Morphological Disambiguation by Voting Constraints

Kemal Oflazer and Gokhan Tur
Department of Computer Engineering and Information Science

Bilkent University, Bilkent, Ankara, TR-06533, TURKEY
{ko,tur}@cs.bilkent.edu.tr

Abstract

We present a constraint-based morpholog-
ical disambiguation system in which indi-
vidual constraints vote on matching mor-
phological parses, and disambiguation of
all the tokens in a sentence is performed
at the very end by selecting parses that re-
ceive the highest votes. This constraint ap-
plication paradigm makes the outcome of
the disambiguation independent of the rule
sequence, and hence relieves the rule devel-
oper from worrying about potentially con-
flicting rule sequencing found in other sys-
tems. The vote of each rule is determined
by its complexity measured with the kind
and number of features used in the rule.
We have applied our approach in a sys-
tem for morphological disambiguation of
Turkish, a language with complex agglu-
tinative word structures, displaying rather
different types of morphological ambigu-
ity not found in languages like English.
Our results indicate that using about 500
constraint rules and some additional sim-
ple statistics, we can attain a recall of 95-
96% and a precision of 94-95% with about
1.01 parses per token. Our system is im-
plemented in Prolog and we are currently
investigating an efficient implementation
based on discrimination networks used in
Al production systems

1 Introduction

Automatic morphological disambiguation is a cru-
cial component in higher level analysis of natural
language text corpora. Morphological disambigua-
tion also facilitates parsing, essentially by perform-
ing a certain amount of ambiguity resolution us-
ing relatively cheaper methods. There has been a
large number of studies in tagging and morpholog-
ical disambiguation using various techniques. Part-
of-speech tagging systems have used either a statisti-
cal approach where a large corpora has been used to

train a probabilistic model which then has been used
to tag new text, assigning the most likely tag for a
given word in a given context (e.g., Church (1988),
Cutting et al. (1992), DeRose (1988)). Rule-based
or constraint-based approaches recently most promi-
nently exemplified by the Constraint Grammar work
(Karlsson et al., 1995; Voutilainen, 1995b; Vouti-
lainen, Heikkila, and Anttila, 1992; Voutilainen and
Tapanainen, 1993), employ a large number of hand-
crafted linguistic constraints are used to eliminate
impossible tags or morphological parses for a given
word in a given context. Brill (1992; 1994; 1995) has
presented a transformation-based learning approach,
which induces tagging rules from tagged corpora.

In contrast to languages like English, for which
there is a very small number of possible word forms
with a given root word, and a small number of tags
associated with a given lexical form, languages like
Turkish or Finnish with very productive agglutina-
tive morphology where it is possible to prodiice thou-
sands of forms (or even millions (Hankamer, 1989))
from a given root word, pose a challenging prob-
lem for morphological disambiguation. Our prior at-
tempts in developing constraint-based disambigua-
tion systems for Turkish have been hampered to a
certain extent by the idiosyncrasies of rule order-
ing whereby minor changes to the structure and/or
ordering of the rules caused massive breakdowns in
performance.

This paper presents a novel approach to constraint
based morphological disambiguation which relieves
the rule developer from worrying about conflicting
rule ordering requirements and constraints. The ap-
proach depends on assigning weights to constraints
according to their complexity and specificity, and
then letting constraints vote on matching parses of
a given lexical item. This approach does not re-
flect the outcome of matching constraints to the set
of morphological parses immediately. Only after all
applicable rules are applied to a sentence, all to-
kens are disambiguated in parallel. Thus, the out-
come of the rule applications is not dependent on the
order of rule applications. Rule ordering issue has
been discussed by Voutilainen(1994), but he has re-

cently indicated® that insensitivity to rule ordering
is not a property of their system (although Vouti-
lainen(1995a) states that it is a very desirable prop-
erty) but rather is achieved in by extensively testing
and tuning the rules.

In the following sections, we present an overview
of the morphological disambiguation problem, high-
lighted with examples from Turkish. We then
present our approach and results. We finally con-
clude with an outline of our investigation into effi-
cient implementations of our approach.

2 Morphological Disambiguation

In almost all languages, words are usually ambigu-
ous in their parts-of-speech or other morphological
features, and may represent lexical items of differ-
ent syntactic categories, or morphological structures
depending on the syntactic and semantic context.
Part-of-speech (POS) tagging involves assigning ev-
ery word its proper part-of-speech based upon the
context the word appears in.

In Turkish, there are ambiguities of the sort typ-
ically found in languages like English (e.g., book/N
vs book/V type). However, the agglutinative nature
of the language usually helps resolution of such am-
biguities due to the restrictions on morphotactics.
On the other hand, this very nature introduces an-
other kind of ambiguity, where a lexical form can be
morphologically interpreted in many ways not usu-
ally predictable in advance.

Most kinds of morphological ambiguities that we
have observed in Turkish typically fall into one the
following classes:2:3:%

1. the form is uninflected and assumes the default
morphological features. For instance tag has
the parses:

1. ta8 (made of stone)
[[CAT=ADJ] [ROOT=tasS]]

2. taS (stone)
[[CAT=NOUN] [ROOT=taS]
[AGR=3SG] [POSS=NONE] [CASE=NOM]]

"Woutilainen, Private communication.

20utput of the morphological analyzer is edited for
clarity, and English glosses have been given. We have
also provided the morpheme structure, where [...]s, in-
dicate elision.

3Glosses are given as linear feature value sequences
corresponding to the morphemes (which are not shown).
The feature names are as follows: CAT-major category,
TYPE-minor category, ROOT-main root form, AGR -number
and person agreement, POSS - possessive agreement, CASE
- surface case, CONV - conversion to the category follow-
ing with a certain suffix indicated by the argument after
that, TAM1-tense, aspect, mood marker 1, SENSE-verbal
polarity.

*Upper cases in morphological output indicates one of
the non-ASCII special Turkish characters: e.g., G denotes
g, U denotes 1, etc.

3. ta$ (overflow!)
[CAT=VERB] [ROOT=taS]
[SENSE=P0S] [TAM1=IMP] [AGR=2SG]]

2. All parses are inflected, and lexically different
affixes surface the same due to the morpho-
phonemic context giving rise to different mor-
phological features in different parses. For in-
stance evin has the following parses:

1. ev+[n]lin (of the house)
[[CAT=NOUN] [RO0T=ev]
[AGR=3SG] [P0OSS=NONE] [CASE=GEN]]

2. ev+in (your house)
[[CAT=NOUN] [ROOT=ev]
[AGR=35G] [P0SS=25G] [CASE=NOM]]

(]

. The root of one of the parses is a prefix string of
the root of the other parse, and the parse with
the shorter root word has a suffix which surfaces
as the rest of the longer root word. For instance
the form koyun has the following parses:

1. koyut[uln (your dark (thing))
[[CAT=ADJ] [RO0T=koyul]
[CONV=NOUN=NONE]
[AGR=3SG] [P0SS=25G] [CASE=NOM]]

2. koyun (sheep)
[[CAT=NOUN] [ROOT=koyun]
[AGR=35G] [POSS=NONE] [CASE=N0OM]]

3. koy+[nJun (of the bay)
[[CAT=NOUN] [ROOT=koy]
[AGR=35G] [POSS=NONE] [CASE=GEN]]

4. koy+un (your bay)
[[CAT=NOUN] [ROOT=koy]
[AGR=35G] [P0SS=25G] [CASE=NOM]]

5. koy+[ylun (put !)
[[CAT=VERB] [RO0T=koy]
[SENSE=P0S] [TAM1=IMP] [AGR=2PL]]

4. The roots take unrelated inflectional and/or

derivational suffixes which when concatenated
turn out to have the same surface form. For
instance the form yapmadan has the following
parses:

1. yaptmadan (without doing (it))
[[CAT=VERB] [RO0T=yap]
[SENSE=P0S] [CONV=ADVERB=MADAN]]

9 A &
4. yququuqn \J.J. Om aoing \1i

[[CAT=VERB] [ROOT=yap]
[SENSE=P0S] [CONV=NOUN=MA]
[TYPE=INFINITIVE]
[AGR=3SG] [POSS=NONE] [CASE=ABL]]

5. One of the ambiguous parses forms is a lexi-
calized form while one of the other is a form
derived by a productive lexicalized form.

1. uygulama / application
[[CAT=NOUN] [ROOT=uygulamal
[AGR=35G] [POSS=NONE] [CASE=NOM]]

2.. wuygulatma / ((the act of) applying)
[[CAT=VERB] [RO0T=uygula]
[SENSE=P0S] [CONV=NOUN=MA]
[TYPE=INFINITIVE]
[AGR=3SG] [POSS=NONE] [CASE=NOM]]

3. uygulatma / (don’t apply!)
[[CAT=VERB] [ROOT=uygula]
[SENSE=NEG] [TAM1=IMP] [AGR=2SG]]

It is certainly possible to remove or reduce some
of the ambiguity by enforcing local linguistic con-
straints across a sequence of tokens, as is usually
done in constraint-based disambiguation systems.

The main intent of our system is to achieve mor-
phological disambiguation by choosing for a given
ambiguous token the correct parse in a given con-
text. It is certainly possible that a given token may
have multiple correct parses, usually with the same
inflectional features or with inflectional features not
ruled out by the syntactic context, but one will be
the “correct” parse usually on semantic grounds.

We consider a token fully disambiguated if it has
only one morphological parse remaining after auto-
matic disambiguation. We consider a token as cor-
rectly disambiguated, if one of the parses remaining
for that token is the correct intended parse. We eval-
uate the resulting disambiguated text by a number
of metrics defined as follows (Voutilainen, 1995a):

. #Parses
Ambiguity = ————
gy #Tokens

Recall #Tokens Correctly Disambiguated

ecall =
#Tokens
Precisi #Tokens Correctly Disambiguated
recision =

#Parses

In the ideal case where each token is uniquely and
correctly disambiguated with the correct parse, both
recall and precision will be 1.0. On the other hand, a
text where each token is annotated with all possible
parses,® the recall will be 1.0, but the precision will
be low. The goal is to have both recall and precision
as high as possible.

3 Constraint-based Morphological
Disambiguation

This section outlines our approach to constraint-

based morphological disambiguation where con-

straints vote on matching parses of sequential to-
kens.

5 Assuming no unknown words.

3.1 Constraints on Morphological Parses

We describe constraints on the morphological parses
of tokens using rules with two components

R:(ClaCZa"'aCnaV)

where the C; are (possibly hierarchical) feature con-
straints on a sequence of the morphological parses,
and V is an integer denoting the weight of the vote
of the rule.

To illustrate the flavor of our rules we can give the

following examples:

1. The following rule with two constraints matches
parses with case feature ablative, preceding a
parse matching a postposition which subcate-
gorizes for an ablative nominal form.

[[case:abl], [cat:postp,subcat:abl]]
2. The rule

[[agr:’25G’,case:gen], [cat:noun,poss:’25G’]]

chooses a nominal form with a possessive
marker 2SG following a pronoun with 2SG agree-
ment and genitive case, enforcing the simplest
form of noun phrase constraints.

3. In general constraints can make references to
the derivational structure of the lexical form
and hence be hierarchical. For instance, the fol-

lowing rule is an example of a rule employing a
hierarchical constraint:

[[cat:adj,stem: [taml:narr]],
[cat:noun,stem:no]]

which selects the derived participial adjectival
reading of a verb with narrative past tense, if it
is followed by an underived noun form.

3.2 Determining the vote of a rule

The vote of a rule is (in general) determined by its
static properties. Intuitively we would like to give
high votes to rules that are more specific: i.e., to
rules that have

e higher number of constraints,
e higher number of features in the constraints,

e constraints that make reference to nested stems
(from which the current form is derived)

e constraints that make reference to very specific
features or values

Let R = (C1,C4,--+,Cy, V) be a constraint rule.
The vote V is determined as

V= Z V(Cy)

where V(C;) is the contribution of constraint C; to
the vote of the rule R. A (generic) constraint has
the following form:

C=1[(f1:v)&(f2 :v2)& - (fm : vm)]

where f; is the name of a morphological feature, and
v; 18 one of the possible values for that feature. The
contribution of a feature constraint f; : v; in the vote
of a constraint depends on a number of factors:

1. The value v; may be a distinguished value that
has a more important function in disambigua-

tion. In this case, the weight of the feature con-
straint is m(’n;)(> 1) For instance. our exne-

e a4 AEEDSVLLELL Ay MRS My

rience with Turkish indicates that a constraint
referring to genitive case is very useful.

2. The feature itself may be a distinguished fea-
ture which has more important function in dis-
ambiguation. In this case the weight of the fea-
ture is w(f;)(> 1). For instance, the case of
the nominal that a postposition subcategorizes
for, (which is the subcat feature of the postposi-
tion) is crucial in disambiguation the item that
precedes the postposition, hence is given a high
value (see example 1 in Section 3.1.)

3. If the feature f; refers to the stem of a de-
rived form and the value part of the feature con-
straint is a full fledged constraint C’ on the stem
structure, the weight of the feature constraint is
found by recursively computing the vote of C’
and scaling the resulting value by a factor (2 in
our current system) to improve its specificity.

4. Otherwise, the weight of the feature constraint
is 1.
For example suppose we have the following mor-
phological constraint:

[cat:noun, case:gen,
stem: [cat:adj, stem:[cat:v], suffix=mis]]

Assuming the value gen 1is a distinguished value
with weight 4 (cf., rule 1 above), the vote of this
constraint can be computed as follows:

e cat:noun contributes 1
e case:gen contributes 4

e stem: [cat:adj, stem:[cat:v],suffix=mis]
contributes 8 computed as follows:

— cat:adj contributes 1
— suffix=mis contributes 1

— stem: [cat:v] contributes 2 = 2% 1, the 1
being from cat:v.

— the sum 4 is scaled by 2 to give 8.

So the resulting vote of the constraint is 13.

We also employ a set of rules which express pref-
erences among the parses of single lexical form in-
dependent of the context in which the form occurs.
The weights for these rules are currently manually
determined. These rules give negative votes to the
parses which are not preferred or high votes to cer-
tain parses which are always preferred. Our expe-
rience is that such preference rules depend on the
kind of the text one is disambiguating. For in-
stance if one i1s disambiguating a manual of some

sort, imperative readings of verbs are certainly pos-
sible, whereas in normal plain text with no discourse,
such readings are discouraged. Again in certain
types of texts readings with [P0SS=2SG] feature are
very unlikely but yet they interfere with parses with
[AGR=3SG] [POSS=NONE] [CASE=GEN] features. The
most important use of these kinds of rules are in
discouraging productively derived forms of certain
words if there is already a lexicalized form (i.e., not
involving the STEM feature). An example of a rule
which penalizes such derived forms is:

[[stem: [stem:_11]

which is associated with a large negative vote. This
rule will penalize a parse with two productive deriva-
tions in it, and if there is a certain lexicalized parse
for the same token®, then the lexicalized parse will
eventually survive.

3.3 Voting and Selecting Parses
A constraint R = (C1,C%,---,Cp, V) will match

a sequence of tokens wj, wiy1, -, Witn—1 within a
sentence wi through w; if some morphological parse
of every token w;,1 < j <i4n—1 is subsumed by
the corresponding constraint C;_;_;. When all con-
straints match, the votes of all the matching parses
are incremented by V. If a given constraint matches
more than one parse of a token, then the votes of all
such matching parses are incremented.”

After all rules have been applied to all token po-
sitions in a sentence and votes are tallied, morpho-
logical parses are selected in the following manner.
Let v; and vy, be the votes of the lowest and high-
est scoring parses for a given token. All parses with
votes equal to or higher than v; + m * (vy, — v;) are
selected with m (0 < m < 1) being a parameter.
m = 1 selects the highest scoring parses.

4 Results from disambiguating
Turkish text

We have applied our approach to disambiguating
Turkish text. Raw text is processed by a prepro-
cessor which segments the text into sentences using
various heuristics about punctuation, and then to-
kenizes and runs it through a wide-coverage high-
performance morphological analyzer developed us-
ing two-level morphology tools by Xerox (Kart-
tunen, 1993). The preprocessor module also per-
forms a number of additional functions such as
grouping of lexicalized and non-lexicalized colloca-
tions, compound verbs, etc. The preprocessor also
uses a second morphological processor for dealing
with unknown words which recovers any derivational

5Most likely, the inflectional markers on both parses
will be the same, but the lexicalized parse will have less
derivations.

TAn alternative strategy can be to divide the vote V
among multiple matching parses of a given token.

and inflectional information from a word even if the
root word is not known. This unknown word pro-
cessor has a (nominal) root lexicon which recognizes
S*, where S is the Turkish surface alphabet (in the
two-level morphology sense), but then tries to in-
terpret an arbitrary postfix string of the unknown
word, as a sequence of Turkish suffixes subject to
all morphographemic constraints. Our experience
with this unknown word processor is that, of all the
occurrences of unknown words, over 96% eventu-
ally gets assigned the correct morphological parse
(correct root, derivational markers and inflectional
markers) after disambiguation.

We have applied our approach to four texts with
statistics given in Table 1. The first text labeled
ARK is a short text on near eastern archaeology.
The second text labeled HIST is from a book on
early 20'"* century history of the Turkish Republic.
The third text, MAN, is a computer manual text and
the fourth text, EMB, is a foreign ministry text on
embassy operations. In Table 1, the tokens consid-
ered are those that are generated after morphological
analysis, unknown word processing and any lexical
coalescing is done. The words that are counted as
unknown are those that could not even be processed
by the unknown noun processor. Whenever an un-
known word had more than one parse it was counted
under the appropriate group.® The fourth and fifth
columns in this table give the average parses per to-
ken and the initial precision measure assuming initial
recall is 1.0.

We have disambiguated these texts using a rule
base of about 500 hand-crafted rules. Most of the
rule crafting was done using the general linguistic
constraints and constraints that we derived from the
first text, ARK. In this sense, this text is our “train-
ing data”, while the other three texts were not con-
sidered in rule crafting.

Our results are summarized in Table 2. The last
four columns in this table present results for different
values for the parameter m mentioned above, m =
1 denoting the case when only the highest scoring
parse(s) is (are) selected.

The columns form m < 1 are given to empha-
size that drastic change in precision for those cases.
Even at m = 0.95 there is considerable loss of preci-
sion and going up to m = 1.0 causes a dramatic in-
crease in precision without a significant loss in recall.
It can be seen that we can attain very good recall
and quite acceptable precision with just voting con-
straint rules. Qur experience is that we can without
any problem in principle add highly specialized rules
by covering a larger text base to improve our recall
and precision for the m = 1.0. The cases that have

8The reason for the (comparatively) high number of
unknown words in MAN, is that tokens found in such
texts, like f10, denoting a function key in the computer
can not be parsed as a Turkish root word!

Vote Range Selected(m)

TEXT 1.0 0.95 0.8 0.6 0.5
ARK | Rec. | 98.05 || 98.47 | 98.69 | 98.77 | 98.80
Prec. | 94.13 || 87.65 | 84.41 | 82.43 | 81.98
Amb. | 1.042 || 1.123 | 1.169 | 1.200 | 1.205
HIST | Rec. | 97.03 || 97.65 | 98.81 | 97.01 | 98.12
Prec. | 94.13 || 87.10 | 84.41 | 82.29 | 81.81
Amb. | 1.058 || 1.121 | 1.169 | 1.189 | 1.199
MAN | Rec. | 97.03 || 97.92 | 97.81 | 98.77 | 98.77
Prec. | 91.05 || 83.51 | 79.85 | 77.34 | 76.69
Amb. | 1.068 || 1.172 | 1.237 | 1.277 | 1.288

EMB | Rec. | 96.51 || 97.48 | 97.76 | 97.94 | 97.94
Prec. | 91.28 || 84.36 | 77.87 | 75.79 | 77.28
Amb. | 1.057 || 1.150 | 1.255 | 1.292 | 1.301

Table 2: Results with voting constraints

been missed are mostly due to morphosyntactic de-
pendencies that span a context much wider that 5
tokens that we currently employ (i.e., the maximum
number of constraints we have in our rules is 5.).

4.1 Using root and contextual statistics

We have employed two additional sources of infor-
mation: root word usage statistics, and contextual
statistics.

We have statistics compiled from previously dis-
ambiguated text on root frequencies. After the ap-
plication of constraints as described above, for to-
kens which are still ambiguous with ambiguity re-
sulting from different root words, we discard parses
if the frequencies of the root words for those parses
are lower than the frequency of the root of the high-
est scoring parse. The results after applying this
step are shown in Table 3, where root statistics are
applied to the voting results for m = 1.0 in Table 2.

On top of this, we use the following heuristic us-
ing context statistics to eliminate any further ambi-
guities. For every remaining ambiguous token with
unambiguous immediate left and right contexts (i.e.,
the tokens in the immediate left and right are unam-
biguous), we perform the following, by ignoring the

rootl/stem feature of the parses:

1. For every ambiguous parse in such an unam-
biguous context, we count how many times, this
parse occurs unambiguously in exactly the same
unambiguous context, in the rest of the text.

2. We then choose the parse whose count is sub-
stantially higher than the others.

By ignoring root/stem features during this process,
we essentially are considering just the top level in-
flectional information of the parses. This is very
similar to Brill’s use of contexts to induce transfor-
mation rules for his tagger (Brill, 1992; Brill, 1995),

Distribution
of
Text | Sent. | Tokens | Parses/ | Init. Morphological Parses
Token Prec. 0 1 2 3 4 >4
ARK 492 7928 1.823 0.55 | 0.15% | 49.34% | 30.93% | 9.19% | 8.46% | 1.93%
HIST 270 5212 1.797 0.56 | 0.02% | 50.63% | 30.68% | 8.62% | 8.36% | 1.69%
MAN 204 2756 1.840 0.54 | 0.65% | 49.01% | 31.70% | 6.37% | 8.91% | 3.36%
EMB 198 5177 1.914 0.52 | 0.09% | 43.94% | 34.58% | 9.60% | 9.46% | 2.33%
Table 1: Statistics on Texts

TEXT m=1.0 TEXT m=1.0

ARK | Rec. 97.60 ARK | Rec. 96.98

Prec. 95.28 Prec. 96.19

Amb. 1.024 Amb. 1.008

HIST | Rec. 96.52 HIST | Rec. 95.62

Prec. 92.59 Prec. 94.33

Amb. 1.042 Amb. 1.013

MAN | Rec. 96.47 MAN | Rec. 95.84

Prec. 93.08 Prec. 94.47

Amb. 1.042 Amb. 1.014

EMB | Rec. 96.47 EMB | Rec. 95.37

Prec. 93.08 Prec. 94.45

Amb. 1.036 Amb. 1.009

Table 3: Results with voting constraints and root
statistics

but instead of generating transformation rules from
a training text, we gather statistics and apply them
to parses in the text being disambiguated.

5 Efficient implementation
techniques

The ,c1irTren + rmnlemmentaticon o
L 11C CULICIIL LHPICIHCIILauluLl O

he voting approach
is meant to be a proof of concept implementation
and is rather inefficient. We are currently investi-
gating an approach based on an adaptation of an
efficient processing technique used in artificial intel-
ligence for forward chaining rule-based production
systems (e.g., (Forgy, 1981)), commonly used for im-
plementing expert systems. This approach known
as the RETE algorithm (Forgy, 1982) compiles a
set of rules into an efficient discrimination network
by combining most of the redundancies across rules
by trading memory for repeated computation. Such
systems maintain data items in what is known as
a working memory and go through match — execute
cycles. During the match phase, rules applicable in
the current state of the working memory are found
and then in the execute phase, the actions (such as
delete, insert, modify) of the matching rules are exe-
cuted on the contents of the working memory (Forgy,

1981).

In our case, the working memory corresponds to

Table 4: Results with voting constraints, root statis-
tics, and contextual statistics

the set of parses of the tokens in a single sentence.
We represent the parses of the tokens in a sentence
as triples of position indices, parses, and votes:

(Position, Parse, Vote)

with Position indicating the linear position of the
token in the sentence, Parse indicating (one of) the
morphological parses, and Vote indicating the vote
received (with an initial value of 0). The number of
triples in the working memory during the processing
of a sentence is equal to the total number of all the
parses of all tokens in the sentence.

In this framework, we represent our rules that we
described earlier as R = (C1,Cy, - -+, Cy, V), as pro-

duction system rules of the sort:

if (Position = X & C;) &
(Position = X+1, & Cs) &
(Position = X+n-1, & Cy,)
then
increment-vote(1, V),
increment-vote(2, V),

increment-vote(n, V).

Such a rule is interpreted as follows: if there is a
triple in the working memory with some position
value (bound to variable X) matching the constraint

(', and there is a second triple whose position value
is equal to X +1 (hence is for the next token) match-
ing Cs, and so on, so that all n constraints are
satisfied along with the sequencing constraints (im-
posed by the constraints on position values), then
the rule is selected for “firing” and the increment-
vote actions increment the count field of the respec-
tive matching triples. A sentence cycle is completed
when all such rules for all relevant token positions in
the sentence are found and their actions executed.

A RETE network is compiled from a rule base
consisting of rules like the rule above and is a
very compact representation. Rule conditions are
checked through the discrimination network as work-
ing memory triples are inserted one by one; and
when the last triple is inserted, all matching rules
are found and the actions of matching rules are exe-
cuted. We are currently working on a compiler that
compiles our rules into such a discrimination net-
work for efficient rule matching.

6 Conclusions

We have presented an approach to constraint-based
morphological disambiguation which uses constraint
voting as its primary mechanism for parse selection.
Constraints describing language specific linguistic
constraints or lexical preferences vote on matching
parses of tokens, and at the end, parses for every to-
ken receiving the highest tokens are selected. Addi-
tional statistics are used afterwards to perform fur-
ther disambiguation. The results at this stage are
quite promising, and we expect to improve the re-
call and precision results as we add in further con-
straints. Our approach is quite general and is ap-
plicable to any language. Although the current way
of assigning votes to rules is quite simple and justi-
fiable, we feel that machine learning techniques can
be applied to find the votes of features and values
that may be more effective.

7 Acknowledgments

This research has been supported in part by a NATO
Science for Stability Grant TU-LANGUAGE.

References

Brill, Eric. 1992. A simple-rule based part-of-speech
tagger. In Proceedings of the Third Conference
on Applied Natural Language Processing, Trento,
Italy.

Brill, Eric. 1994. Some advances in rule-based
part of speech tagging. In Proceedings of the
Twelfth National Conference on Articial Intelli-
gence (AAAI-94), Seattle, Washinton.

Brill, Eric. 1995. Transformation-based error-driven
learning and natural language processing: A case

study in part-of-speech tagging. Computational
Linguistics, 21(4):543-566, December.

Church, Kenneth W. 1988. A stochastic parts pro-
gram and a noun phrase parser for unrestricted
text. In Proceedings of the Second Conference
on Applied Natural Language Processing, Austin,
Texas.

Cutting, Doug, Julian Kupiec, Jan Pedersen, and
Penelope Sibun. 1992. A practical part-of-speech
tagger. In Proceedings of the Third Conference
on Applied Natural Language Processing, Trento,
Italy.

DeRose, Steven J. 1988. Grammatical category dis-
ambiguation by statistical optimization. Compu-
tational Linguistics, 14(1):31-39.

Forgy, Charles L. 1981. OPS5 user’s manual. Tech-
nical report, Department of Computer Science,
Carnegie Mellon University.

Forgy, Charles L. 1982. RETE: A fast algorithm for
the many pattern/many object match problem.
Articial Intelligence, 19(1).

Hankamer, Jorge. 1989. Morphological parsing and
the lexicon. In W. Marslen-Wilson, editor, Lezical
Representation and Process. MIT Press.

Karlsson, Fred, Atro Voutilainen, Juha Heikkila,
and Arto Anttila. 1995. Constraint Grammar-A
Language—-Independent System for Parsing Unre-
stricted Text. Mouton de Gruyter.

Karttunen, Lauri. 1993. Finite-state lexicon com-
piler. XEROX, Palo Alto Research Center— Tech-
nical Report, April.

Voutilainen, Atro. 1994. Three studies of grammar-
based surface-syntactic parsing of unrestricted En-
glish text. Ph.D. thesis, Research Unit for Com-
putational Linguistics, University of Helsinki.

Voutilainen, Atro. 1995a. Morphological disam-
biguation. In Fred Karlsson, Atro Voutilainen,
Juha Heikkila, and Arto Anttila, editors, Con-
straint Grammar-A Language—Independent Sys-
tem for Parsing Unrestricted Text. Mouton de
Gruyter, chapter 5.

Voutilainen, Atro. 1995b. A syntax-based part-of-
speech analyzer. In Proceedings of the Seventh
Conference of the European Chapter of the Asso-
ciation of Computational Linguistics, Dublin, Ire-

land.

Voutilainen, Atro, Juha Heikkila, and Arto Anttila.
1992. Constraint Grammar of English. University
of Helsinki.

Voutilainen, Atro and Pasi Tapanainen. 1993. Am-
biguity resolution in a reductionistic parser. In

Proceedings of FACL’93, Utrecht, Holland.

