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Abstract

An active DBMS is expected to support concurrent as well as sequential rule execution in
an efficient manner. Nested transaction model is a suitable tool to implement rule execution as
it can handle nested rule firing and concurrent rule execution well. In this paper, we describe a
concurrent rule execution model based on parallel nested transactions. We discuss implementa-
tion details of how the flat transaction model of OpenOODB has been extended by using Solaris
threads in order to support concurrent execution of rules. We also provide a formal specification
of the rule execution model using the ACTA framework.
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1 Introduction

Conventional, passive databases execute queries or transactions only when explicitly requested to
do so by a user or an application program. In contrast, an active database management system
(ADBMS) allows users to specify actions to be executed when specific events are signaled [Day88].
The concept of active databases has been originated from the production rule paradigm of Artificial
Intelligence (AI). The Al production rule concept has been modified for the active database context
so that rules can respond to the state changes caused by the database operations [HW92]. An active
database implements reactive behavior since it is able to detect situations, which may occur in and
out of the database, and to perform necessary actions which were previously specified by the user.
In the absence of such an active mechanism, either the database should be polled or situation
monitoring should be embedded in the application code. Neither of these approaches is completely
satisfactory. Frequent polling degrades performance of the system and infrequent polling may
deteriorate the timeliness of system responses. Embedding situation monitoring in the application
code is error prone and reduces the modularity of the application [Day88].

Applications supported by ADBMSs cover a wide range of areas like authorization, access log-
ging, integrity constraint maintenance, alerting, network management, air traffic control, computer
integrated manufacturing, engineering design, plant and reactor control, tracking, monitoring of
toxic emissions, and any other application where large volumes of data must be analyzed to detect
relevant situations [Day88], [BDZ95]. Active DBMSs are proposed for system level applications as
well, like supporting different transaction models [CA95].

In a typical ADBMS, system responses are declaratively expressed using Event-Condition-
Action (ECA) rules [Day88]. An ECA rule is composed of an event that triggers the rule, a
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condition describing a given situation, and an action to be performed if the condition is satisfied.
One of the most important concerns in ADBMS research is event, condition, and action specifica-
tion. Another significant issue that needs to be explored is event detection. Among typical events in
an ADBMS are data modification operations (e.g., insertions and deletions), method invocations on
objects, external events (e.g., application signals), temporal events, and transaction related events
(e.g., begin, abort transaction) [BZBW95]. Basic events can also be combined to form composite
events by using an event algebra. Efficient event detection is of particular importance especially
when the number of events to be monitored is large. The occurrence of an event can lead to firing
of some rules in the system. If the condition part of a fired rule is satisfied, then the action part
of the rule is executed. Coupling modes between event and condition, and between condition and
action determine when the condition should be executed relative to the occurrence of the event, and
when the action should be executed relative to the satisfaction of the condition, respectively. Rule
execution is also a significant research issue in ADBMSs. In Section 2 of this paper, we provide a
detailed discussion of rule execution in ADBMSs.

An ADBMS should support both concurrent and sequential rule execution. Sequential rule
execution is necessary when a certain execution order is enforced by priorities or when the rules
have a predefined sequence of execution. Sequential execution may also be supported in levels; i.e.,
a certain number of groups of rules can be executed sequentially while the rules in each group are
executed concurrently. Concurrent rule execution, on the other hand, is very important from the
performance perspective of the system. Concurrency in rule execution can be achieved through
either:

e inter-rule concurrency, or
e intra-rule concurrency, or
e both inter and intra-rule concurrency.

In the first case, rules are executed concurrently as if they are atomic transactions. In the second
case, rules are divided into subcomponents and those subcomponents are executed concurrently.
As another alternative, we may have both types of concurrency together, which is the most flexible
concurrent rule execution model. Nested transaction model [Mos85] is considered as a suitable tool
to implement rule execution since it provides us with a good model for concurrent rule execution
and it can handle nested rule firing well. Nested rule firing occurs when the condition evaluation
and action execution of a rule causes some other rules to be fired which may go on recursively.
In the nested transaction model, some transactions can be started inside some other transactions
forming a transaction hierarchy. The transaction at the top of the hierarchy is called a top-
level transaction, and the other transactions are called subtransactions. Subtransactions can be
executed concurrently which is a desirable situation if subtransactions are performing tasks that
can be overlapped. Concurrency control of nested transactions is discussed in [HR93].

In this paper, we describe a rule execution model for ADBMSs based on parallel nested trans-
actions. Qur execution model supports concurrent rule execution through nested transactions, and
sequential rule execution through user defined priorities. Rules with the same priority are executed
concurrently which allows us to have sequential execution among rules with different priority levels
and concurrent execution for the rules with the same priority. The rule execution model is formally
specified using ACTA which is a framework proposed for extended transaction models [CR91]. We
also discuss the implementation details of concurrent rule execution using parallel nested transac-
tions. The locking protocol described in [HR93] has been implemented which allows us to control



the concurrency among all the transactions in a transaction hierarchy running in parallel. Imple-
mentation has been performed by extending the flat transaction semantics of OpenOODB using
Solaris threads. OpenOODB is an open (i.e., extendible) object oriented database management
system developed by Texas Instruments [WBT92]. In our implementation, all the transactions
in a transaction hierarchy are allowed to run in parallel, therefore achieving the highest level of
concurrency. Solaris threads are used for running the subtransactions in parallel which provides
us with efficient handling of transactions executing concurrently [Sun94]. Our implementation of
concurrent rule execution is currently being integrated into Sentinel [CAM93] which is an ADBMS
developed at the University of Florida.

A detailed discussion of the issues introduced in this section is provided in the following sections.
In Section 2 we provide a detailed description of rule execution in ADBMSs. Our execution model
for ADBMSs is described in Section 3 together with its formal specification. Section 4 describes the
implementation details of parallel nested transactions on OpenOODB using Solaris threads, and
discusses the integration of our implementation into Sentinel. A brief discussion on the execution
overhead of parallel nested transactions is provided in Section 5. We conclude the paper by outlining
future directions of this work.

2 Rule Execution in ADBMSs

In this section, we provide an overview of rule execution in ADBMSs and discuss the basic issues
in nested transactions that can be used in implementing rule execution.

2.1 Overview of ADBMS Rule Execution

A rule in an ADBMS consists of an event, a condition and an action. If the event is missing, then
the rule is a condition-action (CA) rule or a production rule; if no condition is specified, then the
resulting rule is an event-action (EA) rule or simply a trigger [PD95]. When an event is detected,
the system searches for the corresponding rules. The condition part of the rule triggered by that
event is evaluated and the action is taken if the condition is satisfied. An event may cause more
than one rule to be fired. Handling of multiple rules fired by an event is also an important task
of rule execution. New events may also occur during rule execution which may cause triggering of
other rules. This is called nested (or cascaded) rule firing. Efficient handling of nested rule firing
improves the performance of the whole system.

The action part of a rule may be executed in one transaction immediately as a linear extension
of the triggering transaction. This is called coupled execution [HLMS&S8]. In coupled execution, we
do not have intra-rule concurrency. We can give Starburst as an example of coupled execution of
rules [Wid96],[JAWH92]. In Starburst, rules are based on the notion of transitions. A transition is a
change in database state resulting from the execution of a sequence of data manipulation operations.
Rules are activated at assertion points. There is an assertion point at the end of each transaction
and users may specify other assertion points within a transaction. The state change resulting from
the database operations issued by the user since the last assertion point creates the first relevant
transition which triggers a set of rules. A rule ris chosen from the set of triggered rules such that no
other triggered rule has precedence over it. Condition of r (if it has any) is evaluated. Action part
of ris executed provided that its condition evaluates to true; otherwise another rule is chosen. After
the execution of r’s action, rules that are not considered up until now are triggered only if their
transition predicates hold with respect to the predicate created by the composition of the initial
transition and the execution of ’s action. Rule processing terminates after all triggered rules are
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Figure 1: Basic coupling modes illustrated.

executed. Ariel is another ADBMS which uses coupled rule execution[Han96]. Rule instantiations
in Ariel are set oriented and execution of rules is performed by recognize-act cycle as in production
rules.

Although coupled execution is useful in some cases, it degrades the performance of the system
by increasing the response time of transactions. If we allow actions to be executed in separate
transactions, then the triggering transaction can finish more quickly and release resources earlier,
and this way transaction response times can be improved. We may also want the condition part
of the rule to be executed as a separate transaction since conditions which are queries on the
database can be long and time consuming. Allowing conditions and actions to be executed in
separate transactions is called decoupled execution [HLMS88]. With decoupled execution we may
have intra-rule concurrency.

It is also important to specify when the condition will be evaluated relative to the triggering
event and when the action will be executed relative to the condition evaluation. This is achieved
by defining coupling modes for conditions and actions which are stated to be a functionality that
an active database should provide [btANC96]. There are three basic coupling modes: immediate,
deferred, and detached (or decoupled) [Day88]. Basic coupling modes between event and condition
are illustrated in Figure 1. If the condition is specified to be evaluated in immediate mode, then it
is executed right after the triggering operation that caused the event to be raised. If the action part
is specified to be executed in immediate mode then it is executed immediately after the evaluation
of the condition. In case the condition is specified to be in deferred mode, its evaluation is delayed
until the commit point of the transaction, and similarly if the action is in deferred mode relative
to the condition, again it is executed right before the transaction commits. Finally, in detached
mode, condition is evaluated or action is executed in a separate transaction. Detached mode can
further be classified into four subcategories: detached coupling, detached causally dependent cou-
pling, sequential causally dependent coupling, and exclusive causally dependent coupling [Buc94].
In detached coupling there is no dependency between the triggering and triggered transactions.
In detached causally dependent coupling, the triggered transaction can commit only if the trigger-
ing transaction commits. In sequential causally dependent coupling, the triggered transaction can



start executing only if the triggering transaction commits. Finally, in ezclusive causally dependent
coupling, triggered transaction commits only if the triggering transaction fails.

A deferred execution method proposed in [HLMS88] involves the execution of transactions in
cycles. In cycle-0, deferred transactions that have been fired up to that point are executed. Trans-
actions spawned during cycle-0 in immediate mode are executed as a linear extension of their
parents as usual. Execution of the deferred transactions that are fired during cycle-0 by another
deferred transaction is postponed to the next cycle, which is cycle-1. Again deferred transactions
that are fired in cycle-1 are postponed to the next cycle, which is cycle-2, and so on. This process
continues until there are no deferred transactions left.

Intra-rule concurrency is achieved by dividing a rule into a condition and an action, and exe-
cuting them concurrently. In our execution model, intra-rule concurrency is in the condition-action
level, i.e. there are no subcomponents of conditions or actions executing concurrently. Inter-rule
concurrency can be achieved by executing the rules concurrently. In the following subsection, nested
transactions are explained as a concurrent rule execution model for ADBMSs.

2.2 Nested Transactions for Concurrent Rule Execution

Parallel nested transactions are accepted to be a suitable tool for concurrent rule execution in
ADBMSs [HLM88]. In what follows, we will discuss nested transactions together with the concur-
rency control and recovery issues.

2.2.1 An Introduction to Nested Transactions

Traditional (i.e., flat) transactions have only one branch of execution. In the nested transaction
model, transactions can have multiple branches of execution. A nested transaction forms a hier-
archy which can be represented as a tree structure, and standard tree notions like parent, child,
ancestor, descendant, superior, and inferior also apply to it. The root of the tree is called a root or
a top-level transaction. The root may have one or more children, and similarly children of the root
may also have their own children. By dividing transactions into smaller granules, we localize the
failures into subtransactions. Subtransactions can abort independently without causing the abor-
tion of the whole transaction hierarchy. When a transaction aborts, all of its descendants are also
aborted, but other transactions are not affected. Nested transactions are also very useful in terms
of system modularity. If we consider a transaction hierarchy as a big module, its subtransactions
may be designed and implemented independently as submodules, also providing encapsulation and
security [HR93].

2.2.2 Concurrency Control and Recovery Issues in Nested Transactions

Using nested transactions, we can exploit the parallelism among subtransactions since subtransac-
tions can be executed in parallel. There can be four different kinds of parallelism:

1. only sibling,
2. only parent-child,
3. parent-child and sibling,

4. no parallelism (i.e., sequential execution).



In the first case, where only sibling parallelism is allowed, parent stops its execution while its
children are running concurrently. In the second case, only parent-child parallelism is allowed
where the parent and a child run concurrently while the other children wait. In the third case, all
transactions in the hierarchy can run in parallel. In the fourth case, we have no parallelism at all
(i.e., transactions in the hierarchy are executed sequentially) [HR93]. In our model, we will assume
parent-child and sibling parallelism since it provides us with the most flexible model of parallelism.

When transactions are executed concurrently, serializability is used as the correctness criterion,
and it is ensured by using a concurrency control protocol. A child transaction can potentially
access any object in the database. When a subtransaction commits, the objects modified by it
are delegated to its parent transaction. In our execution model, we used a locking protocol for
concurrency control in nested transaction execution. The protocol is described in the next section.

In nested transactions, ACID properties (i.e., atomicity, consistency, isolation, and durability)
are valid for top-level transactions, but only a subset of them holds for subtransactions [HR93]. A
subtransaction may commit or abort independent of other transactions. Aborting a subtransaction
does not affect other transactions outside of its hierarchy, hence they protect the outside world
from internal failures. If we had packed all subtransactions into one big flat transaction then we
would have to abort the whole transaction.

Recovery of nested transactions is similar to the recovery of flat transactions. Standard recov-
ery algorithms like versioning or log-based recovery can be used. Log-based recovery for nested
transactions is discussed in [Mos87] and [RM89]. [RM89] introduces a model called ARIES/NT
and this has several advantages over the recovery model provided in [Mos87] . The biggest draw-
back of the recovery model of [Mos87] is that it does not use Compensation Log Records (CLRs)
which are necessary for performance reasons. A detailed description of CLRs is provided in [RM89].
OpenOODB, on which our execution model has been built, uses Exodus as storage manager whose
recovery component is implemented based on ARIES [MHL%92], and ARIES/NT is provided for
nested transactions as an extension to ARIES.

3 Rule Execution Model

Our concurrent rule execution model is based on the nested transaction model. The nested trans-
action model implicitly assumes that subtransactions are spawned in immediate mode. In our
execution model, transactions may spawn subtransactions in any coupling mode specified by the
system. Fach rule is encapsulated in a transaction. When a rule r; fires another rule ry, then
depending on the coupling mode, 73 is encapsulated in another (sub)transaction and executed in
the specified coupling mode. If the coupling mode is immediate or deferred, then ry is executed
as a subtransaction of r;. If the coupling mode is one of detached, sequential causally dependent,
detached causally dependent, or exclusive causally dependent modes, then r5 is executed as a top-
level transaction. The overall structure of the currently executing rules in the system forms a forest
consisting of trees whose roots are the rules fired in one of the detached coupling modes. As stated
earlier, both parent-child and sibling parallelism are allowed which provides us with the maximum
concurrency among subtransactions. Top-level transactions are executed in parallel. All nested
transaction semantics applies among the individual rules in the nested transaction tree. Abort and
commit dependencies among the top-level transactions are enforced by the transaction manager.
In addition to the coupling mode and the tuple- or set-oriented semantics, priority information
also affects the order of rule execution. Typically, expert systems assumed a conflict resolution
strategy which produced a sequential order for executing eligible rules one at a time. In contrast,
DBMSs assume no priority among transactions/subtransactions and hence execute eligible trans-



actions in an interleaved order to maximize some metric (such as throughput). The correctness
criteria is the serialization of transactions. Note that serial execution automatically satisfies the
serializability criteria.

In fact, a combination of the above two alternatives is likely to meet the requirements of appli-
cations. This entails that the system be capable of supporting both serial execution using a conflict
resolution strategy and concurrent execution based on the serialization criterion of correctness.
In Sentinel, both of these are supported to provide maximum flexibility for the specification and

execution of ECA rules [CAM93].

3.1 Concurrency Control

The concurrency control algorithm used in our execution model is based on the notion of nested
concurrency control. Harder and Rothermel [HR93] have extended Moss’s nested transaction model
to contain downward as well as upward inheritance of locks. We have employed in our model the
locking protocol provided in [HR93]. The protocol is composed of the following locking rules:

¢ Rule 1: Transaction T may acquire a lock in mode M or upgrade a lock it holds to mode M

if:
— no other transaction holds the lock in a mode that conflicts with M, and

— all transactions that retain the lock in a mode conflicting with M are ancestors of T.

A transaction holds a lock on an object if it has the right to access the locked object in
the requested mode. In contrast, a transactions retains a lock on an object to control the
access of the transactions outside the hierarchy of the retainer and cannot be accessed by the
transaction retaining the lock.

e Rule 2: When subtransaction T commits, the parent of T inherits T’s locks (held and re-
tained). After that, the parent retains the locks in the same mode as T held or retained them
before.

¢ Rule 3: When a top-level transaction commits, it releases all the locks it holds or retains.

¢ Rule 4: When a transaction aborts, it releases all the locks it holds or retains. If any of its
superiors hold or retain any of these locks, they continue to do so.

e Rule 5: Transaction T, holding a lock in mode M, can downgrade the lock to a less restrictive
mode, M’. After downgrading the lock, T retains it in mode M.

These locking rules can be used with different types of coupling modes. A transaction spawned
in detached causally dependent mode should be able to use its parent’s locks in the same way
as a subtransaction spawned in immediate or deferred mode. Since the transaction spawned in
detached causally dependent mode should abort if its parent aborts, it can use its parent’s locks
without causing any problem in the recovery. Both shared and exclusive lock modes are available
to transactions in our execution model as described in Section4.2.1 .

3.2 Rule Priorities

Rules, in our execution model, are associated with priorities. Several rules can have the same
priority value. Rule scheduler uses the priority information to either schedule them sequentially



(the rule priority is converted into thread priority in which the rule is executed as a subtransaction),
or concurrently by assigning the same priority to several threads. Correctness of rule execution is
guaranteed by the semantics of nested transactions. For nested rule execution, the determination
of the order of execution can be based on whether depth-first, breadth-first, or a combined control
strategy is used. In fact, depending upon the preferred control strategy, the priorities can be
determined by the system to create a total order of thread priorities that will satisfy the control
strategy. Currently, depth-first execution has been implemented. Priorities are used to allow
sequential execution of rules. There are some points that should be taken into account since the
semantics of coupling modes makes some priority assignment schemes meaningless. In case of
immediate mode, priority of the child transaction should be higher then the priority of the parent
transaction, since parent cannot commit before its children commits. The same argument holds for
deferred coupling mode. In detached causally dependent mode, child cannot commit if its parent
aborts. So it should wait for the commit of its parent implying that a lower priority given to the
child would be more meaningful. In sequential causally dependent mode, child cannot start its
execution until its parent commits and in exclusive causally dependent mode, the child transaction
commits only if the parent aborts. So, transactions spawned in sequential causally dependent or
exclusive causally dependent modes should have a lower priority then their parent. Dependencies
among subtransactions can be viewed as implicit priorities and they should be taken into account in
priority assignment. Priorities are important when a group of transactions are spawned by the same
transaction in immediate, deferred, or detached coupling modes. The execution of transactions that
are spawned in deferred mode is delayed until the end of the parent transaction, for that reason they
should be considered as a separate group. During the cycling execution of deferred transactions,
priorities should be taken into account. Transactions spawned in immediate mode and detached
mode should be considered as a separate group and should be executed in sequence with respect to
their priorities. Transactions with same priority are executed concurrently. In case a transaction
does not posses a priority, we should assign the lowest priority among the group of transactions in
concern.

3.3 A Formal Description of Our Rule Execution Model Using ACTA

ACTA is a transaction framework that can be used to formally describe extended transaction
models [CR94]. Using ACTA, we can specify the interactions and dependencies between the trans-
actions in a model. ACTA characterizes the semantics of interactions (1) in terms of different types
of dependencies between transactions (e.g., commit dependency and abort dependency) and (2)
in terms of transactions effects on objects (their state and concurrency status, i.e., synchroniza-
tion state) [CR94]. Effects of transactions on objects are specified using two sets associated with
each transaction: a wview set which contains the state of objects visible to that transaction and
a con flict set which contains operations for which conflicts need to be considered. ACTA frame-
work consists of four basic blocks which are history, dependencies between transactions, view and
con flict sets of transactions, and finally delegation. History represents the concurrent execution
of a set of transactions and contains all the events invoked by those transactions, also indicating
the partial order in which these events occur. Invocation of an event € by a transaction ¢ is denoted
by ¢;. There are three possibilities that can affect the occurrence of an event:

! !
1. an event € can occur only after the occurrence of another event € (denoted as € — ¢),
2. an event € can occur only if a condition ¢ is true (denoted as ¢ = ¢),

3. a condition ¢ can require the occurrence of an event ¢ (denoted as € = ¢).



Standard dependencies defined in ACTA which we have used for specifying our execution model
are:

e Commit Dependency (denoted as ¢t; C'D ¢;). If transactions ¢; and ¢; both commit then ¢
should commit before ¢;. This can be shown axiomatically as:

Commity; € H = (Commity, € H = (Commity, — Commity, )).

e Abort Dependency (denoted as t; AD t;). If ¢; aborts then ¢; should also abort:
Abort;, € H = Aborttj eH

o Weak-Abort Dependency (denoted as t; WD t;). If ¢; aborts and ¢; has not yet committed,
then t; aborts:

Aborty, € H = (~(Commity, — Aborty,) = (Abort;, € H))

o Ezclusion Dependency is denoted by t; £ D 1;, and ensures that if ¢, commits , then ¢; must
abort. We can state this formally as:
Commity, € H = Abort;, € H.

These dependencies may be the result of the structural properties of transactions. For example,
in nested transactions child transactions are related to their parent by commit and weak-abort
dependencies.

Standard ACTA terms Delegate and ResponsibleTr are defined as:

Delegatey,[t;, p:,[0b]] denotes that transaction ¢; delegated the responsibility of commit-
ting or aborting the operation py[ob] to transaction ¢;. A set of operations may be
delegated by Delegate[t;, DelegateSet]. Initially, the responsibility of committing or
aborting an operation belongs to the transaction that invoked the operation, unless it
is delegated to another transaction.

ResponsibleT'r(p;[ob]) identifies the transaction that is responsible for committing or
aborting the operation p;,[0ob] with respect to the current history.

Axiomatic definition of the standard nested transaction model is provided in [CR94]. Since the
nested transaction model we use is different from the standard nested transaction model of [Mos85],
we need to modify the axiomatic definitions provided for nested transactions. First of all, the
standard ACTA term ResponsibleT'r is separated into two notions, namely Responsible_retainTr
and Responsible_sel fTr. With respect to this modification, Responsible_sel fTr(p:,[ob]) identifies
the transaction which actually invoked an operation on the object ob. The transaction identi-
fied by Responsible_sel fTr(ps,[ob]) is also responsible for the commit or abort of this operation.
Responsible_retainTr(ps;[0b]), on the other hand, identifies the transaction to which the responsi-
bility of committing or aborting this operation is delegated.

Since our notion of responsible transaction is different, the semantics of delegation should also
be modified. According to this modification,

Delegatey,[t;, ps,[0b]] denotes that transaction ¢; delegated the retain or self responsibil-
ity of committing or aborting the operation py,[ob]] to transaction ¢; as retain responsi-
bility.

Finally, the access set of a transaction is modified as:



AccessSet; = {p;[ob]| Responsible_sel fTr(ps[0b]) =t
vV Responsible_retainTr(p;[ob]) = t}

In the next subsection, we provide the axiomatic definition of the extended parallel nested trans-

action model which allows all the transactions in a transaction hierarchy to run in parallel. These

definitions have been obtained by making appropriate modifications on the axiomatic definitions
of standard nested transactions provided in [CR94].

3.3.1

Axiomatic Definition of Parallel Nested Transactions in ACTA

Assume that tg is the root transaction, ?, is a root or a subtransaction, and ¢, is a subtransaction

of 1,

. Ancestors(t) is the set of all ancestors of transaction ¢, Descendants(t) is the set of all

descendants of transaction ¢, and Parent(t) is the parent of .

1.
2.

DAl o

10.

11.

12.

13.

14.

SEy, = {Begin, Spawn,Commit, Abort}
IE;, = {Begin}

TE:, = {Commit, Abort}

SE;, = {Spawn,Commit, Abort}

IE;, = {Spawn}

. TE;, = {Commait, Abort}
. 1p satisfies the fundamental axioms of transactions that are listed in [CR94].

. Viewtp = Hct

That is, ¢, sees the current state of objects in the database.

. ConflictSet,, = {pi[ob]| Responsible_sel fTr(pfob]) # to, Inprogress(pyob])}

Conflict set of tg consists of all operations performed by different transactions for which it is
not self-responsible (i.e., o did not actually invoked the operation).

Yob 3p py,[ob] € H = (ob is atomic)
All objects on which ¢, invokes an operation are atomic objects.

Commity, € H = —(t,b3tp)
Transaction ¢, can commit only if it is not part of a cycle of b relations
that are results of conflicting operations.

dob, p, t (Commuty [piob]] € H = Commit;, € H A Parent(t,) = ¢)
If an operation p invoked on an object ob is committed by transaction ?,, then ¢, should also
commit and it should be a top-level transaction.

(Commit;, € H A Parent(t,) = ¢) = Yob, p,t(piob] € AccessSety,

= Commitp:[ob]] € H)

If a top-level transaction commits then all the operations for which it is responsible must also
be committed.

dob, p,t (Aborty,[pilob]] € H = Abort;, € H)
If an operation p invoked on an object ob in transaction ¢ is aborted by transaction ?,, then
t, must also abort.

10



15.

16.

17.

18.

19.

20.

21.

22.

Aborty, € H = Yob, p,t(ps[ob] € AccessSety, = Abort,[ps[ob]] € H)
If t, aborts then all the operations for which it is responsible must abort.

Beging, € H = (Parent(t,) = ¢ A Ancestor(t,) = ¢)
Begin operation implies that a top-level transaction starts its execution.

ConflictSet;, = {p]ob]| Responsible_sel fTr(pfob]) # t., Inprogress(pfob])}

Conflict set of a child transaction t. consists of those operations for which . is not self
responsible, since the operations on the object ob for which t. has the retain responsibility
may be conflicting with another transaction which is not an ancestor of ¢.. This is due to the
fact that subtransactions are executing in parallel with their parent transaction.

Spawny,[t.] € H = Parent(t.) =1,
If transaction ?. is spawned by transaction ?, then ¢, is the parent of 7.

Spawny,[t.] € H = (t.WDt,) A (1,CDt.)
If transaction ¢, is spawned by transaction ¢, then ¢, cannot commit until ¢, terminates, and
if ¢, aborts then ¢, must also abort.

Commit,, € H < Delegate, [Parent(t.), AccessSet; | € H
If a child transaction . commits, then it should delegate the objects in its access set to its
parent.

Vt € Descendants(t,)Vob, p, q(piob] — g1,[0b])Con flict(piob], q:,[0b])

= Jt. ((Delegates [t,, AccessSets ] — qi,[0b]) A psob] € AccessSet;,)

Given a transaction ¢ and its ancestor ¢, and operations p and ¢, ?, can invoke ¢ after ¢
invokes p if ¢, is responsible for the operation p.

(Ancestor(t.) = Ancestor(t,) U {t,}) A Vi(t, € Descendants(t)

= t. € Descendants(t))

Ancestor set of t. consists of its parent plus ancestors of its parent, and for all transactions ¢
of which 1, is a descendant, t. is also a descendant of ¢.

3.3.2 Formalization of the Rule Execution Model

A formal specification of rule execution in ADBMSs using ACTA can be provided without significant
changes to the standard ACTA primitives. The Spawn primitive can be extended to the primitives
Spawn_Imm, Spawn_Def, Spawn_Detached, Spawn_Caus, Spawn_Seq, and Spawn_FEzc, which specify
the coupling modes in which the subtransactions are spawned. All coupling modes except the
de ferred mode and sequential causally dependent mode can be specified easily using the standard
dependencies of ACTA (i.e., commit dependency, abort dependency, weak abort dependency, and
exclusion dependency [CR94]). For the deferred mode, we need to specify a cycling execution

method, which can be stated as follows:

Deferred transactions are executed in cycles at the end, but just before the commit
of the transaction that spawned them. Cycling execution can start only in a top-level
transaction or a subtransaction spawned in immediate mode since deferred subtransac-
tions spawned by another deferred transaction are executed in the next cycle after the
commitment of their parent. Subtransactions spawned by a deferred transaction in im-
mediate mode are executed immediately, which deviates from the standard specification
of the “deferred execution in cycles”.
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The specification of all the coupling modes we considered, including the deferred mode and
sequential causally dependent mode is provided in the following.

Coupling Modes
The coupling modes we considered in our execution model are listed below:

e tmmediate mode: It has the same semantics as the creation of a subtransaction in stan-
dard nested transaction model. Spawning of an immediate subtransaction is denoted by the
primitive Spawn_Imm.

o detached mode:It has the same semantics as the creation of top-level transactions in the stan-
dard nested transaction model. There are no dependencies between the spawning and spawned
transaction. Spawning of a detached transaction is denoted by the primitive Spawn_Detached.

o detached causally dependent mode: In this mode, spawned transaction aborts if the parent
aborts, therefore there is an abort dependency between the spawning transaction and spawned
transaction. Spawning of a transaction in this mode is specified by the primitive Spawn_Caus.

o sequential causally dependent mode: It specifies that a child transaction cannot start its
execution until its parent commits. This can be enforced by a Sequential_Dependency(SQD)
which is provided as an extension to the standard ACTA dependency set and can be stated
formally as:

t;SQDt; < ((Beging, € H) = (Commit;;, — Beginy,))
The primitive Spawn_Seq indicates that a subtransaction is spawned in this mode.

o exclusive causally dependent mode: 1t is denoted by the primitive Spawn_Fzc and it ensures
that the spawned transaction commits only if the spawning transaction aborts. This can be
enforced by using a standard ACTA dependency, namely the Fzclusion Dependency between
the spawning and spawned transactions.

o deferred mode: It is denoted by the primitive Spawn_Def, and a bit more effort is required
to specify it in ACTA framework due to the cycling execution method. Assume that {g is a
top-level transaction, ¢, is a top-level or subtransaction, and . is a child transaction spawned
by t, in deferred mode.

Case 1: t, is a top-level transaction or a subtransaction spawned in immediate
mode, i.e., t. is going to be executed in cycle-0. In this case, . is executed just
before the commit of ¢, after all other operations of ¢, are completed; i.e., all
operations of ¢, precede all operations of 7.

Case 2: t, is a transaction spawned in deferred mode. This means that ¢. is
spawned during a cycle. Then, every operation performed by t. should succeed all
the operations of ¢, and the operations of siblings of ¢, that are spawned in deferred
mode (i.e., executed in the same cycle).

There is an ambiguity in the method described in [HLMS88] for the cycling execution of rules
fired in deferred coupling mode. If a rule is fired in deferred mode by a transaction during the
execution of a cycle, it is executed in the next cycle; but if a rule is fired in deferred mode by a
transaction which has been fired in immediate mode then the fate of this transaction, i.e., whether it
will be deferred to the next cycle or it will be executed in another execution cycle is left unspecified.

12



We chose to execute these kinds of rules in another cycle before the commit point of the immediate
rule.

In our execution model, we consider the coupling modes between the event and condition, and
also the condition and action. We can give the option of defining the coupling mode between the
condition and action to the user, where the user can select immediate or sequential causally de-
pendent coupling mode. Other coupling modes would not make sense due to the semantics of the
relation between the condition and action. In immediate mode, condition evaluation is followed by
execution of the action only if the condition evaluates to true. In sequential causally dependent
mode, action execution starts before condition evaluation is completed. This improves the con-
currency in a system in case there exist abundant resources in the system, which is a reasonable
assumption due to the continuous decrease in the prices of system resources. The transaction in
which the action is executed can commit only if the condition commits and returns true. The
performance impact of the sequential causally dependent coupling mode between condition and
action needs further investigation.

Priorities

In order to provide priorities in ACTA primitives, we define priority(t) to specify the priority of
transaction . Priorities are assumed to be assigned by the user. Qur priority scheme assumes that
priorities are taken into consideration only for the transactions which do not have any dependencies
among each other since dependencies are considered as implicit priorities. As we stated earlier,
deferred transactions spawned by the same transaction are independent of each other. So we
can use priorities to schedule them by enforcing the operations of a deferred transaction with a
higher priority to precede the operations of a lower priority transaction spawned in deferred mode
by the same transaction. Similarly, we can use priorities in scheduling subtransactions spawned
in immediate mode by the same transaction by enforcing that the operations of a high priority
transaction are scheduled before the operations of a lower priority transaction.

A Formal Rule Execution Model
Assume that the definitions provided at the beginning of Section 3.3.1 for the following notations
also hold in this section: tg, t,, t., Ancestors(t), Decendants(t), Parent(t).

Notice that, as one deviation from the standard nested transaction model, there are various
spawn events in axioms (1),(4), and (5) corresponding to different coupling modes. Some of the
axioms used for the nested transaction model directly apply to our execution model. For example,
axioms (7) through (17) which define the semantics of a top-level or a subtransaction which spawns
another transaction are the same for both models, therefore we did not include their explanations
here. Readers who need more information about those axioms are referred to Section 3.3.1.

1. SE;, = {Begin, Spawn_Imm, Spawn_Def, Spawn_Detach, Spawn_Caus,
Spawn_Seq, Spawn_Fzc, Commit,Abort}

2. IE,, = {Begin}
3. TE,, = {Commit, Abort}

4. SE;, = {Spawn_I'mm, Spawn_Def, Spawn_Detach, Spawn_Caus,
Spawn_Seq, Spawn_Fze, Commit, Abort}

5. I E;, = {Spawn_I'mm, Spawn_Def, Spawn_Detach, Spawn_Caus,
Spawn_Seq, Spawn_FExc}
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. TE;, = {Commait, Abort}
. 1p satisfies the fundamental axioms of transactions that are listed in [CR94].
. Viewtp = Hct

. ConflictSet,, = {pi[ob]|responsible_sel fTr(pfob]) # to, Inprogress(piob])}

Vob3ppy,[ob] € H = (ob is atomic)
Commity, € H = —(t,b3tp)
dob, p, tCommity [piob]] € H = Commit;, € H A Parent(t,) = ¢

Commity, € H A Parent(t,) = ¢ = (Yob, p, t(piob] € AccessSety,
= Commit,[p[ob]] € H))

dob, p,t Abort, [pi[ob]] € H = Abort;, € H

Aborty, € H = (Vob, p,t(psob] € AccessSety, = Abort [piob]] € H))
Beging, € H = Parent(t,) = ¢ A Ancestor(t,) = ¢

ConflictSet;, = {p]ob]| Responsible_sel fTr(pfob]) # t., Inprogress(pfob])}

(Spawn_Immy[t.] € H V Spawn_def; [t.] € H) = Parent(t.) =1,
If a transaction ¢, spawns a child transaction ¢, in immediate or deferred mode then ¢, is the
parent of t..

(Spawn_Immy[t.]) € H V Spawn_defi[t.] € H) = (t.WDt,) A (t,CDt.)
If a transaction t. is spawned in immediate or deferred mode by a transaction ?,, then %,
aborts when ¢, aborts and ¢, cannot commit until ¢, terminates.

(Spawn_Causy,[t.] € H V Spawn_Detachy,[t.] € H

V Spawn_Seq[t.] € H V Spawn_Excyt.] € H) = Parent(t.) = ¢

A Ancesstor(t.) = ¢

A transaction spawned with detached, detached causally dependent, sequential causally de-
pendent, or exclusive causally dependent mode is a top-level transaction, therefore has no
parent or ancestor.

Spawn_Causy,[t.] € H = t.ADt,
If a subtransaction ?. is spawned in causally dependent mode by transaction ¢, then ¢, must
abort if 7, aborts.

Spawn_Seqy,[t.] € H = t.5QDt,
If a subtransaction ¢, is spawned in sequential causally dependent mode by transaction t,
then t. can start its execution only if ¢, commits.

Spawn_Ezxc[t.] € H = t.EDt,
If a subtransaction ¢, is spawned in exclusive causally dependent mode by transaction ¢, then
1. can start its execution only if ¢, aborts.
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24.

25.

26.

27.

28.

29.

30.

(Spawn_Immy,[t.] V Spawn_def; [t.]) € H A Commaty, € H

& Delegatey [Parent(t.), AccessSet; | € H

If a subtransaction ¢. is spawned in immediate or deferred mode by transaction ¢, then 7.
must delegate all the operations in its access set to its parent ¢,.

Vt,0b, p,q(t € Descendants(t,) A (pilob] — qi,[0b]) A Con flict(ps[ob], q:,[0b])

= Jt.((Delegatey [t,, AccessSet;,] — q;,[0b] A pilob] € AccessSety,)))

Given a transaction ¢ and its ancestor ¢, and operations p and ¢, ?, can invoke ¢ after ¢
invokes p if ¢, is responsible for the operation p.

(Spawn_Immy[t.] V Spawn_Def [t.]) € H

& (Ancestor(t.) = Ancestor(t,) U {t,}) AVt(t, € Descendants(t)

= t. € Descendants(t))

Ancestor set of a transaction spawned in immediate or deferred mode is defined similar to
that with the standard nested transactions.

(Spawn_Defy[t.] € H A (Parent(t,) = ¢ V It(Spawn_Imm4t,] € H))
= Vp, 0b1, q, 0by(p # Commit A py[obi] € H A gy [oba] € H

= (pt,[0b1] — pi.[0bs])))
This axiom corresponds to Case-1 of the deferred coupling mode execution described in Sec-

tion 3.3.2.

(Spawn_Defy [t.] € H A Ft(Spawn_Defi[t,] € H)

= Vp, q,r,0by, 0by,0b3,11,12(ps,[0b1] € H A g [0b2] € H

A Spawn_Defiltz] € H = (py,[0b1] — q1.[062] A 74,[0b3] — g, [003])
This axiom corresponds to Case-2 of the deferred mode execution.

(Spawn_Defy[t.,] € H A Spawn_Def [t.,] € H A priority(t.,) > priority(t.,)

= Vp, q, 0by, 0b2(qz,, [0b1] — q1,, [0b2])

Among the deferred transactions spawned by the same transaction, operations are executed
in the order of priorities of the corresponding transactions.

(Spawn_Immy,[t.,] € H A Spawn_Immyt.,] € H A priority(t., ) > priority(t.,)

= Vp, q, 0b1, 0ba((Spawn_Immylt,]) — q.,[002] = (g1 [0bl] — ¢, [0b2]))

Among the immediate transactions spawned by the same transaction, operations of the lower
priority transaction which are issued after the start of a higher priority transaction are exe-
cuted after the operations of the higher priority transaction.

4 Implementation of Nested Transactions for Rule Execution

4.1

Previous Work

Although various implementations of the nested transaction model have been provided to date, to
the best of our knowledge, implementation of concurrent rule execution through nested transactions
has not been attempted for any ADBMS.

One implementation of nested transactions has been performed on the Eden Resource Man-
agement System (ERMS) [PN87]. In ERMS, transaction managers are composed hierarchically;
i.e., for each subtransaction there is a corresponding transaction manager. For ensuring the se-
rializability, two-phase locking is used, and a version-based recovery is used for the recovery of
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Figure 2: OpenOODB object relationship diagram.

sub-transactions. In [DGRV95], the implementation described focuses on nested transactions for
client workstations of an object oriented DBMS(OODBMS).

Nested transactions have also been implemented for supporting parallelism in engineering
databases [HPS92]. That particular implementation supports both parent-child and sibling paral-
lelism as in our implementation.

4.2 Implementation

We implement nested transactions by extending the flat-transaction semantics of OpenOODB [WBT92].
OpenOODB is an open object oriented DBMS that can be extended by special constructs called
sentries. In our implementation, a component architecture method is used instead of sentries; i.e.,
a new component is added without significantly modifying the existing ones. Our first task was to
construct the object relationships of OpenOODB by examining the class declarations. In Figure 2,
the whole OpenOODB object relationships diagram is given. Among the components illustrated
in this diagram, the ones that need to be considered for our implementation are isolated. These
isolated components are shown in Figure 3. In this figure, we see that the main OpenOODB
object OO DB has a pointer to each of four objects namely PERSIST_ MGR, TRANS_MGR,
TRANSACTION, and ASM_CLIENT which means that whenever an instance of an object
of type OO DB is created, its constructor creates instances of PERSIST MGR, TRANS_MGR,
TRANSACTION ,and ASM_CLIENT objects. Furthermore, the constructor of TRANS_MGR
object creates an instance of TRANSACTION object which is also used directly by OO DB.

To give a flavor of how a transaction is started and objects are fetched from the database, we give
a sample application of OpenOODB in Figure 4. As can be seen from the figure, an OpenOODB
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Figure 3: Related object relationships

OODB *p_oodb;
My _Class *my_obj = new My_Class;
My _Class *tmp_obj;
char *objname = “objl1”;
main()
{
p-oodb —beginTransaction();
/* make the object persistent and give a name to it */
my_obj —persist(obj_name);
p-oodb —commitTransaction();

p-oodb —beginTransaction();
/* fetch the object with the given name */

p-oodb —fetch(objname);
p-oodb —commitTransaction();

Figure 4: A simple OpenOODB application.

17



main object p_oodb is created which provides us with an interface to OpenOODB. A transaction
is started by using p_oodb — beginTransaction and committed by p_oodb — commitTransaction.
Abortion of a transaction is achieved by p_oodb — abortTransaction. Objects are made persistent
by my_obj — persist() and are fetched from the database by the p_oodb — fetch(...). OpenOODB
fetch operation does not give the flexibility of specifying the lock mode but acquires a default
RFEAD lock from EXODUS storage manager. To provide the application programmer with more
flexibility, we decided to modify the fetch operator of OpenOODB so that it takes the locking mode
as a parameter. As a second stage, nested transaction primitives:

o spawn_sub_transaction
o commit_sub_transaction

o abort_sub_transaction

are added to the transaction manager of OpenOODB (i.e., TRANS_MGR in Figure 3). Finally, a
Lock Manager is implemented to support the nested transaction primitives that are added to the
transaction manager. Among the nested transaction primitives, only the spawn_sub_transaction
takes parameters. The first parameter of it is the name of the function where the subtransaction is
written in, the second one is the spawn-mode. Spawn-mode specifies the coupling mode between
the parent and child. For our nested transaction component, we implemented the immediate and
deferred coupling modes. Detached coupling modes are handled by the rule manager of the ADBMS.

Using Figure 3 we can describe where our lock manager fits in the object relationships diagram.
In that figure, the main object of OpenOODB (i.e., OODB), points to a TRANS_MGR object
which hasa TRANSACTION object. And the TRANSACTION objecthasa LOCK_MANAGER
object; i.e., the constructor of the transaction object creates the LOCK _M AN AGE R object which
can be accessed by OODB. This way the constructs implemented in LOCK_MAN AGFER and
TRANS_MGR can be used by the application via the OpenOODB interface object, OO DB.

LOCK_MANAGFER has two main data structures, namely the Lock_Table and the Transac-
tion_Table. Lock_Table is a hash table that is used to keep the lock information of objects that
have previously been fetched by a transaction in the transaction hierarchy. Lock_Table is hashed
by the object name, and given an object, we can reach all the transactions that have a lock on this
object with any mode. Transaction_Table keeps the transaction hierarchy, wait-for graph and the
lock information of the subtransactions. These data structures are shown in Figure 5. We can see
from the figure that those hash tables are interconnected, that is, we can reach the objects that
are held by a transaction given its transaction identifier. This provides us with efficient abort and
commit of subtransactions. Transaction_Table is hashed by transaction identifiers(¢id). Given the
tid of a transaction 2:

e We can reach all the objects held by that transaction in any hold and lock mode. The hold
mode of a lock can be either hold or retain, and the lock mode can be either READ or

WRITLE.
o We can reach the transactions for which the transaction with tid is waiting.
e We can reach the transactions waiting for the transaction with tid.

e We can reach all the children and ancestors of the transaction with ¢id.

?In the remaining part of this section, we use the term transaction to denote both top-level transactions and
subtransactions.
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Primitive Explanation

thr_create() create a thread
thr_sel f() return the thread identifier of the calling thread
thr_suspend() | block the execution of a thread

Py A AN T D T T
LIL’I'_CU’ILL’L’IL’LLC\) UunploCK a tllread

thr_kill() send a signal to a thread
thr_exit() terminate a thread
thr_join() wait for the termination of a thread

Table 1: Thread primitives used.

For the parallel execution of subtransactions, Solaris threads are used [Sun94]. Solaris is a
fully functional distributed operating and windowing environment [Sun92]. Thread is a sequence
of instructions executed within the context of a process. Traditional Unix process contains a single
thread of control. Solaris provides us with Multi-threaded Programming. Multi-threading separates
a process into many execution threads each of which runs independently.

Advantages of Multi-threading can be listed as:

¢ overlap in time, logically separating tasks that use different resources,
¢ sharing the same address space,
e providing cheap switching among threads.

Mutual exclusive locks are used to control the concurrent access of different threads to the
shared data structures.

Thread primitives used in our implementation are listed in Table 1. Using thr_create() we exe-
cute a given function in a thread. In our implementation, subtransactions are defined as functions
in a specified format and are executed concurrently using the spawn_sub_transaction primitive
provided by our implementation of nested transactions. In Figure 6, the spawn_sub_transaction
primitive executes the transaction, embedded inside a function, in a thread using thr_create().
Threads are created in suspended mode so that the necessary information is inserted into the
Transaction_Table. Since the tids are unique within a Unix process, and top-level transaction
boundaries do not exceed the process boundaries, it was very convenient for us to define the tids
as the transaction identifiers. This way we do not need to pass the transaction identifier to the
subtransaction as a parameter. Subtransactions can access their tids by calling the thread library
function thr_sel f(). This function returns the thread identifier of the calling thread, i.e., the tid.
When an OpenOODB top-level transaction is created, the tid is also inserted into the transaction
table for the sake of completeness of the transaction hierarchy.

Since all the subtransactions in the transaction hierarchy can access the data structures in the
LOCK_MANAGFER, we define a global mutex variable. This way, the critical sections of the
methods modifying the Lock_Table and Transaction_Table are wrapped by mutex_lock and mutex —
unlock.

When we look at the data structures, we observe that there are linked lists belonging to both
Transaction_Table and Lock_Table which means that deletions and insertions of new blocks to those
lists take a long time. At this point, we made an optimization by implementing our own memory
management via keeping lists of deleted blocks so that they can be used efficiently whenever they
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// create an OpenOODB main object
OODB *p_oodb;
void *sub2(void *res)
{
// lock the object with name obj3 in WRITE mode
int rc = p_oodb —fetch_object(“obj3” , WRITE);
// in case of an error, abort the subtransaction
// otherwise, commit the subtransactions
if (rc == ERROR )
p-oodb — sub_abort();
else
p-oodb —sub_commit();

void *subl(void *res)

{
// lock the object with name objl in READ mode
p-oodb —fetch_object(“objl” ,READ);
// create a subtransaction in IMMEDIATE mode
p-oodb —spawn_sub_tr(sub2, IMMEDIATE);
// commit the subtransaction
p-oodb —sub_commit();

main()

{

// start an OpenOODB transaction

p-oodb —beginTransaction();

// spawn a subtransaction in IMMEDIATE mode
p-oodb —spawn_sub_tr(subl, IMMEDIATE);

// commit the OpenOODB transaction

p-oodb —commitTransaction();

Figure 6: Sample OpenOODB application using nested transactions.
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(a) (b)

Figure 7: (a)Control sphere of T3, (b) Control sphere of T7.

are needed. Another optimization was to extend our component with a sort of garbage collection;
i.e., when we want to delete a block from the Lock_Table or Transaction_Table, we do not delete it
physically but mark it as deleted. This technique makes the usage of doubly linked lists unnecessary.
Garbage collection is performed during the searches in the Lock_Table.

4.2.1 Implementation of the Locking Protocol for Nested Transactions

When a transaction requests a lock on an object it specifies the locking mode as well by providing
the fetch_object method with the lock_type parameter. Allowed lock-modes are READ and WRITE.

We implemented the locking protocol described in Section 3.1 considering both READ and
WRITFE locks (i.e., shared and exclusive locks respectively).

As an example, consider the nested transaction structure in Figure 7(a). If T; retains a WRITE
lock on an object O; and no other transaction inside the sphere S; (i.e., T}, T, T; and T),,) has any
lock on O;, then all the transactions inside .5; can acquire a READ or a WRITFE lock on O;. If T}
acquires a WRITFE lock on O;, then no other transaction (including the ones inside the sphere 5;
in Figure 7(b)) can acquire a READ or a WRITE lock on O;.

In handling an object access request, the fetch_object method first checks whether the requested
object is in the Lock_Table. If not, it just requests the object from OpenOODB and returns a
pointer to it. If the requested object is in the Lock_Table then the nested transaction concurrency
control protocol is put into action. If the lock can be granted, then a pointer to the object is
returned as in the previous case. If the lock cannot be granted with the requested lock_type, then
for each transaction that has a lock on the object that conflicts with the requested lock_type, a
node is inserted to the wait_for_list of the lock requesting transaction and a corresponding node is
also appended to the waited_by_list of the conflicting transaction. Additionally, the wait_for_count
(i.e., the number of transactions for which the transaction in concern is waiting for) is incremented
for each node appended to the wait_for_list. Deadlock detection is performed each time a node is
appended to wait_for_list. If no deadlock is detected after appending all the nodes, then the transac-
tion that requested the lock is suspended using thr_suspend(), otherwise it is aborted. Transactions
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Figure 8: Wait-for-commit relations.

are unblocked using the thr_continue() function provided by the thread library. Unblocking of a
transaction may occur due to the commit or abort of another transaction. When a transaction is
aborted, all its locks are released, and all the nodes in the waited_by_list of that transaction are
deleted; while doing the deletions, wait_for_counts of the corresponding (blocked) transactions are
decremented by one. Blocked transactions whose wait_for_counts become zero, are unblocked, and
their lock requests are reconsidered. When a subtransaction commits, all the locks held or retained
by that transaction are inherited by the parent transaction which may cause some transaction(s)
to be unblocked. Those transactions are identified by checking the waited_by_list of the committing
transaction, and decrementing the wait_for_counts of the transactions which are descendants of the
transaction inheriting the locks. The transactions whose wait_for_counts become zero are unblocked
and their lock requests are reconsidered as in the previous case.

4.2.2 Deadlock Detection

Deadlocks may arise among subtransactions in the same transaction hierarchy as well as among
subtransactions belonging to different transaction hierarchies. OpenOODB views a transaction
hierarchy as one flat transaction; i.e., it is not aware of subtransactions. Lock requests made
by a subtransaction is treated by OpenOODB as if the top-level transaction made the request. If
there exists a deadlock cycle involving subtransactions belonging to different transaction hierarchies,
then, from the OpenOODB viewpoint, it means that there is a deadlock cycle involving the top-level
transactions as well. Therefore, deadlocks that can occur among transactions belonging to different
transaction hierarchies are resolved by OpenOODB via EXODUS storage manager. Deadlocks
among the transactions belonging to the same transaction hierarchy are detected and resolved
by the new component we added to OpenOODB for managing nested transactions. To detect
deadlocks, we use the wait-for-graph data structure. Deadlock detection for nested transactions is
different from the one for flat transactions in that, there are some other wait-for relations besides
the wait-for-lock relation. One possible wait-for relation associated with nested transactions is
wait-for-commit; i.e., a parent transaction should wait for all its children to finish their execution.
A wait-for-commit graph is illustrated in Figure 8 for a transaction hierarchy where the top-level
transaction spawns subtransactions T; and 7}, T; spawns subtransactions T} and 7}, and finally 7
spawns subtransaction T},.

Another possible wait-for relation for nested transactions is wait-for-lock relation. There are
two types of wait-for-lock relation; wait-for-retained-lock and wait-for-held-lock. In flat transaction
model, when a transaction commits, all the locks it holds are released, and transactions waiting for
one or more of those locks can be unblocked immediately provided that they are not waiting for
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Figure 9: Wait-for-lock relations; (a) before the commit of T}, (b) after the commit of T}.

any other transaction. In nested transaction model, locks held by a subtransaction are not released
immediately after it commits, but they are inherited by the parent transaction and kept in retain
mode which causes wait-for-retained-lock relations to occur. Examples of wait-for-held-lock and
wait-for-retained-lock relations are illustrated in Figures 9(a) and 9(b).

In Figure 9(a) we see that transaction 77 is holding a write lock on object Obj; at the time when
transaction T; requests a WRITF lock on the same object. The arc labeled as wait-for-held-lock
depicts this waiting situation. Following the commit of transaction 77, all the locks that belong to
T; are inherited by the parent transaction, namely 7%, in retain mode. Transaction 7; still have to
wait until the commit of 7T%. T; should wait until the first common ancestor of 7T; and 7 inherits
the lock on object Obj;, which is the top-level transaction in this case.

Both wait-for-commit and wait-for-retained-lock relations should be taken into consideration in
addition to the classical wait-for relation, for deadlock detection in nested transactions. Whenever
a sub-transaction is spawned, a node is appended to the child-list of the parent transaction. The
union of those linked lists is also used as the wait-for-commit graph. When a transaction is blocked
on a lock request, all the transactions that cause this transaction to be blocked are kept as a linked
list (wait-for list) to be used for unblocking the transaction later on. Those lists also represent
the wait-for-retained-lock or wait-for-held-lock relationship. During the commit of a transaction,
wait-for list of the committing transaction is inherited by its parent.

Deadlock detection is performed before each insertion to a wait-for-graph and just before lock
inheritance using the graph coloring technique. If a wait-for arc (1;,1;) is going to be inserted to
the wait-for-graph or for any of the locks being inherited, if the inheriting transaction is not an
ancestor of a transaction waiting for that lock, deadlock detection algorithm is started assuming
that the new link or the inherited link is added. Initially all the nodes of the graph are colored
BLACK. Deadlock detection algorithm colors T; as WHITF, and marks all the nodes on its way
recursively till there are no remaining nodes or a W HITFE node is reached. Deadlock detection
algorithm uses the child and wait-for lists of the transactions during its traversal. Since all the
nodes are initially BLACK, a WHITFE node reached means that there is a cycle in the graph,
implying a deadlock situation. Deadlock algorithm recursively restores the colors of all the nodes
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class Rule:Notifiable // Rule class made notifiable
{
char *name; // Rule name
Event *event-id; //
PMF *condition, *action; // PMF is a pointer
// to a member function
Coupling mode; // Coupling Mode
int enabled; // Rule Enabled or not

public:
virtual int Enable();
virtual int Disable();
virtual Update(Event* eventid);
virtual int Condition();
virtual int Action();
Rule(Event* eventid, PMF condition, PMF action, Coupling mode);
“Rule();

Figure 10: Rule class of Sentinel.

it traversed back to BLACK.

If the insertion of the arc ( 1}, T;) to the wait-for-graph leads to a deadlock, we can abort either
of T; and T, or any other transaction in the deadlock cycle. Deciding which transaction to abort is
not a trivial task. The simplest solution is to abort T; (i.e., the transaction that requests the lock).
Another possibility would be to abort the transaction that caused the lock-requesting transaction
to block. Other possibilities for deciding which transaction to abort require the involvement of some
information such as the arrival time or the number of subtransactions of the transactions in concern.
We can choose the transaction that has the smallest transaction hierarchy, or we can choose the
youngest transaction. As a future work, these alternative techniques could be implemented and
their effects on the performance could be observed. We have chosen the simplest solution in our
implementation, i.e., aborting the lock requesting transaction.

4.3 Integration of Our Implementation to Sentinel

Our implementation of concurrent rule execution is currently being integrated into Sentinel [CAM93]
which is an ADBMS built on OpenOODB. In Sentinel, rules are treated as objects which means
that they can be created, modified, and deleted in the same way as other objects. Subscription
mechanism is used to reduce the checking overhead of rules; i.e., when an object generates an
event, during rule execution, the rules that are checked are the ones which have previously been
subscribed to the object that has generated the event.

In Sentinel, there is a rule class and all the rules in the system are instances of that class.
The condition and action parts of a rule are implemented as functions. The rule class is shown
in Figure 10. The rule class is a subclass of the notifiable class which means that it can receive
and record primitive events generated by reactive (i.e., event generating) objects. Each rule has
a name, event-id, condition, action, mode and enabled. The event-id denotes the identity of the
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Figure 11: Impact of fanout on CPU-time used by a transaction hierarchy.

event object associated with the rule. Condition, and action are pointers to the condition and
action member functions, respectively. The attribute mode denotes the coupling mode, and enabled
indicates whether the rule is enabled or disabled.

In integrating our implementation to Sentinel, declaration of the condition and action functions
are modified so that they can be executed in subtransactions. The modified function declarations
look like the sample subtransactions provided in Figure 6. Furthermore, the rule execution com-
ponent of Sentinel is modified so that conditions and actions of rules can be executed in parallel
inside the subtransactions.

5 Execution Overhead of Parallel Nested Transactions

To have an idea about how the performance of the system can be affected by the overhead of the
implementation of parallel nested transactions, we simulated the fetch operation of OpenOODB
using a dummy method in case the object is not in the Lock_Table. Once an object is inserted to
the Lock_Table, fetch requests for that object is considered by the nested transaction component.
Fanout (i.e., the maximum number of subtransactions that can be spawned by a transaction) and
the total number of transactions in a transaction hierarchy are two important parameters that
indicate the complexity of the transaction hierarchy.

We conducted two experiments to evaluate the impact of the parameters fanout and the total
number of transactions in a transactions hierarchy on the performance in terms of the total CPU
time used by all the transactions in a transaction hierarchy. In both experiments, total number of
objects accessed by all the transactions in the hierarchy was kept constant. Approximately 20% of
the fetch requests are done with a WRITE lock, and the rest are done with a READ lock. There are
no hot spots in the object space. The number of objects that a transaction requests is calculated by
the total number of objects divided by the total number of transactions in the hierarchy. Therefore
as the total number of transactions increases, the number of objects accessed by a transaction
becomes less but the total number of objects accessed by the hierarchy remains constant. The
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Figure 12: Impact of the number of transactions on CPU-time used by a transaction hierarchy.

OpenOODB operations are not involved in the CPU time measurements as they are just simulated
rather then being actually implemented. Therefore, the measured CPU times correspond to the
execution overhead introduced by the implementation of parallel nested transactions. Transactions
used in the experiments are actual transactions generated automatically by a transaction generator
program. The total number of objects accessed by the whole transaction hierarchy is 100000 and
the object size is 100 bytes.

In the first experiment, the number of transactions was kept constant and the performance
impact of increasing the fanout value was evaluated. Total number of the transactions in the
hierarchy is 70 and the fanout value ranges between 1 and 5. As illustrated in Figure 11, the
CPU time used by the overall transaction hierarchy increases slightly with increasing fanout. In
the second experiment, we kept the fanout constant at 3 and increased the number of transactions
from 5 to 70. By keeping the fanout value constant, we eliminated the impact of fanout. The change
in the CPU time as a result of increasing the number of transactions is negligible as in the previous
case. The results of this experiment leading to that observation are illustrated in Figure 12. Both
experiments that we have briefly discussed show that the overhead induced by the implementation
of our parallel nested transaction model is not considerable.

6 Discussion and Future Work

In this paper, we described a rule execution model for active database management systems
(ADBMSs). We used nested transactions for concurrent rule execution and covered some aspects
of nested transactions like concurrency control and deadlock detection. Although we implemented
nested transactions on OpenOODB, our rule execution module was designed in such a way that it
can easily be ported to other systems as well.

Some of the highlights of our implementation of rule execution can be listed as follows:

¢ Previous implementations for rule execution assume only sibling parallelism. We implement,
on the other hand, both sibling and parent-child parallelism which is the most flexible kind

27



of parallelism.
e We support deferred and detached modes of rule execution as well as immediate mode.

e In previous implementations, triggered rules are executed in distinct processes. We execute
triggered rules in threads which is more efficient than forking processes.

It was shown through experiments that the execution overhead of nested transactions that were
used in the implementation of concurrent rule execution is negligible and is not significantly affected
by the number of transactions in the transaction hierarchy.

Implementation of the recovery of nested transactions is left as a future work. A log based
recovery method, ARIES/NT [RM89], was proposed for nested transaction recovery which is an
extension of the ARIES recovery method. Version based recovery techniques can also be ap-
plied which are easier to implement but have some major drawbacks against log-based recovery
techniques [MHLT92]. Since our implementation was built on top of Exodus, implementation of
recovery for nested transactions should involve some modifications to Exodus which is a difficult
task. There is also no consensus on the abort semantics of rules. One way to think is that only the
rule is aborted but not the triggering rule which is compatible with the nested transaction abort
semantics. Another way is to abort the triggering rule as well in which case the nested transaction
model should further be modified to support the abortion of the parent in case the child aborts.
Same problems arise when a rule should be aborted as a result of a deadlock.

Our implementation of concurrent rule execution through parallel nested transactions is cur-
rently being integrated into Sentinel which is an ADBMS developed at the University of Florida.
Following the completion of the integration, we are planning to investigate the impact of concurrent
rule execution on the performance of Sentinel.
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