Fast Information Retrieval Using Compressed
Multi-Fragmented Signature Files

Seyit KOCBERBER! Fazli CAN2*

T Department of Computer Engineering and Information Science, Bilkent University
Bilkent, 06533 Ankara, Turkey

2 Department of Systems Analysis, Miami University, Oxford, OH 45056, USA
e-mails: seyit@bilkent.edu.tr, canf@muohio.edu

BU-CEIS-9625
November 21, 1996

Abstract: A new file method, called Compressed Multi-Fragmented Signature File (C-MFSF), that uses a
partial query evaluation strategy with compressed signature bit slices is presented. The experiments show that
for queries with more than one term, C-MFSF obtains the query results with fewer disk accesses than the
inverted file approach. For single term queries, which is rare for very large databases, it requires more disk
accesses than the inverted file method while its response time is still satisfactory. The number of disk accesses
is the same as the number of query terms for queries with more than two terms. The experiments with a real
database of 152,850 records validate the simulation results and are used to project the response time for very
large databases. For a database of one million records, the projected response times for single term and multi-
term queries are less than 2 and 1.14 seconds, respectively.

1. INTRODUCTION

Signature file approach is a well-known indexing technique for information retrieval
[FAL92]. In this approach, the content of a record (an instance of any kind of data will be
referred to as a record) is encoded in a bit string called record signature. During the
generation of signatures each term (an attribute of a record, without loss of generality, will be
referred to as a term) is hashed into a bit string of size F by setting S bits to “1” (on-bit)
where F > S . The result is called a term signature. Record signatures are obtained either by
concatenating or superimposing the signatures of the record terms. In this paper we consider
only superimposed signatures and conjunctive queries.

Several signature generation and signature file methods have been proposed to obtain a
desirable response time and space overhead. A survey of the proposed methods can be found
in [AKT93, FAL92]. In the superimposed signature approach the length of the record
signature (F) and term signatures are the same and F >> §. Similar to records, query

signatures are obtained by superimposing the query term signatures.

*To whom all correspondence should be addressed voice: (513) 529-5950, fax: (513) 529-1524

Fast Information Retrieval using Compressed Multi-Fragmented Signature Files 2

The Multi-Fragmented Signature File (MFSF) method provides promising results for
conjunctive queries [KOC95, KOC96a]. In this paper, we propose the Compressed Multi-
Fragmented Signature File (C-MFSF) method that stores the sparse bit slices of MFSF with
large F values in a compressed form. A prototype information retrieval (IR) system is
implemented based on the proposed method C-MFSF. Its performance is measured
analytically and experimentally. A theoretical comparison with the inverted files in terms of
disk accesses is also provided.

The organization of the paper is as follows. Section 2 explains query processing in MFSF.
The simulation environment and the test databases used in the experiments are described in
Section 3. In Section 4, a new method to code the positions of “I1”s in the bit slices of a
signature file is proposed. The results obtained with simulation runs are given in Section 5. In
Section 6, the results of the experiments with real data are provided. Section 7 contains the
projection results obtained for very large databases. Section 8 contains a theoretical

comparison of C-MFSF and the inverted file method. Finally, Section 9 concludes the paper.
2. QUERY PROCESSING IN MFSF

The query evaluation with signature files is conducted in two phases. In the first phase of the
query processing, the query signature is compared with the record signatures. The records
whose signatures contain at least one “0” bit (off-bit) in the corresponding positions of on-bits
of the query signature are definitely irrelevant to the query. If a record contains all of the
query terms, i.e., the record is relevant to the query, the record signature will have on-bits in
the corresponding bit positions of all on-bits of the query signature. Thereby in the first phase
most of the irrelevant records are eliminated.

Due to hashing and superimposition operations used in obtaining signatures, the signature
of some irrelevant records may match the query signature. These records are called false
drops. The false drop probability is minimized when the optimality condition is satisfied, i.e.,
half of a record signature bits are on-bits [CHR84, ROB79]. In the second phase of the query
processing, these possible false drop records are resolved by accessing the actual records.

For a database of N records, the signature file can be viewed as an N by F' bit matrix. Off-
bits of a query signature have no effect on query processing, since only the on-bits of the query
signature are compared with the corresponding record signature bits. Therefore, signature file
processing can be done by considering only the columns (bit slices) of the bit matrix
corresponding to the on-bits of the query signature.

To retrieve the record signature bits corresponding to a bit position without retrieving other

bits, the signature file is vertically partitioned and the bits of a vertical partition are stored

Fast Information Retrieval using Compressed Multi-Fragmented Signature Files 3

sequentially as in bit-sliced signature files (BSSF) [ROB79] and generalized frame-sliced
signature files (GFSSF) [LIN92]. Vertical partitioning a signature file improves performance
by reducing the amount of data to be read and processed.

In BSSF, especially for multi-term queries, the time required to complete the first phase of
the query evaluation increases as the number of on-bits of the query signature, i.e., query
weight, increases [ROB79]. MFESF solves this problem by employing a partial evaluation
strategy and considering the submission probabilities of the queries with different number of
terms in a multi-term query environment [KOC95, KOC96a]. The partial query evaluation

technique employs a stopping condition that tries to complete the first phase of the query

evaluation without using all on-bits of the query signature, i.e., by partial evaluation. The aim
of the stopping condition is to reduce the number of expected false drops to the level that will
also provide the lowest response time within the framework of the bit-sliced signature file
environment [KOC95, KOC96a].

In MFESF a signature file is conceptually divided into f sub-signature files. The bits of a
signature file is distributed among the sub-signature files, fragments, such that F= F; + F> ...
+ Fr(f < F). Each term sets S, bits in the rth fragment such that § = S7 + 82 ... + S(0< S, <
F,, 1 <r <f). Each sub-signature file is a BSSF with its own F (signature size) and S (number
of bits set by each term) parameters and consequently, each fragment may have a different on-
bit density value [KOC95, KOC96a].

In the bit sliced signature file approach, each processed bit slice eliminates a fraction of the
false drops depending on the on-bit density (op) of the processed bit slice (op is the probability
of a particular bit of a bit slice being an on-bit). Lower op values eliminate false drops more
rapidly during signature file processing and the stopping condition is reached in fewer
evaluation steps. In MFSF, since each term sets bit(s) in each fragment, more bit slices from
the lower on-bit density fragments are processed in the query evaluation for increasing number
of query terms. This property of MFSF is illustrated in Figure 1.

In the example MFESF of Figure 1, there are 24 bits in each record signature and these bits
are distributed among three fragments. Since each term sets only one bit to “I1” in each
fragment and F; > F, > F3, op; < opy < opz holds where op; (1<i<3) denotes the on-bit
density in the ith fragment. Since op; has the lowest value, processing a bit slice from the first
fragment eliminates more false drops than processing a bit slice from the second and the third
fragments. Similarly, processing a bit slice from the second fragment eliminates more false

drops than processing a bit slice from the third fragment.

Fast Information Retrieval using Compressed Multi-Fragmented Signature Files 4

Number of Fragments (f) =3, F=F; + F)+ F3=24, §=§; + S,+ §;=3,D=3

Fy=10 $;=1 0p ;=0.271 Fy=8 Sy=1 0p»=0.330 F3=6 §3=10p3=0.421

O rnnr MM
LB B LB R BT

=1 | 1 | 1 | 1 |
=2 | 2 | 2 | 2 |
=3 | : | T

t: number of query terms, D: number of distinct terms in a record
Different gray levels indicate different on-bit densities of the fragments
(*) More than one term may set the same bit position

Figure 1. The number of on-bits in the fragments of an example MFSF for various number of query terms.

At the bottom of Figure 1, the expected number of on-bits in the query signatures of the
queries with one, two, and three terms are given (¢ denotes the number of query terms). For
the following three examples, we assume that the stopping condition requires reducing the
level of false drop probability to 0.075 in the first phase of query processing.

For ¢t = 1, each fragment have one on-bit. Using two on-bits (one from the first and one
from the second fragment) reduces the false drop probability to 0.089 (0.271-0.330 = 0.089)
which is insufficient to reach the stopping condition. Therefore, three bit slices (i.e., one on-bit
from each fragment) are used in the query evaluation and the resulting false drop probability is
0.038 (0.271-0.330-0.421 = 0.038).

For ¢ = 2, each fragment have two on-bits. The partial evaluation strategy of MFSF uses the
on-bits of the lower on-bit density fragments first [KOC95, KOC96a]. The false drop
probability after using two bit slices from the first fragment is 0.073 (0.2712 =0.073) which is
sufficient to reach the stopping condition. Therefore, the response time for # = 2 is less than the
response time for ¢ = 1 since it requires fewer bit slice evaluations, i.e., the response time

decreases for increasing number of query terms.

For t = 3, the first and the second fragments have three on-bits while the third fragment has

only two on-bits. Three query terms set three bit positions to “1” in the third fragment but two

Fast Information Retrieval using Compressed Multi-Fragmented Signature Files 5

of them overlap. Processing only two on-bits from the first fragment is sufficient to reach the
stopping condition. However, to guarantee the contribution of each query term to the query
evaluation the number of processed bit slices must be greater than or equal to the number of
query terms. Therefore, three bit slices from the first fragment are used in the query evaluation
and the resulting false drop probability is 0.020 (0.2713 =0.020). Note that although three bit
slices are processed for both # = 1 and ¢ = 3, the false drop probability of # = 3 is less than the
false drop probability of # = 1. Therefore, the response time of # = 3 will be less than the

response time of # = 1.
3. SIMULATION AND TEST ENVIRONMENT

To estimate the performance of C-MFSF a simulation and test environment is designed. The
values of the parameters used in the simulation runs were determined experimentally and
reflect a real computing environment. This provides validating the results obtained by

simulation runs with experiments based on real data.

3.1 Computing Environment

A 33 MHz, 486 DX personal computer with a hard disk of 360 Mbyte running under DOS 5.0
is used to test the performance of the proposed method. We prefer to use the DOS
environment since it provides exclusive control of all resources. In DOS, non-interrupting
execution of user programs provides the accurate measure of the response time and produces
consistent and reproducible results. The physical layout of a signature file on the disk affects
the time required to process the signature file and in the DOS environment it can be controlled
using Norton Disk Doctor or similar tools. We provide the values of important system
parameters in Table I. We expect that a multi-user system can offer computing power and 1/0
speed equivalent to our experimental environment if not better [KOC96b]. So the results of the

experiments can be achieved in multi-user environments without a performance degradation.

Table I. System Parameter Values of the Computing Environment

Bgize, size of a disk block (bytes) 8192
Pgise, size of a record pointer (bytes) 4
Thbyteop, time required to perform bit operations between two

bytes (milliseconds, ms) 0.00127
Tread time required to read a disk block (ms) 5.77
Tgcan, average time required to match an actual record with a query for

false drop resolution (ms) 4.5
Ttarsecks average time required to position the read head of disk to the

desired block for the record file (includes rotational latency time) (ms) 30

Thearseeks average time required to position the read head of disk to the

desired block for the signature file (includes rotational latency time) (ms) | 23

Fast Information Retrieval using Compressed Multi-Fragmented Signature Files 6

3.2 Test Database

We used MARC (MAchine Readable Cataloging) records of the Bilkent University Library
collection as the test database (BLISS-1). MARC records are widely used to store and
distribute the bibliographic information about various types of materials such as books, films,
slides, videotapes, etc. Also, MARC records are basic record structure of many library systems
such as Melvyl and OCLC. Additionally, other researchers can obtain MARC records easily for
test and comparison purposes.

The number of unique terms in the records of the test database expose a normal
distribution. For BLISS-1 the standard deviation for the “number of unique terms per record”
is 11.12. In the test database MARC records are aligned according to disk block boundaries
such that reading of each record during false drop resolution requires only one disk block
access (RB = 1) unless the MARC record is larger than a disk block. This alignment increases
the size of the data file by 4.34%. The record statistics of BLISS-1 are given in Table II.

Table II. Record Statistics of the Test Database BLISS-1

N, number of records 152,850
Dy, average number of terms in a record 25.7
STD, standard deviation of D values 11.12
Djhax, maximum number of terms in a record 166

V, number of distinct terms in the database 166,216
total number of terms (N - Davg) 3,916,856
average record length (bytes) 613
database size with 4.34% alignment overhead (MB) 93.24
RB, average number of disk block accesses to retrieve a record 1

3.3 Query Cases

To measure the performance of C-MFSF by the experiments with real data we considered
three different query cases: Low Weight (LW), Uniform Distribution (UD), and High Weight
(HW) queries. The values of P, (1<t <5), where P, denotes the probability of submitting a ¢
term query, for these query cases are given in Table III. In the simulation runs and in the

experiments with real data we limited the maximum number of query terms, £, to five.

Table III. P; Values for LW, UD, and HW Query Cases

Query Case Py P> P3 P4 Ps

Low Weight (LW) 0.30 | 0.25 [0.20 | 0.15 | 0.10
Uniform Distribution (UD) 0.20 | 0.20 [0.20 [0.20 | 0.20
High Weight (HW) 0.10 | 0.15 [0.20 [0.25 | 0.30

For each query case, we generated a query set containing 500 zero hit queries by

considering the occurrence probabilities of the number of query terms. For example, since the

Fast Information Retrieval using Compressed Multi-Fragmented Signature Files 7

occurrence probability of a one term query is 0.10 in the HW query case, the HW query set
contains 100 (0.10-1000) one term queries. In our experiments we also consider the execution
time of queries with a specific number of terms. To measure the performance of C-MFSF
optimized according to a query case for specific number of query terms, we used additional
five query sets: T1, T2, --, T5. The first query set, T1, contains 500 single term queries, the
second query set, T2, contains 500 two term queries, and so on. The observed FD and
response time values are obtained by taking the average of the FD and response time values

obtained by each query in the query sets.

Except the query set T1, query terms are randomly selected from the vocabulary of the test

database. Therefore, the result sets of individual query terms contain relevant records. For the

query set TT, to obtain empty result sets we randomly generated 500 zero hit query terms.
4. COMPRESSING SPARSE BIT SLICES OF MFSF: C-MFSF

Compressing the record signatures of sequential signature files is inspected in [FAL85]. In this
study, to obtain a lower false drop probability, record signatures are produced using large F
and small S values. The resulting sparse record signatures are compressed. In [FALSS]
Faloutsos and Chan propose the Compressed Bit Slices (CBS) method and extensions of it. A
CBS is a BSSF with S = 1 and very large F value. The sparse bit slices of CBS are stored in a
compressed form. In C-MFSF the value of S can be greater than or equal to 1 and its value is

determined with the optimization algorithm given in [KOC95].

Reducing on-bit density while providing sufficient on-bits in query signatures is possible by
increasing F (the number of hashing locations). However, increasing F' also increases the space
overhead if the bit slices are stored without compression. In this study we propose the
Compressed Multi-Fragmented Signature File (C-MFSF) method that stores the bit slices of
MESF in a compressed form [KOC96a]. The space overhead of C-MFSF with a larger F value
is less than the space overhead of MFSF with a smaller F value.

In the following presentation we assume that record numbers are represented with positive
integers and they are stored in ascending order. The positions of the on-bits in bit slices of
MESF can be considered as record numbers and they are also kept in ascending order.
Therefore, we use “record number” without limiting its use in the posting list of the inverted
file method.

Generally, the differences (gaps or run lengths) between the record numbers are smaller
than the record numbers. Since they may be represented with fewer number of bits, instead of

the record numbers the gaps are compressed [GOL66]. For example, the ascending sequence

Fast Information Retrieval using Compressed Multi-Fragmented Signature Files 8

of record numbers “1, 7, 15, 23, 27" is represented as “1, 6, 8, 8, 4.”

The performances of the compression methods are affected by the distribution of the gaps.
The distributions of gaps in the bit slices of MFSF generated with BLISS-1 for op = 0.011 and
op = 0.042 are plotted in Figure 2. The y axis, “% of Covered Gaps,” represents the percent of
the gaps that have a gap length less than or equal to the maximum gap value plotted in the x

axis. For example, 95.1% and 76.1% of the gaps have a length of 96 or less for op = 0.042 and
op =0.011, respectively.

100 7 e
e T
= | .
3 80
B 60 +
s |\ === op = 0.042
3 40 -
@) op =0.011
S 20 -
R
0 } } } } } } } i
0 32 64 96 128 160 192 224 256
Maximum Gap Length

Figure 2. Distribution of the gaps in the bit slices of MFSF for on-bit densities 0.011 and 0.042.

To perform efficient bitwise AND operation between two bit slices we propose a new
coding method, fixed code (FC), that uses fixed number of bits (k) for each codeword.
However, in this approach representing a long gap may require more than one codeword. The

value of the parameter & is determined according to the average gap length as follows.

o ot

where N is the number of records (number of bits in a uncompressed bit slice) in the database,
op is the on-bit density of the bit slice, and N -op is the average number of on-bits in the slice.

In FC, a codeword with k bits can represent 2k different codes. Among these codes, 0 (all
bits are “0”) is used to represent 2K _1 consecutive “0”s either after the last “1” or from the
start of the bit string. A code value v (1<v< 2k 1) represents v—1 consecutive “0”
followed by a “1” either after the last “1” or from the start of the bit string. Note that a FC
with k£ = 1 corresponds to the bit string representation for the ascending record numbers.

FC can be explained with gaps as follows. A gap is represented with k bits if the gap is less
than or equal k1. Otherwise, a codeword of length k with all “0” is used and k1 s
subtracted from the gap value. The remaining part is coded with FC. Thus, a gap may be
represented with more than one codeword. Some sample gap values coded in FC with k = 4

and k = 8 are given in Table IV (the codewords are divided with spaces).

Fast Information Retrieval using Compressed Multi-Fragmented Signature Files 9

Table IV. Example FC Codes with k=4 and k=8

Gap k=4 k=8

1 0001 00000001

15 1111 00001111

16 0000 0001 00010000

47% | 0000 0000 0000 0010 00101111
255" (16 “0000”) 1111 11111111
257" (17 “0000”) 0010 00000000 00000010

*47=3-1542, 255=16-15+15, 257=17-15+2

In the best case, each gap value (on-bit) is represented with one codeword (k bits) and the
signature file contains F'- N -op-k bits. In the worst case, the first N-(1—op) bits of all bit

slices are “0” while the remaining N -op bits are on-bits. For each bit slice, leading “0”s are

represented with {%J codewords and remaining on-bits are represented with N -op

codewords. Therefore, in the worst case the compressed signature file contains

F-k-({%J+N-op))

bits. On the average there are F-N -op on-bits in the signature file; hence, for the worst case

each on-bit is represented by
N-(l—()p)J

k-{ !
WCy, =k +—-—1—+

Yo (3)

number of bits.

We compare the performance of ¥ (gamma) [ELI75], & (delta) [ELI75], Golomb [GOL66],
and FC on the bit slices of MFSF produced for BLISS-1. The number of bits required to
represent each on-bit for various op values for v, 8, Golomb, and FC (“Obs “denotes the
observed, “Best” denotes the best case, and “Worst” denotes the worst case behavior of FC)
are given Table V. (For the Golomb code, an appropriate b value is computed for each bit slice
as proposed in [WIT94]. The definition of b is also provided in the same reference.) Similarly,
for FC, a different k value is determined using Equation (1) for each slice. FC outperforms y
and codes and uses approximately one bit more than the Golomb code for small op values.
Note that the observed number of bits required per on-bit by FC is approximately equal to the
average of its best and worst cases.

For low op values (such as the ones used in Table V), the number of bits required to
represent an on-bit in FC is very close to the number of bits in a byte. Using a fixed size
codeword that fits a byte provides efficient processing of compressed bit slices since one byte

is used to represent a character and the computers contain operations to manipulate them

Fast Information Retrieval using Compressed Multi-Fragmented Signature Files 10

efficiently.
Table V. Average Number of Bits Required to Represent an On-Bit
for v, 8, Golomb and FC for Various op Values for BLISS-1
op Y) Golomb FC (Obs) FC (Best) FC (Worst)
0.011 8.84 8.34 6.96 8.15 5.86 10.06
0.014 8.42 8.02 6.70 7.79 5.63 9.63
0.028 7.33 7.17 6.00 6.85 4.98 8.47
0.042 6.63 6.62 5.54 6.26 4.55 7.72
0.069 5.76 5.94 4.94 5.51 4.00 6.78

If the space overhead is the most important criteria for the performance, the Golomb code
may be used to compress the bit slices of MFSF. However, if obtaining a better response time
is the primary objective, FC may be preferred since it requires less CPU operations to decode a
codeword while providing a satisfactory compression. In the following analysis and

experiments with real data we compressed bit slices of MFSF using FC with k = 8.

5. PERFORMANCE ESTIMATION WITH SIMULATION RUNS

We use the response time as the performance measure [LIN92]. It involves the time required
to process the signature file, resolve all false drop records (if any), and find the first relevant
record to the query. Generally, IR systems display the first screen of the relevant records to a
query. Remaining records are retrieved in groups upon user requests. Therefore, the definition
of response time coincides with real applications. According to this definition, the response

time after processing i bit slices, R7(i), is estimated as follows.

1
RT()= Y Tyice—s + FD; Trosore Where 0<i<W(Q), (4)
s=1

where T ;... 18 the time required to process the sth bit slice used in the query evaluation, FD;

is the expected number of false drops after processing i bit slices, 7|

resolve 18 the time required

to resolve a false drop, ¢ is the number of query terms, and W(Q), is the number of on-bits in
the query signature. To provide the contribution of each query term to the query evaluation we
forced to use at least one on-bit from each term.

The number of evaluation steps, i, and the expected number of false drops after processing i
bit slices, FD;, are determined as in [KOC96a]. The expected number of false drops are
determined by considering the individual number of distinct terms in each record of BLISS-1.
Also, C-MFSF is optimized with the heuristic search algorithm given in [KOC96a].

In MFESF each fragment may have a different op value and hence the number of on-bits in
the bit slices of MFSF and the length of the compressed bit slices vary. To obtain the addresses
of the compressed bit slices a Slice Pointer Table (SPT) with F locations is used. SPT is stored

Fast Information Retrieval using Compressed Multi-Fragmented Signature Files 11

in memory and to retrieve a bit slice, first the address of the bit slice is obtained by accessing
SPT. To illustrate the difference between C-MFSF and the inverted file method the storage
structures of these methods are shown in Figure 3.

The observed number of bits required to store an on-bit with FC is approximately equal to
the average of the best and the worst cases (see Table V), i.e., each on-bit is represented with
(k+ WCy) /2 bits. Therefore, we estimate the number of disk block accesses to retrieve a bit
slice of C-MFSF, s/, as follows.

ki+WCk‘ .
sl; = KN-Op,- (ZD /(8 : Bsize)—‘ for1<i<f (5)

bits where op; is the expected on bit density in ith fragment, k; is the codeword length used in

this fragment, and WCp, is the number of bits required to store an on-bit of the ith fragment in

the worst case (see Equation 3).

Terms Pointers Posting Lists SPT C 4 Bit Sk
14 |:I — | ompresse 1 1CeS
| T 1]] I
¥
||] — I
Look
up
able
[]
| E—] |]
- I —F —
| v
a. Inverted File method. b. C-MFSF method.

V: Number of unique terms in the vocabulary, F: Number of hashing positions (signature size), Usually F << V
Figure 3. Storage structures of C-MFSF and the inverted file methods.

The time required to position the read head of disk to the desired block, seek time, depends
on the size of the processed file. Since the compressed signature files are relatively small
(approximately 15% of the record file) we used different seek times for the signature file

(Thearseer) and the record file (Tfarseek)- We estimate the time required to process a

compressed bit slice of ith partition as follows.
ki+WCk,‘
Ljice—i = Read(Tyeqrseek- ki) + Tbyteop ‘|| N-op; Ty 8 (6)

where Tjyzep is the time required to process a byte and s; is the average number of disk

blocks required to store a slice of the ith partition.

Read(T,,,;, b) incorporates the sequentiality probability, SP, to the estimation of the time

Fast Information Retrieval using Compressed Multi-Fragmented Signature Files 12

required to read b logically consecutive disk blocks. SP is the probability of reading the next
logically consecutive disk block without a seek operation.

Read(rveek’b) =(1 +(b_1)'(1 - SP))'Tveek + b'Tread (7)
where T, and T,,,, are average times required to position the disk head to the block to be
accessed and to transfer a disk block to memory, respectively. The first disk block of each
request always requires a seek operation.

Our model is versatile, i.e., it can be used in all operating system environments and is
applicable to both dedicated and multi-user IR systems. This is due to the sequentiality
probability (SP) concept incorporated into its development.

The false drop resolution time for one record, 7,,5,¢» 1S computed as follows.

PB-Fize
Tresotve =(1— %)) Read(Tfarseek”- By; : -‘) + Read(Tfarseek’ RB) + Tseqn (8)

1ze

where T, 1s the time required to compare a record with the query and RB is the average

number of disk blocks that must be accessed to read a record. In the above equation obtaining
the record pointer can be explained as follows. PB record pointers, each occupying Psize
bytes, are read into a buffer of PB-P

ize Dytes long at the database initialization stage. Since

this is a one time cost, it is excluded from the cost calculations. The probability of finding a
requested record pointer in the buffer is approximately equal to PB/ N . For the databases
with fixed length records or when all record pointers are stored in main memory, PB must be

equal to N, i.e., the cost of finding the record pointers is zero.

5.1 Effect of Signature Size on Response Time

We plot the expected response time values of C-MFSF for increasing F' values in Figure 4.
Increasing F values provides lower on-bit densities and the stopping condition is reached in
fewer slice evaluations. Therefore, the optimization algorithm of C-MFSF selects smaller §
values for increasing signature size. This also decreases the response time. However, there is a
lower bound for the value of S that is one. If a sufficiently large F value is used, S will become
equal to one and single term queries can be evaluated with only one seek operation. This idea
is inspected by Faloutsos and Chan in [FALS88]. In their model, since storing SPT will require
enormous amount of memory they use smaller F values and propose additional data structures

to reduce the false drop probability.

Fast Information Retrieval using Compressed Multi-Fragmented Signature Files 13

Response Time (ms)

50 } } } } } } i

2,000 6,000 10,000 14,000 18,000 22,000 26,000 30,000

(F) Signature Size (in bits)

(SP=1.0, N =152,850)

Figure 4. Expected response time versus very large F values for C-MFSF for LW, UD, HW.
5.2 Effect of Record Size on Response Time
The number of expected false drops depends on the number of bit slices used in the query
evaluation and the on-bit densities of these bit slices. Large records increase the on-bit
densities of the fragments and require processing more bit slices to reach the stopping
condition. Therefore, the value of S increases to provide sufficient on-bits in the query
signatures. An increased S value in a resulting configuration implies higher response time. To
avoid this problem, i.e., to reach the stopping condition by processing the same number of bit
slices, F' should be increased to compensate the effect of large records.

To simulate the effect of large records we conceptually added a constant number of terms
to all records of our test database. For example, we obtain D, = 50.7 by conceptually adding
25 terms to all records. For increasing Dy, values we search the F value that requires S = 3
which gives the best results in the experiments with the test database (for efficiency, F' values

are increased in steps of 50). The minimum F values with the expected FD and TR values are

given in Table VI.
Table VI. Minimum F Values that Provides S = 3 for Increasing D, Values
Davg Minimum F Expected FD | Expected TR
25.7 6150 0.272 125
50.7 10750 0.271 126
100.7 20650 0.269 126
150.7 30700 0.269 126
200.7 40600 0.272 126

The experiments show that similar performance levels can be obtained by selecting an
appropriate F' value for larger D, values. Large F' values compensate the increased number

on bits due to higher number of terms in the records.

Fast Information Retrieval using Compressed Multi-Fragmented Signature Files 14

6. EXPERIMENTS WITH REAL DATA

The analysis given in the previous section shows that a response time less than 150
milliseconds is possible if large F values are used. We tested the optimized C-MFSF
configurations with BLISS-1. The expected (denoted by Exp) and the observed (denoted by
Obs) response time values are plotted in Figure 5 (for easy comparison the observed response
time values for LW, UD, and HW repeated in Figure 5.d). The expected (denoted by Exp) and
the observed (denoted by Obs) average false drop values of these experiments for LW, UD,
and HW are given in Table VII.

250 1 —>— Obs 250 - —X—Obs
) —¥—Exp 2 ——
é 200 1 5200] X—Exp
2 2
£ 150 - £ 150 4 X
s £ ¥ X x— X
2 100 F———H——¢————x 2 100 X X X X X
=]
g8, I}
2 50 4 50 4
& &
0 T T T 1 0 T T T 1
10,000 15,000 20,000 25,000 30,000 10,000 15,000 20,000 25,000 30,000
(F) Signature Size (in bits) (F) Signature Size (in bits)
a. LW query case. b. UD query case.
250 1 —X— Obs 250 - ——LwW
2 —X—E ~ —X—UD +
é 200 -1 P E 200 o —)K— HW /
o T
E1s04 g 2150 >>'<
\ ———
5 X f————% X PR e s X
Z 100 A 2100 -
=) =]
2 2
é 50 1 é 50 1
0 T T T 1 0 T T T 1
10,000 15,000 ~ 20,000 25,000 30,000 10,000 15000 20,000 25000 30,000
(F) Signature Size (in bits) (F) Signature Size (in bits)
c. HW query case. d. Observed response time for LW, UD, and HW.

Figure 5. Expected and observed response time of C-MFSF versus F for LW, UD and HW (SP = 1).

Most of the inspected C-MFSF configurations require setting three bits for each term.
Consequently, the number of on-bits in the signature files are approximately the same for all
configurations. Therefore, gap sizes, and hence the size of the compressed signature file,
increase for increasing signature size. This causes a small increase in the observed response

time for increasing F values.

Fast Information Retrieval using Compressed Multi-Fragmented Signature Files 15

Table VII. Expected and Observed Average False Drop Values
of C-MFSF for LW, UD, and HW
LW UD HW
F Exp Obs Exp Obs Exp Obs

10,000 | 0.064 [1.168 | 0.048 | 0.280 | 0.031 | 0.334
15,000 | 0.020 [1.092 | 0.014 | 0.240 | 0.009 | 0.196
20,000 | 0.008 | 1.126 | 0.006 | 0.254 | 0.004 | 0.162
25,000 | 0.088 | 1.022 | 0.075 | 0.650 | 0.046 | 0.162
30,000 | 0.059 | 1.644 | 0.050 | 0.284 | 0.035 | 0.258

The observed false drop values and the response time values are greater than the expected
values. The difference between the observed and the expected values decreases for increasing
query weight. To find the cause of this deviation we evaluate the query sets containing specific
number of query terms (T1, T2, T3. T4, and T5) with C-MFSF optimized according to LW,
UD, and HW query cases. We measure the average response time and false drop values for
each query case. We give the observed response time and false drop values for the LW query

case in Table VIII. Similar results are obtained for the UD and HW query cases.

Table VIII. Observed Response Time and False Drop Values for T1, T2, T3, T4, and T5
Evaluated with the C-MFSF Optimized for LW Query Case

Tl T2 T3 T4 T5

F FD RT FD RT FD RT FD RT FD RT
10,000 | 2.340 | 293 [0.428 | 133 | 0.010 85 0.000 [103 | 0.000 | 125
15,000 | 2.232 | 281 [0.492 | 133 | 0.010 85 0.000 [104 | 0.000 | 125
20,000 | 2.332 | 301] 0.338 | 121 | 0.012 87 0.000 [106 | 0.000 [127
25,000 | 2.480 | 301 | 0.306 | 120 | 0.004 85 0.000 [107 | 0.000 [128
30,000 | 3.716 | 414 | 0.290 | 124] 0.004 [90 0.000 [112 | 0.000 | 136

The queries with more than two terms (¢ > 2) obtain almost no false drops and the query
evaluation is completed by accessing only the signature file without any actual record accesses
for false drop resolution. Therefore, the number of disk accesses is almost the same as the
number of query terms for queries with more than two terms. For # > 2, one seek operation is
required for each query term. (We deliberately processed at least ¢ bit slices -one bit from each
term- even all false drops are eliminated in fewer bit slice evaluation. This guarantees the
contribution of each term to the query evaluation process.) Most of the processed bit slices fit
into a disk block. The experiments show that the probability of reading a second disk block to
process a bit slice is less than or equal to 0.01. Therefore, the results obtained with SP = 1.0
can be generalized for other SP values.

The gap sizes and hence the C-MFSF file size increase for higher F values since

approximately the same number of on-bits are generated (each term sets three bit positions to

Fast Information Retrieval using Compressed Multi-Fragmented Signature Files 16

“1” according to the file optimization algorithm [KOC95]) for the inspected F values.
Therefore, for # > 2 the response time slightly increases for increasing F. For ¢ < 2, the increase
in the number of false drops hides the response time increase due to higher F values.

For t = 2, three bit slices are processed and on the average 0.37 false drops is obtained for
each query. Therefore, except accessing the RPT (Record Pointer Table), 3.37 seek operations
(1.69 seeks per query term) are required to evaluate a two term query.

The difference between the expected and the observed false drops and the response time
values are incurred due to single term queries. Single term queries have only three on-bits in
their query signature and if one of them shares the same bit slice with a high frequency term,
more false drops are produced than the expected number. To obtain better performance with
low weight queries, the document frequency of the terms must be considered in the signature
file optimization.

7. PROJECTION FOR VERY LARGE DATABASES

For our test database BLISS-1 we performed a series of experiments to test the change in the
observed response time for increasing database sizes (N value). The results of the experiments
are plotted in Figure 6. (Since the lines are too close to each other we exclude T2 and T4.
However, the same trend is observed for these query cases too.) The test cases for the
experiments were obtained by considering only the first N records of the original database. The
signature file parameters f, F,, and S, (1 <r < f) were optimized for each run by considering
the tested N value for SP =1 and F = 15,000.

2.5

Response Time/N
microseconds

I
0.5 <+ t }
50,000 75,000 100,000 125,000 150,000
(N) Number of Records

(SP =1, F = 15,000)

*\x\d{

Figure 6. Response time per record versus N for LW, UD and HW.

Our simulation experiments show that approximately the same number of bit slices will be
processed for N = 106 and N = 152,850 for F values between 10,000 and 30,000.

Fast Information Retrieval using Compressed Multi-Fragmented Signature Files 17

Consequently, the number of seek operations will be the same for increasing N and the number
of seek requests per record will decrease for increasing N when SP = 1. (For the bit slices, SP
= 1 can easily be satisfied since a few number of disk blocks are required per bit slice.)
Therefore, in the first phase of a query evaluation the time spend for each record of the
database decreases for increasing N value (see Figure 6).

We can project the result of this experiment to predict the observed response time for larger
databases by assuming TR/N ratio will not be greater than the TR/N figure observed for N =
152,850. Note that this is a pessimistic assumption since the TR/N ratio (response time/record)

decreases for increasing N. The projected response time values are given in Table IX.

Table IX. Projected Response Time Values for N = 10°

Query TR for TR/N TR for
Set N = 152,850 (ms) (microseconds) N =10° (ms)
LW 174 1.138 1138
Tl 281 1.838 1838
T2 133 0.870 870
T3 85 0.556 556
T4 104 0.680 680
T5 125 0.818 818

For increasing N values the size of a disk block can be increased such that most of the
compressed bit slices still fits into a disk block. In that case, retrieving a bit slice will require
only one seek operation for all SP values. Therefore, the response time will be the same for all
SP values and the results obtained for C-MFSF with SP = 1 can be generalized for other SP

values.

8. THEORETICAL COMPARISON OF C-MFSF AND THE INVERTED FILES

In this section, we provide a brief theoretical comparison of IF and C-MFSF in terms of space
and the number of disk accesses required to respond a query. In the following discussion, for
both methods we assume that RPT (record pointer table) is stored in main memory.

In the IF method at least one disk access is required per query term to read the posting list
of the term. (We ignore chained long posting lists, i.e., we assume that SP = 1 which is easy to
satisfy using the bucket concept or compression for posting lists or both.) Also, to obtain the
locations of the posting lists, a lookup table must be maintained and it should be searched for
query processing. If we assume only one disk access will be required to obtain the location of
the posting list of a query term, each query term will require two disk accesses [ZOB95].

Therefore, in IF, a t term query will require 2 -¢ disk accesses.

In C-MFSF no lookup table is needed. For F' = 30,000, reaching the stopping condition

Fast Information Retrieval using Compressed Multi-Fragmented Signature Files 18

requires processing only three bit slices even for very large databases (N > 109). For the single
term queries C-MFSF requires three disk accesses plus false drop resolution. Therefore, even
without any false drops IF outperforms C-MFSF for single term queries. Both methods have
similar performance for queries with two terms. IF will require one more disk access but C-
MESF may produce false drops for t = 2. However, the average number of false drops require
less than one disk access (see Table VIII). Therefore, the expected performance of C-MFSF is
better than IF for # = 2.

For ¢ > 2, since the contribution of each query term to the query evaluation is a must, C-
MESF process ¢ bit slices for a ¢ term query. Experiments with BLISS-1 show that almost no
false drop is obtained for queries with more than two terms (see Table VIII). Therefore, we
can assume that for F = 30,000, C-MFSF will require only 7 disk accesses for queries with t >
2, i.e., one disk access for each query term contrary to two disk accesses of IF.

Since each term sets more than one bit in C-MFSF, the number of on-bits in a C-MFSF will
be greater than the number of on-bits in the posting lists of an IF constructed for the same
database instance. The number of bits required to store each on-bit of a bit string in a
compressed form decreases as the number of on-bits in the bit string increases (see Table V).
Since, on the average, a posting list of an IF is more sparse than a bit slice of a C-MFESF, an
on-bit of C-MFSF requires less space than an on-bit of IF. Additionally, IF requires storing a
lookup table containing an entry for each term of the vocabulary. Therefore, the space
overhead of IF also depends on the number of terms in the vocabulary. Usually, records
contain unique terms such as names, id numbers, or dates. Consequently, the number of terms
in the vocabulary increases as the number of records in the database increases and in turn this
increases the space overhead of IF.

For multi-term queries IF may process terms according to their document frequency (from
least frequent to most frequent) and may switch to false drop resolution after processing a
certain number of terms [ZOB92]. However, this approach implies at least # number of disk
accesses just to obtain the document frequency information.

The performance of IF can be increased if the lookup table can be stored in main memory
[ZOB92]. In this case, still one disk access for each query term is required to read the posting
list of the query term. However, this can be avoided by switching to false drop resolution as
sketched above. If such a large memory is available, we can store the compressed form of a C-
MESF fragment (or a part of it) in main memory. For example, a fragment of MFSF for
BLISS-1 with op = 0.011 (S and F values of the fragment are 1 and 2400, respectively) will
require 3.31 MBytes (average-no.-of-bits/on-bit. Dy, - N =7.07-25.7-152850 bits) of

Fast Information Retrieval using Compressed Multi-Fragmented Signature Files 19

memory (see Tables II and V). In C-MFSF the value of op (on-bit density) can be adjusted to
fit the fragment to the available memory [KOC96a]. Since the bit slices with many on-bits are
rarely used in query evaluation (MESF [KOC95] and consequently C-MFSF use the bit slices
with fewer number of on-bits first), to reduce the memory requirement we can store only short
bit slices in memory.

Since we store one fragment in memory, for single term queries one of the bit slices will be
in memory and only two seek requests will be needed to complete the first phase of the query
processing. Similarly, for the queries with two terms since two bit slices will be in memory only
one seek request will be needed to complete the first phase of the query processing. For the
queries containing more than two terms, one bit slice for each query term will be available

without any disk accesses and therefore no disk accesses will be required.
9. CONCLUSION

The Compressed Multi-Fragmented Signature File (C-MFSF) method that uses a partial query
evaluation strategy with compressed bit slices is presented. Experiments with real data show
that for queries with more than one term, C-MFSF obtains the query results with fewer disk
accesses than the inverted file approach. For single term queries it requires more disk accesses
than the inverted file method. However, for single term queries, the response time of C-MFSF
is still satisfactory: for our database BLISS-1, which contains 152,850 records, it is 318
milliseconds, and for a database of one million records, the expected response time is less than
2 seconds.

The performance of C-MFSF depends on the on-bit density of the signature file and it
decreases the on-bit density by increasing F' with a limited space overhead. For the databases
with large records, we analytically show that the same performance can be obtained by
increasing the signature size. Since larger records occupy more disk space, the space overhead
of C-MFSF will be approximately the same.

In real IR applications with heavy query load, there are many queries evaluated
simultaneously. Retrieving the bit slices that can be used for more than one active query
improves the overall performance of the system. This is an interesting problem that we want to
study in our future research. We will also investigate buffering (or pre-fetching) and sharing
the memory resident compressed bit slices for concurrent queries in multi-user environment.
Two additional research topics are the adaptation of C-MFSF to parallel environments and

considering the document frequencies of terms in the optimization of C-MFSF.

Fast Information Retrieval using Compressed Multi-Fragmented Signature Files 20

REFERENCES

[AKT93] Aktug, D., Can, F. 1993. Signature files: an integrated access method for formatted and
unformatted databases. Submitted to ACM Comp. Surveys (under revision).

[CHR84] Christodoulakis, S., Faloutsos, C. 1984. Signature files: an access method for documents and its
analytical performance evaluation. ACM Transactions on Information Systems. 3, 4 (Oct.). 267-
288.

[ELI75] Elias, P. 1975. Universal codeword sets and representations of the integers. IEEE Transactions on
Information Theory. 21, 2 (March). 194-203.

[FAL85] Faloutsos, C. 1985. Signature files: design and performance comparison of some signature
extraction methods. In Proceedings of the ACM SIGMOD Conference (Austin, Tex., May). N.Y.
63-82.

[FAL88] Faloutsos, C., Chan, R. 1988. Fast text access methods for optical and large magnetic disks: design
and performance comparisons. In Proceedings of the 14th VLDB conference (Long Beach, Calif.,
Aug.). 280-293.

[FAL92] Faloutsos, C. 1992. Signature files. In Information Retrieval Data Structures and Algorithms.
Edited by W. B. Frakes and R. Baeza-Yates. Prentice Hall, Englewood Cliffs, N.J. 44-65.

[GOL66] Golomb, S. W. 1966. Run-length encodings. IEEE Transactions on Information Theory. 12, 3
(July). 399-401.

[KOC95] Kocberber, S., Can, F. 1995. Vertical fragmentation of superimposed signature files using partial
evaluation of queries. Submitted to Information Processing and Management.

[KOC96a] Kocberber, S., 1996. Partial query evaluation for vertically partitioned signature files in very large
unformatted databases. Ph.D. dissertation, Dept. of Computer Eng. and Information Science,
Bilkent University, Ankara, Turkey (http://www.cs.bilkent.edu.tr/theses.html).

[KOC96b] Kocberber, S., Can, F. 1996. Partial evaluation of queries for bit-sliced signature files. Information
Processing Letters (to appear).

[LIN92] Lin, Z., Faloutsos, C. 1992. Frame-sliced signature files. IEEE Transactions on Knowledge and
Data Engineering. 4, (3). 281-289.

[ROB79] Roberts, C. S. 1979. Partial-match retrieval via the method of superimposed codes. In Proceedings
of the IEEE. 67, 12 (Dec.). 1624-1642.

[WIT94] Witten, 1. H. Moffat, A., and Bell, T. C. 1994. Managing Gigabytes: Compression and Indexing
Documents and Images. Van Nostrand Reinhold, N.Y.

[ZOB92] Zobel, J., Moffat, A., and Sacks-Davis, R. 1992. An efficient indexing technique for full-text
database systems. In Proceedings of 18th VLDB Conference. (Vancouver, British Columbia,
Canada). 352-362.

[ZOB95] Zobel, J., Moffat, A., and Ramamohanarao, K. 1995. Inverted files versus signature files for text

indexing. Tech. Rept. CITRI/TR-95-5, Dept. of Computer Science, The University of Melbourne.

