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Abstract

A new classification algorithm, called VFI (for Voting Feature Intervals), is developed and applied to Differential
Diagnosis of Erythemato-Squamous Diseases. The domain contains records of patients with known diagnosis.
Given a training set of such records the VFT classifier Iearns how to differentiate a new case in the domain. VFI
represents a concept in the form of feature intervals on each feature dimension separately. Classification in the
VFT algorithm is based on a real-valued voting. Each feature equally participates in the voting process and the
class that receives the maximum amount of votes is declared to be the predicted class. The performance of the
VFI classifier is evaluated empirically in terms of classification accuracy and running time.

1 Introduction

Inductive learning is a well-known approach to automatic knowledge acquisition instead of extracting knowledge
from human experts. In several medical domains the inductive learning systems were actually applied; for example,
two classification systems are used in localization of primary tumor, prognostics of recurrence of breast cancer,
diagnosis of thyroid diseases, and rheumatology [5].

In this work a new non-incremental classifier called VFI (for Voting Feature Intervals) is developed and
applied to Differential Diagnosis of Erythemato-Squamous Diseases domain. VFI uses Feature Projections as the
knowledge representation scheme, which is used in CFP [3] and k-NNFP[1]. The rationale behind this knowledge
representation is that human experts maintain knowledge in this form, especially in medical domains. The input to
VFl s a set of training instances that are descriptions of patients with known diagnoses. Knowledge is represented
as projections of the training dataset by feature intervals on each feature dimension separately. When classifying
a new patient, each feature equally participates in the voting process and the diagnosis that receives the maximum
amount of votes is predicted as the diagnosis of that patient. Since each feature participates in learning and
classification independently, VFI enables an easy and natural way of handling missing feature values by simply
ignoring those missing values.

The next section will describe the VFI algorithm in detail. In Section 3, the problem of Differential Diagnosis
of Erythemato-Squamous Diseases is explained. In Section 4, the application of the VFI algorithm to this domain
is discussed. Finally, the last section concludes with some remarks and plans for future work.

2 The VFI Algorithm

The VFI classification algorithm represents the concept with feature intervals, and makes a classification based
on feature votes. It is a non-incremental classification algorithm; that is, all training examples are processed at
once. Each training example is represented as a vector of feature values plus a label that represents the class of
the example. From the training examples, the VFI algorithm constructs feature intervals for each feature. The
term interval is used for feature intervals throughout the paper. An interval represents a set of values of a given
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train(T'raining Set):
begin
for each feature f
for each class ¢
EndPoints[f] = EndPoints[f] U find_end points(T'rainingSet, f, c);
sort(End Points[f]);
/* the range between the middle points of two consecutive endpoints form an interval */
for each interval ¢ /* on feature f */
for each class ¢
/* count the number of instances of class ¢ falling into interval ¢ */
interval_class_count[f,i, c] = count.instances(f, i, c);
end.

Figure 1: Training in the VFI Algorithm.

feature, where the same subset of class values are observed. Two neighboring intervals contains a different set of
classes. For each interval, a lower bound of the values and the number of examples of each class in that interval
are maintained. Thus, an interval may represent several classes by storing the number of examples for each class.

The training process in the VFI algorithm is given in Figure 1. The lower bounds of intervals are learned by
finding the end points for each feature and for each class. The procedure find_end_points(TrainingSet, f, c) finds
the lowest and the highest values for feature f from the examples of class c¢ in the TrainingSet. The lowest and
highest values are called the end points, and for each feature there are 2k end points where & is the number of
distinct classes. The list of end points is then sorted and the range between the middle points of each consecutive
pair of end points in this sorted list constitutes an interval.

Each interval is represented by a vector of < lower, county, ..., county > where lower is the lower bound
of that interval, count; is the number of training instances of class ¢ that fall into that interval. When a training
instance of class ¢ falls on the boundary of two consecutive intervals of feature f, then count; of both intervals
are incremented by 0.5 if f is a linear feature. On the other hand, if f is a nominal feature, count; of only the
right interval is incremented. The count; values are computed by the count_instances(i, ¢) function in Figure
1. The lower bounds are sufficient to represent an interval, because the upper bound of the interval is the lower
bound of the next interval. In the training phase of the VFI algorithm the intervals for each feature dimension
are constructed and these intervals make up the concept description. Note that since each feature is processed
separately, no normalization of feature values is required.

The classification in the VFI algorithm is given in Figure 2. The process starts by initializing the votes of
each class to zero. The classification operation includes a separate preclassification step on each feature. The
preclassification of feature f involves a search for the interval on feature dimension f into which ey falls, where
ey is the value test example e for feature f. If that value is unknown (missing), that feature does not participate in
the classification process. Hence, the features containing missing values are simply ignored. Ignoring the feature
about which nothing is known is a very natural and plausible approach.

If the value for feature f of example e is known, the interval 7 into which ey falls is found. That interval
may contain training examples of several classes. The classes in an interval are represented by their number of
occurrences in that interval. For each class ¢, feature f gives a vote equal to

interval_class_count|f, i, ]

ture_vot =
feature_vote[f, ] class_count|c]

where interval_class_count[f,,c| is the number of examples of class ¢ which fall into interval i of feature



classify(e):
/* e: example to be classified */
begin
for each class ¢
vote[c] =0
for each feature f
for each class ¢
feature_vote[f, c] = 0 /*vote of feature f for class c*/
if ey value is known
¢ = find_interval(f, ey)

_ interval_class_—count[f, 1, c]
feature_vote[f,c] = classcountld]

normalize _feature_votes(f); /* such that Zc feature_vote[f,c] = 1%/
for each class ¢
vote[c] = wote[c] + feature_vote[f,c];
return class ¢ with highest vote[c];

end.

Figure 2: Classification in the VFI Algorithm.

dimension f. If e falls on the boundary of two intervals 7 and ¢ + 1, then feature f gives a vote equal to

interval_class_count|f, i, ¢] + interval_class_count[f, i + 1, (]

t _vot =
Jeature-votel,c] 2 x class_count]c]

in cases when f is linear. On the other hand, if f is a nominal feature, only interval ¢ + 1 determines the vote of
feature f. The individual vote of feature f for class ¢, feature_vote[f, ¢, is then normalized to have the sum of
votes of feature f equal to 1. Hence, the vote of feature f is a real-valued vote less than or equal to 1. Each feature

f collects its votes in an individual vote vector < wvotey 1,...,votes >, where votey . is the individual vote of
feature f for class ¢ and k is the total number of classes. After every feature completes their preclassification
process, the individual vote vectors are summed up to get a total vote vector < wvotey, ..., vote; >. Finally, the

class with the highest vote from the total vote vector is predicted to be the class of the test instance.

3 Differential Diagnosis of Erythemato-Squamous Diseases

The differential diagnosis of erythemato-squamous diseases is a real problem in dermatology. They all share the
clinical features of erythema and scaling, with very little differences. The diseases in this group are psoriasis
(Ch), seboreic dermatitis (C3), lichen planus (C3), pityriasis rosea (Cy), cronic dermatitis (C's), and pityriasis
rubra pilaris (Cg). Usually a biopsy is necessary for the diagnosis but unfortunately these diseases share many
histopathological features as well. Another difficulty for the differential diagnosis is that a disease may show the
features of another disease at the beginning stage and may have the characteristic features at the following stages.
Patients were first evaluated clinically with 12 features which are erythema (f1), scaling ( f>), definite borders (f3),
itching (fy), koebner phenomenon (fs), polygonal papules (fs), follicular papules ( f7), oral mucosal involvement
(f3), knee and elbow involvement (f9), scalp involvement (f1o), family history (f11), and age (f34). Afterwards,
skin samples were taken for the evaluation of 22 histopathological features which are melanin incontinence( f5),
eosinophils in the infiltrate (f13), PNL infiltrate (f14), fibrosis of the papillary dermis (fis), exocytosis (fi¢),
acanthosis (fi7), hyperkeratosis (f13), parakeratosis (f19), clubbing of the rete ridges ( f»o), elongation of the rete
ridges (f21), thinning of the suprapapillary epidermis (f22), spongiform pustule ( f>3), munro microabcess (f»4),
focal hypergranulosis (f»5), disappearance of the granular layer (f26), vacuolisation and damage of basal layer
(f27), spongiosis ( f»g), saw-tooth appearance of retes (f9), follicular horn plug ( f39), perifollicular parakeratosis
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Figure 3: Some features and their intervals. The amount of vote for each class is given above the intervals. The
classes that an interval gives O vote are not displayed.

(f31), inflammatory monoluclear inflitrate ( f3;), and band-like infiltrate ( f33). The values of the histopathological
features are determined by an analysis of the samples under a microscope.

In the dataset constructed for this domain, the family history feature has the value 1 if any of these diseases
has been observed in the family, and O otherwise. The age feature simply represents the age of the patient. Every
other feature (clinical and histopathological) was given a degree in the range of 0 to 3. Here, 0 indicates that the
feature was not present, 3 indicates the largest amount possible, and 1, 2 indicate the relative intermediate values.

4 Experiments

Currently, the dataset for the domain contains 287 instances. We first used all of these instances to obtain a
description of the domain. The description consists of the feature intervals constructed for each feature. The
intervals obtained for features fgs, fi4, fi15, f21 and f34 are shown in Figure 3.

Itis clear from Figure 3 that the nonzero values of feature fq (polygonal papules) indicate the class C'3 (pityriasis
rubra pilaris). On the other hand, the high values for fi4 would suggest class (| or C';. The feature f|5 appears
to a distinguishing feature for class C's. However, high values of f»; can indicate both C'; and C's. Also, class Cg
appears to be a children’s disease.

For a particular case, let us consider a patient, who has the following values for these features: fg = 1, fi4 = 0,
fis = 0, fo1 = 0, f34 = 52. For that patient, the vote vector for fs would be < 0.2,0.2,0.01,0.2,0.2,0.2 >, for
f1a < 0.04,0.05,0.25,0.22,0.25,0.19 >, and so on. Then the votes for all classes received from all 34 features
are summed. The class that receives the highest amount of votes is the class predicted.



We have also experimented the classification accuracy of the VFI algorithm. The classification accuracy of an
algorithm is used as one measure of performance. The most commonly used classification accuracy metric is the
percentage of correctly classified instances over all test instances. To measure the classification accuracy, 5-fold
cross-validation technique is used in the experiments. That is, the whole dataset is partitioned into 5 subsets. The
four of the subsets is used as the training set, and the fifth is used as the test set. This process is repeated 5 times
once for each subset being the test set. Classification is the average of these 5 runs. This technique ensures that
the training and test sets are disjoint. The VFI algorithm achieved 94.42% accuracy on this domain. The total
time spent for training with 230 instances and testing with 57 instances was about 0.25 seconds on a Sparc20/61
computer.

5 Conclusions

In this paper, a new classification algorithm called VFI is developed and applied to Differential Diagnosis of
Erythemato-Squamous Diseases. Since each feature is processed separately, the missing feature values that may
appear both in the training and test instances are simply ignored in VFL In other classification algorithms, such
as decision tree inductive learning algorithms, the missing values require extra care [6]. This problem has been
overcome by simply omitting the feature with the missing value in the voting process of VFI. Also note that the
VFI algorithm, in particular, is applicable to concepts where each feature, independent of other features, can be
used in the classification of the concept. One might think that this requirement may limit the applicability of the
VFI, since in some domains the features might be dependent on each other. Holte has pointed out that the most
datasets in the UCI repository are such that, for classification, their attributes can be considered independently of
each other [4]. Also Kononenko claimed that in the data used by human experts there are no strong dependencies
between features because features are properly defined [5]. Another advantage of the VFI classifier is that instead
of a categorical classification, a more general probabilistic classification where the classifier returns a probability
distribution over all classes is possible to implement with VFI.

For future work, we plan to integrate a feature weight learning algorithm to VFI, since both relevant and
irrelevant features have equal vote in this version of the VFI algorithm. But more relevant features should have
more voting power in classification. Genetic algorithms can be used to learn the optimum weights for VFI [2].
Another idea is to assign weights to intervals, since pure intervals representing only one class might be more
effective in classification.
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