Specifications Are Necessarily Informal

or: The Ultimate Myths of Formal Methods *

Baudouin Le Charlier
Institut d’Informatique
Facultés Universitaires de Namur, B - 5000 Namur, Belgium
Email: ble@info.fundp.ac.be

Pierre Flener
Department of Computer Engineering and Information Science
Bilkent University, 06533 Bilkent, Ankara, Turkey
Email: pf@cs.bilkent.edu.tr

Abstract

We reconsider the concept of specification in order to bring new insights into the debate of
formal versus non-formal methods in Computer Science. In our view, a specification is the
link between the program (formality) and its purpose (informality). Since the purpose of a
program must be something directly understandable, specifications are the essential tool for
constructing, in practice, correct real-world programs through explicit, yet not completely
automatable reasoning. This allows us to explain why formal specifications cannot meet the
demands of specifications in our sense, since this would be a contradiction in terms. Our view
of specifications does not imply a rejection of all ideas put forward in the literature on formal
methods. On the contrary, we agree with the proponents of formal methods on most of their
arguments, except on the fact that specifications had better be written in a formal specification
language. And, inevitably, we also disagree with arguments following from this assumption.
Finally, we examine why the role and nature of specifications are so often misunderstood.

1 Introduction

Gist specifications were nearly as hard to read as those in other
formal specification languages. We soon realized that the problem
was not particular to Gist, but extant across the entire class of for-
mal specification languages. In their effort to be formal, all these
languages have scrubbed out the mechanisms which make infor-
mal languages understandable, such as summaries and overviews,
alternative points of view, diagrams, and examples.

— R. Balzer, in [1]

Recently, there has been a flurry of papers advocating the use of “formal methods” in the software
industry (see [3, 4, 5, 11, 13, 14, 16, 19], some in [23], ...). Similar opinions were sporadically
published before (some in [7], [10, 15, 18, 21, 24], ...). Academicians, with and without industrial
experience, apologetically missionarize for formal methodism, under various degrees of radicalism.
Sometimes, they even berate industrial software engineers for not using such supposedly formal
methods, warning them of imminent disasters if these methods are not adopted, as they are per-
ceived to be a key solution to the chronic software crisis (or plague, rather). In some cases, even
practicing engineers are found preaching the gospel of formal methods to their fellow members of
the industrial congregation ([16, 19], some in [23]).

*Contrary to the previous papers of the “myths series” [16, 4], this paper is not about industry-level myths on
the uselessness of formal methods, but rather about the academic myths on their usefulness. True to the tradition,
we discuss our own list of seven myths on formal methods, namely in Section 3.2.

Other industry members, with and without academic experience, have been fighting back,
exposing fallacies in the academicians’ assumptions (such as that there are essential differences
between engineering and mathematics in general, and between computing and mathematics in
particular), if not chastising them for their bad attitude (others in [23]). Indeed, why is there
so much aggressive publishing in favor of formal methods as of late? If these methods are worth
their money, they will sooner or later speak for themselves. The fact that they have not after over
twenty years of research speaks volumes.

The same debate is raging inside academe, as far as the teaching [7] of computer science is
concerned. Should the curriculum include formal methods or not? To what extent?

Myths circulating in industry on the inadequacy of formal methods for real-world applications
have been “debunked” with great zeal and even greater lack of convincing arguments [16, 4].> But
curiously, very few voices inside academe are heard arguing against formal methods, or at least
begging for caution (but see DeMillo, Lipton, and Perlis [6], Fetzer [8], Karp in [7], Parnas [22]
and in [23], Winograd in [7]).

Simultaneously, there is a debate on whether formal specification languages ought to be exe-
cutable or not [17, 12]. But curiously again, almost nobody inside academe challenges the now
nearly universal contention that specifications ought to be formal in the first place (but see Balzer
[2, 1], Parnas [22] and in [23]).

Does this relative silence of academe result from mere conformism, or is Hilbert’s ghost still
alive and making ignorant converts by the legion?

Our (academicians’) objective is to stir the academic community from its Cinderella sleep by
(re-)raising a few itchy issues that are almost always (conveniently or accidentally) overlooked.
As proponents of mathematical rigor based on real (i.e., non-formal specifications), we thus also
provide industry with new arguments against formal methods. Admittedly, the software industry
rarely takes the right decisions in its methodological choices, witness the current fad about abstract
datatypes and object orientation. But as far as formal methods are concerned, the reluctance of
industry seems justified, although we doubt this near-rejection is based on the right reasons.

We have chosen a pious vocabulary so far to illustrate that we are here touching on nearly
religious values, if not tackling what very much looks like a Byzantine discussion. We are aware
that very few people will thus be open-minded enough to lucidly examine our arguments. Since
we have not seen our analysis elsewhere (at least not in print, nor recently), we have taken the pen
to write a much-needed, contemporary, intra-academic rebuttal of the prevalent formalist current.
We thus simply hope motivating formalists to reconsider their position, so that some crucial issues
be reexamined and, hopefully, the lopsidedness of printed academic opinion in favor of formal
methods become corrected.

In this paper, we reconsider the concept of specification in order to bring new insights into the
debate of formal versus non-formal methods in computer science. In our view, a specification is
the link between the program (formality) and its purpose (informality). Since, as we will argue,
the purpose of a program must be something directly understandable, specifications are the es-
sential tool for constructing, in practice, correct real world programs through explicit reasoning.
Additionally, our discussion of specifications allows us to explain why formal specifications (i.e.,
specifications written in a formal specification language) are not really specifications, since this
would be a contradiction in terms.

Our view of specifications does not imply a rejection of all ideas put forward in the literature
on formal methods. On the contrary, we agree with the proponents of formal methods on most
of their arguments, except on the fact that specifications had better be written in a formal, i.e.,
completely pre-defined and syntactically checkable, language. And, inevitably, we also disagree
with other arguments that are a consequence of this assumption that formal specification languages
are desirable.

Formal methods are in general introduced as being the use of mathematics in the process
of constructing computer software (including the elaboration of specifications). We agree that
mathematics are extremely useful in this context, but we disagree on reducing the concept of

1Indeed, overly general consequences are drawn from a mere handful of supposedly successful formal methods-
based projects, completely and conveniently ignoring that said projects were led by formalists, probably even
staffed by formalists, and their evaluation inevitably skewed because of the Hawthorne effect (the teams did extra
well because they knew they were being observed and that they were about to design showcase examples).

mathematics for computer science to the restricted framework of any formal specification language.

Program verification is advocated by most distinguished computer scientists as the only way to
improve the quality of software. We agree that program verification or, better, systematic program
construction is the only way to build satisfactory computer software, but we disagree on the fact
that program proofs must be automated, since, as we try to demonstrate, this would imply a
vicious circle.

Requirements engineering is viewed by most authors as the most crucial stage in the develop-
ment of a large software system. We agree on this viewpoint and especially on the importance of
the elicitation process, but we disagree with the opinion that writing formal specifications is the
best basis for the elicitation process: such a process is best achieved in a language as expressive as
possible, i.e., a natural language enhanced with any desired notational conventions.

Finally, it is generally accepted that formal methods should be supported by corresponding
software tools. We argue that formal descriptions of any kind (programs, finite-state automata,
“declarative” descriptions, and the like) can be useful only because they can be the input of
an automated process whose output provides directly understandable information that could not
be realistically discovered by manual calculation. Nevertheless, the elaboration of any formal
description (of whatever nature) requires a careful construction process that cannot be formalized
in any way since this would entail a regressum ad infinttum.

This paper is based on the Ph.D. dissertation of the first author [20] (and includes translations
of tracts of this thesis), as well as on numerous discussions between the two authors. The second
author has used some of these ideas for debunking some of the myths on deduction-based and
induction-based approaches to the (semi-)automatic synthesis of (logic) programs [9].

The remainder of this paper is organized as follows. In Section 2, we elaborate on our view
of specifications. Based on the evidence that a program must be useful in some sense and must
therefore have an understandable purpose, we argue that the specification of a program is precisely
the link that allows the user to understand the results of the program in the most direct way. We
show that such specifications can be the basis of explicit, yet not completely automatable reasoning
allowing us to construct programs in a systematic way with optimal confidence (obviously, absolute
confidence is never achievable). Finally, we explain that good specifications in our sense require
the existence or the elaboration of an adequate theory and we relate this issue to the classical
notion of requirements specifications. In Section 3, we use the previous discussion to demonstrate
that formal specifications cannot meet the demands of specifications in our sense and we answer
a number of frequently asked questions about formal methods. Section 4 contains the conclusion,
which examines why the role and nature of specifications are so often misunderstood.

2 The Role and Nature of Specifications

In this section, we more closely examine specifications of programs. Experience shows that their
role and nature are extremely poorly understood by most computer scientists. Program specifica-
tions are, in general, very abysmally written because there was no understanding of what to put
into them, and what to omit from them. But specifications are the essential pivot of the whole
programming activity: without good specifications, it is impossible to understand the concept of
correctness of a program, and hence to reason rigorously while constructing it or constructing a
program using it.

In the software engineering literature, the word ‘specification’ is used to designate many different
kinds of things (such as requirements specifications —for an entire software— and detailed-design
specifications —for its modules—), and yet there is something in common to all of them. For the
moment, we deliberately do not make precise the kind of specification that we consider, but we
will come back to this issue in Section 2.7.

2.1 Why and How can a Program be Useful?

Despite all the doubts one might have about the purpose of computers for the resolution of real
problems such as the creation of a more just and harmonious society, if one writes and uses programs
then it is because one believes they are useful. This fact is so evident that one never wonders why

and how a program can be useful. However, it is the answer to that question that leads to an
understanding of what programming is and why specifications play a fundamental role in it.

If a program is useful, it is not because its execution results in displaying certain strings on the
screen or in changing the contents of the computer memory in a certain way. It is because this
execution yields useful information or provides substantial help in the realization of a task. But,
to take advantage of the program, other things than its text and the format of its data need to be
known. Even observing its behavior for some time does not suffice. It must be possible to interpret
the produced results, but the knowledge necessary to this cannot be part of the program text nor
of its results. It is relative to concepts totally alien to the objects manipulated by the program,
and to the conventions according to which these objects represent these concepts.

Example: The Belgian National Lottery. Suppose all we know about a certain program is
how to launch it on a certain computer and that its execution only results in displaying the string:

5,11, 15,22, 29, 46

No information can be drawn from this; our lives are unaffected by the knowledge that the exe-
cution of a certain program gives exactly this result. Now suppose, to the contrary, that we know
from an informed source that the execution results in displaying the next draw of the Belgian
national lottery. This changes everything: everybody now sees how such a program can be used
advantageously ...

This single example shows why a program is “not useful” by itself, but only in conjunction with
some knowledge that is totally outside of it, of which neither its text nor its results can give the
slightest clue. Some will now object that it is easy to change that program so that it exhibits its
own purpose, say by displaying the following string instead:

5, 11, 15, 22, 29, 46 is the next draw of the Belgian national lottery.

But this objection is flawed for two reasons. First, it is not the simple observation of the result that
allows us to understand it. The act of “seeing” the string above cannot possibly give the necessary
knowledge to the understanding of the sentence it represents. This knowledge must be available
before or must be acquired by other means. Second, it is not enough to be able to interpret the
result of a program by an assertion in order to deduce from it whether it i1s true. To do so, there
should be other good reasons to believe that an execution of a program can only produce outputs
that represent true assertions.

Finally, if a program can be useful, even though its manipulated objects have by themselves
no meaning, it is because it is possible to use these objects to represent useful information so
as to be able, first, to write the program so that it computes the representations in a correct
way (according to chosen conventions), and, second, to “easily finish the job” by interpreting the
results. Programming is a worthwhile activity because we are able to imagine a huge variety of
representation conventions that are satisfactory from these two viewpoints (it suffices to think that
everything that can be expressed in text form can be represented by a string) and because it is
unnecessary to express these conventions inside the program. (It is impossible anyway.)

Example: A payroll program. Let us now consider the payroll program of a company. It is
useful to the extent that it is easier to (correctly) solve the payroll problem with it than without
it. In any case, it is not the program that solves the problem. The problem is solved if and only
if the whole personnel gets their due salary at the deadline. This happens or does not happen
independently of the existence of a payroll program and its results. The responsibility of the
solving of the payroll problem belongs to the corresponding accountant. The program can only
help her as an intermediary and is only really useful if it noticeably reduces the amount of work the
accountant has to do to solve the problem. The accountant’s task is, on the one hand, to prepare
the inputs to the program, and on the other hand, to exploit its results so that everybody gets
their salary. So she must know how to use the program. This also means that she must be able to
make a reasoning by which, knowing the inputs, knowing the usage she made of the outputs, and
knowing “sufficiently many things” about the program itself, she can conclude that everybody’s
exact salary is paid at the deadline. Nowadays, the accountant may have almost nothing to do

to complete her task, but some verification (of whether the program performs its task) has to be
done nevertheless.

Example: A search sub-program. Let us finally consider a sub-program that locates a value
in an array. It is useful because one can use it as a primitive for writing a larger program, and this
without worrying about how the search is done. However, to use it properly, some supplementary
information must be available: how to call the sub-program and how the results are represented.
One might think this example is fundamentally different from the first one. In this case, some will
say, to understand the purpose of the program it suffices to know the programming language and
to have the text of the program. Indeed, the latter would be so simple that one will “immediately
see” what the program does. The text would define the purpose of the program. This opinion is
incorrect: to understand the purpose of the program, the concept of membership in an array must
be known in advance, but it is not a concept of the programming language because otherwise it
would not have been necessary to write a sub-program representing it. The opinion above stems
from the fact that one might recognize quite easily an array search in the program text, provided
one has already done some programming beforehand, hence already knows what an array search
is, for what it can be used, and what form one generally gives to programs performing it. But this
does not mean that this knowledge can be derived from the program text.

This example has been chosen on purpose among the most simple and “classical” ones. It is
clear, however, that in general one does not write programs solving known problems. Therefore, the
knowledge of some programming concepts and methods is totally insufficient for understanding not
only the purpose of a “large” program but also the one of most of its components. To understand
the use of a program computing sin(z) according to given representation conventions and a given
precision, trigonometry and analysis notions must be known. Pretending that the program defines
the corresponding approximation is only a pleasant joke, because it is not the scrutiny of this text
that can give the slightest idea about trigonometry to somebody who does not already have it.

Finally, it often happens that the concepts necessary to understanding the purpose of a (sub-)
program cannot be found in our “preliminary knowledge” but must be invented ad hoc. It is well-
known that the resolution of a simple problem may necessitate the introduction of completely new
ideas. Such invention is done via definitions. But there would be a vicious circle to try and explain
the purpose of a program by referring to concepts only known by their definitions: this would
almost amount to saying that this purpose can be understood by examining another program.
To leave this vicious circle, it is necessary to give these newly defined concepts an intuitive and
objective “substance,” by shaping them into a theory allowing their understanding without any
definitions. These ideas will be further developed in Section 2.5.

Note that there is an important difference between our notion of specification and the notion
of requirements specification, which mainly consists of defining new concepts. Again, we refer to
Section 2.7 for more details on this issue.

2.2 What is a Specification?

“Definition.” A program specification is a statement whose role is to say (1) what purpose the
program serves and (2) how it can be correctly used.

This “definition” is not a mathematical one, but the previous discussion will help us to un-
derstand it in detail. The definition means that the specification of a program is the necessary
link between what the program computes and the information that we can deduce from its results.
This link is exactly what we need to use the program or to construct it.

A specification must be simple and directly understandable. The objective of a specifi-
cation is to transmit information. So there is a parallel between the notions of specification and
program output. The output is meaningless by itself: it must be interpreted in order to extract the
information it carries. This does not mean the particular form of the outputs is irrelevant as long as
the representation conventions are known. For instance, if the task of a teller machine in Belgium
is to display the balance of a bank account, not all representations are equivalent: a decimal rep-
resentation of the amount expressed in Belgian Franks is acceptable, but a binary representation
of the square root of the amount expressed in Turkish Lira is not. The good representation is the

one that minimizes the work that remains to be done to transform the output into the desired
information. In the example above, the first representation is the only acceptable one because the
customer immediately knows how much money can be withdrawn from the account, whereas a
long and tedious computation would be necessary from the second representation. Similarly, the
“good” specification of a program is the text that can be transformed as directly as possible into
a correct understanding of the purpose of the program and of the way of using it.

Besides this analogy, there also is a fundamental difference between a specification and the
results of a program. The principal role of the specification precisely is to state how to interpret
the results, but there is no need for a text explaining how to interpret the specification, as otherwise
one would need a specification of the specification, and a specification of the specification of the
specification, ad infinitum. Therefore, unless one completely denies the pertinence of this notion,
one has to admit that a specification is a text that must be comprehensible by itself. Hence it
must be written in the only language adapted to this end: natural language. We do not say that
specifications ought to be written in pure natural language. It can be a technical language including
problem-specific concepts and notations. But it cannot be a formal language, in the strict sense of
the word (i.e., whose syntax and semantics are defined a priori).

A specification need not be correct, but only correctly understandable. Since the role
of a specification is to communicate the purpose of a program, the only correct means of judging
the quality of a specification is to ask whether it allows every potential reader to understand
conveniently and in the most direct possible way the purpose of the program.

The notion of “correctness” of a specification is thus less important than the one of “being
correctly understandable.” A specification can perfectly play its role, even if it lacks style, or has
unorthodox phrases, if not even mistakes and contradictions. A reader may well have understood
it even though she estimates it to be “incorrect” or poorly written, because it does not follow
her own stylistic criteria or contains some obvious mistakes. But how is it possible to correctly
understand a specification while judging it incorrect? The answer lies in the observation that the
role of a specification is not to define everything that ought to be known to understand the purpose
of the program, but only to state this purpose. Where is the difference? According to the first
viewpoint, one would suppose that the knowledge necessary to use the program is entirely inside
the specification (i.e., would be derivable from the specification). It would, then, be evident that
an incorrect specification cannot be satisfactorily understood by itself because it would be the only
reference. According to the second viewpoint, one supposes that the reader already knows almost
everything on what makes the program interesting, the role of the specification being somehow to
say “this is the program that you needed.” In this case, the presence of some errors or quirks in
the specification would not really be an insurmountable obstacle to its understanding, because the
enormous quantity of things already known allows the reader to fill the gaps.

All this does not imply that specifications can be written carelessly, but only that the quality
of specifications cannot be judged according to hypothetical correctness criteria. The key issue is
that they communicate “the message” in the most direct way.

2.3 Why are Adequate Specifications Necessary?

The specification of a program is an indispensable aid for remembering details. After close con-
sideration, it is even only such an aid, as it only has to state the purpose of the program but not
all the knowledge necessary to understand its meaning. The customer must thus already know,
before reading the specification of a program for the first time, everything that makes the program
useful to her. She will then know that a program with this purpose exists and how it can be used.
Later, she can occasionally re-read the specification, not because she has forgotten its purpose, but
because she does not recall with certainty some representation details that are too arbitrary to be
possible (or useful) to remember.

Specifications are not only absolutely necessary for documentation of already existing programs,
but also before and during the construction of programs, for three reasons.

First, one can only construct small programs at a time. The difficulty observed in the rigorous
construction (& la Dijkstra, Gries, etc.) of small programs is inherent to programming (and there is
no way such techniques can ever be scaled up to constructing “real” programs), so small programs

exactly represent the limit that should not be crossed if the programming activity is ever to be
mastered. The only realistic approach is thus to build “large” programs from “small” ones that are
constructed independently of each other, and recursively so on (no matter whether one proceeds
top-down or bottom-up). This is possible only because the specifications attached to programs
allow us to consider them as new primitives of the programming language, no matter how large
these programs are. All specifications should be of the same level of complexity, namely of the
utmost stmplicity.

Second, intermediate specifications are necessary as a basis for the discussion between the
computer scientist and the customer, because they are, in general, of too different backgrounds
for coming up with the good specification at the first time. From the specification, the computer
scientist must be able to make a reasoning to convince herself that she can construct the required
program, whereas the customer must be able to make a reasoning to make sure the program will
provide the expected service. The specification thus takes the role of a contract.

Third, intermediate specifications are necessary during the design of an architecture for the
program. Strictly linear top-down design is difficult, and the implementation of certain sub-
problems may reveal inadequacies in earlier choices, forcing backtracking in the design, if not the
deletion of already written code. Since programming is costly, there is a risk of trying to preserve at
all cost what has already been done, even if this means going into blind alleys. A more reasonable
approach is thus to write all specifications of all sub-programs before writing the first line of code.
This requires mental persuasion that the program can be written using all and only the specified
sub-problems. Designing such an architecture may still require backtracking, but it is less tedious
to rewrite specifications than programs, and easier to persuade oneself that a program can be
written than actually writing it.

2.4 Can there be Adequate Specifications (for Real-World Problems)?

We think that adequate specifications, according to our criteria, can be written, even for real-world
problems. However, the quality of specifications depends much more on the competence of those
who write them than on the usage of “methodological” guidelines.

A specification is not meant for just anybody. Only a program with a purpose should
have a specification. Saying that a program has a purpose amounts to saying that somebody is
able to exactly understand this purpose. So the specification of a “useful” program will always
exist because somebody must be able to say what its purpose is. But this does not mean that
just anybody can understand this specification. It is only comprehensible by somebody having
the “same background” as its author, at least as far as the application domain is concerned. The
existence of satisfactory specifications is thus only possible because they are only meant to be read
and understood by people already knowing almost everything of the application domain in which
the program has its purpose. This does not imply that only the specifier will be able to understand
it or that this privilege is reserved for a select few. It simply means that every user of the program
must first make a careful and sufficiently long study of its application domain.

In practice, it is unfortunately rare that a person understanding the purpose of a program can
express it simply. Programmers, for instance, tend to give incomprehensible technical gibberish
about the implementation technique and run-time behavior when prompted to explain what their
programs do, instead of talking about the essentials. The absence of specifications for many actually
used programs stems from an inability of many people to express themselves clearly. (As already
said by others before:) Instead of including specification rules or formalisms in computer science
curricula, it would be much better to teach students how to correctly use their native language (or
natural language, in general).

Another reason for the absence of convenient specifications is that programs are often con-
structed by successive approximations, by trial and error, so that there cannot possibly be a
convenient specification, because nobody is able to understand how to use it. But it is precisely
because the programmer was unable, or thought useless, to write a specification that she, not
knowing what to do and hoping to find it out progressively, constructed a mysterious program to
which no specification can be attached.

A specification should have an objective meaning. Some will object to our notion of
specification by saying that two different people never understand things in exactly the same way,
so that we can never be sure whether a specification is correctly understood by all concerned
people. However, it is not necessary that the programmer and all users of a program understand
its specification in the same way. Note that such a condition is insufficient anyway, because it
does not matter whether all people have understood exactly the same thing, but rather whether
everybody has understood what is needed to do their job. And this new condition can be fulfilled
because the specification of a program must express a property that has an objective meaning. It
is true that nobody understands this meaning completely and in the same way as their neighbor,
but everybody should understand that the question of correctness of the program with respect to
its specification corresponds to a fact, and not to personal interpretation. The programmer must
be able to construct the program by making a reasoning to persuade herself that it has the desired
property; whereas the users must be able to derive other facts from it, such as the possibility of
doing their job using the program.

For instance, consider a program computing the sine function under certain precise conventions.
The programmer need not completely know the “essence” of this function, but only sufficient
properties for constructing a correct program. The users need not understand the function in the
same way as the programmer, but only other properties allowing them to solve their problems.
So it is because of its objective nature that the specification of this program will be satisfactory:
it expresses a fact, the same for everybody, even though they may understand it differently, and
hence can derive other facts from it. A not completely unfounded objection to this example is that
it is not realistic because the sine concept has been studied for such a long time that it would be
foolish to deny its objective nature, but that not all specifications can be expressed in terms of
such well-established concepts. Indeed, this objection pinpoints one of the fundamental difficulties
of programming compared to, say, mathematics: one never has the time to polish all the needed
concepts for a specification, because the program is needed urgently.

Nevertheless, the objectivity condition for specifications seems absolutely necessary for the
correct communication of the purpose of programs, and, hence, for mastering the programming
activity. According to us, without this condition, one would have to admit that the usage of pro-
grams for achieving a certain activity amounts to redefining that activity as being the exploitation
of the results of the program without giving a satisfactory link between this redefinition and the
initial concrete problem. Moreover, to us, this condition seems largely achievable, if one admits
that the objectivity of the concepts necessary to the writing of good specifications can be founded
on the creation of a “theory” of these concepts, with more or less detail according to the impera-
tives of the problem, a theory that can be studied by all concerned people until each of them has
convinced themselves personally that it really corresponds to the intended object.

This perception of course has the “disadvantage” of founding the mastery of programming and
its usage on the competence and responsibility of people, whereas some would prefer to found them
on rules that are easy to apply and verify. The issue thus is whether one had better try and do
one’s best or believe in miracles.

2.5 Role and Content of the “Theory” of a Problem

Good specifications are useful and understandable because of some theory of the problem at hand.
The objective of this “theory” is to establish the conceptual framework necessary for allowing
everybody involved in the construction and usage of the program to know enough about it to
do their job (or at least to know what it amounts to). We will not, and cannot, give precise
methodological rules, but will rather draw some attention to certain points whose misunderstanding
might complicate things uselessly.

There are two categories of concepts and objects of such a theory: those whose identity was
determined before and independently of the problem, and those that are defined (or, better, iden-
tified) especially for the problem at hand. They should all have the same final status, namely to be
known not by their definitions but by a sufficiently rich set of properties linking them to numerous
other concepts of the problem. They thus have their own individuality, equivalent to an objective
status. The theoretical development necessary for achieving this status is different and more or
less long and difficult according to the category of concept.

2.5.1 On the Study of “Long-Established” Concepts

Defining once again preexisting concepts is common practice in formal methods of program design.
It is however unwise to start the study of a predetermined concept by defining it. Indeed, what is
necessary is to study the concept as it is, but not another concept given the same name through
a definition. Even if a “predetermined” concept can be considered completely determined by a
certain property (i.e., all other properties useful to the problem at hand can be derived from that
property), one cannot consider it a definition of the concept. On the contrary, one would have
to ensure that the concept really has that property. The objective of the theory to be built is to
ensure that things are sufficiently well-understood by all involved people. If one started redefining
all the fundamental concepts of the problem, nothing would be known about the relationship
between the problem and what has been done. In any case, all involved people have a preliminary
understanding of the problem. The role of the theory is to make things precise, if not to correct
them, but not to reconstruct everything from nothing. It is thus more important to stress the
difficult or delicate issues than to try and found everything already known.

The case of mathematical concepts. Suppose the concept of “greatest common divisor” is
needed in the resolution of a programming problem. It is not the following redefinition of this
concept that makes its role in the problem more precise:

Definition 2.1 The greatest common divisor of two natural numbers m and n is a natural
number p, denoted ged(m, n), such that p divides m and n, and, for every natural number ¢,
if ¢ divides m and n, then ¢ divides p.

Indeed, if one does not already know the concept of greatest common divisor (ged) and its appli-
cations, this definition will not, by itself, help one understand its purpose. But let us consider a
person who already has a good idea about it. The only information she can draw from this defi-
nition is that it probably is the definition of the notion of gcd that she already knows. Therefore,
the only immediately useful part of this definition is the only word that is theoretically arbitrary!
Indeed, one could define the same concept by naming it “foo” or “Nabuchodonosor.” Two things
are possible from here. Either this person is satisfied with her conclusion, and then the definition
has not brought any new information, or she wants to verify this first impression by examining
whether the definition is compatible with her existing knowledge of the concept of ged. In this
case, she might not be able to do so immediately, because her definition rather says that ged(m, n)
is the greatest of the divisors of m and n, according to the usual ordering relation. To show that
the two concepts coincide, she actually has to make a long reasoning, which should by the way
conclude negatively, because they do not coincide when m = n = 0 (where the greatest common
divisor is usually considered undefined, but the definition above gives ged(0,0) = 0). Anyway,
at the end of this superb intellectual effort, she will still not know whether this definition was
introduced for the fun of scrambling the message or for some better reason. To conclude, it would
have been better to admit that the concept of ged is predetermined beyond all definitions and to
show why the very close concept of greatest common divisor according to the “divides” ordering
relation was substituted for it. For instance, it could have been because one wanted to be able to
apply, in all cases, the formula ged(m, ged(n, p)) = ged(ged(m,n),p). (For m =n = 0 and p # 0,
only the left-hand side of this equality is defined according to the usual definition.)

The case of “non-mathematical” concepts. The preceding precept applies unchanged to any
kind of problem. It is not because the program to be written has its purpose in, say, an accounting
setting, that one has to start by defining all involved concepts in order to understand its purpose.

For instance, in the payroll program, the “theory” of the problem should not start with defi-
nitions of employees, salaries, companies, etc. What is necessary is to arrive at a sufficient under-
standing of these concepts (which are perfectly determined, even if they might be poorly understood
at the beginning) in order to solve the problem. It would not be acceptable either to define the
effect of the program by the rules of computing the salaries in terms of the employee database.
One should study the legislation, the structure of the company, etc, in sufficient detail so as to be
able to deduce (i.e., to justify, by a rigorous reasoning) an adequate structure for said database
as well as valid computation rules. The user of the program (i.e., the accountant) need not have

studied all the details of the “theory” that the programmers have had to elaborate, but she should
understood it sufficiently for correctly using the program. It would be hard to say where the limit
is: 1t is her responsibility to decide herself how far to go in order to reach a sufficient understanding.

2.5.2 On the Study of “Problem-Specific” Concepts

The writing and understanding of “good” specifications of programs nearly always requires the
definition and study of problem-specific concepts, discovered or created especially for constructing
the program. Such concepts can only be introduced by definitions, and it is crucial to understand
their role correctly.

The case of simple concepts that are close to known ones. One often has to deal with
concepts that can be considered already implicitly known and understood by all people who have
to use them, but whose relevancy is insufficient for having been given a name that is universally
admitted. It is then necessary to have recourse to a definition for naming the concept and making
everybody agree on some important details whose identification is necessary for correctly using it.
When reading such definitions, it should be possible to “immediately see what they are about.”
The concept-specific theory then reduces to only a few things, because the concept “naturally takes
its place” among already known ones.
Let us illustrate this with a specification of the classical plateau problem.

Definition 2.2 Let S = (s1, 82, ..., 8p) be a finite non-empty sequence of integers. A plateau
of S is an interval? (i : j) such that:

1.1<i<j<n
2. Si =841 =...= 85

3. (7 :7) is not strictly included in any other interval with properties (1) and (2).

Problem: Given a non-empty initialized array a[l..n] of integers, construct a program that
assigns to integer variable np the number of plateaus of the sequence (a[l],a[2],...,a[n]),
and to integer variable mazlp the maximum of their lengths (the length of a plateau is the
number of its elements).

The definition in the specification above is sufficient for a satisfactory problem statement, for
two reasons. First, the “technical” concept of plateau is not brand-new, but rather a particular
and precise occurrence of a more general concept that we already know (the choice of the name
“plateau” is thus not arbitrary). Second, this definition is sufficiently simple for linking this
particular concept to the general one, that is for verifying whether the chosen terminology really
corresponds to something intuitive. Moreover, the definition is necessary, because the intuitive
notion of plateau is too vague for being able to rule out, in its absence, a misunderstanding of the
notions of number and length of the plateaus of a sequence.

On the usefulness of examples. Specifications may be accompanied by carefully chosen exam-
ples, so as to facilitate their understanding. However, many people despise the usage of examples
and consider that, in the best case, they are only noise, and, in the worst case, there is a risk of in-
troducing contradictions. This attitude corresponds to a confusion of the end and the means. The
role of a definition, as considered here, is not to be formally irreproachable (i.e., non-contradictory,
for instance), but to help understand something. From this perspective, there is no reason to reject
other means of communication that might have other qualities. Some well-chosen examples often
provide an intuitive understanding that no definition could achieve. The latter then only makes
more precise the exact contours of the concept. Other examples could help eliminate certain risks
of ambiguity in the definition by illustrating delicate issues that are likely to be misunderstood for
whatever reason.

As far as the risk of contradiction between definition and examples is concerned, note that
this kind of contradiction would only be a real disaster if it were the non-contradiction of a

2We assume already known the concept of interval: (i : j) = {z|z is an integer and ¢ < z < j}, where 4, j are
integers.

10

definition that would lend value to a concept. This is the usual confusion between truth and
non-contradiction. What is important is to make known what one wants to say, not to escape
contradiction. One could even argue that the discovery of a contradiction between an example
and a definition is the best thing that can happen in some cases, because it carries an undeniable
message: something is wrong somewhere!

Personal experience shows that a “poorly defined” concept can be perfectly understood thanks
to examples, especially when the concept can be considered already implicitly known. Definition
and examples are thus complementary means of designating the concept. And one may well
conclude that there is only one concept corresponding to both the definition and the examples,
even if one has spotted an apparent contradiction between them. What one already knows helps
understand the error. Finally, note that the error risk is much higher in a definition than in an
example, because it has to cover all cases. Examples are more reliable, because more “local,” and
are thus an ideal means of getting things straight.

Let us illustrate this on the plateau problem. Assume condition (3) was omitted from the
definition above, but that the following example was added:

Example 2.1 If S = (1,1,3,3,3,2,3,5,5), then there are 5 plateaus of S, namely (1 : 2),
(3:5), (6:6), (7:7), and (8:9). Also, its longest plateau is (3 :), its length being 3.

From the definition and the example, one easily understands that plateaus are the longest non-
empty intervals (¢ : j) included in (1 : n) such that (2) holds. One could even have understood this
without noticing that the definition is incomplete.

On the usefulness of remarks, or, better, of a “reasoned” presentation of definitions.
All this shows that it is difficult to correctly define a concept in order to explain it to somebody
else. In a sense, writing the definition is already a programming act. A definition is thus always
the product of a more or less explicit reasoning process. So if one wants to facilitate the correct
understanding of a definition, one could point out delicate issues in remarks, or, better, make
explicit this reasoning process.

For the plateau problem, one might want to point out that the notion of plateau only makes
sense with respect to a sequence S, that a plateau of S is always a non-empty interval, and that
the set of plateaus of S partitions the interval (1 : n), where n is the number of elements of S.

To do even better, one might show how the given definition was reached from a “reasonable”
intuition of the concept of plateau of a sequence. This could go as follows.

Let S = (s1, 582, ...,8,) be a finite non-empty sequence of integers. Let us draw a coordinate
system, and mark the points at coordinates (7, s;), for 1 < i < n. Let us now draw, from each
of these points, a horizontal segment of unit length. Some of these segments can be merged,
giving rise to disjoint segments of integer length, called plateaus of the sequence:

5 o——
3 or——— o

2_| o

1 *—0—

1 2 3 4 5 6 7 8 9 10 11

The plateaus of the sequence (1,1,3,3,3,2,3,5,5).

The objective is to write a program for computing the number of plateaus of a sequence and
the maximum of their lengths. It is obvious that to each plateau corresponds an interval

11

verifying conditions (1) to (3) [included here as above], and vice-versa. Moreover, the length
of a plateau is the number of elements of such an interval. This leads us to the following
redefinition of the plateau concept, for our problem: [here follows the definition above].

This presentation clearly allows one not only to understand the definition more quickly, but also
to “verify” it according to one’s criteria. We even claim that such an intuitive presentation is
self-sufficient and even preferable to the definition, as the latter is only a property of plateaus that
one might discover by oneself.

A final remark: in practice, it is not always useful, nor possible (for “financial” reasons), to
discuss all introduced “simple” concepts in this much detail. An acceptable compromise between
the quality of the presentation and the time invested to its tuning must be found. Only experience
shows where to situate this compromise. The most important thing is to understand that the
objective is always the same: capture the posed problem as well as possible, as it is.

The case of more complicated or “new” concepts. Sometimes, the solving of a program-
ming problem requires the invention of relatively original concepts that one cannot pretend having
known before tackling the problem. They can thus not be imagined from nothing, but only con-
structed in small steps after comparing the problem to what is already known. The role of a
definition is then to anchor some ideas for further investigation: one must be able to deduce many
other properties from it, establishing thus the usefulness of the concept for solving the problem at
hand. The concept thus offers economies of thought and reveals ways of solving the problem. The
choice of a definition is guided by an intuition, i.e. the impression of having perceived an analogy
with something already known. This definition is, in general, not the good one, because it may
later turn out that not all the “desirable” properties can be derived from it, so that it does not
play an efficient role in the problem solving process. The definition then has to be modified, in the
light of these first conclusions, and so on, until the “good” concept has been obtained, namely the
one that holds the key to the solution, or part of it. At the end of this process, whose essential
steps must be reconstituted by all “clients” of the concept, the latter is known beyond the finally
adopted definition. It is known by numerous properties linking it to other concepts. It has become
“intuitive and well-known” and its definition is only one of its properties, among many others.

Remark. The distinction made here between “simple, implicitly known concepts” and “complex,
new concepts” is of course too crude. They are only the extremes between which intermediates
can be found, corresponding to a gradation of the effort to be done in order to construct a theory.

2.5.3 Only Representations of Concepts Can Be Defined, not the Concepts Them-
selves

To justify even more that the definitions introduced during the analysis of a problem are not
the ultimate reference point for judging the value of a “solution,” but only (imperfect) means
of communication or “transient” starting points that can be (or actually should be) forgotten
once the concept is well-understood, it is interesting to remark that a definition never really
defines a concept, but only a certain representation thereof. This remark ruins, by itself, the
“absolute” character of definitions by showing why they can be “wrong”: whereas a concept
cannot be something else than itself, its representations can be incorrect, i.e., fail to respect the
(implicit or explicit) rules according to which they are supposed to represent the concept.

In our opinion, a concept worthy of this name must have a real and original identity that
makes it indivisible, distinct from every more or less complex combination of “simpler” concepts.
A concept is an atom of thought. Therefore, an interesting concept will always escape any particular
definition, because one can define, from given concepts, only combinations thereof, i.e., nothing
really new.

All this is particularly clear for “old,” universally known concepts: for instance, whatever effort
is undertaken to define natural numbers must be arbitrary. A natural number is what it is and
cannot be reduced to anything else. Any definition thereof rests on representation conventions that
had better be fixed very explicitly if one wants to wind up with a satisfactory definition.

12

But all this is still true for “new,” problem-specific concepts. For instance, the concept of
plateau of a sequence introduced above by a definition corresponds, in fact, to an intuitive concept
that is very precise, but impossible to communicate as it is. This is why that definition of a
plateau only defines a representation of this concept, namely as an interval of integers. Other
representation choices would have led to different definitions. For example, one could have decided
to represent the intuitive notion of plateau by couples of integers instead, as follows:

Definition 2.3 Let S = (s1, s2,. .., sn) be a finite non-empty sequence of integers. A plateau
of S is a couple (%, j) such that:

1L1<i<j<n

2. 8 =841 =...= 5
3.i=1or (i>1ands;i_1 #s;)
4. j=nor (j <nands; #sj41).

This definition seems (to us) less good than the previous one, because it handles differently the
plateaus at the extremities of the sequence. This is due to the fact that one cannot talk about the
inclusion of a couple in another one. The reasoning to be made for constructing and understanding
this second definition is thus slightly more tedious and error-prone. The plateau concept is thus
more easily assimilated from the first definition. In any case, in both approaches, one has only
defined a representation of the intuitive concept of plateau, which is the only really important
thing to understand. One should however not believe that an axiomatic definition (e.g., an abstract
datatype definition) would be immune from this. Consider, for example, the following definition:

Definition 2.4 Let S = (s1, s2,. .., sp) be a finite non-empty sequence of integers. A plateau
structure on S is defined by choosing a set P and two functions b, rb : P — IN such that the
following conditions hold:

1.Vpe P:1<lb(p) <rb(p) <n
2. Vp € PVi:lb(p) <i<rb(p):si = spp)
3.Vi,j:(1<i<j<nands; =s41=...=s;),ApeP:lb(p) <iandj<rbp)

But this definition certainly says no more than the previous two about the essentials of the plateau
concept. Refusing to say what plateaus are “made of” (be it intervals, couples, or beer bottles) is
not sufficient for guaranteeing that the reader immediately understands the concept.

A concept is abstract not because it was introduced in a certain way, but because it has
acquired an importance and identity in our thoughts. Therefore, the important issue is not to try
and discover the good way of defining things, but to choose the adequate concepts, namely those
that help us because we understand them the way they are.

2.5.4 On the Usage of Executable Definitions

Of course, not all ways of defining a concept are equally good. The good choice is always problem-
specific. Rather than giving rules for writing definitions, we will criticize a commonly given one.
According to some, a good definition ought to be declarative, i.e., written in a non-executable
language [17]. This rule is, in general, absurd. To illustrate our point, we choose the very text
formatting problem that was selected to show the virtues of declarative (and formal) specifications
and was already discussed so much in the literature (see [21] for an overview).

Most people involved with this problem sought to specify it well, because, according to them,
the correctness of a program can only be judged against its specification. But, then, against what
should the specification be judged? Against arbitrary subjective criteria, of course, which entails
that the value of specifications will be the object of endless discussions. According to us, on
the contrary, the correctness of a program corresponds to an objective fact, independently of the
way the problem is posed. Indeed, posing a problem means first of all admitting that there s a
problem, next, trying to understand it sufficiently, and finally, writing a text allowing somebody
else to understand it.

13

Posing the problem requires first of all the definition of the input and output texts. This can
only be done here after making some hypotheses on the “environment” of the user. If we had to
solve this problem for a real environment rather than for the sake of this article, then we could
not make any such hypotheses but should learn about the environment of the user so as to replace
these hypotheses by facts, which would be substantially more complicated than those used here.
We thus suppose the user “sees” texts as sequences of lines (corresponding, in general, to lines
on the screen or on paper), each line being a sequence of characters. This leads to the following
definition of the input text:

Definition 2.5 A word is a finite, non-empty sequence of non-blank characters.®> A line
is a finite, possibly empty sequence of characters and blanks. Every line [can thus be
uniquely decomposed as follows: by wy by wo by ... w, b,, where n > 0, the w; are
words, and the b; are sequences of blanks that are non-empty except possibly for by and
bn. The sequence of words (w1, ws, ..., wy) is the sequence of words represented by I, which
we denote [repr (w1, wa,...,wy). A text is a finite, possibly empty sequence of lines. Let
t=(h,ls,...,1,) be the input text. The sequence of words represented by t is the sequence of
words S such that S = S; e Sye...65,, where the S; are the sequences of words represented
by the /; (and e denotes sequence concatenation). We denote this by ¢ repr S. Two texts
are equivalent if they represent the same sequence of words.

One can easily see that these definitions correctly capture the notion of input text suggested by
the previous discussion. Now we must define the output text corresponding to a given input text.
Therefore, we first have to capture this concept from an intuitive point of view. So, to what does
it correspond? The answer is: to the result of applying an algorithm! The best way to understand
this concept is to imagine a human typist having a listing of the input text and a terminal where
every line has a length of mazpos characters. The job of the typist is to type the input text into
the terminal by filling every line as much as possible, without trespassing the limit of the screen nor
breaking words. This clearly amounts to the application of an algorithm whose execution uniquely
determines the output text. Therefore, if one absolutely wants to “mathematically” define the
output text in terms of the input text (i.e., if the previous explanations are deemed insufficient),
the best one can do is to give a definition paraphrasing as closely as possible the typist’s algorithm,
because such a definition has the best chances of being correct and comprehensible. We thus
propose the following definition:

Definition 2.6 Let S = (w1, wa,...,w,) be a finite, possibly empty sequence of words
that are each at most mazpos characters long. The compact representation of S, denoted
compact(S), is the text defined as follows:

1. if S = (), then compact(S) = ();

2. else (i.e., if n > 1), let ¢ be the largest integer such that 1 < ¢ < n and the line
wy; U wy ... U w; has no more than maxpos characters, and let [= wy; U wy ... U w;
and S' = (W41, ..., wy), so that compact(S) = () e compact(S’).

Given an input text ¢ and the sequence of words S represented by ¢, the output text corre-
sponding to t is defined if and only if no word in S is longer than maxzpos characters. It is
then equal to compact(S).

The definition of compact(S) is clearly executable. The only precise information it gives about
compact(S) is how to compute it. But it is precisely this information that is the most precious one,
for this example, for understanding the problem, because the output text essentially is, as argued
above, the result of applying an algorithm. Note that the definition of compact(S) contains an
over-specification according to [21], because we constrain the lines to be filled as much as possible
in top-down order, rather than in non-determinate order. We do not see the utility of preferring
a non-deterministic specification in this case. Of course, one should not conclude that executable
definitions are always the best or always “as good as” others. Since the objective of a definition

3We consider an alphabet with a single blank character, denoted LI, and no layout characters, such as for
tabulation and end-of-line.

14

is to communicate a concept that is already implicitly known (which is clearly the case in the
problem above), the best definition is the one that best captures the intuitive understanding of the
concept while making precise its details. It just happens that the best way to explain a concept
is, sometimes, to indicate how to compute it or how to generate its instances.

2.6 The “General Form” of Specifications

We now try to capture the “general form” of specifications, without however giving systematic
rules for writing “good” specifications, as such cannot be an objective. All one can hope for is
a sufficient understanding of the concept of specification for being able to use it satisfactorily in
many cases.

The specification of a program should always have two parts that play very distinct roles:

1. a statement indicating the purpose of the program, i.e., the information that can be drawn
from the results of its execution,;

2. a list of representation conventions that are to be satisfied for using the program correctly
and for interpreting its results correctly.

Statement (1) must always be very simple because the information produced by a program (after
interpretation of its results) must have a simple meaning to the user. Without it, she would be
unable to use the program to her advantage. The role of the “theory” of the problem is to make
sure that this meaning exists and that it can be clearly and simply formulated. The list (2) must
also be sufficiently simple to understand for the purpose of the program not to be completely
annulled by its difficulty of usage and of interpretation of its results.

This is not always easy to achieve due to the formal character of programming languages. It
is thus sometimes necessary to construct another theory before being able to simply state the
representation conventions.

We now state what the specifications of the three problems in Section 2.1 should contain.

Example: The Belgian National Lottery. The specification reduces to the indication of how
to start the program and to the statement that it results in displaying the next draw of the Belgian
national lottery. (It is practically useless to state the exact format of the produced character string
and the rules for decoding this information, because everybody immediately understands how to
interpret the message when it appears.)

Example: A payroll program. The accountant user of the payroll program must know the
necessary information as well as the rules of its representation by the input data. She must be able
to verify the correctness of these data. She also must know enough about the rules of representation
of the results in order to be able to finish the payroll task (this is actually the responsibility of a
bank, nowadays). The specification thus reduces to the indication of how to start the program and
to the statement that, from correct input data, the program produces correct results according to
the used representation rules.

Example: A search sub-program. Depending on the desired generality, the used program-
ming language, and the general context of the problem at hand, there is a tremendous variety of
possible specifications for a program performing a search in an array.* A satisfactory specification,
in some cases, could be the following:

Specification 2.1 The procedure search is a Pascal procedure declared as follows:
function search(z : integer) : boolean

Its declaration must figure within the scopes of the declarations of an integer constant n
(such that n > 1) and an array a of type array[l..n] of integer, which also is in the scope of

4This shows why it is unreasonable to try and give precise general rules of writing specifications, even if one
restricts oneself to a class of problems as particular as this one.

15

the former. When calling the procedure, the elements of array a must be in non-decreasing
order. Let v be the actual value of the formal parameter x. If at least one of the elements of
a is equal to v, then the call returns the value ¢rue, otherwise it returns false. (The contents
of a will be unchanged.)

The bulk of this specification is dedicated to the statement of the representation conventions and
to technical details. These details are tedious but unavoidable because the used programming
language is a formalism. They do not, however, render the specification unusable because the
problem of knowing where to put the various declarations and how to write them can be solved
separately as well as once and for all. When reasoning about it in the future, it suffices to remember
how to call the procedure, that it answers the question “does v belong to a?,” and that the answer
is given as a boolean value.

However, it is important to note that the introduction of general representation conventions
that are specific to a particular problem (i.e., they are chosen for an application and used for the
specifications of all the sub-programs of this application) can contribute to making much more
manageable the amount of representation details specific to each specification.

2.7 Requirements Specifications and the Theory of the Problem (Are
the Same Thing)

The process of elaborating requirements specifications is nowadays considered by many computer
scientists as the most crucial stage of software development. Requirements engineering is thus
emerging as a new and major branch of the software engineering discipline. It is primarily concerned
with the identification of the user’s needs, i.e., the so-called requirements elicitation process. As
soon as the user’s requirements are explicitly stated, they can (and must) be checked with respect
to consistency and completeness. In fact, this is what we call “elaboration of the theory of the
problem.” Thus, requirements specifications are not specifications (in our sense), but rather an
exposition of the very theory making it possible to specify the software system.

Formal specification languages are advocated by many researchers as the distinguished method-
ological tool for requirements engineers because they allow them to make the user’s informal state-
ments precise, to check the requirements specification for consistency and completeness, and to
ease the discussion with the user by means of prototyping, to name only a few supposed advan-
tages. In our opinion, the mechanical treatment of (formal translations of) the user’s requirements
can indeed possibly provide information that could not be easily inferred by hand. However, the
formal translation process is completely similar to the writing of a program in that it necessitates
giving precise specifications (in our sense) to most symbols and constructs of the formal text, in
order to ensure that the formalization captures exactly what the user meant.® Thus, the writing
of (so-called) formal requirements specifications presupposes the existence of an already fully un-
derstood theory of the problem, in our sense. Finally, as seen in Section 2.5, even the elaboration
of the theory of the problem may benefit from the use of specifications in our sense, in order to
make explicit the rationales underlying the concepts introduced by means of definitions.

3 On the Nonsense of Formal Specifications

3.1 Why Can’t There Be Any Formal Specifications?

A “formal specification” is a statement in a formal specification language. Such a statement is
unintelligible “by itself,” primarily because the concepts of the problem are almost never primitive
concepts of the used formal language. Therefore, a formula can only be “understood” as a repre-
sentation of an intuitive statement, according to explicitly given conventions. These conventions
are in general that the formula is true, in the chosen interpretation of the language, if and only
if the intuitive statement is true. The enunciation of such conventions is precisely what we call
a specification, in the sense that we discussed in Section 2, although not the specification of a
program but rather of a formula. Its role is to give a meaning and thus a purpose to something

5 Automated processing of formal texts could also be used only for psychological reasons, e.g., the computer is
God and always tells the truth.

16

(the formula in this case) that would otherwise not have one. Whether an inextricable formula is
true or false is of no interest whatsoever if this is the only thing we know about it. In general thus,
a specification is necessary each time that, for good reasons or bad ones, one wants to represent a
known property or concept by a text written in an artificial language (be it formal, mathematical,
...). This also shows that any “formal specification” of a (formal) program is always much closer
to the program itself than to a specification in our sense. A noticeable difference may be that it
is not “executable” because it is written in a “non-executable” language. In our opinion, it is not
important whether the chosen language is executable or not, but whether it allows us to say in the
most direct way what the purpose of the program is. Such a condition cannot be fulfilled by any
formal language, given the extremely low expressiveness of such languages. A formal language is
always almost as bad as a programming language for communicating the purpose of a program.
In other words: providing a formal specification of a program amounts almost to considering that
the text of the program (or of another program) allows us to understand its purpose.

3.2 Seven Frequently Asked Questions about Formal Specifications

Are informal specifications and formal ones complementary? Some people readily admit
that it is necessary to add an “informal comment” to a program that helps understand the purpose
of the program and that corresponds to our notion of specification. But, for these people, such
a comment is insufficient to ensure that the effect of the program has been precisely defined.
This corresponds to the frequent opposition of intuition and rigor, which considers that a fruitful
intellectual activity should be driven by intuition (which is comprehensible because incorrect) so
as to produce rigorous results (which are formal but incomprehensible). In our opinion, the correct
usage of a program necessitates having understood intuitively and rigorously its purpose. There is
no need to distinguish two notions of specification, one comprehensible and vague, the other precise
and unintelligible. If a specification features delicate issues that are likely to be misunderstood, it
is only necessary to give more details about them. There is no reason to believe such difficulties
are best resolved, in all cases, by using a formal language chosen once and for all.

If one thinks it is not safe to directly and simply explain the purpose of a program, i.e., in the
way one understands it oneself, and that one had better define with absolute precision the “effect”
of the program, even under the risk of incomprehensibility, by giving the readers “indications”
on how to reconstruct a comprehensible specification for themselves, then one is confronted with
the following difficulties. It is almost as difficult to write without errors a formal specification as
the program itself, and it is barely easier to “dectpher the message,” in the opposite direction. To
write a correct formal specification, one has to make an explicit detailed reasoning that is very
different from a vague informal comment. In order to convince oneself of having understood the
formal specification, another reasoning has to be done, which is extremely tedious if the formal
specification is not accompanied by such comments. So, for a couple { formal specification, informal
specification) to suitably play its intended role, it would have to be accompanied by a detailed
reasoning fixing their representation relationships. However, this is only meaningful if the informal
specification has been explicitly and precisely stated. The role of the formal specification and the
reasoning is then reduced to lifting the last doubts and ambiguities. But this can be achieved
at lower cost by other means, such as the inclusion of significant examples, the provision of the
reasoning process leading to the definitions in the specification, etc.

Are formal specifications a means of dividing the difficulty of programming? Other
people would rather say that the recourse to formal specifications is, if not a panacea, at least
a means of division of the difficulty. Indeed, it would allow, on the one hand, the formal and
mechanical proof of correctness of programs, and, on the other hand, the intuitive justification
that the formal specifications correctly represent the problem to be solved.® One could thus give
much more confidence to programs, since everything reduces to the problem of validity of the
formal specifications, formal correctness being established beyond all doubt.

This viewpoint rests on two forms of exaggerated optimism on formal methods. First, it is in
general not significantly easier or safer to prove intuitively the correctness of formal specifications

6 This second part of the division is completely ignored by some people who believe that only formal justifications
are valuable, and who assume thus that formal specifications are satisfactory “by miracle.”

17

than that of programs. Second, formal proofs of program correctness are almost often infeasible in
practice, whatever the available mechanical aid (proof verifier or theorem prover). For example,
note that a formal proof of program correctness amounts to proving a formula whose length is at
least the sum of the lengths of the formal specification and the program. So what will be the length
of the proof?! This also assumes a complete formalization of the semantics of the programming
language, which is already by itself an almost unrealizable task. If one considers that the time
and budget allocated to the verification of program correctness is necessarily limited, it can be
easily seen that one had better spend a bit more time justifying intuitively the correctness of the
program and carefully choosing test cases than make use of such formal methods.

However, many people (especially those who worry about improving the productivity of in-
dustrial scale programming) think that automatic verification of program correctness will soon
be feasible and common. In their minds, there is no essential difference between the automatic
proof of the correctness of a program and, say, its syntactic verification: both amount to entering
a text into the computer and waiting for it to reply ‘yes’ or ‘no’. If we object to this that the
two problems are of completely different orders of difficulty, some will reply that it was also once
“proven” that things heavier than air could not fly or that “he succeeded because he did not know
it was impossible.” But suppose such program verifiers were really used one day (no matter the
exact value of the verifications they perform), there is a high risk that they will be used as sole
criterion of the quality of a program. A “good” program will be the one that gets the blessings
of the verifier, and the primary objective of programmers will be to write such programs. By this
token, once again, personal judgment will have been replaced by arbitrary answers of a program!

Is it necessary to formalize specifications to prove their consistency and completeness?
Some people say that formal specifications allow systematic verification of their consistency and
completeness. This deserves several remarks.

First, if it is desirable that a statement be consistent and complete, the precise meaning of
these notions always strongly depends on the context of the statement, that is on a lot of things
that are known about the subject of the statement before even examining it. If a statement de-
fines a problem that has no solution, it is sometimes judged inconsistent, but, at other times, it
is considered a perfectly consistent statement of a problem that just happens to have no solution.
Similarly for completeness, when the problem has many solutions. Since a formal statement only
is, in general, a representation of a non-formal statement, which is the only one to be comprehen-
sible, the consistency and completeness of a formal statement can only receive a precise meaning
through this representation relation. As this relation is always chosen ad hoc, it is impossible to
satisfactorily define (i.e., in a manner always corresponding to the intuitive concepts) consistency
and completeness of formal specifications. Since this relation is thus totally exterior to the used
formalism, consistency and completeness cannot be verified mechanically.

Second, why are so many people interested in the notion of consistent and complete formal
specification? The only explanation to this phenomenon that we could find is that they have
completely taken up Hilbert’s belief in the foundation of mathematics through formalization (in
the hope, of course, that they could do better than him). This belief can be summarized by the
following assertions:

1. There must be (and somebody will define it sooner or later) a formal language in which every
problem (or, to be more modest, every problem of a certain “class”) has a natural expression.
In other words, the “intrinsic structure” of every problem can be exhibited in this language,
stripped of all its veils.

2. Better, this language will be so extraordinary that whoever uses it to state a problem will
be incapable, ipso facto, of writing anything else than the “good” definition of the problem.
Such a language will be said to be “thought-structuring.”

3. Finally, if nevertheless an error slipped into the specification, it could only result from a dis-
traction and would inevitably provoke an inconsistency or incompleteness in the specification,
which will be easily detected, if not corrected, by a good verification program.

This belief is maybe not proclaimed in public, nor even completely conscious, but nevertheless
underlies all the efforts of these people.

18

Are formal specifications more concise than informal ones? A common argument is that
formal specifications are more concise than informal ones. However, some people argue to the
contrary. Strictly speaking, the raised question is meaningless for specifications in our sense,
since they are a link between formality and informality. So the question in fact only applies to
requirements specifications, or, in other words, to the theory of the problem. During the elaboration
of this theory, the usage and introduction of mathematical notations is certainly permitted and thus
necessarily makes this first part of the specification more concise than without such notations. But
an explanation of the link between these mathematical concepts and the concepts of the problem
is also needed, and this second part cannot be made concise by means of mathematical notations.
That a formalization (in the strict sense) of the first part of a requirements specification makes
it more concise is obvious (as this is the very reason why notations have been introduced into
mathematics in the first place), but one cannot possibly pretend that this formal description is a
specification (in our sense), because the equally essential second part of a requirements specification
would be missing.

Are formal specifications more pragmatic than informal ones? Some advocates of formal
methods readily agree on the inevitability of informal specifications and informal verification, but
also point out that formal and informal specifications have different purposes and qualities. Indeed,
formal specifications, whether executable or not, would offer a means of early feedback from the
customer —through execution of the specification (early prototyping) or through demonstration
of desired properties—, and hence could allow significant cost saving. Otherwise, discrepancies
between the specification and the customer’s intentions might only be detected when the customer
runs (an increment of) the final software. However, and again, in our opinion the question of
pragmatism of formal specifications does not even arise. Indeed, one may certainly construct
intermediate formal descriptions before constructing the final software, as they can help during the
process of elaborating the theory of the problem. But one cannot call such a description a “formal
specification” (and writing it is more of a programming activity than a specification activity), as
it is not a specification at all (in our sense) and as it is incomprehensible by itself and must thus
be explained to the customer (which explanation process provides the very part that is missing in
the formalization), be it as a document or as an executable or demonstrable prototype.

Can formal specifications be automatically generated from informal ones? Some re-
searchers advocate writing informal specifications in some supposedly “semi-formal” notation (such
as SA/SD) or in some form of “controlled natural language” (in the sense that the vocabulary and
grammar are restricted so as to give sentences a “clear” semantics), expecting that they can be au-
tomatically translated into (executable) formal specifications. The problem with these approaches
is that these languages are formal ones, no matter what they are called. There is no such thing
as “semi-formal languages” or “informal controlled natural languages.” Since the descriptions are
thus actually formal, it is only obvious that they can be automatically translated into some other
formal languages. And, as formal statements, they cannot possibly be specifications, in our sense.
For such specifications (in our sense), there is of course no way that they can be automatically
formalized, as the link between the formal concepts and the real-life ones is not formalizable and
as one would have to prove that the translation process is equivalent to the mechanisms of human
knowledge acquisition.

Are formal specifications necessary for safety-critical systems? It is often argued that
formal methods are necessary for the design of safety-critical systems, and some standards orga-
nizations even start imposing/recommending their usage for such projects. The rationale is that
systems satisfying “specifications” in the form of, say, finite-state machines (that are deemed triv-
ially correct after inspection) can be shown, say, to be free of deadlock and lifelock risks. Our
objection to this formalist viewpoint is essentially the same as to the pragmatism issue above,
because, once again, it is a delusion to believe that there can be “obviously correct formal specifi-
cations.” But note that we do support the idea that extra care and rigor are needed in the design of
safety-critical systems; however, we do not agree that designing intermediate formal descriptions in
order to verify them is necessarily the best way to improve our confidence in the system. Explicit

19

reasoning based on specifications is often a better way; it is needed anyway to correctly build the
intermediate formal descriptions when they really help.

4 Conclusion: Why are the Role and Nature of Specifica-
tions so Often Misunderstood?

We now explain why our notion of specifications is difficult to understand and admit by many
practitioners and theoreticians of computer science. But let us first summarize our viewpoint:

1. A program is useful because its results can help to solve a problem. There is no limit to
the class of problems that we can imagine in the “real” world. Therefore, the understanding
of the purpose of a program may necessitate the knowledge of notions as distant as desired
from programming concepts (or from concepts used in formal specification languages).

2. The specification of a program essentially is the statement of its purpose.

3. A specification should not, nor can it provide all the knowledge necessary to the understand-
ing of the purpose of the program. It must just try to state it in the most satisfactory possible
way, that is in the most simple and direct way. That is why a specification is not meant for
just anybody, but only for those who can understand it.

4. For the specification to be comprehensible by sufficiently many people, it is, in general,
necessary to “construct” a theory that can be studied and understood by all. Such a theory
cannot be constructed from nothing, but assumes a considerable preliminary knowledge that
is partly shared by all the considered people.

Now, there are at least two reasons for the reluctance of so many people to admit the pertinence
of the assertions above.

First, there is the influence of the currently dominating ideas on the nature of mathematics.
Mathematical theories are supposed to be founded on formal axiomatized theories. This means
that every intuitive statement of the theory is supposed to be only an “abbreviation” of a formal
statement that is itself mechanically deducible from the axioms. From there to infer that every
interesting result of a theory can be discovered relatively quickly as soon as the axioms of its theory
are known is only a small step. And this is the “step” made, consciously or not, when asserting
that the specification of a program should, above all; define with absolute precision the effect of
the executions of this program. Indeed, it is clear that from the input/output relation determined
by the executions of a program, one can theoretically deduce all other interesting properties of this
program. Therefrom, some conclude that a specification reduces to such a definition, assuming
that every reader is sufficiently intelligent to derive from it all other “interesting” properties of
the program. (This means the reader is assumed to be omniscient, because if a program outputs
the string “380,000”, she would, for instance, have to derive from this observation that one of the
properties of the program is to give the distance between the Earth and the Sun, expressed in
kilometers in the decimal system.)

Therefore, the idea that the specification of a program must be and can only be the definition
of an input/output relation is a simple transposition of the idea that there is nothing more in a
mathematical theory than in its axioms. But, in order to understand the exact role of specifications,
one should realize that, to the contrary, there is infinitely more than that in an intuitive theory:
every new concept, notation, or result adds value to it that is not at all contained in the statement
of its axioms. The intuitive statement of an important theorem certainly is not a mechanical
consequence of the axioms of a formal system, no more than the assertion of the “truth” equivalence
between this statement and a formula. And this even holds for statements of the form “that formula
is a theorem,” because the meaning of the notions of formula and theorem is not derivable from
the mechanical rules of the formal system.

In conclusion, a correct understanding of the notion of specification necessitates, in our opinton,
a return to a more intuitive and “transcendent” perception of mathematics.

Second, there is the opinion according to which the mastery of the programming problem can
only be achieved by recourse to effective and automatable methods. It seems (sadly) evident that

20

few people are ready to admit that the mastery of programming will always depend, above all, on
the competence of the involved people. The manager wants effective criteria evaluating the quality
of the work done by the programmers. The programmer expects the “theoreticians” to provide
rules that can be followed blindly. Nobody wants to admit that the best way to realize whatever
task is to do one’s best by trying to stick to utmost intellectual honesty.

If, regarding specifications, we say that the best thing to do is to understand the exact role of
this notion so as to be able to “see,” in most cases, how to state them best, it will be considered
that we have not brought anything interesting, because we have not given any rule or criterion for
writing good specifications or for evaluating them. However, some people say that, as it is better
to do something rather than nothing at all, it is better, all things considered, to give rules that are
arbitrary but measurable.

For us, it is certain that little progress can be expected in programming as long as the opinion
is so widespread that the value of a criterion is determined by its being measurable and computer
readable. We think so because this idea can only prolong the illusions and avoid the real problems:
thanks to such criteria, the manager can take decisions without having to get involved in the
project, and this changes nothing to the quality of the programmers’ work, except that they have
to adjust themselves so as to respect these rules even if their application leads to absurdities.

Acknowledgments

The authors are indebted to Prof. Henri Leroy for his spiritual patronage. The central ideas of
this paper have been deeply influenced by his teaching and the numerous nightly discussions with
the first author.

References

[1] R. Balzer. A 15 year perspective on automatic programming. IEEE Trans. on Software Engi-
neering, 11(11):1257-1268, Nov. 1985.

[2] R. Balzer, N. Goldman, and D. Wile. Informality in program specifications. I[EEE Trans.
on Software Engineering 4(2):94-102, March 1978. Also in C. Rich and R.C. Waters (eds),
Readings in Artificial Intelligence and Software Engineering, pp. 223-232. Morgan Kaufmann,
1986.

[3] J.P. Bowen and M.G. Hinchey. Ten commandments of formal methods. IEEE Computer
28(4):56-63, April 1995.

[4] J.B. Bowen and M.G. Hinchey. Seven more myths of formal methods. IEEE Software 12(3):34—
41, July 1995.

[5] D. Craigen, S.L. Gerhart, and T. Ralston. Formal methods reality check: Industrial usage.
IEEE Trans. on Software Engineering 21(2):90-98, Feb. 1995.

[6] R.A. De Millo, R.J. Lipton, and A.J. Perlis. Social processes and proofs of theorems and
programs. Comm. of the ACM 22(5):271-280, May 1979. Comments in Comm. of the ACM
22(11):621-630, Nov. 1979.

[7] P.J. Denning (ed). A debate on teaching computing science. Comm. of the ACM 32(12):1397-
1414, Dec. 1989.

[8] J.H. Fetzer. Program verification: The very idea. Comm. of the ACM 31(9):1048-1063, Sept.
1988. Comments in Comm. of the ACM 32(3):374-381, March 1989.

[9] P. Flener and L. Popelinsky. On the use of inductive reasoning in program synthesis: Prejudice
and prospects. In L. Fribourg and F. Turini (eds), Proc. of META’94 and LOPSTR’94, pp.
69-87. LNCS 883, Springer-Verlag, 1994.

[10] M.D. Fraser, K. Kumar, and V.K. Vaishnavi. Informal and formal requirements specification
languages: Bridging the gap. IEEE Trans. on Software Engineering 17(5):454-466, May 1991.

21

[11] M.D. Fraser, K. Kumar, and V.K. Vaishnavi. Strategies for incorporating formal specifications

in software development. Comm. of the ACM 37(10):74-86, Oct. 1994.

[12] N.E. Fuchs. Specifications are (preferably) executable. Software Engineering Journal 7:323-
334, Sept. 1992.

[13] S.L. Gerhart, D. Craigen, and T. Ralston. Experience with formal methods in critical systems.
IEEE Software 11(1):21-28, Jan. 1994.

[14] W.W. Gibbs. Software’s chronic crisis. Scientific American 271(3):86-95, Sept. 1994.

[15] J. Guttag, J. Horning, and J. Wing. Some notes on putting formal specifications to productive
use. Science of Computer Programming 2(1):53-68, Oct. 1982.

[16] A. Hall. Seven myths of formal methods. IEEE Software 7(5):11-19, Sept. 1990.

[17] 1.J. Hayes and C.B. Jones. Specifications are not (necessarily) executable. Software Engineer-

ing Journal 4(6):330-338, Nov. 1989.

[18] C.A.R. Hoare. An overview of some formal methods for program design. IEEE Computer
20(9):85-91, Sept. 1987.

[19] P.G. Larsen, J. Fitzgerald, and T. Brookes, Applying formal specification in industry. IEFE
Software 13(7):48-56, May 1996.

[20] B. Le Charlier. Réflexions sur le probléme de la correction des programmes. Ph.D. Thesis (in
French), Facultés Universitaires Notre-Dame de la Paix, Namur (Belgium), 1985.

[21] B. Meyer. On formalism in specifications. I[EEE Software 2(1):6-26, Jan. 1985.

[22] D.L. Parnas. Mathematical description and specification of software. In B. Pehrson and I.

Simon (eds), Proc. of IFIP’94, pp. 354-359. Elsevier Science, 1994.
[23] H. Saiedian (ed). An invitation to formal methods. IEEE Computer 29(4):16-30, April 1996.

[24] J.M. Wing. A specifier’s introduction to formal methods. IEEE Computer 7(5):8-24, Sept.
1990.

22

