Generalized Generalization Generalizers
Extended Abstract

Halime Biytkyildiz and Pierre Flener

Department of Computer Engineering and Information Science
Faculty of Engineering, Bilkent Unwversity, 06533, Bilkent, Ankara, Turkey
Email: {halime, pf } @cs.bilkent.edu.ir

1 Introduction

Schema-guided program construction was studied in logic programming, especially for Prolog programs
[4, 5, 10, 14]. Using schemas for logic program transformation was first studied in [9] and extended in [15].
Schema-guided program transformation was also studied in [7, 11]. If the transformation schema embodies
some generalization technique, then it is called generalization schema (or: generalization generalizer, as in
the title of this paper). This paper results from the research that began by investigating the suggestions
in [7]. The contributions of this research are:

e pre-compilation of more generalized generalization schemas (tupling and descending), since the
schemas in [7] were restricted to special families of divide-and-conquer programs;

e pre-compilation of new generalization schemas that we call simultaneous-tupling-and-descending
generalization schemas;

e validation of the generalization schemas; based on the notions of correctness of a program, stead-
fastness of a program in a set of specifications, and equivalence of two programs;

o performance tests for evaluation of the generalization schemas.

Throughout the paper, the word program (resp. procedure) is used to mean typed definite program
(resp. procedure). The definitions for correctness of a program, steadfastness of a program in a set of
specifications, and equivalence of two programs, which is used in proving the transformation schemas,
are given in Appendix A. The specification of a predicate R is written in the format:

VX Tx,VY Ty . IR(X) = [R(X,Y) <~ OR(X,Y)]

where Zr(X) denotes the input condition that must be fulfilled before the execution of the procedure,
and Ogr(X,Y) denotes the output condition that will be fulfilled after the execution.

1.1 Program Schemas

The notion of program schema was also used in [4, 5, 9, 10, 11, 15], but here we have an additional
component, which makes our definition [6, 7, 8] of program schemas different from their definitions.

Definition 1 A program schema contains a template program with a fixed data flow, but without spe-
cific indications about the actual computations, except that they must satisfy certain (steadfastness)
constraints, which are the second component of a schema.

A program schema thus abstracts a whole family of particular programs that can be obtained by
instantiating the place-holders of its template to particular computations, using the specification and the
program synthesized so far, so that the constraints of the schema are satisfied [6].

To illustrate our purpose, the example below is used as the initial problem throughout the paper.

Example 1 Let flat(B, F') hold iff list F' is the infix representation of binary tree B, where infiz rep-
resentation means the list representation of the infix traversal of the tree. The constant void is used to
represent the empty binary tree, and the compound term b#(L,E,R) is used to represent a binary tree of
root F, left subtree L, and right subtree R.

For the problem above, two different programs and the two program schemas that these programs
belong to are explained in the remainder of this section. These program schemas abstract sub-families of
divide-and-conquer programs. The divide-and-conquer (DC) program schemas explained in this section

are restricted, for pedagogical reasons only, to binary predicates with X as the induction parameter and
Y as the result parameter. Another restriction in the schemas is that when X is non-minimal, then X is
decomposed into one head HX and two tails TX; and T' X5, so that Y is composed from one head HY
(which is the result of processing HX) and two tails 7Y and TYs (which are the results of recursively
calling the predicate R with TX; and T Xa, respectively) by infix composition (i.e. Y is composed by
putting HY between TY; and TY3). For the sake of better understandability, the program template and
the program that is an instantiation of that template are given side by side in the figures.

R(X,Y) « flat (B, F) —
Minimal(X), B = void,
Solve(X,Y) F=]]

R(X,Y) « flat (B, F) —
NonMinimal(X), B=1bt(,,-),
Decompose(X, HX,TX1,TXs), B =10bt(L, E,R),
R(TX,,TY:), R(T X2, TYs), flat(L, FL), flat(R, FR),
Iy = e,Compose(ly, TY1, I1), Iy =[], append(Iy, F L, I1),
Process(HX,HY), Compose(I1, HY, I5), HF = [E],append(I1, HF, I),
Compose(I3,TYa,13),Y = I3 append(Iy, FR, I3), F = I3

Figure 1: Template DC LR and Program 1

R(X,Y) « flat (B, F) —
Minimal(X), B = void,
Solve(X,Y) F=]]

R(X,Y) « flat (B, F) —
NonMinimal(X), B=1bt(,,-),
Decompose(X, HX,TX1,TXs), B =10bt(L, E,R),
R(TX,,TY:), R(T X2, TYs), flat(L, FL), flat(R, FR),
I3 = e,Compose(TY3, I, I5), Is =[], append(F R, I3, I5),
Process(HX,HY), Compose(HY, I, I), HF = [E],append(HF, I, I),
Compose(TY1,11,1y),Y = Iy append(FL, I, Iy), F = Iy

Figure 2: Template DC'RL and Program 2

The constraints on these schemas (i.e. their semantics) are shown in a companion paper [8]. If we denote
the functional version of the C'ompose predicate with @, then the composition of Y in template DC' LR by
left-to-right (LR) composition ordering can be written as Y = (e ®TY1)® HY) & TY>2. The composition
of Y in DCRL by right-to-left (RL) composition ordering can be written as Y = TY1 & (HY & (TY2 e)).

Since append, which is Compose in our flat example, is associative and has [] as the identity element,
Programs 1 and 2 are equivalent. This shows that the problem families that the two program schemas
abstract have an intersection family (resulting in equivalent programs for the problem), if Compose
satisfies the constraints above.

More generalized schemas for any number of heads and tails, and any composition place of the head
in the result parameter (infix composition above is only one possibility) are listed elsewhere [3].

1.2 Schema-Guided Program Transformation

In schema-guided transformation, transformation techniques are pre-compiled at the schema-level.

Definition 2 A transformation schema encoding a transformation technique is a triple (S, Sa, C'), where
S1 and Ss are program schemas and C' is a set of (applicability) conditions. Schema Ss is expressed using
all the predicates of S1, and the steadfastness constraints on S5 are thus a superset of those of Sj.

Thus, a schema-guided program transformation system will have a collection of transformation schemas
and the transformation of a program P; to a program P; reduces to: first selecting a transformation
schema (51,52, C), such that P; is an instance of S; under some form of higher-order substitution o,
then the conditions C'c must be verified, and finally P, is computed by applying o to the schema S5. If
P is synthesized in a schema-guided fashion (i.e. if o is known), then transformation can be automated.

Generalization is used to transform a possibly inefficient program into a more efficient one, because
the generalization process may provoke a complexity reduction by loop merging and because the output
program may be (semi-)tail-recursive (which can be further transformed into an iterative program by an

optimizing interpreter). The problem generalization techniques that are used in this paper are explained
in detail in [4], but using these techniques for synthesizing and/or transforming a program in a schema-
guided fashion was first proposed in [4, 5], and then extended in [7].

Given a program, the generalization process works as follows: first the specification of the initial
program is generalized, then a recursive program for the generalized specification is synthesized, and
finally a non-recursive program for the initial problem can be written, since the initial problem is a
particular case of the generalized one. The two generalization approaches used here are:

1. Structural generalization: The intended relation is generalized by generalizing the structure (or:
type) of a parameter. If a problem dealing with a term is generalized to a problem dealing with a
list of terms, then this generalization is called tupling generalization.

2. Computational generalization: The intended relation is generalized so as to express the general
state of a computation in terms of what has been done and what remains to be done. Ascending
and descending generalizations are two particular cases of computational generalization, where in
ascending generalization, information about what has already been done is also needed, but in
descending generalization the information about what remains to be done is enough.

If schema S, is obtained by any method of generalization described above, the transformation schema is
called a generalization schema.

In the remainder of this paper, we explain in detail how automation of program transformation is
achieved by tupling, descending, and simultaneous-tupling-and-descending generalization, with the help
of the flat example, in Sections 2, 3, and 4, respectively. In Section b, we discuss, by using the results of
performance tests, how a prototype transformation system choose one of the transformation schemas, if
the applicability conditions of more than one transformation schema are satisfied by the input program.
Finally, in Section 6, we conclude.

2 Program Transformation by Tupling Generalization

Let us generalize the initial specification of our example by using tupling generalization:
flat_t(Bs, F') iff F is the concatenation of the infix representations of the elements in binary tree list Bs.
The specification above can be constructed by instantiating the following specification Sgr_tupiing:

VXs:list of Tx,VY : Ty. (VX :Tx. X € Xs = Ig(X)) = [R1iupling(Xs,Y) & (Xs=[]AY =e)
V(Xs = [X1, Xo, .., Xal A N, Or(X0,Ys) AL =YiA Ny Oc(lic,Yi, I) AY = I,)]

where Q¢ is the output condition of Compose, and Op is the output condition of R, and n > 1.
The tupling generalization schemas (one for each input divide-and-conquer program schema given in
Section 1.1) (the proof of TGy is given in Appendix B) are:

TGy : { DCLR, TG, Cy) where
Cy1 : - Compose is associative
- C'ompose has e as the left and right identity element, where e appears in DCLR
-VX :Tx. Ir(X)A Minimal(X) = Ogr(X,e)
-VX : Tx. Ir(X) = [-Minimal(X) < NonMinimal(X)]

TGy : { DCRL, TG, Cyz) where
Cis . - Compose is associative
- C'ompose has e as the left and right identity element, where e appears in DCRL
-VX :Tx. Ir(X)A Minimal(X) = Ogr(X,e)
-VX : Tx. Ir(X) = [-Minimal(X) < NonMinimal(X)]

where the shared template TG and the corresponding program for flat are in Figure 3.

Note that the predicates in T'G include all of those of DCLR (resp. DCRL), plus R_tupling. The
steadfastness constraints of T'G are thus those of DCLR (resp. DCRL), plus Sg_tupiing. The tu-
pling generalization schemas above give rise to full automation of the transformation process. However,
this is not the end of an effective transformation, since the transformed program can be simplified by
further detection of properties of Solve, Process, and Compose. If Solve(X,Y) converts X into a con-
stant ‘size’ Y, and Process(HX,HY) converts HX into a constant ‘size’ HY, and partial evaluation

R(X,Y) —
R tupling([X],Y)
R_tupling(Xs,Y) —
Xs=[,Y=e
R_tupling(Xs,Y) —
Xs = [X|TXs],
Minimal(X),
Rtupling(TXs, TY),
Solve(X, HY), Compose(HY,TY,Y)
R_tupling(Xs,Y) —
Xs = [X|TXs],
NonMinimal(X),
Decompose(X, HX,TX1,TXs),
Minimal(TX),
Rupling([T2|TXs), TY),
Solve(TX;,TY1),
Iy = e,Compose(ly, TY1, I1),
Process(HX,HHY), Compose(I, HHY, I5),
HY = I,,Compose(HY,TY,Y)
R_tupling(Xs,Y) —
Xs = [X|TXs],
NonMinimal(X),
Decompose(X, HX,TX1,TXs),
NonMinimal(TX1), Minimal(U),
Decompose(N, HX,U, TX,),
Rupling([T X1, N|TXs],Y)

flat (B, F) —

flat_t([B], F)
flatt(Bs, F) —

Bs =[], F=]]
flatt(Bs, F) —

Bs = [B|T'Bs],

B = voud,

flat t(T'Bs, TF),
HF =[],append(HF,TF, F)
flatt(Bs, F) —

Bs = [B|T'Bs],

B =bi(-,),

B =bt(L,E,R),

L = void,

flat t([R|TBs], TF),
FL = []’

IO = []aappend(IOaFLajl)a

HHF = [E],append(Il, HHF, I5),

HF = I, append(HF,TF, F)
flatt(Bs, F) —

Bs = [B|T'Bs],

B =bi(-,),

B =bt(L,E,R),

L # void, U = voud,
N =b(U, E, R),

flat t([L, N|TBs], F)

Figure 3: Template TG and Program 3

of Compose(HX,TY,Y) is possible when the ‘size’ of HX is constant, then Program 3 can be further
simplified. The conjunction HF = [],append(HF,TF,F) in the second clause of flat_t can be trans-
formed into F' = TF, which can be further unfolded into the head of that clause. The conjunction
FL=1],Iy=[],append(ly, FL, 1), HHF = [E],append(l,, HHF,I5), HF = Iz, append(HF,TF, F) in
the third clause of flat_t can be transformed into F' = [E|TF], which can also be unfolded into the head
of that clause. After doing the simplifications above and further doing syntactic transformations on the
transformed program, such as “compiling” U = void into N = bt(U, E, R) in the last clause of flat_t, the
flat_t procedure is semi-tail-recursive. The resulting flat program is:

flat(B,F) — flatt([B], F)

flat (T}, []

flat t([void|T Bs], F

flat t([bt(void, E, R)|T Bs], [E|TF]
flatt([bt(L, E, R)|T Bs], F'

—
— flatt(TBs, F)

— flatt([R|TBs), TF)

— L # void, flat ([L, bt(void, E, R)|T Bs], F)

~— N e

3 Program Transformation by Descending Generalization

In [7], schema-guided program transformation by descending generalization is explained in detail and a
specific generalization schema is given for an example. In this section, descending generalization schemas
are given and we explain how we eliminate the eureka finding step by using the schemas only. Eureka
finding [7] is actually finding the specification of the descendingly generalized problem. Descending
generalization can also be called accumulation strategy (in functional programming [2], also used in logic
programming [13]), since it introduces an accumulator parameter, which is progressively extended to the
final result. This can also be seen as transformation towards difference-structure manipulation.

Since the conditions of each descending generalization schema are different, the process of choosing the
appropriate generalization schema for the input divide-and-conquer program is done only by checking
the conditions, then the eureka comes for free. Four descending generalization schemas (two for each
divide-and-conquer program schema) are given. The first two descending generalization schemas are:

DG,y : { DCLR, DGLR, Cg) where

R(X,Y) — flat(B, F) —

R_descending;(X,Y, e) flat_di(B, F,[])
R_descending,(X,Y, A) — flat_dy (B, F, A) —

Minimal(X), B = void,

Solve(X, S), Compose(A, S,Y) S =[], append(A, S, F)
R_descending,(X,Y, A) — flat_dy (B, F, A) —

NonMinimal(X), B=1bt(,,-),

Decompose(X, HX,TX1,TXs), B =10bt(L, E,R),

Compose(A, e, Ap), append(A,[], Ao),

R_descending; (T X1, A1, Ao), flat di(L, A1, Ag),

Process(HX,HY), Compose(A1, HY, As), = [E], append(A1, HF, As),

R_descendingl(TXz, Ag, Az), Y = A3 flat dl(R, Ag, Az), F= A3

Figure 4: Template DGLR and Program 4

Cy1 : - Compose is associative
- Compose has e as the left identity element, where e appears in DCLR

DG4 : { DCRL, DGLR, Cg44) where
Cyq . - Compose is associative
- Compose has e as the left identity element, where e appears in DCRL

They have the same formal specification (i.e. eureka) for the output program DG LR:
VX :Tx,VY, A :Ty. Ir(X) = [Rdescending;(X,Y,A) < 3S:Ty. Or(X,S5) AOc(A,S,Y)]

where Q¢ is the output condition of Compose, and Op is the output condition of R.
If we apply DGy or DG4 to our flat example (since the conditions of both schemas are satisfied by
Programs 1 and 2), then the descending generalization of the initial specification is:

flat_dy (B, F, A) iff list F' is the concatenation of list A and the infix representation of binary tree B.

The transformed program and the template it belongs to (i.e. DGLR) are in Figure 4.
The other two descending generalization schemas (the proof of DG is given in Appendix C) are:

DGy : { DCLR, DGRL, Cg43) where
Cys : - Compose is associative
- Compose has e as the right identity element, where e appears in DCLR

DG3 : ({ DCRL, DGRL, Cg43) where
Cys : - Compose is associative
- Compose has e as the right identity element, where e appears in DCRL

They have the same formal specification (i.e. eureka) for the output program DGRL:
VX :Tx,VY, A :Ty. Ir(X) = [Rdescendings(X,Y,A) < 3S:Ty. Or(X,S5) AOc(S, A,Y)]

where Q¢ is the output condition of Compose, and Op is the output condition of R.
If we apply DGy or DG3 to our flat example (since the conditions of both schemas are satisfied by
Programs 1 and 2), then the descending generalization of the initial specification is:

flat_ds(B, F, A) iff list F' is the concatenation of the infix representation of binary tree B and list A.

The transformed program and the template it belongs to (i.e. DGRL) are in Figure 5.

The reason why we call the descendingly generalized program schemas ‘DG LR’ and ‘DG RL’ is similar
to the reason why we call the divide-and-conquer program schemas DCLR and DCRL, respectively. In
descending generalization, the composition ordering for extending the accumulator parameter in template
DGLR is from left-to-right and the composition ordering for extending the accumulator parameter in
template DG RL is from right-to-left.

Since append, which is Compose of Program 1, has [] as left and right identity element, both conditions
of descending generalization schemas DG4 and DGy are satisfied by Program 1. Similarly, both conditions
of descending generalization schemas DG3 and DG, are satisfied by Program 2. Syntactic simplifications
may be done on Programs 4 and 5, but it can be observed that Program 5 is more efficient than Program 4,

R(X,Y) —

R_descending2(X,Y, e)
R_descending2(X,Y, A) —

Minimal(X),

Solve(X, S), Compose(S, A,Y)
R_descending2(X,Y, A) —

NonMinimal(X),

Decompose(X, HX,TX1,TXs),

A = Az, R_descendings(T X3, Az, As),

Process(HX,HY), Compose(HY, Az, A1),

R_descending2(T X1, Ao, A1),

flat(B, F) —

flat_ds(B, F,[])
flat_do(B, F, A) —

B = voud,

S =[], append(S, A, F)
flat_do(B, F, A) —

B =bi(-,-,-),

B =10bt(L, E,R),

A= Ag, flat_dz(R, Az, Ag),

HF = [E],append(HF, Az, A7),

flat_dz(L,Ao,Al),

Compose(e, Ag,Y) append([], Ao, F)

Figure 5: Template DGRL and Program 5

since we can also eliminate append by partial evaluation during simplification. For example, Program 5
may be simplified into:

flat(B, F) — flat_d2(B, F,[])
flat_ds(void, A, A) —
flat_do(bt(L, E,R), F, A) — flat_d2(R,NA, A), flat_ds(L, F,[E|N A])

Our next plan i1s to extend the descending generalization schemas by adding the “simplifiability”
conditions to the schemas, since we want to achieve the objective that the system chooses in one step
the transformation that yields the most efficient output program for input problems like flat, where the
conditions of each schema for the same input program are satisfied.

4 Program Transformation by
Simultaneous-Tupling-and-Descending Generalization

While working on constructing possible generalized generalization schemas for different input program
schemas, we also tried to apply descending generalization to a tupling generalized problem, and vice
The generalization schemas that we explain in this section are the results of this work. We
call them simultaneous-tupling-and-descending generalization schemas, although the reader may notice
by looking at the specification of the generalized problem that the process may also be thought of as
applying descending generalization to a tupling generalized problem.

Like we did in Section 3 for descending generalization, four simultaneous-tupling-and-descending
generalization schemas are given. The first two are:

versa.

TDG; : { DCLR, TDGLR, Ciqy) where
Ciair : - Compose is associative
- Compose has e as the left and right identity element, where e appears in DCLR
-VX :Tx. Ir(X) A Minimal(X) = Ogr(X,e)
-VX : Tx. Ir(X) = [-Minimal(X) < NonMinimal(X)]
TDGy : { DCRL, TDGLR, Ctgr;) where
Ciari : - Compose is associative
- Compose has e as the left and right identity element, where e appears in DCRL
-VX :Tx. Ir(X) A Minimal(X) = Ogr(X,e)
-VX : Tx. Ir(X) = [-Minimal(X) < NonMinimal(X)]

If we apply TDGy or TDG4 to our flat example (since the conditions of both schemas are satis-
fied by Programs 1 and 2), then the simultaneous-tupling-and-descending generalization of the initial
specification is:

flat_td;(Bs, F, A) iff list F' is the concatenation of list A and the infix representations of the elements in
binary tree list Bs.

The transformed program and the template it belongs to (i.e. TDGLR) are in Figure 6.
The other two simultaneous-tupling-and-descending generalization schemas are: T DG :

TDGRL, Ciaqir) and TDGs : { DCRL, TDGRL, Cy4r1), where Cygir and Cigrp are as above.

(DCLR,

R(X,Y) — flat(B, F) —

R1di([X],Y,¢€) flat tdy([B], F,[])
R_td1(Xs,Y, A) — flat_td(Bs, F, A) —

Xs=[]Y=A Bs=[],F=4
R_td1(Xs,Y, A) — flat_td(Bs, F, A) —

Xs = [X|TXs], Bs = [B|T'Bs],

Minimal(X), Solve(X, HY), B =wvoid, HF =[],

A = Ay, Compose(Ay, HY, A1), A = Ay, append(Ag, HF, A1),

R_tdl(TXS, Az, Al), Y = Az flat_tdl(TBs, Az, Al), F = Az
R_td1(Xs,Y, A) — flat_td(Bs, F, A) —

Xs = [X|TXs], Bs = [B|T'Bs],

NonMinimal(X), B=1bt(,,-),

Decompose(X, HX,TX1,TXs), B =10bt(L, E,R),

Minimal(TX1), Solve(TX;1,TY1), L =woid, FL =[],

A = Ay, Compose(Ay, TY1, A1), A = Ay, append(Ao, F L, A1),

Process(HX,HY), Compose(A1, HY, As), HF = [E],append(A1, HF, As),

R_tdl([TX2|TXS], Ag, Az), Y = A3 flat_tdl([R|TBs], Ag, Az), F = A3
R_td1(Xs,Y, A) — flat_td(Bs, F, A) —

Xs = [X|TXs], Bs = [B|T'Bs],

NonMinimal(X), B=1bt(,,-),

Decompose(X, HX,TX1,TXs), B =10bt(L, E,R),

NonMinimal(TX1), Minimal(U), L # wvoid, U = voud,

Decompose(N, HX,U, TX,), N =bt(U, E, R),

Rd\([TX,, N|TXs],Y, A) flattd,([L, N|TBs), F, A)

Figure 6: Template TDGLR and Program 6

If we apply TDGy or TDG3 to our flat example (since the conditions of both schemas are satis-
fied by Programs 1 and 2), then the simultaneous-tupling-and-descending generalization of the initial
specification is:

flat_tda(Bs, F, A) iff list F' is the concatenation of the infix representations of the elements in binary
tree list Bs and list A.

The transformed program and the template it belongs to (i.e TDGRL) are in Figure 7.
We call the two simultaneous-tupling-and-descending generalization program schemas ‘T"DG LR’ and
“I'DG RL’ by using the same reasoning we made for calling the descending generalization program schemas

DGLR and DGRL, respectively.

If we use properties of append, the generalized programs can be further simplified.

5 Evaluation of Generalization Schemas

We now evaluate the generalization schemas using performance tests done on the input and output
programs of each generalization schema. The programs are executed and tested using Mercury 0.6 on a
SPARCstation 4. Since the programs are really short, the predicates were called 1,000 times to achieve
meaningful timing results. In Table 1, the results of the performance tests for five selected problems are
shown, where each column heading represents the schema to which the program written for the problem
of that row belongs. The timing results are normalized wrt the DCLR column.

problems DCLR | DCRL TG | DGLR | DGRL | TDGLR | TDGRL
Prefix flat 1.00 | 0.88 | 0.50 | 3.38 | 0.25 3.38 0.50
Infix flat 1.00 | 0.76 | 0.65 | 3.06 | 0.18 3.35 0.59
Postfix flat | 1.00 | 0.80 | 0.45 | 2.70 | 0.15 2.64 0.50
reverse 1.00 | 1.00 | 0.15 | 0.99 | 0.02 1.02 0.15
quicksort 1.00 {0.93|1.03|2.33|0.76 2.60 1.07

Table 1: Performance Tests Results

By looking at Table 1, we can say that the most time efficient programs for our example test problems are
the ones that belong to the DG RL program schema. It is so because the examples we chose are such that

R(X,Y) —
R1dy([X],Y,¢€)
R_td2(Xs,Y, A) —

Xs=[,Y=4
R_tds(Xs,Y, A) —
Xs = [X|TXs],

Minimal(X), Solve(X, HY),

A= Az, R_tdz(TXS, Al 5 Az),

Compose(HY, A1, Ap),Y = Ao
R_tds(Xs,Y, A) —

Xs = [X|TXs],

NonMinimal(X),

Decompose(X, HX,TX1,TXs),

Minimal(TX1), Solve(TX;1,TY1),

A= Ag, Rsz([TXﬂTXS], Az, Ag),

Process(HX,HY), Compose(HY, Az, A1),

Compose(TY1, A1, Ao),Y = Ao
R_tds(Xs,Y, A) —

Xs = [X|TXs],

NonMinimal(X),

Decompose(X, HX,TX1,TXs),

NonMinimal(TX1), Minimal(U),

Decompose(N, HX,U, TX,),

Rdy([TX,, N|TXs),Y, A)

flat(B, F) —
flat tdy([B], F, [])
flat_tds(Bs, F, A) —

Bs=[,F=A
flat_tds(Bs, F, A) —
Bs = [B|T'Bs],

B =wvoid, HF =[],

A= Az, flat_tdz(TBS, Az,Ag),

append(HF, A1, Ag), F = Ao
flat_tds(Bs, F, A) —

Bs = [B|T'Bs],
B = bt(_’ - _)’
B =L, E, R),

L =woid, FL =[],

A= Ag, flat_tdz([R|TBS], Az, Ag),

HF = [E],append(HF, Az, A7),

append(FL, A1, Ao), F = Ao
flat_tds(Bs, F, A) —

Bs = [B|T'Bs],

B =bi(-,-,-),

B =bt(L,E,R),

L # wvoid, U = voud,
N =bt(U, E, R),

flat tds([L, N|T Bs], F, A)

Figure 7: Template TDG RL and Program 7

the best transformation schemas (which also give rise to the best simplifications) are DGy and DG3 for
the DC'LR and DCRL input programs, respectively, since C'ompose is append for all the programs. The
reason above is also the reason why the DC'RL programs are more efficient than the DC LR programs.
For all programs with left-to-right composition ordering or accumulator extension, we lose efficiency,
because the programs can’t be further simplified and we can’t eliminate append. In the descending and
simultaneous-tupling-and-descending generalization schemas, this was difficult, since the percentage of
the total running time of the program used by Compose is very high, because of the increase in the
‘size’ of the input parameter. Except for quicksort, for all the examples, the T'G' and T'DG RL programs
are more efficient than the initial DCLR and DCRL programs, which supports our claim that we can
also gain efficiency by tupling and simultaneous-tupling-and-descending generalizations. The reason why
we lose efficiency in tupling generalization of quicksort is that we increase the calls to Decompose,
which 1s partition in quicksort and is a very costly operation, although we eliminate C'ompose. If we
try to compare simultaneous-tupling-and-descending generalization schemas with the other generalization
schemas, we may think that we do not gain anything. The reader has to remember that this generalization
can also be thought of as applying a descending generalization to a tupling generalized problem, and for
infix flat, we gain some efficiency over tupling generalization. The results also show that, except for
quicksort, the TDGRL programs are more efficient than the input divide-and-conquer programs.

6 Conclusion and Future Work

Program generalization can be automated by using generic generalization schemas, since we fully auto-
mate the eureka discovery (i.e. finding the specification of the generalized problem). Further detection
of properties of the operators in the input template helps us to simplify the program resulting from
transformation, which can be done by constructing global plans for each generalization schema. Our next
aim is to develop a prototype transformation system supporting this approach.

References

[1]

[2]

[3]

[4]
[5]

T. Batu. Schema-Guided Transformations of Logic Algorithms. Senior Project Report, Bilkent Uni-
versity, Department of Computer Science, 1996.

R.S. Bird. The promotion and accumulation strategies in transformational programming. ACM
Transactions on Programming Languages and Systems, 6(4):487-504, 1984.

H. Buyukyildiz. Generic Program Transformation Schemata. Technical Report, in preparation.
Bilkent University, Department of Computer Science, 1997.

Y. Deville. Logic Programming: Systematic Program Development. Addison Wesley, 1990.

Y. Deville and J. Burnay. Generalization and program Schemata: a step towards computer-aided
construction of logic programs. In: E.L. Lusk and R.A. Overbeek (eds), Proc. of NACLP’89, pp.
409-425. The MIT Press, 1989.

P. Flener. Logic Program Schemata: Synthesis and Analysis. Technical Report BU-CEIS-9502.
Bilkent University, Department of Computer Science, 1995.

P. Flener and Y. Deville. Logic program transformation through generalization schemata. Extended
abstract in: M. Proietti (ed), Proc. of LOPSTR’95, pp. 171-173. LNCS 1048. Springer-Verlag, 1996.
Full version in: M. Proietti (ed), Pre-proc. of LOPSTR’95.

P. Flener, K.-K. Lau, and M. Ornaghi. On Correct Program Schemas. Also submitted to LOPSTR’97.

N.E. Fuchs and M.P.J. Fromherz. Schema-based transformation of logic programs. In: T. Clement
and K.-K. Lau (eds), Proc. of LOPSTR’91, pp. 111-125. Springer Verlag, 1992.

T.S. Gegg-Harrison. Representing logic program schemata in AProlog. In: L. Sterling (ed), Proc. of
ICLP’95, pp. 467-481. The MIT Press, 1995.

T.S. Gegg-Harrison. Extensible logic program schemata. In: J. Gallagher (ed), Proc. of LOPSTR’96.
LNCS 1207. Springer-Verlag, 1997.

K.-K. Lau, M. Ornaghi, and S-A. Tarnlund. Steadfast Logic Programs. Submitted.

A. Pettorossi and M. Proietti. Transformation of logic programs: foundations and techniques. Journal
of Logic Programming, 19(20):261-320, 1994.

L.S. Sterling and M. Kirschenbaum. Applying techniques to skeletons. In: J.-M. Jacquet (ed), Con-
structing Logic Programs, pp. 127-140, John Wiley, 1993.

W.W. Vasconcelos and N.E. Fuchs. An opportunistic approach for logic program analysis and opti-
misation using enhanced schema-based transformations. In: M. Proietti (ed), Proc. of LOPSTR’95,
pp- 174-188. LNCS 1048. Springer-Verlag, 1996.

A Correctness and Equivalence Criteria

We will give the correctness and equivalence criteria that we use to prove our generalization schemas.
The definitions for correctness of a program and steadfastness of a program in a set of specifications are
similar to the definitions in [8, 12]. Our definitions are all model-theoretic.

We give again the format of the specification Sg of a predicate R:

VX Tx,VY Ty . IR(X) = [R(X,Y) <~ OR(X,Y)]

where Zr(X) denotes the input condition that must be fulfilled before the execution of the procedure,
and Ogr(X,Y) denotes the output condition that will be fulfilled after the execution.

An open program is a program where some of the predicates appearing in the clause bodies are not
appearing in any heads of clauses, and these predicates are called undefined predicates. If all the predicates
appearing in the program are defined, then the program is called a closed program. We do not consider
mutually recursive programs.

Definition 3 (Correctness of a Closed Program)
Let P be a closed program for relation R. We say that P is (fotally) correct wrt its specification Sg iff, for
any ground term ¢ of Tx such that Zgr(¢) holds, the following condition holds: P |= R(t, u) iff Og(t, u),
for every ground term u of 7y .

If we replace ‘iff” by ‘implies’ in the condition above, then P is said to be partially correct wrt Sg,
and if we replace ‘iff” by ‘if’, then P is said to be complete wrt Sg.

This kind of correctness is not entirely satisfactory, for two reasons. First, it defines the correctness of
P in terms of the procedures for the predicates in its clause bodies, rather than in terms of their specifica-
tions. Second, P must be a closed program, even though it might be desirable to discuss the correctness
of P without having to fully implement it. So, the abstraction achieved through the introduction (and
specification) of the predicates in its clause bodies is wasted. This leads us to the notion of steadfastness,
which we only define here for the most interesting case, namely where all predicates occurring in the
clause bodies are also known by their specifications.

Definition 4 (Steadfastness of an Open Program in a Set of Specifications)
Let:

e P be an open program for relation R
® q1,...,qm be all the undefined predicate names appearing in P
e S1,...,Sn be the specifications of ¢, ..., ¢m.

We say that P is steadfast wrt its specification Sg in {S1,..., Sy} iff, for any closed program Pg such
that

e Pg is correct wrt each specification S; (1 < j < m)
e Pg contains no occurrences of the predicates defined in P,
it 1s the case that P U Pg is correct wrt Sg.

Steadfastness has the following interesting property:
Property:
Let:

e P be an open program for a relation R

® p1,...,p; be all the defined predicate names appearing in P (including R thus)
® q1,...,qm be all the undefined predicate names appearing in P

e S1,...,Sn be the specifications of ¢, ..., ¢m.

We have that, for ¢ > 2, P is steadfast wrt Sg in {S1,...,Sn} if every P; (1 < i <) is steadfast wrt the
specification of p; in the set of the specifications of all undefined predicates in P;, where P; is a program
for p;, such that P = U§:1 P

10

For program equivalence, we do not require the two programs to have the same models, because
this would not make much sense in a program generalization setting, where the transformed program
features predicates that were not in the initially given program. That is why our program equivalence
criterion establishes equivalence wrt the specification of a common predicate (usually the root of their
call-hierarchies).

Definition 5 (Equivalence of Two Open Programs)
Let P and @ be two open programs for a predicate R. We say that P is equivalent to Q) wrt the
specification Sg iff the following two conditions hold:

(a) P is steadfast wrt Sg in {S1,...,Sn}, where Si,..., Sy, are the specifications of p1,..., pm, which
are all the undefined predicate names appearing in P

(b) @Q is steadfast wrt Sg in {S],...,S;}, where Si,..., S; are the specifications of ¢q1,. .., ¢;, which are
all the undefined predicate names appearing in .

Since the ‘is equivalent to’ relation is symmetric, we also say that P and @) are equivalent wrt Sg.

B Proof of T'GG4

As a reminder, we give again the generalization schema 7'G;.

TGy : { DCLR, TG, Cy) where
Cy ¢ (1) Compose is associative
(2) Compose has e as the left and right identity element, where e appears in DCLR
3) VX : Tx. Ir(X) A Minimal(X) = Or(X,e€)
(4 VX : Tx. Ir(X) = ["Minimal(X) < NonMinimal(X)]

and templates DC' LR and T'G are in Figure 8.

R(X,Y) — R(X,Y) —
Minimal(X), R_tupling([X],Y)
Solve(X,Y) R_tupling(Xs,Y) —
R(X,Y) — Xs=[,Y=e
NonMinimal(X), R_tupling(Xs,Y) —
Decompose(X, HX,TX1,TXs), Xs = [X|TXs],
R(TX1,TY1), R(TXs, TY), Minimal(X),
Iy = e,Compose(ly, TY1,I1), R_tupling(TXs,TY),
Process(HX,HY), Compose(I1, HY, I5), Solve(X, HY), Compose(HY,TY,Y)
Compose(I3,TYa,13),Y = I3 R_tupling(Xs,Y) —
Xs = [X|TXs],
NonMinimal(X),
Decompose(X, HX,TX1,TXs),
Minimal(T X,),

R_tupling([TXo|TXs], TY),

Solve(TX;,TY1),

Iy = e,Compose(ly, TY1, I1),

Process(HX,HHY), Compose(I, HHY, I5),

HY = I,Compose(HY,TY,Y)
R_tupling(Xs,Y) —

Xs = [X|TXs],

NonMinimal(X),

Decompose(X, HX,TX1,TXs),

NonMinimal(TX,),

Minimal(U),

Decompose(N, HX,U, TX,),

R_tupling([TX1, N|TXs],Y)

Figure 8: Templates DCLR and T'G

11

The specification Sg of predicate R is:
VX Tx,VY : 1Ty. IR(X) = [R(X,Y) < OR(X,Y)]
The specification Sg_tupiing of predicate R_tupling is:

VXs:list of Tx,VY : Ty. (VX :Tx. X € Xs = Ig(X)) = [R1upling(Xs,Y) &
(Xs=[]AY =¢)
\/(XSI[Xl,...,Xq]/\ AZg:lOR(XZ»,YZ») N1 =Y A /\3:200(12'_1,}/2',12') /\Y:Iq)]

where O¢ is the output condition of Compose, Og is the output condition of R, and ¢ > 1.
To prove the generalization schema T'G1, we have to prove that templates DCLR and TG are equiv-
alent wrt Sg. By Definition 5, this holds iff the following two conditions hold:

(Cl) DCLR is steadfast wrt SR in$§ = {SMinimalaSNonMinimalaSSolveaSDecomposeaSCompose}a where
SMinimal, SNonMinimal, SSolve, SDecompose, OCompose are the specifications of Minimal, NonMinimal,
Solve, Decompose, Compose, which are all the undefined predicate names appearing in DC'LR.

(b) TG is also steadfast wrt Sg in S.

Note that the sets {S1,...,Sn} and {S7,...,S5}} in Definition 5 are equal when @) is obtained by gener-
alization of P.

In program transformation, we assume that the input program, here template DC' LR, is steadfast
wrt Sg in S, so condition (a) always holds.

To prove equivalence, we have to prove condition (b). We will use the property of steadfastness: TG
is steadfast wrt Sg in S if Pr_tupiing 1s steadfast wrt Sr_jupiing in S, where PRr_supiing is the procedure
for Rtupling, and Pg is steadfast wrt Sg in {Sr_tupting}, Where Pg is the procedure for R.

To prove that Pr_jupiing 1s steadfast wrt Sg_supiing in S, we do a constructive forward proof that we
begin with Sg_tupiing and from which we try to obtain Pgr_jupiing-

If we separate the cases of ¢ > 1 by ¢ =1V ¢ > 2, then Sg_supiing becomes:

VXs:list of Tx,VY : Ty. (VX :Tx. X € Xs = Ig(X)) = [R1upling(Xs,Y) &
(Xs=[]AY =¢)

\/(XS = [Xl] /\OR(Xl,Yl) /\Y1 = Il ANY = Il)

V(Xs = [X1,Xoy ., XA Ny Or(XeY:) AL=YiA NoyOc(lio1,Yi, ;) AY =1,)]

where ¢ > 2.
By using applicability conditions (1) and (2):

VXs:list of Tx,VY : Ty. (VX :Tx. X € Xs = Ig(X)) = [R1upling(Xs,Y) &

(Xs=[]AY =¢)

V(Xs = [X1|TXs) ATXs = [| A Or(X1, Y1) AYi = L ATY = e AOc(I1, TY,Y))

\/(XSI[X1|TXS]/\TXSI[Xz,...,Xq]/\ /\3:103()(2,}/2) /\lefl /\Yz:[z/\
U Oc(lio1,Yi,) ATY = I, NOc(I, TY,Y))]

where ¢ > 2.
By folding using Sr_tupling, and renaming:

VXs:list of Tx,VY : Ty. (VX :Tx. X € Xs = Ig(X)) = [R1upling(Xs,Y) &
(Xs=[]AY =¢)
V(Xs = [X|TXs] A Or(X, HY) A Rtupling(TXs, TY) A Oc(HY, TY,Y))]

By taking the ‘decompletion’:

clause 1: Riupling(Xs,Y) —
Xs=[],Y=e

clause 2: Riupling(Xs,Y) —
Xs = [X|TXs], R(X, HY),
R_tupling(TXs,TY), Compose(HY, TY,Y)

By unfolding clause 2 wrt R(X, HY) using DC'LR, and using the assumption that DCLR is steadfast
wrt Sg in S:

12

clause 3: Riupling(Xs,Y) —
Xs = [X|TXs],
Minimal(X),
R_tupling(TXs,TY),
Solve(X, HY), Compose(HY,TY,Y)
clause 4: Riupling(Xs,Y) —
Xs = [X|TXs],
NonMinimal(X), Decompose(X, HX,TX,,TX3),
R(TX1,TY1), R(TXs, TY),
Iy = e,Compose(ly, TY1, I1),
Process(HX, HHY), Compose(I,, HHY, I5),
Compose(I3,TY2, I3), HY = I3,
R_tupling(TXs,TY), Compose(HY, TY,Y)

By introducing Minimal(TX,)V NonMinimal(TX;) in clause 4, using applicability condition (4):

clause 5: Riupling(Xs,Y) —
Xs = [X|TXs],
NonMinimal(X), Decompose(X, HX,TX,,TX3),
Minimal(TX1), R(TXy, Y1), R(T X2, TY:),
Iy = e,Compose(ly, TY1, I1),
Process(HX,HHY), Compose(I,, HHY, I5),
Compose(I3,TY2,I3), HY = I3,
R_tupling(TXs,TY), Compose(HY, TY,Y)

clause 6 : Riupling(Xs,Y) —
Xs = [X|TXs],
NonMinimal(X), Decompose(X, HX,TX,,TX3),
NonMinimal(TX1), R(T Xy, TY:), R(T'X», TY,),
Iy = e,Compose(ly, TY1, I1),
Process(HX, HHY), Compose(I,, HHY, I5),
Compose(I3,TY2, I3), HY = I3,
R_tupling(TXs,TY), Compose(HY, TY,Y)

By unfolding clause 5 wrt R(TX1,TY1) using DCLR, and simplifying using condition (4):

clause 7: Riupling(Xs,Y) —
Xs = [X|TXs],
NonMinimal(X), Decompose(X, HX,TX,,TX3),
Minimal(TX1), Minimal(TX1), Solve(TX1,TY1),
R(T X2, TY:),
Iy = e,Compose(ly, TY1, I1),
Process(HX, HHY), Compose(I,, HHY, I5),
Compose(I3,TY2, I3), HY = I3,
R_tupling(TXs,TY), Compose(HY, TY,Y)

By deleting one of the Minimal(TX;) atoms in clause 7:

clause 8 : Riupling(Xs,Y) —
Xs = [X|TXs],
NonMinimal(X), Decompose(X, HX,TX,,TX3),
Minimal(TX1), Solve(TX;1,TY1),
R(T X2, TY:),
Iy = e,Compose(ly, TY1, I1),
Process(HX, HHY), Compose(I,, HHY, I5),
Compose(I3,TY2, I3), HY = I3,
R_tupling(TXs,TY), Compose(HY, TY,Y)

By rewriting clause 8 using applicability condition (1):

13

clause 9: Riupling(Xs,Y) —
Xs = [X|TXs],
NonMinimal(X), Decompose(X, HX,TX1,TX3),
Minimal(TX1), Solve(TX;1,TY1),
R(T X2, TY:),
Iy = e,Compose(ly, TY1, I1),
Process(HX,HHY), Compose(l1, HHY,I), HY = I,
R_tupling(TX s, TTY), Compose(TY2, TTY,TY),
Compose(HY, TY,Y)

By folding clause 9 using clauses 1 and 2:

clause 10 : Riupling(Xs,Y) —
Xs = [X|TXs],
NonMinimal(X), Decompose(X, HX,TX1,TXs),
Minimal(TX1), Solve(TX;1,TY1),
Rtupling([TX:|TXs],TY),
Iy = e,Compose(ly, TY1, I1),
Process(HX,HHY), Compose(I1, HHY, I), HY = I,
Compose(HY, TY,Y)

By introducing atom Minimal(U) (with new, i.e. existentially quantified, variable U) in clause 6:

clause 11 : Riupling(Xs,Y) —
Xs = [X|TXs],
NonMinimal(X), Decompose(X, HX,TX1,TXs),
NonMinimal(TX1), Minimal(U),
R(TX1,TY1), R(TXo, TY),
Iy = e,Compose(ly, TY1, I1),
Process(HX,HHY), Compose(I, HHY, I5),
Compose(I3,TYs,13), HY = I3,
Rupling(TXs, TY), Compose(HY,TY,Y)

By using applicability condition (3):

clause 12: Riupling(Xs,Y) —
Xs = [X|TXs],
NonMinimal(X), Decompose(X, HX,TX1,TXs),
NonMinimal(TX1), Minimal(U), R(U, e),
R(TX1,TY1), R(TXo, TY),
Iy = e,Compose(ly, TY1, I1),
Process(HX,HHY), Compose(I, HHY, I5),
Compose(I3,TYs,13), HY = I3,
Rupling(TXs, TY), Compose(HY,TY,Y)

By using applicability condition (2):

clause 13 : Riupling(Xs,Y) —
Xs = [X|TXs],
NonMinimal(X), Decompose(X, HX,TX1,TXs),
NonMinimal(TX1), Minimal(U), R(U, e),
R(TX1,TY1), R(TXo, TY),
Iy = e,Compose(ly, TY1, I1),
Compose(I1, e, I4),
Process(HX, HHY), Compose(14, HHY, I5),
Compose(I3,TYs,13), HY = I3,
Rupling(TXs, TY), Compose(HY,TY,Y)

By using applicability conditions (1) and (2):

14

clause 14 : Riupling(Xs,Y) —
Xs = [X|TXs],
NonMinimal(X), Decompose(X, HX,TX1,TXs),
NonMinimal(TX,),
Minimal(U), R(U, e),
R(TX1,TY1), R(TXo, TY),
Iy = e,Compose(ly, e, Ir),
Process(HX,HHY), Compose(I, HHY, I5),
Compose(I3,TYs,13), HY = I3,
R tupling(TXs, TY), Compose(HY, TY,TI),
Compose(TY1,TI,Y)

By introducing a new, i.e. existentially quantified, variable YU in place of some occurrences of e:

clause 15: Riupling(Xs,Y) —
Xs = [X|TXs],
NonMinimal(X), Decompose(X, HX,TX1,TXs),
NonMinimal(TX,),
Minimal(U), R(U,YU),
R(TX1,TY1), R(TXs, TY),
Iy = e,Compose(ly, YU, I),
Process(HX,HHY), Compose(I, HHY, I5),
Compose(I3,TYs,13), HY = I3,
R tupling(TXs, TY), Compose(HY, TY,TI),
Compose(TY1,TI,Y)

By introducing NonMinimal(N) and Decompose(N, HX,U,TX5), since AN : Tx .NonMinimal(N)A
Decompose(N, HX,U, TX5) always holds (because N is existentially quantified):

clause 16 : Riupling(Xs,Y) —
Xs = [X|TXs],
NonMinimal(X), Decompose(X, HX,TX1,TXs),
NonMinimal(T X,),
Minimal(U), R(U,YU),
NonMinimal(N), Decompose(N, HX, U, TX,),
R(TX1,TY1), R(TXo, TY:),
Iy = e,Compose(ly, YU, I),
Process(HX,HHY), Compose(I, HHY, I5),
Compose(I3,TYs,13), HY = I3,
R tupling(TXs, TY), Compose(HY, TY,TI),
Compose(TY1,TI,Y)

By duplicating goal Decompose(N, HX,U,TX5):

clause 17: Riupling(Xs,Y) —
Xs = [X|TXs],
NonMinimal(X), Decompose(X, HX,TX1,TXs),
NonMinimal(T X,),
Minimal(U), R(U,YU),
NonMinimal(N), Decompose(N, HX, U, TX,),
Decompose(N, HX,U, TX,),
R(TX1,TY1), R(TXo, TY),
Iy = e,Compose(ly, YU, I),
Process(HX,HHY), Compose(I, HHY, I5),
Compose(I3,TYs,13), HY = I3,
R tupling(TXs, TY), Compose(HY, TY,TI),
Compose(TY1,TI,Y)

By folding clause 17 using DC'LR:

15

clause 18 : Riupling(Xs,Y) —
Xs = [X|TXs],
NonMinimal(X), Decompose(X, HX,TX1,TXs),
NonMinimal(TX,),
Minimal(U),
Decompose(N, HX,U, TX,),
R(TXy,TYy), R(N, HY),
R tupling(TXs, TY), Compose(HY, TY,TI),
Compose(TY1,TI,Y)
By folding clause 18 using clauses 1 and 2:
clause 19: Riupling(Xs,Y) —
Xs = [X|TXs],
NonMinimal(X), Decompose(X, HX,TX1,TXs),
NonMinimal(TX,),
Minimal(U),
Decompose(N, HX, U, TX,),
R(TXy,TYy),
R tupling([N|TXs],TI),
Compose(TY1,TI,Y)
By folding clause 19 using clauses 1 and 2:
clause 20 : Riupling(Xs,Y) —
Xs = [X|TXs],
NonMinimal(X), Decompose(X, HX,TX1,TXs),
NonMinimal(TX,),
Minimal(U),
Decompose(N, HX,U, TX,),
Rtupling([TX1,N|TXs],Y)
Clauses 1, 3, 10, and 20 are the clauses of Pr_tupiing. Therefore Pr_supiing is steadfast wrt Sr_tupting
in S.

To prove that Pg is steadfast wrt Sg in {Sgr_tupling}, Wwe do a backward proof that we begin with Pg
in TG and from which we try to obtain Sg.
The procedure Pg for R in T'G is:

R(X,Y) — Rupling([X],Y)
By taking the ‘completion’
VX :Tx,VY : Ty. Ir(X) = [R(X,Y) & R_tupling([X],Y)]
By unfolding the ‘completion’ above wrt R_tupling([X],Y") using Sr_tupiing:
VX Tx, VY Ty, Zp(X) = [R(X,Y) & 3V, I i Ty. Op(X,Y\)AL =YiAY = 1]
By simplification:
VX Tx, VY : Ty. Ip(X)) = [R(X,Y) < Or(X,Y)]

We obtain Sg, so Pg is steadfast wrt Sg in {Sgr_tupiing }-

Therefore, T'G is also steadfast wrt Sg in S.

16

C Proof of DG,

As a reminder, we give again the generalization schema DG\.

DGy : { DCLR, DGRL, Cg43) where
Caz : (1) Compose is associative
(2) Compose has e as the right identity element, where e appears in DCLR

and templates DCLR and DGRL are in Figure 9.

R(X,Y) — R(X,Y) —
Minimal(X), R_descending2(X,Y, e)
Solve(X,Y) R_descending2(X,Y, A) —

R(X,Y) — Minimal(X),
NonMinimal(X), Solve(X, S), Compose(S, A,Y)
Decompose(X, HX,TX1,TXs), R_descending2(X,Y, A) —
R(TX1,TY1), R(TXo, TY), NonMinimal(X),
Iy = e,Compose(ly, TY1, I1), Decompose(X, HX,TX1,TXs),
Process(HX,HY), Compose(I1, HY, I3), A = Az, R.descendings(T X5, Az, As),
Compose(I3,TYa,13),Y = I3 Process(HX,HY), Compose(HY, Ay, A1),

R_descending2(T X1, Ao, A1),
Compose(e, Ag,Y)

Figure 9: Templates DCLR and DGRL
The specification Sg of predicate R is:

VX Tx,VY : 1Ty. IR(X) = [R(X,Y) < OR(X,Y)]
The specification Sg_gescending, of predicate R_descending, is:
VX :Tx,VY, A :Ty. Ir(X) = [Rdescendings(X,Y,A) < 3S:Ty. Or(X,S5) AOc(S, A,Y)]

where Q¢ is the output condition of Compose and Op is the output condition of R.
To prove the generalization schema DG3, we have to prove that templates DCLR and DGRL are
equivalent wrt Sg. By Definition 5, this holds iff the following two conditions hold:

(Cl) DCLR is steadfast wrt SR in§ = {SMinimalaSNonMinimalaSSolveaSDecomposeaSCompose}a where
SMinimal; SNonMinimal, SSolve, SDecompose, OCompose are the specifications of Minimal, NonMinimal,
Solve, Decompose, Compose, which are all the undefined predicate names appearing in DC'LR.

(b) DGRL is also steadfast wrt Sg in S.

In program transformation, we assume that the input program, here template DC'LR, is steadfast
wrt Sg in S, so condition (a) always holds.

To prove equivalence, we have to prove condition (b). We will use the property of steadfastness:
DGRL is steadfast wrt Sg in S if Pr_gescending, 18 steadfast wrt Sg_gescending, In S, where Pr_gescending.,
is the procedure for R_descendings, and Pg is steadfast wrt Sg in {Sr_descending,}, Where Pg is the
procedure for R.

To prove that Pr_gescending, 1s steadfast wrt Sp_gescending, in S, we do a constructive forward proof
that we begin with Sg_descending, and from which we try to obtain Pr_gescendings,-

By taking the ‘decompletion’ of Sr_gescendings,:

clause 1. R_descendings(X,Y, A) — R(X,S), Compose(S, A,Y)

By unfolding clause 1 wrt R(X,S) using DCLR, and using the assumption that DCLR is steadfast
wrt Sg in S:

17

clause 2: R.descendings(X,Y, A) —
Minimal(X),
Solve(X, S), Compose(S, A,Y)

clause 3: R.descendings(X,Y, A) —
NonMinimal(X), Decompose(X, HX,TX,,TX3),
R(TX1,TS1), R(TX,TSs),
Iy = e, Compose(ly, T'S1, 1),
Process(HX, HS),Compose(I;, HS, I),
Compose(I3,TSa, I3), S = I,
Compose(S, A,Y)

By using applicability condition (1) on clause 3:

clause 4: R.descendings(X,Y, A) —
NonMinimal(X), Decompose(X, HX,TX,,TX3),
R(TX1,TS1), R(TX,TS5),
Compose(TSa, A, As),
Process(HX,HY), Compose(HY, Az, A1),
Compose(TS1, A1, Ao),
Compose(e, Ag,Y)

By twice folding clause 4 using clause 1:

clause 5: R.descendings(X,Y, A) —
NonMinimal(X), Decompose(X, HX,TX,,TX3),
R_descendings(T X2, Az, A),
Process(HX,HY), Compose(HY, Az, A1),
R_descending>(T X1, Ao, A1),
Compose(e, Ag,Y)

By introducing a new, i.e. existentially quantified, variable As:

clause 6 : R.descendings(X,Y,A) —
NonMinimal(X), Decompose(X, HX,TX,,TX3),
A = As, R-descendings(T X3, Az, As),
Process(HX,HY), Compose(HY, Az, A1),
R_descending>(T X1, Ao, A1),
Compose(e, Ag,Y)

Clauses 2 and 6 are the clauses of Pr_gescending,. Therefore Pr_gescending, is steadfast wrt Sg_descending,
inS.

To prove that Pg is steadfast wrt Sg in {Sr_descending, }, We do a backward proof that we begin with
Pgr in DGRL and from which we try to obtain Sg.
The procedure Pg for R in DGRL is:

R(X,Y) — R_descending2(X,Y,e)
By taking the ‘completion’:
VX :Tx,VY : Ty. Ir(X) = [R(X,Y) & R_descending2(X,Y, e)]
By unfolding the ‘completion’ above wrt R_descendings(X,Y,e) using Sr_descendings:
VX Tx,YY : Ty. Ir(X) = [R(X,Y) & 3S :Ty. Or(X,S) A O¢(S,e,Y)]
By using applicability condition (2):

VX Tx,YY : Ty. Ir(X) = [R(X,Y) & 35S :Ty. Or(X,S)AS =Y]
By simplification:
VX Tx, VY : Ty. Ig(X) = [R(X,Y) & Og(X,Y))]
We obtain Sg, so Pg is steadfast wrt Sg in {Sgr_descendings -

Therefore, DGRL is also steadfast wrt Sg in §.

18

