Program Schemas as Steadfast Programs
and their Usage in Deductive Synthesis

Pierre Flener
Department of Computer Engineering and Information Science
Bilkent University, 06533 Bilkent, Ankara, Turkey
Email: pf@cs.bilkent.edu.tr

Kung-Kiu Lau
Department of Computer Science, University of Manchester

Oxford Road, Manchester M13 9PL, United Kingdom

Email: kung-kiu@cs.man.ac.uk

Abstract

A program schema is an abstraction of a class of actual programs, in the sense that it represents
their data-flow and control-flow, but does not contain (all) their actual computations nor (all) their
actual data structures. We show that schemas can be expressed as first-order open programs, that
is where some of the used relations are left undefined. Compared to higher-order representations,
this considerably simplifies the semantics and manipulations of schemas. Actually, our schemas are
steadfast open programs, expressed in the first-order sorted language of an axiomatisation (called
framework) of the application domain. We give correctness and steadfastness (parametric correct-
ness) criteria, the latter entailing a-priori-correct reusability. All this is illustrated by means of a
schema capturing the divide-and-conquer methodology, and we derive the abstract conditions under
which it is steadfast wrt an arbitrary specification in an arbitrary framework. Finally, we show
how to use schemas for effectively guiding the deductive synthesis of steadfast programs from com-
plete specifications (i.e. complete axiomatisations of the problem), and illustrate this by developing a
strategy for synthesising divide-and-conquer programs as well as by actually synthesising a Quicksort
program.

1 Introduction

Program schemas are a popular element of the programming folklore: a program schema is an abstrac-
tion of a class of actual programs, in the sense that it represents their data-flow and control-flow, but
does not contain (all) their actual computations nor (all) their actual data structures. Program schemas
have been shown useful in a number of applications, such as proving properties of programs, teaching
programming to novices, guiding the manual construction of programs, debugging programs, transform-
ing programs, and guiding the (semi-)automatic synthesis of programs. In logic programming, most
researchers represent their schemas as higher-order expressions, sometimes augmented by extra-logical
annotations and features, so that actual (first-order) programs are obtained by applying higher-order
substitutions to the schema (for an overview, see [6]).

In this paper, we take a different approach and show that schemas can also be expressed as first-
order programs, but where some of the used relations are left undefined. This considerably simplifies the
expression of the semantics of schemas (note that often none is given), not to mention their manipulations.
Indeed, we show that program schemas can be expressed as steadfast open programs, thus linking this
topic with the research on frameworks of the second author (see, e.g., [24]). Briefly, this means that
we express specifications and programs in the first-order sorted language of an axiomatisation (called
framework) of the application domain. We also give correctness and steadfastness criteria. The latter
criterion entails a-priori-correct reusability, which is a very desirable feature of programs.

As of now, we mainly aim at using schemas for guiding the synthesis of steadfast programs from
complete specifications (i.e. complete axiomatisations of the problem). Therefore, we combine some ideas

of the previous work on deductive synthesis of the second author [18] with the ideas on schema-guided
synthesis of the first author [6], and follow the approach taken by Smith in functional programming [30].

The rest of this paper is organised as follows. In Section 2, we define the concept of frameworks,
namely as first-order axiomatisations of the considered problem domain. We distinguish between open
and closed frameworks, depending on whether they are parameterised (on sorts, functions, and/or re-
lations) or not. Specifications and programs are expressed in frameworks. Then, in Section 3, we first
distinguish between open and closed programs, depending on whether they feature no or some undefined
relations, and then define what it means for a closed program to be correct wrt a specification, in a given
framework of course, as well as what it means for an open program to be steadfast wrt a specification,
in a given framework. A steadfast program is parametrically correct, that is it is correctly reusable
no matter how the parameter sorts, functions, and relations are instantiated. We can then define, in
Section 4, program schemas as steadfast (first-order) programs, in an arbitrary framework. Next, in
Section b, we illustrate all definitions and concepts seen that far by means of a schema capturing the
divide-and-conquer programming methodology, and show under what abstract conditions it is steadfast
wrt an arbitrary specification in an arbitrary framework. Schemas can be used to effectively guide the
synthesis of steadfast programs, as argued in Section 6, where we also develop a strategy for synthe-
sising divide-and-conquer programs and illustrate it by synthesising the well-known Quicksort program.
Finally, in Section 7, we conclude, examine related work, and line out future work.

2 Frameworks and Specifications

Our approach to program synthesis is set in the context of a (fully) first-order axiomatisation F of the
problem domain in question, which we call a framework F. Specifications are given in F, i.e. written in
the language of F. We adopt a model-theoretic semantics for F, and for specifications and programs!
in F. This declarative approach enables us to define program correctness wrt specifications not only for
closed programs but also for open programs i.e. programs with parameters, in both closed and open
frameworks. In this section, we briefly define frameworks and specifications and their model-theoretic
semantics.

A framework F is a full first-order logical theory (with identity) with an intended model. The syntax
of F is similar to that used in algebraic abstract data types (e.g. [13, 34, 28]). However, whilst an
algebraic abstract data type is an initial model ([12, 15]) of its specification, the intended model of F is
an sotnitial model.

Definition 2.1 A model i* is an isoinitial model of F iff, for every other model i of F there is a unique
isomorphic embedding A : i* — i.

An isomorphic embedding A : i* — i is a homomorphism with the additional property of preserving
negation, i.e. for every relation symbol r, including identity, (a1, ..., an) € i entails (h(e), ..., h(an))
¢ ri, where #1~ and ' are the interpretations of r in i* and i respectively.

Less formally, if F has a reachable model, i.e. one where each element (of the domain) can be

represented by a ground term, then:

an isoinitial model i of F is a reachable model such that for any relation r defined in F,
ground instances r(t) or —r(t) are true in i iff they are true in all models of F.

Such a (reachable) model is also an initial model:

Definition 2.2 An initial model j of F is a reachable model such that for any relation » defined in F,
ground instances r(t) are true in j iff they are true in all models of F.

Both initial and isoinitial theories enjoy the so-called ‘no junk’ and ‘no confusion’ properties [12].
‘No junk’ means that the (initial or isoinitial) model is reachable (by ground terms), and ‘no confusion’
means that two ground terms of the domain of the model are identical iff they are equal according to
the axioms. However, isoinitial theories handle negation properly, whereas initial theories can only do
so via so-called ‘final models’. Negation is an important property in reasoning about specifications and
program correctness in general.

1That is, normal logic programs.

2.1 Closed and Open Frameworks

We distinguish between closed and open frameworks, depending on the absence or presence of parameters.

Definition 2.3 (Closed Frameworks)
A closed framework consists of:

e a defined (many-sorted) signature of

— sort symbols;
— function declarations, for declaring constant and function symbols;

— relation declarations, for declaring relation symbols;

e a set of first-order axioms for the declared function and relation symbols, possibly containing
induction schemas;

e a set of theorems, 1.e. proven properties of the problem domain.

In general, a closed framework F typically completely defines a new abstract data type 7. The (new)
sort T'is constructed from constructors declared as functions (though not labelled as such). Axioms are
added to define the (new) functions and relations on 7.

Example 2.1 (Closed Frameworks)
A typical closed framework is (first-order) Peano arithmetic NA7: 2

Framework NAT;

SORTS: Nat;
FUNCTIONS: 0 i — Nat,
s : Nat — Nat;

+,% : (Nat,Nat) — Nat;
AXIOMS: =0 = s(z) A s(a) = s(b) — a = b;

x4+ 0=z

z+ s(y) = s(x + y);

z*x0=0;

zxs(y) =z + x*y;
HO)A(Vi. H(i) — H(s(i)) — Vz . H(z).

This framework defines the abstract data type MAT as follows: the sort Nat of natural numbers is
constructed freely from the constructors 0 (zero) and s (successor); the freeness aziom for these con-
structors is the first axiom; the functions + (sum) and * (product) on Nat are axiomatised by the next
four axioms (in a primitive recursive manner).

It can be shown that an isoinitial model of MAT is the structure of natural numbers thus generated,
i.e. the term model generated by the constructors 0 and s.

Note in particular that the last axiom in MA7 is an induction schema. This is useful for reasoning
about properties of + and * that cannot be derived from the other axioms, e.g. associativity and
commutativity. This illustrates the fact that in a framework we may have more than just an abstract
data type definition.

Definition 2.4 (Open Frameworks)
An open framework consists of:

e a (many-sorted) signature of

— both defined and open sort symbols;
— function declarations, for declaring both defined and open constant and function symbols;

— relation declarations, for declaring both defined and open relation symbols;

2We will omit the most external universal quantifiers.

o a set of first-order axioms each for the (declared) defined and open function and relation symbols,
the former possibly containing induction schemas;

e a set of theorems.

Example 2.2 (Open Frameworks)
The following open framework axiomatises the (kernel of the) theory of lists with parametric element
sort Elem and partial ordering relation <: 3

Framework LZS87 (Elem,<);
IMPORT: NAT;
SORTS: Nat, Elem, List;*

FUNCTIONS: nil . — List;
) . (Elem, List) — List;
noce : (FElem, List) — Nat,

l . List — Nat,;
| : (List, List) — List,;
RELATIONS: elemi : (List, Nat, Elem);
< (Elem, Elem)
mem (Elem, List);
len (List, Nat);
append : (List, List, List);
perm (List, Lzst)
ord (List);
AXIOMS: -nil = a.B A (a1.31 = az.Bz — a1 = as N\ Bl = Bz)),

H(mni) A(Na,J . H(J) — H(a.J)) = VL. H(L);

noce(z, nil) = 0;

a="b— noce(a,b.L) = noce(a, L) + 1;

—a = b — noce(a, b.L) = noce(a, L);

elemi(L,0,a) -~ 3B .L = a.B;

elemi(L,s(i),a) — 3b,B. L =b.BA elemi(B,i,a);

mem(e, L) < 3i. elemi(L, 4, e);

len(L,n) < Vi.i<n < Ja.elemi(L,i,a);

n=1I(L) < len(L,n);

append(A, B, L) =& (Vi,a.i < l(A) —
(elemi(A,i,a) — elemi(L,i,a)))A
(V4,b. elemi(B,j,b) —
elemi(L,j+ l(A),b));

perm(A, B) < Ve . noce(e, A) = nocc(e, B);

C = A|B < append(4, B, C);

ord(L) « Vi. elemi(L,i,e1) A elemi(L, s(i), e2) — e1 < ea;

P-AXIOMS: z<lyAydz <z =1y,
rdyNy<z—xz.

where the function nocce(a, L) gives the number of occurrences of a in L, [and | are the usual functions
for length and catenation, elemi(L, i, a) means a occurs at position ¢ in L, and mem, len, append, perm,
and ord are the usual ‘membership’, ‘length’, ‘concatenation’, ‘permutation’; and ‘ordered’ relations.

LIST(Elem, <) imports the (closed) framework MA7T . The first axiom is the freeness axiom for the
constructors - and nil. The second axiom is an induction schema for reasoning about all such predicates.
The p-axioms are the parameter axioms for <1. In this case, they state that < must be a (strict) partial
ordering.

Whilst a closed framework has one intended (isoinitial) model, an open framework has a class of
intended models.

3We shall write < in infix notation for clarity.
4Strictly speaking, we should write List(Elem, <), but to save space we simply write List.

Example 2.3 Consider the open framework LZST(Elem,<). For every interpretation of the open
sort Elem and the ordering <1, we get a corresponding intended model of LIST (Elem, <1). For exam-
ple, suppose ZN'7T is a closed framework axiomatising the set Int of integers with ordering <. Then
LIST(Int,<) automatically imports ZAN7 and becomes a closed framework with an isoinitial model
where Int is the set of integers, Nat contains the natural numbers, and List finite lists of integers.

The class of intended models of an open framework can also be defined formally under isoinitial
semantics, in a parametric manner. For simplicity, however, we shall not do so here, and instead we
will consider an open framework just as a pair (X,C), where X is the signature, and C is the class of
intended interpretations. Note that a closed framework is a pair (X, C) where C is a class of isomorphic
interpretations.

Notation and Convention. We will also denote an open framework F as F(II), where II are the open
symbols, or parameters, of F. In the sequel, all frameworks will be considered open, as a closed framework
is just an extreme case of an open one, namely where II is empty.

Also, for simplicity, in definitions — but not necessarily in examples — we will restrict ourselves to
binary relations.

2.2 Specifications

In a framework a specification S introduces new symbols by means of a set of axioms:

Definition 2.5 (Specifications)

A specification S of a new symbol s in a framework F = (X,C) is a (¥ + s)-axiom.®

Thus, from a semantic point of view, .S is an expansion operator:

Definition 2.6 Let j be a Y-interpretation, and i be an expansion of j to ¥ + s. We say that i is an
ezpansion of j determined by a specification S (of s) iff i = S.

S determines (one or more) interpretations of the specified symbol s, in terms of the old ones, by
determining expansions of the intended interpretations of F, i.e. X-interpretations.

We distinguish between specifications that determine only one, and those that determine more than
one, interpretation of the specified symbols:

Definition 2.7 (Strict and Non-strict Specifications)

Let F = (X,C) be a framework, and S be a specification of a new symbol s.

S is said to be strict in F if,| for every j € C, it determines only one expansion of j, i.e. only one
interpretation of s.

S is non-strict (or loose) in F if, for every j € C, it determines more than one expansion of j, i.e.
more than one interpretation of s.

A specification S in a framework F thus expands F. We distinguish between adequate and inadequate
expansions:

Definition 2.8 A closed framework G is an adequate expansion of a closed framework F if the signature
and axioms of G contain those of F, and the isoinitial model of G is an expansion® of that of F.

Thus, adequate expansions of a framework F expand F by introducing new symbols and axioms,
while preserving the intended models of F. They therefore provide a means of constructing frameworks
incrementally.

Non-strict specifications give rise to inadequate framework expansions. Symbols defined by such
specifications may have many interpretations and thus destroy the existence of an isoinitial model for
the expanded framework. However, non-strict specifications are very useful for program specification,
since they enable us to avoid unnecessary details. We shall therefore use non-strict specifications only
for program specifications, i.e. to introduce relations that are to be computed by programs. For this

5% 4+ s denotes the signature containing ¥ and the new symbol s.
6 An expansion of a model i, to a larger signature, is any model for the new signature that coincides with i for the old
one.

purpose, they do not have to be adequate, although they must have a precise meaning in the isoinitial
model of the framework.

Strict specifications on the other hand can be used to expand and build up the framework by adding
new framework symbols. However, for this purpose they must be adequate.

Thus all our framework axioms are strict specifications, whilst all our non-strict specifications are
program specifications. However, it should be noted that strict specifications can also be used to specify
programs.

Convention. For uniformity, we shall only use specifications of the form
Ve : X,Vy:Y.Q(z) — (r(z,y) — R(x,y))

where () and R are formulas in the language of F, and X and Y are sorts of F. @ is called the input
condition, whereas R is called the output condition of the specification and may or may not contain the
relation 7. When @ is true, then we drop it and speak of an if-and-only-if (iff) specification; otherwise,
we speak of a conditional specification. Note that the former is strict, whilst the latter is non-strict.

In the sequel, we often drop the universal quantifications at the beginning of specifications. Also, all
specifications will be considered conditional, as iff specifications are just an extreme case of conditional
ones, namely where @ is true.

Example 2.4 (Specifications)
Let us give a specification, in the framework LZST (Elem, <) introduced above, of the relation sort,
which is informally specified as follows:

sort(L,S) iff S is an ordered (under strict partial ordering <1) permutation of L, where L
and S are Elem lists.

Formally, sort(L,S) can now be specified as follows:
sort(L,S) — perm(L,S) A ord(S)

(perm and ord are already defined in the framework.)

3 Correctness of Open Programs

Open programs arise in both closed and open frameworks. In a closed framework, the parameters of an
open program may be relation symbols that are computed by other programs.

Definition 3.1 (Defined and Open Predicates)

In a framework F = (X,C), let P be a X-program, i.e. a normal logic program whose signature is a
subsignature of 3.

A predicate in P is defined (by P) if and only if it occurs in the head of at least one clause of P.

A predicate in P is open if it is not defined (by P). An open predicate in P is also called a parameter
of P.

Notation.
In a signature 3, we will write
P:o<=7m

for a ¥-program P with defined predicates 6, where 7 is the subsignature of X that does not contain 6.

Thus the parameters of P are the set X\ 7 of symbols.

For a program P : 6 <= 7w, the meaning of 7 is considered to be pre-defined:

Definition 3.2 (Pre-interpretations)
Let P :6 < 7 be a ¥-program.
A 7-interpretation will be called a pre-interpretation of P.

"For more on this issue, see the discussion in [22].

This definition of pre-interpretation is an extension of that in [25]. The two definitions become
equivalent when P does not contain open predicates, and the signature of P coincides with 3.

Definition 3.3 (Open and Closed Programs)
Let P :6 < 7 be a ¥-program.

e If P has at least one open predicate, then P is open.
e If P has no open predicates, then:

— P is closed in a pre-interpretation j if (and only if) the Herbrand base generated by = is
isomorphic to (a suitable restriction of) j;

— P is open in a pre-interpretation j otherwise.

In the sequel, all programs will be considered open, as a closed program is just an extreme case of
an open one, namely one without any parameters.

Example 3.1 (Open Programs)
A possible open program for sort(L,S) in LIST (Elem, <) is the following:

sort(L,S) «— L =nil S =nil
sort(L,S) «— L = hT,partition(T, h,TLy,TLs),
sort(TLy,TSy), sort(TLa, TS2), append(TS1, h.T'Ss, S)
partition(L,p,S,B) «— L =nil,S =nil, B =nil
partition(L,p,S,B) «— L =h.T,h<p,partition(T,p, TS, TB),S=hITSAB=TB
partition(L,p,S,B) «— L =h.T,—~h<p,partition(T,p,TS,TB),S=TSAB=hTB

A model-theoretic definition of correctness of open programs, called steadfastness, is given in [21].
Here, we give an equivalent definition in proof-theoretic terms, which will turn out to be more “con-
structive” for our purposes (see Section 5.2).

Depending on whether a program is closed or open, we have two notions of correctness. For closed
programs, we have the classical notion of (total) correctness:

Definition 3.4 (Total Correctness)
In a framework F(II), a closed program P, for relation r is (totally) correct wrt its specification

Ve : X, Vy: Y. L. () — (r(z,y) < Or(2,¥))
iff for all ¢ : X and u : Y such that I.(¢) we have:
FU{r(z,y) — Or(z,y)} E r(t,u) iff FUP Fr(t,u) (1)

Total correctness is the conjunction of partial correctness (‘iff’ replaced by ‘if” in the above) and totality
(‘iff” replaced by ‘implies’).

In other words, and as intended, under input condition I., the program P, is equivalent, in F, to
r(z,y) < Or(z,y) for queries on r.
Note that (1) is equivalent to

FEO(t,u) iff FUP Fr(t,u) (2)

and in the sequel this will play a crucial role in our correctness proofs.

This kind of correctness is not entirely satisfactory, for two reasons. First, it defines the correctness
of P, in terms of the programs for the relations in its body, rather than in terms of their specifications.
Second, all the programs for these relations need to be included in P, (this follows from P, being closed),
even though it might be desirable to discuss the correctness of P, without having to fully solve it (i.e. we
may want to have an open P,). So, the abstraction achieved through the introduction (and specification)

of the relations in its body is wasted. Thus, for open programs, we must bring in the specifications of
at least their open relations, whereas for closed programs, it is preferable to bring in the specifications
of at least some of their defined relations.

This leads us to the notion of steadfastness, which we only define here for the most interesting case,
namely where all relations occurring in the body are also known by their specifications, whether they
are open relations or the defined relation. Again, we do not give here a model-theoretic definition of
steadfastness as in [21], but rather a proof-theoretic definition that will turn out to be more “constructive”
for our later purposes (see Section 5.2).

Definition 3.5 (Steadfastness)

In a framework F(II), an open program P, for relation r (with parameters py, ..., py) is steadfast wrt
a specification S, of r and a set {S1,...,S5,} of specifications of p1, ..., p, iff, for any closed programs
Py, ..., P, that are correct wrt Sy, ..., Sy, respectively, we have that the (closed) program P,UP;U...UP,
is correct wrt S, in F(II).

This is similar to Deville’s notion of ‘correctness in a set of specifications’ [3, p.76], except that
specifications and programs are not set within frameworks there. Moreover, we also (but not in this
article, hence the simplified definition above) consider other cases of steadfastness, namely where several
(but not necessarily all) defined relations of a program are known by their specifications, the other
defined relations being known by their clauses only.

Definition 3.6 (Steadfast program)
In a framework F(II), a steadfast program for a relation r consists of an open program P, for r

(with parameters p1,...,p,) and a set {S,,S1,...,S,} of specifications of r,py, ..., pn, such that P, is
steadfast wrt .S, and {S1,...,5,}.

This definition will be crucial in the rest of this paper, because we can now define program schemas
as steadfast programs.

4 Program Schemas as Steadfast Programs

Program schemas are a popular element of the programming folklore: a program schema is an abstraction
of a class of actual programs, in the sense that it represents their data-flow and control-flow, but does
not contain (all) their actual computations nor (all) their actual data structures. One could for instance
design a program schema capturing the class of divide-and-conquer programs, or a sub-class thereof (e.g.,
those featuring an input parameter of type list, and division of that list into two shorter lists).

Program schemas have been shown useful in a number of applications, such as proving properties
of programs [26], teaching programming to novices [9], guiding the manual construction of programs
[2, 32, 27], debugging programs [10], transforming programs [8, 11, 33], and guiding the (semi-)automatic
synthesis [4] of programs, be it deductive synthesis [1, 16, 18, 19, 30, 31], constructive synthesis [nobody
so far], or inductive synthesis [5, 7, 14]. For more details and more exhaustive references to related work,
please refer to [6].

For representing schemas, there are essentially two approaches, the choice of any depending on the
targeted manipulations of schemas.

First, most cited researchers represent their schemas as higher-order expressions, sometimes aug-
mented by extra-logical annotations and features, so that actual programs are obtained by applying
higher-order substitutions to the schema. Such schemas could also be seen as first-order schemas, in the
mathematical sense, namely designating an infinite set of programs that have the form of the schema.
The reason why some declare them as higher-order is that they have applications in mind, such as schema-
guided program transformation [8], where some form of higher-order matching between actual programs
and schemas is convenient to establish applicability of the start schema of a schematic transformation.

Second, Manna [26] advocates first-order schemas, where actual programs are obtained via an inter-
pretation of the (relations and functions of the) schema. This is related to the approach we advocate
here, namely that a schema can also be represented as a (first-order) open program (in a possibly open
framework, which is a class of interpretations), so that actual programs can be obtained by adding pro-
grams for some (but not necessarily all) of its open relations. So there is no need to invent a new (or
higher-order) schema language, at least in a first approximation (but see Section 5.1 below).

We say that a schema covers a program iff it can be extended into that program, and that the
program is an instance of that schema. In order to also consider a notion of correctness of a schema, we
have to add to a schema the specifications of its open relations. This leads to the following definition:

Definition 4.1 (Program schema)
In a framework F(II), a (program) schema is a steadfast program, whose open program is called the
template of the schema, and whose specifications are called the constraints of the schema.

Most definitions of schemas, with the laudable exception of the one by Smith [30, 31], reduce this
concept to what we here call the template. Such definitions are thus merely syntactic, providing only a
pattern of place-holders, but they have no concerns about the semantics of the template, the semantics
of the programs it covers, or the interactions between these place-holders. So a template by itself has
no guiding power for teaching, programming, or synthesis, and the additional knowledge (corresponding
to our constraints) somehow has to be hardwired into the system or person using the template. Despite
the similarity, our definition even is an enhancement of Smith’s definition, because we consider relational
schemas (rather than “just” functional ones), open schemas (rather than just closed ones), and set up
everything in the explicit, user-definable background theory of a framework (rather than in an implicit,
predefined theory). The notion of constraint even follows naturally from, or fits naturally into, our view
of schemas as steadfast programs, rather than as entities different from programs.

5 Example: A Divide-and-Conquer Schema

We now illustrate all definitions and concepts seen so far by means of a schema capturing the divide-and-
conquer programming methodology. First, in Section 5.1, we construct a divide-and-conquer template
(i.e., open program) from that methodology. Then, in Section 5.2, we abduce the constraints (on the
open relations) under which this template is a steadfast program wrt its specification.

5.1 A Divide-and-Conquer Template

A sub-class of the well-known class of divide-and-conquer programs can be captured by the following
(open) program, or template:

r
r

z,y) — primitive(z), solve(z,y)
z,y) — nonPrimitive(z),decompose(x, hx,tey,txs),
T(tl‘l 3 tyl)a T(tl‘z, tyZ)a compose(hx, tyl 3 tyZa y)

PRGN

By itself, such an open program has no meaning, as it can be extended without necessarily obtaining
a divide-and-conquer program. Taken to its extreme, in the absence of constraints, this divide-and-
conquer template covers every program, which is obviously not what was wanted. Indeed, it would
suffice to instantiate primitive by true, nonPrimitive by false, and solve by the given program (the
instantiations of all other place-holders being arbitrary)! But we can give this template an informal
intended semantics, as follows. For an arbitrary relation r over formal parameters and y, the program
is to determine the value(s) of y corresponding to a given value of . Two cases arise: either # has a
value (when the primitive test holds) for which y can be easily directly computed (through solve), or »
has a value (when the nonPrimitive test holds) for which y cannot be so easily directly computed.® In
the latter case, the divide-and-conquer principle is applied by:

1. division (through decompose) of z into a term haz and two terms tz; and ¢z, that are both of the
same sort as but smaller than & according to some well-founded order,

2. conquering (through r) in order to determine values of ty; and ty; corresponding to tz; and txs,
respectively, and

3. combining (through compose) terms hx, ty;, tys in order to build y.

8Note that both cases may apply, as there may be values of y that it is easy to directly compute from a given z, as well
as other values of y that it is not so easy to directly compute from that x. The classical program for member illustrates
such non-determinism.

As, in general, the semantics of open programs is defined parametrically, we can also do so for this
template. While doing this (in the next sub-section), we enforce the informal semantics above and
supply the corresponding axioms (here called constraints) of the open relations.

Note that nothing, neither here nor elsewhere in this paper, prejudices the number of “heads” hz of
z to be 1, or the number of “tails” tz; of « to be 2 (i.e. the number of recursive calls to be 2). We have
just chosen this version of the schema for illustration purposes, but nothing prevents particularization to
other (fixed) numbers of heads and tails, nor parameterization to arbitrary numbers h of heads and ¢ of
tails. Also, the words “head” and “tail” should not be taken literally, as a head of a list (for instance) may
well be 1ts central element, if not a prefix, and a tail may well also be a prefix. Finally, this template is
restricted to binary relations, so a parameterization to n-ary relations (possibly with passive parameters,
which don’t change through recursion) would thus also be interesting. See the proposal in [6] for more
details on this.

For instance, in the LZST (Elem, <) framework above, if r(z,y) is replaced by sort(L, S), then the
open program above can be extended into a program by addition of the following clauses:

primitive(L) L = nil
nonPrimitive(L) L=hT
solve(L, S) S = nil

decompose(L, h, Ty, Ts
partition(L,p, S, B

) L = h.T, partition(T, h,T1,Ts)

)
partition(L,p, S, B)

)

)

L=mni,5 =nil, B=mnil

L = h.T, h<p,partition(T,p, TS, TB),S = h.TS,B=TB
L = h.T,-h<p,partition(T,p, TS, TB),S =TS,B=hTB
append(Ly,e.La, R)

(
partition(L,p, S, B
compose(e, L1, Ly, R

rrrrr1rara

(All added clauses, except the ones for partition, can actually be unfolded, as they are non-recursive.)
This is the classical Quicksort program, but it is still open as there is no program yet for deciding < nor
append. However, the steadfastness of the overall program can be verified, as < is constrained by the
p-axioms, and append is constrained by the (regular) axioms of LIST (Elem,).

Note that templates are thus composition operators, in the sense that they show how to compose
individual programs into larger programs. As this is not a mere juxtaposition, this is a first step towards
going beyond programming-in-the-small.

Also, the schemas mentioned here are design schemas (capturing a class of programs). Since we do
not discuss transformation schemas (directed pairs of design schemas capturing a transformation process
[8, 11, 33]) here, we will from now on simply talk about schemas.

5.2 Steadfastness of a Divide-and-Conquer Template

As we have observed earlier, the divide-and-conquer template above does not have a (formal) semantics
by itself, so it is up to us to enforce that its extensions actually are programs of the divide-and-conquer
class. This enforcement should result in the supply of axioms (here called constraints) on the open
relations of the template. Also, as the main objective of schemas is the ability to pre-compile as much
as possible of the manipulations on the programs covered by a template, it would be preferable to
pre-compile this enforcement as much as possible.

We can do so by “proving,” at an abstract level, that a template for an arbitrary relation in an
arbitrary framework is steadfast wrt the specification of » and the unknown axioms of the open relations
the template introduces, and enforcing the informal semantics of the template during this “proof.” The
“proof” itself must of course “fail” due to the lack of knowledge about r and the introduced open
relations, but the reasons of this “failure” can be used to reveal (or: abduce) the necessary relationships
between r and the introduced open relations. These relationships, or axioms, are the constraints on the
open relations of the template!

Let us illustrate these ideas on the divide-and-conquer template above, but simplified as follows for
convenience (i.e., where nonPrimitive(x) — —primitive(z)):

r(z,y) <« primitive(z), solve(z,y)
r(z,y) — -—primitive(z), decompose(x, hx,txy,tes), (Pr)
T(tl‘l 3 tyl)a T(tl‘z, tyZ)a compose(hx, tyl 3 tyZa y)
The simplification means that we do not cover some non-deterministic programs, namely those where
nonPrimitive(z) is not —primitive(z).

10

Suppose the specification of r, in a framework F(II), is:
Ve : X,Vy: Y. L (z) = (r(z,y) < Or(2,y)) (Sr)

The objective is to find specifications (in F) Sprim, Ssotwe, Sdec, Scomp of primitive, solve, decompose,
compose, respectively, such that the open program P, is steadfast wrt S, and {Sprim, Ssotve, Sdec, Scomp }-
To do so, we must apply the definition of steadfastness, but we will also manually enforce the informal
semantics of the considered template.

By the definition of steadfastness, it suffices to show, by structural induction on X using some well-
founded order <, that for all ¢ : X and w : Y such that I.(t) we have:

F E Op(t,u) iff FUP/E r(t,u),

where P/ is the union of P, and any programs Pprim, Psotve, Pace, Peomp that are correct wrt the yet

unknown Sprim, Ssolve; Sdec, Scomp, respectively, which are thus to be revealed by this proof.
The induction hypothesis is that for any v : X and w : Y such that I.(v) and v < ¢, we have:

F E Or(v,w) iff FUP!E r(v,w).

Let us first establish partial correctness of P! wrt S,. Hypothesise thus that I.(¢) and FU P! F r(t, u)
hold, for some arbitrary ¢ : X and » : Y. By the clauses in P/ for r, there are two cases to consider,
according to whether primitive(t) holds or not.

1. Assume primitive(t) holds. Then, by the hypothesis F U P! + r(¢,u) and by P., we have that
solve(t,u) holds. We are blocked now. But we can unblock the situation by postulating (or:
abducing) the following two constraints:

(a) The sub-program P,y;n, of P/ is partially correct wrt the specification

Vi : X. primitive(z) < Oprim (). (Sprim)

(b) The sub-program P;oye of P, is partially correct wrt the specification

r

Ve : X,Vy Y. L(2) A Oprim (2) — (solve(z, y) < O,(z,y)). (Ssotve)

Now, by constraint (a) and the assumption primitive(t), we have that F = Opyim(t) holds.

So, by constraint (b), the hypothesis I.(t), the just inferred Oppim(t), and the previously inferred
solve(t, u), we have that F |= O, (¢, u) holds.

2. Now assume —primitive(t) holds. Then, by the hypothesis F U P! F r(t,u) and by P,, we have
that decompose(t, ht,tt1,tts), r(tty,tur), r(tta,tus), and compose(ht,tuy,tus, u) hold, for some
ht : H, some tt1,tt2 : X, and some tug,tus : Y, where H is a (possibly new) sort (possibly, but not
necessarily, designating the sort of the ‘elements’ of inductively defined sort X). We are blocked
again. But we can unblock the situation by postulating (or: abducing) constraint (a) again, as
well as the following two new constraints:

(¢) The sub-program Py, of P/ is partially correct wrt the specification

Vi, ter,tes : X,Yhe : H. =0prim () —
(decompose(x, hx,tey,tws) — Dec(x, he,try,tes) AL (o) AL (tes) ANty < x Ates <).
(Sdec)

(d) The sub-program P.omp of P; is partially correct wrt the specification

r

Vha : H Viyr, tye, v 0 Y, Ve, teq, teg - X, Ogec(x, ha, tey, tes) A Op(tey, tyr) A Op(tes, tys) —

(compose(haz,tyr,tya, y) — Or(z,y)).
(Seomp)

Note that the new sort H is shared by these specifications, but otherwise unspecified. In Scopmp,
and in the following, we refer to the output condition of decompose by Ogec(, h,tzy, tzs).

Now, by constraint (a) and the assumption —primitive(t), we have that F = =Opim(t) holds.

11

Then, by constraint (c) and the inferred —Oppim(t) and decompose(t, ht,tt1,tts), we have that
F E Oueelt, ht, 111, tt5) holds.

Next, by applying the (if part of the) induction hypothesis to the previously inferred r(tt1,%u;)
and r(ttz,tuz), we have that F |= O, (tt1,tu1 and F |= O, (tt2, tus) hold, because I.(tt1), I (tt2),
tt1 < t, and tt2 <t hold, as just inferred (as parts of Oge).

So, by constraint (d), the inferred F |= Dec(t, ht, tt1,tts), the just inferred F | O, (tt1,tu;) and

F = O,(tta, tus), and the previously inferred compose(ht,tuy,tus, u), we have that F = O, (¢, u)
holds.

So, in both cases, we infer the desired F |= O,(t, u), establishing thus that P/ is partially correct wrt S,.

Let us now establish totality of P! wrt S,.. Hypothesise thus that I.(¢t) and F = O, (¢, u) hold, for

r

some arbitrary ¢ : X and w : Y. There are again two cases to consider, according to whether Oprin, (%)

holds or =Opyim (t) holds.

1. Assume Oppim(t) holds. We are blocked now. But we can unblock the situation by postulating (or:

abducing) the following two constraints:

(e) The sub-program Pp,in, of P/ is total wrt Sprip, .

r

(f) The sub-program Pj,y. of P/ is total wrt Ssope.

r

Now, by constraint (e) and the assumption Op,im (t), we infer that F U P,,im F primitive(t) holds,
i.e. that F U P!\ primitive(t) holds.

Also, by constraint (f), the hypothesis I,.(¢), the hypothesis F = O.(¢,u), and the assumption
Oprim(t), we have that F U Py, b solve(t, u) holds, i.e. that F U P/ F solve(t, u) holds.

So, F U P!\ primitive(t), solve(t,) holds, and, by modus ponens, F U P/t r(¢, u) holds.

Now assume —Oppim (t) holds. Then, in order to be able to reason about the totality of P/, we also
have to assume that compose is defined, i.e. that Og..(t, ht,tt1,tt2), Or(tt1,tu1), and O, (tts, tus)
hold, for some ht : H, some tt1,tts : X, and some tuy,tus : Y. We are blocked now. But we can
unblock the situation by postulating (or: abducing) constraint (e) again, as well as the following
two new constraints:

(g) The sub-program Pg.. of P/ is total wrt Sge..

r

(h) The sub-program P.omp of P is total wrt Seomp.

r

Now, by constraint (e) and the assumption —Oppim(t), we have that F U Pprip, b —primitive(t)
holds, i.e. that F U P} - —primitive(t) holds.

Also, by constraint (g), the assumption =Op,im (1), and the assumption Og..(2, ht, tt1,tt2), we have
that F U Pge. F decompose(t, ht, tt1,tts), i.e. that F U P!t decompose(t, ht,tt1,1t2) holds.

Next, by applying the (implies part of the) induction hypothesis to the assumptions O, (tt1,%u;)
and Oy (tta,tug), we have that FU P, b r(tt1,tu;) and FU P, F r(tt2,tus) hold, i.e. that FU P/ I
r(tt1,tur) and F U P! F r(tts, tus) hold, because I.(tt1), I.(tt2), tt1 < ¢, and tt; < ¢ hold, as they
are parts of the assumption Oge(t, ht, tt1,tts).

And, by constraint (h), the hypothesis O, (¢,), and the assumptions O, (tt1,tu1) and O, (tt2,tus),

we have that F U Peomp F compose(ht, tur, tus, u) holds, i.e. that FU P/ - compose(ht, tuq,tus, u)
holds.

So, F U P! - —primitive(t), decompose(t, ht, tt1,tta), r(tt1, tuy), r(tta, tus), compose(ht, tuy, tus, u)
holds, and, by modus ponens, F U P! F r(t,u) holds.

So, in both cases, we infer the desired F U P! F r(t,u), establishing thus that P! is total wrt S,.

r

We can thus now propose the following theorem:

Theorem 5.1 (Steadfastness of the divide-and-conquer schema)

r
r

(
(

In a framework F(II), given a well-founded order < on its sort X, the open program

z,y) — primitive(z), solve(z,y)
z,y) — -—primitive(z), decompose(x, he,try,txs), r(tey, tyr), r(tee, tys), compose(hz, tyr, tys, y)

12

is steadfast wrt the specification
Ve : X,Vy: Y. I (z) = (r(z,y) < Or(2,y))
and the specification set {Sprim, Ssotve; Sdee, Scomp } (as in the preceding pages).
Proof. Directly follows from the abduction process above. a

Note that this theorem is related to the one given by Smith [30] for a divide-and-conquer schema
in the functional programming setting. The innovations here are that we use specification frameworks,
that we thus can also consider open programs, and that we prove total correctness (and not just partial
correctness), because we are in a relational setting. Moreover, we could eliminate Smith’s Strong Problem
Reduction Principle by endeavoring to achieve these objectives, thus giving the theorem a more elegant
flavor (because all constraints are specifications).’

Finally, the specifications Ssowe and Scomp deserve some special comments. Indeed, their output
conditions are the same as those of S, so there seems to be no real problem reduction. We will get back

to this issue at the end of Section 6.3.

6 Schema-Guided Synthesis of Steadfast Programs

We now define, in Section 6.1, the concept of schema-guided synthesis as the process of setting up
specifications of sub-problems; whose programs can be correctly composed according to the chosen
schema (it is thus sort-of the “step case” of synthesis). We then formalise the process of re-use (which
is sort-of the “base case” of synthesis) in Section 6.2. Finally, we illustrate all this, first in Section 6.3
by developing a strategy of divide-and-conquer schema-guided synthesis, and then, in Section 6.4, by
applying this strategy to the synthesis of a steadfast sorting program.

6.1 Introduction to Schema-Guided Synthesis

As mentioned earlier, schemas have been successfully used to guide the synthesis of programs. The
benefit of such guidance is a reduced search space, because the synthesiser, at a given moment, only
tries to construct a program that fits a given schema. This is feasible because a schema fixes the data-
flow and restricts the relationships between its open relations. We establish the synthesisability of open
programs, rather than only of closed ones, and even of steadfast open programs. This is a significant
step forwards in the field of synthesis, because the synthesised programs are then not only correct, but
also a priori correctly reusable. This is achieved by the means of steadfast schemas, i.e. correct program
templates together with their steadfastness constraints. However, since we have identified schemas with
steadfast programs, there seems to be some circularity in our argument: how can we guide the synthesis
of steadfast programs by steadfast programs? The answer is that some open programs are “more open”
than others, and that such “more open” programs thus have more “guiding power,” especially considering
the attached specifications for their open relations.

Let us now investigate how much of the program synthesis process can be pre-computed at the level
of “completely open” schemas. The key to pre-computation is such a schema, especially its attached
specifications. These specifications can be seen as an “overdetermined system of equations (in a number
of unknowns),” which may be unsolvable as it stands (for instance, this is the case for the divide-and-
conquer schema considered above). An arbitrary instantiation (through program extension), according
to the informal semantics of the template, of one (or several) of its open relations may then provide a
“Jjump-start,” as the set of equations may then become solvable.

This leads us to the notion of synthesis strategy (cf. Smith’s work [30]), as a pre-computed (finite)
sequence of synthesis steps, for a given schema. A strategy has two phases, stating (¢) which parameter(s)
to arbitrarily instantiate first (by re-use), and (¢¢) which specifications to “set up” next, based on a pre-
computed propagation of these instantiation(s). Once correct programs have been synthesised from these
new specifications (using the synthesiser all over again, of course), they can be composed into a correct
program for the originally specified relation, according to the schema. There can be several strategies
for a given schema (e.g., Smith [30] gives three strategies for a divide-and-conquer schema), depending

9This is of course a very subjective assessment.

13

on which parameter(s) are instantiated first (e.g. decompose first, or compose first, or both at the same
time).

Note that the halting criterion of synthesis [23] can also be pre-computed here and hardwired into any
strategy, for two reasons. First, we consider partial correctness and totality simultaneously. Second, at
phase (i7) of a strategy, the specifications of all relations introduced by a schema are set up, and it can be
guaranteed, by a theorem for the underlying schema (analogous to Theorem 5.1), that the composition,
according to that schema, of any programs correct wrt these specifications yields a steadfast (and hence
complete) program wrt the overall initial specification and the other specifications.

We may also introduce the notion of synthesis tactic, as a meta-program attempting synthesis by
considering the available schemas in a fixed sequence and considering the strategies of each schema in a
fixed sequence. This can be refined by allowing conditional and iterative/recursive composition in such
a meta-program.

Synthesis is thus a recursive problem reduction process followed by a recursive solution composition
process, where the problems are specifications and the solutions are programs. Problem reduction stops
when a “sufficiently simple” problem is reached, i.e. a specification that “reduces to” another specification
for which a program is known and can thus be re-used.

6.2 Re-use in Synthesis

In order to formalise the process of re-use, we first need to capture the notion of what it means for a
specification to reduce to another one, which must both be over the same sorts.

Definition 6.1 (Specification reduction)
In a framework F(II), the specification

Ve : X,Vy: Y. L (z) = (r(z,y) < Or(2,y)) (Sr)
reduces to the specification
Ve : X,Vy: Y. Iy(z) — (r(z,y) < Or(z,y)) (Sk)
under conditions F' and G iff the following two formulas hold:
(&) FEVe:X.F(e)ANI(z) — Ir(z)
(%) FEVYe : X,Yy:Y.G(2)AO(z,y) — Op(z,y).
When F' and G are both true, then we say that S, trivially reduces to Sy.

Since nothing prevents F' from being false, it is clear that, for practical purposes, one should look
for the weakest possible F'.

Now we can propose a theorem stating when and how it is possible to re-use a known program P
that is correct wrt specification Sy for correctly implementing some other specification S,.

Theorem 6.1 (Program re-use)

In a framework F(II), given specifications S and S, as in the previous definition, if a program P
is correct wrt Sy, and if S, reduces to Sj under conditions F' and G, then P is also correct wrt the
specification

Ve : X, Vy: Y. L(z) AF(z) ANG(x) — (r(z,y) < O (z,y)). (SH)
(Note that when F' and G are both true, then S, and S. are the same.)

Proof. In framework F(II), let P be a program that is correct wrt S, i.e., for all # : X and y : Y such
that Ip(x), we have:

F E Ox(z,y) if FUPF r(z,y). (3)
Also let S, reduce to S; under conditions F' and G. Now, for an arbitrary x : X, assume that
L (z) AN F(z)ANG() 4)
holds, and that
FUPFE r(z,y) (5)

14

holds, for some y : Y. From (4) and (7), we infer that I;(x) necessarily holds. Then, from (5) and (3),
we infer that F = Op(z,y) necessarily and sufficiently holds. So, from (4) and (4¢), we infer that
F E Oy(z,y) necessarily and sufficiently holds, which means that P is necessarily and sufficiently
correct wrt Sl.. O

Note that this theorem is more general than the combination of Hoare’s two consequence rules, in
the sense that conditions F' and G need not be true (as inspired by Smith [30]), and that we cover
total correctness (rather than just partial correctness, as Hoare and Smith do). These features will
turn out crucial for synthesis, namely when the input condition of a specification is only incompletely
known. As we will see, this may happen during the synthesis of divide-and-conquer programs, namely
for decompose. We’ll of course also use the theorem in situations where F' and G are true. Formula (i7)
deserves some special comments: if it is turned into an implication, then only partial correctness of P
wrt S. is guaranteed (which is acceptable if, for some reason, relation r is known to embody a function
from X to Y). It is clear that finding G such that (é¢) may be quite difficult (if not impossible); in this
case, the following other theorem may come in handy. Basically, it says that some conjuncts (denoted
V) of the input condition of a specification S, may be “promoted” to its output condition, and others
(denoted W) dropped, so as to form a new specification with the effect that any program correct wrt .S,
will also be correct wrt S,.

Theorem 6.2 (Input condition promotion)
In a framework F(II), a program P is correct wrt the specification

Ve X,Vy: Y. I(x) AV () A W(z) — (r(z,y) = O(z,y)) (S)
if P is correct wrt the specification
Vo X, Vy: Y. I(z) — (r(z,y) < O(z,y) A V(z)). (")
(The converse does not hold.)

Proof. In framework F(II), let P be a program that is correct wrt S’, i.e., for all z : X and y : Y such
that I(z), we have:
FEO@,yAV(x) iff FUPF r(z,y). (6)

Also, for an arbitrary « : X, assume that
I(z) ANV (x) AW (z) (M)

holds, and that
FUPFE r(z,y) (8)

holds for some y : Y. From (7), we infer that I(#) necessarily holds. Then, from (8) and (6), we infer
that F = O(z,y) A V(x) necessarily and sufficiently holds. So, using (7), we infer that F = O(z,y)
necessarily and sufficiently holds, which means that P is necessarily and sufficiently correct wrt S.

O

In order to smoothly integrate the re-use process into the schema-guided synthesis machinery, we
propose a re-use schema, with the following template:

r(z,y) — directlySolve(z, y)
and the following (unique) constraint attached to it:
I (z) — (directlySolve(z,y) — Or(z,y)),

where I, and O, are the input and output conditions of the specification of ». There is a single strategy
for this schema, namely: instantiate directlySolve by trying to re-use some program. The re-use schema
must be considered first by every tactic.

15

6.3

A Divide-and-Conquer Synthesis Strategy

Let us illustrate all these ideas on the divide-and-conquer schema, for which we here repeat the stead-
fastness theorem (Theorem 5.1) for convenience:
In a framework F(II), given a well-founded order < on its sort X, the open program

(x,y) — primitive(z), solve(z,y)
(z,y) «— ~—primitive(x), decompose(x, hx,txy,txs), (Pr)
T(tl‘l 3 tyl)a T(tl‘z, tyZ)a compose(hx, tyl 3 tyZa y)

r
r

is steadfast wrt its specification

Ve : X,Yy: Y. I (z) — (r(z,y) < O,(z,y)) (Sr)

and the following specifications:

Vi : X. primitive(x) < Oprim () (Sprim)

Ve : X,Vy Y. L(2) A Oprim () — (solve(z,y) < O, (z,y)) (Ssotve)

Vi, tey, tes : X,Vhe : H. =0ppim(2) — (See)
(decompose(x, hx,tey,tes) — Dec(x, he,tey, tes) AL (te1) A L (tes) Atey < & Ates < @) dec

Vha : HVtyy, tys, y - Y, Ve, teq, teg : X, Ogec(x, ha, tey, tes) A Op(ter,tyr) A Op(tes, tys) — (s)
comp

(compose(ha,tyr, tys, y) — Or(z,y)).

where Ogec(x, ha,txy,tzs) denotes the entire output condition of decompose.
A possible synthesis strategy is as follows:

1.

Select an induction parameter among ¢ and y (such that it is of an inductively defined sort).
Suppose, without loss of generality, that z is selected.

Select (or construct) a well-founded order over the sort of the induction parameter. Suppose
that < is selected (from a “knowledge base”).

Select (or construct) a decomposition operator decompose. Suppose that the following
specification is selected (from a “knowledge base”):

Va,ti,ty : X,Vh : H. Igec(®) — (decompose(x, h,t1,t2) < Dec(z, h,t1,12)). (Sh..)

dec

(Remember, here and in the next steps, that the purpose of synthesis is just to set up specifications,
but not to directly implement them.)

Set up the specification of the discriminating operator primitive. Notice that 57, is
different from Sg.., as they have different input conditions and the output condition of Sy is
stronger than the one of S, ., because it also requires the tx; to satisfy the input condition of r
and to be “smaller” (according to <) than z. Also note that Oppim, which occurs in the input
condition of Sgec, is still unknown. This is precisely the scenario for which (the general version
of) Theorem 6.1 has been introduced. Indeed, in order to show that some Py, that is correct
wrt S’ is also correct wrt (yet incompletely known) Sg.., we may first show that the following

dec
specification:

Ve, tey,tes - X,Vhe : H. true —
(decompose(x, hx,tey,tes) — Dec(x, he,tey, tes) AL (te1) AL (tes) Atey < & Ates < @)
(Sgec)
reduces to S/, under some conditions F' and G, and then conclude that =Op,im(z) is equivalent
to F(z) A G(z), because =Opyim(x) is precisely the “difference” between Sz, and SY,,.

1

M. 1s true, formula (7) of Definition 6.1 (specification reduction)

Since the input condition of
turns for this problem into

FEVYe: X. F(z) ANtrue — Ljec(z),

16

so that we can pre-compute that the weakest F'(z) always is Ige.(#), and thus dispense with this
proof obligation!

1

Also, since Dec(x, h,teq,tes) occurs in the output conditions of both Sg.. and 5%, ., formula (i%)

of Definition 6.1 can be simplified for this problem from

F EVa, te,tey : X,Vhe 1 H.
G(z) A Dec(x, ha,try,tes) «— Dec(m, he,tey, tws) AL (te1) A L (tes) Atey < & Ateg < @

into
F EVa,te,tes: X,Yhe 1 H. (i)
G(z) A Dec(x, ha,try,tes) — I (te1) A L (tes) Atey < & Ates < x, v

because (GA D — C) — (GAD < D AC), for any formulas G, D, and C. This does not affect
the previous observation about F'(z) always being Ize.(z).

Once formula G has been derived, and considering that =Op,im(2) is equivalent to F(z) A G(z),
we can set up the following specification:

Vo : X. primitive(z) « —(1z..(x) A G(2)), (Sprim)

prim
hence setting Oprim () to ~(Lgec(2) A G(z)).

5. Set up the specification of the solving operator solve. All place-holders of Ss. are known

! by instantiating inside Ssoipe -

now, so we can set up a specification S ;.

6. Set up the specification of the composition operator compose. Similarly, all place-holders

! by instantiating inside Secomp .

of Scomp are known now, so we can set up a specification .S¢,,,,,

Four specifications (S, Sprims Stowes a1d Sty) have been set up now, so four auxiliary syntheses can
be started from them, using the same overall synthesis tactic again, but not necessarily the (same) strat-
egy for the (same) divide-and-conquer schema. The programs Pycc, Pprim, Psoive, and Peomp resulting
from these auxiliary syntheses are then added to the open program P, of the schema, which extension
of P, is guaranteed, by Theorem 5.1, to be steadfast.

The specifications Ssoive and Scomp (and a fortiori the obtained specifications 5., , and Séomp)
deserve some special comments. Indeed, as observed earlier, their output conditions are the same as
those of S, so there seems to be no real problem reduction. Moreover, their input conditions are quite
complex, but the here described synthesis strategy does not make much use of input conditions and
even tends to build “lengthy” ones. So if the same divide-and-conquer strategy were to be used to
synthesise programs from these specifications (and this is not unusual, especially for compose), then all
known conditions would eventually disappear into input conditions and no problem reduction would ever
occur in most output conditions! Fortunately, the theorem on input condition promotion (Theorem 6.2)
provides us with an elegant solution to this (at first sight disturbing) phenomenon.

Indeed, suppose that O,(x,y) has a generate-and-test structure:
Or(2,y) <= Gr(z,y) N T (y),

where G, (#,y) generates a candidate y from a given «, and T, (y) tests whether a candidate y is “good.”
Such a specification structure is not unusual (see the specification of sort above). Also suppose that
Dec(z, h,t1,t2) has a generate-and-test structure:

Dec(z, h,t1,t2) « Gpee(z, hyt1,t2) AThe (b t1) A Th. (R, t2),

where Gpec(z,h,t1,t2) is the generator, and the T%, (h,t;) are the testers. Again, this is not unusual
(consider the specification Spar¢+ below). Then, Theorem 6.2 motivates the following heuristic: it often
suffices to synthesise a program P.,m, that is correct wrt

Vha : H Viyr, tye, y - Y. T (ty1) AT (ty2) — (compose(hx, tyy, tys, y) < (5)
Ju,tay, tes : X, Op(2,y) A Gpec(, h,tey, tes) A Gr(ter, tyr) A Gr(tea, tys)) comp

as well as a program P;,,. that is correct wrt

Ve : X,Vy : Y. solve(z,y) — Oprim(2) A Or(2,y) (SY 10e)

solve

17

The output conditions of these two new specifications can usually be dramatically simplified. Note that
this is not the only way of applying Theorem 6.2 here. Indeed, a more general heuristic based on that
theorem would be to first promote all input conditions, then to simplify the resulting output condition,
and finally “demote” those (former) input conditions that have not been used in this simplification
process and that only involve variables hx, ty1, ty2, and y (this is illustrated in the following sample
synthesis).

Another strategy, where a specification for composition operator compose is selected (or constructed)
at Step 3, can be elaborated analogously.

6.4 A Sample Synthesis

Let us now show how all these considerations can be put together in order to synthesise a program from
the following formal specification, in the framework LZS7 (Elem, <), of the sort relation:

VL,S : List. sort(L,S) < perm(L,S) A ord(S)

where perm and ord are defined in LZS7 (Elem,). Note, as pointed out above, that this specification
has a generate-and-test structure, where perm(L, S) is the generator and ord(S) the tester.

At Step 1 of the strategy, suppose that we select L as induction parameter.

At Step 2, since the induction parameter L is of sort List, suppose that we select < as well-founded
order, where A € B means that list A has fewer elements than list B, i.e., formally:

VA,B: List. A< B« I(A) < (B).

At Step 3, suppose that we select the following specification of a decomposition operator, embodying
the 1dea of partitioning list L into its first element h, the list A of the remaining elements of L that
are smaller (according to <1) than h, and the list B of the remaining elements of L that are not smaller
(according to <) than h:

VL, A, B: List, Vh: Elem . -L = nil — (Spart)
(part(L,h, A, B) =& L = h.T Aperm(A|B,T)NALC hAB Jh), part

where the following axioms:
LCe—Ve. mem(z,L)—z<e

Lde—Ve.mem(z,L)— -z <e

have been added to the framework LZIST7 (Elem,<1). Let Dec(L,h, A, B) denote the entire output
condition of this specification. Note that this output condition has a generate-and-test structure, as
announced above, where the first two conjuncts are the generator, and the other two conjuncts are the
tester. (Also note that the clauses for partition in Sections 3 and 5 do not constitute a program for
Spart, because h is here the first element of L, whereas this is not the case for partition.) To summarise,
so far the correspondence between the theory and the example is:

F |/ LIST(Elem,<)
r [/ sort

z:X / L: List

y:Y / S:List

I(z) /| true

Or(x,y) | perm(L,S) A ord(S)
< / <
decompose(x, hx,txy,txs) |/ part(L,h, A, B)
Tiec() / —L=nil
Dec(z,hz,tey,tes) /| L=hTAperm(A|B, TYNAChABIMR

At Step 4, we set up the specification of the discriminating operator primitive. According to the
pre-computations of the strategy, we have to infer a formula G such that the following instance of (i7')

holds in LZST (Elem, <):

VL, A, B : List,Yh : Elem . G(L) A Dec(L,h, A, B) < true Atrue ANA<K LA B <K L.

18

! .

It should be obvious that G is true. So we can set up the following specification as an instance of S,

VL : List. primitive(L) < =(=L = nil Atrue),
which simplifies into
VL : List . primitive(L) — L = nil. (Sempty)

At Step b, we set up the specification of the solving operator solve. Again, according to the suggested

pre-computations of the strategy, it suffices to set up the following instance of S¥ , .

VL,S : List. solve(L,S) «— L = nil A perm(L,S) A ord(S)

which simplifies into:

VL,S : List. solve(L,S) «< S = nil, (Sempty2)

based on the theorems perm(nil,nil) and ord(nil), which theorems are derivable from the axioms in
LIST(Elem,<).

Finally, at Step 6, we set up the specification of the composition operator compose. We follow the
most general heuristic and initially promote all input conditions:

Vh: Elem,YC,D,S : List . compose(h,C, D, S) —
AL, T,A,B: List . L = hT Aperm(A|B,TYNAC hABIJhAtrue ANtrue N\AK LAB KL
Aperm(A, C) A ord(C) A perm(B, D) A ord(D) A perm(L,S) A ord(S)

The output condition of this specification can be simplified as follows. First, we infer 7" = C|D by
applying the following theorem:

perm(X|Y, Q|R) — perm(X,Q) A perm(Y, R)

to perm(A|B,T), perm(A,C), and perm(B, D).
Then, we infer perm(C|(h.D),S) by applying the following theorems:

perm(e.(X|Y), X|(e.Y))

perm(X",Y) «— perm(X,Y) A perm(X, X")

to perm(L,S), L = h.T,and T = C|D.
Next, we infer C' C h and D 3 h by applying the following theorems:

YCe—XCeAperm(X,Y)

Yde—X JeAperm(X,Y)

to AC h and perm(A, C), respectively B O h and perm(B, D).
Now, we infer ord(C|(h.D)) by applying the following theorem:

ord(X|(e.Y)) — ord(X)AX CeAY JeAord(Y)

to ord(C), C C h, D O h, and ord(D).
Finally, we infer the final output condition S = C|(h.D) by applying the following theorem:

perm(X, Y)Aord(Y)Aord(X) =Y =X

to perm(C|(h.D),S) (which was formerly perm(L,S)), ord(S), and ord(C|(h.D)). Since all promoted
input conditions either have been used in this simplification process or do not involve variables h, C, D,
and S only, none of these conditions gets “demoted” to the final input condition, which is thus true. So
we have set up the following specification:

Vh: Elem,YC, D, S : List . compose(h,C,D,S) — S = C|(h.D) (Scatcons)

This simplification process (as well as the derivation of antecedent G above) leaves open the question
about the origins of the used theorems, as well as the full description of the used proof system. As of

19

now, these are open questions, but the objective of this paper is to show the feasibility of schema-guided
synthesis of steadfast (open) programs, not to flesh out all the details on how to actually do it.

Four specifications (Spart, Sempty; Sempty2, and Secatcons) have been set up now, so four auxiliary
syntheses are started from them. The latter three syntheses are trivial (and should succeed through the
re-use schema and strategy, whereas the first one can be guided by the divide-and-conquer schema and
strategy. We omit these syntheses here, but after extending the template with their results, one could
for instance get the following program:

sort(L,S) «— primitive(L), solve(L,S)
sort(L,S) «— —primitive(L), part(L,h, A, B),
sort(A, C), sort(B, D), compose(h,C, D, S)
primitive(L) L =nil
solve(L, S) S = nil
part(L,h, A, B L = h.T, partition(T, h, A, B)
partition(L, p, L =nil, A =nil, B =nil

L = h.T,h<p,partition(T,p,TA, TB),A=hTA B=TB
L =h.T,-h<p,partition(T,p,TA, TB),A=TA,B=hTB
append(C,e.D, S)

)

(L,p, A, B)
partition(L,p, A, B)
partition(L,p, A, B)
compose(e,C, D, S)

rrrrrara

which is guaranteed, by Theorem 5.1, to be steadfast. Note that th