The SFA-FI2 algorithm gives high accuracy as much as the £-NN algorithm

for cleveland dataset. Also, the empirical evaluation of the CFP algorithm is

presented in [64] and the k&-NN and A-NNFP algorithm in [7].

Table 5.3 shows the average running times of the FIL algorithms across
the NBC, CFP, k-NNFP, and k-NN algorithms. Since all FIL algorithms give
almost equal average running times, they are represented in the table under the
name FIL. It is seen that the running times of the FIL algorithms are relatively
smaller than the other algorithms. This verifies the training and classification
time complexities presented in Section 5.1. Although the classification accuracy
differ about 5% points, the running time of the £-NN algorithm is much higher
than the other algorithms.

CHAPTER 5. EVALUATION OF THE FIL ALGORITHMS 89

Table 5.3. The Average Time (msec) required for the FIL, NBC, CFP, k-NN
and k-NNFP algorithms on real-world datasets.

Dataset FIL NBC CFP k-NNFP k-NN
arrhythmia 3.527 21,641 11,886 3,229 18,135
bcancerw 399 925 340 364 3,276
cleveland 221 214 292 217 772
dermatology 183 197 347 189 528
diabets 375 1,145 610 297 3,294
glass 130 134 118 105 318
horse 494 641 479 465 1,400
hungarian 287 146 348 255 631
ionosphere 596 882 1,232 522 2,339
iris 45 17 250 44 108
liver 129 148 267 114 607
musk 3,477 9,529 11,279 2,740 18,744
vehicle 586 4,787 818 2,012 14,441
wine 113 79 73 299 600

5.2.3 Experiments with Artificial Datasets

To cope with noisy and incomplete data is an important criteria for a learn-
ing system to be used in real-world applications [40]. One important point
for a learning system is presence of irrelevant features [9]. Therefore, artifi-
cial datasets are important to study the effects of irrelevant features, noise in
the domain, and missing feature values since artificial datasets allows to test
the system in a more controlled way. In order to empirically demonstrate the
behaviors of the FIL algorithms on artificial datasets, we conduct some ex-
periments. Concept descriptions for these artificially generated datasets are
represented in the form of possibly overlapping hyperrectangles. We will ex-
plain how we generated these datasets in each section with the descriptions of
experiments. Section 5.2.3.1 describes and presents the results of experiments
with increasing number of irrelevant features. Next, increasing noise level is
studied for the FIL algorithms. Then, increasing ratio of missing feature values
is tested. In these experiments, the CFP algorithm was run for D; = 0.1 and
A = 0.

CHAPTER 5. EVALUATION OF THE FIL ALGORITHMS 90

5
Foy
8 80.0 |
=
[&]
Q
< FI1-FI2
=— 5 FI3-Fl4
CFP
A A NBC
70.0 - 4 = k-NN
x * k-NINFP
60-0 L L L L
o 2 4 6 8 10

Number of Linear Features

Figure 5.1. Accuracy results of the FIL, CFP, NBC, £-NN, k-NNFP algorithms

on domains with irrelevant attributes.

5.2.3.1 Experiments with Increasing Number of Irrelevant Features

Real-world datasets may contain unequally relevant features. For example,
medical domains usually contain more information than is actually required for
distinguishing one disease from others. Most probably some of these features

are not as relevant as the others [39].

The voting mechanism used in the FIL algorithms allows correct classifica-

tions in the presence of irrelevant features to a certain extent.

To investigate the behaviors of the FIL algorithms in the presence of irrele-
vant features, we conducted a series of experiments. We generated six datasets
with increasing number of irrelevant features from zero to ten. Each instance
is described by four relevant features and a number of irrelevant ones. Concept
descriptions are represented by hyperrectangles in four (relevant) dimensional
space, the values for irrelevant features are randomly generated. These artifi-
cial datasets are also used for the evaluation of k-NNFP and £-NN algorithms
in Section 3.2.2.2. We ran these algorithms 50 times on these six datasets

generated randomly each time. We have compared the average results of the

CHAPTER 5. EVALUATION OF THE FIL ALGORITHMS 91

FIL algorithms on these artificial datasets with the average results of the CFP,
NBC, k-NNFP and k-NN.

The accuracy results of artificial datasets with increasing number of irrele-
vant features are plotted in Figure 5.1. The FI1 and FI2 algorithms give about
the same accuracy results for these experiments. Similarly, the FI3 and FI4’s
behavior is almost the same in these experiments. Note that the feature values
range from 0 to 10 as continues. However, in order to have some multi-class
points, values are generated between 0 and 100 as integers and divided by 10
(i.e., 85 /10 = 8.5). As seen from the table, assigning weights to intervals out-
performs the FI1 and FI2 algorithms in which features have equal relevance.
The NBC algorithm achieves the greatest accuracy in the presence of irrelevant
features. The performance of the CFP algorithm is worse than the FI3 and FI4
algorithms. The £-NNFP and k-NN algorithms’ behavior on these datasets is

almost the same.

5.2.3.2 Experiments with Increasing Noise Level

In this section, noise tolerance of the FIL algorithms are investigated. There
are two major types of noise that can be found in real-world datasets: feature
(attribute) noise, and classification noise [3, 11, 14, 24, 63]. Feature noise can
be defined as incorrect feature value information. Classification noise involves

corruption of the class label of an instance.

Quinlan demonstrated that feature noise, occurring simultaneously in all
features describing the instances, can result in faster degradation in classifi-
cation accuracy than might noise only in the class label [51]. Therefore, we
studied the feature noise in our experiments with artificial domains, where fea-
ture values only in the training set are replaced with a randomly selected value

in the feature domain with a fixed probability, called noise ratio.

The artificial dataset with four relevant features and no irrelevant features
used in the experiments with increasing irrelevant features is used in this section

in order to study the effect of increasing noise level.

Figure 5.2 presents achieved accuracy of the FIL algorithms for comparison

CHAPTER 5. EVALUATION OF THE FIL ALGORITHMS 92

1000z F—
9**M—lffgﬁﬂqqaiffﬂg“f e

Accuracy (%)

FI1-FI2
—&1 FI3-Fl4
&< CFP
NBC
40.0 == k-NN
\ | s——k k-NNFP

20-0 Il Il Il
(0] 20 40 60 80 100

Noise Level (%206)

Figure 5.2. Accuracy results of the FIL, CFP, NBC, £-NN, k-NNFP algorithms

on domains with increasing noise level.

to the CFP, NBC, k-NNFP and £-NN algorithms. The results are the averages
of the 50 runs of artificial datasets in which noisy feature values are randomly
replaced with other possible values on that feature dimension. In this the-
sis, to handle noisy feature values, we introduced the FI3 and FI4 algorithms
that construct disjoint feature intervals by weighting them for classification.
The results of the experiments indicate that both FI3 and FI4 algorithms are
successful than the FI1 and FI2 algorithms. Actually, there is no significant
difference among all the algorithms on noisy domains up to 60% noise level,
the accuracy of the £-NN algorithm sharply decreased after this point. Other

algorithms are robust up to 80% noise level.

5.2.3.3 Experiments with Increasing Ratio of Missing Values

Most of the real-world data sets contain missing attribute values. In the lit-
erature, some methods are proposed to handle instances containing missing

feature values [26, 52, 53, 54, 55]. These methods can be summarized as:

CHAPTER 5. EVALUATION OF THE FIL ALGORITHMS 93

95.0 [‘ ‘
+

91.0

89.0

87.0
85.0

83.0
81.0

79.0

Accuracy (%)

77.0

FI1-FI12
—£1 FI3-Fl4
&< CFP
NBC
sk K-NNFP
7 k-NN

75.0
73.0 -

71.0 -

69.0 -

67.0 -

65-0 I L L L
o 20 40 60 80
Missing VValue Ratio (%0)

Figure 5.3. Accuracy results of the FIL, CFP, NBC, £-NN and k-NNFP algo-

rithms on domains with increasing ratio of missing feature values.

o Ignoring examples which have unknown feature value.

e Assuming an additional special value for unknown attribute values. This

can lead to an anomalous situation.
e Using probability theory by utilizing information provided by context.

o Generating additional instances for all possible values of the unknown

attribute.

e Exploring all branches (on decision trees) remembering that some branches

are more probable than others.

The method employed in the FIL algorithms for handling feature values is
similar to the first method mentioned above. However, it states that an incom-
plete instance is ignored whereas the FIL algorithms simply ignores missing
feature values since they process each feature separately. Similarly, the CFP,

NBC, and k-NNFP handles missing values. On the other hand, the k-NN

algorithm tries to determine the value of an unknown attribute value using

CHAPTER 5. EVALUATION OF THE FIL ALGORITHMS 94

probability distribution of the known values of a feature. One advantage of
simply ignoring missing feature values is that it allows reduction in training

and classification time.

Figure 5.3 presents the accuracies obtained from the experiments with dif-
ferent amounts of unknown (missing) attribute values. The k-NNFP algorithm
achieved significantly better accuracy than the others. The most affected al-
gorithm by the presence of missing feature values is the k-NN algorithm, as
expected because it tries to fill in missing values. Up to 70% missing value,
FIL algorithms achieve the same accuracy. Therefore, the FIL algorithms are

robust to the missing feature values.

5.3 Summary

The results from the experiments in this chapter support the following conclu-

sions.

faster classification times with feature projections knowledge representa-

tion

o weighted-voting in the FIL algorithms is more tolerant to the presence

of irrelevant features

o feature projections knowledge representation is quite successful in han-

dling missing feature values.

e k-NNFP and FIL algorithms are robust to the missing feature values (up
to 70%).

Chapter 6

Conclusions and Future Work

In this thesis, a new classification algorithm, called £&-NNFP has been pre-
sented. In this algorithm, the classification knowledge is represented in the
form of sets of feature projections of the training data separately on each fea-
ture dimension. The classification of an unseen instance is based on a majority
voting taken on the classifications made on the basis of individual feature pro-

jections.

We have compared the k-NNFP algorithm with the A-NN algorithm in
terms of classification accuracy and running time on both real-world and arti-
ficial datasets. On real-world datasets, the k-NNFP algorithm achieves com-
parable accuracy with the k-NN algorithm. On the other hand, the average
running time is much less than that of the k-NN algorithm. The majority
voting in the classification process of the &-NNFP algorithm reduces the intru-
sive effect of the irrelevant features. This claim has been justified on artificial

datasets.

We treated all features as equivalent in the &-NNFP algorithm. However, all
features may not have equal relevance in real-world applications, even some fea-
tures may be completely irrelevant. In order to determine features’ relevances,
two feature weight learning algorithm have been proposed for the learning al-
gorithms that use feature weights. The first method, called HFP, assigns high
weight values to features on which the projections of instances of the same

class are located close to each other, resulting in homogeneous distribution.

95

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 96

The SFA method assigns a weight as the classification accuracy that would
have been obtained if only that feature were used in the classification. These
techniques have been evaluated on the weighted k-NNFP algorithm. The SFA
method learned weights that helped the k&-NNFP algorithm achieve higher ac-
curacies. The reason for this success is due to the feedback received from the

E-NNFP algorithm.

In this thesis, we have also developed several batch learning algorithms
called FIL algorithms for Feature Interval Learning. These algorithms use
feature projections of the training instances for the representation of the clas-
sification knowledge induced. These are FI1, FI2, FI3, FI4 algorithms with
slight differences. Linear feature projections are generalized into disjoint in-
tervals during the training phase. The classification of an unseen instance is
based on a majority voting among individual predictions of features. Feature
projections knowledge representation in these algorithms provide them with
much faster classification. In fact, majority voting reduces the intrusive effect

of irrelevant features or noisy feature values.

The FIL algorithms have been compared with the NBC, CFP, £-NN and
E-NNFP algorithms empirically. The FI3 and FI4 algorithms are found to
be superior to the FI1 and FI2 algorithms. In addition, the FI1 and FI2
algorithms gives better accuracies when the SFA feature weighting method is
integrated. Although the FIL algorithms achieve comparable accuracies with
other algorithms about 5% less than the £-NN algorithm, their average running

times are much more less than the £-NN algorithm.

Feature projections for knowledge representation has the following advan-

tages for the learning algorithms:

plausible

no need for normalization of feature values

simply ignoring missing feature values

faster classification times

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 97

The major disadvantage of this representation is that concept descriptions
involving a conjunction between two or more features cannot be represented.
Actually, the whole is more than sum of its components. Therefore, the FIL
algorithms are applicable to concepts where each feature, independent of other
features, can contribute to the classification of the concept. In fact, this is the
nature of the most real-world datasets. They are not applicable to domains
where all of the concept descriptions overlap, or domains in which concept

descriptions are nested.

As a future work, we plan to investigate the HFP and SFA feature weight
learning algorithms on artificial datasets. For overlapping concept descrip-
tions, batch learning algorithms whose knowledge representation is in the form
of overlapping feature intervals can be developed. Another research direction
is to investigate learning concept dependent feature weights for the learning al-
gorithms that use feature projections for knowledge representation. Moreover,

feature weights are learned using genetic algorithms.

Bibliography

1]

D.W. Aha, Incremental, Instance-Based Learning of Independent and
Graded Concept Descriptions, In Proceedings of the Sizth International
Workshop Machine Learning, pp: 387-391, Ithaca, NY: Morgan Kautf-
mann, 1989.

D.W. Aha, A Study of instance-based algorithms for supervised learning
tasks: Mathematical, empirical, and psychological evaluations. Doctoral
dissertation, Department of Information & Computer Science, University

of California, Irvine, 1990.

D.W. Aha, Tolerating Noisy, Irrelevant and Novel Attributes in Instance-
Based Learning Algorithms, International Journal of Man-Machine Stud-
tes, 36:267-287, 1992.

D.W. Aha and D. Kibler, Noise-Tolerant Instance-Based Learning Algo-
rithms, In Proceedings of the Eleventh International Joint Conference on

Artificial Intelligence, pp: 794-799, Detroit, MI: Morgan Kauffman, 1989.

D.W. Aha, D. Kibler and M.K. Albert, Instance-Based Learning Algo-
rithms, Machine Learning, 6:37-66, 1991.

D. W. Aha and R. L. Bankert, Feature selection for case-based classifica-
tion of cloud types: An empirical comparison. In D. Aha (Ed.) Case-Based
Reasoning: Papers from the 1994 Workshop (TR WS-94-01) Menlo Park,
CA: AAAIT Press, 1994.

A. Akkus and H. A. Guvenir, k Nearest Neighbor Classification on Fea-
ture Projections, In Proceedings of the 13" International Conference on

Machine Learning. Lorenza Saitta (Ed.), Bari, Italy: Morgan Kaufmann.
pp- 12-19, 1996.

98

BIBLIOGRAPHY 99

[3]

[11]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

M.K. Albert and D.W. Aha, Analyses of Instance-Based Learning Al-
gorithms, In Proceedings of the Ninth National Conference on Artificial
Intelligence pp: 553-558, 1991.

H. Almuallim and T.G. Dietterich, Learning with Many Irrelevant Fea-
tures, In Proceedings of the Ninth National Conference on Artificial Intel-
ligence, pp: H47-552, 1991.

D. Angluin, Queries and Concept Learnings, Machine Learning, 2(2):312-
342, 1988.

D. Angluin and P. Laird, Learning from Noisy Examples, Machine Learn-
ing, 2:343-370, 1988.

P. Auer, R. C. Holte andW. Maass, Theory and Applications of Agnostic
PAC-Learning with Small Desicion Trees, In Proceedings of the 12! In-

ternational Conference on Machine Learning. A. Prieditis and S. Russell

(Ed.), pp. 21-29, 1995.

J.G. Carbonell, editor, Machine Learning: Paradigms and Methods, The
MIT Press, 1990.

P. Clark and T. Niblett, Induction in Noisy Domains, In I. Bratko and
N.Lavrac (Eds.), Progress in Machine Learning, pp:11-30, Wilmslow, Eng-
land:Sigma Press, 1987.

S. Cost, S. Salzberg, A Weighted Nearest Neighbor Algorithm for Learning
with Symbolic Features, Machine Learning, 10(1):57-58, 1993.

T.M. Cover and P.E. Hart, Nearest Neighbor Pattern Classification, IEEF
Transactions on Information Theory: 13:21-27, 1967.

B. V. Dasarathy, Nearest Neighbor (NN) Norms, NN Pattern Classifica-
tion Techniques. IEEE Computer Society Press, 1990.

G. Dejong and R. Mooney, Explanation-Based Learning: An Alternative
View, Machine Learning, 1:145-176, 1986.

G. Dejong, Learning with Genetic Algorithms: An Overview, Machine
Learning, 3:121-128, 1988.

BIBLIOGRAPHY 100

[20] P.J. Denning, The Science of Computing, American Scientist, volume: 77,
pp: 216-219, 1989.

[21] R.D. Duda and P.E. Hart, Pattern Classification and Scene Analysis, New
York: Wiley, 1973.

[22] B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans, In
SIAM, Philadelphia, Pa., 1982.

[23] D.H. Fisher, Knowledge Acquisition Via Incremental Conceptual Cluster-
ing, Machine Learning, 2:139-172, 1987.

[24] J.M. Fitzpatrick and J.J. Grefenstette, Genetic Algorithms in Noisy En-
vironments, Machine Learning, 3:101-120, 1988.

[25] K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic
Press, San Diego, 1990.

[26] J.W. Grzymala-Busse, On the Unknown Attribute Values in Learning
from Examples, In Proceedings of Sizth International Symposium Method-
ologies for Intelligent Systems, pp: 368-377, October 1991.

[27] H.A. Giivenir and I. Sirin, A Genetic Algorithm for Classification by Fea-
ture Partitioning, In Proceedings of the fifth International Conference on
Genetic Algorithms, pp: 543-548, 1993.

[28] H.A. Giivenir and I. Sirin, Classification by Feature Partitioning, Machine
Learning, 23:47-67, 1996.

[29] G. H. John, R. Kohavi and K. Pfleger, Irrelevant features and the subset
selection problem. In Proceedings of the eleventh International Conference

on Machine Learning. New Brunswick, NJ: Morgan Kaufmann. pp. 293-
301, 1994.

[30] R.C. Holte, Very Simple Classification Rules Perform Well on Most Com-
monly Used Datasets, Machine Learning, 11:63-91, 1993.

[31] E. Hunt, J.Marin and P. Stone, Ezperiments in Induction, New York,
Academic Press, 1966.

BIBLIOGRAPHY 101

32]

33]

[34]

38]

[39]

[40]

[41]

[42]

L. Kanal and Chandrasekaran, On Dimensionality and Sample Size In

Statistical Pattern Classification, Pattern Recognition, pp: 225-234, 1971.

J.D. Kelly and L. Davis, A Hybrid Genetic Algorithm for Classification,
In Proceedings of the twelfth International Joint Conference on Artificial
Intelligence, pp: 645-650, 1991.

D. Kibler and P. Langley, Machine Learning as an Experimental Science,
In J.W. Shavlik and T.G. Ditterich, editors, Readings in Machine Learn-
ing, pp: 38-43. Morgan Kaufman, San Mateo, CA, 1990.

P. Lachenbruch and M. Mickey, Estimation of Error Rates in Discriminant
Analysis, Technometrics, 1-111, 1968.

P. Langley, An Analysis of Bayesian Classifiers, In Proceedings of the tenth
National Conference on Artificial Intelligence, San Jose: AAAI Press,
1992.

P. Langley, Induction of Selective Bayesian Classifiers, In Proceedings of
the tenth Conference on Uncertainty in Artificial Intelligence, Seattle, WA:
Morgan Kaufman, 1994.

P. Langley, and S. Sage, Oblivious decision trees and abstract cases, in
"Working Notes of the AAAT-94 Workshop on Cased-Based Reasoning”,
AAAT Press, Seattle, pp. 113-117, 1994.

N. Littlestone, Learning Quickly When Irrelevant Attributes Abound: A
New Linear-Threshold Algorithm, Machine Learning, 1:47-80, 1986.

H. Lounis and G. Bisson, Evaluation of Learning Systems: An Artificial
Data-Based Approach, In Proceedings of Furopean Working Session on
Learning, pp: 463-481, 1991.

D. Medin and M. Schaffer, Context Theory of Classification Learning,
Psychological Review, 85:3, 207-238, 1978.

R.5. Michalski and R.L. Chilausky, Learning by Being Told and Learning
from Examples: An Experimental Comparison of the Two methods of

Knowledge Acquisition In the Context of Developing an Expert System

BIBLIOGRAPHY 102

[43]

[44]

[47]

[48]

[49]

[50]

[51]

for Soybean Disease Diagnosis, International Journal of policy Analysis

and Information Systems, 4, 1980.

R.S. Michalski, J.G. Carbonell and T.M. Mitchell, Machine Learning, An
Artificial Intelligence Approach, Los Altos: Morgan Kaufmann, 1983.

T.M. Mitchell, An Analysis of Generalization As a Search Problem, In
Proceedings of the 6th International Joint Conference on Artificial Intel-
ligence, vol:1, pp: 577-582, 1979.

T.M. Mitchell, R. Keller and S. Kedar-Cabelli, Explanation-Based Gen-
eralization: A Unifying View, Machine Learning, 1:47-80, 1986.

T.M. Mitchell, The Need for Biases in Learning Generalizations, In J.W.
Shavlik and T.G. Ditterich, editors, Readings in Machine Learning, pp:
184-191. Morgan Kaufman, San Mateo, CA, 1990.

P. Murphy, UCI Repository of machine learning databases - Maintained
at the Department of Information and Computer Science, University
of California, Irvine, Anonymous FTP from ics.uci.edu in the directory

pub/machine-learning-databases, 1995.

S. Okamoto and K. Satoh, An Average-Case Analysis of k-Nearest Neigh-
bor Classifier. In Proceedings of the First Internaltional Conference on

Case-Based Reasoning, 243-264, 1995.

J.R. Quinlan, Discovering Rules From Large Collections of Examples: A
Case Study, In D. Michie (Ed.), Fxpert Systems in the Microelectronic Age,
Edinburgh: edinburgh University Press, 1979.

J.R. Quinlan, Learning Efficient Classification Procedures and Their Ap-
plication to Chess and Games, In R.S. Michalski, J.G. Carbonell, and
T.M. Mitchell (Eds.), Machine Learning, An Artificial Intelligence Ap-
proach, Los Altos: Morgan Kaufmann, 1983.

J.R. Quinlan, The Effect of Noise on concept Learning, In R.S. Michal-
ski, J.G. Carbonell and T.M. Mitchell, Machine Learning Volume II: An
Artificial Intelligence Approach, Los Altos: Morgan Kaufmann, 1983.

BIBLIOGRAPHY 103

[52]

[53]

[55]

[56]

[61]

J.R. Quinlan, Induction of Decision Trees, Machine Learning, 1:81-106,
1986.

J.R. Quinlan, Decision Trees as Probabilistic Classifiers, In Proceedings
of Fourth International Workshop on Machine Learning, pp: 31-37, June
1987.

J.R. Quinlan, Unknown Attribute Values in Induction, In A. Segre (Ed.),
In Proceedings of the 16th International Workshop on Machine Learning,
pp: 164-168, San Mateo, CA:Morgan Kaufmann, 1989.

J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann,
California, 1993.

J. Rachlin, 5. Kasif, 5. Salzberg and D.W. Aha, Towards a Better Un-
derstanding of Memory-Based Reasoning Systems, International Machine

Learning Conference, 1994.

L. Rendell, A General Framework for Induction and a Study of Selective
Induction. Machine Learning, 1:177-226, 1986.

S. Salzberg, Learning with Generalized Exemplars, Kluwer Academic Pub-
lishers, Massachusetts, 1990.

S. Salzberg, A Nearest Hyperrectangle Learning Method, Machine Learn-
ing, 6:251-276, 1991.

S. Salzberg, Distance Metrics for Instance-Based Learning, ISMIS'91 6th
International Symposium, Methodologies for Intelligent Systems, 399-408,
1991.

D. B. Skalak, Prototype and feature selection by sampling and random
mutation hill-climbing algorithms, In Proceedings of the 11'h Interna-
tional Conference on Machine Learning, New Brunswick, NJ: Morgan

Kaufmann. pp. 293-301, 1994.

G. Stanfill and D. Waltz, Toward Memory-Based Reasoning, Communi-
cations of the ACM 29:1213-1228, 1986.

J.C. Schlimmer and R.H. Granger, Incremental Learning from Noisy Data,

Machine Learning, 1:317-354, 1986.

BIBLIOGRAPHY 104

[64]

[65]

[66]

[67]

[68]

[69]

L. Sirin and H.A. Guvenir, Empirical Evaluation of the CFP Algorithm,
In Proceedings of the Sizth Australian Joint Conference on Artificial In-
telligence, pages 311-315, 1993.

I. Sirin and H.A. Giivenir, An Algorithm for Classification by Feature Par-
titioning, Technical Report CIS-9301, Bilkent University, Dept. of Com-

puter Engineering and Information Science, Ankara, 1993.

A. K. Spackman, Learning Categorical Decision Criteria in Biomedical
Domains, In Proceedings of the Fifth International Conference on Machine

Learning, University of Michigan, Ann Arbor, 1988.

H. G. Unsal, Classification with Overlapping Feature Intervals, Bilkent

University, Dept. of Computer Engineering and Information Science, MSc.

Thesis, 1995.

L. G. Valiant, A theory of learnable. Communications of the ACM,
27:1134-1142, 1984.

S.M. Weiss and I. Kapouleas, Am Empirical Comparison of Pattern Recog-
nition, Neural Nets, and Machine Learning Classification Methods, In
Proceedings of the Eleventh International Joint conference on Artificial

Intelligence, San Mateo, CA:Morgan Kaufmann, 1990.

D. Wettschereck, A study of Distance-Based Machine Learning Algo-
rithms, PhD Thesis, Oregon State University, 1994.

D. Wettschereck and T. G. Dietterich, An Experimental Comparison of
the Nearest Neighbor and Nearest-hyperrectangle Algorithms, Machine
Learning, 9: 5-28, 1995.

D. Wettschereck and W., D. Aha, Weighting Features, In Proceedings of
the First International Conference on Case-Based Reasoning,Lisbon, Por-

tugal: Springer-Verlag, 1995.

Appendix A

Real-World Datasets

Table A.1. Comparison on some real-world datasets.

of # of Linear # of Unknown Baseline

Dataset Size Features Features Classes Values Accuracy
(%) (%)
arrhythmia 352 279 279 16 0.33 55
bcancerw 699 10 10 2 0.25 66
cleveland 303 13 6 2 0 54
dermatology 157 34 34 6 0.07 27
diabets 768 8 8 2 0 65
glass 214 9 9 6 0 36
horse 368 22 7 2 24 63
hungarian 294 13 6 2 0 64
ionosphere 351 34 34 2 0 64
iris 150 4 4 3 0 33
liver 345 6 6 2 0 58
musk 476 166 166 2 0 57
wine 178 13 13 2 0 40

Table A.1 summarizes some properties of the datasets to be used in the
experiments. In this table, name of the real-world datasets are shown with the
size of the dataset, number of features, number of linear features, number of
classes, percentage of the unknown attribute values, and the baseline accuracy.
The baseline accuracy of a dataset is the accuracy that will be obtained by
predicting the class of any test instance as the class of the most frequently

occurring class.

105

APPENDIX A. REAL-WORLD DATASETS 106

Arrhythmia: In this thesis, we construct two real-world datasets. One of
them is arrhythmia dataset. The aim is to distinguish between the presence
and absence of cardiac arrhythmia and to classify it in one of the 16 groups.
Class 01 refers to 'normal’ ECG classes 02 to 15 refers to different classes of
arrhythmia and class 16 refers to the rest of unclassified ones. Currently, there
are 352 instances which are described by 279 feature values. There are several
missing feature values. Class distribution of this datasets is very unfair as seen
from Table A.1. Class 01 (normal) is the most frequent one. It is assumed that

no patient has more than one cardiac arrhythmia.

Breast Cancer: Breast Cancer data set contains 273 patient records. All
the patients underwent a surgery to remove tumors, all of them were followed
up five years later. The objective here is to predict whether or not breast
cancer would recur during that five year period. The recurrence rate is about
30 %, and hence such prognosis is important for determining post-operational
treatment. The data set contains nine variables that were measured, including
both numeric and binary values. The prediction is binary: either the patient

did suffer a recurrence of cancer or not.

Cleveland and Hungarian Data: Both datasets are about the heart
disease diagnosis. FEach dataset is described with same features. Cleveland
data was collected from the Cleveland Clinic Foundation and Hungarian data

was collected from the Hungarian Institute of Cardiology.

These databases contain 76 attributes originally, but in ML field 13 of them
is used. All attributes are numeric valued and 6 of them have nominal values.
The class is determined according to the presence of heart disease, that is, this
is binary classification problem. There are no missing values in these datasets

for the features that we have used.

Dermatology: The second dataset constructed in this thesis current con-
tains 157 instances described by 34 feature values to distinguish dermatologi-
cal illnesses from histopathological descriptions for 6 classes (illnesses). These
classes are I1-Psoriaris, 2-Dermatit, 3-L. Planus, 4-Posea, 5-Kr.Dermatit, 0-
P.Rubrapilaris. One of the features (age) take values between 0 and 100, while
other 35 features take values 0, 1, 2, 3.

APPENDIX A. REAL-WORLD DATASETS 107

Diabets: This data set contains diabetes diseases collected from National
Institute of Diabetes and Digestive and Kidney Diseases. The diagnostic,
binary-valued variable investigated is whether the patient shows signs of di-
abetes according to World Health Organization criteria (i.e., if the 2 hour
post-load plasma glucose was at least 200 mg/dl at any survey examination or
if found during routine medical care). The population lives near Phoenix, Ari-
zona, USA. Several constraints were placed on the selection of these instances
from a larger database. In particular, all patients here are females at least
21 years old of Pima Indian heritage. The data set contains records of 768

patients with 8 features.

Glass Data: This dataset consists of attributes of glass samples taken
from the scan of an accident. The glass dataset contains 214 instances of
which belongs to one of six classes. In this dataset there are 9 features. All

feature values are continuous.

Horse Data: In this dataset there are 368 instances. Number of attributes
is 22 and the number of classes is 2. Seven of these features are linear and fifteen

of them are nominal. The 24% of the feature values is missing (unknown).

Ionosphere Data: The radar data was collected by a system in Goose
Bay, Labrador. This system consists of a phased array of 16 high-frequency
antennas with a total transmitted power on the order of 6.4 kilowatts. The
targets were free electrons in the ionosphere. Good radar returns are those
showing evidence of some type of structure in the ionosphere. Bad returns
are those that do not; their signals pass through the ionosphere. Received
signals were processed using an autocorrelation function whose arguments are
the time of a pulse and the pulse number. There were 17 pulse numbers for the
Goose Bay system. Instances in this database are described by 2 attributes per
pulse number, corresponding to the complex values returned by the function

resulting from the complex electromagnetic signal.

Iris Flowers: Iris flowers dataset from Fisher [23] consists of four integer
valued continuous features and a particular species of iris flower. There are
three different classes: iris virginica, iris setosa, iris versicolor. The four at-

tributes measured were sepal length, sepal width, petal length and petal width.

APPENDIX A. REAL-WORLD DATASETS 108

The dataset contains 150 instances, 50 instances of each three classes.

Liver: This data set contains 345 instances and collected by BUPA Medical
Research Ltd. Each instance constitutes the record of a single male individ-
ual. There are 6 attributes and the first 5 variables are all blood tests which
are thought to be sensitive to liver disorders that might arise from excessive
alcohol consumption. The last attribute presents drinks number of half-pint
equivalents of alcoholic beverages drunk per day. The purpose of this data set
is to determine whether patient has liver disorders or not. 276 of the instances

are used in training the remaining 69 are used in testing.

Musk: This dataset describes a set of 92 molecules of which 47 are judged
by human experts to be musks and the remaining 45 molecules are judged to be
non-musks. The goal is to learn to predict whether new molecules will be musks
or non-musks. However, the 166 features that describe these molecules depend
upon the exact shape, or conformation, of the molecule. Because bonds can
rotate, a single molecule can adopt many different shapes. To generate this data
set, the low-energy conformations of the molecules were generated and then
filtered to remove highly similar conformations. This left 476 conformations.

Then, a feature vector was extracted that describes each conformation.

This many-to-one relationship between feature vectors and molecules is
called the “multiple instance problem”. When learning a classifier for this data,
the classifier should classify a molecule as musk if ANY of its conformations is

classified as a musk. A molecule should be classified as non-musk if NONE of

its conformations is classified as a musk.

Wine Data: This dataset is about recognizing wine types. This data is
provided by Pharmaceutical and Food analysis and technologies. The classes
are separable. In a classification context, this is a well-posed problem with
“well behaved” class structures. This dataset is the result of the chemical
analysis of wines grown in the same region in Italy but derived from three
different cultures. The analysis determined the quantities of 13 constituents
found in each of the three types of wines. The dataset contains 178 instances.

All features are linear.

