
Inductive Synthesis of Recursive Logic Programs:
Achievements and Prospects

Pierre Flener and Serap Yılmaz
Department of Computer Engineering and Information Science

Faculty of Engineering, Bilkent University, 06533 Bilkent, Ankara, Turkey
Email: {pf, syilmaz}@cs.bilkent.edu.tr

Abstract

The synthesis of recursive logic programs from incomplete information, such as input/output examples, is a
challenging subfield both of ILP (Inductive Logic Programming) and of the synthesis (in general) of logic pro-
grams from formal specifications. We first survey past and present achievements, focusing on the techniques
that mostly aim at the synthesis of recursive logic programs, dispensing thus with many more general ILP
techniques that can also induce non-recursive hypotheses. Then we analyze the prospects of all inductive tech-
niques in this task, whether they are tailored or not for the synthesis of recursive programs, investigating their
applicability to software engineering and to knowledge acquisition and discovery.

1 Introduction

Examples are better than precepts; let me get down to examples—
I much prefer examples to general talk.

— G. Polya

In its most general form, the task of Inductive Logic Programming (ILP) is to infer a hypothesis H from
assumed-to-be-incomplete information (or: evidence) E and background knowledge B such that
B ∧ H |== E, where H, E, and B are sets of clauses. We say that H covers E (in B). In practice, B and H are
often restricted to sets of Horn clauses (i.e. definite logic programs). Evidence E is usually divided into pos-
itive evidence E + and negative evidence E −. Often, the clauses of E + are restricted to ground positive liter-
als (or: atoms) and are called positive examples, whereas those of E − are restricted to ground negative
literals and are called negative examples: this yields an extensional description, whereas the hypothesis is
an intensional description. In a more traditional machine learning terminology, we would say that a concept
description H is to be learned from descriptions E of instances and counter-examples of concepts, whose
features are represented by predicate symbols. In general thus, nothing restricts the evidence to be about a
single concept, so that multiple (possibly related) concepts may have to be learned at the same time.

For instance, given the positive examples (in the left column) and negative examples (in the right column)

subset([],[]) ¬subset([k],[])
subset([],[a,b]) ¬subset([n,m,m],[m,n])
subset([d,c],[c,e,d])
subset([h,f,g],[f,i,g,h,j])

and given as background knowledge (among others) the logic program

select(X,[X|Xs],Xs) ←
select(X,[H|Ys],[H|Zs]) ← select(X,Ys,Zs)

a possible hypothesis is the logic program

subset([],Xs) ←
subset([X|Xs],Ys) ← select(X,Ys,Zs), subset(Xs,Zs)

though at this point we do not wonder how this could be feasible. The main issue is that we human beings
can perform this kind of task, so that the question arises whether a machine can be designed to do it also.

2

The usefulness of such a machine is undeniable as it would be a step towards a form of human/machine
communication that more closely models inter-human communication, which usually features a lot of in-
complete (and hence ambiguous) information, of course in the presence of background knowledge, and
even noisy information (although we will not address this latter issue here).

General surveys of the achievements of ILP exist [46],1 as well as proceedings of ILP workshops and
edited collections of reports on landmark ILP research. In this paper, we more closely and even exclusively
survey the achievements of ILP techniques and systems in the sub-field of induction of recursively ex-
pressed hypotheses (or simply: recursive hypotheses), such as the subset program above. To be precise, we
mean the class of logic programs where at least one clause is recursive (i.e. has a body atom with the same
predicate symbol as the head atom). This is an extremely important class of hypotheses, and it even turns
out that their induction is much harder than the one of non-recursive hypotheses. The fact that one does not
in general know in advance whether a recursive hypothesis exists or not seems to speak in favor of only
using general ILP techniques. However, such general techniques tend to perform quite poorly when induc-
ing recursive hypotheses, so it seems preferable to “attach” special-purpose techniques to them. The invo-
cation scenario of the two kinds of techniques depends on the application area (see Section 4).

Recursive programs actually compute something, in the traditional understanding of what a program is
and does, but such is not the case with all non-recursive programs, which might for instance “merely” clas-
sify data as belonging to one concept or another [28]. Inferring recursive programs from as-
sumed-to-be-complete information such as the axiomatization

subset(S,L) ⇔ ∀X (member(X,S) ⇒ member(X,L))

where member is a known predicate (with the usual meaning), is called program synthesis, and features
two main approaches, namely deductive synthesis and constructive synthesis.2 We adopt the synthesis ter-
minology here, and talk of inductive synthesis of (recursive) programs from incomplete specifications
whenever we want to focus on this sub-field, and of ILP when we mean the whole field.

The achievements in the synthesis of (recursive) logic programs, whether by deductive, constructive, in-
ductive, mixed, or even manual techniques, have recently been surveyed [21], but with only marginal detail
on inductive techniques. One purpose of this paper is thus to complement that survey, to specialize the al-
ready mentioned general survey of ILP [46], as well as to update the two surveys. Since any ILP technique
is (or should be) able to induce recursive hypotheses, we have to draw an arbitrary line somewhere in order
to avoid having to do an almost global survey. (Note that recursive programs are necessarily multi-clausal,
so we must at least eliminate all techniques that can only propose mono-clausal hypotheses.) We decided to
only discuss the techniques and systems that were (almost) exclusively illustrated by the synthesis of recur-
sive programs. Their author(s) thus probably only had this sub-field in mind. Also, since not all techniques
are (fully) implemented as systems, we just discuss the techniques here.

The other purpose of this paper is to discuss the prospects of this important sub-field. Although nobody
denies its intrinsic interest, there has been considerable debate on its industrial applicability. We summarize
the existing opinions, debunk or support them when necessary, and bring in a few new considerations.

The rest of this paper is thus organized as follows. First, in Section 2, we introduce some additional ter-
minology and some theoretical results regarding the inductive synthesis of recursive programs, laying the
groundwork for a classification of such techniques. Next, in Section 3, we survey the achievements of in-
ductive synthesis, and in Section 4, we discuss its application prospects. Finally, in Section 5, we conclude.

2 Terminology and Theoretical Results

We now introduce some additional terminology (in Section 2.1 to Section 2.3) and mention some theoreti-
cal results (in Section 2.4 and Section 2.5) concerning the induction of recursive clauses. This allows us to
have classification features for the techniques surveyed in the third section.

1. Note that we define ILP techniques as those performing the indicated general task of going from certain inputs to certain outputs
under certain constraints, rather than (as in [46] for instance) as those fitting a generic algorithm of achieving this task, which would
eliminate from ILP many of the techniques covered here.

2. It should be noted that non-recursive (or non-looping) procedures constitute the vast majority of the code of a software application.
However, not much research is needed to (semi-)automatically infer non-recursive programs from assumed-to-be-complete formal
specifications, as the latter usually already come in non-recursive form. The situation is not quite the same for known-to-be-incom-
plete formal specifications, and we discuss this issue at the beginning of Section 4.1.1.

3

2.1 Approaches and Extensions to ILP (and Inductive Synthesis)

Whether for ILP in general or synthesis in particular, there is additional terminology due to different ap-
proaches as well as extensions to the ILP task, all of which we now discuss in a loosely connected fashion.

Often, the agent that provides the inputs to an ILP technique is called the teacher, whereas the ILP tech-
nique is called the learner and is said to perform learning. For reasons to be discussed in Section 4.1.1, such
a machine learning terminology is too misleading, and we shall use the more general terminology of source,
induction technique, and induction instead.

An intended relation is the entire (possibly infinite) relation represented by a predicate symbol. In an ILP
task, only incomplete information (called evidence) is available, i.e. it does not describe superset(s) of the
intended relation(s). We here assume that the evidence has correct information, i.e. that it describes sub-
set(s) of the intended relation(s). In this case, one also says that there is no noise. Often, the actually de-
scribed subset(s) are finite. An extreme case of incomplete but correct information is complete and correct
information, though this can often only be achieved through some (finite) axiomatization in the hypothesis
language, but not in the evidence language.

We partition relations into semantic manipulation relations and syntactic manipulation relations, depend-
ing on whether the actual constants occurring in a ground tuple are relevant or not for deciding whether that
tuple belongs to a relation. For instance, subset and select above are syntactic manipulation relations, be-
cause they treat constants like variables, whereas sort and insert would be semantic manipulation relations.

Induction can be viewed as search through a graph (or: search space) where the nodes correspond to hy-
potheses and the arcs correspond to hypothesis-transforming operators. As usual, the challenge is to effi-
ciently navigate through such a search space, via intelligent control (e.g., by organizing the search space
according to a partial order and using pruning techniques).

Induction may be interactive or passive, depending on whether the technique asks questions (or: queries)
to some oracle (or: informant) or not. The oracle may or may not be the source. The questions may be of
various kinds, such as the request for classification of invented examples as positive or negative ones.

Induction may be incremental or non-incremental, depending on whether evidence is input one-at-a-time
with occasional output of (external) intermediate hypotheses, or input all-at-once with output of a unique
final hypothesis (though there may be internal intermediate approximations, which are however not consid-
ered as hypotheses).

Induction may be bottom-up or top-down, depending on whether hypotheses (whether internal or exter-
nal) monotonically evolve from the maximally specific one (namely the empty logic program) or from the
maximally general one (namely a logic program succeeding on all possible queries).

In the output hypothesis, some predicate symbols may be recursively defined: the corresponding clauses
are partitioned into base clauses and recursive clauses.

Once a hypothesis is accepted (for whatever reasons), one may want to validate it. Since there is no com-
plete description of the intended relation(s), one can only test the hypothesis, rather than somehow mathe-
matically verifying it. Ideally, a hypothesis covers all the given evidence. One may thus test the hypothesis
by measuring its accuracy (expressed in percents) in correctly covering other evidence. The given evidence
is thus also called the training set, whereas the additional evidence is called the test set and is usually in the
evidence language. We here assume that the test set is also correct w.r.t. the intended relation(s).

An identification criterion defines the moment where an induction technique has been successful in cor-
rectly identifying the intended relation(s), whether it “knows” this or not. Sample criteria are finite identi-
fication, identification-in-the-limit, probably-approximately-correct (PAC) identification, and so on (see
[46] for details). There are limiting theorems stating what hypothesis languages are inducable from what
evidence language under what identification criterion.

It seems desirable to achieve some separation of concerns regarding the logic and control components of
algorithms (or logic programs): some techniques just induce the logic component, assuming that the control
can be added later. Adding control (such as by clause re-ordering inside programs and literal re-ordering
inside clauses so as to ensure safety of negation-by-failure, termination, etc.) is something specific to the
(idiosyncrasies of the) execution mechanism of the target language, as well as specific to the desired ways
of using the induced program (which are mentioned in additional inputs, see the next sub-section). If an in-
terpreter of the target language is actually used during the induction (say, to verify the coverage of the evi-
dence), such control aspects cannot be entirely ignored while constructing the logic component.

A generalization of the ILP task is known as theory-guided induction, or (inductive) theory revision, or
declarative debugging: the idea here is that an additional input is provided, namely an initial hypothesis (or:
theory) Hi, under the constraint that the final hypothesis H should be as close a “variant” thereof as possible,

4

in the sense that only the “bugs” of Hi w.r.t. E should be (incrementally) found and corrected (or: “de-
bugged”) in order to produce H. This generalized scheme reduces to the normal one in its extreme cases,
that is when Hi is maximally specific or general, depending on whether induction proceeds bottom-up or
top-down. In the past, this was also known as model-driven or approximation-driven learning, as opposed
to data-driven learning, where there is no initial theory.

Another variant of the ILP task involves augmenting the inputs with declarative bias, which is any form
of input information that restricts the search space. There are two complementary approaches to this, and
we discuss them separately in the next two sub-sections.

2.2 Additional Specification Information

A specification of a program contains (i) a description of what problem is (to be) solved by the program, as
well as (ii) a description of how to use the program.

The former description should define the intended relation as declaratively as possible. Whether it should
be informal or formal is an on-going debate, but we don’t have a choice here, since we want it to be pro-
cessed by a machine. Ideally, it should even be as complete as possible, but, as mentioned earlier, this is
rarely achieved in practice. The relation descriptions investigated here (the evidence) are actually even as-
sumed-to-be-incomplete. They are furthermore the most declarative (formal) descriptions that we can imag-
ine (if they are constrained to be non-recursive [28]).

The latter description should give the predicate symbol representing the intended relation, the sequence
of names and types of its formal parameters, pre-conditions (if any) on these parameters, as well as the rep-
resentation conventions of the formal parameters so that one knows how to interpret their actual values. In
logic programming, where we are concerned with relations rather than functions, there should also be an
enumeration of the input/output modes in which the program may be called (since full reversibility is rarely
required or rarely even achieved in practice), as well as optional multiplicity (or: determinism) information
for each mode (stating the minimum and maximum number of correct answers to a query in that mode).

Since such information is part of a (useful) specification anyway, it is only natural to provide (some of) it
as an additional input to an ILP task, especially for a synthesis task. In the ILP literature, such information
is usually called semantic bias (a kind of declarative bias that restricts the behavior of hypotheses), but we
find this terminology insufficient, as it fails to establish the link with (good) specification practice. Type and
mode information are the most commonly used, and, not surprisingly, they reduce search spaces drastically.
Some techniques efficiently exploit a particular case of multiplicity information, namely that the intended
relation is a total function in a given mode (i.e. its multiplicity is 1–1). Of course, such statements should
ideally also be provided for all the predicates defined in the background knowledge.

2.3 Syntactic Bias

Syntactic bias is another, complementary form of declarative bias. It restricts the language of hypotheses.
Ideally, it is a parameter of an induction technique, rather than hardwired into it. As a parameter, it can be
provided either by the source as an additional input, or made available to the technique by its designers.

One particularly useful and common approach is to bias induction by a schema. A program schema con-
tains a template program abstracting a class of actual programs (called instances), in the sense that it repre-
sents their dataflow and control-flow by means of parameterized place-holders, but does not contain (all)
their actual computations nor (all) their actual data structures.

One could for instance design a template program capturing the class of divide-and-conquer programs, or
a sub-class thereof, e.g. those featuring two parameters, with division of the first parameter into two com-
ponents that are somehow smaller than it:

r(X,Y) ← primitive(X), solve(X,Y)
r(X,Y) ← nonPrimitive(X), decompose(X,HX,TX1,TX2), r(TX1,TY1), r(TX2,TY2),

compose(HX,TY1,TY2,Y)

The intended semantics of this template can be informally described as follows. For an arbitrary relation r
over formal parameters X and Y, an instance is to determine the value(s) of Y corresponding to a given value
of X. Two cases arise: either X has a value (when the primitive test succeeds) for which Y can be easily
directly computed (through solve), or X has a value (when the nonPrimitive test succeeds) for which Y
cannot be so easily directly computed.3 In the latter case, the divide-and-conquer principle is applied by
(i) division (through decompose) of X into a term HX and two terms TX1 and TX2 that are both of the

5

same type as X but smaller than X according to some well-founded relation, (ii) conquering (through r) in
order to determine the value(s) of TY1 and TY2 corresponding to TX1 and TX2, respectively, and
(iii) combining (through compose) terms HX, TY1, TY2 in order to build Y.

Enforcing this intended semantics must be done “manually,” as the template by itself has no semantics,
in the sense that many programs can be seen as an instance of it, not just divide-and-conquer ones. One way
of doing this is to attach to the template the set of specifications of its predicate place-holders: these speci-
fications are in terms of each other, including the one of r, and are thus generic (because even the specifica-
tion of r is unknown), but can be abduced once and for all according to the informal semantics of the schema
[29]. Such a schema (i.e. template plus specification set) constitutes an extremely powerful syntactic bias,
because it encodes algorithm design knowledge that would otherwise have to be hardwired or rediscovered
the “hard way” during each synthesis.

The issues in the design and expression of divide-and-conquer logic program schemata are discussed else-
where in full detail by the first author [26]. Let us here just point out the sub-class of incomplete traversal
programs, where the induction parameter X need not entirely be traversed before being able to build Y. Pro-
grams of this class include the ones for select (as in Section 1) and member (with induction on the list).
This sub-class seems particularly hard to synthesize: when researchers report “pathological” relations that
elude their synthesizers or require synthesis times disproportionally larger than for other relations that are
seemingly of the same level of difficulty, they are quite often of this sub-class. The reasons therefore may
be the complex semantic interplay between primitive and nonPrimitive, as it is then not just a syntactic
question of whether the induction parameter is, say, the empty list or a non-empty list.

Less common approaches to syntactic bias are the clause description language of [5], antecedent descrip-
tion grammars [16], argument dependency graphs [56], etc., and are surveyed in [54].

2.4 Generality

Given the formula G ⇒ S, we say that G is more general than S, and that S is more specific than G. In ILP,
the aim is to compute a hypothesis H given background knowledge B and evidence E, such that B ∧ H ⇒ E.
The generality relation ⇒ is a partial order, but doesn’t induce a lattice on the set of formulas. Indeed, there
is not always a unique least generalization under implication of an arbitrary pair of clauses. For instance,
the clauses p(f(X)) ← p(X) and p(f(f(X))) ← p(X) have both p(f(f(X))) ← p(X) and p(f(X)) ← p(Y) as least
generalizations. In [47], the existence and computability of a least generalization under implication for any
finite set of clauses that contains at least one non-tautologous function-free clause is proven. Since implica-
tion between Horn clauses is undecidable, there are of different models of inductive inference.

θ-subsumption. In the model called θ-subsumption [48], the background knowledge B is empty. The
model is defined for clauses, which are viewed as sets of literals.

Definition 1: A clause g θ-subsumes a clause s iff there exists a substitution θ such that gθ ⊆ s. Two clauses
are θ-subsumption-equivalent iff they θ-subsume each other. A clause is said to be reduced iff it is not
θ-subsumption-equivalent to any proper subset of itself.

Example 1: The clause p(X,Y) ← q(X,Y), r(X) θ-subsumes p(V,Z) ← q(V,Z), q(V,T), r(V), s(Z) with the
substitution {X/V, Y/Z}.

If a clause g θ-subsumes a clause s, then g ⇒ s, but the reverse is not true for self-recursive clauses [46].
For instance, for the recursive clauses p(f(X)) ← p(X) and p(f(f(X))) ← p(X) (called g and s respectively),
although g ⇒ s (note that s is simply g self-resolved), g does not θ-subsume s. Therefore, θ-subsumption is
not equivalent to implication among clauses. Hence, it is not adequate for handling recursive clauses.

θ-subsumption induces a lattice on the set of reduced clauses: any two clauses have a unique least upper
bound (lub) and a unique greatest lower bound (glb). The least generalization under θ-subsumption (abbre-
viated lgθ) of two clauses c and d, denoted lgθ(c,d), is the lub of c and d in the θ-subsumption lattice. The
lgθ of two terms f(s1,…,sn) and f(t1,…,tn), denoted lgθ(f(s1,…,sn),f(t1,…,tn)), is f(lgθ(s1,t1),…,lgθ(sn,tn)),
whereas the lgθ of the terms f(s1,…,sn) and g(t1,…, tm), where f ≠ g or n ≠ m, is the variable V, where V
represents this pair of terms throughout. The lgθ of two atoms (similarly for two negative literals)
p(s1,…,sn) and p(t1,…,tn), denoted lgθ(p(s1,…,sn),p(t1,…,tn)), is p(lgθ(s1,t1),…,lgθ(sn,tn)), the lgθ being
undefined when the predicate symbols or the arities are different. Finally, the lgθ of two clauses c and d,
denoted lgθ(c,d), is {lgθ(l1,l2) | l1 ∈ c and l2 ∈ d}.

3. Note that both cases may apply, as there may be values of Y that it is easy to directly compute from a given X, as well as other
values of Y that it is not so easy to directly compute from that X.

6

Example 2: The lgθ of the clauses p(V,W) ← q(V,W), r(V), s(W) and p(T,N) ← q(T,N), r(T), r(N) is the
clause p(X,Y) ← q(X,Y), r(X), r(Z).

Relative θ-subsumption. An extension of θ-subsumption that uses background knowledge B is called rel-
ative subsumption [48].

Definition 2: If the background knowledge B consists of a conjunction of ground facts, then the relative
least generalization under θ-subsumption (abbreviated rlgθ) of two ground atoms E1 and E2 relative to
background knowledge B is lgθ((E1 ← B),(E2 ← B)).

The rlgθ of two clauses is not necessarily finite. However, it is possible [46] to construct finite rlgθs under
the syntactic bias of ij-determinacy.4

Inverse Resolution. Another model of generality is inverse resolution. There are four inductive inference
rules of inverse resolution: absorption, identification, intra-construction, and inter-construction [46]:

In the rules above, lower-case letters represent atoms and upper-case letters represent conjunctions of atoms.
The absorption and identification rules invert only one resolution step. The intra-construction and inter-con-
struction rules introduce new predicate symbols (predicate invention, see the next subsection).

2.5 Predicate Invention

Predicate invention can be defined as follows: (i) introducing into the hypothesis some predicate(s) that are
not in the evidence, nor in the background knowledge (this is called shifting the bias by extending the hy-
pothesis language [51]), and (ii) inducing programs of these new predicates. This requires the usage of con-
structive rules of inductive inference (where the inductive consequent may involve symbol(s) that are not
in the antecedent), as opposed to selective ones. Such constructive induction thus doesn’t (simplistically)
assume that the preliminary induction tasks of representation and vocabulary choice have already been
solved, and represents thus a crucial field in induction.

One can distinguish two types of predicate invention: necessary predicate invention and non-necessary
predicate invention.

Necessary Predicate Invention. We’ll first give an example of necessary predicate invention, and then de-
fine it.

Example 3: In the absence of background knowledge, the induction from positive and negative examples
of the following logic program for the sort predicate (where sort(L,S) holds iff S is a non-descendingly
ordered permutation of L, where L, S are integer-lists):

sort([],[]) ←
sort([H|T],S) ← sort(T,Y), insert(H,Y,S)

involved the invention of the insert predicate (where insert(E,L,R) holds iff integer-list R is non-descend-
ingly ordered integer-list L with integer E inserted), whose logic program hereafter is a by-product:

insert(E,[],[E]) ←
insert(E,[H|T],[E,H|T]) ← E≤H
insert(E,[H|T],[H|R]) ← ¬(E≤H), insert(E,T,R)

Note that the invention of the insert predicate required in turn the invention of the ≤ predicate (whose ob-
vious specification and program are omitted here).

4. If Li is a literal in the ordered Horn clause A ← L1,…,Ln, then the input variables of the literal Li are those variables appearing in
Li that also appear in the clause A ← L1,…,Li−1; all other variables in Li are called output variables. A literal Li is determinate iff
its output variables have at most one possible binding, given the binding of the input variables. If a variable V appears in the head
of a clause, then the depth of V is zero, and otherwise, if F is the first literal containing the variable V and d is the maximal depth
of the input variables of F, the depth of V is d +1. A clause is ij-determinate iff it is determinate and its body contains only variables
of depth at most i and predicate symbols that have arity at most j [17].

p A←() p A B,←()
q A←() p q B,←()

--- p A B,←() p A q,←()
q B←() p A q,←()

p A B,←() p A C,←()
q B←() p A q,←() q C←()

-- p A B,←() q A C,←()
p r B,←() r A←() q r C,←()

--

7

Definition 3: Predicate invention is necessary iff there is no finite logic program for the observational con-
cepts in the evidence that uses only the fixed vocabulary of predicate symbols from the evidence and the
background knowledge.

In Example 3, once synthesis was committed to the recursive call sort(T,Y), where T is the tail of L (i.e.
L=[H|T]), the predicate insert had to be invented, especially that its recursive program cannot be unfolded
into the program for sort . If committed to some other recursive call(s), another predicate would have had
to be invented. Otherwise, the background knowledge being empty, sort would have to be implemented at
most in terms of itself only, which is impossible without generating the non-terminating program sort(L,S)
← sort(L,S), or without generating an infinite program (which extensionally encodes the model).

Non-necessary Predicate Invention. One can distinguish two types of non-necessary predicate invention:
useful predicate invention and pragmatic predicate invention [24].

First, we discuss useful predicate invention. If there were permutation and ordered predicates in the
background knowledge of Example 3, the invention of insert such that it is recursively defined (e.g. as
above) would be useful. Indeed, otherwise the insert predicate would not have to be invented as its unfold-
able (because non-recursive) program would involve the permutation and ordered predicates:

insert(E,L,R) ← permutation([E|L],R), ordered(R)

and would have a complexity of O(n!), where n is the length of the list L, and would thus be inefficient com-
pared to the recursive insert program above, which is O(n). Hence, the use of a recursive insert program
would decrease the complexity of the overall sort program. The invention of a recursive insert program is
thus considered useful although non-necessary.

Definition 4: Given a partially constructed logic program for the observational concepts in the evidence,
predicate invention is useful iff there is a way to complete the program by inventing a predicate whose logic
program is recursive.

Let’s now give an example of pragmatic predicate invention.

Example 4: Given evidence of the grandDaughter relation (where grandDaughter(G,P) holds iff per-
son G is a grand-daughter of person P), and background knowledge of the parent, female, and male rela-
tions (where parent(P,Q) holds iff person P is a parent of person Q), the induction of the following logic
program for grandDaughter:

grandDaughter(G,P) ← parent(P,Q), daughter(G,Q)

involved the invention of the daughter predicate (where daughter(D,P) holds iff person D is a daughter
of person P), whose logic program hereafter is a by-product:

daughter(D,P) ← parent(P,D), female(D)

The invention of the daughter predicate was pragmatic since, although the daughter program could be un-
folded into the program of the grandDaughter predicate, i.e. its invention was non-necessary, inventing it
caused the grandDaughter program to become more compact, and since the daughter concept has now
been defined and can be reused in the future.

Definition 5: Given a partially constructed logic program for the observational concepts in the evidence,
predicate invention is pragmatic iff it is neither necessary nor useful.

The task of inductive inference amounts in the limit to finding a finite axiomatization for a given model.
If the intended model cannot be finitely axiomatized within a language L , inductive inference will never
succeed. However, detecting this is undecidable. This follows from Rice’s theorem:

Theorem 1: Given a recursively enumerable set of ground atoms E in a language L0, it is undecidable
whether E is finitely axiomatizable in some language L such that L ⊇ L0.

Fortunately, introducing a new predicate allows finding a finite axiomatization, as proved by Kleene [51]:

Theorem 2: Any recursively enumerable set of formulas in a first-order language L is finitely axiomatiz-
able in the predicate calculus using additional predicate symbols not in L .

In other words, Kleene’s theorem states that inductive inference will always succeed provided the system
invents the appropriate new predicates. Thus, predicate invention is crucial in inductive inference.

8

3 Achievements of Inductive Synthesis

As a reminder, this section only surveys the achievements of techniques that were (almost) exclusively il-
lustrated by the inductive synthesis of recursive logic programs, assuming thus that their author(s) only had
this sub-field in mind. The techniques may thus even have been fine-tuned for this task (in the sense that
they “know” what they are trying to do), but, as we shall see, this is not always the case. This survey is meant
to be complete, so any omissions are involuntary or due to a subjective interpretation of the filtering crite-
rion above. For instance, FOIL is not discussed here, due to its overly general scope.

Furthermore, this survey section only presents the techniques and their inputs/outputs, but refrains from
judging them in terms of, say, the realism of providing these inputs, as it all depends on the application set-
ting. Such criticism is thus delayed to Section 4.

Our primary classification criterion is whether a synthesis technique is syntactically biased by a program
schema or not, which gives rise to Sections 3.1 and 3.2. For each of these categories, our secondary classi-
fication criterion is whether synthesis is incremental or not, which leads to the corresponding sub-sections.

3.1 Schema-biased Synthesis

There are two ways of biasing synthesis by a schema. Schema-based synthesis infers a program guaranteed
to fit the template of a pre-determined schema and to satisfy its specification set, but the schema itself is to
a certain degree hardwired into the technique. A useful variant is schema-guided synthesis, where the sche-
ma is a parameter to the technique (which is thus schema-independent) and thus actively guides the synthe-
sis. As a parameter, it can be provided either by the source as an additional input, or made available to the
technique by its designers. To the best of our knowledge, no schema-guided inductive synthesizer exists as
of now, but we are currently designing one.

3.1.1 Non-incremental Schema-based Synthesis

Non-incremental schema-based synthesizers result from a more or less direct (and sometimes deliberate)
transposition and extension to logic (or rather: relational) programming of the best “old” inductive synthe-
sizers of recursive functional programs, namely the pioneering THESYS [53] and its subsequent generaliza-
tion, called BMWk [41]. Detailed surveys of the field of inductive synthesis of functional programs exist [8]
[23] [50]. There seems to have been some disillusion in that community in the late 1970s, witness the dearth
of papers published ever since.

In the early 1980s, MIS [49] and other pioneering techniques of the logic programming and machine
learning communities brought a new elan, due to a more powerful technology (logic and logic program-
ming) and a wealth of new ideas through this cross-fertilization (note that MIS is not discussed in the current
category, but in Section 3.2.2.1), eventually giving rise to a new branch called ILP. The added value was in
the concepts of background knowledge and declarative bias, in extended evidence languages, in more pow-
erful induction operators, in the inducability of programs for semantic manipulation relations, and in the
inducability of any logic programs (not just the recursive ones) with the same technique (though the benefits
of that versatility are dubious, see Section 4). Curiously, program schemata were a lost value, and were only
“rediscovered” in the late 1980s.

Recently, there was a correction and even further generalization of BMWk resulting from a reformulation
and formalization in a term rewriting framework [44]. However, this proposal has not been further pursued
(yet), and it still features many of the drawbacks of the original technique, namely absence (and hence no
use) of background knowledge, inability to perform necessary predicate invention,5 and inability to induce
programs for semantic manipulation relations.

Similarly, there also was a reformulation and formalization of BMWk in the simply typed λ-calculus with
higher-order unification [31] [32]. However, it also inherits the disadvantages of the original technique.

SYNAPSE, DIALOGS, and METAINDUCE. The following three techniques are very similar to each other, so
that we can discuss them together. They all target software engineering applications.

The SYNAPSE technique [23] [27] is based on a divide-and-conquer schema that subsumes the one of
Section 2.3, in the sense that the arity of r and the number of recursive calls are parameterized, hence pro-
viding more flexibility. Also, the primitive and nonPrimitive checks are each divided into a syntactic check

5. It actually tries to avoid necessary predicate invention, namely by transformation of the evidence through generalization (accumu-
lator introduction). However, this avoidance method is not guaranteed to be always successful [24].

9

(called minimal and nonMinimal, respectively) and a semantic check (called discriminate), thus allowing
multiple base clauses and multiple recursive clauses.

The evidence language is (non-recursive) Horn clauses describing a single intended relation. Ground unit
clauses are called (positive) examples and (data-)drive the synthesis; all other clauses are called properties
and are used to abduce the instance(s) of discriminate. No other specification information or syntactic bias
is given, though types are inferred from the examples. Mode and multiplicity information are not required,
because the focus is on synthesizing the logic component of logic programs. Here is a specification of the
delOdds(L,R) relation, which holds iff R is L without its odd elements, where L, R are natural-number lists:

delOdds([],[]) delOdds([A],[]) ← odd(A)
delOdds([1],[]) delOdds([B],[B]) ← ¬odd(B)
delOdds([2],[2])
delOdds([3,4],[4])
delOdds([6,8],[6,8])

The rationale behind properties becomes obvious now: since examples alone can’t express everything the
specifier must know about delOdds, namely the additional odd concept, a way must be found to overcome
this limitation. This allows the synthesis of programs for semantic manipulation relations without a back-
ground knowledge usage miracle (see Section 4.1.3). Nothing prevents giving “too complete” properties,
such as an actual recursive program, but the technique works from as little information as given above.

The hypothesis language is normal logic programs (expressed in completed form), where negation is re-
stricted to the discriminants and appears there by extraction from the properties (i.e. it can only be applied
to primitive predicates and could be avoided by providing the complementary primitives).

Synthesis is passive, although there is an expert mode where the system asks for a preference among the
possible instances of the minimal, nonMinimal, and decompose place-holders, rather than non-determin-
istically choosing each from its repository. These problem-independent repositories form the (partitioned)
background knowledge. Synthesis proceeds top-down (from the unique clause r(X,Y) ←), by instantiating
the place-holders of the schema one by one:

(1) minimal, nonMinimal, and decompose represent the only creative decisions in constructing a di-
vide-and-conquer program, and are instantiated by re-use from the knowledge repositories;

(2) compose is instantiated either by taking the lgθ of its abduced examples (similarly for solve) or by
re-invoking the entire technique on these abduced example plus abduced properties; the latter way
corresponds to necessary predicate invention (as the inferred instance is recursively defined), and the
detection heuristic is explained below on an example;

(3) discriminate is instantiated as follows: one tries to prove that the program constructed so far is con-
sistent with the properties; if such a proof fails, then the last line of the proof gives a reason of the
failure, from which an instance of discriminate can be abduced.

Obviously, this stepwise approach doesn’t fit the generic ILP algorithm of [46], as there is no set of inductive
operators, no incrementality, no identification criterion, etc. However, note the mixture of induction (lgθ
computation), deduction (consistency proof), abduction (specification of compose, instantiation of dis-
criminate by explaining the failure of a consistency proof), and even plain re-use.

For the delOdds predicate, suppose step (1) non-deterministically produces the partial program

delOdds(L,R) ← L=[], solve(L,R)
delOdds(L,R) ← L=[HL|TL], delOdds(TL,TR), compose(HL,TR,R)

At step (2), the abduced examples of compose are (using the specification as an oracle for delOdds):

compose(1,[],[])
compose(2,[],[2])
compose(3,[4],[4])
compose(6,[8],[6,8])

The lgθ of all these examples is compose(P,Q,R), which violates a problem-independent constraint stating
that the third parameter must somehow be constructed from the second and possibly even the first one. To
satisfy this constraint, the examples are partitioned into classes: the first and third have compose(H,T,T)
as lgθ, whereas the second and fourth have compose(H,T,[H|T]) as lgθ. These two lgθ satisfy that con-
straint, and there is no “legal” partition into fewer classes. The only abduced example for solve is
solve([],[]), and it is its own lgθ. So the partial program now is, after some unfolding:

10

delOdds(L,R) ← L=[], R=[]
delOdds(L,R) ← L=[HL|TL], discriminate1(HL,TL,R), delOdds(TL,TR), R=TR
delOdds(L,R) ← L=[HL|TL], discriminate2(HL,TL,R), delOdds(TL,TR), R=[HL|TR]

At step (3), the failed proof of the first (resp. second) property leads to the instantiation of discriminate1
(resp. discriminate2), so that the final program is, again after some unfolding:

delOdds(L,R) ← L=[], R=[]
delOdds(L,R) ← L=[HL|TL], odd(HL), delOdds(TL,TR), R=TR
delOdds(L,R) ← L=[HL|TL], ¬odd(HL), delOdds(TL,TR), R=[HL|TR]

This program is totally correct w.r.t. the intended relation, hence has a 100% accuracy against any test set.
Let’s examine another sample run, featuring necessary predicate invention. The intended relation is

sort(L,S), which holds iff S is a non-descendingly ordered permutation of L, where L, S are integer lists.
A possible specification thereof is:

sort([],[]) sort([A,B],[A,B]) ← A ≤ B
sort([1],[1]) sort([C,D],[D,C]) ← ¬C ≤ D
sort([2,3],[2,3])
sort([5,4],[4,5])
sort([8,7,6],[6,7,8])

Suppose step (1) non-deterministically produces the partial program

sort(L,S) ← L=[], solve(L,S)
sort(L,S) ← L=[HL|TL], sort(TL,TS), compose(HL,TS,S)

At step (2), the abduced specification of compose is (using the specification as an oracle for sort):

compose(1,[],[1]) compose(A,[B],[A,B]) ← A ≤ B
compose(2,[3],[2,3]) compose(C,[D],[D,C]) ← ¬C ≤ D
compose(5,[4],[4,5])
compose(8,[6,7],[6,7,8])

The first and second example have compose(H,T,[H|T]) as lgθ, whereas the third and fourth examples
form classes of their own with themselves as lgθ. These three lgθ satisfy the mentioned constraint, and there
is no “legal” partition into less than three classes. The only abduced example for solve is solve([],[]), and
it is its own lgθ. However, a heuristic states that if there are classes of size 1 and/or more classes than prop-
erties, then it is likely that compose should actually be recursively defined and is thus subject to necessary
predicate invention. Since the overall technique is a recursion synthesizer, it may call itself on the abduced
specification above! Reproducing the auxiliary synthesis would take too much space here, but note that the
invented predicate is insert(E,L,R), which holds iff R is L with E inserted “at the right place,” where L, R
are non-decreasing integer lists, and E is an integer. So the partial program now is, after some unfolding
(and convenient renaming of compose into insert):

sort(L,S) ← L=[], S=[]
sort(L,S) ← L=[HL|TL], discriminate(HL,TL,S), sort(TL,TS), insert(HL,TS,S)
insert(E,L,R) ← L=[], R=[E]
insert(E,L,R) ← L=[HL|TL], E ≤ HL, R=[E,HL|TL]
insert(E,L,R) ← L=[HL|TL],¬E ≤ HL, insert(E,TL,TR), R=[HL|TR]

Finally, at step (3), the proofs of the two properties succeed now, so discriminate reduces to true. The re-
sulting program is totally correct w.r.t. the intended relation. Note that the auxiliary synthesis features the
detection that parameter E is a constant parameter (as it shouldn’t change through recursive calls) and the
discovery of two base clauses (as insert by induction on L yields an incomplete traversal program).

The overall technique is thus much more powerful than explained here, a lot of its additional sophistica-
tion being due to the detection and handling of constant parameters and incomplete traversal.

The examples and properties must be crafted carefully, though an easy-to-follow methodology for writing
“good” examples and properties has been proposed: specifications are then very short, and synthesized pro-
grams then have extremely high accuracies.

Unfortunately, for time reasons, the technique was never fully implemented. However, insights gained
during its design and experimentation led to the design of the DIALOGS technique, described hereafter. But
let’s first discuss METAINDUCE, because it is very close to SYNAPSE.

11

The METAINDUCE technique [33] is almost exactly a subset of SYNAPSE. The main contribution is an ex-
tremely elegant implementation based on a meta-programming approach, which is a big step towards actual
schema guidance. The schema is a particular case of the one of SYNAPSE, namely for ternary relations, in-
duction parameter of type list, exactly one base clause (when the list is empty), exactly one recursive clause
(when the list is non-empty), and head-tail decomposition of the list (i.e. exactly one recursive call). The
evidence language is the one of SYNAPSE reduced to examples, and there is no background knowledge,
hence a restriction to programs for syntactic manipulation relations. The hypothesis language is thus re-
duced to definite logic programs. Synthesis doesn’t have step (1), because a possible solution to it is hard-
wired into the schema, nor step (3), because of the restricted schema. Step (2) doesn’t try to partition the
abduced examples when their lgθ violates the constraint (which is even a particular case of the one of
SYNAPSE), but immediately invokes the synthesizer recursively, which is not always correct (as the
delOdds relation shows). The technique and its implementation are only considered proof-of-concept pro-
totypes by their designers.

The DIALOGS technique [25] basically is an interactive version of SYNAPSE. The objective was to take all
burden from the specifier by having the technique ask for exactly and only the information it needs, which
is achieved by implementation of the mentioned methodology. As a result, no evidence needs to be prepared
in advance, as the technique invents its own evidence and queries the specifier about it. This is suitable for
all kinds of human users, as the queries are formulated in an algorithm-independent way and such that the
user must know the answers if s/he really feels the need for the program. Also, steps (2) and (3) are merged,
since their place-holders are merged in the underlying schema. Finally, type declarations have been added.
Otherwise, all features are those of SYNAPSE.

Here is a sample transcript for the sort relation (where default answers are between curly braces “{…}”,
the specifier’s actual answers are in italics, the comma “,” stands for conjunction, and the semi-colon “;”
stands for disjunction):

Predicate declaration? sort(L:list(int),S:list(int))
Induction parameter? {L} L
Result parameter? {S} S
Decomposition operator? {L=[HL|TL]} L=[HL|TL]
What conditions must hold such that sort([],S) holds? S=[]
What conditions must hold such that sort([A],S) holds? S=[A]
What conditions must hold such that sort([A,B],S) holds? S=[A,B], A≤B ; S=[B,A], ¬A≤B

This is enough information for inferring the insertion-sort program listed above. Upon backtracking, after
two more queries, quick-sort and merge-sort can be inferred. The initial prototype implementation is cur-
rently being extended, based on new insights. The main open problems are the stopping criterion of the di-
alog loop and the complexity of the answers.

CRUSTACEAN and CILP. The next two techniques are conceptually related and were designed by overlap-
ping teams.

The evidence language of the CRUSTACEAN technique [1] [2] is ground literals (positive and negative ex-
amples), where the evidence can be randomly given. There is no additional specification information. The
hypothesis language is logic programs of the following schema:

p(A1,…,An) ←
p(A1,…,An) ← p(B1,…,Bn)

where the Ai and Bi are terms. Synthesis is data-driven and passive. There is no usage of background knowl-
edge and no possibility of any kind of predicate invention because of the schema. The technique can handle
only one relation at a time, and it must be a syntactic manipulation relation. The assumption is thus that a
program to be induced consists of one unit base clause B and one purely recursive clause R (only containing
predicate symbol p).

The technique starts synthesis by making a structural analysis (how this is done is out of the scope of this
paper, for further details see [2]) of the positive examples. This analysis is based on the following observa-
tion: if the technique is given a positive example Pi, then Pi can be proven by resolving Bi and R repeatedly,
where Bi is an instance of B. Therefore, the parameters of Bi are subterms of the parameters of Pi. For in-
stance, for Pi = last(a,[c,a]), Bi = last(a,[a]), and R = last(A,[B,C|D]) ← last(A,[C|D]), this is the case
(where last(T,L) holds iff term T is the last element of list L). As a result of this analysis, the technique com-
putes annotations of the positive examples. These annotations are then used to find B and R.

12

The base clause B is computed by taking the lgθ of a set of terms (where each term denotes the parameters
of one Bi) that are extracted from these annotations. If the lgθ of one such set of terms results in an over-gen-
eral base clause (i.e. which covers negative examples), then backtracking occurs to an alternative term set.
For instance, one such inadequate set extracted from the structural analysis of the examples +last(a,[c,a])
and +last(b,[e,d,b]) is {〈a,c〉, 〈b,d〉}. This set is inadequate, since taking its lgθ yields the base clause
last(A,B) ← . An adequate set is {〈a,[a]〉, 〈b,[b]〉}, as its lgθ yields a correct base clause last(A,[A]) ← .

The recursive clause R is induced in the following way: the parameters in its head are taken from the lgθ
over the parameters from the iterative decompositions of each example from which the set of terms (whose
lgθ yielded B) is obtained. The iterative decompositions, one from the first example and two from the sec-
ond example, are:

last(a,[c,a])
last(b,[e,d,b])
last(b,[d,b])

The lgθ of these atoms is last (A,[B,C|D]), which is taken as the head of the recursive clause. The list of
parameters of the body literal (i.e. the recursive call) is constructed by again using the annotations obtained
by the structural analysis. This yields last(A,[C|D]), and the induced logic program is:

last(A,[A]) ←
last(A,[B,C|D]) ← last(A,[C|D])

The technique sometimes requires (when the schema is inadequate) that the specifier already has an idea of
how a possible program would look like. For instance, a positive example of reverse(L,R) may be given
as follows:

reverse([1,2],append(append([],[2]),[1]))

which implies that the specifier has an idea of how to revert the list since s/he hardwires that idea in the form
of append (note that the idea is represented by a given functor named append, rather than computed by
means of an invented predicate).

The technique does not need to be given any examples covered by the base clause, as it constructs its own
such examples from those covered by the recursive clause. The technique is a generalization of the LOPSTER

technique [42], which requires positive examples to be on the same resolution path.

The evidence of the CILP technique [43] is the same as the one of CRUSTACEAN. The hypothesis language
is a superset of the one of CRUSTACEAN. The logic programs induced are either of the schema

p(…) ←
p(…) ← p(…)

or, in the case of necessary predicate invention, of the schema

q(…) ←
q(…) ← q(…), newp(…)
newp(…)
newp(…) ← newp(…)

There is no usage of background knowledge. The technique can handle only one relation at a time, and it
must moreover be a syntactic manipulation relation. Synthesis is interactive and data-driven.

The technique is illustrated by means of the induction of a program for the length predicate (where
length(L,N) holds iff N is the length of the list L). Suppose the examples +length([a,b],s2(0)) and
+length([a,b,c,d],s4(0)) are given. The technique computes a recursive clause by using a method called
sub-unification (see [43] for further details), which is based on the structural differences of the parameters
of the examples. As a result of this process, a recursive clause that inverts the most number of resolution
steps between two examples is determined. In this case, the recursive clause is found to be
length([H|T],s(N)) ← length(T,N). Note that an alternative recursive clause, but that inverts fewer resolu-
tion steps and covers fewer test examples, is length([G,H|T],s2(N)) ← length(T,N). This is remarkable,
since the technique can thus work from fewer examples, which is especially useful when performing nec-
essary predicate invention, as the abduced examples of the invented predicate are sometimes quite sparsely
distributed over its intended relation (for instance, such is the case for the examples of multiply abduced
from those of factorial). This is the only technique surveyed here that does not suffer (too much) from this
sparseness problem.

13

The base clause is computed using the following observation. The base clause is a unit clause used by a
recursive logic program in the last step of a refutation. It is found by taking the lgθ of the unresolved facts.
For instance, let the recursive clause be the one computed above, and the examples be +length([],0),
+length([a],s(0)), and +length([a,b],s2(0)), denoted E1, E2, and E3 respectively. The example E1 cannot
be resolved further. The example E2 can be resolved (using the recursive clause) to obtain the unresolvable
fact length([],0). Resolving E3 twice yields again the same fact length([],0). The base clause is then the
lgθ of these facts, which is length([],0) ← . The technique does not need to be given any examples covered
by the base clause, as it constructs its own such examples from those covered by the recursive clause.

If every program induced for every selected pair of examples resolves with some negative example, then
a new predicate is invented. The parameters of the new predicate initially are all the variables of the recur-
sive clause; then, “harmful” variables are heuristically eliminated, and the useful variables are identified by
a method that is similar to the one used in CHAMP (see Section 3.2.2.2). The missing examples for the evi-
dence of the new predicate are abduced interactively (if necessary). For instance, for the clause p(s(X),Z)
← p(X,W), newp(X,W,Z), and examples +p(s(0),s(0)), +p(0,0), and +p(s3(0),s6(0)), the first example
unifies with the head and the second example with the recursive atom in the body, yielding the example
newp(0,0,s(0)). Unifying the third example with the head yields the body literal p(s2(0),W), for which the
source is queried in order to determine the value of W, and hence the example newp(s2(0),W,s6(0)). From
the abduced set of examples, a synthesis is started (by invocation of CILP itself) for the induction of a pro-
gram for newp.

Note the similarity with SYNAPSE and its related techniques: when a recursive clause cannot be complet-
ed, necessary predicate invention is conjectured, examples are abduced for the new predicate, and the tech-
nique is invoked recursively on these examples.

Another method, called recursive anti-unification [35], is based on inverse implication and sub-unifica-
tion. Recursive anti-unification is a generalization of anti-unification, which is the usual technique of com-
puting lgθs. With this method, it is possible to find least generalizations under implication rather than just
some generalizations under implication.

3.1.2 Incremental Schema-based Synthesis

FORCE2. The evidence language of the FORCE2 technique [17] is randomly chosen ground literals (positive
and negative examples). Besides, the technique requires a “depth complexity” of the program to be induced,
and also a procedure for determining when an instance is an example of the base case of the recursion. For
instance, for inducing a program for the append predicate, the source might give the following:

maxdepth(append(X,Y,Z)) = length(X) + 1
basecase(append(X,Y,Z)) = if X=[] then true else false

The source need only supply an upper bound on the depth complexity (not a precise bound), and a sufficient
(not both necessary and sufficient) condition for membership in the base case.

The hypothesis language is two-clause linear and closed recursive ij-determinate logic programs. A
clause is linear and closed recursive if the body of the clause has a single recursive atom that is closed, i.e.
has no output variables. Thus, the schema is:

p(…) ← q1(…), …, qm(…)
p(…) ← r1(…), …, rn(…), p(…)

where each qk and rk is an ij-determinate literal that is defined in the background knowledge, and the recur-
sive atom p(…) has no output variables. The technique can handle only one (syntactic or semantic manip-
ulation) relation at a time and cannot do any kind of predicate invention. It requires background knowledge
that includes only predicates of arity j or less, and of a depth bound i. The technique is passive, data-driven,
but not fully implemented. The identification criterion is PAC-identification.

The technique first splits the positive examples into two subsets by using the basecase function: the ex-
amples of the base clause, and the examples of the recursive clause. Then, the rlgθs B and R of these two
sets of examples relative to the background knowledge are computed in order to be used as initial guesses
for the base clause and recursive clause, respectively. For instance, for append (whose basecase and
maxdepth functions were given previously), the corresponding rlgθs of examples +ap-
pend([1,2],[3],[1,2,3]), +append([1],[],[1]), +append([],[1],[1]), +append([],[2,3],[2,3]) are:

append(A,B,C) ← B=[D|E], A=[], C=B
append(A,B,C) ← A=[D|E], C=[F|G], D=F

14

Next, for each recursive atom L over the variables in R, the technique does the following. Suppose the cho-
sen (correct) recursive atom is append(E,B,G). For each positive example e, the following is done. First,
it is determined (by using the basecase function) if the example is an instance of the base case or not. If it
is, then B is replaced with its lgθ with e so that it covers e; if it is not, then R is replaced with its lgθ with e
so that it covers e. For instance, for e = append([1,2],[3],[1,2,3]), it is found that e is not a base case, there-
fore R is generalized such that it covers e. For this example, R is unchanged. Next, the corresponding in-
stance of the recursive atom is computed. The instance of append(E,B,G) is append([2],[3],[2,3]). Then,
the question whether that instance is an example of the base case or not, is answered. The instance
append([2],[3],[2,3]) is not. So, R is replaced with its lgθ with append([2],[3],[2,3]), which again does not
change R. This instantiation process continues until a base case instance is computed. Here, the recursive
subgoal append([],[],[]) is computed, and determined as a base case. So, B is generalized to cover that in-
stance by using the lgθ operator. Here, B is generalized to the following clause:

append(A,B,C) ← A=[], C=B

Finally, the recursive atom is added to the end of R to obtain the recursive clause of the final program. Next,
it is checked whether the program covers any of the negative examples. If it covers some, it is rejected and
another program is induced using other possible recursive atoms. Since there are polynomially many pos-
sible recursive atoms to be tested, the overall synthesis is done in finite time.

Now, suppose that the recursive atom has been chosen incorrectly: for instance, let L be append(A,A,C).
Then, for the example append([1,2],[3],[1,2,3]), the same calls would be generated repeatedly. This is de-
tected by means of the maxdepth function when the depth bound is exceeded, and an error is signaled to
indicate that there is no valid generalization of the program that covers the example. For incorrect but
non-looping recursive atoms, the synthesis might end up with an over-general hypothesis. However, this
can be detected by using sufficient negative examples.

SIERES. The evidence language of the SIERES technique [56] is randomly chosen ground literals (positive
and negative examples). The hypothesis language is Horn clauses. The technique is top-down, passive, da-
ta-driven, can do necessary predicate invention, and can handle only one (syntactic or semantic manipula-
tion) relation at a time. It makes use of schemata called argument dependency graphs (ADG) that specify
the number of literals within a clause and the argument dependencies between them. For instance, such a
graph is p([H|T],R) ← p(T,Q), r(H,Q,R). A literal L1 depends on a literal L2 iff they share a variable V,
where V is an output variable (as indicated in the mode declarations of L1) and V is an input variable of L2.
Mode declarations are used as additional specification information. The background knowledge consists of
ground literals.

The technique starts synthesis by finding the lgθ of the positive examples. This lgθ is used as clause head
for the recursive clause. If this lgθ is over-general (i.e. if it covers any negative examples), then a more spe-
cific clause is determined, using the mode declarations and the ADGs. The parameters of possible body lit-
erals (using predicates from the background knowledge or the top-level predicate) are restricted by the
preference for some terms called critical terms (unused input and output terms). New variables and/or un-
critical terms are used as parameters only when there are more variables to be given as the parameters of
the new predicate than the number of critical terms. If none of the existing predicates yields a correct spe-
cialization of the clause, necessary predicate invention is conjectured. The parameters of the new predicate
are selected so that the resulting clause contains no more critical terms. A new predicate can only be invent-
ed if it is at the end of the clause. The technique calls itself on the abduced example set, and induces a pro-
gram for the new predicate. We have been unable (so far) to figure out how the base clause is discovered.

Suppose the following evidence {+sort([1],[1]), +sort([3,1],[1,3]), +sort([2,4,1],[1,2,4]), …}, and that
the over-general clause induced so far (using the mode declarations and the ADG given above) is
sort([H|T],S) ← sort(T,Y). Let the background knowledge include only a program for the ≤ predicate.
Then, none of the existing predicates yields a correct specialization of the clause conforming the ADG. This
initiates necessary predicate invention. The critical terms of the over-general clause are H, Y, S. Thus, the
new literal added to the body of the clause is newp(H,Y,S), and the abduced example set is
{+newp(1,[],[1]), +newp(1,[3],[1,3]), +newp(2,[1,4],[1,2,4]), …}. This denotes an example set of the in-
sertion of a number into a sorted list of numbers: thus, the newp predicate is the insert predicate of
Example 3. Note that the recursive call is introduced during the instantiation of the ADG.

XOANON and MISST. The MIS technique [49] performs incremental schema-less synthesis of arbitrary
definite programs from positive and negative examples (for more details, see Section 3.2.2.1 hereafter).

15

Some researchers have recognized that, as far as recursive programs are concerned, the search space could
be considerably reduced if programs were constrained to fit certain schemata.

The XOANON technique [55] is a variation of MIS that explores a second-order search space (a lattice, ac-
tually) ordered by a corresponding extension of θ-subsumption, with second-order expressions (called sche-
mas) at the top, and first-order expressions (i.e. programs) at the bottom. Synthesis starts from a schema
believed-to-be-applicable, and the improvement in synthesis time can be exponential when a “good” sche-
ma is selected.

Similarly, the MISST technique [52] proposes a new clause generation operator for MIS, such that the in-
ferred program corresponds to a skeleton (or: schema) to which programming techniques (such as adding a
parameter) have been applied.

3.2 Schema-less Synthesis

When synthesis is not biased by a schema, it is still possible that other forms of syntactic bias constrain the
hypothesis language. We again distinguish between non-incremental and incremental approaches.

3.2.1 Non-incremental Schema-less Synthesis

Non-incremental schema-less synthesizers are quite rare, though there is no theoretical or practical reason
for this (except maybe that non-incrementality is easiest to combine with a schema bias). We have only
found one technique in this category.

TIM. The evidence of The Induction Machine (TIM) [36] is randomly chosen ground atoms (positive ex-
amples). The hypothesis language is logic programs that have exactly one base clause and one tail-recursive
clause.6 The background knowledge is composed of Horn clauses. There is no usage of any kind of syn-
tactic bias. Mode declarations are used as additional specification information. The technique can handle
only one (syntactic or semantic manipulation) relation at a time.

The basic idea is to construct explanations of the examples in terms of the background knowledge, and
then analyzing these explanations to induce a program. The technique starts synthesis by computing satu-
rations of the examples. A clause F is a saturation of an example E relative to background knowledge B iff
F is the most specific reformulation (under implication) of E relative to B. A clause F is a reformulation of
a clause E relative to background knowledge B iff B ∧ F ≡ B ∧ E. For instance, for examples E1, E2, mode
declarations M1, M2, and background knowledge clauses B1, B2, the clauses F1 and F2 are the correspond-
ing saturations of E1 and E2:

B1: decomp([X|Y],X,Y) B2: equal(X,X)
M1: decomp(+,−,−) M2: equal(+,+)
E1: member(b,[a,b]) E2: member(e,[c,d,e,f])
F1: member(b,[a,b]) ← decomp([a,b],a,[b]), decomp([b],b,[]), equal(b,b)
F2: member(e,[c,d,e,f]) ← decomp([c,d,e,f],c,[d,e,f]), decomp([d,e,f],d,[e,f]),

decomp([e,f],e,[f]), equal(e,e)

The technique induces programs by analyzing (using a method too lengthy to explain here, see [36] for de-
tails) saturations of examples so as to find common structural regularities in pairs of saturations. On finding
pairs of saturations, the technique adds a ground recursive atom to the end of the body of each saturation.
The recursive clause is found by taking the lgθ of these final saturations. The base clause is constructed in
the following way. The saturations of examples of the head literal of a base clause are constructed by ex-
ploiting the structural regularity information in the saturations computed for the recursive clauses. Then, the
base clause is computed by taking the lgθ of these last constructed saturations. For our problem, the tech-
nique uses saturations F1 and F2 to come up with the following program:

member(X,Y) ← decomp(Y,X,Z)
member(X,Y) ← decomp(Y,Z,W), member(X,W)

The technique is passive, and is not able to perform any kind of predicate invention.

6. It is only “last-call” tail-recursion, not necessarily the real tail-recursion.

16

3.2.2 Incremental Schema-less Synthesis

Since there are many incremental synthesis techniques that are not biased by a schema, we distinguish them
according to whether they are theory-guided (Section 3.2.2.1) or data-driven (Section 3.2.2.2). This became
possible because all known theory-guided induction techniques are incremental and schema-less anyway,
although there is no theoretical reason for this. However, not all data-driven techniques are incremental and
schema-less, the others being discussed in different sections.

3.2.2.1 Theory-guided Incremental Schema-less Synthesis

Remember that theory-guided induction reduces to “regular” induction when the initial theory is maximally
general or specific. Theory-guided incremental schema-less synthesizers usually can also (if not best) infer
non-recursive programs, but we here only survey those that excel in synthesizing recursive programs.

MIS, MARKUS, and the Constructive Interpreter. These techniques, although designed by different peo-
ple, are very closely related.

The introduction of the Model Inference System (MIS) [49] is often considered the initial breakthrough
event of ILP. Although it can identify (in-the-limit) any logic program, MIS has mostly been demonstrated
through its ability to synthesize recursive programs, and it actually does so much better than many more
recent general-purpose techniques. The evidence language is ground literals (positive and negative exam-
ples) for possibly multiple relations performing any kind of manipulations, and the hypothesis language is
definite programs. Additional specification information includes type, mode, and multiplicity information
as “semantic bias,” and a list of deemed-to-be-relevant relations of the background knowledge as syntactic
bias (if this list includes the relation(s) for which examples are given, then recursive clauses will be consid-
ered by the technique). The background knowledge consists of definite clauses. Synthesis proceeds bot-
tom-up, starting from the initial theory P (or the empty program, if none given):7

repeat
read the next example
repeat

if P is incomplete (i.e. P doesn’t cover some positive example p)
then generate a previously untried clause that covers p and add that clause to P;

if P is incorrect (i.e. P covers some negative example n)
then discard a clause from P that covers n

until P is complete and correct w.r.t. all examples read so far
forever

Synthesis is interactive (during the search for a false clause when P is found to be incorrect), via classifica-
tion queries to the source. The generation of a new clause (in case of a detected incompleteness) proceeds
top-down (from general to specific) through the θ-subsumption-ordered lattice of clauses constructed from
the syntactic bias. This results in intelligent pruning of the search space: if P is incomplete w.r.t. some pos-
itive example, then no program more specific than P need be considered; conversely, if P is incorrect w.r.t.
some negative example, then no program more general than P need be considered. Since MIS is very
well-known, we do not illustrate it by a particular synthesis. Like all incremental techniques, MIS is sensi-
tive to the evidence ordering, and can thus be “forced” into the synthesis of infinite, redundant, or dead code.
Also, it cannot perform any kind of predicate invention.

Many improvements of MIS have been proposed [22] [34] [45], and many variations thereof have been
designed. Here we just list those that have been demonstrated essentially through their ability to infer recur-
sive programs. The Constructive Interpreter [20] is a passive variation, as it fully mechanizes the oracle by
requiring that a complete specification be adjoined to the example set. The MARKUS technique [12] [30]
essentially improves on the clause generator. Other variations have already been discussed in Section 3.1.2.

SPECTRE II and MERLIN. The following two techniques are not really related, but we grouped them to-
gether because they were designed at the same institution.

The inputs of the SPECTRE II technique [9] are carefully crafted ground literals (positive and negative ex-
amples) as evidence for multiple (syntactic or semantic manipulation) relations, and an overly general initial

7. We omit here the control aspects related to the detection of potential non-termination.

17

theory (the initial program). The hypothesis language is Horn clauses. There is no usage of background
knowledge, nor any kind of bias. The technique cannot do any kind of predicate invention.

The top-down technique works under the following assumptions: all positive examples are logical conse-
quences of the initial program, there is a finite number of refutations of positive and negative examples, and
there are no positive and negative examples that have the same sequence of input clauses in their refutations.

The technique works as follows. First, as long as there is a refutation of a negative example, such that all
input clauses used in this refutation appear in refutations of the positive examples, a literal in a clause of the
current program is unfolded. Next, for each refutation of a negative example, an input clause that is not used
in any refutation of a positive example is removed. The clauses that are to be unfolded and to be removed
could be selected randomly: this would not affect the correctness of the induced program w.r.t. the training
set, but its generality w.r.t. a test set.

Suppose the following initial theory (program) and the examples +odd(s(0)), +odd(s3(0)), +odd(s5(0)),
−odd(0), −odd(s2(0)), −odd(s4(0)) are given:

odd(0) ← (c1)
odd(s(X)) ← odd(X) (c2)

Note that a recursive call is already present in this initial program: the technique itself cannot discover re-
cursion. According to the first step of the technique, there is a negative example, namely odd(0), for which
all clauses, namely c1, in its refutation appear in all refutations of the positive examples. If one selects c2
and unfolds upon the literal in its body, then the following program is obtained:

odd(0) ← (c1)
odd(s(0)) ← (c3)
odd(s2(X)) ← odd(X) (c4)

There now exists no negative example for which all clauses in the refutation appear in refutations of positive
examples. Next, according to the second step, for each refutation of a negative example, a clause that does
not appear in a refutation of a positive example is removed. Here, clause c1 is removed. This results in the
following (correct) program:

odd(s(0)) ← (c3)
odd(s2(X)) ← odd(X) (c4)

The correctness of the technique is proved by a theorem [8]. The technique is passive, and uses heuristics
during clause selection for unfolding and removing.

The SPECTRE technique [11] is the predecessor of SPECTRE II, in the sense that it requires the examples
to be of the same relation.

The inputs of the MERLIN technique [10] are carefully crafted ground literals (positive and negative ex-
amples) as evidence of one (syntactic or semantic manipulation) relation, and an overly general initial the-
ory (the initial program). The hypothesis language is Horn clauses. The technique is passive, top-down, and
resolution-based. There is no usage of background knowledge, nor of any kind of bias. Previous resolu-
tion-based approaches to theory-guided induction of logic programs produce hypotheses as sets of resol-
vents of the initial theory, where allowed sequences of resolution steps are represented by resolvents.
However, this is not always possible. Suppose the following initial theory together with the examples
+p([a,b]), +p([a,a,b,b,b]), −p([b,a]), and −p([a,b,a]) is given:

p([]) ← (c1)
p([a|L]) ← p(L) (c2)
p([b|L]) ← p(L) (c3)

One can find the following characterization of the sequences of resolution steps that are used in the refuta-
tions of the positive examples, where the characterization does not hold for the refutations of the negative
examples: the clause c2 should be used an arbitrary number of times, then the clause c3 should be used an
arbitrary number of times, then c1. This result cannot be expressed by a set of resolvents of the given theory,
but rather by the following program:

p([]) ← (c1)
p([a|L]) ← p(L) (c2)
p([b|L]) ← q(L) (c4)

18

q([]) ← (c5)
q([b|L]) ← q(L) (c6)

Note that predicate q must necessarily be invented. The technique has a new approach to solving this rep-
resentation problem. It views refutations of positive examples (resp. of negative examples) as strings in
(resp. not in) a formal language, and represents this information as a finite state machine, where the final
states correspond to either a positive example or a negative example. Later, this automaton is reduced by
merging the start states, and is made deterministic. Next, the set of sequences allowed by the given program
is represented as a context-free grammar, and then a new context-free grammar is derived that represents
the intersection of the former grammar and the automaton. Finally, this new grammar is used to produce the
final program. Describing this in full detail is beyond the scope of this paper, and we refer to the original
article [9]. Suffice it to say that, from the initial theory and examples above, the technique infers the correct
specialization above. The accuracy of the resulting program increases with the number of positive and neg-
ative examples.

3.2.2.2 Data-driven Incremental Schema-less Synthesis

Data-driven incremental schema-less synthesizers usually can also induce non-recursive programs, but we
here only survey those that were somehow geared towards the synthesis of recursive programs.

CHAMP. Evidence for the CHAMP technique [40] consists of randomly chosen ground literals (positive and
negative examples). The hypothesis language is logic programs that have exactly one base clause and one
recursive clause. The background knowledge is composed of ground literals. The technique is top-down,
heuristically guided, and can handle only one (syntactic or semantic manipulation) relation at a time. There
is no usage of any kind of bias. The technique is composed of two components: a selective induction com-
ponent (similar to FOIL) and a (necessary) predicate invention component based on a method called Dis-
crimination-Based Constructive Induction (DBC). The technique works as follows: on failing in selective
induction (when there are no correct clauses that fulfill the encoding length restriction [40]), the technique
applies DBC to perform necessary predicate invention. This works as follows: first, an over-general clause
is heuristically selected among the over-general clauses obtained by the selective induction process, and all
variables of this over-general clause are taken as potential parameters of a new predicate. However, this ini-
tial parameter list may contain irrelevant variables; because of this, DBC greedily and sequentially tests
each parameter whether it can be omitted without sacrificing correctness of the program w.r.t. its training
set. The atom obtained after removing irrelevant parameters is added to the end of the over-general clause,
and positive and negative examples for the new predicate are abduced from the examples of the initial evi-
dence; a new synthesis is then started (by a call to the technique itself) from this new evidence.

Suppose the over-general clause is sort([H|T],S) ← sort(T,Y), and that the positive examples are selected
from all lists of length up to three, each containing non-repeated integers taken from the set {0, 1, 2}. The
preliminary new atom is then insert(H,T,S,Y) (the name insert was chosen for convenience). After remov-
ing superfluous variables, the clause becomes sort([H|T],S) ← sort(T,Y), insert(H,S,Y), because after re-
moving T, the clause still discriminates between positive and negative examples; however H, S, and Y
cannot be removed then, since the clause would then no longer discriminate between positive and negative
examples. For instance, given +insert(1,[2,0],[0,1,2],[0,2]) and −insert(3,[2,0],[0,1,2],[0,2]), removing H
would twice yield insert([2,0],[0,1,2],[0,2]), where it is now undecidable if this example is a positive ex-
ample or a negative one. This would in turn cause the entire clause not to discriminate between positive and
negative examples of sort. Next, the technique calls itself recursively on the set of abduced examples of the
new predicate. The positive examples abduced from the example set {+sort([2],[2]), +sort([2,0],[0,2]),
+sort([2,0,1],[0,1,2])} are {+insert(2,[2],[]), +insert(2,[0,2],[0]), +insert(1,[0,1,2],[0,2])}. Finally, the
technique yields an insertion sort program. Note that the recursive call is introduced by the selective induc-
tion component, because the top-level predicate is a candidate predicate as well, not only the predicates of
the background knowledge.

Note the similarity with SYNAPSE and its related techniques, and with CILP and SIERES: when a recursive
clause cannot be completed, necessary predicate invention is conjectured, examples are abduced for the new
predicate, and the technique is invoked recursively on these examples.

SKILIT. The input of the SKILIT technique [39] is randomly chosen ground literals (positive and negative
examples) as evidence, mode and type declarations of the involved predicates, and algorithm sketches [37]
[13], where an algorithm sketch is an incomplete representation of the computation associated with a posi-

19

tive example. An algorithm sketch is represented as a clause E ← L1,…,Lm, where E is an example and
each Li is either a ground literal involving a predicate defined in the background knowledge or a literal of
the form $p(…), called a sketch literal, involving an undefined sketch predicate $p. The body of a sketch
clause represents the derivation related to example E. If there is no given sketch clause for an example
r(T1,…,Tn), it is constructed as r(T1,…,Tn) ← $p(T1,…,Tn). The hypothesis language is Horn clauses. The
background knowledge is composed of ground literals. The technique can handle only one (syntactic or se-
mantic manipulation) relation at a time.

The technique starts synthesis with an empty program, and adds one clause to the program at each itera-
tion if the clause together with the current program and background knowledge does not cover any negative
examples. At each iteration, redundant clauses are removed from the current program. This process is re-
peated until two successive programs at the end of two iterations are the same, and all positive examples are
covered by the resulting hypothesis. The clauses added at each iteration are computed by refining algorithm
sketches. This is realized by substituting all sketch predicates by suitable background predicates or the
top-level predicate (by which way recursion can be introduced).

Suppose given the examples +sort([],[]), +sort([3,2,1],[1,2,3]), −sort([3,2],[3,2]), and −sort([],[1]), to-
gether with the sketches sort([],[]) ← $p1([]), $p2([]) and sort([3,2,1],[1,2,3]) ← sort([2,1],[1,2]),
$p3(3,[1,2],[1,2,3]), and the background knowledge with examples of the insert and null predicates. The
synthesis starts by refining the first sketch clause. The sketch predicate $p1 is determined to be the null pred-
icate by using the background knowledge atom null([]). The second sketch predicate $p2 is also found in
that way to be null. The last sketch predicate $p3 is found to be the insert predicate, since the background
knowledge has an atom insert(3,[1,2],[1,2,3]). If there are no matches between a sketch literal $pi(…) and
any of the atoms in the background knowledge, then that sketch literal in the body of the sketch clause is
replaced by bj(…), $pk(…), where bj is a background predicate that generates outputs of $pi and $pk is a
new sketch predicate. Finally, these instantiated (or: operationalized) sketch clauses are used to induce a
program, namely by variablizing the parameters of the sketch literals such that the data-flow is preserved.
During the synthesis, the negative examples are used for consistency checking (i.e. verifying if the program
covers any negative examples). The resulting program is the following:

sort(L,S) ← null(L), null(S)
sort([H|T],S) ← sort(T,Y), insert(H,Y,S)

The technique is passive and cannot perform any kind of predicate invention.
The SKILIT+MONIC technique differs from SKILIT in the way it performs consistency checking. It uses

integrity constraints (first-order logic clauses) instead of negative examples. A Monte Carlo method for ver-
ifying integrity constraints (MONIC) [38] is used.

FILP and TRACY. The following two techniques are quite similar and were designed by the same team,
based on considerations published earlier [4].

The evidence of the top-down, heuristically guided FILP technique [6] [7] is ground atoms (positive ex-
amples of functions, but expressed in relational form), and can be random. The hypothesis language is logic
programs, where every predicate is used in a functional (or: deterministic) mode. The background knowl-
edge is ground atoms plus their mode declarations. The mode declarations of the predicate(s) in the evidence
are given as additional specification information. There is no usage of any kind of bias. The technique is
interactive, data-driven, can handle multiple (syntactic or semantic manipulation) functions at a time, but
cannot perform any kind of predicate invention.

The technique consists of a clause generation loop that is repeated until all of the positive examples and
none of the negative examples are covered by the generated clauses. Initially, every clause is an atom for a
top-level predicate, where the parameters are all variables. This clause is clearly over-general. At each iter-
ation, a literal is introduced to the body of the clause being specialized by using the background knowledge
and the top-level predicates, in order to make the over-general clause cover fewer negative examples. The
top-level predicates are as good candidates as the background predicates, and may thus introduce a recursive
call to the body of the clause. This addition of literals continues until the clause obtained does not cover any
of the negative examples. During the addition of literals, if the clause does not cover any positive example,
then backtracking occurs. Throughout the clause generation process, mode declarations are taken into ac-
count, and negative examples are computed directly from the positive examples (by the closed world as-
sumption), since the program being induced is supposed to be functional in the indicated mode. During the
clause generation process, if there are missing examples, they are asked from the oracle (which is the source
here). In other words, the technique is interactive. For instance, let the clause generated be p(A,B) ←

20

q(A,C), r(A,C,B), let the positive example being investigated to see if it is covered by that clause be
+p(a,b), and let the background knowledge include the atom q(a,c), but no example of the relation r. Then,
the oracle is queried for the example r(a,c,X), and let the answer be r(a,c,b). By this answer, the positive
example is proved to be covered by that clause.

Suppose the examples +reverse([],[]), +reverse([a],[a]), +reverse([a,b],[b,a]), and +reverse([a,b,c],
[c,b,a]) are given. The background knowledge is given as a program of the append predicate. Finally, the
mode declarations append(in,in,out) and reverse(in,out) are given. The initial clause to be specialized is
reverse(X,Y). The first literal being added to the body of the clause is computed heuristically as Y=[].
However, the resulting clause covers the generated example −reverse([a],[]), so more literals need to be
added. If the literal X=[H|T] is added, then no positive examples are covered, so another literal has to be
added instead. It is found to be X=[]. Now, the resulting clause reverse(X,Y) ← Y=[], X=[] covers the ex-
ample +reverse([],[]), and this example is removed from the example set. The second clause of the pro-
gram is found in the same way, and is reverse(X,Y) ← X=[H|T], reverse(T,W), append(W,[H],Y). The
recursive call was introduced in the body in the same way the other atoms were introduced. The two clauses
above cover all positive examples, but no negative ones.

The evidence of the TRACY technique [5] is randomly chosen ground literals (positive and negative ex-
amples). The hypothesis language is Horn clauses. The background knowledge is composed of Horn claus-
es. Mode declarations of predicates are given as additional specification information. The technique can
handle only one (syntactic or semantic manipulation) relation at a time. A syntactic bias that is a description
of the hypothesis space is also given as input. An instance of such a bias for the sort predicate is:

sort(L,S) ← {L=[], S=[]}
sort(L,S) ← {L=[H|T], sort(T,V), insert(H,{V,S})}

The curly braces used for generating the body atoms and the parameters denote one element of the powerset
of the elements inside the braces. For instance, two such generated clauses are (generated from the first and
the second clauses of the bias respectively):

sort(L,S) ← L=[], S=[]
sort(L,S) ← L=[H|T], sort(T,V), insert(H,V,S)

The technique first generates all possible clauses in the hypothesis space according to the syntactic bias.
Next, for each positive example, the following is done until all positive examples are covered by the result-
ing program: the set of clauses successfully used in the derivation of that positive example is added to the
partially constructed program (which is initially empty). Then, if this resulting program covers any of the
negative examples, backtracking occurs to another derivation.

Suppose that for the append predicate, the following bias (sic!), positive and negative examples, and
mode declaration are given as inputs, where the program and mode declaration of the = predicate are given
as background knowledge:

append(A,B,C) ← {B=C, A=[]}
append(A,B,C) ← {A=[H|T], B=[E|F], append(T,{E,B,A},{D,F}), C=[H|D]}
+append([a],[b],[a,b])
−append([a],[b],[a])
−append([a],[b],[b])
append_inout(in,in,out)

After generating all possible clauses in the hypothesis space encoded by the bias above, the set of clauses
used in the derivation of the positive example such that these clauses do not cover any of the two negative
examples yields the final program:

append(A,B,C) ← B=C, A=[]
append(A,B,C) ← A=[H|T], append(T,B,D), C=[H|D]

Note that the recursive call is already encoded in the bias: the technique itself cannot discover recursion.The
technique is passive and cannot perform any kind of predicate invention.

21

4 Prospects of Inductive Synthesis

In the previous section, we have discussed the achievements of inductive synthesis of recursive programs
in an application-independent, and hence purely scientific fashion. As pragmatic computer scientists, we be-
lieve however that research should not only be pursued for the sake of Science, but that it should also lead,
sooner or later, to practical (industrial) applications, and that one should even have some in mind before-
hand. We now discuss the application prospects of the surveyed existing techniques. From our criticism of
the realism of many proposed techniques for the intended application area, we filter out directions for future
research and assess the viability of inductive synthesis in that application area. There are essentially two
such application areas. The first, software engineering (Section 4.1), is the most frequently targeted one, but
has also been the object of much controversy and prejudice, which we also summarize and then support or
debunk, as necessary. The second, knowledge acquisition and discovery (Section 4.2), has actually never
been explicitly targeted by inductive synthesis research, but we have some thoughts here.

4.1 Applications in Software Engineering

Wouldn’t it be nice if we could automatically obtain correct programs from specifications consisting just of
a few examples of their input/output behavior, or would it? This dream of automa-g-ic programming is as
old as Computer Science and has been an area of intense research since the late 1960s. As there is no dif-
ference between (executable) formal specifications and programs, this is sometimes called programming by
examples and can be seen as an innovative program development technique, especially aimed at two cate-
gories of programmers:

• expert programmers would often rather just provide a few carefully chosen examples and have a syn-
thesizer “work out the details (of recursion)” for them, hence increasing their productivity;

• end users are often “computationally naive” and cannot provide (much) more than examples, but this
should nevertheless allow them to do some basic programming tasks [18], such as the recording of
macro definitions, etc.

Of course, any programmer in the spectrum laid out by these extremes can benefit from programming by
examples, but we believe that the risk/benefit ratio is optimal for these extremes of expertise. Indeed, the
risk is that an incorrect program can be synthesized. This risk can be minimized by an expert user who
knows how the synthesizer works and how reliable it is. The risk is not so relevant for end users, as they
usually don’t want to write safety-critical software anyway and can thus cope with approximate programs.

In any case, the scenario here is that the source of all inputs is a human (called the specifier, though we
may also speak of the programmer), and this has to be taken into account as well as exploited. Indeed, a
human cannot be expected to provide inputs (called the specification) that are voluminous, especially that
an expert programmer would thus actually lose in productivity. Also, a human has considerably more ex-
pertise than the average source or oracle, and this may be exploited, say in an interactive fashion. The spec-
ifier also is the oracle (if any).

The scenario also requires an extremely high (ideally 100%) accuracy of the synthesized program against
the test set if not against the entire intended relation, because a program that doesn’t exactly do what is ex-
pected is useless (though this may not be a big problem in end user computing). The slightest mistake in a
recursive clause is usually amplified manifold through recursion before a base clause becomes applicable.

Since one does not in general know in advance whether a recursive program exists or not, we suggest (in
case of doubt) to first invoke a recursion synthesizer and fall back onto a general technique if the former
fails. This is a suitable invocation scenario for software engineering applications, as one should prefer (ef-
ficient) recursive programs over (naive) non-recursive ones. Actually, during invocation of a general tech-
nique, the latter may detect or conjecture necessary (or useful) invention of a new predicate: it should then
invoke a recursion synthesizer since the new predicate is then known in advance to have a recursive program
(see Section 2.5).

We will here only discuss the prospects of induction techniques for program construction, but not for re-
lated tasks, such as program verification [3] [6] [12] and program transformation [14], etc. An ILP technique
may of course be interfaced with a program transformer (which reduces the time/space complexity and/or
increases the time/space efficiency of programs, which are often expected to be recursive, as it would oth-
erwise be a synthesizer), since a program to be transformed may have been synthesized by any approach,
be it deductive, constructive, inductive, manual, mixed, sorcery, or whatever.

22

4.1.1 The Background Knowledge Usage Bottleneck

Some researchers have been wondering about interfacing ILP with deductive/constructive synthesis, so that
these tasks be complementary rather than competing. Indeed, since the latter assumes given a formal spec-
ification, the question arises where such a specification would come from. Such knowledge acquisition tasks
have been successfully tackled by ILP techniques for building the knowledge base of expert systems, but
can ILP help here as well? Since specifications are usually required to be non-recursive (representing thus
a naive and inefficient program, for instance of the generate-and-test class), the techniques surveyed here
do not apply and inducing such specifications would be a general ILP task. However, we believe that it is
even more time-consuming and risky (but not more difficult) to induce generate-and-test programs from in-
complete information than to synthesize recursive (e.g., divide-and-conquer) programs from such informa-
tion! Indeed, the class of generate-and-test programs has so little structure, as opposed to the class of
divide-and-conquer programs (remember the schema of Section 2.3), that we see no way how the induction
of generate-and-test programs could be efficiently and effectively guided: just consider the potentially huge
set of background knowledge predicates! What kind of specifications would result from such an induction
process? It would be sheer luck if something suitable for deductive/constructive synthesis came out.

This brings us directly to a first problem of many current inductive synthesizers, namely their background
knowledge usage bottleneck [28]. In a realistic programming scenario, the background knowledge consists
of clauses for numerous predicates, just like with human programmers. However, we humans8 tend to dy-
namically organize this background knowledge according to relevance criteria, so that we don’t think of
using a definition of the grand-mother concept when constructing a sorting program. Or, less dramatically,
during the construction of a quicksort program for integer lists, background knowledge about binary tree
processing or lexicographic ordering of characters tends to be “more in the background” than knowledge
about list processing, and, at one point during that construction, even knowledge about list merging or split-
ting may move further back.

Many researchers have tried to simulate this human hierarchizing of background knowledge, though often
in a very crude way: they show transcripts (e.g. TRACY [5, p.20], FILP [7, p.1048], SKILIT [13, p.446],
FORCE2 [17, p.78], TIM [36], CHAMP [40, p.49], [46, p.633], MIS [49], etc.) where the background knowl-
edge contains only some predicates actually sufficient (up to necessary predicate invention) to complete a
synthesis. For instance, when the evidence is about sort, they put partition and append into the background
knowledge, and, o glorious magic, a quicksort program comes out! This is certainly a fine result, but there
are two problems with it.

First, it only establishes the inducability of such a program by their techniques in an optimal scenario. But
what about the monotonicity of inducability: if we add merge and split to that background knowledge, will
the techniques still be able to induce the quicksort program? Will they find a merge-sort program? Will they
find other sorting programs? What about the efficiency of induction: will they find all these programs quick-
ly? What if we add potentially irrelevant predicates, such as for arithmetic: are monotonicity and efficiency
of induction preserved? Will the techniques discover (efficient) new sorting programs? Is useful predicate
invention performed to avoid undisciplined background knowledge usage? Does the ordering of the back-
ground knowledge affect the synthesized program? The problem thus is that the scenario is completely un-
realistic: in general, one doesn’t know in advance which parts of the background knowledge will be relevant
during a synthesis. One can make educated guesses, but creativity has its own ways. Finally, if one has to
manually select the potentially relevant background knowledge before every synthesis session, then a poor
productivity (at least of expert users) will be achieved. Background knowledge should thus be problem-in-
dependent and given once and for all (rather than crafted for each session), and the induction technique
should dynamically order it.

Second, and much worse, such a scenario amounts to actually teaching a quicksort program, which is su-
preme nonsense from a specification point of view: one specifies problems (and how to use programs solv-
ing them), but not solutions! Now we come to the earlier (in Section 2.1) announced justification of why the
teacher and learner terminology is misleading and why we decided to speak of source and induction tech-
nique instead: a teacher (usually) knows how the taught concept can be defined, whereas a specifier doesn’t
always know how the specified problem can be implemented (recursively). Choosing between the teach-
er/learner and the specifier/synthesizer terminologies is thus application-specific, and neither terminology
applies to induction as a whole. One may of course argue for the higher realism of the scenario where only
potentially (rather than actually) relevant predicates are placed into the background knowledge, because the

8. To all artificially intelligent agents reading this paper: please describe to the authors how your background knowledge is organized.

23

source then is a specifier rather than a teacher. However, this approach suffers from the productivity and
creativity drawbacks mentioned above. Moreover, from a software engineering point of view, it doesn’t
make much sense (at least for an expert user) to specify a problem by incomplete information and to already
know an (approximate) program for it: why not directly construct that program?

In any case, this discussion shows that much research is needed in order to more effectively simulate the
human ability of dynamically organizing background knowledge according to its relevance to the problem
at hand, and even to the stage of solving that problem. In a first approximation, there need not be much focus
on simulating creativity (algorithm discovery). A promising direction seems to be the pre-determination of
the dynamic relevance ordering for a class of programs, so as to partition background knowledge predicates
according to their relevance to (some of) the place-holders of a program schema capturing that class, and
according to the types of their parameters. This is advocated by the first author in his SYNAPSE [23] and
DIALOGS [25] inductive synthesis techniques. This approach even has the advantage of being also useful for
a related problem in deductive/constructive synthesis.

4.1.2 Other Occurrences of the Knowing-an-Answer Syndrome

There are other occurrences of the knowing-an-answer syndrome, which is incarnated when running a syn-
thesizer in the teacher/learner setting rather than in the specifier/synthesizer setting. In general thus, the
symptoms of this syndrome are that a possible hypothesis9 is somehow (subtly) encoded in the inputs (back-
ground knowledge, evidence, bias, …), hence making inductive synthesis a mere extraction process. We
now discuss the syndrome when the encoding is done in inputs other than the background knowledge.

Some techniques require the source to know the base clause(s) of a possible hypothesis, in the sense that
they have to be somehow provided in the inputs (e.g., the basecase function of FORCE2 [17]), possibly be-
cause the technique can only induce the recursive clause(s). Note that not even the base clauses of all pos-
sible programs are the same.

Other techniques even require the source to know the recursive clause(s) of a possible hypothesis, in the
sense that the provided examples must be on the same resolution path in order for the technique to find such
a recursive clause (e.g., LOPSTER [42]). This implies that the evidence cannot be randomly chosen, but must
be carefully crafted, having a possible hypothesis in mind. This restriction can be overcome by inducing
recursive clauses using inverse implication rather than inverse resolution: sub-unification [1] [43] and re-
cursive anti-unification [35] are approaches to this.

Still other techniques require the source to encode an entire possible hypothesis in a syntactic bias. For
instance, the clause description language of TRACY [5] allows the following bias (note that it is but a slight
variant of the one in Section 3.2.2):

sort(L,S) ← {X=[], Y=[]}
sort(L,S) ← {X=[H|T], sort(Y,V), insert(E,W,R)}

but TRACY cannot construct the correct dataflow. In other words, the actual dataflow has to be given, as one
cannot just list the potentially useful predicates. So let’s give the dataflow and see what happens when the
computations are not all given. The following bias is unfortunately illegal (note its similarity now to a pro-
gram schema, see Section 2.3):

sort(L,S) ← {L=[], solve(S)}
sort(L,S) ← {L=[H|T], sort(T,V), compose(H,V,S)}

as TRACY cannot induce programs for the solve and compose predicates when they are not in the back-
ground knowledge. In other words, the actual computations have to be given as well. Overall thus, a TRACY

bias must encode a correct hypothesis and may list a few useless things: knowledge-plus-garbage in, same
knowledge out!

Similarly for the algorithm sketches of SKILIT [13]: although they do not necessarily give away an entire
hypothesis, they often reveal much of a possible hypothesis. Of course, the technique also works from
self-generated blackbox sketches (when given no user-provided sketches), but it then essentially degener-
ates into something like CHAMP (or FOIL, etc.) and inherits all their disadvantages...

In all these techniques, the idea is that the specifier should somehow be computer-assisted when s/he has
an approximate idea of a possible program. However, and again: this reduces the productivity of the (expert)
specifier and the creativity of the synthesizer. Also note that, for non-recursively definable concepts, from

9. Note that, contrary to common practice, we do not talk about “the target program,” as there may be many possible programs for a
given predicate, especially when, as advocated here, background knowledge, bias, and evidence do not encode (part of) a possible
program.

24

a given viewpoint, there is usually only one correct description. For instance, for the bird concept, there is
one description from a cat’s point of view, one description from a biologist’s point of view, etc. But not so
for recursively definable concepts, where there are usually many (even context-free) correct programs [28].
For instance, for the sort predicate, there are programs implementing the quicksort algorithm, the
merge-sort algorithm, etc.

4.1.3 The Background Knowledge Usage Miracle

Some techniques feature another problem with background knowledge usage, namely that certain predi-
cates must be selected from it in order to induce a program (unless they are invented), no matter what algo-
rithm is implemented by the hypothesized program. For instance, if the evidence for sort does not mention
the ≤ predicate for deciding the total order according to which the elements have to be sorted, then that pred-
icate must somehow be selected from the background knowledge (unless it is invented, or used by another
background knowledge predicate), whether the final hypothesis is a quicksort or a merge-sort program. If
such predicates are not invented, then we consider it a miracle if an adequate predicate is selected from the
background knowledge. This is inevitable in the general ILP task, but a useless feat in a programming task,
where the specifier is a human being. Indeed, no human specifier can want a program for sort without know-
ing the ≤ predicate: the latter is not peculiar to the specifier’s mental sorting algorithm (if s/he has any), but
proper to the sorting problem.

So the specifier should somehow be able to convey such predicates to the synthesizer, to avoid that the
latter has to spend time on predicate invention or on risky guesswork among the background knowledge.
With specifications by positive/negative examples only, conveying such additional information is impossi-
ble. There are two related, complementary approaches to overcoming this problem, which is by the way
generally acknowledged, due to the limiting theorems on inducability from examples alone. First, the evi-
dence language can be extended, for instance to (non-recursive) Horn clauses as for SYNAPSE [23], or even
to general clauses [19] as for CLINT. Second, synthesis can be interactive, asking the specifier questions in
whose answers the necessary predicates (if any) must appear, as in DIALOGS [25].

4.1.4 Scenario Violations: Too Voluminous Inputs, Too Inaccurate Outputs, etc.

Some techniques violate the scenario laid out above, in the sense that they require “too” voluminous inputs
from the specifier (e.g., CHAMP [40], MIS [49]), or induce programs that have “too” low accuracies against
arbitrary test sets (e.g., SKILIT [39]), or even both (e.g., SKILIT+MONIC [38], which is surprising as one
would conjecture that many inputs mean high accuracies). It is of course very subjective to define what
“too” voluminous inputs and “too” inaccurate hypotheses mean, especially that they are related issues. We
estimate10 that a viable technique should synthesize an n-literal program from specifier-provided inputs of
maximum c·n literals (or words), with a (nearly) 100% accuracy against an arbitrary test set, where c varies
between 1 (for experts) and 5 (for end users). In this sense, most here surveyed techniques have too volu-
minous inputs, especially those requiring a manual (partial) encoding of a possible hypothesis in the back-
ground knowledge and syntactic bias. It seems thus preferable that background knowledge and syntactic
bias be problem-independent (note that such is the case for schemata). Similarly, most techniques men-
tioned here synthesize too inaccurate programs in this sense.

A related violation is the requirement of “too” sophisticate inputs (e.g., the basecase and maxdepth func-
tions of FORCE2 [17], the necessarily complete constraints of the Constructive Interpreter [20], the prob-
lem-specific background knowledge and/or syntactic bias of FORCE2 [17], TIM [36], Mis [49], MARKUS

[30], CHAMP [40], SKILIT [39], SKILIT+MONIC [38], FILP [7], TRACY [5]). Again, an end user cannot always
be able to provide “adequate” syntactic bias and background knowledge, and an expert user would be
slowed down by providing such inputs. Also, some theory-guided induction techniques put tight pre-con-
ditions on the initial theory (e.g., SPECTRE II [9], MERLIN [10]), which may be hard to ensure even by expert
users. For instance, it may have to be overly general or overly specific, rather than in an arbitrary connection
to the intended relation(s). Over-generality is fortunately easy to establish (and is thus quite general [15]):
it suffices to use a program schema as the initial theory. A schema like the one in Section 2.3 might be too
general because none of its predicate symbols is in the background knowledge, so one may specialize it in
a problem-specific fashion so that it is still guaranteed to be overly general:

sort(L,S) ← L=[], list(S)
sort(L,S) ← L=[H|T], sort(T,V), list(V), list(S)

10. An empirical study is underway.

25

Unfortunately, many techniques cannot even cope with such an initial theory. For instance, SPECTRE II [9]
imposes that there are no positive and negative examples that have the same sequence of input clauses in
their refutations, which is an undecidable property.

4.1.5 Information Loss

Some techniques feature information loss in the induction process, and this is especially dramatic in a pro-
gram synthesis context (where high accuracy is crucial), though deplorable in any case.

For instance, for the induction of a program for union(A,B,C) (which holds iff set C is the union of sets
A and B), the SKILIT technique [39] is reported in [38] to have an accuracy of 22.5%±6.1 from 10 randomly
generated positive examples and 0 negative examples, but only an accuracy of 18.6%±5.3 from 10 positive
and 10 negative examples: this is an accuracy loss from more information! Also, SKILIT+MONIC [38] results
in rather low accuracies, even when starting from correct and complete information (in the integrity con-
straints)! For instance, from integrity constraints with correct and complete information as well as 20 ran-
domly generated positive examples for the union predicate, the accuracy is only 47.6%±35.0. The
technique however has the advantage of still working from incomplete information in the integrity con-
straints (as it doesn’t know how complete their information is), but then the resulting accuracies will drop
even lower. The (unfortunately negative) lesson here simply is that a Monte Carlo approach to integrity con-
straint checking is too lossy (in a software engineering context).

Similarly, the Constructive Interpreter [20] basically automates the oracle of MIS [49] by requiring an ex-
ecutable, correct, and complete description of the intended relation(s). This technique has the disadvantage
of not working properly from incomplete information, but at least it doesn’t seem to suffer from accuracy
loss. However, this technique completely misses the point, as it would suffice to give that correct and com-
plete description to a deductive/constructive synthesizer [21], and forget about the evidence altogether! For-
tunately, this technique does embody a very fine insight, as argued hereafter.

In general, it seems that constructive ways of using negative evidence (when it is labeled as such) have
not been properly explored: when induction is driven by the positive evidence, the negative evidence is
often only used for an analytico-destructive purpose, namely the acceptance or rejection of a candidate hy-
pothesis. However, when negative evidence is given as (Horn-)clausal constraints [19] [20] [23] [38], it
should be possible to use it constructively as well. To the best of our knowledge, only SYNAPSE [23] and the
Constructive Interpreter [20] do so (and in quite similar ways).

4.1.6 On the Impracticality of Incremental and/or Theory-Guided Induction for Synthesis

Theory-guided induction is not practical for program synthesis (but maybe for program transformation), nor
is incremental synthesis. Indeed, programming is (usually) taught as a scientific and/or engineering activity,
so one shouldn’t (propose to) apply general-purpose induction techniques to synthesizing programs by in-
crementally “debugging” the empty program (or an approximate program) according to incomplete evi-
dence: such practice is simply not serious and should be announced as a joke, but not as a method for
program construction! Recursive programs are too fragile objects to be hammered together by such a patch-
work activity. They are even objects of art that should be chiseled with utmost care, based on knowledge of
the material they are made of. In this case, such knowledge consists of a “recursion theory,” as embodied in
design methodologies such as divide-and-conquer. We strongly believe that the only way to reliably and ef-
ficiently synthesize recursive programs from incomplete information is through guidance by a schema cap-
turing a design methodology, as well as through non-incremental handling of the evidence.

Moreover, incremental techniques are very sensitive to the ordering of the evidence, in the sense that in-
finite, redundant, or dead code may be generated (from an adverse ordering). Such behavior is symptomatic
for techniques that “do not know what they are doing” when they are synthesizing recursive programs,11

and it is thus not very good Science to propose them for software engineering applications.

4.1.7 Partial Conclusion

We do not mean to imply that the here criticized techniques and approaches are useless in general, but only
that they are unrealistic (at least in their current versions) for software engineering applications (as some-
times advocated by their designers). A first lesson is that everybody should announce the required level of

11. Some human programmers don’t seem to know it either, but artificial intelligence need not imitate natural stupidity!

26

expertise of the targeted users (and may even have to fine-tune a technique just for one class of users), be-
cause realism depends very much on the scenario.

Progress has been very slow (even negligeable according to some) in this application area, and, after more
than 25 years of research without much practical results, the legitimate question arises whether research
should be continued at all in this field. Perhaps symptomatically, the European Union-sponsored project
ILP-2 (the follow-up to the ILP project of ESPRIT III) doesn’t cover software engineering applications!
There has been significant controversy and prejudice [28] about the usefulness of such research. Insider de-
tractors may point to the problems raised in this section, and we of course support such criticism, whereas
outsider detractors usually raise the risk issue, which we would however like to debunk [28]: when appli-
cable, inductive synthesis is no more risky than deductive/constructive synthesis! Indeed, the only differ-
ence is that the former starts from known-to-be-incomplete information and the latter from
assumed-to-be-complete information, but in both cases one has no guarantee that the synthesized program
does what was actually intended. That deductive/constructive synthesis guarantees that the synthesized pro-
gram does what was specified doesn’t change anything to the fact that it is the formalization step from in-
tentions to formal specifications that is risky, rather than the kind of synthesis being performed from the
produced specification. The main issues are that a specification should be labeled as probably-incomplete
or potentially-complete, and that an appropriate kind of synthesis technique should be invoked. The two ap-
proaches can thus be considered complementary, rather than rivals, and the ultimate decision should lie with
the specifier, not with the research community!

So then, what is our statement on the future of “inductive software engineering”? We believe such tech-
niques can be (made) viable, provided more focused research is done on overcoming the obstacles listed
above and more realistic practical applications are aimed at. As stated at the beginning of this sub-section,
we believe that some categories of programmers would use such techniques, provided it improves their pro-
ductivity or increases the class of programs they can write by themselves.

In our not so humble opinion, when it comes to programming applications, the ideal technique is interac-
tive (in the sense of DIALOGS [25]) and non-incremental, has a clausal evidence language plus type, mode,
and multiplicity information (like SYNAPSE [23] and DIALOGS), can handle semantic manipulation relations,
actually uses (structured) background knowledge and a syntactic bias, which are both problem-independent
and intensional (like in SYNAPSE and DIALOGS), is guided by (and not just based on) at least the powerful
divide-and-conquer schema of SYNAPSE and DIALOGS (using the implementation approach of METAINDUCE

[33]), discovers additional base case and recursive case examples (like CILP [43]), can perform both neces-
sary and useful predicate invention (like SYNAPSE and DIALOGS), even from sparse abduced evidence (like
CILP), actually discovers the recursive atoms, and makes a constructive usage of the negative evidence
(through abduction, like the Constructive Interpreter [20] and SYNAPSE).

4.2 Applications in Knowledge Acquisition and Discovery

Knowledge discovery from data (and data mining) is about extracting and transforming hidden information
into valuable knowledge through the discovery of relationships and patterns in these data. This sounds very
much like a vague re-formulation of the ILP task itself, but we here consider it an application area as the
data in question is usually very voluminous. In fact, this is a very natural application area for ILP and we
expect ILP to have its most impressive results here, especially that such has already been the case so far
anyway. So there is no need to argue as far as ILP as a whole is concerned.

But what about the usefulness of inductive synthesis of recursive programs to this application area? Es-
pecially that, intuitively, just like the procedures in application software, very few real life concepts seem
to have recursive definitions, a rare example being ancestor. We argue that it is worth having a special-pur-
pose recursion synthesizer attached to a general-purpose induction technique. Indeed, a general-purpose
technique may detect (or conjecture) the necessity (or usefulness) of inventing a new predicate, and since
such a new predicate is then known in advance to have a recursive program (see Section 2.5), it seems pref-
erable to invoke a special-purpose recursion synthesizer for such auxiliary purposes rather than have the
general-purpose technique do it all (especially that it would most likely do the predicate invention poorly).
Would it even be worth invoking the latter only upon failure of the former, in case one doesn’t know in ad-
vance whether the initial concepts have recursive programs or not? No. We believe that, contrary to the soft-
ware engineering application area, the invocation scenario here should be to first call the general-purpose
technique and to only invoke the recursion synthesizer for necessary (or useful) predicate invention.

27

5 Conclusion

The inductive synthesis of recursive (logic) programs is a challenging and important sub-field of ILP. Chal-
lenging because recursive programs are particularly delicate mathematical objects that must be designed
with utmost care. Important because recursive programs (for certain predicates) are sometimes the only way
to complete the induction of a finite hypothesis (involving these predicates). We have surveyed the achieve-
ments of this sub-field, throwing in theoretical results and historical remarks where appropriate. These
achievements, after over a quarter-century of research, are a clear testimony to the difficulty of the task: wit-
ness the slow progress on increasing synthesis reliability and speed, and on decreasing the volume and so-
phistication of the required inputs; also witness the huge variety of different approaches. We have also
debated the practical applicability of the surveyed techniques in two application areas, namely software en-
gineering (or rather: programming) and knowledge acquisition and discovery. It turns out that these are
completely different settings and that such settings (may) have to be exploited and taken into account when
designing new techniques.

Despite the harshness of our criticism, we are confident that there is an industrial future to such techniques
(especially that they are necessary anyway), provided progress is made in a forward direction by combining
the best individual results into powerful and reliable inductive synthesizers, instead of meandering in a lat-
eral fashion and producing yet other synthesizers that do no more, if not even less, than existing ones.

Acknowledgments

The first author thanks some of the ILP’96 and LOPSTR’96 participants for stimulating discussions on the
feasibility, necessity, and future of the inductive synthesis of recursive programs, which conversations even-
tually led to the decision to write this paper. Both authors gratefully acknowledge the assistance of some of
the designers of the techniques discussed here, for providing us with implementations and missing papers,
and for patiently answering our probing questions.

References

[1] D.W. Aha, S. Lapointe, C.X. Ling, and S. Matwin. Inverting implication with small training sets. In F.
Bergadano and L. De Raedt (eds), Proc. of ECML’94, pp. 31–48. LNAI 784, Springer-Verlag, 1994.

[2] D.W. Aha, S. Lapointe, C.X. Ling, and S. Matwin. Learning recursive relations with randomly select-
ed small training sets. In W.W. Cohen and H. Hirsh (eds), Proc. of ICML’94. Morgan Kaufmann, 1994.

[3] F. Bergadano et al. Inductive test case generation. In S. Muggleton (ed), Proc. of ILP’93, pp. 11–24.
TR IJS-DP-6707, J. Stefan Institute, Ljubljana (Slovenia), 1993.

[4] F. Bergadano and D. Gunetti. Inductive synthesis of logic programs and inductive logic programming.
In Y. Deville (ed), Proc. of LOPSTR’93, pp. 45–56. Springer-Verlag, 1994.

[5] F. Bergadano and D. Gunetti. Learning clauses by tracing derivations. In S. Wrobel (ed), Proc. of
ILP’94, pp. 11–29. GMD-Studien Nr. 237, Sankt Augustin (Germany), 1994.

[6] F. Bergadano and D. Gunetti. Inductive Logic Programming: From Machine Learning to Software En-
gineering. The MIT Press, 1995.

[7] F. Bergadano and D. Gunetti. An interactive system to learn functional logic programs. In R. Bajcsy
(ed), Proc. of IJCAI’93, pp. 1044–1049. Morgan Kaufmann, 1993.

[8] A.W. Biermann. Automatic programming. In S.C. Shapiro (ed), Encyclopedia of Artificial Intelli-
gence, second, extended edition, pp. 59–83. John Wiley, 1992.

[9] H. Boström. Specialization of recursive predicates. In Proc. of ECML’95. LNAI, Springer-Verlag,
1995.

[10] H. Boström. Theory-guided induction of logic programs by inference of regular languages. In Proc. of
ICML’96. Morgan Kaufmann, 1996.

[11] H. Boström and P. Idestam-Almquist. Specialization of logic programs by pruning SLD-trees. In S.
Wrobel (ed), Proc. of ILP’94, pp. 31–48. GMD-Studien Nr. 237, Sankt Augustin (Germany), 1994.

[12] I. Bratko and M. Grobelnik. Inductive learning applied to program construction and verification. In S.
Muggleton (ed), Proc. of ILP’93, pp. 279–292. TR IJS-DP-6707, J. Stefan Institute, Ljubljana
(Slovenia), 1993.

28

[13] P. Brazdil and A.M. Jorge. Learning by refining algorithm sketches. In A. Cohn (ed), Proc. of
ECAI’94. John Wiley & Sons, 1994.

[14] M. Bruynooghe and D. De Schreye. Some thoughts on the role of examples in program transformation
and its relevance for explanation-based learning. In K.P. Jantke (ed), Proc. of AII’89, pp. 60–77. LNCS
397, Springer-Verlag, 1989.

[15] W.W. Cohen. The generality of over-generality. In Proc. of IWML’91, pp. 490–494. Morgan Kauf-
mann, 1991.

[16] W.W. Cohen. Compiling prior knowledge into an explicit bias. In P. Edwards and D. Sleeman (eds),
Proc. of ICML’92, pp. 102–110. Morgan Kaufmann, 1992.

[17] W.W. Cohen. PAC-learning a restricted class of recursive logic programs. In S. Muggleton (ed), Proc.
of ILP’93, pp. 73–86. TR IJS-DP-6707, J. Stefan Institute, Ljubljana (Slovenia), 1993.

[18] A. Cypher. EAGER: Programming repetitive tasks by example. In Human Factors in Computing Sys-
tems, Proc. of CHI’91, pp. 33–39. ACM Press, 1991.

[19] L. De Raedt and M. Bruynooghe. Belief updating from integrity constraints and queries. Artificial In-
telligence 53(2–3):291–307, Feb. 1992.

[20] N. Dershowitz and Y.-J. Lee. Logical debugging. Journal of Symbolic Computation, Special Issue on
Automatic Programming 15(5–6):745–773, May/June 1993.

[21] Y. Deville and K.-K. Lau. Logic program synthesis: A survey. Journal of Logic Programming, Special
Issue on 10 Years of Logic Programming, 19–20:321–350, May/July 1994.

[22] W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. Algorithmic debugging with assertions. In H.
Abramson and M.H. Rogers (eds), Proc. of META’88, pp. 501–521. The MIT Press, 1988.

[23] P. Flener. Logic Program Synthesis from Incomplete Information. Kluwer Academic Publishers, 1995.
[24] P. Flener. Predicate Invention in Inductive Program Synthesis. TR BU-CEIS-9509, Bilkent University,

Ankara, Turkey, 1995.
[25] P. Flener. Inductive logic program synthesis with DIALOGS. In S. Muggleton (ed), Proc. of ILP’96.

LNAI, Springer-Verlag, forthcoming.
[26] P. Flener. Issues in the Design and Expression of Logic Program Schemata. In preparation.
[27] P. Flener and Y. Deville. Logic program synthesis from incomplete specifications. Journal of Symbolic

Computation, Special Issue on Automatic Programming 15(5–6):775–805, May/June 1993.
[28] P. Flener and L.Popelínský. On the use of inductive reasoning in program synthesis: Prejudice and

prospects. In L. Fribourg and F. Turini (eds), Joint Proc. of META’94 and LOPSTR’94, pp. 69–87.
LNCS 883, Springer-Verlag, 1994.

[29] P. Flener and K.-K. Lau. Program Schemata as Steadfast Programs. Technical Report, in preparation.
[30] M. Grobelnik. Induction of Prolog programs with Markus. In Y. Deville (ed), Proc. of LOPSTR’93,

pp. 57–63. Springer-Verlag, 1994.
[31] M. Hagiya. Programming by example and proving by example using higher-order unification. In M.E.

Stickel (ed), Proc. of CADE’90, pp. 588–602. LNCS 449, Springer-Verlag, 1990.
[32] M. Hagiya. From programming-by-example to proving-by-example. In T. Ito and A.R. Meyer (eds),

Proc. of TACS’91, pp. 387–419. LNCS 526, Springer-Verlag, 1991.
[33] A. Hamfelt and J. Fischer Nilsson. Inductive metalogic programming. In S. Wrobel (ed), Proc. of

ILP’94, pp. 85–96. GMD-Studien Nr. 237, Sankt Augustin (Germany), 1994.
[34] M.M. Huntbach. An improved version of Shapiro’s Model Inference System. In E.Y. Shapiro (ed),

Proc. of ICLP’86, pp. 180–187. LNCS 225, Springer-Verlag, 1986.
[35] P. Idestam-Almquist. Recursive anti-unification. In S. Muggleton (ed), Proc. of ILP’93, pp. 241–253.

TR IJS-DP-6707, J. Stefan Institute, Ljubljana (Slovenia), 1993.
[36] P. Idestam-Almquist. Efficient induction of recursive definitions by structural analysis of saturations.

In L. De Raedt (ed), Proc. of ILP’95.
[37] A.M. Jorge and P. Brazdil. Exploiting algorithm sketches in ILP. In S. Muggleton (ed), Proc. of

ILP’93, pp. 193–203. TR IJS-DP-6707, J. Stefan Institute, Ljubljana (Slovenia), 1993.
[38] A.M. Jorge and P. Brazdil. Integrity constraints in ILP using a Monte Carlo approach. In S. Muggleton

(ed), Proc. of ILP’96. LNAI, Springer-Verlag, forthcoming.
[39] A.M. Jorge and P. Brazdil. Architecture for Iterative Learning of Recursive Definitions. In L. De Raedt

(ed), Advances in Inductive Logic Programming, IOS Press, 1990.
[40] B. Kijsirikul, M. Numao, and M. Shimura. Discrimination-based constructive induction of logic pro-

grams. In Proc. of AAAI’92, pp. 44–49. AAAI Press, 1992.

29

[41] Y. Kodratoff and J.-P. Jouannaud. Synthesizing LISP programs working on the list level of embedding.
In A.W. Biermann, G. Guiho, and Y. Kodratoff (eds), Automatic Program Construction Techniques,
pp. 325–374. Macmillan, 1984.

[42] S. Lapointe and S. Matwin. Sub-unification: A tool for efficient induction of recursive programs. In
Proc. of ICML’92, pp. 273–281. Morgan Kaufmann, 1992.

[43] S. Lapointe, C. Ling, and S. Matwin. Constructive inductive logic programming. In S. Muggleton (ed),
Proc. of ILP’93, pp. 255–264. TR IJS-DP-6707, J. Stefan Institute, Ljubljana (Slovenia), 1993.

[44] G. Le Blanc. BMWk revisited: Generalization and formalization of an algorithm for detecting recur-
sive relations in term sequences. In F. Bergadano and L. De Raedt (eds), Proc. of ECML’94, pp. 183–
197. LNAI 784, Springer-Verlag, 1994.

[45] Y. Lichtenstein and E.Y. Shapiro. Abstract algorithmic debugging. In R.A. Kowalski and K.A. Bowen
(eds), Proc. of ICLP’88, pp. 512–531. The MIT Press, 1988.

[46] S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. Journal of Logic
Programming, Special Issue on 10 Years of Logic Programming, 19–20:629–679, May/July 1994.

[47] S.H. Nienhuys and R. de Wolf. Least Generalizations under Implication. In S. Muggleton (ed), Proc.
of ILP’96. LNAI, Springer-Verlag, forthcoming.

[48] G. Plotkin. A Note on Inductive Generalization. In B. Meltzer and D. Michie (eds), Machine Intelli-
gence 5:153–163. Elsevier North Holland, New York, 1970.

[49] E.Y. Shapiro. Algorithmic Program Debugging. The MIT Press, 1983.
[50] D.R. Smith. The synthesis of LISP programs from examples: A survey. In A.W. Biermann, G. Guiho,

and Y. Kodratoff (eds), Automatic Program Construction Techniques, pp. 307–324. Macmillan, 1984.
[51] I. Stahl. Predicate Invention in ILP: An Overview. TR 1993/06, Fakultät Informatik, Universität Stut-

tgart (Germany), 1993.
[52] L.S. Sterling and M. Kirschenbaum. Applying techniques to skeletons. In J.-M. Jacquet (ed), Con-

structing Logic Programs, pp. 127–140. John Wiley, 1993.
[53] P.D. Summers. A methodology for LISP program construction from examples. Journal of the ACM

24(1):161–175, January 1977.
[54] B. Tausend. A unifying representation for language restrictions. In S. Muggleton (ed). Proc. of ILP’93,

pp. 205–220. TR IJS-DP-6707, Jozef Stefan Institute, Ljubljana (Slovenia), 1993.
[55] N.L. Tinkham. Induction of Schemata for Program Synthesis. Ph.D. Thesis, Duke University, Durham

(NC, USA), 1990.
[56] R. Wirth and P. O’Rorke. Constraints for predicate invention. In S. Muggleton (ed), Inductive Logic

Programming, pp. 299–318. Volume APIC-38, Academic Press, 1992.

