NON-INCREMENTAL
CLASSIFICATION LEARNING
ALGORITHMS BASED ON
VOTING FEATURE INTERVALS

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER
ENGINEERING AND INFORMATION SCIENCE
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

by
Gulsen Demiroz,

August, 1997

I certify that T have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Halil Altay Giivenir (Advisor)

I certify that T have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Tlyas Cicekli

I certify that T have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst.Prof. Ozgiir Ulusoy

Approved for the Institute of Engineering and Science:

Prof. Mehmet Baray
Director of Institute of Engineering and Science

1

ABSTRACT

NON-INCREMENTAL CLASSIFICATION LEARNING
ALGORITHMS BASED ON VOTING FEATURE
INTERVALS

Gilgen Demiroz
M.S. in Computer Engineering and Information Science
Supervisor: Assoc. Prof. Halil Altay Guvenir
August, 1997

[Learning is one of the necessary abilities of an intelligent agent. This thesis
proposes several learning algorithms for multi-concept descriptions in the form
of feature intervals, called Voting Feature Intervals (VFT) algorithms. These
algorithms are non-incremental classification learning algorithms, and use fea-
ture projection based knowledge representation for the classification knowledge
induced from a set of preclassified examples. The concept description learned
is a set of intervals constructed separately for each feature. Each interval car-
ries classification information for all classes. The classification of an unseen
instance is based on a voting scheme, where each feature distributes its vote
among all classes. Empirical evaluation of the VFT algorithms have shown that
they are the best performing algorithms among other previously developed fea-
ture projection based methods in terms of classification accuracy. In order to
further improve the accuracy, genetic algorithms are developed to learn the op-
timum feature weights for any given classifier. Also a new crossover operator,
called continuous uniform crossover, to be used in this weight learning genetic
algorithm is proposed and developed during this thesis. Since the explanation
ability of a learning system is as much important as its accuracy, VFI classi-
fiers are supplemented with a facility to convey what they have learned in a

comprehensible way to humans.

Keywords: machine learning, supervised learning, classification, inductive

learning, non-incremental learning, feature intervals, voting, genetic algorithms.

111

OZET

OYLAYAN OZNITELIK BOLUNTULERINE DAYALI
TOPLU SINIFLANDIRMA OGRENME ALGORITMALARI

Gilgen Demiroz
Bilgisayar ve Enformatik Mithendisligi, Yiiksek T.isans
Tez Yoneticisi: Do¢. Dr. Halil Altay Guvenir
Agustos, 1997

Ogrenmek akilli bir bireyin en gerekli 6zelliklerinden biridir. Bu tezde coklu
kavram tammlarim oznitelik araliklart seklinde ogrenen yeni algoritmalar one-
rilmektedir. Oylayan Oznitelik Araliklar: (VFI) olarak isimlendirilen bu al-
goritmalar toplu simiflandirma ogrenme algoritmalaridirlar. Daha onceden
simiflandirilmig olan orneklerden simiflandirma bilgisini ¢ikarmak i¢in oznitelik
izdiisiimlerine dayal bilgi gosterim yontemini kullanirlar. Ogrenilen kavram
tanmmi her oznitelik icin ayri ayrm ogrenilen araliklar seklindedir. Her bir aralik
butin simiflar icin siniflandirma bilgisi icerir. Yeni bir ornegin simiflandirilmas:
her ozniteligin oyunu butun simiflara dagittigi bir oylama sistemine dayanir.
Gercek hayattan alinan veri kiimeleri tizerinde yapilan deneylerde VFT algo-
ritmalart daha once gelistirilmig oznitelik izdisumlerine dayah diger metod-
lardan daha yiksek smiflandirma dogrulugu elde etmisglerdir. Ayrica simif-
landirma dogrulugunu daha ¢ok arttirmak icin optimum oznitelik agirhiklarin
ogrenen genetik algoritmalar geligtirilmistir. Aym zamanda bu genetik algo-
ritmalarda kullanilmak tizere yeni bir caprazlama operatori de geligtirilmistir.
Bir ogrenme sisteminin aciklama yetenegi de en az dogrulugu kadar onemli
oldugundan, VFT algoritmalari ogrendiklerini insanlarin anlayabilecegi bir ge-

kilde gosterebilmektedirler.

Anahtar Sozcukler: 6grenme, tiimevarimsal 6grenme, siniflandirma, toplu
ogrenme, denetimli 6grenme, oznitelik izdisumleri, oylama, genetik algorit-

malar.

v

ACKNOWLEDGMENTS

I would like to express my gratitude to Assoc. Prof. H. Altay Guvenir,
from whom T have learned a lot, due to his supervision, suggestions, and un-

derstanding throughout the development of this thesis.

I am also indebted to Assist. Prof. (")zg{ir Ulusoy and Assist. Prof. Tlyas
(Jicekli for showing keen interest to the subject matter and accepting to read

and review this thesis.

I would like to thank to Halime Buyukyildiz for everything, Esra Erdem for
her mails at any time from Texas, Gokmen Gok especially for his poems, my
yoga friends, Antal van den Bosch for his friendship at the conferences, Serap
Yilmaz, Bahtiser Kus, Aynur Akkus, Bilge Aydin, my sister Aysen Demiroz,
my younger sisters, and my parents for their morale support and friendship. 1
should not forget to thank to the bars in Ankara to which usually I and Halime

were used to go.

I would also Tike to thank Bilkent University, which enabled this research

environment and supported the presentation of this work at conferences.

This thesis was supported by TUBITAK (Scientific and Technical Research
Council of Turkey) under Grant EEFEAG-153.

Contents

1 Introduction 1
2 Supervised Inductive Learning Models 6
2.1 Exemplar-Based Learning L. 7
2.1.1 Instance-Based Learning 9

2.1.2 Nested-Generalized Exemplars 11

2.1.3 Feature Projection Based lLearning 14

2.2 The Nearest Neighbor Classifier 14
2.3 Decision Treeso 16
2.4 Naive Bayesian Classifier 21

3 Feature Projection Based Learning Models 27
3.1 K Nearest Neighbor Classification on Feature Projections 28
3.2 Classification by Feature Partitioning 30
3.3 Feature Intervals Learning Algorithms 34
3.4 Classification with Overlapping Feature Intervals 37

Vi

4 Classification by Voting Feature Intervals 41

4.1 Basic Definitions o L 43
4.2 Description of the VFIT Algorithms 46
4.2.1 The VFIT Algorithmo ... 46
4.2.2 The VFI2 Algorithm 55
4.2.3 The VFI3 Algorithmo ... 57
4.24 The VFI4 Algorithm o000 ... 63
4.2.5 The VFI5 Algorithmo 0oL 67

4.3 Characteristics of VFT Algorithmso 000, 70
4.3.1 Knowledge Representation 70
4.3.2 Supervised Inductive Learning 71
4.3.3 Non-incremental (Batch) Learning 71
4.3.4 Domain Independence in Learning 72
4.3.5 Multi-concept Learning 73
4.3.6 Properties of Feature Values 73
4.3.7 Handling Missing (Unknown) Feature Values 74

4.4 Implementation and User Interface T4
4.5 Summary ... 78
5 FEvaluation of the VFI Algorithms 80
5.1 Complexity Analysis 80
5.1.1 Space Complexity Analysis 81

vii

5.1.2 Time Complexity of Training 82
5.1.3 Time Complexity of a Single Classification 83

5.2 Empirical Evaluation of the VFT Classifiers on Real-World Datasets 84

5.2.1 Testing Methodology, 85

5.2.2 FExperiments on Real-World Datasets 87

5.2.3 FExperiments on Artificial Datasets 95

5.3 Discussiono 105

6 Learning Feature Weights 107
6.1 Genetic Algorithms oL 109
6.2 Weight Learning Genetic Algorithms 17
6.3 Experiments Lo 118
6.3.1 Weighted Nearest Neighbor Classifier 118

6.3.2 Weighted Voting Feature Intervals Classifiers 120

6.4 Summary and Discussion Lo L. 122

7 Visualization of the Learned Concepts 124
8 Conclusions and Future Work 141
A Real-World Datasets 155

Vil

List of Figures

2.1

2.2

2.3

2.4

2.5

3.1

Classification of Exemplar-Based Learning models. 8

An example concept description of the EACH algorithm in a

domain with two features.o oL 13
The Training in the NBC Algorithm. 23
The Classification in the NBC Algorithm. 24

Computing the a posteriori probabilities in the NBC Algorithm. 25

Construction of intervals in the CFP algorithm: (a) after ey is
processed, (b) after ey is processed, (¢) after e is processed, (d)

after all training instances are processed. 31

Construction of intervals in the CFP algorithm by changing the
order of the training instances. Note that here the same set of
instances in Figure 3.1, but in a different order, is used as the
training set: (a) after es, er, e5 and eg are processed, (b) after

all instances are processed.o 33

Construction of the intervals in the FII. algorithms with using

the same dataset as used in Figure 3.1 and Figure 3.2. 36

An example of construction of intervals in the COFT algorithm:
(a) after eq, €9, e3 and e4 are processed, (b) after e5 and eg are

processed. . ..o 38

X

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

An example of construction of intervals in the COFT algorithm
using the same set of training instances as in Figure 3.6, but in
a different order: a) after ey, es5, e3, and eg are processed, b)

after e3 and e4 are processed. L0

An example for three intervals on a feature dimension f.

An example for three point intervals on feature dimension color.
Training phase in the VFIT Algorithm.
Classification in the VFI1 Algorithm.
A sample training dataset with two features and two classes. . .

The constructed intervals by VFI1 with their class counts for

the sample dataset.

The constructed intervals by VFIT with their class votes for the

sample dataset.

The constructed intervals by VFIT with their class votes for the

training dataset in Figure 3.1. oo

The constructed intervals by VFIT with their class votes for the
training dataset in Figure 3.4.o

Training phase in the VFI2 Algorithm.

The constructed intervals by VFI2 with their class counts for

the sample dataset.

The constructed intervals by VFI2 with their class votes for the

sample dataset.

The algorithm for counting the training instances in the training

phase of the VFI3 classifier.

Classification in the VFI3 Algorithm.

44

45

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

The constructed intervals by VFI3 with their class counts for

the sample dataset.

The constructed intervals by VFI3 with their class votes for the

sample dataset.

The projection of a sample dataset with two classes on linear

feature dimension fi.o

The constructed intervals by VFI1, VFI3, VFI4 with their class

counts for the second sample dataset.
Training phase in the VFI4 Algorithm.
Training phase in the VFI5 Algorithm.

The constructed intervals by VFI5 with their class counts for

the sample dataset.

The constructed intervals by VFI5 with their class votes for the

sample dataset.
An example for the information provided to the FII. algorithms.

The visualization of the feature intervals constructed by the VFI

algorithms for the Dermatology dataset by our user interface. . .
The visualization of the feature intervals constructed by the VFI
algorithms for the Arrhythmia dataset by our user interface.
The algorithm for N fold cross validation.

Average training time of all classifiers on datasets with increas-
ing number of instances. 9/10 of the whole dataset is used in

training. L.

Average training time of all VFI versions on datasets with in-
creasing number of instances. 9/10 of the whole dataset is used

mtraining. ... Lo

X1

61

68

76

5.4

5.10

Average classification time of all classifiers on datasets with in-
creasing number of instances. 1/10 of the whole dataset is used

in classification. L

Average classification time of all classifiers except the 1-NN al-
gorithm on datasets with increasing number of instances. 1/10

of the whole dataset is used in classification.

Average classification time of all VFI versions on datasets with
increasing number of instances. 1/10 of the whole dataset is

used in classification. L.

10-fold cross-validation accuracy results of the VFT algorithms
compared with that of CFP, COFI, 1-NNFP, and FI4 algorithms

on Iris dataset with increasing number of irrelevant attributes.

10-fold cross-validation accuracy results of the VFT algorithms
compared with that of 1-NN, C4.5, NBCN algorithms on Iris

dataset with increasing number of irrelevant attributes.

10-fold cross-validation accuracy results of the VFT algorithms
compared with that of CFP, COFI, 1-NNFP, and FI4 algorithms

on Iris dataset with increasing level of noise.

10-fold cross-validation accuracy results of the VFT algorithms
compared with that of 1-NN, C4.5, NBCN algorithms on Iris

dataset with increasing level of noise.

10-fold cross-validation accuracy results of the VFT algorithms
compared with those of CFP, COFI, 1-NNFP, and FI4 algo-
rithms on Iris dataset with increasing percentage of unknown

values in training dataset. L0

10-fold cross-validation accuracy results of the VFT algorithms

compared with those of 1-NN, NBCN, and C4.5 on Iris dataset

97

97

with increasing percentage of unknown values in training dataset.102

x11

5.13

5.14

6.1

6.2

6.3

6.4

7.1

7.2

7.3

7.4

7.5

7.6

10-fold cross-validation accuracy results of the VFT algorithms
compared with those of CFP, COFI, 1-NNFP, and FI4 algo-
rithms on Iris dataset with increasing percentage of unknown

values in test data. 104

10-fold cross-validation accuracy results of the VFT algorithms
compared with those of 1-NN, NBCN, and C4.5 algorithms on

Iris dataset with increasing level of unknown values in test data. 104

The algorithm for a genetic algorithm. 110

Algorithms for One-Point Crossover, Two-Point Crossover, and

Uniform Crossover. 113
The GA-Classifier Feature Weighting Algorithm.. 17

Comparison of IPCO-WNN, 2PCO-WNN, UCO-WNN, and CUCO-
WNN on real-world datasets for increasing number of genera-

tions. The accuracy results are obtained by 5-fold cross-validation.121

Concept Description Learned by VFI1 including only a few fea-
fures. . . .o oL 126

Concept Description Learned by VFI2 including only a few fea-
fures. . . L Lo L 127

Concept Description Learned by VFI3 including only a few fea-
fures. . . .o oL 129

Concept Description Learned by VFI4 including only a few fea-
fures. . . .o oL 130

Concept Description Learned by VFI5 including only a few fea-
fures. . . .o oL 132

A correct classification of a given test instance (patient) drawn

from the Dermatology domain by the VFI1 classifier. 134

X111

7.7 Another correct (not that confident as the previous classifica-
tion) classification of a given test instance (patient) drawn from

the Dermatology domain by the VFI1 classifier. 135

7.8 Anincorrect classification of a given test instance (patient) drawn

from the Dermatology domain by the VFI1 classifier. 137

7.9 A misclassification of an instance drawn from the Dermatology
domain done by the human expert and corrected by the VFITI
clagsifier. L oL 139

X1V

List of Tables

6.1

6.2

The maximum number of intervals on a linear feature dimension

for all VFI classifiers. 32

Classification accuracy (%) of feature projection based methods
CFP, COFI, 1-NNFP, FI4, VFI1, VFI2, VFI3, VFI4, VFI5
obtained by averaging 10 10-fold cross-validation results on eigh-

teen real-world datasets. 38

Classification accuracy (%) of VFI1, VFI2, VFI3, VFI4, VFI5,
NBCN, 1-NN, and C4.5 obtained by averaging 10 10-fold cross-

validation results on eighteen real-world datasets. 89

Average training running times (msec.) of CFP, COFI, 1-NNFP,
F14, VFT1, NBCN, and 1-NN on a SUN Sparc 20/61 worksta-

tion. Training is done with 9/10 instances of the whole dataset. 90

Average classification running times (msec.) of CFP, COFI, 1-
NNFEP, FI4, VFT1, NBCN, and 1-NN on a SUN Sparc 20/61
workstation. Classification is done with 1/10 instances of the

whole dataset and 0 msec. means less than 0.1 msec. 91

Classification accuracy(%) of NN, TPCO-WNN, 2PCO-WNN,
UCO-WNN, and CUCO-WNN obtained by 5 way cross-validation

on four real-world datasets. 119

Classification accuracy(%) of VFIT, CUCO-WVFTI obtained by

5-fold cross-validation on six real-world datasets. 122

XV

Al

Comparison on some real-world datasets.

XVi

List of Symbols and Abbreviations

1PCO

1TPCO WNN
2PCO

2PCO WNN
1R

CFP

COFIT

o

CUCoO
CUCO WNN

C4.5

g
EACH

FII.

FT1

F12

FI13

F14
FPB
GA
GA-CFP
H

Hy

H ¢ 1ower

: One-Point Crossover

: WNN learning feature weights using a GA which uses 1PCO
: Two-Point Crossover

: WNN learning feature weights using a GA which uses 2PCO
: System whose input is training examples and output is 1-rule
: Classification by Feature Partitioning

: Classification by Overlapping Feature Intervals

: Label of the i*" class

: Continuous Uniform Crossover

: WNN learning feature weights using a GA which uses CUCO
CUCO WVFII :

WVFTI learning feature weights using a GA which uses CUCO

: Decision tree algorithm

: Number of features in the dataset

: Generalization distance for feature f in the COFI algorithm
: Fuclidean distance between example e and exemplar H
. A training example

. f* feature value of the example e

: class label of the example ¢

. 7" feature

: Generalization ratio

: Exemplar-Aided Constructor of Hyperrectangles

: Feature Interval Learning Algorithms

: Feature Interval Learning Algorithm

: Feature Interval Learning Algorithm

: Feature Interval Learning Algorithm

: Feature Interval Learning Algorithm

: Feature Projection Based Learning Algorithms

: Genetic Algorithm

: Hybrid CFP Algorithm

: Hyperrectangle

. f* feature value of the exemplar H

: Lower end of the range for the exemplar H for feature f

XV

H foupper
1BI.

IB1
B2
B3
B4
IB5
D3

ty

T2

uco

UCO WNN
Vv

Vi

: Upper end of the range for the exemplar H for feature f
: Instance-based learning

: Instance-based learning algorithm

: Instance-based learning algorithm

: Instance-based learning algorithm

: Instance-based learning algorithm

: Instance-based learning algorithm

: Decision tree algorithm

: Number of classes in the dataset (unless otherwise specified)

or number of neighbors

: K Nearest Neighbor

: K Nearest Neighbor on Feature Projections

: Logarithm in base 2

: Number of training instances

: Maximum value for the feature f

: Minimum value for the feature f

: Naive Bayesian Classifier

: Naive Bayesian Classifier assuming normal distribution
: Nested-Generalized FExemplars

: Nearest Neighbor Algorithm (1-NN)

: Oblique Classifier 1

: Conditional probability density function for x conditioned on given w;
: Prior probability of being class ¢ for an instance

: The posterior probability of an instance being class ¢ given the observed

feature value vector x

: Simulated Annealing of Decision Trees

. A test example

: Class label of the test example ¢

. f* feature value of the test example ¢

: Agnostic PAC learning decision tree algorithm with at most two levels
: Uniform Crossover

: WNN learning feature weights using a GA which uses UCO

: Total vote vector

: The vote vector of the f* feature

XVini

VFI

VFTI
VFI2
VFI3
VFI4
VFI5

wy

W

WNN
WVFTI

: Voting Feature Intervals

: Voting Feature Intervals Algorithm Version 1
: Voting Feature Intervals Algorithm Version 2
: Voting Feature Intervals Algorithm Version 3
: Voting Feature Intervals Algorithm Version 4
: Voting Feature Intervals Algorithm Version 5
: Instance vector

: Value vector of i instance

: Weight of feature f

: Weight of exemplar A

: Weighted Nearest Neighbor Classifier

: Weighted VFT1 Classifier

: Weight adjustment rate of the CFP algorithm

X1X

Chapter 1

Introduction

Since learning is one of the necessary abilities of an intelligent agent, machine
learning has played an important role in artificial intelligence. Simon [66] has
defined learning as changes in a system that enable it to do the same task or
tasks drawn from the same population more efficiently and more effectively the

next time. There are two ways in which a system can change [65]:

1. The system can acquire new knowledge from external sources (knowledge

acquisition)

2. The system can modity itself to exploit its current knowledge more effec-

tively (refinement of skills through practice)

The first type of learning acquires new knowledge from external sources in
order to solve a problem, perform a new task or improve the performance of
an existing task. The second kind of learning is often called speedup learning
or skill acquisition. This kind of learning is usually used for improving the
efficiency of search-base problem-solving systems. One way to speed up search
is to introduce macro operators that take “big steps” in the search space.
Another way to speed up search is to introduce meta level control knowledge.
Frplanation based learning (KBL) [19] is a technique that has been applied to

learn macro operators and search control knowledge.

CHAPTER 1. INTRODUCTION 2

Michalski, Carbonell, and Mitchell classify Machine Learning (ML) ap-

proaches according to their learning strategies as follows [49]:

e Rote learning is also called as learning by being programmed and consists
of just recording the different objects supplied by a teacher. Classical

database systems illustrate this strategy.

o [earning by instruction is learning by being told some new knowledge

from an external source.

o [nductive learning or empirical learning is accomplished by reasoning

from externally supplied examples to produce more general descriptions.

o [earning by observation is learning by observing the environment and

making discoveries.

Inductive learning or empirical learning has been heavily investigated in
MT. literature. Inductive learning can be described as learning by drawing
inductive inference from facts that are provided by a teacher or an environ-
ment. Acquiring knowledge involves operations of generalizing, specializing,
transforming, correcting and refining knowledge representations [49]. Learning
a concepl usually means to learn its description, that is, a relation between
the name of the concept and a given set of features by making some infer-
ences. This learning strategy requires that a sufficient number of examples
made available to the learner. We focus in general on inductive learning
learning from examples in this thesis. Inductive learning can be categorized

into two categories: supervised learning and unsupervised learning.

Supervised learning, also known as classification, is the primary task studied
in machine learning research. A supervised learning algorithm receives a set
of preclassified training instances (examples), each labeled with a particular
class. The goal of such a learning algorithm is to learn a classification rule that
will correctly assign new instances to these classes. For example, instances
could be descriptions of the symptoms of diseased and healthy patients. The
classes here are “diseased” and “healthy”, and the task of the learning system
is to produce a set of rules for accurately predicting whether new patients are

diseased or healthy.

CHAPTER 1. INTRODUCTION 3

In unsupervised learning, the training instances have not been assigned to
classes by a teacher. Only the descriptions of these instances are given and
the goal of the inductive learning system is to search for some regularities and
natural groupings (clustering) among these instances. Unsupervised learning
differs from supervised learning in the measure of success. To test whether a
supervised learning algorithm has succeeded, we can simply apply it to a set of
test examples and see if they are correctly classified that is, the classification of
the system agrees with the classification of the teacher. But with unsupervised
learning, we must examine the test examples and see if they exhibit the same

regularity that was discovered in the training instances.

Supervised learning is also called as concept learning or concept acquisition
Sup dl | lled ptl q pt acquisition,
and the classes are called as concepts. The word “concept” is derived from

7 and the learning

the Latin word “concipere” meaning “to seize (a thought)
system seizes the concept by learning a set of conditions sufficient to decide
whether a given object is or is not an instance of it. The two types of concept
learning are single concept learning and multi-concept learning. In single con-
cept learning, the teacher either provides only the positive instances (instances
of the concept) or both the positive and negative instances to the learning sys-
tem. For example, the records of healthy patients can be viewed as the positive
instances and the records of diseased (non-healthy) patients can be viewed as
the negative instances of the “healthy” concept. The set of rules learned by
the concept learning system from the given examples is the description of the
“healthy” concept. Single-concept learning is a special case of multi-concept
learning, where there are more than one concept to be learned. For example,
there are several brands of cars some of which are Opel, Renault, Mazda, Volk-
swagen, etc. In this multi-concept learning domain, instances do not belong to
more than one class (a car can not be Opel and Mazda at the same time), that
is, classifications of instances are mutually disjoint. But in some other multi-
concept learning tasks, instances may belong to more than one class, that is,

classifications of instances are possibly overlapping.

Several concept learning systems that learn multi-concept descriptions from

instances where the concepts are mutually disjoint have been developed. The

Nearest Neighbor algorithm [17, 18, 24], Decision Tree Inducers [37, 28, 13, 55,

CHAPTER 1. INTRODUCTION 4

60, 14, 36, 12], Bayesian Classifier originating from work in pattern recognition
[24, 29], learning by EACH (FExemplar-Aided Constructor of Hyperrectangles)
[62], and instance-based learning algorithms [5, 9] are some of them and ex-

plained in Chapter 2.

This thesis proposes several new multi-concept learning algorithms, called
Voting Feature Intervals (VFT) algorithms. The VFI algorithms are non-
incremental classification learning algorithms that learn the concept descrip-
tions by constructing feature intervals on each feature dimension from a set of
preclassified examples provided by a teacher. Classification of a new example is
performed by a voting scheme where the feature intervals distribute their vote
among classes. The features are considered separately both in learning and
classification which provides faster classification times. Processing each fea-
ture separately enables a simple and effective way of handling missing feature
values which is a problem for decision tree inductive learning and the nearest

neighbor algorithms.

The VFT classifiers always achieve higher classification accuracies than all
other classification algorithms that use the feature projection based knowledge
representation and usually perform better than the Naive Bayesian Classifier.
Another advantage of the VFT classifiers is that it is possible to make a general
classification returning a probability distribution over all classes instead of a

categorical classification [45].

The representation of concepts learned by VFT classifiers is similar to that of
other concept learning models using feature projection based knowledge repre-
sentation scheme such as CFP [32], FII. algorithms [7], COFT[73], and A-NNFP
[8] all of which are described in detail in Chapter 3. The voting scheme used
to classify a new instance has also evolved from the voting schemes used in
these related methods. Chapter 4 explains the details of this new classification
method. Since induction of multi-concept descriptions from classified examples
have large number of applications to real-world problems, we will empirically
evaluate VFT classifiers on some real-world datasets from the UCI-Repository
[51] and artificially generated datasets in Chapter 5. For this purpose, we
have also compiled two medical datasets, one for the description of arrhyth-

mia characteristics from ECG signals, and the other for the histopathological

CHAPTER 1. INTRODUCTION)

description of a set of dermatological diseases. The classification performance
of VFT algorithms are compared with that of other classification algorithms
discussed in Chapters 2 and 3. Chapter 5 also presents the complexity analysis
of the VFI algorithms. Chapter 6 describes and presents the experimental re-
sults of a feature weight learning genetic algorithm combined with the Nearest
Neighbor and the VFT algorithms. Chapter 7 presents how we visualize the
concept learned by the VFI algorithms and the explanation of classification of
a new instance. The final chapter presents a summary of this thesis and some

ideas for future work.

Chapter 2

Supervised Inductive Learning

Models

Supervised inductive learning (concept learning) from examples has been the
most active research area in machine learning. It can be defined as pro-
cess of acquiring knowledge by drawing inductive inferences from teacher or
environment-provided facts by generalizing, specializing, transforming, correct-

ing and refining knowledge representations [49].

The necessary input to a concept learning system is a set of training ex-
amples correctly assigned to classes by a teacher. All the concept learning
systems mentioned in this thesis use feature-value description for the input
training instances. Feature-value representation expresses all the information
about one instance in terms of a fixed collection of properties or features. Each
feature may have either discrete (nominal) or continuous (linear) values. For
example, color feature having values “red”, “blue”, or “green” is a nominal
feature whereas age feature is a linear feature which can take any numerical
value (integer or real) in some range and in general has a linearly ordered set
of feature values. One important restriction is that the features used to de-
scribe an instance must not vary from one instance to another. Since a teacher
assigns classes to instances in supervised learning, the input instances have a
class label in addition to the feature values. The learning systems in this thesis

can learn multi-concepts requiring that an instance can not belong to more

CHAPTER 2. SUPERVISED INDUCTIVE LEARNING MODELS 7

than one class and the classes are discrete. There are tasks that do not have
discrete classes and concerned with the prediction of continuous value such as
the price of gold. The multi-concept learning of discrete classes is very often
called as classification since the concept learning system (classifier) will predict

a class value for the new instance among those discrete classes.

For concept learning tasks, one of the widely used representation tech-
nique is the exemplar-based representation. Kither representative instances as
in Instance-Based Learning [5] or generalizations of instances as in Nested-
Generalized FExemplars [62] form the concept descriptions in exemplar-based
models. Another useful knowledge representation technique for concept learn-
ing is decision trees [55]. Statistical concept learning algorithms also use train-
ing instances to induce concept descriptions based on certain probabilistic ap-
proaches [24]. In the following sections, these concept learning models are
presented and most of them will be later used to compare with the new learn-

ing methods developed in this thesis.

2.1 Exemplar-Based Learning

Exemplar-Based Learning was originally proposed as a model of human learn-
ing by Medin and Schaffer [48]. Tn the simplest form of exemplar-based learn-
ing, every example is stored in memory verbatim, with no change of represen-
tation. An example is defined as a vector of feature values along with a label

which represents the category (class) of the example.

Knowledge representation of exemplar-based models can be maintained as
representative instances [2, 5], hyperrectangles [62, 63], or feature projection
based representations [7, 8, 22, 32, 73]. Unlike Explanation-Based General-
ization (EBG) [19, 50], little or no domain specific knowledge is required in

exemplar-based learning.

Figure 2.1 presents a hierarchical classification of exemplar-based learning

models. Instance-Based Learning (IBL) and Exemplar-Based Generalization

CHAPTER 2. SUPERVISED INDUCTIVE LEARNING MODELS 8

Exenpl ar-Based Learning

7\

Instance-Based Learning Exenpl ar-Based Generalization

[\

sted Generalized Feature Projection Based

Exenplars ‘///////Learnlgi\\\\‘
Single-Cass Iti-Cass
Intervals ntervals

Figure 2.1. Classification of Fxemplar-Based Learning models.

are two types of exemplar-based Learning. For example, instance-based learn-
ing methods [5] retain examples in memory as points, and never changes them.
On the other hand, exemplar-based generalization methods make certain gener-
alizations on the training instances. One category of the exemplar-based gener-
alization is the Nested-Generalized Fxemplars (NGE) model [62]. This model
changes the point storage model of the instance-based learning and retains
examples in the memory as axis-parallel hyperrectangles. Feature Projection
Based (FPB) learning models are the basis for this thesis and can be classi-
fied as exemplar-based generalization methods. The FPB algorithms learn the
concept descriptions by generalizing the projections of the training examples
separately on each feature. In this thesis, we will study several supervised
inductive learning methods that can be also categorized as feature projection
based algorithms. In the following sections, we will describe the IBI. and NGE
methods briefly. Previously developed FPB methods will be discussed in detail
in Chapter 3.

CHAPTER 2. SUPERVISED INDUCTIVE LEARNING MODELS 9

2.1.1 Instance-Based Learning

Instance-Based Learning (IBI.) methods extend the classical nearest neighbor
algorithm, which has large storage requirements [5, 9]. 1B, algorithms generate
classification predictions using only specific instances. Aha calls them also as
lazy learning algorithms since the concept description is a set of stored instances
[76]. All instances are represented as points on the d-dimensional Fuclidean
space, where d is the number of features. The concept descriptions can change
incrementally after each training instance is processed. IBI algorithms do not
construct extensional concept descriptions. Instead, concept descriptions are
determined by how the IBL algorithm’s selected similarity and classification

functions use the current set of saved instances. There are three components in

the framework which describe all IBI, algorithms as defined by Aha and Kibler
[5]:

1. The similarity function computes the similarity between two instances

(similarities are real-valued).

2. The classification function receives the output of the similarity function
and the classification performance records of the instances in the concept

description, and yields a classification for instances.

3. The concept description updater maintains records on classification per-
formance and decides which instance are to be included in the concept

description.

These similarity and classification functions determine how the set of in-
stances in the concept description are used for prediction. So, IBI concept

descriptions contain not only a set of instances, but also these two functions.

Several TBI. algorithms have been developed: TB1, B2, IB3, IB4 and IB5

[3, 5]. TB1 is the simplest one and it uses the similarity function computed as

CHAPTER 2. SUPERVISED INDUCTIVE LEARNING MODELS 10

.

similarity(x,y) = \I S diff(f, v, y)? (2.1)

f=1

|z —yys| if fis linear
diff(f.z,y) = 0 if fis symbolic and z; =1y, (2.2)
1 if fis symbolic and x; # y;

where 2 and y are the instances.

IB1 is identical to the nearest neighbor algorithm except that it processes
training instances incrementally and simply ignores instances with missing fea-
ture value(s). Since IB1 stores all the training instances, its storage requirement
is quite large. TB2 is an extension of IB1, it saves only misclassified instances
reducing storage requirement. On the other hand, its classification accuracy
decreases in the presence of noisy instances. 1B3 aims to cope with noisy in-
stances. B3 employs a significance test to determine which instances are good
classifiers and which ones are believed to be noisy. Once an example is deter-
mined to be noisy, it is removed from the description set. 1B2 and TB3 are also
incremental algorithms. TB1, IB2, and TB3 algorithms assume that all features

have equal relevance for describing concepts.

To study the effect of relevances of features in TBI. algorithms, IB4 has been
proposed by Aha [3]. In this study, different feature weights are learned for
different concepts; a feature may be highly relevant to one concept and com-
pletely irrelevant to another. So, IB4 has been developed as an extension of
IB3 that learns a separate set of feature weights for each concept. Weights are
adjusted using a simple feedback algorithm to reflect the relative relevances
of the features to describe instances. These weights are then used in TB4’s
similarity function which is a Fuclidean weighted-distance measure of the sim-
ilarity of two instances. Multiple sets of weights are used because similarity
is concept-dependent, the similarity of two instances varies depending on the
target concept. B4 decreases the effect of irrelevant features on classification

decisions. Therefore, it is quite successful in the presence of irrelevant features.

CHAPTER 2. SUPERVISED INDUCTIVE LEARNING MODELS 11

The problem of novelty is defined as the problem of learning when novel
features are used to help describe instances. B4, similar to its predecessors,
assumes that all the features used to describe training instances are known
before training begins. However, in several learning tasks, the set of describing
features is not known beforehand. TB5 [3], is an extension of B4 that tolerates
the introduction of novel features during training. To simulate this capability
during training, IB4 simply assumes that the values for the (as yet) unused
feature are missing. During training, 1B4 fixes the expected relevance of the
feature for classifying instances. IB5 instead updates the weight of a feature
only when its value is known for both of the instances involved in a classification

attempt. TB5 can therefore learn the relevance of novel features more quickly

than TB4.

Also noise-tolerant versions of instance-based algorithms have been devel-
oped by Aha and Kibler [4]. These learning algorithms are based on a form of

significance testing, that identifies and eliminates noisy concept descriptions.

2.1.2 Nested-Generalized Exemplars

Nested-generalized exemplar (NGE) theory is a variation of exemplar-based
learning [62]. In NGE, an exemplar is a single training example, and a general-
ized exemplaris an axis-parallel hyperrectangle that may cover several training
examples. These hyperrectangles may overlap or nest. Hyperrectangles are

grown during training in an incremental manner.

Salzberg implemented NGE in a program called EACH (Fxemplar-Aided
Constructor of Hyperrectangles) [63]. In EACH, the learner compares new
examples to those it has seen before and finds the most similar generalized

exemplar in memory.

NGE theory makes several significant modifications to the exemplar-based
model. Tt retains the notion that examples should be stored verbatim in mem-
ory, but once it stores them, it allows examples to be generalized. Tn NGE
theory, generalizations take the form of hyperrectangles in d-dimensional Fu-

clidean space, where the space is defined by the feature values measured for

CHAPTER 2. SUPERVISED INDUCTIVE LEARNING MODELS 12

each example. The hyperrectangles may be nested one inside another to arbi-
trary depth, and inner rectangles serve as exceptions to surrounding rectangles
[62]. Fach new training example is first classified according to the existing
set of classified hyperrectangles by computing the distance from the example
to each hyperrectangle. If the training example falls into the nearest hyper-
rectangle, then the nearest hyperrectangle is extended to include the training
example. Otherwise, the second nearest hyperrectangle is tried. This is called
as second match heuristic. Tf the training example falls into neither the first
nor the second nearest hyperrectangle, then it is stored as a new (trivial point)

hyperrectangle.

A new example will be classified according to the class of the nearest hy-
perrectangle. Distances are computed as follows: If an example does not fall
into any existing hyperrectangle, a weighted Fuclidean distance is computed.
If the example falls into a hyperrectangle, its distance to that hyperrectangle is
zero. If there are several hyperrectangles having equal distances, the smallest
of these is chosen. The EACH algorithm computes the distance between a new
data point ¢ and a hyperrectangle H, by measuring the Fuclidean distance

between these two objects as follows:

= maxy— min

Doy = wg\l ZW: (wa)? (2.3)

where
€r — HfﬂmPW €r > HfﬂmPW

d(ev H7 f) = Hf,lower —€r €7 < Hf,lower (24>

0 otherwise

where wyr is the weight of the exemplar H, wy is the weight of the feature f, e
is the value of the fth feature on example e, Hy ypper v Hyjper are the upper
end of the range and lower end, respectively, on fth feature on exemplar H,
max s and minys are the minimum and maximum values of that feature, and n

is the number of features recognizable on e.

The EACH algorithm finds the distance from e to the nearest face of H.

There can be several alternatives to this, such as using the center of H. If

CHAPTER 2. SUPERVISED INDUCTIVE LEARNING MODELS 13

test , C

Figure 2.2. An example concept description of the EACH algorithm in a do-
main with two features.

the hyperrectangle H is a point hyperrectangle, representing an individual

example, then the upper and lower values becomes equal.

If a training instance e and generalized exemplar H are of the same class,
that is, a correct prediction has been made, the exemplar is generalized to in-
clude the new instance if it is not already contained in the exemplar. However,
if the closest hyperrectangle has a different class then the algorithm modifies
the weights of features so that the weights of the features that caused the
wrong prediction is decreased. This is how the EACH algorithm learns feature

weights.

The original NGE was designed for domains with continuous features only.

Discrete features require a modification of the distance and area computations

for NGE.

In Figure 2.2, an example concept description constructed by the EACH
algorithm is presented for a domain with two features f; and f;. Here, there
are three classes, A, B and (', and their descriptions are rectangles (exemplars)
as shown in Figure 2.2. The rectangle A contains two smaller rectangles, B and
(', in its region. Therefore, B and (' are exceptions inside the rectangle A. The
NGE model allows exceptions to be stored quite easily inside hyperrectangles,

and exceptions can be nested any number of levels. The test instance, that is

CHAPTER 2. SUPERVISED INDUCTIVE LEARNING MODELS 14

marked as test in Figure 2.2, falls into the rectangle (', since it is smaller, so

the prediction will be the class value (' for this test instance.

2.1.3 Feature Projection Based Learning

The Feature Projection Based Learning algorithms all generalize the feature
projections of the training instances in learning the concept descriptions. The
previously studied techniques categorized as feature projection based learning
methods under exemplar-based generalization are the Classification by Feature
Partitioning (CFP) [31, 32, 71], the Classification by Overlapping Feature In-
tervals (COFT) [73], Feature Intervals Algorithms (FIL) [7], and the k& Nearest
Neighbor on Feature Projections (A-NNFP) [8] algorithms. The FPB mod-
els are further classified as Single-Class Intervals and Multi-Class Intervals as
shown in Figure 2.1. The CFP and the FIL algorithms are Single-Class In-
tervals algorithms. The COFT algorithm is a Multi-Class Intervals algorithm.
On the other hand, the &--NNFP algorithm also based on feature projections
can be categorized as both Single-Class and Multi-Class. The classification of
unseen instances in the FPB models are based on a voting among the indi-
vidual predictions made by using the local information individually stored on
each feature. The discussion of these algorithms are presented in Chapter 3 in

detail.

2.2 The Nearest Neighbor Classifier

One of the most common and simplest classification algorithms is the Nearest
Neighbor (NN) algorithm. In the literature, nearest neighbor algorithms for
learning from examples have been studied extensively [17, 18, 24]. Although
other machine learning techniques such as decision trees [55] have been the
subject of much recent experimental work, the nearest neighbor algorithms
continues to stay as an accurate learning technique [64]. The nearest neighbor
learning algorithms have been shown to work as well as other machine learning

methods despite their simplicity [16, 18, 68]. It seems that nearest neighbor

CHAPTER 2. SUPERVISED INDUCTIVE LEARNING MODELS 15

methods will continue to be cited as a basis of comparison with other methods.

The NN classification algorithm is based on the assumption that examples
which are closer in the instance space are of the same class. That is, unclassified
ones should belong to the same class as their nearest neighbor in the training
dataset. After all the training set is stored in memory, a new example is clas-
sified as the class of the nearest neighbor among all stored training instances.
Although several distance metrics have been proposed for NN algorithms [64],
the most common one is the Euclidean distance metric. The Fuclidean distance
between two instances @ =< 21,29, ..., 24, C,, > and y =< y1, 2, ...ya, C), > on

an d dimensional space is computed as:

d
dist(z,y) = S wp x diff(f,x,y)? (2.5)

f=1

|z —ys| if fis linear
diff(f,x,y) = 0 if fisnominal and ;= ys (2.6)
1 if fisnominal and xy # yy

Here wy denotes the weight for feature f and for all features wy = 1 in standard
NN and diff(f,z,y) denotes the difference hetween the values of instances z,
and y on feature f. Note that this metric requires the normalization of all

feature values into a same range by computing the maximum and minimum.

Although several techniques have been developed for handling unknown
(missing) feature values [57, 58], the most common approach is to set them to

the mean of the values on corresponding feature.

Stanfill and Waltz introduced the Value Difference Metric (VDM) to define
the similarity for discrete (nominal) features and empirically demonstrated its
benefits [68]. The VDM computes a distance for each pair of the different values
anominal feature can assume. It essentially compares the relative frequencies of
each pair of distinct values across all classes. Two feature values have a small
distance if their relative frequencies are approximately equal for all output

classes. Cost and Salzberg presented a nearest neighbor algorithm that uses a

CHAPTER 2. SUPERVISED INDUCTIVE LEARNING MODELS 16

modification of VDM, called MVDM (Modified Value Difference Metric) [16].
The main difference between MVDM and VDM is that their method’s feature

value differences are symmetric. This is not the case for VIDM. A comparison

of MVDM and Bayesian classifier is presented in [59].

NN algorithm can be quite effective when the features of the domain are
equally important. However, it can be less effective when many of the features
are misleading or irrelevant to classification. To avoid this problem, weakly rel-
evant features should have lower weights and strongly relevant features should
have higher weights in Equation 2.5 where the weight of a feature f is rep-
resented by w;. Assigning different weights to the features of the instances
before applying the NN algorithm distorts the feature space, modifying the
importance of each feature to reflect its relevance to classification. In this way,
similarity with respect to relevant features becomes more critical than similar-
ity with respect to irrelevant features. A weight learning method for the NN

algorithm will be described in Chapter 6.

In fact NN is a specialization of a more general algorithm called the &
Nearest Neighbor algorithm (£ NN), which classifies a new instance by a ma-
jority voting among its k (> 1) nearest neighbors using some distance metrics

in order to reduce the effect of noisy training instances.

An average-case analysis of £-NN classifiers for Boolean threshold functions
on domains with noise-free Boolean features and a uniform instance distance
distribution is given by Okamoto and Satoh [53]. They observed that the
performance of the k-NN classifier improves as k increases, then reaches a
maximum before starting to deteriorate, and the optimum value of £k increases

gradually as the number of training instances increases.

2.3 Decision Trees

One of the most well known and widely experimented inductive learning ap-
proaches is decision trees. The original idea goes back to the work by Hunt,

Marin and Stone [37]. Other researchers have arrived independently at similar

CHAPTER 2. SUPERVISED INDUCTIVE LEARNING MODELS 17

methods such as the CART system [13]. This same idea also produces 1D3
[55], PLS1 [60], ASSISTANT [14]. The principal name for Quinlan’s famous
decision tree induction program is C4.5 [58], which is the descendant of an

earlier version called TD3.

Given a set of preclassified instances, decision tree learning systems generate
a tree structure that can be used to classify new instances. Fach instance is
described by a set of feature values, which can have either continuous (linear)
or discrete (nominal) values, with the corresponding class (category) label. A

decision tree is either

e a leaf, indicating a class, or

e a decision node that specifies some test to be carried out on a single
feature value, with one branch and subtree for each possible outcome of

the test.

A new test instance is classified by starting at the root of the tree and moving
through it until a leaf is encountered. At each nonleaf decision node, the test
at the node shifts the search to the branch determined by the corresponding
feature value of the test instance. When this process finally reaches a leaf node,
the class label stored at the leaf node is returned as the predicted class value

of the test instance.

Decision trees are built using a divide and conquer approach. The skeleton
of decision tree construction from a set T' of training instances is simple. let

the classes be denoted (7, (5, ..., (). There are three possibilities:

e 7' contains one or more instances, all belonging to a single class C:

The decision tree for T is a leaf identifying class ;.

e T" contains no cases:
The decision tree is again a leaf, but the class to be associated with the
leaf must be determined from information other than 7. For example,

(4.5 uses the most frequent class at the parent of this node.

CHAPTER 2. SUPERVISED INDUCTIVE LEARNING MODELS 18

e 7' contains cases that belong to a mixture of classes:

In this situation, the idea is to refine T into subsets of instances that seem
to be single class collections of instances. A fest is chosen, based on a
single feature, that has one or more mutually exclusive outcomes O, Oy,

, O,. T is partitioned into subsets Ty, Ty, ..., T,, where T; contains
all the cases in T that have outcome O; of the chosen test. The decision
tree for T' consists of a decision node identified by test, and one branch
for each possible outcome. The same procedure is applied recursively for
each subset of training instances produced by this test. That is, the *

branch leads to the decision tree constructed from the subset 7;.

Fach internal node contains a test that will partition the training instances.
The most important decision criteria in decision tree induction is how to decide
the best test on a given node. One must use some heuristics to find the best
decision nodes because the problem of finding the best decision tree is NP-
complete. C4.5 uses information gain criterion to evaluate the goodness of a
test. Given a set of training instances T and a test X with n outcomes, the

information can be found as the weighted sum over the subsets:

infox (T Z ||T| T;) (2.7)

The information gain that is gained by partitioning T" according to this test X
is:

gain(X) =1info(T) — infox(T) (2.8)
The information gain criterion selects the test to maximize this information
gain. Although this criterion gave quite good results, it has a strong bias for
tests with many outcomes. To overcome this bias problem, another criterion,

called gain ratio criterion is introduced [58]:
gain ratio(X)) = gain(X) / split info(X) (2.9)

where split info(X)) is defined as:

|7 ITI
|T| |T|) (2.10)

split in fo(X Z

split in fo represents the potential information generated by dividing T into n

subsets. Information gain measures the information relevant to classification

CHAPTER 2. SUPERVISED INDUCTIVE LEARNING MODELS 19

arising from the division. Then, the gain ratio is the proportion of information

generated by the division that appears helpful.

There are three tests considered in C4.5:

e The standard test on a discrete feature, with one outcome and branch

for each possible value of that feature,

e A more complex test, based on a discrete feature, in which the possible
values are allocated to a variable number of groups with one outcome

for each group rather than each value. This form of test is optionally

invoked in C4.5.

e For a continuous feature f, a binary test with outcomes f < V and
f >V, based on comparing the value for f against a threshold value V.
To find a threshold value, the instances are first sorted with respect to
the values of the feature f. Tet those sorted values be vy, vy, ..., v,,.
The midpoint between each v; and v, is considered as a representative

threshold and m — 1 such midpoints are all examined as a candidate

threshold.

The construction process of a decision tree makes use of a hidden assump-
tion that the outcome of a test for any instance can be determined. The
outcome of a test is both required when partitioning a set T" into subsets T;
and when classifying a test instance using a decision tree. Since every test is
based on a single feature, the outcome of a test can not be determined unless
the value of that feature is known. The solution of C4.5 to overcome the prob-
lem of unknown (missing) feature values in training, is to evaluate the tests by
simply ignoring the instance with unknown value i.e. excluding that instance in
the gain calculations. Then the partition is done according to the selected test
and the instance with missing value is inserted in all subsets with a probability
to be in that subset. When classifying a test instance, if a decision node having
a test that is unknown is reached, all possible outcomes are explored and the
probabilistic classifications are combined arithmetically. Then the class with

the highest probability is the predicted class of the test instance.

CHAPTER 2. SUPERVISED INDUCTIVE LEARNING MODELS 20

Another problem with decision trees is that the resulting tree of C4.5 is often
a very complex tree that “overfits the data” by inferring more structure than
is justified by the training instances. A decision tree is not usually simplified
by deleting the whole subtree in favor of a leaf. Instead, the idea is to remove
parts of the tree that do not contribute to classification accuracy on unseen
instances, producing something less complex and thus more comprehensible.

This process is known as the pruning [58].

A simpler decision tree learning approach, called 1R system, is later pro-
posed by Holte [36]. Tt is based on the rules that classify an object on the
basis of a single feature that is, they are 1-level decision trees, called 7-rules
[36]. The input of the 1R algorithm is a set of classified training instances and
the output is a concept description in the form of 1-rule. Since each feature
is considered separately in 1R system, missing feature values can be simply
ignored instead of ignoring the instance containing missing value. Then, one of
the concept descriptions on a feature is chosen as the final concept description

by selecting the one that makes the smallest error on the training dataset.

Holte used sixteen datasets, fourteen of which were selected from the collec-
tion of UCI-Repository [51], to compare 1R and C4.5 [36]. The main result of
comparing 1R and (4.5 was an insight into the tradeoff between simplicity and
accuracy. 1R rules are only a little less accurate (about 3 percentage points)
than C4.5’s pruned decision trees on almost all of the datasets. Decision trees
formed by C4.5 are considerably larger in size than 1-rules. Holte shows that

simple rules such as 1R are as accurate as more complex rules such as C4.5.

Another decision tree algorithm is T2 (decision trees of at most 2-levels)
[12]. Tts computation time is almost linear in the size of training set. The T2
algorithm is evaluated on 15 common real-world dataset. Tt is shown that the
most of these datasets, T2 provides simple decision trees with little or no loss

in accuracy compared to C4.5.

SADT [34] and OC1 [52] are decision tree induction methods, which par-
tition instances using oblique hyperplanes. Standard decision tree techniques,
such as C4.5 [58], partition a set of points with axis-parallel hyperplanes

whereas oblique decision tree algorithms attempts to find hyperplanes at any

CHAPTER 2. SUPERVISED INDUCTIVE LEARNING MODELS 21

orientation. SADT and OC1 use a randomized approach for generating de-
cision trees using non-axis-parallel hyperplanes. The purpose of these more
general techniques is to find smaller but more accurate decision trees and the
experiments have shown that in some cases they produce small trees without

losing predictive accuracy.

2.4 Naive Bayesian Classifier

Bayesian classifier originating from work in pattern recognition is a probabilis-
tic approach to inductive learning [24, 29]. Given the observed feature values
for an instance and the prior probabilities of classes, the a posterior: probabil-
ity that an instance belongs to a class is estimated. The class with the highest
estimated probability is predicted as the class of the instance. Bayesian classi-
fiers assume that features may be statistically dependent. On the other hand,

Naive Bayesian Classifier assumes that features are independent.

Bayes Decision Theory is a probabilistic approach to the problem of pattern
classification. The prediction of a class label depends on probability values and

it is assumed that all of the relevant probability values are known.

Suppose we are given a domain defined by d features and with £ classes.
The classification problem is to predict a class among & classes for the un-
seen example using the concept description induced from training instances.
The probabilistic representation of a concept stores probabilistic information
about each class. This information includes P(C;), which specifies the a pri-
ori probability that one will observe a member of class (;, and a set of con-
ditional probabilities, specifying a probability distribution for each feature.
From this probabilistic concept description and a given feature value vector
X =< ¥1,...,x4 > of the new example to be classified, the a posteriori prob-
ability P(C;|x) for each class are computed. Bayes rule allows us to compute
the a posteriori probability P(C;|x) using the a priori probability P(C;) and
the class conditional density p(x|C;):

ey

(2.11)

CHAPTER 2. SUPERVISED INDUCTIVE LEARNING MODELS 22

where
k

p(x) = p(x|Ci) P(C) (2.12)
=1
There are many different ways to represent classifiers. One way is in terms
of a set of discriminant functions ¢;(x), ¢ = 1,..,k where k is the number of

classes. The classifier is set to assign a feature vector x to class C; if

4:(x) > g,(x) For all i #). (2.13)

Thus, the classifier can be viewed as a machine that computes discriminant,
functions and selects the class (category) whose discriminant function has the

largest value.

For the general case we can let ¢;(x) = P(C;]x), so that the maximum
discriminant function corresponds to the maximum a posteriori probability.

The classifier would simply select the class C; with maximum P(C;|x).

The choice of discriminant functions is not unique. More generally, if every
gi(x) isreplaced by f(g:(x)), where f is a monotonically increasing function, the
resulting classification is unchanged. This observation can lead to significant
analytical and computational simplifications. In particular, for minimum-error-
rate classification, any of the following choices gives identical classification
results, but some can be much simpler to understand or to compute than
others [24]:

gi(x) = P(Ci,x) (2.14)

P(x|C;) P(C;)

) S PRI P 21
g:(x) = P(x|C;)P(C) (2.16)
9i(x) = log P(x|C;) + log P(C}) (2.17)

Even though the discriminant functions can be written in a variety of forms,

the decision rules are equivalent. The effect of any decision rule is to divide

CHAPTER 2. SUPERVISED INDUCTIVE LEARNING MODELS 23

train(TrainingSet):
begin
for each feature f
for each class ¢
find all distinct values of f in examples of class ¢ in TrainingSet
for each distinct value v
count the number of examples of class ¢ /* call count|v, ¢] */
end.

Figure 2.3. The Training in the NBC Algorithm.

the feature space into k decision regions, Ry, .., Rg. 1f ¢g:(x) > g¢;(x) for all
i # 7, then x is in R; and the decision rule calls for us to assign x to ;.
The regions are separated by decision boundaries, surfaces in feature space
where ties occur among the largest discriminant functions. If R, and R; are

contiguous, the equation for the decision boundary separating them is

9i(x) = g;(x). (2.18)

While this equation may appear to take different forms depending on the forms
chosen for the discriminant functions, the decision boundaries are, of course,
the same. For points on the decision boundary, the classification is not uniquely
defined. For a Bayes classifier, the conditional risk associated with either de-
cision is the same, and it does not matter how ties are broken. No matter
which discriminant function is used, P(x|C;) has somehow to be computed.
Since Naive Bayesian Classifier assumes that features are independent, it can
be computed as follows:

P(xIC) = T PlaflCi). (2.19)
=1

The training in a particular implementation of the Naive Bayesian Classi-
fier 1s given in Figure 2.3 and the classification is given in Figure 2.4. This
particular implementation, which is called as NBC, estimates the conditional
probability density functions p(z;|C;) for a given feature value z; for the f*
feature using the frequency of obhserved instances around z;. This probabil-

ity density estimation algorithm is given in Figure 2.5. P(x¢|C;) for nominal

CHAPTER 2. SUPERVISED INDUCTIVE LEARNING MODELS 24

classify(e):
begin
for each class ¢
/* class_count[c]: number of examples that have the class value ¢ */
gle] = class_count[c] / (number of training examples)

for each feature f
gle] = gle] * probability(e, f, ¢)

return class ¢ with highest g[c]
end.

Figure 2.4. The Classification in the NBC Algorithm.

features is the ratio of the number of training examples of class C; with value
x¢ for feature f over total number of training examples of class C;. P(x4|C))
for continuous features is computed using the frequency of examples of class
C; with the smallest value larger than ¢ and the largest value smaller than
x . Instead of this approach for continuous features used in NBC, continuous
features are discretized into 10 bins of uniform size in MLO++ [43] and the
conditional probability is computed as done for nominal features using the fre-
quency counts. If there is a class value with zero counts, that class is ignored
and never be predicted. If there are no examples for class (; with feature value
x4 for feature f, the conditional probability, P(x¢|C;), will be zero. In our cur-
rent NBC implementation, for continuous features P(x¢|C;) is estimated using
the frequency of examples of class (; having values around z¢. But for nominal
features, the zero conditional probability is kept as it is and the conditional
probability, P(x|C;), becomes zero, which eliminates C; from consideration.

Some other approaches to avoid a zero estimate for P(x|C;) are proposed by

Kohavi [42].

Some other implementations of Naive Bayesian Classifier assume a particu-
lar distribution such as normal distribution for continuous features. The struc-
ture of a Bayes classifier is determined primarily by the conditional probability

densities p(a:£|C;) and the probability density function for normal distribution

CHAPTER 2. SUPERVISED INDUCTIVE LEARNING MODELS 25

probability(e, f, ¢):
begin
if fis a nominal feature
return (countles, ¢] / class_count|c])

else /* fis continuous */
if ¢4 has seen in the training examples of class ¢ then

if e is the only value of f in the training set
return (1.0)

else if ef is the smallest value of f in the training set
count = countles,] | (smallest_of_larger - ey)

else if ef is the largest value of f in the training set
count = countles, | | (es - largest_of_smaller)

else /* ef is in the middle of some values */
dif ference = smallest_of_larger - largest_of_smaller
count = countles,] [dif ference * 2

else if e; is smaller than the smallest value of f in examples of class ¢
count = count[smallest, c| [(smallest - ey)

else if e; is larger than the largest value of f in examples of class ¢
count = countl[largest, | / (largest - ey)

else /* there are values smaller and larger than ey */
dif ference = smallest_of_larger - largest_of_smaller
count = (count[smallest_of larger, c|+count[largest_of_smaller, c])

/ 2/ dif ference

return (count [class_countle])
end.

Figure 2.5. Computing the a posteriori probabilities in the NBC Algorithm.

CHAPTER 2. SUPERVISED INDUCTIVE LEARNING MODELS 26

is as follows:

(r) = =
pm.f*\/m

The normal density is completely specified by two parameters, the mean p and

ey /207, (2.20)

the variance 0. We say that x; is normally distributed with mean yu and vari-
ance o2, Since we are trying to find the conditional probability distribution of
values 2y given that the class value is (;, we compute the mean and variance
for each class separately. That is, the mean and the variance of the x; values of
each class (; examples define the conditional probability distribution of feature
f given that the class is (J;. Another Naive Bayesian Classifier developed dur-
ing this thesis assumes normal distribution for continuous features and treats

nominal features as usual, which we call NBCN in short throughout this thesis.

Naive Bayesian Classifiers handle missing (unknown) feature values by sim-
ply ignoring the feature with the missing value instead of ignoring the whole
instance. When an instance = has an unknown value for feature f, the condi-
tional probabilities (P(x:¢|C;)) of each class C; are assigned to 1, which has no
effect on the product of probabilities distributed by each feature. Therefore,
the probabilities of classes are computed by only the features having known

values and the features having unknown values are simply ignored.

Naive Bayesian Classifier assumes that the features are independent from
each other. Tt is a classical classification algorithm originating from work in
pattern recognition and has been found successful in terms of classification
accuracy in many domains, including medical diagnosis, compared with As-
sistant, which is an ID3-like [55] inductive learning system. It has also been

concluded that induction of decision trees is relatively slow as compared to

Naive Bayesian Classifier [44].

Chapter 3

Feature Projection Based

Learning Models

Feature projections for knowledge representation constitutes the background
for this thesis. Given a set of training instances with class labels, knowledge
for concepts (or classification) is maintained as the projections of the training
set on each feature dimension separately. The rationale behind this knowledge
representation is that humans maintain knowledge in this form, especially in
medical domains. An example for this approach is the CRiteria Learning Sys-
tem (CRLS) [72], which aims to learn decision rules in the form of criteria
tables as humans do. The most important advantage of this representation is
that the projections of the feature values can be organized for each feature in
a way that it reduces the time for the computation of similarity to all training
instances for nearest neighbor like techniques. An additional advantage is the
easy and natural handling of missing feature values. On the other hand, the
disadvantage of the representation by feature projections is that it is possible to
lose the knowledge conveyed by the combination of the individual information

encoded by several features together.

First, T will describe the & Nearest Neighbor on Feature Projections (k-
NNFP) algorithm [8], which is a new version of the classical k-NN algorithm

and uses feature projections knowledge for representation.

27

CHAPTER 3. FEATURE PROJECTION BASED LEARNING MODELS 28

After describing the &-NNFP algorithm, the first feature projection based
classifier called as the Classification by Feature Partitioning (CFP) algorithm
[32] is explained. The basic unit of representation a disjoint feature interval
in the CFP algorithm represents only one class for a range of values in a feature.
Then the Classification by Overlapping Feature Intervals (COFT) algorithm
[73] was developed to make the basic unit of representation an overlapping
feature interval more powerful by allowing it to represent more than one
class. The common property of the CFP and the COFT algorithms is that they
both consider each feature separately in an incremental manner. Incremental
learning algorithms are sensitive to the presentation order of the instances. In
order to prevent such an effect, the next feature projection based algorithms
are developed in non-incremental fashion. One of them is the set of Feature
Intervals Learning (FI1.) algorithms [7] and the other is the set of Voting Fea-
ture Intervals (VFT) algorithms [22], which make up the main subject of this
thesis. Both FII. and VFI algorithms do not require any domain dependent
parameters as the CFP and COFT algorithms do.

Next section describes the &-NNFP algorithm. Section 3.2 and 3.3 discusses
the CFP and the FII. algorithms respectively. The COFI algorithm is explained

in Section 3.4.

3.1 K Nearest Neighbor Classification on Fea-

ture Projections

K Nearest Neighbor on Feature Projections (k-NNFP) [8] is a non-incremental
supervised learning algorithm which also represents the concept descriptions
as the projections of the training instances on each feature dimension. The
classification is based on a majority voting on individual classifications of each
feature. To determine the individual classifications of each feature, k nearest
neighbor algorithm is applied on that feature projection of instances. The
E-NNFP algorithm based on feature projections can be categorized as both
Single-Class and Multi-Class under FPB learning models (see Figure 2.1). Tt

can be categorized as Single-Class because the projections of single instances

CHAPTER 3. FEATURE PROJECTION BASED LEARNING MODELS 29

are kept without any generalization in the &-NNFP algorithm. Tt can also be
categorized as Multi-Class when k£ > 1 because in the majority voting several

classes are represented by the k& neighbors of the instance to be classified.

In the training phase, each training instance is stored simply as its projec-
tions on each feature dimension. If the value of a training instance is missing
for a feature, that instance is not stored on that feature. In order to classify an
instance, a preclassification separately on each feature dimension is performed.
During this preclassification, the £ NN algorithm on that single dimension is
used. That is, for a given test instance t and feature f, the preclassification
for & = 1 will be the class of the training instance whose value on feature f
is the closest to that of the . For a larger value of k, the preclassification is
a bag (multiset) of classes of the nearest k training instances. In other words,
each feature has exactly k votes, and gives these votes for the classes of the
nearest training instances. In some cases, especially for nominal features, there
may be ties to determine the first & nearest neighbors. In such cases ties are
broken randomly. For the final classification of the test instance ¢, the preclas-
sification bags of each feature are collected using bag union. Finally, the class
that occurs most frequently in the collection bag is predicted to be the class of
the test instance. In other words, each feature has exactly k& votes, and gives
these votes for the classes of the nearest training instances. Since each feature

is processed separately, no normalization of feature values is needed.

The distance between the values on a feature dimension is computed using

diff(f,z,y) metric as follows:

|z —ys| if fis linear
diff(f,x,y) = 0 if fis nominal and 2y = y; (3.1)
1 if fis nominal and = # y;

The k-NNFP algorithm handles unknown feature values in a straight for-
ward manner. If the value of a test instance for a feature f is missing, then
feature f does not participate in the voting for that instance. The final voting
is done between the features for which the test instance has a known value.

That is, unknown feature values are simply ignored.

CHAPTER 3. FEATURE PROJECTION BASED LEARNING MODELS 30

A set of experiments have been performed to evaluate the £&-NNFP algo-
rithm on some real-world datasets for & = 1,2,...10 [8]. These experiments
show that the £&-NNFP algorithm achieves comparable accuracy with the k-
NN algorithm. On the other hand, the average running time of the &--NNFP
algorithm is much less than that of the &-NN algorithm. The reason for this is
that the &-NNFP algorithm treats feature values independently, whereas the
k-NN algorithm treats all instances as points in d-dimensional Fuclidean space.
The E-NNFP algorithm stores the feature projection of the training instances
in a sorted order. Therefore, the classification of a new instance requires a
simple search of the nearest training instance value. On the other hand, in
the k-NN algorithm, a new search must be done for each test instance in the
whole Fuclidean space. The experiments also have shown that the classifica-
tion accuracy of the &--NNFP algorithm usually increases when the value of &
increases [8]. On the other hand, it has been observed that the increase in the
value of k does not result in a parallel increase in the accuracy of the kNN

algorithm.

3.2 Classification by Feature Partitioning

The Classification by Feature Partitioning (CFP) algorithm is a method for
learning from examples that uses feature projections for knowledge representa-
tion [31, 32, T1]. It is an incremental supervised inductive learning algorithm
where instances are stored by their feature projections over each feature dimen-
sion. In the training phase, disjoint feature intervals (also called as interval
in this section shortly) of concept definitions are constructed by generalization
and specialization. An interval representing a single class is a basic unit of
knowledge representation in this algorithm, therefore the CFP algorithm can
be categorized as a Single-Class FPB learning algorithm (see Figure 2.1. For
each interval, lower and upper bounds of the feature values, the associated

class, and the number of instances it represents are maintained.

Initially, an interval is a point on a feature dimension. Tt can be extended

CHAPTER 3. FEATURE PROJECTION BASED LEARNING MODELS 31

C
Order of Training Instances !
a) |
X1

e = <X, ¢;>

62 = <X2, c >

e, = <X;, c,> b)

e4 = <X4, c,>

€, = <X,C,> 0

eG = <X6’ C2> X, X4 X,

e =<X,; ¢ >

d)

Figure 3.1. Construction of intervals in the CFP algorithm: (a) after e is
processed, (b) after ey is processed, (¢) after e3is processed, (d) after all training
instances are processed.

through generalization with other neighboring points in the same feature di-
mension. In order to avoid overgeneralization, a parameter, called generaliza-
tion limit (Dy), is provided by the user as a domain dependent parameter.
Before generalizing an interval on a feature dimension f to cover a new point,
the distance between the interval and the new point must be less than Dy.
Otherwise, the new value forms a new point interval on that feature dimen-
sion. During training, if the feature value of a training instance falls into an
interval properly with the same class, simply the representativeness value is in-
cremented by one. However, if it falls into an interval with a different class than
that of the instance, specialization of that interval is made by dividing it into
subintervals and inserting a point interval for the new value in between them.
The representativeness values of these new intervals are updated according to

their sizes.

Figure 3.1 shows the construction of intervals in the CFP algorithm. Let us
consider a training dataset with only one feature. The first instance e¢; forms
a point interval at the feature value x; on this feature dimension. After the
second instance ey, a range interval is constructed and its lower and upper

bounds are xy and x4, respectively, since these two instances have the same

CHAPTER 3. FEATURE PROJECTION BASED LEARNING MODELS 32

class, as shown in Figure 3.1.h. Here, we assume that the generalization dis-
tance is greater than the difference between 1 and x,. The third instance with
different class, (s, specializes the interval into two subintervals by inserting a
new point interval in between them. In Figure 3.1.c, the fourth instance ¢,
with class (7 just increases the representativeness count of the interval that
covers it. Let us assume the next three instances belong to class Cy, and their
related feature values are between x4 and x4. In this case, the interval [x3, 7]
in Figure 3.1.b is partitioned into four intervals for class (/1 and point intervals

are constructed for the second class (U3 as shown in Figure 3.1.d.

During the training process in the CFP algorithm, feature weights and fea-
ture intervals of each concept are learned in an incremental manner. Initially,
all feature weights are taken as 1. Assume that a new training example is
misclassified by a feature f. Then the weight of that feature (wy) is decreased
by multiplying it by (1 - A). Otherwise, it is increased by multiplying it by (1
+ A). Here, A is the global feature adjustment rate, given as a parameter to

CFP.

Classification of an unseen instance is based on a vote taken among the
predictions made by each feature separately. The prediction of a feature is
determined by the value of that instance on that feature. If it falls into an
interval with a known class, then the prediction is the class of that interval.
If it falls on a point interval, the class with highest representativeness value is
chosen among all the intervals at that point. If it doesn’t fall in any interval,
then no prediction for that feature is made. The effect of the prediction of
a feature in the voting is proportional to the weight of that feature. The
final classification is based on a weighted majority voting taken among local

predictions of features.

In the CFP algorithm, feature intervals are constructed as disjoint sets of
feature values. However, intervals may have common boundaries. In such cases,
the representativeness values of the intervals are used to determine the predic-
tion: the class label of the interval which has the maximum representativeness

value is predicted.

Several extensions to the CFP algorithm have been presented in order to

CHAPTER 3. FEATURE PROJECTION BASED LEARNING MODELS 33

Order of Training Instances

3)

eg=<X3,cz>

eY:<X7,c2>

€ = <X5,cz> i i

€ = <X6,cz> |1 1 ¢
e, =<X,,¢cy> b) X)l(z
e1: <X1,c1>

e2:<X2,cl>

Figure 3.2. Construction of intervals in the CFP algorithm by changing the
order of the training instances. Note that here the same set of instances in
Figure 3.1, but in a different order, is used as the training set: (a) after ez, er,
es and eg are processed, (b) after all instances are processed.

handle noisy values [70, 71] and determine the domain dependent parameters

(D and A) of the CFP algorithm [31].

In the noise-tolerant version of the CFP algorithm, feature intervals that
are believed to be introduced by noisy examples are removed from the memory
[7T1]. A new parameter, called confidence threshold (or level) is introduced to
control the process of removing the intervals from the concept description. The
confidence threshold and observed frequency of the classes are used together

to decide whether an interval is noisy or not.

In order to learn feature weights and domain dependent parameters of the
CFP algorithm, a hybrid system, called GA-CFP, which combines a genetic
algorithm with the CFP algorithm has been developed [31]. The genetic algo-
rithm is used to determine a very good set of domain dependent parameters
(A and Dy for each feature) of the CFP, even when trained with a small set
of the data set'. An algorithm that hybridizes the classification power of the
feature partitioning CFP algorithm with the search and optimization power

of the genetic algorithm, called GA-CFP, requires more computation than the

"For example, 20% of all the training data set might be used.

CHAPTER 3. FEATURE PROJECTION BASED LEARNING MODELS 34

CFP algorithm, but achieves improved classification performance.

Figure 3.2 illustrates a limitation for the CFP algorithm. In order to see
the effect of the order of presentations of training instances, let us construct
intervals by the CFP algorithm by changing the order of training instances.
In this case, all instances with class 'y were processed before other instances
with class 'y in the previous example, then the intervals would have been
constructed as shown in Figure 3.2. Firstly, a range interval is constructed for
the class Cy from the first four instances as shown in Figure 3.2a, and then
three point intervals are constructed for the last three instances of class (U7 as in
Figure 3.2b. The concept descriptions (intervals) in Figure 3.1 and Figure 3.2
are very different from each other although the same training instances were
processed. This indicates that the order of the instances is very important and
it affects the resulting concept descriptions considerably. The different concept
descriptions can classify a test instance as of different classes. For example,
the test instance < 5,7 > where x5 < 13 < x4 Will be classified as 'y by the
intervals constructed in Figure 3.1 and as 'y according to feature intervals in

Figure 3.2.

The FII. algorithms [7] are non-incremental learning algorithms, thus offer a
solution to this problem. They are given all the training instances at once, and
constructs intervals independently from the presentation order of the training
instances. Next section will describe the FII, algorithms and illustrate the

construction of intervals for the same dataset in Figures 3.1 and 3.2.

3.3 Feature Intervals Learning Algorithms

Feature Intervals Learning (FIL) algorithms are a set of non-incremental su-
pervised inductive learning algorithms that also use feature projections to
represent the concept description [7]. From a set of training instances, FII
algorithms construct disjoint intervals (also called as interval in this section
shortly) for each feature. An interval in the FII algorithms represents a sin-
gle class, therefore the FII. algorithms can be categorized as Single-Class FPB

learning algorithms. In the basic FII. algorithm FI1, an interval is represented

CHAPTER 3. FEATURE PROJECTION BASED LEARNING MODELS 35

by four parameters: lower bound, upper bound, representativeness count and
associated class label. Lower and upper bounds of an interval are the minimum
and maximum feature values that fall into the interval respectively. Represen-
tativeness count is the number of the instances that the interval represents,
and the class label is the associated class of the interval. An interval is either
a point interval, whose lower and upper bounds are the same or a range in-
terval, whose upper bound is greater than its lower bound. A point interval
is either constructed from a single-class point, which is a value on a feature
dimension that belongs to a single class label or a multi-class point, which is a
value on a feature dimension that belongs to more than one class label. The
FII. algorithms construct the concept description by generalizing neighboring
same single-class points into range intervals. These range intervals are disjoint;
that is, a range interval represents only one class. However, multi-class points
represent more than one class and in that case a set of point intervals are
constructed for multi-class points. Therefore, both point and range intervals

constructed by the FII. algorithms represent a single class.

The classification is based on a majority voting taken among the individual
predictions of features. The classification of a feature is based not only on the
value of the test instance on that feature dimension but also on the feature
intervals constructed during the training phase. Fach feature predicts only a
single class. FII. algorithms assume that features may have different levels of
relevances. Assuming equal relevance is a special case of weighted-voting; that
is, each feature contributes to voting process with equal weights. The feature
weights are given to the FII. algorithms externally by the user. If they are not
given, then all features assume equal weights; so, each feature has the same

voting power in the determination of the final class prediction.

The classification on a feature is simply a search process on that feature
dimension. If the feature value of the test instance on that feature is contained
by an interval, then the prediction will become the class of that interval. Tf
it falls in a multi-class point, the class of the interval with the maximum
representativeness count will be predicted. Otherwise, if it is not contained
by any interval, then no prediction is made by that feature, hence no vote

is taken from that feature. In order to determine the final classification, the

CHAPTER 3. FEATURE PROJECTION BASED LEARNING MODELS 36

X; Xz X, X_ Xg X7 X

Figure 3.3. Construction of the intervals in the FII. algorithms with using the
same dataset as used in Figure 3.1 and Figure 3.2.

individual vote of each feature are summed up. The class which receives the
maximum vote is the classification for the test instance. The voting mechanism
of the FII. algorithms are similar to that of the CFP algorithm, where each
feature votes for only one class and when all the features are equally relevant,

the sum of these individual votes determine the final classification.

Figure 3.3 shows the intervals with their representativeness counts con-
structed by the FII. algorithms from the training datasets given in Figures 3.1
and 3.2. The first three intervals are point intervals constructed from single-
class points, the fourth is a range interval, and the last one is again a point
interval. The initial version FI1 [7] keeps the representativeness counts the
number of training instances in the corresponding interval of each interval
as shown above each interval in Figure 3.3. Since the FII algorithms process
all the training instances at once, the different orderings of the same set of
training instances shown in Figures 3.1 and 3.2 do not result in different set of
intervals. On the other hand, CFP might construct different set of intervals for
the same training dataset with different orderings. Moreover, FII. algorithms

do not require domain dependent parameters such as Dy and A as in the case

of the CFP algorithm.

F12 is the slightly modified version of the initial algorithm FI1 [7]. FI2
keeps the relative representativeness count, which is the ratio of the number of
training instances to the total number of training instances of the corresponding
class rather than absolute representativeness count. This might only change
the classification on multi-class points and FI2 is more fair than FI1 in the
sense that classes that appear less frequently have now a greater chance to be

predicted on multi-class points that they had in FI1.

CHAPTER 3. FEATURE PROJECTION BASED LEARNING MODELS 37

Since after the training phase is completed, always the same class is pre-
dicted from multi-class points in classification, it is unnecessary to store several
point intervals for multi-class points. To eliminate this unnecessary storage,
FI3 [7] is investigated. The point interval having the maximum representa-
tiveness count is chosen as the class of the interval on a multi-class point.
The elimination of the point intervals with lower representativeness counts is a
kind of pruning, but FI3 is careful with this pruning when two classes have very
close representativeness counts. Therefore, the point interval kept is assigned
a weight equal to the the difference between two maximum representativeness
counts divided by the total number of representativeness counts of multi-class
points at that feature value. With this modification, the point intervals con-
structed after pruning contributes to the voting with that weight whereas range
intervals and point intervals constructed from single-class points have a vot-
ing weight of 1. This weight assigning step in FI3 causes the point intervals
constructed from single-class points to have the maximum weight of 1. But
these single-class points might be noisy intervals and to decrease the effect of
such intervals, F14 is developed [7]. Training in FI4 is identical to FI3 except
normalization of feature interval weights according to class distributions in the

training set.

3.4 Classification with Overlapping Feature

Intervals

The Classification with Overlapping Feature Intervals (COFI) algorithm is an-
other incremental concept learning algorithm that uses feature projections to
generalize knowledge. Classification knowledge learned is maintained in the
form of overlapping feature intervals (also called as interval in this section
shortly). The COFT algorithm makes generalizations to construct the concept
descriptions from a set of preclassified training instances. Concept descriptions
learned by the COFT algorithm are represented as intervals on the class dimen-
sions for each feature. Since the overlapping feature intervals in the COFI
algorithm allow the representation of several classes instead of a single class,

it can be categorized as a Multi-Class FPB learning algorithm.

CHAPTER 3. FEATURE PROJECTION BASED LEARNING MODELS 38

generalizationratio g=0.5

Order of Training Instances

8 1 | C, D =L5
1 4 1
61:<1, c> | | C, Df =20
e =<4 cp> 5 9 2
a0 @) I | |
3 —
e =<9 ¢G> 14 10 G Df 1_4. °
e = <10, Cl> !5 C2 Df 2:3 0
e - <11, C2>

Figure 3.4. An example of construction of intervals in the COFI algorithm:
(a) after e, €3, €3 and ey are processed, (b) after e5 and eg are processed.

In the training process, examples are processed one by one and the corre-
sponding intervals on each class dimension for each feature are constructed.
The COFT algorithm performs the learning task by constructing the projection
of the concepts over each class dimension for each feature, that is, the COFI
algorithm learns the overlapping feature intervals for each feature. Learning
overlapping feature intervals is done by storing the objects separately in each
class dimension for each feature as class intervals of values. An interval consists
of four parameters: lower and upper bounds, representativeness count and a
class label. TLower and upper bounds of the interval are the minimum and max-
imum feature values that fall into the interval respectively. Representativeness
count is the number of the instances that the interval represents, and finally

the class label is the associated class of the interval.

The first task of the training process is the estimation of the current gen-

eralization distances, Dy, for each feature f. They are computed as:

D = (current_maxy — current_ming) * g. (3.2)

Here the current maximum and current minimum feature values are the
maximum and minimum values of the related feature seen up to the current

example and ¢ is the generalization ratio in the range [0,1]. Dy values are

CHAPTER 3. FEATURE PROJECTION BASED LEARNING MODELS 39

updated by each new training example. Since current maximum and minimum
of features change through out the training process, the COFI algorithm is
affected also by the presentation order of the training instances. In the first
training instance, the maximum and the minimum values are equal to each
other and they are the first feature values of the related feature of the training
instance. Therefore, initially all the generalization distances are 0 for each
feature. If the feature values of the next training instance are different from
the previous example’s feature values, then one of the maximum and minimum
value of the related feature is updated so the generalization distance will also

be updated.

After deciding the generalization distance Dy, the intervals should be up-
dated according to Ds. If the distance between the feature value of the new
example and the previously constructed intervals is greater than the Dy, then
the new example constructs a new point interval. Otherwise, simply the repre-
sentativeness count of the interval containing it is incremented by 1. The COFIT
algorithm handles both the linear and nominal feature values. However, the
generalization process is applied only to linear type features. Nominal feature

values are not generalized, taking Dy as 0 for nominal features.

Figure 3.4 illustrates the construction of overlapping feature intervals in the
COFT algorithm. This sample training set with one feature and two classes.
The incremental computation of Dy . for each class dimension is also shown in
the Figure 3.4. For this example, on the (/; class dimension only point intervals
are constructed since the difference between feature values do not exceed Dy .
On the other hand, on the second class dimension, the value of the last training
instance forms a range interval, since the difference between feature values is

greater than Dy .

The classification of an unseen test instance is based on a majority voting
taken among the individual predictions based on the votes of the features. The
vote of a feature is based solely on the value of the test instance for that feature.
The vote of a feature is not for a single class but rather a vector of votes, called
vote vector. The size of the vector is equal to the number of classes. An element
of the vote vector represents the vote given by the feature to the corresponding

class. The vote that a feature gives to a class is the relative representativeness

CHAPTER 3. FEATURE PROJECTION BASED LEARNING MODELS 40

generalization ratio g=0.5

Order of Training Instances

8 __| I C, D =4.5
1 10 1
91:<1, G> | | CZ Df -3.0
e =«10, C> 5 11 2
5 1
€.~ <5 C»
? b) ' C, D =4.5
e6= <11, G> 1 4 10 fl
e =<4, C> I =
2" 1 . — C, sz 3.0
e4— <9, C2>

Figure 3.5. An example of construction of intervals in the COFI algorithm
using the same set of training instances as in Figure 3.6, but in a different
order: a) after ey, es5, e3, and eg are processed, b) after e; and ey are processed.

count of the class interval. The relative representativeness count is the ratio of
the representativeness count to the number of examples of the corresponding
class label. Since for most of the datasets, the instances are not distributed
normally in terms of their class values, this kind of normalization is required.
The vote vectors of each feature are added to determine the predicted class.
The class which receives the maximum vote is the final class prediction for the

test instance.

Generalization in the COFT algorithm is sensitive to the order of the train-
ing instances as shown in Figure 3.5, as in the CFP algorithm. Here, the order
of training instances are changed among same classes. We get a different con-
struction of overlapping intervals from this ordering of training instances, as

shown in Figure 3.5 since the initial generalization distances change.

Chapter 4

Classification by Voting Feature

Intervals

This chapter introduces the new classification algorithms developed during
this thesis. The common name for a set of non-incremental classifiers is Voting
Feature Intervals (VFT) and they all use the feature projections knowledge rep-
resentation scheme used in CFP, COFI, &-NNFP, and FII. algorithms described
in Chapter 3. They are called “Voting Feature Intervals” because feature in-
tervals are constructed on each feature dimension in the learning phase and the
corresponding intervals on each feature votes for each class in the classification
phase of the VFT algorithms. VFT algorithms also consider each feature sepa-
rately as in the case of Naive Bayesian Classifier as well as the other feature
projection based learning methods. A voting scheme is used in classification to
combine the individual classifications of each feature similar to other feature
projection based methods. The encouraging results and the advantages of the
feature projections knowledge representation and classification voting schemes
such as speed and handling missing feature values motivated us to come up with
this new classification technique. The concept is still represented as projections
on each feature dimension separately, but the basic unit of representation a
feature interval in the VFT algorithms is somewhat different from the inter-
vals of the CFP and the FII. classifiers. Unlike disjoint segments in CFP and

disjoint intervals in FII. algorithms, a feature interval can represent instances

41

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 42

from a set of different classes instead of a single class. Thus, the VFT algo-
rithms can be categorized as Multi-Class feature projection based algorithms
(see Figure 2.1). The voting scheme used in classification is also modified in
the VFT algorithms, such that each feature distributes its vote among classes,
whereas in the CFP and the FIL classifiers, a feature votes for only one class.
The COFT and the &-NNFP algorithms also have a similar voting mechanism
as that of the VFT algorithms such that features also vote for more than one
class. But construction of overlapping feature intervals is performed for each
class independently from other classes on a feature dimension. The projections
of instances with the same class value on a feature dimension are generalized to
form intervals by using a dynamic generalization distance computed according
to a given generalization parameter. On the other hand, the VFT algorithms
use the projection of instances from all classes on a feature dimension at the
same time and forms intervals from these instances without requiring a param-
eter. VFI algorithms do this non-incrementally, i.e. processing all the training
instances at once, whereas the COFI and the CFP algorithms are incremental;

that is, processes each instance one by one.

The Naive Bayesian Classifier also considers each feature separately both
in training and classification as well as feature projection based classification
methods. The voting scheme used in the classification phase of the VFT al-
gorithms is also analogical with the probability estimation in Naive Bayesian
Classifier. In Naive Bayesian Classifier, each feature participate in the classifi-
cation by assigning probability values for each class, and the final probability
of a class is the product of individual probabilities measured on each feature.
On the other hand, in VFI classifiers each feature distributes its vote among
classes and the final vote of a class is the sum of all individual votes given by

the features.

There are several advantages of feature projection based knowledge repre-
sentation, which also holds for the VFI classifiers. One of them is that these
methods provide faster classification than the nearest neighbor and the deci-
sion tree algorithms described in Chapter 2. Second one is that they enable the
classifier to simply ignore the missing feature values occurring both in training

and classification, where a value should be provided to replace a missing value

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 43

in both nearest neighbor and decision tree algorithms [57]. Naive Bayesian
Classifier can also ignore the missing values similar to feature projection based
techniques by simply excluding that feature from the product of individual
probability distributions of each feature. Another one is that since each fea-
ture is considered separately, no normalization of values to the same range for
all the features is required as in the case of nearest neighbor and instance-based

algorithms described in Chapter 2.

We have developed five versions of the VFT algorithms and called them as
VFI, VFI2, VFI3, VFI4, and VFI5. First, I will give some basic definitions.
Then, T will explain the training and classification process in the initial version
VFT1 [22] and then continue with the modifications on the basic idea of the
VFT algorithms towards the other versions in sequence. Then properties of the
VFTI algorithms according to some important dimensions of machine learning

will be given.

4.1 Basic Definitions

All Feature Projection Based (FPB) algorithms (CFP, COFI, &--NNFP, FII,
and VFT) in essence learn, separately for each feature f, a mapping from the
set of values that f can take on, V, to a set of intervals I;, that carries the
classification information about the domain for that set of values of f. This

mapping is represented as:

gy Vi — Iy (4.1)

where g5 is a surjection (onto function) in the VFI algorithms.
Definition 1. An interval i on a feature fis defined as:
i=(V,v),
where Vis a set of values for feature f and v is the vote vector of interval .

An interval 7 defines a vote vector v for a given set of values V on the
feature that iis defined. Here a vote vector v.= (v, 19,..., v, ...,) specifies

the votes for each class ¢ in the domain where k£ is the number of classes.

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 44

=<v ,v > =<v ,v > =<v ,v >
Vi Vo=V o Vo= VeV
i | i
1 2 3 f
X X X
1 2 3

Figure 4.1. An example for three intervals on a feature dimension f.

Note that an interval represents several classes by these votes for each class.
Therefore, the intervals of the VFT algorithms are multi-class intervals rather

than single-class intervals.

Definition 2. A range interval is an interval i = (V,v) defined on
a linear feature, where the set of values V represents a range of consecutive

values.

Figure 4.1 is an example with three range intervals defined on linear feature
dimension f where 2y # 5. The interval iy = (V5,vy) is defined on a range
of values from —oo to x; and represents the classes with a vote vector v =
(011, v12) where 7 and w15 are the votes of i for the first and second class
respectively. The interval iy = (V5,v3) is defined on a range of values from a4
to 23 and represents the classes with a vote vector vo = (a1, 122). The interval
is = (V3,v3) is defined on a range of values from 23 to oo and represents the
classes with a vote vector v3 = (131, 132). The set of intervals in this example is
I = {#, 12,13} and the value x5 is shown in Figure 4.1 to illustrate an example
mapping where g¢(22) = i. On the other hand, the mapping of the boundary
values such as xy and x5 requires a special treatment and differs in each version

of the VFT algorithms.

Definition 3. A point interval is an interval i = (V,v), where Vis a

singleton set V = {z}.

All the intervals of a nominal feature are point intervals. On the other hand,
a point interval might also exist on a linear feature only in some versions of
the VFT algorithms. An example nominal feature of a two-class domain along
with three point intervals is shown in Figure 4.2. The interval 4 = (Vi ,vy) is

defined on a singleton set of values V; = {red} and represents the classes with

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 45

v =<V v > v =<V v > v =<V v >

1 1w 2 22 3 3R
i i i
L 2 E col or
red bl ue green

Figure 4.2. An example for three point intervals on feature dimension color.

the vote vector vi = (w7, v19). Similarly, the interval iy, = ({blue},vs) and
is = ({green},vs) are defined on a single value of the color feature. Suppose
that only w4 is zero and other votes of all intervals are nonzero, this means
that instances of the first class take values red, blue, and green values whereas

instances of the second class take blue and green values for the color feature.

The set of values for the color feature is V,,1,, = {red, blue, green} and the
set of intervals is 1., = {i1, 72, 73}. A mapping ¢, 1s learned by the VFI

algorithms and the mappings for all values in V,,,, are:

,Q(:nlnr(red) - 7:1
,Q(:olnr(bh/’e) - 7:2

Geolor (,(]Teen) = 7q

where ¢.,1,, 18 a one-to-one mapping as well as it is onto, thus ¢.,;,» is a bijection.

This holds for the g¢ of all nominal features.

For point intervals, only a single value is used to represent Vof that interval.
For range intervals, on the other hand, since all range intervals on a feature
dimension are linearly ordered, it suffices to maintain only one value (either
lower or upper bound) for the range of values that a range interval represents.
In our implementation of the VFT algorithms, we have chosen to keep the lower
bound of the range. The upper bound of a range interval is the lower bound

of the next higher interval.

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 46

4.2 Description of the VFI Algorithms

This section will describe the training and classification process of the VFI
algorithms. Tt will explain how feature intervals on each feature dimension
are constructed and how each feature participates in the classification by the

voting scheme used.

The only input to the VFI classifiers is a set of preclassified training in-
stances each represented as a vector of feature values plus a label that represents
the class of the instance. An instance x is represented as (a1, 29,...,24,C};)
where x4,..., 1, are the corresponding feature values of feature fi,..., f; and
(; 1s the associated class label where 1 < 5 < k. Here, k is the total number
of classes and d is the number of features in the given domain. Therefore, the

dimension of the instance vector is d + 1.

4.2.1 The VFI1 Algorithm

The VFIT classification algorithm [22] is the initial version of VFT algorithms.
The next two subsections will describe the training and the classification in the

VFIT algorithm.

4.2.1.1 Training in the VFI1 Algorithm

Since all VFT algorithms are non-incremental, the VFI1 algorithm takes all
these training instances and processes them at once. Tt constructs feature
intervals on each feature dimension in the training phase. The training process
in the VFTI1 classifier is given in Figure 4.3. First, the end points for each class
¢ on each feature dimension f are found. Fnd points of a given class ¢ are
the lowest and highest values on a linear feature dimension f at which some
instances of class ¢ are observed. On the other hand, end points on a nominal
feature dimension f of a given class ¢ are all distinct values of f at which some
instances of class ¢ are observed. The end points of each feature f is kept in an

array FndPoints[f]. There are 2k end points for each linear feature, where k

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 47

train(TrainingSet):
begin
for each feature f
for each class ¢
EndPoints|f] = FndPoints[f] U find_end_points(TrainingSet, f,¢);
sort(KndPoints[f]);

if fis linear
each pair of consecutive distinct points in EndPoints[f] form
a range interval
else /* fis nominal */
each distinct point in EndPoints[f] forms a point interval

for each interval 2 on feature dimension f
for each class ¢
interval _class_count[f, i, ¢] =0
count_instances(f, TrainingSet);
for each interval 2 on feature dimension f

for each class ¢
interval _class_count[f, i, c]

interval _class_votelf, i, ¢| = Trsscomni[]

normalize interval _class_votelf, i, c];
/* such that > . interval_class_vote[f, i, ¢]=17%/
end.

count_instances(f, TrainingSet):
begin
for each instance e in TrainingSet
if e is known
i = find_interval(f, ey)
e. = class of instance e

if i is a point interval */
if e = lower bound of ¢
interval _class_count([f, i, e.] + = 1
else /* i is a range interval */
if e = lower bound of ¢

interval _class_count[f, i — 1, e.] + = 0.5

interval _class_count([f, i, e.] + = 0.5
else /* ey falls into 7 */

interval _class_count([f, i, e.] + = 1

end.

Figure 4.3. Training phase in the VFT1 Algorithm.

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 48

classify(e): /* e: example to be classified */
begin
for each class ¢
vote[e] =0

for each feature f
for each class ¢
feature_vote[f, c] = 0 /* vote of feature f for class ¢ */

if ey value is known
i = find_interval(f, e;)

if 1 1s a point interval
if ey = lower bound of ¢
for each class ¢
feature_vote[f, c] = interval_class_vote[f, i, c]
else /* i is a range interval */
if ey = lower bound of ¢

for each class ¢
interval _class_vote[f, i—1, ¢] + interval_class_vote[f, 1,]

feature_vote[f, c] = 3

else /* inside the interval 7 */

for each class ¢
feature_vote[f, c] = interval_class_vote[f, i, c]

for each class ¢
vote[c] = votele] + feature_votel[f, c];

return class ¢ with highest vote[c];
end.

Figure 4.4. Classification in the VFIT Algorithm.

is the number of classes. Then, for linear features the list of end-points on each
feature dimension is sorted. If the feature is a linear feature, then each pair of
consecutive distinct end points constitutes a range interval. If the feature is a

nominal feature, each distinct end point constitutes a point interval.

Then the number of training instances in each interval will be counted
and the count of class ¢ instances in interval 7 of feature f is represented as
interval class_count[f, 1, ¢] in Figure 4.3. These counts for each class ¢ in
each interval 7 on feature dimension f are computed by the count_instances
procedure. For each training example, the interval 7 in which the value for

feature f of that training example ¢ (ey) falls is searched. If interval 7 is a

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 49

point interval and e is equal to the lower bound (same as the upper bound
for a point interval), the count of the class of that instance (e.) in interval s
is incremented by 1. If interval ¢ is a range interval and ey is equal to the
lower bound of ¢ (falls on the lower bound), then the count of class e. in both
interval 7 and (# — 1) are incremented by 0.5. But if e¢; falls into interval ¢
instead of falling on the lower bound, the count of class e. in that interval is
incremented by 1 normally. There is no need to consider the upper bounds
as another case, because if e; falls on the upper bound of an interval 7, then
es 1s the lower bound of interval 7 4+ 1. Since all the intervals for a nominal
feature are point intervals, the effect of count_instancesis to count the number

of instances having a particular value for nominal feature f.

To eliminate the effect of differences in the class counts of training instances,
the count of instances of class ¢ in interval ¢ of feature f is then normalized by
class_count|c], which is the total number of instances of class ¢. It is important
because b instances out of a total of 10 instances is not the same as 5 instances
out of a total of 100 instances. The former means that the 50% of that class is
in that interval whereas the latter means that only 5% of that class is in that
interval. Thus, the relative counts are 0.5 and 0.05 respectively. This relative
number of instances in that interval is assigned to interval_classvotelf, 1, ¢,
since this value represents the vote of interval 7 to class ¢. To find the final
individual vote given to class ¢ by feature f for a future unseen instance with
an [value falling into interval 7, the interval_class_vote[f, i, ¢| values are
normalized such that the the sum of the votes distributed to several classes is
1. Hence, the vote of interval 7 on feature f for class ¢ is a real-valued vote
less than or equal to 1. This final normalization provides that each feature will
have an equal voting power in the classification process independent of its size,
since every feature has the equal chance of distributing its votes that sum up
to 1. The features might have different voting powers when feature weights are
provided from an external source. In that case, the sum of the votes distributed

by a feature would be equal to the weight of that feature.

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 50

4.2.1.2 Classification in the VFI1 Algorithm

The classification phase of the VFI1 algorithm is given in Figure 4.4. The
process starts by initializing the votes of each class to zero. For each feature
f, the interval on feature dimension f into which e; falls is searched, where e;
is the f value of the test example e. If e is unknown (missing), that feature
does not participate in the voting (gives a vote zero for each class). Hence,
the features containing missing values are simply ignored. Ignoring the feature

about which nothing is known is a natural and plausible approach.

If e; is known, first the interval 2 into which e; falls is found. Tf 7 is a point
interval and ey is equal to the lower bound of that point interval, then for each

class ¢, feature f gives a vote equal to
feature vote(f, c] = interval_class_vote[f, i, ¢] (4.2)

where interval class_vote[f, 7, c] is the vote of feature f given to class ¢. Since
point intervals consist of a single value, a point interval 7 is found such that
es must fall on that point interval 2. This means that e; must be equal to the
lower bound of that point interval (same as its upper bound) in order to say
that ey falls into that interval. If 7 is a range interval and ey falls on the lower
bound (i.e. e; is equal to the lower bound) of range interval ¢, then a vote

equal to

interval _class_votelf, i — 1, ¢] + interval _class _vote[f, i,]

2

feature_votelf, c] =

(4.3)

is given. This is because the instances falling on the lower bound of interval :

which is the upper bound of interval (i — 1) were both included in interval

(# — 1) and 7 in the counting process of the training phase explained in Sec-

tion 4.2.1.1. On the other hand, if e falls into a range interval 7 (i.e. s is not

equal to any lower bound), then for each class ¢, feature [gives a vote equal
o

feature vote(f, c] = interval_class_vote[f, i, ¢] (4.4)

as in the case of a point interval. Fach feature f collects its votes in a vote vec-
tor (featurevotelf, C], ... | featurewote[f, C;], ..., featurevote[f, Ck]),

where featurevote[f, C;] is the individual vote of feature f for class C; and

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 51

k is the total number of classes. Then these d individual vote vectors, where
n is the total number of features, are summed up to get a total vote vec-
tor (vote[C4], ... Jvote[C]). Finally, the class with the highest total vote is

predicted to be the class of the test instance.

With this implementation, the VFI1 algorithm is a categorical classifier,
since it returns a unique class for a test instance [45]. A unique class is pre-
dicted for the test instance in order to compare this predicted class with the
actual class of the test instance. This enables us to measure the performance
of our classifiers according to the most commonly used metric, which is the
the percentage of correctly classified test instances over all test instances (see

Chapter 5 for more detail). Instead,

vole[C]
Sk vote[C]
can be used as the probability of class (/; which makes the VFI1 algorithm a
more general classifier. In that case, the VFIT algorithm returns a predicted
probability distribution over all classes. Although a class is returned as the
prediction of the test instance as an output of the VFI1 algorithm | the votes
received by each class is also available as an output to the user enabling him /her

with the level of confidence in the prediction.

4.2.1.3 An Example

In order to describe the VFT1 algorithm, consider the sample training dataset
in Figure 4.5. In this dataset, we have two linear features f; and f,, and there
are 3 examples of class A and 4 examples of class B. The intervals with their
class counts constructed in the training phase of the VFIT algorithm are shown
in Figure 4.6. There are 5 intervals for each feature. The lower bound of the
leftmost intervals is —oo and the upper bound of the rightmost intervals is oc.
For example, the second interval on feature dimension of f; has a class count
2 for for class A and 0 for class B. The count of 2 for class A comes from half
count of the class A instance with f; value 2, full count of the class A instance
with f; value 3, and half count of the class A instance with f; value 4. The

training process continues with computing the interval class votes determined

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 52

2 B
8¢ ~ -~ T T T T ® T,
: Atest B
6 - -r - S @B
I AI 1 1
I o| 1 1
IBI 1
al - ool
! 1 B 1
! |) |
A 1 1 1
2____(:9____|____|____|
| \ \ =l_r
0 2 4 6 8 1

Figure 4.5. A sample training dataset with two features and two classes.

A 0.5 A 2 A. 0.5 A 0O A 0

B: 0O B: O B: 0.5 B: 3 B: 0.5
| | | | fa
2 4 5 8

A 0.5 A 0.5 A 1.5 A. 0.5 A O

B: 0 B: 0.5 B: 2 B: 1 B: 0.5
| | | | fo
2 3 6 8

Figure 4.6. The constructed intervals by VFI1 with their class counts for the
sample dataset.

by the relative class counts after a normalization. The normalized class votes
for the constructed intervals by VFI1 is shown in Figure 4.7. Tet us look
at one interval to see how the normalized votes are computed from the class
counts. The interval 74 on feature dimension fy has class_count[A] = 0.5 and
class_count[B] = 1 as shown in Figure 4.6. The class votes are %> = 0.17 for

class A and }I = (.25 for class B. Then these votes are normalized to make the

sum of votes distributed to classes equal to 1, and the normalized vote for class

Ais 0.4 and 0.6 for class B.

In order to illustrate the classification phase in the VFI1 algorithm, con-

sider a test example t = (5,6,7). On feature f; dimension, the #; = 5

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 53

t
A1 A1 A 0.57 A O A O
B 0O B O B 0. 43 B 1 B 1
y
11 12 13 14 15 fa
2 4 5 8
t
A 1 A 0.57 A 0.5 A 0.4 A O
B 0 B 0.43 B 0.5 ! B 0.6 B 1
5 | 25 | ' 23 ' 24 | ' 25 fo
2 3 6 8

Figure 4.7. The constructed intervals by VFIT with their class votes for the
sample dataset.

falls on the lower bound of the interval 774 as shown with an arrow in Fig-
ure 4.7. The interval 73 has a vote interval_classvote[fy,113,A] = 0.57 for
class A and interval_class_vote[fi,113,B] = 0.43 for class B. The interval iq4
has a vote equal to interval classvote]fi,114,A] = 0 and a vote equal to
interval class_vote| fi,114,B] = 1. Since the #; is on the lower bound of interval
214, the half of votes from both intervals 7153 and 7,4 determines the individual

vote of feature fi;. The votes of feature fi are featurevotelfi,A] =

0.57+0
2

0.285 and feature_vote|fi,B] = % = 0.715. Thus, the vote vector of f;
is vi = (0.285, 0.715). If f; had been given a chance to make a prediction,
it would have predicted class B which has received higher vote than class A.
On the feature dimension of f5, t, = 6 falls on the lower bound of interval
794 as shown with an arrow in Figure 4.7. The interval 793 has a vote equal
to interval_class vote[fi, 123, A] = 0.5 and interval class_vote| fi,193,B] = 0.5
for class A and class B respectively. The interval 794 has a vote equal to
interval class_vote| fi, 124, A] = 0.4 and interval class_vote|f,194,B] = 0.6 for
class A and B respectively. Since the #; is on the lower bound of interval 754, the
average of votes from both intervals 793 and 754 determines the individual vote
of feature fy. The votes of feature fy are featurevotelfy, Al = O‘Eﬂ = 0.45
and feature_vote[fi,B] = Ozﬂ = 0.55. Thus, the vote vector of f5 is
vy = (0.45, 0.55). Tf fy had also been given the chance to make a predic-
tion, it would have predicted class B but not as much confident as feature f;.
Finally, the individual votes of the two features are summed up correspondingly
and the total vote vector is v = (0.735,1.265). VFI1 votes 0.735 for class A
and 1.265 for class B, so class B with the highest vote is predicted as the class

of the test example. If VFI1 were used to make probabilistic classifications

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 54

Cl:l Clz 0.57 Clz 0.31 Cl: 0.57 Cl:l
C:0 C:0.43 C:0.69 C:0.43 C:0
2 | 2 | 2 2 2
X X X X
1 3 7 2

Figure 4.8. The constructed intervals by VFIT with their class votes for the
training dataset in Figure 3.1.

instead of categorical (see Section 4.2.1.2), VFI1 would predict class A with
37% probability and class B with 63% probability.

In order to compare the concept description learned by the VFI1 algorithm
with that of the CFP algorithm, the intervals along with their votes constructed
from the training dataset in Figure 3.1 by the VFT1 algorithm are shown in Fig-
ure 4.8. The intervals constructed by the VFIT algorithm represent both class
(7 and 'y with their corresponding votes whereas the intervals constructed by
the CFP algorithm represent only a single class. When a new instance falls
between x3 and x7, it would be predicted as class (U5 in the VFI1 algorithm
since that is the range of values in which class ('y training instances were ob-
served. On the other hand, the CFP algorithm has lost this information and is
just aware of some single points on which class (; training instances appeared

as shown in Figure 3.1.

The single-class intervals constructed by the FII. algorithms using the same
dataset was shown in Figure 3.3. The FII. algorithms construct a range interval
representing class (' between x5 and a7 unlike the CFP algorithm. While all
the values are mapped to an interval in the VFI algorithms, both the CFP
and the FII. algorithms might have many empty range of values between the

intervals such as the range of values between the point intervals in Figure 3.3.

Figure 4.9 shows the intervals along with their votes constructed by the
VFIT algorithm from the dataset in Figure 3.4 where the intervals constructed
by the COFT algorithm are also shown. Like the CFP and the FII. algorithms,
the COFT algorithm also has many empty range of values. For example, a
new instance with value equal to 6 would be predicted as class (/5 in the VFTI

algorithm whereas the COFT algorithm would predict nothing for this instance.

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 55

C1:1 Cl:O. 75 C1:0.25 C1:0.5 Cl:O
C:0 C:0.25 C:0.75 C:0.5 C:1
2 | 2 | 2 2 2
1 5 10 11

Figure 4.9. The constructed intervals by VFIT with their class votes for the
training dataset in Figure 3.4.

4.2.2 The VFI2 Algorithm

The VFI2 algorithm is the next version after the initial VFT algorithm. The
VFI2 algorithm will be explained by only pointing out its differences than the
VFIT algorithm. The only difference is in finding the lower bounds of intervals
on linear feature dimensions. In the VFI1 algorithm, the interval lower bounds
are distinct end points which are the lowest and highest points of each class on
a given feature dimension. This causes lots of instances fall on interval bound-
aries and we thought that it would be better to fall into one interval instead of
being affected by two neighboring intervals. Therefore, to decrease the amount
of hits on interval boundaries, the interval lower bounds are determined as the
mid points of the end points instead of the end points themselves as in VFII.
This helps a lot especially in visualizing the Dermatology dataset (see Chap-
ter 7). The idea of using the mid points has been also used in C4.5 to find the

best split on a linear feature dimension [58].

The training algorithm for the VFI2 algorithm is shown in Figure 4.10.
Algorithm is the same as the VFIT algorithm, except the determination of the
lower bounds of the intervals on a linear feature dimension. The classification

process is exactly the same as that of the VFI1 algorithm.

The intervals with their class counts constructed from the example training
dataset in Figure 4.5 by the VFI2 algorithm is shown in Figure 4.11. The lower
bounds of the intervals are the mid points of the lower bounds of the intervals
constructed by the VFT1 algorithm shown in Figure 4.6. The training instances
falling on the lower bounds are similarly treated as in the VFI1 algorithm, so

there might still be half counts but this usually occurs less than it occurs in

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 56

train(TrainingSet):
begin
for each feature f
for each class ¢
EndPoints|f] = FndPoints[f] U find_end_points(TrainingSet, f,¢);
sort(KndPoints[f]);

if fis linear
each pair of mid points of two consecutive distinct points in FndPoints|f]
form a range interval
else /* fis nominal */
each distinct point in EndPoints[f] forms a point interval

for each interval 2 on feature dimension f
for each class ¢
interval _class_count[f, i, ¢] =0
count_instances(f, TrainingSet);
for each interval 2 on feature dimension f
for each class ¢

interval _class_count[f, i, c]

interval _class_votelf, i, ¢| = S Pp—

normalize interval _class_votelf, i, c];
/* such that > . interval_class_vote[f, i, ¢]=17%/
end.

Figure 4.10. Training phase in the VFI2 Algorithm.

VFT1. The normalized votes from these class counts of each interval is shown

in Figure 4.12.

Let us go through the classification of the same test instance t = (5,6,7)
classified by VFI1 in Section 4.2.1.3. The intervals into which this test example
falls on each feature are indicated in Figure 4.12 with arrows. On feature f;
dimension, the #; = 5 falls into interval 7;3. Remember that #; falls on the
lower bound of an interval constructed by the VFI1 algorithm (see Figure 4.7).
The interval 7,3 has a vote interval_class_votelfi, 113, A] = 0 for class A and a
vote interval_class_votel fi,113,B] = 1 for class B. Thus, the vote vector of f;
is vi = (0, 1). If f; had been given the chance to make a prediction, it would
have predicted class B with no doubt because B has received all the votes of

feature f; and class A has received none. On the feature dimension of f,, t, = 6

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 57

A 1.5 A 1.5 A O A 0
B: 0O B: 0O B: 2 B: 2
fa

3 4.5 6.5

Al A O A 2 A O

B: 0 B: 2 B: 1 B: 1
| | | fa
2.5 4.5 7

Figure 4.11. The constructed intervals by VFI2 with their class counts for the
sample dataset.

t
A1 A1 A O A O
B 0 B 0 B 1 B 1
11 1 | 13 | 14 fi
3 4.5 6.5
t
A1 A O A 0.73 A O
B 0 B 1 B 0. 27 B 1
5 | 5 | I 53 | s 1o
2.5 4.5 7

Figure 4.12. The constructed intervals by VFI2 with their class votes for the
sample dataset.

falls into interval 795 which has interval class_votel fi, 193, A] = 0.73 for class A
and interval_class_vote[f1,193,B] = 0.27 for class B. Thus, the vote vector of
J2is vo = (0.73, 0.27). If f; had been given the chance to make a prediction,
it would have predicted class A, which has received higher votes than that of
class B. The reason for this is that 2 training instances of class A out of a total
of 3 are observed in the range [4.5 .. 7] of feature f,, whereas only 1 training
instance of class B out of a total of 4 are in that range. Finally, the individual
votes of the two features are summed up respectively and the total vote vector
is v =(0.73,1.27). That is, the VFI2 algorithm votes 0.73 for class A and 1.27
for class B, so class B, receiving the highest votes is predicted as the class of

the test example 7.

4.2.3 The VFI3 Algorithm

The VFI3 algorithm is not something that is developed over the VFI2 algo-

rithm, instead it is again a modification to the VFIT algorithm in determining

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 58

under what conditions the lower bound of an interval 7 can be included to only
one interval instead of both interval 7 (the right interval) and interval ¢ — 1
having that lower bound as the upper bound (the left interval). Remember
that the intervals are formed by a pair of consecutive distinct end points of
each class. The lower bound of an interval is either the lowest or the highest
point of a class on that dimension. The lower bounds of a range interval can

be classified into three types according to a given class ¢

1. The lower bound of the interval is the lowest point of a class ¢,
2. The lower bound of the interval is the highest point of a class ¢,

3. Neither of the above two types, that is, another class (# ¢) determines

the lower bound.

Suppose that during the training a training instance of class C; falls on the
lower bound of a range interval 7. If the lower bound is of first type according
to class ¢, the current training instance is counted in the right interval since
the lower bound is the start point of observing class ¢ instances. If it is of
second type, the current training instance is counted in the left interval since
the lower bound is the last point of observing class ¢ instances. [If it is of
the last type, since class ¢ instances are observed before and after that lower
bound, the current training instance is counted half for the right interval and
half for the left interval as done in the VFI1 algorithm. Thus, by replacing the
count_instances(f, 1, ¢) function in Figure 4.3 with count_instances_vfi3(f, i, ¢)
shown in Figure 4.13, we get the training algorithm for the VFI3 algorithm.
The difference in count_instances_vfi3(f, 1, ¢) is that it now counts the instances
on the lower bounds taking care of the types of the lower bounds as described

just above.

The classification in the VFI3 algorithm is also modified in order to con-
sider three lower bound types for range intervals. The modified classification
algorithm is shown in Figure 4.14. First the total votes and individual votes
of each feature for each class are initialized to zero as usual. Then, given a
test instance, for each feature f, the interval in which the value of the test

example for feature f (t;) falls is sought. If ¢ falls on a point interval and

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 59

count_instances vfi3(f, TrainingSet):
begin
for each instance e in TrainingSet
if e is known
i = find_interval(f, ey)
e. = class of instance e

if 7 is a point interval
if e = lower bound of ¢
interval _class_count([f, i, e.] + = 1

else /* i is a range interval */
if e = lower bound of ¢
if ey = lowest point of e, on f

interval _class_count([f, i, e.] + = 1
else if e = highest point of e. on f
interval _class_count[f, i — 1, e.] + = 1
else
interval _class_count[f, i — 1, e.] + = 0.5
interval _class_count([f, i, e.] + = 0.5
else /* inside the interval */
interval _class_count([f, i, e.] + = 1

end.

Figure 4.13. The algorithm for counting the training instances in the training
phase of the VFI3 classifier.

is equal to the lower bound of that point interval, then feature f gives a vote
equal to interval_classwote[f, 1, ¢] for each class ¢. If ¢4 falls into a range
interval without falling on its lower bound, then feature f gives a vote equal
to interval class_vote[f, 1, ¢] for each class ¢. However, if ¢ falls on the lower
bound of range interval ¢ (i.e. equal to the lower bound of range interval 7),
then each class ¢ receives a vote according to the type of the lower bound with

respect to ¢. There are three cases:

1. Tf the lower bound of interval 7 is equal to the lowest point of class ¢ on

feature dimension f, then class ¢ receives its vote from interval 1.

2. If the lower bound of interval 7 is equal to the highest point of class ¢ on

feature dimension f. then class ¢ receives its vote from interval ¢+ — 1.

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 60

classify(e): /* e: example to be classified */
begin

for each class ¢
vote[c] = 0

for each feature f

for each class ¢

feature_vote[f,c] = 0 /* vote of feature f for class ¢ */

if e¢ value is known
i = find_interval(f, ey)

if 2 is a point interval
if e; = lower bound of ¢
for each class ¢

feature_vote[f, c] = interval _class_votelf, i, c]

else /* i is a range interval */
if e; = lower bound of ¢
for each class ¢
if ey = lowest point of c on f
feature_vote[f, ¢] = interval_class_vote[f, i, ¢]
else if ey = highest point of c on f

feature_vote[f, c] = interval_class_vote[f, i — 1, ¢]
else

fea,t?/,re_?)()te[ﬁ (3] _ interval _class_vote[f, i—1, C]2+ interval _class_vote[f, 1, c]

else /* inside the interval ¢ */
for each class ¢

feature_vote[f, c] = interval _class_votelf, i, c]

for each class ¢

normalize feature_vote[f,c] [* s.t. >, feature_vote[f,c] =1 */
vote[c] = votele] + feature_vote[f,c];

return class ¢ with highest vote[c];
end.

Figure 4.14. Classification in the VFI3 Algorithm.

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 61

A O A 3 A O A O A O
B: 0 B: 0 B: 0 B: 4 B: 0
fq
2 4 5 8
A O A1 A 2 A 0 A 0
B: 0 B: 0 B: 2.5 B: 1.5 B: 0
| | | | f2
2 3 6 8

Figure 4.15. The constructed intervals by VFI3 with their class counts for the
sample dataset.

t
A O A1 A O A O A O
B 0 B 0 B o | B 1 B 0
11 1 13 14 15 fi
2 4 5 8
t
A O A1 A 0.52 A 0 A O
B 0 B 0 B 0.48 ! B 1 B 0
5 | 5 | I 53 54 | I 55 fs
2 3 6 8

Figure 4.16. The constructed intervals by VFI3 with their class votes for the
sample dataset.

3. If the lower bound of interval 7 is equal to neither the lowest nor the
highest point of class ¢ on feature dimension f, then class ¢ receives its

vote as the average of the votes from intervals s — 1 and 1.

Since classes might take their votes from different intervals or even as the
average of two intervals, the sum of votes for each class is no more equal to 1
as normalized in training. Therefore, the votes of each feature are once again
normalized before combining to compute the total vote. This final normaliza-
tion is not required in the VFI1 and the VFI2 algorithms because if a vote
is taken from an interval or from two neighboring intervals, that is the same
for all the classes and does not change from class to class. However, in VFI3
a class might take its vote from interval 7, whereas another class might take
its vote from both interval ¢+ and + — 1. Examples for this case will be shown.

Finally, the class with the highest total vote is returned as the prediction.

To illustrate the training and classification in VFI3, the intervals with their

class counts constructed from the example training dataset in Figure 4.5 by

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 62

VFI3 are shown in Figure 4.15. The lower bounds of all intervals are the same
as the lower bounds of the intervals constructed by VFI1 shown in Figure 4.6,
however the class counts of the intervals are changed. For example, the training
instance of class A with f; value 4 is not now counted half for the second and
half for the third intervals of feature f;, instead it is fully included in the second
interval because the lower bound of the third interval is of the second type i.e.

it is the highest point of class A on feature f;.

Let us go through the classification of the same test instance ¢t = (5,6,7)
classified by VFIT in Section 4.2.1.3. The intervals into which this test exam-
ple falls on each feature is shown in Figure 4.16 with arrows. On feature f;
dimension, the #; = 5 falls on the lower bound of interval 7,4 as shown with
an arrow in Figure 4.16. Since this lower bound (5) is the lowest point of
class B on feature dimension f;, the vote for class B will be taken from inter-
val 714. Thus, the vote for class B is feature vote[f;,B] = 1. On the other
hand, since this lower bound is neither the lowest nor the highest point of class
A on fi, the vote for class A is the average of the votes of intervals 773 and
214, Since both intervals 773 and 214 have a vote 0 for class A, their vote is
featurevote[f;,A] = 0. A final normalization would change nothing in the
distribution of votes and class A receives a vote () and class B receives a vote 1
from fi. On the feature dimension f,, t, = 6 falls on the lower bound of interval
124. Since this lower bound (6) is the highest point of class A on feature f, the
vote for class A will be taken from interval 794. Therefore, the vote of feature
f2 for class A is feature_vote[fy, A] = 0.52. However, since this lower bound
is neither the lowest nor the highest point of class B on f,, the vote for class
B is the average of the votes of intervals 223 and :24. Then the vote for class
B is featurewote]fy,B] = (0.48 +1)/2 = 0.74. Note that the feature votes
given to class A and B do not sum up to 1 and if we leave them as they are,
this feature will have a higher voting power with no reason. Therefore, in the
classification of the VFI3 algorithm these votes are normalized and a vote equal
to feature vote[fy, Al = 0.41 for class A and a vote feature_votelfy, B] = 0.59
are given. Finally, the individual votes of the two features are summed up
correspondingly and total vote vector is v = (0.41,1.59). The VFI3 algorithm
votes 0.41 for class A and 1.59 for class B, so class B with the highest vote is

predicted as the class of the test example.

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 63

A A
AIB
|

i
I
0 1 2

\
—

Figure 4.17. The projection of a sample dataset with two classes on linear
feature dimension fi.

A 1.5 A 1.5 A0
B: 0.5 B 3 B: 0.5
VFI 1 1 12 13 fl
0 2
A O A 3 A O
B: 0O B: 4 B: O
VFI 3 11 12 13 fl
0 2
A0 A 3 A 0 A 0
B 0 B 1 B 3 B 0
VFI 4 1 I 13 ' 14 fl
0 2

Figure 4.18. The constructed intervals by VFI1, VFI3, VFI4 with their class

counts for the second sample dataset.

4.2.4 The VFI4 Algorithm

The VFT4 algorithm is the version developed over the VFI3 algorithm when we
realized that in real-world datasets there are classes instances of which always
take the same value for a feature. That is, the lowest and highest points of such
a class are the same on that feature dimension. But in all previous versions of
the VFT algorithms, we do not represent this knowledge. On the other hand,
it 1s not a loss of knowledge in the case of a nominal feature because all the
instances of that class are counted on that point interval constructed by the
lowest and highest points of that class. But when it occurs on a linear feature
dimension, an interval starting from that lowest (equal to highest) point and
continuing up to a distinct point is constructed. This will result in a concept

description which represents that class in the range of values in which it never

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 64

appeared.

To illustrate the problem, suppose that we have a sample dataset with the
projection shown in Figure 4.17 on linear feature dimension f;. There are two
classes, class A and B in this domain. All of the three training instances of
class A are observed on value 0 for feature f;. There are four training instances
of class B, which are observed on values 0, 1, and 2 for feature f;. The lowest
point of class A is 0 on f; dimension, which is also the highest point of class A.
The lowest point of class B is 0 and the highest point of class B is 2. Therefore,
we have two distinct end points 0 and 2 from which the range intervals
will be constructed in both the VFT1 and the VFI3 algorithms. The intervals
with their class counts constructed by the VFI1 and the VFI3 algorithms are
shown in Figure 4.18. The instances of class A having f; value 0 (falling on the
lower bound of interval 712) are counted half for interval 711 and half for interval
212 in the VFT1 algorithm. On the other hand, since the VFI3 algorithm tries
to count the instance on the lower bounds according to the types of the lower
bounds, all the instances of class A are counted for interval 71,. When a new
instance with value 1 for feature f; is to be classified, class A will get a nonzero
vote from feature f; both in the VFI1 and the VFI3 algorithms. However, class
A instances never had a value different than 0 for feature f; and the inductive
result from this should be that a class A instance can not have a value other
than 0 for feature f;. One might say that 0 is also the highest point of class A,
so the VFI3 algorithm might count those instances in interval 711 as well. Both
might have done, but the VFI3 algorithm and all the other versions of the VFI
algorithms do not realize that a lower bound is both the highest and the lowest
at the same time, and that’s why we came up with the VFI4 algorithm, which
takes care of this special situation that might occur in real-world datasets. In
fact, a feature always getting the same value for a class is very informative and

should be discovered by a classifier.

The VFI4 algorithm constructs a point interval from the end point 0, which
is both the lowest and highest point of class A as shown with a filled narrow
rectangle at point (0 in Figure 4.18. This point interval is exactly the same
as the point intervals constructed for nominal features, that is, the lower and

upper bound of this interval is both 0 and instances having 0 value for feature

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS

train(TrainingSet):
begin
for each feature f
for each class ¢
EndPoints|f] = FndPoints[f] U find_end_points(TrainingSet, f,¢);
sort(KndPoints[f]);

if fis linear
for each end point p in EndPoints[f]
if an end point p = both lowest and highest point of a class
form a point interval from end point p
form a range interval between p and the next endpoint#£ p
else
form a range interval between p and the next endpoint#£ p
else /* fis nominal */
each distinct point in EndPoints[f] forms a point interval

for each interval 2 on feature dimension f
for each class ¢
interval _class_count[f, i, ¢] =0

count_instances vfi3(f, TrainingSet);

for each interval 2 on feature dimension f
for each class ¢

. . interval _class_count iy C
interval_class_vote|f, i, ¢] = T =028 =C00y [f. 5, d]

class_count[c]
normalize interval _class_votelf, i, c];

/* such that 3" interval_class_vote[f, i, ¢]=1%*/
end.

Figure 4.19. Training phase in the VFI4 Algorithm.

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 66

fi are counted in this interval. When a new instance with value 0 for feature
f11s to be classified, class A will get a vote 0.8 for class A and 0.2 for class B
from feature f;. On the other hand, the same test instance will get a vote 0.5
for class A and 0.5 for class B in the VFI3 algorithm. Although the training
instances carry the information that all the instances of class A occurred on
value () of feature f7, the VFI3 algorithm somehow loses this and votes equally
for both classes. The VFI4 algorithm is designed to overcome this loss of
knowledge in the VFI3 algorithm.

The training process of the VFI4 algorithm is the same as that of the VFI3
algorithm except for the special situation illustrated by an example above. The
modified training for the VFI4 algorithm is shown in Figure 4.19. When an
end point p is both the lowest and highest points of a class, a point interval
with lower bound and upper bound equal to p is constructed. Then a range
interval between p and the next end point different than p is constructed. This
end point p becomes the upper bound for the left neighboring range interval
and the lower bound for the right neighboring range interval. To exclude the
training instances falling on p from both the right and the left range intervals,
the training instances falling on p are counted only for the point interval. While
counting the instances in training, if there exists a point interval for the value
being searched for, that point interval is returned by find_interval function
used in count_nstances_v fi3 procedure. Therefore, such an end point p is
excluded both from the left interval and from the right interval. Since the same
counting procedure used by the VFI3 algorithm is used in the VFI4 algorithm,
the other lower bounds that are not point intervals have the same treatment,
as they had in the VFI3 algorithm. As a summary, the VFI4 algorithm checks
for equal Towest and highest points to construct a point interval from such an

end point and excludes that point from the neighboring range intervals.

In the classification of a new instance, if the value of the instance on that
feature dimension is equal to a lower bound of a point interval, then the individ-
ual votes of that feature are simply taken from that point interval. Although
that value is also the lower bound of the next range interval, the votes are
taken from only the point interval if there is a point interval with that value.

This is again handled by the find_interval function, which returns the point

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 67

interval with lower bound equal to that value if a point interval with that lower
bound exists. When a test instance falls on the lower bound of a range interval
or inside an interval, the classification process is the same as that of the VFI3

algorithm.

The intervals constructed by the VFI4 algorithm from the sample training
dataset in Figure 4.5 are exactly the same as those constructed by the VFI3
algorithm, since there are not classes with equal lowest and highest points on
any feature dimension. The VFT4 algorithm differs from the VFI3 algorithm
only when there are end points on any feature dimension which are both lowest
and highest points for the same class. Such situations might be observed in

real-world datasets and for example it occurs in the Dermatology dataset.

4.2.5 The VFI5 Algorithm

The VFI5 algorithm is the final version of VFT algorithms that generalizes
the construction of point intervals to all end points. The VFI5 algorithm
constructs a point interval from each distinct end point and a range interval
between a pair of distinct end points excluding the end points. The training
algorithm for VFT5 is shown in Figure 4.20. The intervals along with their class
counts constructed from the sample training dataset in Figure 4.5 are shown in
Figure 4.21. The lower bounds of all intervals are now point intervals and there
are range intervals between those lower bounds exclude the lower bounds. For
example, the training instance of class A with f; value 4 is counted for point
interval 714 on f; dimension with lower and upper bound equal to 4, and the
instance of class A with f; value 3 is counted for range interval 713 on feature

fi with lower bound 2.

The classification process is the same as that of the VFIT algorithm. The
VFI5 algorithm finds the point intervals on linear feature dimensions by the
findanterval function. The point intervals on linear features are same as
those of the nominal features. Since the lower bound of a range interval is also
the lower bound of a point interval, find_nterval function returns the point
interval when the value of a test instance for a feature is equal to the lower

bound of an interval. Therefore, there is no decision required to take about

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 68

train(TrainingSet):
begin
for each feature f
for each class ¢
EndPoints|f] = FndPoints[f] U find_end_points(TrainingSet, f,¢);
sort(KndPoints[f]);

if fis linear
for each end point p in EndPoints[f]
form a point interval from end point p
form a range interval between p and the next endpoint#£ p
else /* fis nominal */
each distinct point in EndPoints[f] forms a point interval

for each interval 2 on feature dimension f
for each class ¢
interval _class_count[f, i, ¢] =0
count_instances(f, TrainingSet);
for each interval 2 on feature dimension f

for each class ¢
interval _class_count[f, 1, c]
class_count[c]

normalize interval _class_votelf, i, c];
/* such that 3" interval_class_vote[f, i, ¢]=1%*/

interval _class_votelf, i, ¢| =

end.

Figure 4.20. Training phase in the VFI5 Algorithm.

A0 Al Al Al A0 AO A0 A0 A0

B: 0 B: 0 B: 0 B: 0 B:0 Bl B: 2 B: 1 B: 0
| | | | fa
2 4 5 8

A 0 Al AO0O AO Al Al A0 A0 A0

B: 0 B:0O B:0O B'1 B: 1 B: 1 B: 0 B: 1 B: 0
| | | | fa
2 3 6 8

Figure 4.21. The constructed intervals by VFI5 with their class counts for the

sample dataset.

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 69

AO A1l Al Al A0) A0 A0 AO

B: O B: 0 B: O B: O B: 0 1 B: 1 B: 1 B: O

"11 I 13 I '1s "7 I "10 fa
2 4 t 8

A0 Al A0 AO A: 0. 57 A 0. 57 A 0 A O A 0

B0 BO BO B1 B: 0. 43 B:0.43 B0 B1 B: 0

''21 I 23 I 25 I 27 I 29 fo
2 3 6 8

Figure 4.22. The constructed intervals by VFI5 with their class votes for the
sample dataset.

the lower bounds as done in all other versions of VFT algorithms.

To illustrate the classification of the VFI5 algorithm on an example, let
us classify the same test example ¢+ = (5,6,7) also classified by other VFI
classifiers. This test example falls on point interval 774 with lower bound 5 on
feature dimension f; and on point interval 7,6 with lower bound 6 on feature
dimension f; shown with arrows in Figure 4.22. Since there are point intervals
on which both #; = 5 and 1, = 6 fall, the individual votes of features are taken

from the corresponding point intervals.

The point interval 716 of feature f; on which # = 5 falls votes equal to
interval class_vote| fi,116,A] = 0 and interval_class_vote[f,116,B] = 1 for
class A and class B respectively. Thus, the individual vote vector of f; is vy =
(0,1). If fi had been given the chance to make a prediction alone, it would have
predicted class B with certainty because B has received all the vote of feature f,
and class A has received none. On the feature dimension of f,, the point interval
726 on which ty = 6 falls has a vote equal to interval _class_vote[fi, 196, A] = 0.57
for class A and a vote equal to interval_class_vote[f, 126, B] = 0.43 for class B.
Thus, the individual vote vector of f; is vo = (0.57,0.43). If f; had been given
the chance to make a prediction, it would have predicted class A. Finally, the
individual votes of the two features are summed up correspondingly and total
vote vector is v = (0.57,1.43). The VFI5 algorithm votes 0.57 for class A and
1.43 for class B, so class B with the highest vote is predicted as the class of the

test example.

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 70

4.3 Characteristics of VFI Algorithms

In this section, the general properties of learning methods are presented in

order to characterize the VFT algorithms.

4.3.1 Knowledge Representation

Knowledge representation is one of the most important dimensions in classi-
fying machine learning techniques. Many machine learning systems acquire
knowledge in the form of rules. Another way to represent what is learned is
with decision trees as described in Chapter 2. Naive Bayesian classifier repre-
sents the learned concept with a set of conditional probabilities. On the other
hand, knowledge representation in exemplar-based learning models is sets of

representative instances [1, 2, 5] or hyperrectangles which represent generaliza-

tions [62, 63].

In Chapter 3, we presented a new knowledge representation scheme based
on feature projections. Generalization and specialization are made on the
basis of feature projections. This allows faster classification of test instances by
preventing the similarity computation to each training instance because feature
projections can be sorted for continuous valued features. One shortcoming of
this representation is that descriptions involving a conjunction between two or
more features cannot be represented. However, the prior research has shown
that this knowledge representation is quite powerful in the classification of
real-world tasks and does not cause any significant drop on the accuracy [32,
73, 8, 7]. All algorithms described in Chapter 3 represent the concept in some
generalized form of feature projections of the training instances. The CFP
algorithm [32] generalizes the projections of training instances in the form of
disjoint feature intervals (single-class) on each feature. The FII. algorithms
[7] also represent the concept with disjoint feature intervals on each feature.
The &-NNFP algorithm [8] uses feature projections of instances just as they
are on each feature dimension without any generalization, it only sorts the
projected values on each feature dimension in the training phase. The COFI

algorithm [73] generalizes the projections of instances of each class separately

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 71

and produces a set of overlapping feature intervals (multi-class) on each feature.

The VFT algorithms also acquire concept descriptions by using feature pro-
jection based knowledge representation. learned concept descriptions are in
the form of multi-class intervals. These intervals are able to represent more
than one class as in the case of overlapping feature intervals of COFI, but the
procedure to construct the intervals in the VFT algorithms is different than
the COFT algorithm. The number of intervals on a feature dimension in the
VFT algorithms does not depend on the number of training examples as it does
in other feature projection based learning algorithms. Instead, it depends on
the number of classes in the domain for linear features and on the number of

distinct values for nominal features.

4.3.2 Supervised Inductive Learning

We have defined supervised inductive learning (concept learning) in Chapter 1
as learning generalized descriptions from examples supplied by a teacher or an
environment. From a set of training instances described with a set of feature
values and labeled correctly with a class label among mutually disjoint classes,
the supervised inductive learning system learns a concept description which
will enable the system correctly classify new instances. VFT algorithms are
supervised inductive learning algorithms that take a set of preclassified train-
ing instances provided by a teacher as input and make generalizations on the
feature projections of these instances to construct the concept description in

the form of feature intervals.

4.3.3 Non-incremental (Batch) Learning

Inductive learning can be performed in two alternative ways: incremental or
non-incremental (batch) [55]. An incremental learning system processes each
instance one by one and aims at improving its internal model with each new
instance at each step. Incremental learning is the way humans learn, thus re-

searchers who explore the incremental approach are typically concerned with

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 72

developing plausible models of human learning. The inevitable deficiency of
this approach is that it is sensitive to the presentation order of the training
examples. On the other hand, non-incremental learning systems construct
concept descriptions after seeing all training instances to maximize the perfor-
mance of the learning system. But a non-incremental learning system might

also be sensitive to the presentation order of the instances.

Incremental variations of non-incremental algorithms can usually be cre-
ated and many incremental learning methods also have non-incremental coun-
terparts. For example, IB1 is an incremental variation for the Nearest Neighbor
algorithm and FII, algorithms are somewhat non-incremental variations of the

CFP algorithm with slight differences.

VFT algorithms are non-incremental, that is, all the training instances are
presented to the VFT algorithms before training. The construction of intervals
is unique for that training set, that is, they are independent of presentation
order of training instances. However, the concept description learned by some
learning algorithms might not be unique and change with the order of presen-

tation such as the CFP algorithm (see Chapter 3 for an example).

4.3.4 Domain Independence in Learning

In some learning methods, such as Explanation-Based Generalization (EBG),
considerable amount of domain specific knowledge is required to construct ex-
planations [19]. In EBG, some domain specific knowledge is applied to formu-
late valid generalizations from a single training example. The characteristic
common to these methods is their ability to explain why the training instance

is a member of the concept being learned.

An advantage of domain independence is that systems can be adapted to
new domains quickly without any extra domain knowledge. The CFP and
COFT algorithms use domain specific parameters. These parameters in the
CFP algorithm are A (feature weight-adjustment rate) and Dy (generalization
distances of features). In the COFI algorithm, the only domain dependent
parameter is ¢ (generalization ratio). The E-NNFP algorithm and the FIIL

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 73

algorithms do not use any domain specific parameters. Similarly, the VFI
algorithms also do not require any domain specific parameters, thus can be
quickly adapted to any domain from which a set of training instances are
drawn and presented to the VFI algorithms as input. On the other hand,
feature weights are domain specific knowledge and a feature weight learning

method can be adapted to all feature projection based learning algorithms.

4.3.5 Multi-concept Learning

Many early concept learning algorithms have been developed for exactly one
concept and the instances are either instances belonging to the concept (pos-
itive) or not belonging to the concept (negative). Later, many learning algo-
rithms have been developed that induce multi-concept descriptions from ex-
amples. Multi-concept learning is more general than single-concept learning,
since the descriptions for any number of concepts can be learned. The VFT al-
gorithms as well as all the other algorithms mentioned in this thesis have been
designed for learning multi-concept descriptions. The focus of most classifica-
tion algorithms is multi-concept learning of disjoint concepts, that is, instances
do not belong to more than one class. But in some other multi-concept learn-
ing tasks, instances may belong to more than one class, that is classifications
of instances are possibly overlapping. VFI algorithms are capable of learning

multi-concept descriptions instead of only single-concept descriptions.

4.3.6 Properties of Feature Values

The representation of the input training instances to a classification system is
described at the beginning of Chapter 2. The instances are described with a
vector of feature values and a class (concept) label which they belong to. The
features might either be nominal (discrete, categorical) or linear (continuous).
The VFT algorithms can handle both linear and nominal features. Linear fea-
tures may take on values from —oo to oo and all possible values are linearly

ordered. Nominal features take on discrete feature values, for example, color of

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 74

; Information about the Hungarian dataset
Features | nnl I nnl nl nnn
Casses 01

Figure 4.23. An example for the information provided to the FII. algorithms.

an object is a nominal feature, or binary values such as answers to yes/no ques-
tions are also nominal feature values. The only difference in handling linear
features and nominal features is that only point intervals are constructed for
nominal features whereas mostly range intervals except some point intervals
constructed in the VFT4 and the VFI5 algorithms are constructed for linear

features.

4.3.7 Handling Missing (Unknown) Feature Values

One of the most important advantages of the VFT algorithms is the natural
handling of missing feature values. There is no need to fill in missing values
with some arbitrary value in the VFI algorithms. This affects neither the
construction of the feature intervals in training nor the voting mechanism used
in the classification process. In addition, this is a natural approach because
in real life if nothing is known about a feature, it can be ignored rather than

assigning an average or expected value.

4.4 Implementation and User Interface

The VFT algorithms have been written in C language and implemented in Unix
environment. The input to the VFT algorithms is a file of training instances, a
file of test instances, and an information file. Figure 4.23 shows the information
file given to the VFI algorithms as input for the Hungarian dataset. A line
starting with a “;” indicates a comment line, a line starting with “Features”

tells the number and types either linear (1) or nominal (n) of features,

and a line starting with “Classes” tells all the possible class names that may

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 75

appear in the whole dataset. The information file can also have an additional
line starting with “Weights”, in which the weights of the features are given.
The file of training instances has a “.train” extension and the instances in this
file i1s used to construct concept descriptions. The file of test instances has a
“.test” extension and the instances in this file are given as unseen instances to
the VFI classifiers and their actual class label is compared with the class label

predicted by the VFT classifiers.

The VFT algorithms can be run from the command line as well as using the
user interface that we have designed and implemented by using the Motif user-
interface toolkit. The user can select a dataset from the “Open” menu item.
Then, with an initial training ratio training and testing datasets are formed
from the dataset file having an extension “.data”. The user can also change the
default training ratio by selecting the menu item “Train Ratio”. The lowest
and highest points of each class on each feature dimension are displayed on
each feature dimension assigning a different color to each class label on the
screen. Usage of colors provides users to better visualize the predictions made
by individual features. User can proceed one by one on the test instances
by performing classification task with the “NEXT” button. Also, the user
can choose to classify all test instances at once with the “ALL” button. It is
also possible to see the previous test instances and their classifications with
the “PREVIOUS” button. On each feature dimension, the point where each
corresponding feature value of the current test instance falls is shown. The
individual votes of each feature and total votes given to each class along with
the final prediction are shown for each test instance. Classification accuracy
and no of correct classifications after classifying each test instance are updated.
The constructed intervals can be saved into a text file from the menu with
the corresponding lower bounds and class counts for each class. In order to
illustrate how our user interface looks like, two example on the Dermatology

and Arrhythmia datasets are shown in Figures 4.24 and 4.25 respectively.

76

CLASSIFICATION BY VOTING FEATURE INTERVALS

CHAPTER 4.

& T I
— — — - =
aotE == aoto 23'0 nonte T 92
00*E 000 i
o0TE ol 0s*n
o0 [olid] 9z’0n
notE 00to Twoto
00*E 00%0 Gz o
ante Aot o 0ztn onto T =
00tE 000 0
00" = r 0070 000
e =
aotE 0oto Q070
- < - 000
007E = 0070 b
00*E = 000 0070
onte 000 oo*T o0tg T e
e
00"E 000 AN
O0TE el EL°0
n0tE [su] m._”.o
o0 [olad] ET°0
00*E 000
anTe o0Tn L0%0 ooto T e
00*E 000
00%E — 00%0 000
b i .
antE T 00T Qoo
g . [iTehdv}
00T - T 000 Qb
00" E 00 6070
onte o0to oot T [ele = T e
-
00*E 000
00"E e 0070 BF*0
o b
Lulehg=S T o0t L i
% - = <ol
00* % = T oon caid
00*E = 000
[sTo = anto R0 onts T Te
==
00tE 000 0
. 00"E = 00°0 0e*0
- a0*E T 00t0 aTo
e - o0t
O07TE — T 0070 o
OO E ™ 000 00’0
— onte onto o0t T ootE T g
&4 e
STHANALNI S3L0A-FHNLuaSd A LHOI3M 3unisad
_ 17w _
LEYF ZFTF G9°% 46T GGUTT $S3L0A 5 F £ o T S8SSE[] 0 SJ010] e ——
Z 00°00T AJHENI0Y T INOILIIOTHd g isasse(] 0 ON f4 1SUEISEL 4o oN _ < 13N _.MDD_.}.mm.n_ =
F4 31329000 Jo O T 55472 +E fERUn3eaq 4o Oy ZEZ fSJ4EUTEd] 40 Of
¥4 10N 3dMURI RBojojessap INIUWOT _M_

dizH =113

=

’

Figure 4.24. The visualization of the feature intervals constructed by the VFI

algorithms for the Dermatology dataset by our user interface.

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 77

Em 5
s
(]
= =
-8 =1 = =4 = =
e e - o = i =4 =4
+ + +
b=t L w fre] [} o =+
oo H — [l = o =t}
o
T s
g =
o O
b
4+ &
=R
=
o o
= T
-t
]
4
o
-
=
i) @
@ +
- 1
ra
=]
=t
b A
2 d
S ;
= =
+e a4
o i WS
= =l =
&
u [
e O e
T w = | =
E 0 =5 4
T T W = *
= 0 oE o = 4
b oo =
m
r oo
=T}
~
.
W
oo
5 B F
LI
T -
e T
TR S
[=I=T
oo
= Z
o E
-
4 0 - r
= &, -
T @
= ‘(0‘ 4+ 5 - oy
S 2 doR 4 4 3 ERRRRREY 3444
85O = o o o o o
o4 [l b= b=1 =1 =1 =1
+ + + + +
2 8%s = = = = = =
= = h
] =
4 4 L
SR =}
o L=} a o
= = O E = = w . o=] —o = T e
= lEE-8 SEFLE S EhEe Selsm s, dn 288
:I’ =2 it =2 g3 = =l = wlut = S =
w
— o
2lle=s R g P et i} B =1 el e el oo
ch= SHRCHS Seom M Rdommees cRonenes of
" [| =i=t=s SoOooTo SooCoono Sooooos fetaratatatutal =t
i
b
i
= w
— =1 = =3 =3 [=3
= & = =1 =1 = =1
=) = o =1 ==} =4 L= =1
w (=) o
i
a5
= &
[} =t — - - - - —
: s [
_Q o =
o g
zl i o
o =
e
o =
b i E
— e 7] w I~ o o =1
w| o =1 — — — - [==
bl

Figure 4.25. The visualization of the feature intervals constructed by the VFI
algorithms for the Arrhythmia dataset by our user interface.

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 78

4.5 Summary

This chapter introduced several versions of the VFT classification algorithms.
VFT algorithms use the feature projection based knowledge representation
scheme and a voting scheme in classification similar to those used in the CFP,
COFI, --NNFP, and FII. algorithms described in Chapter 3. Learning in the
VFTI algorithms is achieved by constructing feature intervals on each feature
dimension and classification is performed by a voting scheme. VFI algorithms
consider each feature separately as in the case of Naive Bayesian Classifier as

well as all other feature projection based methods.

Since each feature is processed separately, the missing feature values that
may appear both in the training and test instances are simply ignored. In other
classification algorithms, such as decision tree inductive learning algorithms,
the missing values cause problems [57]. This problem has been overcome by
simply omitting the feature with the missing value in the VFT algorithms.
This separate consideration of features enable fast training and classification
times, which will be analyzed in the following chapter. Another advantage of
the VFT algorithms is that they can make a general classification returning a
probability distribution over all classes instead of a categorical classification
[45]. Also note that the VFT algorithms as well as other feature projection
based methods in particular, are applicable to concepts where each feature can
be used in the classification of the concept independently. One might think
that this requirement may limit the applicability of the VFI algorithms, since
in some domains the features might be dependent on each other. Holte has
pointed out that the most datasets in the UCI repository are such that, for
classification, their features can be considered independently of each other [36].
Also Kononenko claimed that in the data used by human experts there are no

strong dependencies between features because features are properly isolated

and defined [44].

The versions of the VFT algorithms described in this chapter assume that
all features are equally relevant and thus should have equal voting power in
classification. But this might not be the case in real-world datasets, therefore

in Chapter 6, I will explain how we integrated a feature weight learning method

CHAPTER 4. CLASSTFICATION BY VOTING FEATURE INTERVALS 79

which assigns the optimum voting power to the features in order to improve

the performance of the VFI classifiers.

Chapter 5

Evaluation of the VFI
Algorithms

In this chapter, both complexity analyses and empirical evaluations of the VFI
algorithms are given. First, training and classification time complexities are
computed. Next, the empirical evaluations are presented on some real-world
datasets for comparison with several other classification algorithms described
in this thesis. Later, the experiments on artificially generated datasets are dis-
cussed. FExperiments on artificially generated datasets are designed to deter-
mine the behavior of the VFT algorithms on irrelevant features, noisy instances

and missing feature values.

5.1 Complexity Analysis

In this section, the VFI algorithms are analyzed in terms of space and time
complexities. Time complexity analyses are presented for training process and
classification of single test instance. In this section, m represents the number

of training instances, d the number of features, and & the number of classes.

30

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS 81

5.1.1 Space Complexity Analysis

The VFIT algorithm [22] represents a concept description by feature intervals
on each feature dimension. Fach linear feature dimension has at most 2k + 1
intervals. The maximum number of intervals that a linear feature can have is
2k+1 and occurs when all end points are distinct. If all end points are distinct,
there are 2k end points because each class has one lowest and one highest point,
and 2k end points makes up 2k+1 intervals. Fach interval requires k+1 memory
units, one for the lower bound of the interval and k for the votes of each class.
So each linear feature dimension requires (2k 4 1) - (k+ 1) space, and the total
space requirement of the VFT1 algorithm is d-(2k+1)-(k+1) which is O(d-k?).
The other versions of VFT have different number of intervals than VFI1 does as
shown in Table 5.1. VFI2 has at most 2k intervals because there are 2k —1 mid
points of 2k end points, therefore VFI2 requires d- (2k) - (k4 1) memory units.
VFI3 has at most 2k 4+ 1 intervals as in VFI1, since VFI3 is exactly the same
in determining the boundaries of intervals. On the other hand, VFI4 might
have point intervals in addition to the range intervals constructed as in VFI3.
However, when a point interval is constructed from an end point this means
that the lowest and highest points of a class are equal. If there exists a point
interval on a linear feature dimension, the maximum number of distinct end
points decreases by 1 while the number of intervals increases by 1. If the lowest
and highest points of each class are equal which will cause k point intervals
(maximum number of point intervals on a linear fea,ture) and k£ 4+ 1 range
intervals to be constructed. Hence, the total number of intervals constructed
by VFI4 in the extreme case is 2k + 1. Since the maximum number of intervals
in both VFI3 and VFI4 is same as that of VFI1, the memory required is
d-(2k+1)-(k+1). Lastly, VFI5 has at most 4k + 1 intervals because it keeps
an extra point interval for each 2k end points in addition to the range intervals
between these end points. VFI5 requires d - (4k 4+ 1) - (K + 1) memory units.

Nevertheless, the asymptotic space requirement of all is O(d - k?).

The above complexity analysis assumed that all features are linear, but
there might be nominal features in the domain. Since point intervals are con-
structed from all distinct values of a nominal feature, the number of intervals

is equal to the number of distinct values that nominal feature can take.

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS 82

Table 5.1. The maximum number of intervals on a linear feature dimension for

all VFT classifiers.

Classifier Maximum Number of Intervals
VFTI 2k + 1

VFI2 2k

VFI3 2k + 1

VFEI4 2k + 1

VFIH 4k +1

The space complexities of other classification algorithms are also given.
The space requirement of the FII, algorithms is O(7 - d), where 7 is the average
number of intervals constructed on a feature dimension [7]. Since the maximum
value ¢ can take is m, this space complexity is at worst O(m - d) but is usually
less than O(m-d). The space requirement of the COFT algorithm and the CFP
algorithm is O(7 - d), where 7 is the number of overlapping feature intervals
in the COFT algorithm and disjoint segments in the CFP algorithm [73, T1].
Similarly, their space complexity is at worst O(m - d) but is usually less than

O(m - d).

The space complexity of both 1-NN and 1-NNFP algorithms is O(m - d),
since all the training instances are stored in memory. In NBCN, a mean and
variance for the training instances of each class on each linear feature is kept in
memory, which requires O(d - k) memory units assuming that all features are
linear. However, a nominal feature requires O(k - v) memory units because the
frequency of each class is kept for each distinct value of that nominal feature,

where v is the number of distinct values of that nominal feature.

5.1.2 Time Complexity of Training

In the training phase of the VFI1 algorithm, the end points on each feature
dimension are found and sorted. Since there are 2k end points and d features,
this requires O(d - k -1g k) time. After sorting the end points, for each training
instance the corresponding interval on each feature dimension is searched and

the counts of corresponding classes are incremented. Since there are m training

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS 83

instances and at most 2k + 1 intervals on each feature dimension, this requires
m - d - (Qk +]) time units at worst. The total time requirement becomes
O(d-k-lgk+m-d-k)=O(m-d- k). Hence, the training time of VFI increases
with the number of features and classes, and the size of the dataset. The other
versions of VFT might have different maximum number of intervals than VFTI
does as shown in Table 5.1. However, this does not change the asymptotic
upper bound time complexity of O(m - d - k). VFI4 checks all the end points
to find out whether to construct point intervals, but this check also does not

change the asymptotic training time complexity.

The training time complexity of the FII. algorithms is O(d - m - 1gm) [7].
The training time complexity of the COFT algorithm is O(m? - d) at worst [73].
The training time complexity of the 1-NNFP algorithm is O(d - m - lgm) [8].
The training time complexity of the well-known 1-NN algorithm is O(m - d)
because of the normalization of all feature values into a same range. Since all
the training instances of each class are processed to compute the mean and

variance on each feature, the training time complexity of the NBCN algorithm

is O(m -d- k).

5.1.3 Time Complexity of a Single Classification

In the classification phase of the VFI1 algorithm, for each feature, the interval
that the corresponding feature value of the test example falls into, is searched
and the individual votes of each feature is summed up to get the total votes.
Since there are at most 2k 4+ 1 intervals on each feature dimension, the clas-
sification phase takes at worst case d - (2k + 1) time units which is O(d - k).
Since there are at most 2k intervals on each feature in the VFI12 algorithm, the
classification in VFI2 requires d - 2k time units which is asymptotically again
O(d - k). Although the types of the interval boundaries are considered during
classification in both the VFI3 and VFI4 algorithms, this does not affect the
asymptotic time complexity. Therefore, the classification time complexity of
both VFI3 and VFI4 is also O(d - k). The VFI5 algorithm has 4k + 1 intervals
at most and the classification requires d - (4k +]) time units which is again

O(d - k). Hence, a single classification time of all VFI classifiers increases with

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS 84

the number of features and classes.

The classification time complexity of a single test instance in the FII. al-
gorithms is O(d - 1gm) [7]. The classification time of the COFT algorithm is
O(m - d) at worst [73]. The classification time complexity in the 1-NNFP is
O(dlgm)) because the time complexity to find the nearest neighbor among
sorted values of each feature dimension is O(lgm) [8]. On the other hand, in
the well-known 1-NN algorithm, the classification of an instance requires the
computation of its distance to m training instances on d dimensions. Time
complexity of computing the distance between two instances is O(d), so com-
puting the distance to m training instances is O(m - d). To find the nearest
neighbor, which has the minimum distance to the new instance, among m
instances is O(m). Therefore, the classification time complexity of a single
instance in the 1-NN algorithm is O(m - d. Since the conditional probability
that a given test instance belongs to a class given a feature value is directly
computed from the corresponding mean and variance of the normal distribu-
tion of training instances of that class on that feature, the classification time

complexity of a single test instance in NBCN is O(d - k).

5.2 Empirical Evaluation of the VFI Classi-
fiers on Real-World Datasets

Empirical evaluation is clearly essential to the process of designing and im-
plementing new algorithms. In this section empirical evaluation of the VFI
algorithms compared with C4.5', NBCN, CFP?, COFI*, 1-NN, 1-NNFP, and
F14* algorithms on real-world datasets which are widely used by machine learn-
ing researchers and provided by the machine learning group at the University
of California at Irvine [51]. Since experimental science is concerned with data

that occurs in real world, machine learning research on classification algorithms

'Tn all the experiments, (4.5 was run with default settings and pruned results are
reported.

?In all the experiments, CFP was run with Dy = 0.1 and A = 0.

3n all the experiments, COFT was run with ¢ = 0.1.

4F14 is chosen to represent the FIL algorithms.

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS 85

are usually compared on these commonly used datasets. An overview of the

datasets is shown in Table A.1.

The VFT classifiers are also applied on two medical datasets compiled during
this thesis [23, 33]. In several medical domains the inductive learning systems
were actually applied, for example, two classification systems are used in local-
ization of primary tumor, prognostics of recurrence of breast cancer, diagnosis
of thyroid diseases, and rheumatology [44]. The domain for one of our datasets,
which is called as Dermatology in this thesis, is for Differential Diagnosis of
Frythemato-Squamous Diseases (see Appendix for more information). The
problem in the other domain is to distinguish between the presence and type
of cardiac arrhythmia and to classify it in one of the 16 groups (see Appendix)
and the compiled dataset is called Arrhythmia in this thesis. The datasets
consist of a set of descriptions of patients with known diagnoses predicted by a
medical expert. After a concept description is learned by the learning systems,

a diagnosis for a new patient is predicted using the learned description.

We will also evaluate the VFT algorithms on artificial datasets in order
to observe the effect of irrelevant features, noise, and unknown values on the
classification accuracy. The next section describes the methodologies used in
the experiments. Section 5.2.2 presents the performance of the VFT algorithms
on real-world datasets. In Section 5.2.3, some experiments are described on

artificial datasets.

5.2.1 Testing Methodology

This section briefly describes the methodologies used in the empirical evalu-
ations of machine learning algorithms. Improved performance is the major
aim of learning algorithms [41]. These various performance measures are the
natural dependent variables for machine learning experiments, just as they are
for studies of human learning. The accuracy and efficiency of an algorithm
can be measured by various performance measures. There are three impor-
tant measures of evaluation for a learning algorithm: accuracy, time, and space

complexities.

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS 86

cross validation (Classifier, DataSet, N)
begin
divide the DataSet into N folds
repeat N times
TestSet = a fold that hasn’t been used for test yet
TrammSet = DataSet — TestSet
accuracy = Classi fier(TrainSet,TestSet)
return average of N accuracies
end.

Figure 5.1. The algorithm for N fold cross validation.

For supervised concept learning (classification) tasks, the most commonly
used metric is the percentage of correctly classified test instances over all test
instances. This metric cannot be used for unsupervised learning tasks like
conceptual clustering, but this measure can be generalized as the average ability
to predict attribute values [26]. Accuracy of an algorithm is a measure of
correct classifications on a test set of unseen instances. There are several
ways of measuring the accuracy of an algorithm, in the literature the common

techniques are cross-validation, leave-one-out and average of randomized runs.

N-fold Cross-Validation: In Figure 5.1, the algorithm for N-fold Cross-
Validation is shown. In this technique, a dataset is partitioned into N mutually
disjoint subsets with the same cardinality or in a way that the cardinalities
differ at most by 1. The N — 1 of these sets are used as the training set, and
the remaining one is used as the test set. This process is repeated for N times,
once for each subset being the test set. Classification accuracy is measured as
the average accuracy on all test sets. The union of the all test sets is equal to
the whole dataset. Cross-validation ensures that the training and test sets are

disjoint.

Leave-one-out: This technique is a special case of N-fold cross-validation
where N = m. That is, for a dataset containing m instances, training set
contains m — 1 instances whereas test set contains only 1 instance. Then, this

is repeated for all instances being test instance each time leading to m-fold

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS 87

cross-validation. It is an elegant and straightforward technique for estimating
classifier error rates. Evidence for the superiority of the leave-one-out approach
is documented in the literature [25, 46]. While leave-one-out can be preferred

for small datasets, it is computationally expensive for large datasets [39].

Average of Randomized Runs: In this method, the algorithm is tested over
randomly selected training and testing sets. The important point is that train-
ing and test sets must be disjoint. The test is repeated for a fixed number of
times. The classification accuracy is determined as the average accuracy across

all trials.

In the previous section, we have computed the time and space complex-
ities of the VFT algorithms. In the following subsection, the performance of
the VFT algorithms will be given in terms of their classification accuracies. In
order to measure the classification accuracy of an algorithm on a dataset, first
the dataset is shuffled with a random seed such that the classes are equally dis-
tributed and 10-fold cross-validation is applied on this shuffled dataset 10 times,
each time using a different seed. Then the average of these 10 10-fold cross-
validation accuracies makes up the classification accuracy that we report as
the accuracy measurement of an algorithm in this thesis. Our cross-validation
program provides the same disjoint training and testing sets each time for each
algorithm in order to compare the results under same conditions. Disjoint
training and testing sets make sure that unseen test instances are classified
to measure the accuracy of algorithms. Repeating the cross-validation several
times on different shuffles of the dataset enables the performance measurement,

to be more robust.

5.2.2 Experiments on Real-World Datasets

In order to evaluate the VFT algorithms empirically, we have performed some
experiments on real-world datasets from the collection of UCI-Repository [51]
and two new real-world datasets compiled during this thesis. These domains
help us to compare the VFI algorithms with other classification algorithms as
well as demonstrating the applicability of the VFI algorithms to real-world

problems. Detailed information about these real-world datasets are given in

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS 88

Table 5.2. Classification accuracy (%) of feature projection based methods
CFP, COFI, 1-NNFP, FI4, VFI1, VFI2, VFI3, VFI4, VFI5 obtained by

averaging 10 10-fold cross-validation results on eighteen real-world datasets.

Tnducer: CFP COFT 1-NNFP FT4 VFT VFI2 VFI3 VFI4 VFT5
Arrhythmia 54.23 55.15 50.98 57.79 52.15 48.87 52.54 45.8 61.49
Becancerw 95.64 56.08 95.01 97.17 96.2 95.67 88.48 88.48 95.08
Cleveland 74.08 82.32 68.24 79.07 82.09 83.35 81.63 81.63 81.86
Dermatology 50.24 94.56 4718 59.46 95.98 96.14 93.34 96.58 96.64
Diabetes 66.12 63.94 66.17 68.09 56.55 66.64 64.33 64.33 54.73
Glass 54.54 50.74 53.79 42.52 57.3 55.51 55.38 54.95 58.81
Horse 66.47 77.48 68.02 75.33 78.13 76.8 77.99 77.99 78.05
Hungarian 68.75 83.57 71.88 76.78 83.43 84.31 82.85 82.85 85.23
Tonosphere 87.29 64.12 87.14 88.37 84.55 85.92 90.48 90.57 81.07
Tris 89.4 91.33 87.0 92.13 95.93 94.6 93.8 93.8 96.0
Tiver 5817 52.62 54.31 61.42 59.75 56.58 58.18 58.18 59.24
Musk 72.62 57.32 76.49 81.94 75.48 72.06 75.29 75.29 76.97
New-thyroid 87.61 92.44 89.44 87.22 93.75 94.94 93.56 93.56 92.63
Page-blocks 90.06 91.22 90.86 90.64 87.18 86.41 86.75 86.75 88.02
Segmentation | 77.27 83.72 76.18 78.53 774 76.9 77.68 77.68 77.03
Sonar 68.02 65.07 63.7 65.62 59.64 68.06 57.98 57.98 58.75
Vehicle 56.73 36.78 51.36 58.74 52.91 59.16 53.72 53.72 57.39
Wine 87.97 91.5 85.05 89.15 97.13 95.38 96.34 96.34 96.4
Average: 72.51 71.66 71.27 74.99 76.97 77.63 76.69 76.47 77.52
Appendix A.

Since the motivation of developing the VFI classifiers comes from other
feature projection based methods, we first compare the classification accuracies
of the VFT algorithms with those of other feature projection based methods
described in Chapter 3. The classification accuracies of the VFI classifiers
compared with those of the CFP, the COFI, the I-NNFP, and the F14 classifiers
obtained by averaging 10 10-fold cross-validation results on eighteen real-world
datasets are given in Table 5.2. The highest classification accuracy for each
dataset is shown in bold. The results show that it is usually one of the VFI
classifiers that has the highest accuracy among all other feature projection
based methods. These experiments empirically show that VFI classifiers are
the best performing feature projection based technique in terms of classification
accuracy. Fach time a different version might achieve the highest accuracy,
that’s why we present all the versions in this thesis. Although the accuracies
of different versions of VFI on a given dataset are usually close to each other,
it might differ on a few datasets. At the bottom of the table, the average of

the accuracies of each classifier on all datasets is also shown by “Average”,

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS 89

Table 5.3. Classification accuracy (%) of VFI1, VFI2, VFI3, VFI4, VFI5,
NBCN, 1-NN, and C4.5 obtained by averaging 10 10-fold cross-validation re-

sults on eighteen real-world datasets.

Inducer: VFI1T VFI2 VFI3 VFI4 VFI5 1-NN NBCN (4.5

Arrhythmia 52.15 48.87 5254 45.8 61.49 5H3.93 50.78 66.99

Beancerw 96.2 95.67 88.48 88.48 95.08 95.28 96.01 94.99
Cleveland 82.09 83.35 81.63 81.63 &1.86 77.34 83.83 7485
Dermatology | 95.98 96.14 93.34 96.58 96.64 95.63 87.47 94.68
Diabetes 56.65 66.64 64.33 64.33 H4.73 T70.46 7Hh43 7415
Glass 7.3 5H.81 5538 H4.95 H881 69.63 46.33 69.25
Horse 7813 76.8 77.99 7799 78.05 79.09 7804 8542

Hungarian 83.43 84.31 82.85 82.85 83.23 T76.52 8413 79.29
Tonosphere 84.55 85.92 9048 90.57 81.07 86.79 87.46 89.74

Tris 9593 946 938 93.8 96.0 95.26 9539 93.72
Liver 59.75 5H56.58 BHEI18 5818 H9.24 62.51 56.14 66.37
Musk 7Hh48 T72.06 7529 7529 T76.97 83.39 72.64 8291

New-thyroid 93.75 94.94 93.56 93.56 92.63 96.85 96.35 92.73
Page-blocks 87.18 86.41 86.75 86.75 8&8.02 96.04 90.16 96.93
Segmentation | 77.4 76.9 77.68 7T7.68 T7.03 97.22 79.72 96.99

Sonar 59.64 68.06 5H7.98 5H7.98 BH8TH 86.54 67.85 T73.45
Vehicle 52.91 59.16 53.72 58372 5H57.39 69.74 4547 72.7
Wine 97.13 95.38 96.34 96.34 96.4 95.08 9746 93.78
Average: 76.97 T7.63 T76.69 7647 T7.52 82.74 77.23 83.27

and these average accuracies also show that VFT classifiers achieve better than

other feature projection based methods on the average.

Next, the classification accuracies of VFT classifiers compared with those of
the NBCN, the 1-NN, and the C4.5 algorithms obtained by averaging 10 10-fold
cross-validation results on eighteen real-world datasets are given in Table 5.3.
The experiments show that the highest average accuracy results are those of
4.5 followed by 1-NN. VFT classifiers are outperformed by C4.5 and 1-NN
significantly on only one-third of all the datasets. On seven of the datasets,
which is nearly one-third of all the datasets, VFI classifiers achieve better
than both C4.5 and 1-NN. C4.5 and 1-NN are the state-of-the-art classification
algorithms in machine learning and differ from all the other algorithms in
this thesis that they do not consider each feature separately. The separate
consideration of features is common in all the feature projection based methods

and the Naive Bayesian Classifier, which is also a classical classifier. When we

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS 90

Table 5.4. Average training running times (msec.) of CFP, COFI, 1-NNFP,
FI4, VET1, NBCN, and 1-NN on a SUN Sparc 20/61 workstation. Training is

done with 9/10 instances of the whole dataset.

Inducer: CFP COFI 1-NNFP F14 VFI1 NBCN 1-NN

Arrhythmia 7461.20 282.00 1453.80 2261.94 829.98 764.78 90.64

Beancerw 173.00 43.27 146.02 154.93 19.74 11.84 5.15
Cleveland 111.93 2117 82.32 69.73 11.01 60.63 2.75
Dermatology 3h8.73 39.84 272.13 202.07 53.50 57.25 8.58
Diabetes 274.94 48.69 7747 113.96 18.67 11.06 5.00
GGlass 82.89 14.84 19.30 31.04 11.73 12.73 1.19
Horse 171.00 29.26 342.68 331.09 18.71 105.25 5.45
Hungarian 88.89 19.47 195.62 195.53 9.98 44.06 2.36
Tonosphere 535.00 40.63 114.68 192.21 42.59 29.23 8.31
Tris 19.35 8.53 5.03 7.82 3.50 5.12 0.48
Taver 7456 21.30 20.83 27.10 7.25 6.69 1.60
Musk 4762.64 174.86 861.63 1184.50 266.00 151.65 56.40
New-thyroid 31.54 1254 9.28 48.06 5.01 5.74 0.80

Page-blocks 5349.40 338.94 1208.66 1100.16 244.55 64.34 93.39
Segmentation | 12795.00 171.47 860.20 1291.16 200.00 61.44 55.26

Sonar 624.84 40.74 113.48 209.00 50.60 43.06 7.13
Vehicle 901.00 61.26 202.28 205.00 54.24 27.93 12.58
Wine 83.34 12.54 20.32 35.08 11.14 12.17 1.52
Average: 1883.29 76.74 333.65 425.58 103.23 81.94 19.92

compare the accuracies of VFI classifiers with those of NBCON, we observe
that VFI classifiers outperform NBCN on most of the datasets. The average
accuracies of NBCN and the VFI classifiers are approximately equal to each

other which shows that VFT classifiers achieve comparably with NBCN.

Although NBCN and VFT classifiers lose in classification accuracy on some
datasets compared to C4.5 and 1-NN, they provide much faster classification
running times with only small increases in training times. To show this empiri-
cally, the average training and classification running times of all algorithms are
shown in Table 5.4 and Table 5.5 respectively. In these tables, we show the FI14
algorithm as representative for the FII. algorithms and VFI1 as representative
for the VFT algorithms since the training times of all the versions are almost
equal. On the average, the fastest in training is the 1-NN because it is totally
a lazy learner and it does not process the input examples. The COFI, NBCN,

and VFIT algorithms go beyond this lazy learning and learns some concept

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS 91

Table 5.5. Average classification running times (msec.) of CFP, COFI,
I-NNFP, FI4, VFI1, NBCN, and 1-NN on a SUN Sparc 20/61 workstation.
Classification is done with 1/10 instances of the whole dataset and 0 msec.
means less than 0.1 msec.

Inducer: CFP COFI 1-NNFP F14 VFI1 NBCN 1-NN

Arrhythmia 356.00 193.06 101.00 41.31 12270 689.68 5478.24

Beancerw 4.10 4.14 1.78 1.54 1.83 6.56 773.05
Cleveland 2.76 2.06 1.03 0.87 1.01 2.99 156.38
Dermatology 6.91 9.37 3.93 2.20 4.90 33.15 514.28
Diabetes 11.71 4.33 499 237 1.76 6.35 832.23
Glass 3.56 1.97 1.62 0.66 0.82 6.26 63.19
Horse 3.51 3.03 2.00 1.36 1.71 4.35 327.00
Hungarian 2.34 1.94 1.00 0.87 0.96 2.58 144.73
Tonosphere 22.11 4.43 15.94 456 3.36 11.8 458.58
Tris 0.66 0.83 0.00 0.17 0.20 1.50 19.60
Liver 3.09 1.70 1.07 0.50 0.74 2.40 137.20
Musk 237.00 24.33 96.40 35.56 33.10 73.98 3561.00
New-thyroid 1.16 1.17 0.30 0.50 0.38 2.27 46.03

Page-blocks 297.08 46.29 85.16 2459 2259 125.35 5B5H784.00
Segmentation | 875.45 35.70 7310 20.36 21.91 141.00 13688.30

Sonar 26.57 3.80 19.02 5.66 4.00 12.72 258.47
Vehicle 35.36 9.19 10.34 4.58 5.55 28.60 1667.03
Wine 2.81 1.46 2.08 0.81 0.87 3.74 54.51
Average: 104.12 19.38 23.38 8.25 12.68 64.18 4664.65

descriptions in less than 0.1 seconds. The 1-NNFP and FI4 algorithms are 3
and 4 times slower than VFI1 but they still learn their concept descriptions
in less than half a second. The CFP algorithm is the slowest in learning its
concept description. If we look at the individual training times, wee see that
CFP 1is slower on datasets with either large number of instances or features

than it is on small datasets and/or datasets with small number of features.

When a classifier such as 1-NN is totally lazy in learning, everything is
left to classification process that causes the classifier to be enormously slow in
classification, compared to all feature projection based learning methods and
the NBCN algorithm. The average classification time of the 1-NN algorithm is
388 times more than the VFI1 algorithm as shown in Table 5.5. This empir-
ical result is supported by the complexity analyses in Section 5.1.3 where the
complexity of classifying a single instance in VFI1 is in O(d - k) whereas the

complexity of classifying a single instance in 1-NN is in O(m - d. All feature

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS 92

20000

® O VFIl
—H CFP
<—<] COFI
1—= 1-NNFP
C—oO Fl4
AS—A 1-NN
V—~v NBCN

10000

Average Training Time (msec.)

500 2000 4000 6000 8000 10000
Size of Whole Dataset

Figure 5.2. Average training time of all classifiers on datasets with increasing
number of instances. 9/10 of the whole dataset is used in training.

projection based learning methods are very fast in classification which is a re-
sult of this knowledge representation scheme. However, the CFP algorithm is

a little slower in classification than the others as in the case of training.

When we compare the average classification time of our VFT1 classifier with
that of the NBCN classifier, we observe that VFI1 is 5 times faster than NBCN.
Naive Bayesian Classifiers are fast classical classifiers, and Kononenko pointed
out that induction of decision trees is relatively slow as compared to Naive
Bayesian classifier [44]. Since VFI1 requires approximately equal training time
and faster classification time compared to the Naive Bayesian classifier, VFT1

is also faster than decision tree inducers.

In order to see the effect of the size of the dataset in running times of the
classifiers, I have run all the classifiers on datasets with increasing number of
instances. The effect of the data size on the average training time is shown in
Figure 5.2. The 1-NNFP and FI4 algorithms are the ones that suffer mostly
with increasing data size. The COFT algorithm shows a smooth increase and all

the others are not affected much. The VFT1 algorithm is used to represent the

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS

400.0

300.0

93

o—9 VFI1

10—H VFI2

&—< VFI3
/s~—A VFI4
<+—=<]VFI5

200.0

100.0

Average Training Time (msec.)

= L L L L
500 2000 4000 6000 8000 10000
Size of Whole Dataset

Figure 5.3. Average training time of all VFT versions on datasets with increas-
ing number of instances. 9/10 of the whole dataset is used in training.

VFT algorithms, but a further comparison of the training times with increasing

data size of all versions is shown in Figure 5.3.

The effect of data size on the average classification times shown in Figure 5.4
is more important to compare the VFI1 algorithm with the 1-NN algorithm.
The 1-NN algorithm has such a sharp increase in classification time that the
other algorithms are nearly unseen in the graph shown in Figure 5.4. Fig-
ure 5.5 shows the comparison of classification times of all other algorithms
with increasing data size. This graph shows that the classification times of
the VFT1, FI4, and 1-NNFP algorithms increase the least among all other
algorithms. The NBCN algorithm is the mostly affected algorithm from the
increase in the data size. The VFI1 algorithm is used to represent the VFI
algorithms in the above graphs, but a further comparison of the classification

times with increasing data size of all versions is shown in Figure 5.6.

In this section, we have empirically compared the VFI classifiers in terms
of classification accuracy, average training times, and average classification

times with several other classification algorithms on real-world datasets. The

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS 94
40000
® o \VFI1
:_? V—A CFP
o <+—<1COFI
£ 30000 ->—< 1-NNFP
o o—OFI14
E == 1-NN
s V—< NBCN
‘g 20000 4
:‘U:)
[72]
& |
o
[¢B)
4 10000 .
[¢5)
>
<C 1
0 - - - -
500 2000 4000 6000 8000 10000

Size of Whole Dataset

Figure 5.4. Average classification time of all classifiers on datasets with increas-

ing number of instances. 1/10 of the whole dataset is used in classification.

80.0

60.0

40.0

20.0

Average Classification Time (msec.)

0 — | |
500 2000 4000 6000

Size of Whole Dataset

Figure 5.5. Average classification time of all classifiers except the 1-NN al-

gorithm on datasets with increasing number of instances. 1/10 of the whole

dataset is used in classification.

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS 95

40.0
C—O VFI1
N1 VFI2
&< VFI3
30.0 /s—A VFI4
<< VFI5

20.0

10.0

Average Classification Time (msec.)

500 2000 4000 6000 8000 10000
Size of Whole Dataset

Figure 5.6. Average classification time of all VFT versions on datasets with
increasing number of instances. 1/10 of the whole dataset is used in classifica-
tion.

accuracy results have shown that VFT classifiers achieve the highest accuracies
among all feature projection based methods. When compared to some well-
known classification methods, VFI classifiers are outperformed by 1-NN and
4.5 on the average but usually perform better than NBCON. However, the
classification in the VFT classifiers are shown to be much much faster than
1-NN and even faster than NBCON. Moreover, it is possible to improve the
classification accuracy of the VFI classifiers significantly by learning feature

weights, which will be discussed in Chapter 6.

5.2.3 Experiments on Artificial Datasets

Real-world domains might have irrelevant features, noisy instances, and un-
known (missing) feature values. Learning even in the presence of irrelevant
features is an important criteria for a learning system [10] as well as learn-
ing from noisy and/or incomplete data [47]. Therefore, we generated artificial
datasets from a real-world dataset by adding irrelevant features, noise, and

unknown values and empirically evaluated the VFT algorithms compared with

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS 96

other classifiers. We used the real-world dataset Iris in our experiments and
observed the change in the classification accuracy of the classifiers as we added
either some irrelevant features, or some noisy values, or some unknown values
to the Iris dataset. We chose the Iris dataset in our experiments because it
is a commonly used dataset and nearly all of the classifiers are successful on
this dataset. The original Iris dataset does not contain any unknown feature

values.

Next section presents the results of experiments with increasing number
of irrelevant features added to the Iris dataset. Section 5.2.3.2 presents the
effect of increasing noise level for the VFIT algorithms compared with other
algorithms. Section 5.2.3.3 presents the effect of unknown values in both the

training and testing dataset that includes new instances to be classified.

5.2.3.1 Experiments with Increasing Number of Irrelevant Features

Real-world datasets may contain irrelevant features or unequally relevant fea-
tures. For example, medical doctors usually have this relevance information in
their mind and distinguish diseases from each other by paying more attention
to some more relevant features. Machine learning researchers have developed

feature selection methods to cope with irrelevant features [6, 38, 67].

We investigated the effect of irrelevant features on the classification accu-
racy of the VFT classifiers, and compared with other classifiers. In these exper-
iments, we added some irrelevant continuous features with randomly assigned
values to the Iris dataset. The number of such artificially added irrelevant

features is an even number between (0 and 10.

The classification accuracies of the VFI classifiers compared with other
feature projection based learning methods with increasing number of irrelevant
features are plotted in Figure 5.7. The x-axis shows the number of irrelevant
features added to the Iris dataset. The y-axis shows the 10-fold cross-validation
accuracy results obtained from the average of 50 runs of the classifiers on the
generated datasets. The accuracy of VFT classifiers are not affected with the

addition of irrelevant features, even when there are 10 irrelevant features. On

CHAPTER 5.

92.0

82.0

72.0

10-fold cross-validation accuracy

62.0

Figure 5.7.

EVALUATION OF THE VFI ALGORITHMS 97

(0] 2 4 6 8 10

Number of Irrelevant Features added to the IRIS dataset

10-fold cross-validation accuracy results of the VFT algorithms

compared with that of CFP, COFI, 1-NNFP, and FI4 algorithms on Iris dataset

with increasing number of irrelevant attributes.

98.0

88.0

10-fold cross-validation accuracy

78.0

Figure 5.8.

L | L | L | L L
(0] 2 4 6 8 10
Number of Irrelevant Features added to the IRIS dataset

10-fold cross-validation accuracy results of the VFT algorithms

compared with that of 1-NN, C4.5, NBCN algorithms on Iris dataset with

increasing number of irrelevant attributes.

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS 98

the other hand, all the other feature projection based methods seem to be
affected negatively with the addition of irrelevant features. The performance

decrease slope of FI4 and COFIT look nearly same whereas the performance

decrease of 1-NNFP and CFP have sharper slopes.

Figure 5.8 shows the comparison of the VFT classifiers with other well-
known classifiers described in Chapter 2 such as (4.5, NBCN, and 1-NN. As
shown in the previous graph, VFT classifiers are not affected with the addition
of irrelevant features. Similarly, the classification accuracies of both NBCN
and C4.5 have not also changed. However, the 1-NN algorithm is negatively

affected with the addition of irrelevant features.

5.2.3.2 Experiments with Increasing Noise Level

This section investigates the effect of noise in the datasets on the VFT algo-
rithms compared to other algorithms. There are two major types of noise that

can be found in real-world datasets [3, 11, 15, 27, 69]:

1. Feature (attribute) noise, defined as incorrect feature value.

2. Classification noise, defined as incorrect class label of an instance.

Quinlan demonstrated that feature noise, occurring simultaneously in all
features describing the instances, can result in faster decrease in classification
accuracy than noise only in the class label does [54]. Therefore, we studied the
feature noise in our experiments. Feature values of the Iris dataset only in the
training set are replaced with random values in the feature domain with an
increasing noise probability. We experiment with noise probabilities from 0.05

to 0.5.

The classification accuracies of the VFT classifiers compared with other fea-
ture projection based methods with increasing level of noise in feature values
are plotted in Figure 5.9. The x-axis shows the probability of noise (level
of noise) added to the Iris dataset. The y-axis indicates the 10-fold cross-
validation accuracy results obtained from the average of 50 runs of the clas-

sifiers on the generated datasets. The VFT classifiers seem to be negatively

CHAPTER 5.

EVALUATION OF THE VFI ALGORITHMS 99

100.0

80.0

70.0

10-fold cross-validation accuracy

60.0

0.

Figure 5.9.

compared wi

0 0.1 0.2 0.3 0.4 0.5
Level of Noise added to the IRIS dataset

10-fold cross-validation accuracy results of the VFT algorithms
th that of CFP, COFI, 1-NNFP, and FI4 algorithms on Iris dataset

with increasing level of noise.

100.0

90.0

80.0

70.0

10-fold cross-validation accuracy

60.0

0.0 0.1 0.2 0.3 0.4 0.5

Level of Noise added to the IRIS dataset

Figure 5.10. 10-fold cross-validation accuracy results of the VFTI algorithms
compared with that of 1-NN, C4.5, NBCN algorithms on Iris dataset with

increasing level of noise.

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS 100

affected with the addition of noisy values. The accuracies of almost all the ver-
sions significantly decrease with increasing level of noise except VFI2, which
is affected much less than the other versions in the presence of noise. This
is a superiority of VFI2 over other versions of VFI classifiers. The accuracy
of COFT algorithm also decreases with increasing level of noise. The feature
projection based methods that are not affected significantly from the addition

of noise are CFP, 1-NNFP, and FI4 algorithms.

Figure 5.10 shows the comparison of the VFT classifiers with other well-
known classifiers such as C4.5, NBCON, and 1-NN with increasing level of noise.
This graph shows that the 1-NN and C4.5 algorithms are not affected with the
addition of noise to the Iris dataset. On the other hand, NBCN is negatively
affected with the addition of noisy values and performs more poorly than VFI2

in the presence of noise.

5.2.3.3 Experiments with Increasing Level of Missing Values

Most of the real-world datasets contain missing (unknown) feature values and
the percentage of missing values are shown in Table A.1. In order to cope with
instances that contain missing values, several methods have been proposed

[30, 55, 56, 57, 58]. These methods can be summarized as:

e Ignoring instances which have unknown feature values.
e Assuming an additional special value for unknown attribute values.
e Using probability theory by utilizing information provided by context.

o Generating additional instances for all possible values of the unknown

attribute.

e Exploring all branches (on decision trees) remembering that some

branches are more probable than others.

VFT algorithms follow a natural and plausible approach for handling un-

known feature values, they simply ignore only the feature with the unknown

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS 101

value instead of ignoring the whole instance. What makes this approach pos-
sible is the separate consideration of features in both the training and classi-
fication phase of the VFI classifiers. Handling unknown feature values is the
same as in the other feature projection based learning methods as well as the
Naive Bayesian Classifier since they all treat each feature separately. Simply
ignoring unknown feature values allows reduction in training and classification
time. On the other hand, the 1-NN algorithm tries to determine the value of
an unknown feature value using probability distribution of the known values of
that feature. For the decision tree induction algorithms, when the value for a
feature of an instance is unknown, the test outcome at the decision node testing
that feature for that instance will be unknown. C4.5 divides such an instance
into probabilistic fragments allowing a single instance to follow multiple paths
in the tree. This applies both when the training instances are divided during

the construction of a tree and when the tree is used to classify new instances.

Since unknown values might both appear in training data and testing data
that contains new instance to be classified, experiments to investigate the ef-
fect of increasing level of unknown feature values in both training and testing

datasets are performed.

First, T will present the effect of increasing level of unknown feature values
in the training dataset on the classification accuracy of several classifiers as
well as the VFT classifiers. To generate training datasets with unknown feature
values from the Iris dataset, we replace randomly selected feature values to
unknown with an increasing unknown probability. In our experiments, the

unknown probability varies from 0.0 to 0.5.

The classification accuracies of the VFT classifiers compared with other fea-
ture projection based learning methods with increasing percentage of unknown
values in feature values of the training dataset are plotted in Figure 5.11. The
x-axis shows the probability of unknown values (level of unknown values) added
to the Tris training dataset. The y-axis summarizes the 10-fold cross-validation
accuracy results obtained from the average of 50 runs of the classifiers on the
generated datasets. The accuracy of VFT classifiers are not affected with the ad-
dition of unknown feature values, even when the 50% percentage of the dataset

is full of unknown values. VFI5 seems to be the version that loses the most in

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS 102

100.0

® @ \FI1

- 1m—m VFI2

oy N S— * & VFI3

[}

S 50w n 9w & S99 ¢ o o _ VF14

% y = & & 4 - ——-. VEIS

= L W = % - - 1T&o—O CFP

= v = = = n

= Pz 551 CcoFl

S gp.0c = = = Jo—< 1-NNFP

B S—= o < Fla

A = S S ~

e i = S -]

- N - = S S ——

S 85.0 [< < & < b

S

—

80-0 L Il L Il L Il L Il L
0.0 0.1 0.2 0.3 0.4 0.5

Percentage of Unknown Values added to the IRIS Training Dataset

Figure 5.11. 10-fold cross-validation accuracy results of the VFI algorithms
compared with those of CFP, COFI, 1-NNFP, and FI4 algorithms on Iris

dataset with increasing percentage of unknown values in training dataset.

98.0

92.0

90.0

10-fold cross-validation accuracy

88_0 L 1 n 1 n 1 n n
0.0 0.1 0.2 0.3 0.4 0.5
Percentage of Unknown Values added to the IRIS Training Dataset

Figure 5.12. 10-fold cross-validation accuracy results of the VFI algorithms
compared with those of 1-NN, NBCN, and C4.5 on Iris dataset with increasing

percentage of unknown values in training dataset.

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS 103

accuracy among five versions, but the difference is insignificant. Similarly, the
other feature projection based methods do not lose accuracy with the addition
of unknown feature values to the training dataset. However, it is interesting

that COFT gains classification accuracy with the addition of unknown values.

Figure 5.12 shows the comparison of the VFT classifiers with other well-
known classifiers such as C4.5, NBCN, and 1-NN. As shown in the previous
graph, VFT classifiers are not affected with the addition of unknown feature
values. Similarly, the accuracy of NBCN does not change with the addition
of unknown values to the training dataset. Remember that NBCN simply
ignores the feature having unknown value as in the other feature projection
based methods. The plots of (4.5 is nearly lost in the graph, but it starts
at the same point as that of NBCN and stops a little below NBCN. This
shows that (C4.5 is affected a little more than NBCN but the decrease in its
classification accuracy is not that large. The significant degrade in accuracy
is observed in 1-NN, which determines the value of an unknown feature value
using probability distribution of the known values of that feature. These results
show that the method of handling unknown values of all the feature projection
based methods and NBCN are superior to that of 1-NN, which is not suitable

for simply ignoring only the feature with unknown value.

We also investigated the effect of increasing level of unknown feature values
that might exist in the new instances to be classified on the classification ac-
curacy of several classifiers. To generate test datasets including new instances
with unknown feature values from the Iris dataset, randomly selected feature
values are replaced by unknown. In the experiments, the probability of replac-

ing feature values with an unknown value ranges from 0.0 to 0.5.

Figure 5.13 shows the classification accuracies of the VFT classifiers com-
pared with other feature projection based learning methods with increasing
level of unknown values in feature values in the test dataset. The x-axis shows
the probability of unknown values (level of unknown values) added to the Iris
test dataset. The y-axis shows the 10-fold cross-validation accuracy results ob-
tained from the average of 50 runs of the classifiers on the generated datasets.
The accuracy of VFI classifiers decrease only a little with the addition of un-

known feature values to the test dataset. VFI5 seems to be the version that

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS 104

100.0

90.0 &8

80.0

70.0

10-fold cross-validation accuracy

L L L L L L L L 7
0.0 0.1 0.2 0.3 0.4 0.5
Percentage of Unknown Values added to the IRIS Test Dataset

60.0

Figure 5.13. 10-fold cross-validation accuracy results of the VFI algorithms
compared with those of CFP, COFI, 1-NNFP, and FI4 algorithms on Iris

dataset with increasing percentage of unknown values in test data.

100.0
®—@® VFIl1
m—m. VFI2

BOw—w—m == o & VFI3
= A A VFI4
|<«—<VFI5
G—5 1-NN
=51 NBCN
o—<cCas5

90.0

85.0

80.0

10-fold cross-validation accuracy

75.0

70_0 L L L L L L L !
0.0 0.1 0.2 0.3 0.4 0.5
Percentage of Unknown Values added to the IRIS Test Dataset

Figure 5.14. 10-fold cross-validation accuracy results of the VFI algorithms
compared with those of 1-NN, NBCN, and (C4.5 algorithms on Iris dataset

with increasing level of unknown values in test data.

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS 105

loses the most in accuracy among five versions, but the difference is insignifi-
cant. Similarly, the other feature projection based methods lose little accuracy
with the addition of unknown feature values to the test dataset with the only
exception of the FI4 algorithm. The FI4 algorithm experiences a sharp degrade

with the addition of unknown values to the test dataset.

Figure 5.14 shows the comparison of the VFT classifiers with other well-
known classifiers such as C4.5, NBCN, and 1-NN. As shown in the previous
graph, the accuracy of th VFI classifiers decrease a little with the addition of
the unknown values to the test instances. Similarly, the 1-NN and NBCN algo-
rithms lose some accuracy with this addition. The algorithm which is affected
most negatively is the C4.5 algorithm, which experiences a sharp degrade with
the addition of unknown values to the test instances. This shows that the
method of handling unknown values in the test instances of C4.5 is not suc-
cessful. On the other hand, simply ignoring that unknown value as done in all

feature projection based methods and NBCN is more successful.

5.3 Discussion

The experimental results on real-world datasets show that VFI classifiers are
almost always achieve the highest classification accuracies among all the other
feature projection based methods. Another result from empirical evaluation on
real-world datasets is that VFI performs comparably on the average and even
better on most datasets than NBCN, but the well-known algorithms such as
1-NN and C4.5 often achieve higher accuracies than VFT classifiers. However,
VFI algorithms have a significant speed advantage in classification over 1-
NN and also classifies a little faster than NBCN. Moreover, the classification
accuracy of the VFI classifiers can be improved by learning feature weights

described in the next chapter.

The experiments on artificially generated datasets have shown that the
VFT classifiers are very robust to the presence of irrelevant features whereas
all other feature projection based methods and the nearest neighbor algorithm

lose classification accuracy with the addition of irrelevant features. However,

CHAPTER 5. EVALUATION OF THE VFI ALGORITHMS 106

the VFI algorithms are affected negatively in the presence of noisy feature
values. These experiments on noisy datasets have also shown that VFI2 is
the noise-tolerant version of the VFT classifiers. Lastly, the effect of unknown
values that might exist both in training and test datasets is investigated. The
experimental results have shown that VFI classifiers as well as the other feature
projection based methods are not affected with the addition of the unknown
values to the training instances whereas the classification accuracy of the 1-
NN algorithm decreases in the presence of unknown values. This has shown
that the method of handling unknown feature values in the training dataset
used by the feature projection based methods is better than that of the 1-
NN algorithm. When unknown values are present in the new instances to be
classified, the classification accuracy of VFI classifiers decrease a little whereas
the C4.5 algorithm experiences a sharp degrade in accuracy. This has shown
that the method of handling unknown feature values in the new instances used

by the feature projection based learning methods is better than that of C4.5.

Chapter 6

Learning Feature Weights

All the classification algorithms mentioned up to this point assume that the
features representing a domain are equally relevant. But in many real-world
problems the features might have different degrees of relevance ranging from
being totally relevant to being totally irrelevant in representing the concept.
The k-NN algorithm presented in Chapter 2, the &-NNFP, CFP, COFI, and
FTI. algorithms presented in Chapter 3 and the versions of the VFT algorithms
presented in Chapter 4 assumed that all the features are equally relevant.
However, they are all suitable to use the feature relevance weight information
in addition to the training examples. The aim of using feature weights is to
reduce the impact of irrelevant and weakly relevant features and to increase
the impact of the strongly relevant features in learning the concept description

of a given domain.

Feature weight learning methods are organized along 5 dimensions [76].
The first dimension is called as bias, which refers to whether the weight learn-
ing algorithm receives feedback from the learning algorithm (i.e., the classifier)
or not. This bias dimension is analyzed in a separate paper by Wettschereck
and Aha [75]. Performance bias weight learning methods use performance
feedback from the classifier during learning. They have an advantage: their
search for feature weight settings is guided by how well those settings per-
form. Preset bias methods do not use feedback from the classifier to assign

weight settings. Instead, they use a pre-existing model’s bias. The distinction

107

CHAPTER 6. LEARNING FEATURE WEIGHTS 108

between performance and preset bias may also be described as wrapper and
filter models [38]. One group of performance bias methods, called incremental
hill-climbers [75], modify feature weights incrementally to increase similarity
between a test instance and nearby training instances in the same class, and to
decrease its similarity with nearby training instances in other classes. 1B4 [3],
EACH’s weighting method [63], and CFP’s weighting method [32] are exam-
ples of incremental hill-climbers. The other group of performance bias methods,
called continuous optimizers [T5], iteratively update feature weights using only

training instances. GA-WKNN [40], GA-CFP [31], and & — NNy [74] are

examples of continuous optimizers.

The second dimension of the framework of weighting methods is the size
of weight space, which is used to distinguish feature weighting from feature se-
lection algorithms. In fact feature selection algorithms are a proper subset of
feature weighting algorithms that employ binary weights (i.e., 0 or 1), meaning
that feature is either totally relevant (1) or totally irrelevant (0). The third
dimension is the representation, which is used to distinguish algorithms that
use the given representation from those that transform the given representa-
tion into one that might yield better performance. The fourth dimension is the
generality, which refers to whether the learning algorithm learns settings for a
single set of weights that are employed globally (i.e., over the entire instance
space) or assume weights that differ among local regions of the instance space.
The last dimension is knowledge, which distinguishes knowledge-poor weight
learning algorithms from others that employ domain specific knowledge to set
feature weights. These five dimensions are used to make up a framework for
feature weight learning methods [76]. Several variants of &-NN using feature
weights in the distance function have been proposed, which are classified ac-
cording to this framework. The feature projection based techniques can use all

of the weight learning methods that are used for the £-NN algorithm.

In this thesis, we introduce a performance bias weight learning method ac-
cording to the bias dimension of the framework introduced by Wettschereck
et al. [76]. This new weight learning method uses genetic algorithms to learn

feature weights, and thus is a continuous optimizer. According to the weight

CHAPTER 6. LEARNING FEATURE WEIGHTS 109

space dimension, it is a feature weighting algorithm since the weights of fea-
tures are not limited to only binary weights. If we classify according to the
representation dimension, it is a weight learning method that uses the given
representation. According to the generality dimension, it is a global weight
learning algorithm because the weights are learned for the entire instance space.
learning weights by genetic algorithms is a knowledge-poor method since no
domain specific knowledge is used. Four genetic algorithms are designed to be

used for any given classifier and used for optimizing the classification accuracy

for the Nearest Neighbor [21] and the VFTI classifier.

Some other performance bias methods also using genetic algorithms are
GA-WKNN [40] and GA-CFP [31]. GA-WKNN uses many genetic operators
to learn the feature weights for the Weighted Nearest Neighbor Algorithm
(WKNN), where k£ was chosen as 3. GA-CFP uses genetic algorithms to learn

feature weights and some other parameters for the CFP classifier [32].

The next section gives a brief introduction to genetic algorithms, Section 6.2
describes how genetic algorithms are used in weight learning for classifiers.
Then the experimental results for 1-NN and VFT classifiers using weight learn-

ing genetic algorithms are given in Section 6.3.

6.1 Genetic Algorithms

Genetic algorithms are search and optimization algorithms based on natural
selection and natural genetics. They have been introduced by John Holland
[35]. Genetic algorithms combine survival of the fittest (best) among a popu-
lation of strings (chromosomes) with a structured yet randomized information
exchange to form a search algorithm. In every generation, a new set of artificial
creatures represented by chromosomes is created from the previous population
of creatures selected according to the survival of the fittest principal. Although
the genetic algorithms are randomized search algorithms, they efficiently ex-
ploit historical information to reach new search points with expected improved

performance.

CHAPTER 6. LEARNING FEATURE WEIGHTS 110

genetic-algorithm ():
begin
step = 0
initialize population P(step)
/* each chromosome is a coding of the parameter set */
evaluate (P(step))
repeat until termination condition
step = step + 1
reproduction (P(step))
crossover (P(step))
mutation (P(step))
elitism (P(step))
evaluate (P(step))
end.

Figure 6.1. The algorithm for a genetic algorithm.

Genetic algorithms can be used to optimize some parameters to be used
in a system. The search for the optimum parameters start with a randomly
generated population of chromosomes which is a coding of the parameter set
and continues by generating new populations from the old ones. Genetic al-
gorithms (GAs) are different from more traditional optimization and search

procedures in four ways [20]:

GAs work with a coding of the parameter set, not the parameters them-

selves.
e (GAs search from a population of points, not a single point.

o GAs use a payoff (objective function) information, not derivatives or

other auxiliary knowledge.

GG As use probabilistic transition rules, not deterministic rules.

A general outline of a genetic algorithm is given in Figure 6.1. The al-
gorithm starts with an initial population of chromosomes each of which is a

coding for a setting of the parameter set. As mentioned earlier GAs search

CHAPTER 6. LEARNING FEATURE WEIGHTS 111

from a population of points, so there must be a set of operations that take
this initial population and generate successive populations that improve over
time. After the current population is evaluated according to the given per-
formance measure, the genetic operators are applied to the individuals of the
current. population. The first three operators reproduction, crossover, and
mutation are the main operators of a genetic algorithm that is used in many

practical problems.

Reproduction is a process where individual chromosomes are copied to the
next generation according to their objective function (fitness function) val-
ues. We can think of the objective function as some measure of profit, utility,
or goodness that we want to maximize. Copying chromosomes according to
their fitness values means that chromosomes with a higher value have a higher
probability of contributing one or more offspring in the next generation. Re-
production operator is an artificial version of natural selection, a Darwinian
survival of the fittest among string creatures. One of the algorithmic forms of
the reproduction operator is a biased roulette wheel where each current chro-
mosome in the population has a roulette wheel slot sized in proportion to its
fitness. A simple spin of the weighted roulette wheel yields the reproduction
candidate offspring. This enables the more highly fit chromosomes to have a
higher number of offsprings in the succeeding generation. Once a chromosome
has been selected for reproduction, an exact copy of that chromosome is cre-

ated. Then this chromosome enters into a mating pool for crossover operator.

After reproduction, the newly produced chromosomes in the mating pool
are mated at random with each other. Fach selected pair of chromosomes
undergoes a crossover operation. There are several crossover operations, four

of which are used in this thesis are as follows:

1. One-Point Crossover (1PCO):
One-point crossover is the simplest crossover operator, where two off-
springs are produced from two parent chromosomes. Given two parent
chromosomes of length [, an integer position &k (crossover site) along the
chromosome is selected uniformly at random between 2 and [— 1 inclu-

sive. Two new chromosomes are created by swapping all genes between

CHAPTER 6. LEARNING FEATURE WEIGHTS 112

positions k 4+ 1 and [. The algorithm for 1PCO is given in Figure 6.2.

Two-Point Crossover (2PCO):

Two-point crossover produces two offsprings from two parent chromo-
somes. There are two crossover sites instead of one as in the case of
one-point crossover. First, an integer position &y (first crossover site) is
selected randomly between 2 and [—1 (from the range [2 .. [—1]). Then
another integer position ky (second crossover site) is selected randomly
between ki + 1 and [(from the range [ky + 1 .. []). Two new chromo-
somes are created by swapping all genes between positions k; and &y (in
the range [k1 .. k2)). Two-Point Crossover is a special case of multiple-
point crossover, where we can have more than two crossover sites. The

algorithm for 2PCO is given in Figure 6.2.

Uniform Crossover (UCO):

Uniform crossover produces two offsprings from two parent chromosomes.
The corresponding genes of parent chromosomes are swapped with some
probability, p,. Two probabilities which sum up to 1 are symmetric
and p, = 0.5 causes the maximum exchange of genes between parent

chromosomes. The algorithm for UCQO is also given in Figure 6.2.

Continuous Uniform Crossover (CUCO):

Continuous Uniform Crossover is a new crossover operator developed and
used in the weight learning genetic algorithm. Given two chromosomes
r=<x1,T9,...,0, > and y =< y1,¥y2,...,y, > such that n is the num-
ber of genes in a chromosome and is equal the number of features when
a chromosome is the encoding of a feature weight vector, the offsprings

are defined as

vl =< T47T1277T;7 > and yl =< Ugvyévqulv >, where
vh=sxx;+ (1 —8) xy (6.1)
yi=sxyi+ (1 —s) Xz (6.2)

Here s, called stride, is constant through a single crossover operation.

Given that 327 ;a; =T and 327y, = 1,

CHAPTER 6. LEARNING FEATURE WEIGHTS 113

crossover (Population): [* 1-point crossover */
begin
for each chromosome pair ¢ and ¢+ 1 in Population
if crossover is possible /* with crossover probability, p. */
cross_point = a random number in [2 .. NoGenes)
switch alleles up to cross_point of ¢ and ¢ + 1

end.

crossover (Population): [* 2-point crossover */
begin
for each chromosome pair ¢ and ¢+ 1 in Population
if crossover is possible /* crossover probability, p. */
cross_point; = a random number in [2 .. NoGenes)
cross_pointy = a random number in (cross_point; .. NoGenes]
switch alleles of ¢ and ¢ 4+ 1 between cross_point, and cross_point,

end.

crossover (Population): /* uniform crossover */
begin
for each chromosome pair ¢ and ¢+ 1 in Population
if crossover is possible /* with crossover probability, p. */
for each allele pair ¢[7] and ¢ + 1[7]
if switch is possible /* switch probability, p, */
switch ¢[7] and ¢+ 1]7]

end.

Figure 6.2. Algorithms for One-Point Crossover, Two-Point Crossover, and
Uniform Crossover.

CHAPTER 6. LEARNING FEATURE WEIGHTS 114

Sl =sx Y a4+ (1 —s)x Yl yi=s+(1 —s)=1

and the same equality holds for -7, yi. So it is guaranteed that the sum
of the alleles of an offspring is still 1 given that the sum of the parents’

alleles is 1.

Since z} and y; represent the weight of individual features, 0 < z{ <1
and 0 < y; <1 must hold. Therefore, the choice of the stride s should
be restricted. Since, for any value of s, the sum of the alleles is 1, it will
be guaranteed that each allele would be less than 1 as long as each allele

is ensured to be greater than 0. In order to have #; > 0 and y. > 0 for

all o (1 <7 <n),

i R

where y; > x,. Fach allele pair (#;, y;) brings an upper bound, call it

upper; and a lower bound, call it lower;, on s where

upper; = —£—>1 and lower; = — <0
! yi—Ti ! Yi—Ti

The stride s should be in the range [lower .. upper] to preserve the legality
of the offsprings where lower and upper are chosen from n upper; and

lower; bounds such that

upper = min;(—£—) and lower = mm{y(%)
Y e 3

a7

Two strides, sy and s5, are symmetric when sy + s, = 1. Here symmetry
means that continuous uniform crossover on two given parents produces
same pair of offsprings in both use s; and s,. For example, the strides
s1 = 0.5 and sy = 0.5, sy = —2 and sy = 3 are symmetric. There is
always a symmetric stride value for each value of strides. Further, the
symmetric stride of a given stride greater (less) than 0.5 is less (greater)
than 0.5. So we can discard the stride values less than 0.5 in the global
range for s, since there is a stride in the range [0.5 .. upper] symmetric

to the stride in the range [lower .. 0.5].

If we think of some special values of s, we see that when s =1 or s =0,

the offsprings are same as their parents. When s = (.5, the alleles of

CHAPTER 6. LEARNING FEATURE WEIGHTS 115

the offsprings are the average of the alleles of their parents. When s > 1
or s < 0, the alleles of the offsprings are greater than the maximum of
the corresponding allele pair of their parents and less than the minimum
of the corresponding allele pair of their parents. Hence, the stride being
greater than 1 or less than () enables the crossover operation to try the
outer values of the alleles of the parents. Because of the symmetry we
have discarded the strides less than 0.5, having a range [0.5 .. upper] for
s. When upper value is greater than 1, we restrict s to be in the range
[1 .. upper] in order to try the outer values of the parent alleles. But when

upper bound is equal to 1, s is restricted to be in the range [0.5 .. 1].

et us see an example CUCQO operation. Let the parent chromosomes
be ¥ =< 0.4,0.6 >, and y =< 0.5,0.5 >. The first allele pair (z7 = 0.4,
y1 = 0.5) requires —4 < s < 5, and the second allele pair (y2 = 0.6,
x9 = 0.5) requires —5 < s < 6. From the lower bounds we choose the
maximum (i.e. —4) and from the upper bounds we choose the minimum
(i.e. 5). We get the requirement for s to be in the range [—4 .. 5]. By
using the symmetry property, s is restricted to be in the range [0.5 .. 5].

Since upper > 1, s is randomly selected from the range [1 .. 5].

et the randomly chosen value of s be 3:

=3 xa+(1-3)xy; =1.2-1.0=0.2 (6.3)

vy =3xa4+(1-3) xy=18—-1.0=108 (6.4)

Hence, one of the offsprings is 2’ =< 0.2,0.8 > where S.°_, 2! = 1. The

other offspring alleles are as follows:

gy =3 %y +(1-3)xa =15-08=0.7 (6.5)

Yy, =3 Xy + (1 —=3) x oy =15-1.2=10.3 (6.6)

Hence, the other offspring is ¥ =< 0.7,0.3 > where Y7, y/ = 1. Note
that the symmetric stride s = —2 would give the offsprings

2 =< 0.7,0.3 > and 3y’ =< 0.2,0.8 > which are the same as the offsprings
produced by using s = 3.

The difference of CUCO from other crossover operators is its ability to

preserve the legality of the chromosomes after the crossover operation.

CHAPTER 6. LEARNING FEATURE WEIGHTS 116

The “legality” here means that the sum of the alleles of each chromosome
is 1. Hence, given two parent chromosomes which have the sum of their
alleles 1, the sum of the alleles of each offsprings is also 1 without any
other operation. On the other hand, all other crossover operators defined
above require a normalization to make the sum of the alleles of each

offspring 1.

Reproduction according to fitness combined with crossover is enough for
the process of a genetic algorithm. Mutation plays a secondary role in the
operation of genetic algorithms, but mutation operator protects against the
loss of important genetic material. Tt is usually in the form of a small change in
the alleles of an offspring. In our genetic algorithms, the mutation is performed
by switching two randomly selected neighboring alleles, which does not cause a
change in the sum of the alleles of a chromosome. The probability of mutation

(pm) of an offspring is very low in general.

Other than the three main operations of a genetic algorithm, there is an-
other operator in Figure 6.1 called the elitism operation, which always copies
the fittest chromosome in the current population to the next population. This

provides the best chromosome not to be lost once it is found.

Genetic algorithms start with a randomly generated population of chromo-
somes representing the parameter set. They generate a new population from
the current one by using the genetic operators such as reproduction, crossover,
mutation, and elitism. They either stop when the fitness of a chromosome in
the current population reached the best possible fitness or when the maximum
number of generations set by the user is reached. The aim of this search is to

find the best parameter set optimizing a given system.

In the next section, the use of genetic algorithms in learning feature weights
for any given classifier is briefly explained. Then, the experimental results are

given for the weighted nearest neighbor and the VFI1 classifiers.

CHAPTER 6. LEARNING FEATURE WEIGHTS 117

Evaluation
Function cl assi fication
accur acy
Fit ifi
i tness Classifier
Genetic]
Algorithm el ght vector
Dat aSet

\wei ght vector nmaxi m zing

cl assi ficati on accuracy

Figure 6.3. The GA-Classifier Feature Weighting Algorithm.

6.2 Weight Learning Genetic Algorithms

Genetic algorithms can be used to maximize the classification accuracy of a
given classifier, which can improve its performance when feature weights are
used to assign different degrees of relevance to the features. The implemen-
tation of GA-Classifier is generic and can be used for any classifier that can

make use of feature weights.

Figure 6.3 shows how our weight learning genetic algorithm (GA-Classifier)
works to maximize the performance of the Classifier. The genetic algorithm
starts with an initial population of chromosomes each representing a feature
weights setting. Feature weights are represented by real numbers between 0
and 1 inclusive such that the sum of all feature weights is 1. Since we are
searching for the optimum set of weights, a chromosome is the coding of these
feature weights, i.e. each gene corresponds to a feature weight. Hence, the

length of a chromosome is equal to the number of features of a given domain.

In order to continue, GA requires to know how fit each chromosomeis. The
Classifier takes the dataset and the feature weights encoded in the chromosome
as input, and its classification accuracy using these weights is used as the eval-
uation of that chromosome. The classification accuracy is measured by 5-fold

cross-validation (see Figure 5.1) and the fitness of that weight vector is the

CHAPTER 6. LEARNING FEATURE WEIGHTS 118

cube of this classification accuracy. Taking the cube of the performance mea-
sure aims to enlarge the difference of chromosomes having very close evaluation
function values. FEach chromosome in the current population is evaluated by
the Classifier and the genetic algorithm produces a new population by using
these fitness values for the roulette wheel reproduction operation. Other ge-
netic operators used are crossover, mutation, and elitism. When a chromosome
is selected for mutation, two randomly chosen genes of that chromosome are
swapped. This kind of mutation preserves the legality of the chromosomes.
The GA stops either when the classification accuracy of %100 is reached or
after a predetermined number of generations are generated. At the end, the
feature weight vector maximizing the classification accuracy of the Classifier is

learned.

6.3 Experiments

The GA-Classifier can be used to learn feature weights for any classifier that
can embed feature weights in its learning process. We did experiments for
the Weighted Nearest Neighbor (WNN) classifier and Weighted VFT (WVFET)
classifiers. In each run of the genetic algorithms a population of size 100 was
used. The chromosomes are feature weight vectors such that the sum of the
weights is 1. The genetic algorithms terminated after 200 generations. The

probability of crossover (p.) was set as 0.8.

6.3.1 Weighted Nearest Neighbor Classifier

When we put the WNN classifier in the place of Classifier in Figure 6.3, we
get a GA-WNN classifier which learns its weights by a genetic algorithm. This
genetic algorithm aims to learn the optimum weights that would maximize
the classification accuracy of the WNN classifier. Besides learning weights,
we wanted to compare each of the four crossover operators by comparing the

performance of the following WNN classifiers:

CHAPTER 6. LEARNING FEATURE WEIGHTS 119

Table 6.1. Classification accuracy(%) of NN, 1TPCO-WNN, 2PCO-WNN,
UCO-WNN, and CUCO-WNN obtained by 5 way cross-validation on four

real-world datasets.

Data Set: Iris Glass Wine Liver
NN 93.98 68.66 94.40 63.48
1PCO-WNN |95.34 85.96 99.44 71.90
2PCO-WNN | 96.00 84.10 99.44 69.30
UCO-WNN 95.34 85.50 100.00 68.42
CUCO-WNN | 97.34 86.86 98.86 72.20

1. WNN learning feature weights using a genetic algorithm which uses one-

point crossover (1PCO-WNN)

2. WNN learning feature weights using a genetic algorithm which uses two-

point crossover (2PCO-WNN)

3. WNN learning feature weights using a genetic algorithm which uses uni-

form crossover (UCO-WNN)

4. WNN learning feature weights using a genetic algorithm which uses con-

tinuous uniform crossover (CUCO-WNN)

When this work [21] has done, the probability of mutation was set as 0 in
order to observe the capabilities of crossovers without mutation. The fitness of
a chromosome is determined by 5-fold cross-validation. The experiments have
been done on four real-world datasets (see Appendix for more information
about the datasets). The classification accuracies of NN and the four weighted

versions are shown in Table 6.1.

The accuracies in Table 6.1 show that in all of the four datasets used,
weighted versions of the nearest neighbor algorithm outperforms unweighted
version of the nearest neighbor algorithm. These results indicate that assign-
ing different weights to features in all these domains improves the classification
accuracy of the NN classifier. Another important observation from the exper-
iments is that CUCO-WNN generally has higher accuracies than other three

weighted nearest neighbor algorithms.

CHAPTER 6. LEARNING FEATURE WEIGHTS 120

In the Iris domain CUCO-WNN has the highest classification accuracy, and
UCO-WNN and 1PCO-WNN have the worst accuracy. In the Glass domain
CUCO-WNN again has the highest classification accuracy, and 2PCO-WNN
has the worst accuracy. The accuracy improvement gained by assigning weights
to features is very significant in the Glass domain where the smallest improve-
ment is 15.44% with the learned weights (0.375,0.083,0.12,0.007,0.018,0.207,
0.186,0,0.004) respectively. In the Liver domain, CUCO-WNN again has the
highest classification accuracy, and UCO-WNN has the lowest classification
accuracy. Only in the Wine domain we observed that UCO-WNN has the
highest classification accuracy, IPCO-WNN and 2PCO-WNN follow it, and
CUCO-WNN has the lowest classification accuracy; however the differences
in the accuracies are insignificant. In Figure 6.4 the comparison of the four
algorithms on four real-world datasets for increasing number of generations is

shown.

Experiments have shown that CUCO-WNN generally outperforms other
three weighted nearest neighbor algorithms because CUCO-WNN learns the
best feature weights by which the highest classification accuracy is obtained.
However, what we also have observed is that the classification accuracies of

these four weighted nearest neighbor algorithms are close to each other.

6.3.2 Weighted Voting Feature Intervals Classifiers

When we put one of the VFT classifiers in the place of Classifier in Figure 6.3,
we get a GA-VFT classifier which learns feature weights by a genetic algorithm.
This genetic algorithm aims to learn the optimum weights that would maximize

the classification accuracy of the VFI classifier.

In this section, the comparisons of the unweighted VFI1 classifier, where
all the features have equal voting power with a weighted GA-VFI1 classifier
where each feature might have a different voting power are given. The aim of
the experiments were to show how weights can improve the performance of the
VFT classifiers and not to compare the crossover operators at the same time as
done in the previous section. Therefore, we use only the continuous crossover

operator in our genetic algorithm that is used to learn the optimum weights

CHAPTER 6. LEARNING FEATURE WEIGHTS 121

Dataset : Iris Dataset : Glass
0.98 \ \
—— 1PCO-WNN
""""" 2PCO-WNN -]
--- UCOWNN|] -
—— CUCOWNN | 085 I
097 ‘] RS R e —
| I [J
>\ J Py S
g I @ [.
3 | 3 ' —— 1PCO-WNN
g ! g |l 2PCO-WNN
‘ 0.80 --- UCO-WNN 1
0.96 —— CUCO-WN
I
\
\
L
0.95 : ‘ : . : : : 0.75 : ‘ : . : :
0 50 100 150 200 0 50 100 150 200
Number of generations Number of generations
Dataset : Liver Dataset : Wine
‘ \ 1.000 \ o
—— 1PCO-WNN !
""""" 2PCO-WNN 0995 .
--- UCO-WNN | {
| I
0.72 0990 | 1
o
|1
0.985 i | 1
> > I
Q Q
g g
2 0.70 3 0980 —— 1PCO-WNN 1
< S v 2PCO-WNN
0.975 - --- UCO-WNN 1
—— CUCO-WN
0.68 f i 0.970 - 1
0.965 - 1
0.66 : ‘ : : : : : 0.960 : ‘ : . : : :
0 50 100 150 200 0 50 100 150 200
Number of generations Number of generations

Figure 6.4. Comparison of 1PCO-WNN, 2PCO-WNN, UCO-WNN, and
CUCO-WNN on real-world datasets for increasing number of generations. The
accuracy results are obtained by 5-fold cross-validation.

CHAPTER 6. LEARNING FEATURE WEIGHTS 122

Table 6.2. Classification accuracy(%) of VFI1, CUCO-WVFII obtained hy

5-fold cross-validation on six real-world datasets.

Data Set: Diabetes Glass Iris Liver Sonar Wine
VFTI1 56.51 57.48 95.33 55.65 5H2.86 95.52
CUCO-WVFII 66.93 63.56 96.00 63.19 71.23 98.89
Improvement: 10.42 6.08 0.67 7.54 1837 3.37

for VFI1. Unlike CUCO-WNN, the probability of mutation was set to 0.001 in
these experiments. The resulting weighted classifier is called CUCO-WVFTI
and the 5-fold cross-validation results of both VFI1 and CUCO-VFI1 on six
datasets is shown in Table 6.2.

The classification accuracies in Table 6.2 show that in all of the six datasets
used, weighted version of the VFT1 algorithm outperforms unweighted version
of the VFT1 algorithm. These results indicate that assigning different weights,
that is different voting powers to features in all these domains improves the clas-
sification accuracy of the VFI1 classifier. For example, the Diabetes and Sonar
datasets were the datasets on which VFI classifiers achieve lower accuracies
than other well-known classifiers as reported in Chapter 5 and CUCO-WVFTI
(weighted version of VFI1) performs significantly better than VFI1. The im-
provement in accuracy means that all the features are not equally relevant in
these domains. For example, the weights learned for the Diabetes dataset are
(0.008,0.375,0.198,0,0.0330.340, 0.032,0.014) where fourth feature has found
totally irrelevant, first and last features are nearly irrelevant, and second and
third features have found to be the most relevant features by the weight learn-

ing genetic algorithm.

6.4 Summary and Discussion

We have presented a feature weight learning method using genetic algorithms,
which learns the optimum feature weights for any classifier that can get weights
outside in order to maximize the classification accuracy of that classifier. The

experiments have shown that learning feature weights for both the Nearest

CHAPTER 6. LEARNING FEATURE WEIGHTS 123

Neighbor and the VFT algorithms have improved their classification accuracies

on some real-world datasets.

We have also developed a new crossover operator (CUCQO) to be used in
these weight learning genetic algorithms and compared it with three other com-
mon crossover operators by using them in GA-WNN. Experiments have shown
that CUCQ is generally better than the other crossover operators. However,
the classification accuracies of GA-WNN’s using different crossover operators

are close to each other.

Genetic algorithms are appropriate for feature wieght learning tasks, but
they are slow. They get slower on datasets with large number of instances
and features. For example, the time for GA-WVFI1 to proceed one step is
approximately 4 minutes on the Iris dataset, whereas this time increases to 40

minutes on the Arrhythmia dataset with 279 features.

Chapter 7

Visualization of the Learned

Concepts

The explanation ability of a classification process is as much important as its
accuracy. We have shown the empirical evaluation of VFT classifiers in Chap-
ter 5 on several real-world datasets including the newly constructed Dermatol-
ogy and Arrhythmia datasets. But the high classification performance is not
enough for a classification system, it should also convey some comprehensible
information to humans. For this purpose, we tried to visualize the concept
description learned by VFI classifiers. Since each feature votes for each class
during classification, these votes make up the concept description and gives
information about the relation between the values of each feature and the class

label observed at that value.

The concept description learned by VFI1, VFI2, VFI3, VFI4, and VFI5
for the Dermatology dataset is shown in Figures 7.1, 7.2, 7.3, 7.4, and 7.5,
respectively. For space efficiency, only a few interesting features are shown in
all figures. At the top of Figure 7.1, a general information about the dataset is
given. Then the intervals with their votes for each class are displayed, where
class numbers in rectangular brackets are used for the class names of the domain

(see Appendix A). To the right of some of the votes a (+) or () or nothing

124

CHAPTER 7. VISUALIZATION OF THE LEARNED CONCEPTS 125

meaning (o) is given, which results from the following mapping of the real-

valued votes to discrete evaluations:

if vote = highest and vote — next > d,then (+)
s(vote) = else if vote < gjthen (—) (7.1)

else (0)

1

where next is the next highest vote after vote in that interval and d = 75—

The aim of this mapping was to see the ability of the features in distinguishing
between classes. When a feature value makes a class (—I—)7 it means that the
instance is certainly of this class. Note that, at most one class can get a (+)
evaluation. A () class means that the instance is certainly not of this class
according to feature 1 (erythema) and a (o) means that this feature can not

say anything about the class. Unlike (4) category, more than one class can get

() and (o).

In Figure 7.1, for the first feature, four intervals and the boundary points
of these intervals are shown with their votes. Since we know that features of
the Dermatology dataset take values 0, 1, 2, or 3, there will be no instance
with value less than () for the first feature. But since we wanted our visual-
ization to be general, those intervals are also shown to the user. When we
look at the upper end point of the first interval, which is (), we see the votes
< 0.11,0.04,0.15,0.10,0.55,0.05 > for each corresponding class. This shows
that feature 1 (erythema) votes nearly half for class 5 (cronic dermatitis), one-
tenth for class 1 (psoriasis) and 4 (pityriasis rosea), and votes few for other
classes. If there were a threshold of 0.15 for votes, similar to the case of Turk-
ish Parliament Elections Voting Scheme, only class 3 and 5 would be over this
threshold. But in the voting scheme of VFT classifiers, there are no thresholds

and every single vote participates in the overall voting process.

Being the designers of these classifiers, these real-valued votes were un-
derstandable for us. But thinking of the human experts (the doctors) who
collected these data for us, we thought we should transform this representation
into a discrete language consisting of (4): positive, (0): neutral, (): negative.
When the value of feature 1 is equal to 0, class 5 gets a (4) in the new repre-
sentation, class 2 and 6 (), and other classes (0). Note that the distinguishing
labels (+) and () are shown whereas the (o) labels are omitted in Figure 7.1.

CHAPTER 7. VISUALIZATION OF THE LEARNED CONCEPTS 126

Domain: Dermatology,
o_Features: 34 No_Classes: 6 o_Trainers: 366
Weights: 111 1111111111111 111111111111111111
classCount[1]1=112 classCount[2]=61 classCount[3]=72
classCount[4]=49 classCount[5]=52 classCount[6]=20

Intervals of Dermatology domain:

Feature 1

VOTES FOR CLASSES: [1] [2] [3] [4] [51 [61
If value < O then: 0.15 (-) 0.23 (-) 0.63(+) (-)
If value = 0 then: 0.11 0.04(-) 0.15 0.10 0.55(+) 0.05(-)
If O < value < 1 then: 0.06(-) 0.07(-) 0.10 0.20 0.47(+) 0.09
If value = 1 then: 0.11 0.12 0.14 0.19 0.31 0.14
If 1 < value < 3 then: 0.16 0.16 0.17 0.17 0.14 0.18
If value = 3 then: 0.23 0.22 0.17 0.13 0.10 0.15
If 3 < value then: 0.29 0.29 0.16 0.10 0.05(-) 0.12

Feature 6

VOTES FOR CLASSES: [1] [2] [3] [4] [51 [61
If value < O then: 0.20 0.20 0.01(-) 0.20 0.20 0.20
If value = O then: 0.18 0.18 0.12 0.18 0.18 0.18
If 0 < value < 3 then: 0.15 0.15 0.24 0.15 0.15 0.15
If value = 3 then: 0.08(-) 0.08(-) 0.62(+) 0.08(-) 0.08(-) 0.08(-)
If 3 < value then:) -) 1.00(+) -) -) -)

Feature 7

VOTES FOR CLASSES: [1] [2] [3] [4] [51 [61
If value < O then: 0.20 0.21 0.21 0.21 0.17 -)
If value = O then: 0.20 0.20 0.20 0.20 0.18 0.01(-)
If O < value < 1 then: 0.20 0.20 0.20 0.20 0.19 0.02(-)
If value = 1 then: 0.11 0.11 0.10 0.10 0.19 0.39(+)
If 1 < value < 2 then: 0.03(-) 0.02(-) (-) (-) 0.19 0.76(+)
If value = 2 then: 0.02(-) 0.01(-) (-) (-) 0.12 0.85(+)
If 2 < value < 3 then: 0.01(-) (=) (-) (-) 0.06(-) 0.93(+)
If value = 3 then: (-) (=) (-) (=) 0.03(-) 0.97(+)
If 3 < value then: (-) (=) (-) (-) (=) 1.00(+)

Figure 7.1. Concept Description Learned by VFI1 including only a few features.

This means that the value of 0 for feature 1 positively distinguishes class 5 from
other classes (i.e. according to feature 1 with value zero, this patient has diag-
nosis 5), negatively distinguishes class 1 and 2 (i.e. this patient can not have
diagnosis 1 or 2), and says neither “yes” nor “no” for the other classes. Not all
the intervals distinguish much between classes: for example when the feature
1 has a value between 1 and 3 (1 < value < 3), all the classes are neutral (o);
that is, this range of values for feature 1 does not distinguish any class from
the others. In Figure 7.1, the value = 0 of feature 6 does not distinguish any
class, similarly the next interval 0 < value < 3 does. This range of values cor-

respond to the values 0, 1, and 2 for feature 6 and what VFI1 learns from the

CHAPTER 7. VISUALIZATION OF THE LEARNED CONCEPTS 127

Domain: Dermatology,
o_Features: 34 No_Classes: 6 o_Trainers: 366
Weights: 111 1111111111111 111111111111111111
classCount[1]1=112 classCount[2]=61 classCount[3]=72
classCount[4]=49 classCount[5]=52 classCount[6]=20

Intervals of Dermatology domain:

Feature 6

VOTES FOR CLASSES: [1] [2] [3] [4] [51 [61
If value < 1.5 then: 0.20 0.20 0.01(-) 0.20 0.20 0.20
If value = 1.5 then: 0.10 0.10 0.51(+) 0.10 0.10 0.10
If 1.5 < value then: (=) (-) 1.00(+) (=) (-) (-)

Feature 11

VOTES FOR CLASSES: [1] [2] [3] [4] [51 [61
If value = O then: 0.14 0.18 0.19 0.19 0.19 0.10
If value = 1 then: 0.34 0.06(-) 0.02(-) (-) (-) 0.59(+)

Feature 15

VOTES FOR CLASSES: [1] [2] [3] [4] [51 [61
If value < 0.5 then: 0.20 0.20 0.20 0.20 (=) 0.20
If value = 0.5 then: 0.10 0.10 0.10 0.10 0.50(+) 0.10
If 0.5 < value < 1.5 then: (=) (=) (-) (=) 1.00(+) (-)
If value = 1.5 then: (=) (-) 0.03(-) (-) 0.97(+) (-)
If 1.5 < value < 2.5 then: (=) (-) 0.06(-) (-) 0.94(+) (-)
If value = 2.5 then: (=) (-) 0.03(-) (-) 0.97(+) (-)
If 2.5 < value then: (-) (=) (-) (=) 1.00(+) (-)

Figure 7.2. Concept Description Learned by VFI2 including only a few features.

training instances is that all the classes are possible with these values. VFTI
has learned that when feature 6 has value = 3, class 3 can be distinguished
positively from the other classes. In Figure 7.1, the concept learned on feature

7 is also shown. Feature 7 significantly distinguishes class 6 at nonzero values.

In Figure 7.2, T have included features 6, 11, and 15 in the concept descrip-
tion learned by VFI2 for the Dermatology dataset. Since the possible values
of all the features in the Dermatology dataset can take are 0, 1, 2, 3 and VFI2
constructs intervals with boundaries 0.5, 1.5, 2.5, the visualization of VFI2
is more meaningful for the Dermatology dataset. For example, the interval
0.5 < value < 1.5 constructed on feature 15 represents the value 2 in the
Dermatology dataset because this dataset is compiled such that there are no
other values in this range. Feature 11 (family history) is a nominal feature and
all the intervals constructed are point intervals on this feature. For example,

when feature 11 is equal to 1 meaning that some kind of Dermatology disease

CHAPTER 7. VISUALIZATION OF THE LEARNED CONCEPTS 128

has been observed in the patient’s family, class 6 is highly confirmed by this

feature.

In order to compare the descriptions produced by VFI2 and VFI1, feature
6 is also included in Figure 7.2. Feature 6 confirms class 3 and totally rejects
all the other classes when value > 1.5; that is, when the value of feature 6 is
2 or 3. When the values are 0 or 1 (value < 1.5), feature 6 rejects class 3 and
votes equally for the rest of the classes. However, with the concept learned by
VFT1 on feature 6 it can only distinguish class 3 positively when the value is 3,
for the other values such as 0, 1, and 2 none of the classes are distinguishable.
This is because VFIT loses some information by overgeneralizing the values into
a range 0 < value < 3, which also occurs in VFI3 and later solved by VFI4
(see Section 4.2.4). This will be explained in more detail soon by comparing

the concept descriptions of VFI3 and VFI4.

Figure 7.3 shows the concept description learned by VFI3 only on features
6, 10, and 34. Let us look at feature 34, which is the age of the patients. when
the age of the patient is between 7 and 16, class 6 (pityriasis rubra pilaris) is
highly confirmed and when the age is larger than 22 class 6 is rejected. This
agrees with what the doctor says about the age feature of a patient. Feature 10
is distinguishing for class 1 whereas feature 6 is totally unuseful to distinguish
between classes because every class has equal votes for every range of values.
The distribution of the classes on feature 6 in the Dermatology dataset is as
follows: the instances of every class other than 3 always have value equal to
0 for feature 6 and almost all of the instances of class 3 have a nonzero value
for feature 6 except one or two instances with value 0. Thus, the lowest and
highest points on feature 6 of class 3 are 0 and 3 respectively, and both the
lowest and highest points of every other class are 0. Thus, the boundaries of
the intervals constructed by VFI3 are 0 and 3, since they are the only distinct
end points on feature 6. This causes an overgeneralization of values on feature
6 and the information that the instances of every class other than class 3 have
value equal to 0 for feature 6 is lost in VFI3. These kind of situations were
what motivated us to develop VFI4, which realizes such end points that are

both lowest and highest points and constructs point intervals from these points.

The concept descriptions learned by VFI4 on features 6, 10, 13, and 25 is

CHAPTER 7. VISUALIZATION OF THE LEARNED CONCEPTS 129

Domain: Dermatology,
o_Features: 34 No_Classes: 6 o_Trainers: 366
Weights: 111 1111111111111 111111111111111111
classCount[1]1=112 classCount[2]=61 classCount[3]=72
classCount[4]=49 classCount[5]=52 classCount[6]=20

Intervals of Dermatology domain:

Feature 6

VOTES FOR CLASSES: [1] [2] [3] [4] [5] [6]
If value < O then:) (-) (-) =) (-) (-)
If value = O then: 0.17 0.17 0.17 0.17 0.17 0.17
If O < value < 3 then: 0.17 0.17 0.17 0.17 0.17 0.17
If value = 3 then: 0.17 0.17 0.17 0.17 0.17 0.17
If 3 < value then:) (-) (-) =) (-) (-)

Feature 10

VOTES FOR CLASSES: [1] [2] [3] [4]1 [51 [61
If value < O then: (-) -) -) -) (=) (=)
If value = O then: 0.06(-) 0.19 0.20 0.20 0.20 0.15
If O < value < 1 then: 0.06(-) 0.19 0.20 0.20 0.20 0.15
If value = 1 then: 0.29 0.14 0.10 0.10 0.10 0.27
If 1 < value < 2 then: 0.51 0.09 (=) (-) (-) 0.39
If value = 2 then: 0.76(+) 0.05(-) (=) (-) (-) 0.20
If 2 < value < 3 then: 1.00(+)) -) -) -) (=)
If value = 3 then: 1.00(+)) -) -) -) (=)
If 3 < value then: (-) -) -) -) (=) (=)
Feature 34 (age)

VOTES FOR CLASSES: [1] [2] [3] [4]1 [51 [61
If value < O then: (-) -) -) -) (=) (=)
If value = O then: 1.00(+)) -) -) -) (=)
If O < value < 7 then: 1.00(+)) -) -) -) (=)
If value = 7 then: 0.51) -) -) (=) 0.49
If 7 < value < 8 then: 0.01(-) -) -) (=) -) 0.99(+)
If value = 8 then: 0.04(-) (=) (-) (-) 0.03(-) 0.93(+)
If 8 < value < 10 then: 0.06(-) (=) (-) (-) 0.06(-) 0.88(+)
If value = 10 then: 0.04(-) 0.09 (=) (-) 0.03(-) 0.84(+)
If 10 < value < 12 then: 0.02(-) 0.18 (=) (-) (-) 0.80(+)
If value = 12 then: 0.03(-) 0.14 (-) 0.06(-) 0.02(-) 0.75(+)
If 12 < value < 16 then: 0.04(-) 0.10 (-) 0.12 0.04(-) 0.70(+)
If value = 16 then: 0.09 0.15 0.03(-) 0.17 0.14 0.41(+)
If 16 < value < 22 then: 0.15 0.20 0.07(-) 0.22 0.25 0.11
If value = 22 then: 0.18 0.20 0.15 0.21 0.21 0.05(-)
If 22 < value < 65 then: 0.20 0.19 0.24 0.20 0.17 =)
If value = 65 then: 0.20 0.18 0.12 0.21 0.29 (-)
If 65 < value < 70 then: 0.19 0.18 (-) 0.22 0.41(+) (-)
If value = 70 then: 0.60(+) 0.09 (-) 0.11 0.21 (-)
If 70 < value < 75 then: 1.00(+)) -) -) -) (=)
If value = 75 then: 1.00(+)) -) -) -) (=)
If 75 < value then: (-) -) -) -) (=) (=)

Figure 7.3. Concept Description Learned by VFI3 including only a few features.

CHAPTER 7. VISUALIZATION OF THE LEARNED CONCEPTS 130

Domain: Dermatology,
o_Features: 34 No_Classes: 6 o_Trainers: 366
Weights: 111 1111111111111 111111111111111111
classCount[1]1=112 classCount[2]=61 classCount[3]=72
classCount[4]=49 classCount[5]=52 classCount[6]=20

Intervals of Dermatology domain:

Feature 6

VOTES FOR CLASSES: [1] [2] [3] [4]1 [51 [61
If value < O then: (-) -) -) -) (=) (=)
If (*) value = O then: 0.20 0.20 0.01(-) 0.20 0.20 0.20
If O < value < 3 then: (=) (-) 1.00(+) (=) (-) (-)
If value = 3 then:) -) 1.00(+) -) -) (=)
If 3 < value then: (-) -) -) -) (=) (=)
Feature 10

VOTES FOR CLASSES: [1] [2] [3] [4]1 [51 [61
If value < O then: (-) -) -) -) (=) (=)
If (%) value = O then: 0.04(-) 0.19 0.20 0.21 0.21 0.15
If O < value < 1 then: 0.50(+) 0.12 0.14 (=) (-) 0.24
If value = 1 then: 0.51(+) 0.11 0.07(-) (-) (-) 0.32
If 1 < value < 2 then: 0.51 0.09 (=) (-) (-) 0.39
If value = 2 then: 0.76(+) 0.05(-) -) -) (=) 0.20
If 2 < value < 3 then: 1.00(+)) -) -) -) (=)
If value = 3 then: 1.00(+)) -) -) -) (=)
If 3 < value then: (-) -) -) -) (=) (=)
Feature 13

VOTES FOR CLASSES: [1] [2] [3] [4]1 [51 [61
If value < O then: (-) -) -) -) (=) (=)
If (*) value = O then: 0.18 0.12 0.16 0.18 0.17 0.19
If O < value < 1 then: 0.03(-) 0.39 0.17 0.18 0.23 (-)
If value = 1 then: 0.04(-) 0.54(+) 0.21 0.09 0.12 (-)
If 1 < value < 2 then: 0.05(-) 0.69(+) 0.25 (=) (-) (-)
If value = 2 then: 0.05(-) 0.69(+) 0.25 (=) (-) (-)
If 2 < value then: (-) -) -) -) (=) (=)
Feature 25

VOTES FOR CLASSES: [1] [2] [3] [4]1 [51 [61
If value < O then: (-) -) -) -) (=) (=)
If (%) value = O then: 0.20 0.20 0.01(-) 0.20 0.20 0.19
If O < value < 1 then: (=) (-) 0.62(+) (-) (-) 0.38
If value = 1 then:) -) 0.81(+) -) (=) 0.19
If 1 < value < 3 then: (=) (-) 1.00(+) (=) (-) (-)
If value = 3 then:) -) 1.00(+) -) -) (=)
If 3 < value then: (-) -) -) -) (=) (=)

Figure 7.4. Concept Description Learned by VFI4 including only a few features.

CHAPTER 7. VISUALIZATION OF THE LEARNED CONCEPTS 131

shown in Figure 7.4. The point intervals constructed on linear features are
marked by a (*) like value = 0 point interval on feature 6. On this point
interval, class 3 is rejected and all other classes are equally voted by feature 6.
On all nonzero values of feature 6, class 3 is confirmed and all other classes are
rejected by feature 6. This concept is the correct inductive result drawn from
the training instances on feature 6, since training instances of classes other than
3 always have value equal to 0 for feature 6 and almost all of the instances
of class 3 have nonzero value for feature 6. This situation might frequently
happen in a dataset with continuous features getting values from a small set of
values such as the Dermatology dataset. VFI4 constructs point intervals also
for zero values of feature 10, 13, and 25 as shown in Figure 7.4. Feature 10
is a distinguishing feature for class 1 whereas feature 25 distinguishes class 3

among other classes.

Lastly, Figure 7.5 shows the concept description learned by VFI5 on fea-
tures 1, 6, 15, and 20. Since boundaries of each interval are point intervals in
VFI5, the point intervals between each range interval are shown. For example,
every possible value is a point interval on feature 20, so there is no possible
value that an instance can take for feature 20 in the range intervals. Therefore,
it is more meaningful to visualize the concept description learned for Derma-
tology dataset by VFI5 than that of the other versions. Looking at these point
intervals, we say that nonzero values confirm class 1 and reject all the others
and zero value reject class 3 and is indifferent for all other classes. The situa-
tion that was lost in VFI1 and VFI3 on feature 6 is also now observable with
the point intervals on values 0 and 3. The nonzero values of feature 15 confirm
class 5 and rejects all other classes, whereas zero value of feature 15 rejects

class 5.

The concept descriptions are learned by classifiers in order to be used in
classification of a new instance. The performance of a classifier is measured by
the ratio of the number of correctly classified test instances over total number
of test instances. What is as much important as the classification accuracy is
the explanation ability of the classification process. Does the classifier work
like a black box or can it explain why and how it came up with the resulting

classification? VFT classifiers can explain why and how the new instance is

CHAPTER 7. VISUALIZATION OF THE LEARNED CONCEPTS 132

Domain: Dermatology,
o_Features: 34 No_Classes: 6 o_Trainers: 366
Weights: 111 1111111111111 111111111111111111
classCount[1]1=112 classCount[2]=61 classCount[3]=72
classCount[4]=49 classCount[5]=52 classCount[6]=20

Intervals of Dermatology domain:

Feature 1

VOTES FOR CLASSES: [1] [2] [3] [4] [51 [61
If value < O then: (-) -) -) -) (=) (=)
If (%) value = O then: 0.15 (-) 0.23 (-) 0.63(+) (-)
If O < value < 1 then:) (-) (-) =) (-) (-)
If (*) value = 1 then: 0.06(-) 0.08(-) 0.09 0.21 0.46(+) 0.10
If 1 < value < 3 then: 0.16 0.15 0.19 0.18 0.12 0.21
If (*) value = 3 then: 0.29 0.29 0.16 0.10 0.05(-) 0.12
If 3 < value < 0 then:) (-) (-) =) (-) (-)
Feature 6

VOTES FOR CLASSES: [1] [2] [3] [4] [51 [61
If value < O then: (-) -) -) -) (=) (=)
If (*) value = O then: 0.20 0.20 0.01(-) 0.20 0.20 0.20
If O < value < 3 then: (=) (-) 1.00(+) (=) (-) (-)
If (*) value = 3 then:) -) 1.00(+) -) -) -)
If 3 < value < 0 then:) (-) (-) =) (-) (-)

Feature 15

VOTES FOR CLASSES: [1] [2] [3] [4] [51 [61
If value < O then: (-) -) -) -) (=) (=)
If (*) value = O then: 0.20 0.20 0.20 0.20 (-) 0.20
If O < value < 1 then:) (-) (-) =) (-) (-)
If (*) value = 1 then: (-) (-) (-) (=) 1.00(+) (-)
If 1 < value < 2 then:) (-) (-) =) (-) (-)
If (*) value = 2 then: (=) (-) 0.06(-) (-) 0.94(+) (-)
If 2 < value < 3 then:) (-) (-) =) (-) (-)
If (*) value = 3 then: (-) (-) (-) (=) 1.00(+) (-)
If 3 < value < 0 then:) (-) (-) =) (-) (-)
Feature 20

VOTES FOR CLASSES: [1] [2] [3] [4] [51 [61
If value < O then: (-) -) -) -) (=) (=)
If (*) value = O then: 0.01(-) 0.21 0.21 0.21 0.19 0.18
If O < value < 1 then:) (-) (-) =) (-) (-)
If (%) value = 1 then: 0.49 (-) (-) (-) 0.14 0.37
If 1 < value < 2 then:) (-) (-) =) (-) (-)
If (%) value = 2 then: 0.97(+) -) -) -) 0.03(-) -)
If 2 < value < 3 then:) (-) (-) =) (-) (-)
If (%) value = 3 then: 1.00(+)) -) -) -) (=)
If 3 < value < 0 then:) (-) (-) =) (-) (-)

Figure 7.5. Concept Description Learned by VFI5 including only a few features.

CHAPTER 7. VISUALIZATION OF THE LEARNED CONCEPTS 133

classified as the predicted class in terms of the individual votes of each feature
given for that class. Looking at these individual votes of each feature, with
what level of confidence that feature confirms (high votes) or rejects (low votes)

the final prediction is obvious.

An example classification of a new instance (patient) drawn from the Der-
matology domain is given in Figure 7.6. When these comparisons were done
we have used 250 training instances to learn the concept descriptions. In Fig-
ure 7.6, first the feature values of the instance (properties of the patient such
as the age of this patient is 34) and then the individual votes of each feature
distributed among classes is shown. These votes are then summed up to get
the total vote vector, from which the class with the highest vote is predicted
as the class of the new instance. The VFI1 classifier predicts class 1 for this
instance, which was the same as the human expert’s diagnosis. This is a very
confident prediction for VFI1, because the next highest vote is nearly the half
of the vote received by the predicted class. The individual votes for class 1 are
either (4) or neutral except feature 14, moreover the (+4) votes almost always
appear for class 1 and there is only one (4) received by class 3 from one fea-
ture. This table of votes shown in Figure 7.6 is a very good explanation for
the classification performed in the sense that everything is open to the user.
For example, feature 20 (clubbing of the rete ridges) gives a vote of 0.98 for
class 1 (note that votes are normalized such that the sum of votes for each
class is 1.0), meaning that feature 20 says that this instance must be of class
1 and reflects its individual confirmation in the total vote. At the same time,
feature 20 rejects all other classes (all other classes are ()), meaning that this
instance can not be of those classes other than class 1. Feature 34 (age) with
value equal to 34 is negative for pityriasis rubra pilaris (class 6) and neutral
for all other classes. Looking only at this feature does not say anything about

the class of the instance, but still it does not reject the first class.

The classification of the VFI1 classifier may not be that much confident
for all the time. Let us look at another example classification in Figure 7.7.
The feature values, the individual votes of features, and the total votes are
shown in the figure. The instance is predicted as class 2, which is the actual

class predicted by the human expert. But the next highest vote, received by

CHAPTER 7. VISUALIZATION OF THE LEARNED CONCEPTS 134

Feature values of test instance 1:
F[1]: 2 F[2]: 3 F[3]: 3 F[4]: 3 F[5]:

3 F[6]: o F[7]: o0 F[8]: 0O

F[9]: 3 F[10]:3 F[11]:0 F[12]:0 F[13]1:0 F[14]1:0 F[15]:0 F[16]:0
F[17]1:3 F[18]:2 F[19]:2 F[20]:3 F[21]1:3 F[22]:3 F[23]:1 F[24]:3
F[25]1:0 F[26]1:0 F[27]1:0 F[28]:0 F[29]1:0 F[30]:0 F[31]:0 F[32]:1
F[33]:0 F[34]:34

Classes [1] [2] [3] [4] [5] [6]
Votes of Feature[1]: 0.16 0.16 0.17 0.18 0.15 0.18
Votes of Feature[2]: 0.36 0.27 0.15 0.07(-) 0.05(-) o0.10
Votes of Feature[3]: 0.34 0.05(-) 0.38 0.07(-) o0.10 0.05(-)
Votes of Featurel[4]: 0.13 0.21 0.35 0.03(-) 0.28 0.00(-)
Votes of Featurel[5]: 0.21 0.01(-) 0.52(+) 0.26 (=) (=)
Votes of Feature[6]: 0.17 0.17 0.13 0.17 0.17 0.17
Votes of Featurel[7]: 0.20 0.21 0.21 0.21 0.17 0.01(-)
Votes of Feature[8]: 0.17 0.17 0.13 0.17 0.17 0.17
Votes of Featurel[9]: 0.47 0.01(-) (=) (=) 0.01(-) 0.51
Votes of Featurel[10]: 0.87(+) 0.03(-) (=) (=) (=) 0.10
Votes of Featurel[11]: 0.15 0.19 0.20 0.20 0.20 0.07(-)
Votes of Feature[12]: 0.17 0.17 0.13 0.17 0.17 0.17
Votes of Feature[13]: 0.17 0.14 0.17 0.17 0.17 0.18
Votes of Featurel[14]: 0.07(-) 0.10 0.21 0.20 0.21 0.21
Votes of Feature[15]: 0.20 0.20 0.19 0.20 0.01(-) 0.20
Votes of Featurel[16]: 0.47 0.04(-) 0.01(-) 0.01(-) 0.38 0.10
Votes of Featurel[17]: 0.20 0.16 0.25 0.06(-) 0.26 0.06(-)
Votes of Feature[18]: 0.28 0.02(-) 0.06(-) 0.13 0.29 0.22
Votes of Feature[19]: 0.24 0.14 0.17 0.10 0.13 0.22
Votes of Feature[20]: 0.98(+)) (=) (=) 0.02(-) (=)
Votes of Featurel[21]: 0.62(+) 0.01(-) (=) (=) 0.37 0.00(-)
Votes of Featurel[22]: 0.63(+) 0.07(-) 0.07(-) 0.07(-) o0.07(-) o0.07(-)
Votes of Feature[23]: 0.51(+) 0.12 0.09 0.09 0.10 0.09
Votes of Feature[24]: 0.48(+) 0.08(-) 0.22 0.08(-) 0.08(-) 0.08(-)
Votes of Feature[25]: 0.17 0.17 0.14 0.17 0.17 0.17
Votes of Feature[26]: 0.10 0.19 0.17 0.15 0.19 0.19
Votes of Feature[27]: 0.20 0.20 0.01(-) 0.20 0.20 0.20
Votes of Feature[28]: 0.37 0.02(-) 0.14 0.01(-) 0.31 0.16
Votes of Feature[29]: 0.18 0.18 0.12 0.18 0.18 0.18
Votes of Feature[30]: 0.19 0.19 0.19 0.19 0.19 0.05(-)
Votes of Feature[31]: 0.20 0.20 0.20 0.20 0.20 0.02(-)
Votes of Feature[32]: 0.14 0.18 0.10 0.18 0.21 0.18
Votes of Feature[33]: 0.20 0.20 0.00(-) 0.20 0.20 0.20
Votes of Featurel[34]: 0.20 0.21 0.22 0.19 0.17 (=)

Total Votes: 10.22 4.47 5.08 4.33 5.57 4.32

Prediction: 1 actual class : 1

Figure 7.6. A correct classification of a given test instance (patient) drawn
from the Dermatology domain by the VFI1 classifier.

CHAPTER 7. VISUALIZATION OF THE LEARNED CONCEPTS 135

Feature values of test instance 9:
F[1]: 2 F[2]: 2 F[3]: 2 F[4]: 1 F[5]: 0 F[6]: 0 F[7]: 0 F[8]:

0

F[9]: 0 F[10]:0 F[11]:0 F[12]:0 F[13]1:0 F[14]1:1 F[15]:0 F[16]:1
F[17]1:2 F[18]:0 F[19]:0 F[20]:0 F[21]1:0 F[22]:0 F[23]:0 F[24]:0
F[25]1:0 F[26]1:0 F[27]1:0 F[28]:2 F[29]1:0 F[30]:0 F[31]:0 F[32]:1
F[33]:0 F[34]:34

Classes [1] [2] [3] [4] [5] [6]
Votes of Feature[1]: 0.16 0.16 0.17 0.18 0.15 0.18
Votes of Feature[2]: 0.17 0.19 0.16 0.17 0.12 0.19
Votes of Feature[3]: 0.23 0.13 0.22 0.17 0.12 0.14
Votes of Feature[4]: 0.17 0.18 0.12 0.18 0.13 0.21
Votes of Feature[5]: 0.16 0.19 0.12 0.13 0.20 0.20
Votes of Feature[6]: 0.17 0.17 0.13 0.17 0.17 0.17
Votes of Featurel[7]: 0.19 0.19 0.19 0.19 0.18 0.06(-)
Votes of Feature[8]: 0.17 0.17 0.13 0.17 0.17 0.17
Votes of Feature[9]: 0.07(-) 0.22 0.23 0.23 0.22 0.04(-)
Votes of Feature[10]: 0.08(-) 0.19 0.20 0.20 0.20 0.15
Votes of Featurel[11]: 0.14 0.19 0.20 0.20 0.20 0.07(-)
Votes of Feature[12]: 0.17 0.17 0.13 0.17 0.17 0.17
Votes of Feature[13]: 0.17 0.13 0.17 0.18 0.17 0.18
Votes of Feature[14]: 0.32 0.28 0.10 0.11 0.10 0.10
Votes of Feature[15]: 0.20 0.20 0.19 0.20 0.01(-) 0.20
Votes of Feature[16]: 0.21 0.11 0.10 0.10 0.25 0.23
Votes of Feature[17]: 0.17 0.17 0.17 0.16 0.16 0.17
Votes of Feature[18]: 0.14 0.22 0.20 0.18 0.13 0.12
Votes of Feature[19]: 0.04(-) 0.22 0.16 0.24 0.28 0.07(-)
Votes of Feature[20]: 0.02(-) 0.20 0.20 0.20 0.19 0.19
Votes of Feature[21]: 0.01(-) 0.22 0.24 0.24 0.04(-) 0.24
Votes of Feature[22]: 0.13 0.17 0.17 0.17 0.17 0.17
Votes of Feature[23]: 0.09 0.17 0.18 0.18 0.18 0.18
Votes of Feature[24]: 0.16 0.17 0.17 0.17 0.17 0.17
Votes of Feature[25]: 0.17 0.17 0.14 0.17 0.17 0.17
Votes of Feature[26]: 0.09 0.20 0.16 0.16 0.20 0.20
Votes of Feature[27]: 0.20 0.20 0.01(-) 0.20 0.20 0.20
Votes of Feature[28]: 0.00(-) 0.28 0.19 0.30 0.06(-) 0.18
Votes of Feature[29]: 0.18 0.18 0.12 0.18 0.18 0.18
Votes of Feature[30]: 0.19 0.19 0.19 0.19 0.19 0.04(-)
Votes of Feature[31]: 0.20 0.20 0.20 0.20 0.20 0.01(-)
Votes of Feature[32]: 0.14 0.19 0.09 0.18 0.22 0.17
Votes of Feature[33]: 0.20 0.20 0.00(-) 0.20 0.20 0.20
Votes of Featurel[34]: 0.21 0.21 0.22 0.19 0.16 (=)

Total Votes: 5.12 6.44 5.38 6.26 5.87 5.13

Prediction: 2 actual class : 2

Figure 7.7. Another correct (not that confident as the previous classification)
classification of a given test instance (patient) drawn from the Dermatology

domain by the VFI1 classifier.

CHAPTER 7. VISUALIZATION OF THE LEARNED CONCEPTS 136

class 4, is not much different than the vote of class 2. Thus, this prediction is
in fact not that much confident because the classifier chooses one class rather
than the other depending on a very slight difference in the votes. If we look
at the individual votes of each feature, we see that there is no class receiving
a (4) from any feature; that is, no feature can be exactly sure about which
class to predict. There are some () classes and mostly the features are neutral
about the classes. When we compare the feature votes of class 2 with that of
class 4, we do not find votes much different than each other except the votes
of especially feature 14. Since the votes of this feature support class 2 rather
than class 4, it affects the final prediction to be class 2. The difference between
votes for these two classes is the highest in feature 14, so feature 14 with value
1 seems to be the most important feature in distinguishing between class 2
and class 4. Qur human expert admitted that she also encounters the same
problem of distinguishing between class 2 and class 4 as encountered by the
VFTI classifier. In this classification (Figure 7.7), VFI1 classified the instance

correctly, but the next instance will be misclassified by the VFI1 classifier.

The classification information of a test instance misclassified by VFI1 is
shown in Figure 7.8. The feature values of the instance are shown at first and
then the individual feature votes are displayed. The prediction of the classifier
is class 4 (pityriasis rosea) whereas the actual prediction of the human expert
for this instance was class 2 (seboreic dermatitis). Class 4 received the highest
vote, but class 2 received a vote very close to the vote of class 4. Thus, this
prediction is in fact not much confident because the classifier chooses one class
rather than the other depending on a very slight difference in the votes. If
we look at the individual votes of each feature, we see that there is no class
receiving a (4) from any feature; that is, no feature can be exactly sure about
which class to predict. There are some () classes and mostly the features are
neutral (o) about the classes. When we compare the feature votes of class 2
with that of class 4, we do not find votes much different than each other except
the votes of feature 4 (itching) which votes 0.08 for class 2 and 0.29 for class 4
and feature 14 (PNL infiltrate), which votes 0.28 for class 2 and 0.11 for class
4, which is the predicted class. This means that only features 4 and 14 can be
more useful to differentiate between class 4 and 2 than other features do but

in different directions. If feature 14 had been given the opportunity to have

CHAPTER 7. VISUALIZATION OF THE LEARNED CONCEPTS 137

Feature values of test instance 3:
F[1]: 2 F[2]: 1 F[3]: 1 F[4]: 0 F[5]: 0 F[6]: 0 F[7]1: 0 F[8]:

0

F[9]: 1 F[10]:0 F[11]:0 F[12]:0 F[13]1:0 F[14]1:1 F[15]:0 F[16]:1
F[17]1:1 F[18]:0 F[19]:1 F[20]:0 F[21]1:0 F[22]:0 F[23]:0 F[24]:0
F[25]1:0 F[26]:0 F[27]1:0 F[28]:2 F[29]1:0 F[30]:0 F[31]:0 F[32]:2
F[33]:0 F[34]:35

Classes [1] [2] [3] [4] [5] [6]
Votes of Feature[1]: 0.16 0.16 0.17 0.18 0.15 0.18
Votes of Feature[2]: 0.09 0.09 0.17 0.20 0.30 0.14
Votes of Feature[3]: 0.11 0.19 0.11 0.20 0.20 0.20
Votes of Featurel[4]: 0.20 0.08 0.03(-) 0.29 0.10 0.30
Votes of Feature[5]: 0.16 0.19 0.12 0.13 0.20 0.20
Votes of Feature[6]: 0.17 0.17 0.13 0.17 0.17 0.17
Votes of Featurel[7]: 0.19 0.19 0.19 0.19 0.18 0.06(-)
Votes of Feature[8]: 0.17 0.17 0.13 0.17 0.17 0.17
Votes of Feature[9]: 0.26 0.12 0.11 0.11 0.12 0.29
Votes of Feature[10]: 0.08(-) 0.19 0.20 0.20 0.20 0.15
Votes of Featurel[11]: 0.14 0.19 0.20 0.20 0.20 0.07(-)
Votes of Feature[12]: 0.17 0.17 0.13 0.17 0.17 0.17
Votes of Feature[13]: 0.17 0.13 0.17 0.18 0.17 0.18
Votes of Feature[14]: 0.32 0.28 0.10 0.11 0.10 0.10
Votes of Feature[15]: 0.20 0.20 0.19 0.20 0.01(-) 0.20
Votes of Feature[16]: 0.21 0.11 0.10 0.10 0.25 0.23
Votes of Feature[17]: 0.13 0.15 0.10 0.23 0.13 0.26
Votes of Feature[18]: 0.14 0.22 0.20 0.18 0.13 0.12
Votes of Feature[19]: 0.13 0.15 0.17 0.20 0.16 0.18
Votes of Feature[20]: 0.02(-) 0.20 0.20 0.20 0.19 0.19
Votes of Feature[21]: 0.01(-) 0.22 0.24 0.24 0.04(-) 0.24
Votes of Feature[22]: 0.13 0.17 0.17 0.17 0.17 0.17
Votes of Feature[23]: 0.09 0.17 0.18 0.18 0.18 0.18
Votes of Feature[24]: 0.16 0.17 0.17 0.17 0.17 0.17
Votes of Feature[25]: 0.17 0.17 0.14 0.17 0.17 0.17
Votes of Feature[26]: 0.09 0.20 0.16 0.16 0.20 0.20
Votes of Feature[27]: 0.20 0.20 0.01(-) 0.20 0.20 0.20
Votes of Feature[28]: 0.00(-) 0.28 0.19 0.30 0.06(-) 0.18
Votes of Feature[29]: 0.18 0.18 0.12 0.18 0.18 0.18
Votes of Feature[30]: 0.19 0.19 0.19 0.19 0.19 0.04(-)
Votes of Feature[31]: 0.20 0.20 0.20 0.20 0.20 0.01(-)
Votes of Feature[32]: 0.18 0.16 0.17 0.17 0.15 0.17
Votes of Feature[33]: 0.20 0.20 0.00(-) 0.20 0.20 0.20
Votes of Featurel[34]: 0.21 0.21 0.22 0.19 0.16 0.00(-)

Total Votes: 5.23 6.09 5.08 6.34 5.57 5.69

Prediction: 4 actual class : 2

Figure 7.8. An incorrect classification of a given test instance (patient) drawn
from the Dermatology domain by the VFI1 classifier.

CHAPTER 7. VISUALIZATION OF THE LEARNED CONCEPTS 138

more voting power than the other features, it might have changed the final
prediction. The lesson we can draw from this misclassification is that feature

14 with value 1 is important to differentiate between class 2 and 4.

To differentiate between class 2 and 4 is also a hard task for the human
expert. We showed her the feature values of the instance and asked her to
make the classification again looking at these feature values. She said that to
make a diagnosis for this instance is really tough and problematic. She guessed
this instance is either of class 2 or class 4, waited for a while, and after looking
at feature 26 (disappearance of the granular layer), which does not appear in
this patient, she said it seems more like class 2 but may also be class 4. But
the votes of feature 26 for both classes are nearly the same, which means that
although the doctor says that the lower values of feature 26 is a sign for class
4, the up-to-now training instances only slightly show this. As a result, it is
not surprising for VFT classifiers to make misclassification in class 2 and class 4
instances in the Dermatology dataset because it is also difficult for the doctor to
differentiate between them. For example, with this instance, the doctor could
not pick up good differentiating features confirming class 2. The close total
votes received by these two classes also show this difficulty. One advantage of
VFT classifiers is that one can see the probability of each class as well as the
predicted class, such as the total votes in Figure 7.8 tell that the prediction is

class 4 but the next possible class is 2 with very similar probability.

The explanations generated by VFT classifiers give valuable information
about the classifications such as the next possible class as well as the predicted
class, the features confirming which classes and how much they confirm, the
features rejecting which classes. This kind of information might help the hu-
man expert in making new classifications especially if the human expert is not
experienced enough. Although the human expert collecting the data for us is
very experienced in this field, our classifier corrected two of her misclassifica-
tions, that made her change her previous classification. What 1 say in this
situation is that “VFT classifiers saved one patient”. The classification of one
of the instances is shown in Figure 7.9. The concept description used to clas-
sify this instance was learned by 365 training instances. The VFI1 classifier

predicts class 1 with high confidence (total vote = 8.33), but the actual class

CHAPTER 7. VISUALIZATION OF THE LEARNED CONCEPTS 139

Feature values of test instance 1:
F[1]: 2 F[2]: 2 F[3]: 2 F[4]: 3 F[5]: 2 F[6]: 0 F[7]: 0 F[8]:

0

F[9]: 1 F[10]:1 F[11]:0 F[12]:0 F[13]1:0 F[14]1:1 F[15]:0 F[16]:0
F[17]1:1 F[18]:1 F[19]:1 F[20]:1 F[21]1:1 F[22]:1 F[23]:1 F[24]:1
F[25]1:0 F[26]:2 F[27]1:0 F[28]:0 F[29]1:0 F[30]:0 F[31]:0 F[32]:3
F[33]:0 F[34]:40

Classes: [1] [2] [3] [4] [5] [6]
Votes of Feature[1]: 0.16 0.16 0.17 0.17 0.14 0.18
Votes of Feature[2]: 0.20 0.21 0.16 0.15 0.09 0.19
Votes of Feature[3]: 0.26 0.12 0.25 0.15 0.10 0.12
Votes of Featurel[4]: 0.11 0.18 0.38 0.03(-) 0.29 0.01(-)
Votes of Feature[5]: 0.19 0.07(-) 0.34 0.27 0.06(=) 0.08(-)
Votes of Feature[6]: 0.16 0.16 0.19 0.16 0.16 0.16
Votes of Featurel[7]: 0.20 0.20 0.20 0.20 0.18 0.02(-)
Votes of Feature[8]: 0.16 0.16 0.21 0.16 0.16 0.16
Votes of Feature[9]: 0.28 0.11 0.08 0.08(-) o0.10 0.36
Votes of Feature[10]: 0.39 0.12 0.10 0.08(-) 0.08(-) 0.23
Votes of Feature[11]: 0.14 0.18 0.19 0.19 0.19 0.10
Votes of Feature[12]: 0.16 0.16 0.21 0.16 0.16 0.16
Votes of Feature[13]: 0.17 0.15 0.16 0.17 0.17 0.17
Votes of Featurel[14]: 0.32 0.34 0.07(-) 0.10 0.07(-) o0.11
Votes of Feature[15]: 0.20 0.20 0.19 0.20 0.02(-) 0.20
Votes of Feature[16]: 0.21 0.11 0.11 0.14 0.23 0.20
Votes of Feature[17]: 0.15 0.17 0.14 0.21 0.12 0.21
Votes of Feature[18]: 0.16 0.15 0.16 0.16 0.17 0.21
Votes of Feature[19]: 0.12 0.16 0.17 0.20 0.15 0.20
Votes of Feature[20]: 0.47(+) 0.08 0.08 0.08 0.12 0.15
Votes of Feature[21]: 0.27 0.13 0.09 0.09 0.31 0.13
Votes of Featurel[22]: 0.61(+) 0.08(-) 0.07(-) 0.07(-) 0.08(-) o0.07(-)
Votes of Feature[23]: 0.45(+) 0.18 0.08(-) 0.08(-) 0.09 0.12
Votes of Feature[24]: 0.60(+) 0.08(-) 0.08(-) 0.09 0.08(-) 0.08(-)
Votes of Feature[25]: 0.19 0.19 0.03(-) 0.19 0.19 0.19
Votes of Feature[26]: 0.50(+) 0.07(-) 0.17 0.12 0.07(-) o0.07(-)
Votes of Feature[27]: 0.20 0.20 0.01(-) 0.20 0.20 0.20
Votes of Feature[28]: 0.15 0.17 0.16 0.18 0.16 0.18
Votes of Featurel[29]: 0.20 0.20 0.01(-) 0.20 0.20 0.20
Votes of Feature[30]: 0.19 0.19 0.19 0.19 0.19 0.06(-)
Votes of Feature[31]: 0.20 0.19 0.20 0.20 0.20 0.02(-)
Votes of Feature[32]: 0.16 0.15 0.26 0.13 0.19 0.11
Votes of Feature[33]: 0.20 0.20 0.00(-) 0.20 0.20 0.20
Votes of Featurel[34]: 0.20 0.19 0.23 0.19 0.17 0.01(-)

Total Votes: 8.33 5.42 5.15 5.17 5.10 4.83

Prediction: 1 actual class : 2

Figure 7.9. A misclassification of an instance drawn from the Dermatology
domain done by the human expert and corrected by the VFI1 classifier.

CHAPTER 7. VISUALIZATION OF THE LEARNED CONCEPTS 140

told by the doctor was class 2, which received a total vote of 5.42. There
are features confirming class 1 but there are no features confirming class 2.
Moreover, there are features rejecting class 2. These individual votes make
up a significant difference in the votes of these two classes. When we showed
the human expert this classification results pointing the total vote received by
class 1, she changed her mind and approved the classification of VFI1. This
was a very important result achieved by the VFI classifiers, since the computer
corrected the human expert’s fault by learning from the previous patients with

known diagnoses.

In this chapter, we have shown that VFI classifiers do not work like black
boxes and can explain why and how it came up with the resulting classifica-
tion in a comprehensible way to human. The human expert agrees with the
information visualized in the concept descriptions learned by VFT classifiers.
The classification explanations do not only display only the prediction but also

how certain that prediction is compared to other classes.

Chapter 8

Conclusions and Future Work

We have presented several new multi-concept learning algorithms called Voting
Feature Intervals (VFT) algorithms. The VFT classification algorithms are non-
incremental supervised inductive learning algorithms that learn the concept
descriptions in the form of sets of feature intervals on each feature dimension
from a set of preclassified examples provided by a teacher. A feature interval
represents a set of classes with its individual votes and the classification of a
new instance is determined by the sum of these individual votes distributed
by each feature. The features might have equal voting power or some rele-
vant features might have been given a higher voting power than some other
irrelevant, features. The relevance information of features can be learned by a
feature weight learning method which is also developed and applied to the VFI

classifiers in this thesis.

Representing a concept separately on each feature dimension allows faster
classification than the nearest neighbor and the decision tree induction algo-
rithms. The classification in the VFI classifiers has been shown to be much
much faster than that of the well-known 1-NN algorithm. Moreover, the clas-
sification in the VFI classifiers are also faster than that of the NBCON classifier
on the average. This separate representation also enables a natural and effec-
tive method of handling missing (unknown) feature values for which a value
should be provided to replace in both the nearest neighbor and the decision

tree induction algorithms. The experiments on artificially generated datasets

141

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 142

containing missing feature values have shown that the method of simply ig-
noring only the feature with the unknown value used in all feature projection
based methods and the Naive Bayesian classifier results in higher accuracies
than those used by the 1-NN and C4.5 algorithms. Another advantage of the
separate knowledge representation of the concept description is that the nor-
malization of feature values to a same range for all the features is not required

as required in the case of the nearest neighbor algorithm.

The knowledge representation scheme based on feature projections has been
used in several other learning methods [32, 73, 7, 8] which have generalized the
feature projections of the training instances in different ways. The experiments
on real-world datasets have shown that the VFT classifiers achieve the highest
classification accuracies among all these feature projection based methods. On
the other hand, the VFT classifiers have not always achieved higher accuracies
than the well-known 1-NN and C4.5 algorithms. However, the VFT classifiers
have been usually more successful than the Naive Bayesian classifier assuming
normal distribution for linear features (NBCN), which is also a very classical

classifier.

In these performance comparisons, we have used the unweighted VFT clas-
sifiers where each feature has equal voting power. We have also developed
weight learning genetic algorithms that learn the optimum feature relevance
weights to maximize the classification accuracy of the given classifier. The
weight learning experiments on some real-world datasets have shown that it is
possible to have significant increase in the classification accuracy of the VFI
classifiers. However, one deficiency of genetic algorithms is that they are slow,
therefore we could not have applied them to learn weights for large datasets.
As a future work, other feature weight learning methods [76] might be used to

learn feature weights for the VFT classifiers.

We have proposed and developed a new crossover operator called continuous
uniform crossover (CUCQO) to be used in these weight learning genetic algo-
rithms and compared it with three common crossover operators by using them
in genetic algorithms that learn weights for the nearest neighbor algorithm
[21]. Experiments have shown that CUCO is generally better than the other

crossover operators. Nevertheless, the classification accuracies of the weighted

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 143

nearest neighbor algorithm using different crossover operators are close to each

other.

The effect of the presence of irrelevant features in the datasets have been
investigated and the experiments have shown that the classification accuracy of
the VFI classifiers are not affected much with the addition of irrelevant features.
On the other hand, the performance of other feature projection based methods
and the nearest neighbor algorithm degrade in the presence of irrelevant fea-
tures. However, the VFT classifiers are affected negatively when the datasets
contain noisy feature values. The negative effect of noisy feature values on
the classification performance of the VFT classifiers might be investigated and

noise-tolerant versions might be developed for further research.

What is as much important as how accurate and/or fast a classifier performs
is the understandability of both the concept description learned and the classi-
fication process. For this purpose, we have visualized the concept description in
the form of sets of intervals on each feature dimension where an interval either
confirms, or rejects, or does none of these two for some class in the domain on
each feature. Our human expert has agreed with the information visualized
for the Dermatology dataset. Another useful understandability property of the
VFT classifiers is the explanation ability of the VFT classifiers in classification.
VFT classifiers do not work like a black box and can explain why and how they
came up with the resulting classification in a comprehensible way to human.
The explanations generated by VFT classifiers give valuable information about
the classifications such as the next possible class as well as the predicted class,
the features confirming which classes and how much they are confident with
their confirmation, and the features rejecting which classes. This kind of infor-
mation might help the human expert in making new classifications especially

if the human expert is not experienced enough.

Other than those specified above, we have another direction for future work.
The individual voting of features is common in all feature projection based
learning methods where some of them use single-class voting such as the CFP
and the FII algorithms [7, 32] and some others use multi-class voting such as

the COFT and the VFT algorithms [22, 73]. The sum of the votes distributed to

classes in the unweighted VFT algorithm is equal to 1 and the votes are positive

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 144

real values. Some features give a vote 0 or some value which we visualized as
() meaning a rejection and some features give such a vote that is visualized by
(4) meaning a confirmation in Chapter 7. As one future research direction, the
votes we visualized as () might get a negative vote from that feature, which will
provide that feature with more rejection power. As another research direction,
these (+) and () evaluations might be used to learn feature weights that differ
among intervals of that feature for the VFT classifiers; that is, a feature would
have different weights depending on its intervals. Thus, each feature-interval
pair might have a weight related to the (4) or () evaluation of the interval.
This is meaningful because the intervals that have (4) and/or () evaluations
for classes are significantly differentiating one class from another, thus those
intervals are more informative than the intervals that distribute equal votes to

all classes.

Another further research might be carried on the point intervals constructed
on nominal feature dimensions. Since the values of nominal features have no
relation with each other, unlike the linear ordering relation between the values
of a linear feature, all intervals of a nominal feature are point intervals. A point
interval is defined on a singleton set of values in the VFT algorithms described
in this thesis. Instead of constructing point intervals from all distinct values
that a nominal feature can take on, some two or more point intervals
might be combined into a multi-point interval. Then, this multi-point interval
would be defined on a subset of values instead of a singleton set of values. This
combination can be determined by the class distributions of the point intervals
to be combined. For example, it might be meaningful and efficient to combine
two point intervals which have very similar class distributions. However, the
combination of point intervals would not be correct if the nominal feature is a

boolean feature.

The main advantages of the VFI classifiers, which learns the concept de-
scriptions in the form of sets of intervals separately on each feature and uses a

voting scheme in classification, can be summarized as follows:

e highest classification accuracies among all other feature projection based

methods such as the CFP, COFI, 1-NNFP, and FII. algorithms

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 145

faster classification than other well-known classifiers

e visualization of the learned concept description and the explanation abil-

ity of the classification in a comprehensible way to humans

e separate consideration of features yields a natural and effective way of
handling unknown feature values, which is a common advantage of all

feature projection based methods

e separate consideration of features does not require any normalization of

feature values to a same range
e robust to the presence of irrelevant features in the domain

e allows incorporation of feature weights from external sources

The major disadvantage of this representation is that concept descriptions
involving a conjunction between two or more features can not be represented.
The feature projection based algorithms are not applicable to domains where
all of the concept descriptions overlap, or domains in which concept descrip-
tions are nested. Instead, they are applicable to concepts where each feature,
independent of other features, can contribute to the classification of an in-
stance. In fact, this is the nature of the most real-world datasets. Holte has
pointed out that the most datasets in the UCI repository are such that, for
classification, their features can be considered independently of each other [36].
Also Kononenko claimed that in the data used by human experts there are no

strong dependencies between features because features are properly isolated

and defined [44].

This thesis has completed the work on feature projection based learning al-
gorithms. The CFP, COFI, 1-NNFP, FII., and VFT classification algorithms all
learn the concept descriptions separately on each feature by generalizing the
feature projections of the training examples and use a voting scheme where
each feature participates in the classification by its individual vote. This thesis
wraps up all these feature projection based learning algorithms into a unifying
formalism. In this formalism, the algorithms are categorized into Single-Class

vs Multi-Class according to whether the basic unit of representation carries

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 146

classification information for a single class or for all classes. Another dimen-
sion according to which the algorithms are categorized is whether the training
examples are processed in an incremental or non-incremental manner. Thus,
this thesis has presented a wide comparison between all feature projection

based classification learning algorithms.

Bibliography

1]

D.W. Aha, Incremental, Instance Based lLearning of Independent and
Graded Concept Descriptions, In Proceedings of the Sizth International
Workshop Machine Learning, 387 391, Ithaca, NY: Morgan Kaufmann,
1989.

D.W. Aha, A Study of instance based algorithms for supervised learning
tasks: Mathematical, empirical, and psychological evaluations. Doctoral

dissertation, Department of Information & Computer Science, University

of California, Trvine, 1990.

D.W. Aha, Tolerating Noisy, Irrelevant and Novel Attributes in Instance
Based Learning Algorithms, International Journal of Man Machine Stud-
res, 36:267 287, 1992.

D.W. Aha and D. Kibler, Noise Tolerant Instance Based Learning Algo-
rithms, In Proceedings of the Fleventh International Joint Conference on

Artificial Intelligence, 794 799, Detroit, MI: Morgan Kauffman, 1989.

D.W. Aha, D. Kibler and M.K. Albert, Instance Based TLearning Algo-
rithms, Machine Learning, 6:37 66, 1991.

D. W. Aha and R. I.. Bankert, Feature selection for case based classifica-
tion of cloud types: An empirical comparison. In D. Aha (Ed.) Case Based
Reasoning: Papers from the 1994 Workshop (TR WS 94 01) Menlo Park,
CA: AAAT Press, 1994.

A. Akkus. Batch Learning of Disjoint Feature Intervals. Bilkent University,
Dept. of Computer Engineering and Information Science, MSc. Thesis,

1996.

147

BIBLIOGRAPHY 148

8]

[10]

[11]

[12]

[13]

[14]

[15]

A. Akkus and H. A. Guvenir, k Nearest Neighbor Classification on Fea-
ture Projections, In Proceedings of the 13! International Conference on
Machine Learning. Lorenza Saitta (Ed.), Bari, Italy: Morgan Kaufmann,
12 19, 1996.

M.K. Albert and D.W. Aha, Analyses of Instance Based Learning Al-
gorithms, In Proceedings of the Ninth National Conference on Artificial
Intelligence, 553 HH8, 1991.

H. Almuallim and T.G. Dietterich, Learning with Many Irrelevant Fea-
tures, In Proceedings of the Ninth National Conference on Artificial Intel-
ligence, 547 552, 1991.

D. Angluin and P. Laird, Learning from Noisy Examples, Machine Learn-
ing, 2:343 370, 1988.

P. Auer, R. C. Holte andW. Maass, Theory and Applications of Agnostic
PAC Learning with Small Desicion Trees, In Proceedings of the 12" In-

ternational Conference on Machine Learning. A. Prieditis and S. Russell

(Fd.), 21 29, 1995.

I.. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification
and Regression Trees, Belmont, CA: Wadsworth, 1984.

B. Cestnik, I. Kononenko, and I. Bratko, ASSISTANT 86: A knowledge
elicitation tool for sophisticated users, in Progress in Machine Learning,

Wilmslow, UK: Sigma Press, 1987.

P. Clark and T. Niblett, Induction in Noisy Domains, In I. Bratko and
N.Lavrac (Eds.), Progress in Machine Learning, 11 30, Wilmslow, FEng-
land:Sigma Press, 1987.

S. Cost, S. Salzberg, A Weighted Nearest Neighbor Algorithm for Learning
with Symbolic Features, Machine Learning, 10(1):57 58, 1993.

T.M. Cover and P.E. Hart, Nearest Neighbor Pattern Classification, IKFE
Transactions on Information Theory: 13:21 27, 1967.

B. V. Dasarathy, Nearest Neighbor (NN) Norms, NN Pattern Classification
Techniques. IEEE Computer Society Press, 1990.

BIBLIOGRAPHY 149

[19]

[22]

23]

[24]

[25]

[26]

[29]

[30]

G. Dejong and R. Mooney, Explanation Based Learning: An Alternative
View, Machine Learning, 1:145 176, 1986.

G. Dejong, Learning with Genetic Algorithms: An Overview, Machine
Learning, 3:121 128, 1988.

G. Demiroz, and H. A. Guvenir. Genetic Algorithms to Learn Fea-
ture Weights for the Nearest Neighbor Algorithm. In Proceedings of the
6'" Belgian Dutch Conference on Machine Learning (BENELEARN 96),
117 126, 1996.

G. Demiroz, and H. A. Giivenir. Classification by Voting Feature Inter-
vals. In Proceedings of Ninth European Conference on Machine Learning

(KFCMI.-97), Springer Verlag, LNAT 1224, 85 92, 1997.

G. Demirdz, H. A. Giivenir, and Nilsel Tlter. Differential Diagnosis of
Erythemato Squamous Diseases using Voting Feature Intervals. In Pro-

ceedings of the Sixth Turkish Symposium on Artificial Intelligence and
Neural Networks (TAINN’97), 190 194, 1997.

R.D. Duda and P.E. Hart, Pattern Classification and Scene Analysis, New
York: Wiley, 1973.

B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans, In
STAM, Philadelphia, Pa., 1982.

D.H. Fisher, Knowledge Acquisition Via Incremental Conceptual Cluster-
ing, Machine Learning, 2:139 172, 1987.

J.M. Fitzpatrick and J.J. Grefenstette, Genetic Algorithms in Noisy En-
vironments, Machine Learning, 3:101 120, 1988.

J. H. Friedman, A recursive partitioning decision rule for non parametric

classification, TKFEFE Transactions on Computers, 404 408, 1977.

K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic

Press, San Diego, 1990.

J.W. Grzymala Busse, On the Unknown Attribute Values in Learning
from Examples, In Proceedings of Sizth International Symposium Method-

ologies for Intelligent Systems, 368 377, October 1991.

BIBLIOGRAPHY 150

[31]

[32]

[33]

[34]

[37]

[38]

[39]

[40]

[41]

H.A. Giivenir and 1. Sitin, A Genetic Algorithm for Classification by Fea-
ture Partitioning, In Proceedings of the fifth International Conference on

Genetic Algorithms, 543 548, 1993.

H.A. Giivenir and 1. Sirin, Classification by Feature Partitioning, Machine
Learning, 23:47 67, 1996.

H.A. Giivenir, B. Acar, G. Demiroz, and A. (Jekin. A Supervised Machine
Learning Algorithm for Arrhythmia Analysis, to appear in Computers in
Cardiology, .und, Sweden, 1997.

D. Heath, S. Kasif, and S. Salzberg, Learning Oblique Decision Trees, Pro-
ceedings of 13th International Joint Conference on Artificial Intelligence

(IJCAI-93), 1002 1007, 1993.

J. Holland, Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor, 1975.

R.C. Holte, Very Simple Classification Rules Perform Well on Most Com-
monly Used Datasets, Machine Learning, 11:63 91, 1993.

E. Hunt, J.Marin and P. Stone, Frperiments in Induction, New York,
Academic Press, 1966.

G. H. John, R. Kohavi and K. Pfleger, Irrelevant features and the subset
selection problem. In Proceedings of the Eleventh International Conference
on Machine Learning. New Brunswick, NJ: Morgan Kaufmann, 293 301,
1994.

I.. Kanal and Chandrasekaran, On Dimensionality and Sample Size In

Statistical Pattern Classification, Pattern Recognition, 225 234, 1971.

J.D. Kelly and I.. Davis, A Hybrid Genetic Algorithm for Classification,
In Proceedings of the twelfth International Joint Conference on Artificial

Intelligence, 645 650, 1991.

D. Kibler and P. Langley, Machine Learning as an Experimental Science,
In J.W. Shavlik and T.G. Ditterich, editors, Readings in Machine Learn-
ing, 38 43. Morgan Kaufman, San Mateo, CA, 1990.

BIBLIOGRAPHY 151

[42]

[43]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

R. Kohavi, B. Becker, and D. Sommerfield. Improving Simple Bayes.
In Poster Papers of Ninth Furopean Conference on Machine Learning

(ECMT.-97), 78 87, 1997.

R. Kohavi, D. Sommerfield, and J. Dougherty. Data Mining using
MTLC++: A machine learning library in C+4. In Tools with Artificial
Intelligence, 234 245, 1996. http://www.sgi.com/Technology/mlec.

Kononenko, 1. (1993). Inductive and Bayesian Learning in Medical Diag-
nosis. Applied Artificial Intelligence, Vol. 7, 317 337.

Kononenko, I. & Bratko, I. (1991). Information Based Evaluation Crite-

rion for Classifier’s Performance. Machine Learning, Vol. 6, 67 80.

P. Lachenbruch and M. Mickey, Estimation of Frror Rates in Discriminant
Analysis, Technometrics, 1 111, 1968.

H. Lounis and G. Bisson, Evaluation of Learning Systems: An Artificial
Data Based Approach, In Proceedings of FEuropean Working Session on
Learning, 463 481, 1991.

D. Medin and M. Schaffer, Context Theory of Classification Learning,
Psychological Review, 85:3, 207 238, 1978.

R.S. Michalski, J.G. Carbonell and T.M. Mitchell, Machine Learning, An
Artificial Intelligence Approach, Los Altos: Morgan Kaufmann, 1983.

T.M. Mitchell, R. Keller and S. Kedar Cabelli, Explanation Based Gen-
eralization: A Unifying View, Machine Learning, 1:47 80, 1986.

P. Murphy, UCI Repository of machine learning databases Maintained
at the Department of Information and Computer Science, University
of California, Trvine, Anonymous FTP from ics.uci.edu in the directory

pub/machine learning databases, 1995.

S.K. Murthy, S. Kasif, S.Salzberg, and R. Beigel, OC1: Randomized In-
duction of Oblique Decision Trees, In Proceedings of the Kleventh National
Conference on Artificial Intelligence (AAAT-93), 322 327, 1993.

BIBLIOGRAPHY 152

[53]

[54]

[55]

[56]

[57]

[61]

[62]

[63]

[64]

S. Okamoto and K. Satoh, An Average Case Analysis of & Nearest Neigh-
bor Classifier. In Proceedings of the First International Conference on

Case Based Reasoning, 243 264, 1995.

J.R. Quinlan, The Effect of Noise on concept Learning, In R.S. Michal-
ski, J.G. Carbonell and T.M. Mitchell, Machine Learning Volume I1: An
Artificial Intelligence Approach, Los Altos: Morgan Kaufmann, 1983.

J.R. Quinlan, Induction of Decision Trees, Machine Learning, 1:81 106,
1986.

J.R. Quinlan, Decision Trees as Probabilistic Classifiers, In Proceedings of

Fourth International Workshop on Machine Learning, 31 37, June 1987.

J.R. Quinlan, Unknown Attribute Values in Induction, In A. Segre (Ed.),
In Proceedings of the 16th International Workshop on Machine Learning,
164 168, San Mateo, CA:Morgan Kaufmann, 1989.

J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann,
California, 1993.

J. Rachlin, S. Kasif, S. Salzberg and D.W. Aha, Towards a Better Un-
derstanding of Memory Based Reasoning Systems, International Machine

Learning Conference, 1994.

I.. Rendell, A new basis for state space learning systems and a successful

implementation, Artificial Intelligence 20:369 392, 1983.

D. Rumelhart, GG. Hinton, and R. Williams, Learning Representations by

back propagating errors. Nature, .

S. Salzberg, Learning with Generalized Fremplars, Kluwer Academic Pub-

lishers, Massachusetts, 1990.

S. Salzberg, A Nearest Hyperrectangle Learning Method, Machine Learn-
ing, 6:251 276, 1991.

S. Salzberg, Distance Metrics for Instance Based Learning, ISMIS’91 6th
International Symposium, Methodologies for Intelligent Systems, 399 408,
1991.

BIBLIOGRAPHY 153

[65]

[66]

[67]

[68]

[69]

[71]

73]

J. W. Shavlik and T. G. Dietterich, Readings in Machine Learning, San
Mateo, CA: Morgan Kaufmann, 1990.

H. A. Simon, Why should machines learn? In Machine learning: an arti-

ficial intelligence approach (Vol. 1), San Mateo, CA: Morgan Kaufmann,

1983.

D. B. Skalak, Prototype and feature selection by sampling and random
mutation hill climbing algorithms, Tn Proceedings of the 11'h Interna-
tional Conference on Machine Learning, New Brunswick, NJ: Morgan

Kaufmann, 293 301, 1994.

G. Stanfill and D. Waltz, Toward Memory Based Reasoning, Communi-
cations of the ACM 29:1213 1228, 1986.

J.C. Schlimmer and R.H. Granger, Incremental Learning from Noisy Data,

Machine Learning, 1:317 354, 1986.

I. Sitin and H.A. Giivenir, Empirical Evaluation of the CFP Algorithm,
In Proceedings of the Sixth Australian Joint Conference on Artificial In-
telligence, pages 311 315, 1993.

I. Sirin and H.A. Guvenir, An Algorithm for Classification by Feature Par-
titioning, Technical Report CIS 9301, Bilkent University, Dept. of Com-

puter Engineering and Information Science, Ankara, 1993.

A. K. Spackman, Learning Categorical Decision Criteria in Biomedical
Domains, In Proceedings of the Fifth International Conference on Machine

Learning, University of Michigan, Ann Arbor, 1988.

H. G. Unsa], Classification with Overlapping Feature Intervals, Bilkent
University, Dept. of Computer Engineering and Information Science, MSc.

Thesis, 1995.

D. Wettschereck, A study of Distance Based Machine Learning Algo-
rithms, Ph) Thesis, Oregon State University, 1994.

D. Wettschereck and 1. Aha, Weighting Features, In Proceedings of the
First International Conference on Case Based Reasoning,lisbon, Portu-

gal: Springer Verlag, 1995.

BIBLIOGRAPHY 154

[76] D. Wettschereck, D. Aha, and T. Mohri, A Review and Empirical Fval-
uation of Feature Weighting Methods for a Class of Lazy Learning Algo-
rithms. To appear in Artificial Intelligence Review, 1997.

A

Real-World Datasets

Table A.1. Comparison on some real-world datasets.

of # of Linear # of Unknown Baseline
Dataset, Size Features Features Classes Values Accuracy
(%) (%)
Arrhythmia 452 279 279 16 0.33 54
Bceancerw 699 10 10 2 0.25 66
Cleveland 303 13 6 2 0 54
Dermatology | 309 34 34 6 0.07 31
Diabetes 768 8 8 2 0 65
Glass 214 9 9 6 0 36
Horse 368 22 7 2 24 63
Hungarian 294 13 6 2 0 64
Tonosphere 351 34 34 2 0 64
Iris 150 4 4 3 0 33
Taver 345 6 6 2 0 58
Musk 476 166 166 2 0 57
New-thyroid 215)) 3 0 70
Page-blocks 5473 10 10 5 0 90
Segmentation | 2310 19 19 7 0 14
Sonar 208 60 60 2 0 53
Vehicle 846 18 18 4 0 26
Wine 178 13 13 2 0 40

Table A.1 summarizes some properties of the datasets to be used in the

experiments. In this table, name of the real-world datasets are shown with the

155

A. REAL-WORLD DATASETS 156

size of the dataset, number of features, number of linear features, number of
classes, percentage of the unknown attribute values, and the baseline accuracy.
The baseline accuracy of a dataset is the accuracy that will be obtained by
predicting the class of any test instance as the class of the most frequently

occurring class.

Arrhythmia: In this thesis, we construct two real-world datasets. One
of them is the Arrhythmia dataset. The aim is to distinguish between the
presence and types of cardiac Arrhythmia and to classify it in one of the 16
groups. Currently, there are 452 patient records which are described by 279
feature values. Class 01 refers to normal ECG, class 02 to Ischemic changes
(Coronary Artery Disease), class 03 to Old Anterior Myocardial Infarction,
class 04 to Old Inferior Myocardial Infarction, class 05 to Sinus tachycardy,
class 06 to Sinus bradycardy, class 07 to Ventricular Premature Contraction
(PVC), class 08 to Supraventricular Premature Contraction (PVC), class 09
to Left bundle branch block, class 10 to Right bundle branch block, class 11
to 1. degree AtrioVentricular block, class 12 to 2. degree AtrioVentricular
block, class 13 to 3. degree AtrioVentricular block, class 14 to Left ventricule
hypertrophy, class 15 to Atrial Fibrillation or Flutter, and class 16 refers to
the rest. The first 9 features are Age (f1) given in years, Sex (f2) which is
either male or female, Height (f3) given in centimeters, Weight (f4) given in
kilograms, QRS interval (f5) which is the average QRS duration in msec., P-R
interval (fs) which is the average duration between onset of P and Q waves
in msec., @Q-T interval (f7) which is the average duration hetween onset of Q)
and offset of T waves in msec., T interval (fg) which is the average duration
of T wave in msec., P interval(fg) which is the average duration of P wave in
msec. The features from fig to f14 are the vector angles in degrees on front
plane of QRS (fi0), T (fi1), P (f12), QRST (f13), and J (f14) respectively. The
feature fi5 is heart rate which is the number of heart beats per minute. The
following 11 features are measured from the DI channel: Average width of)
wave measured in msec. (fig), Average width of R wave measured in msec.
(fi7), Average width of S wave measured in msec. (fis), Average width of R’
wave measured in msec. (fi9), Average width of S™ wave measured in msec.
(f20), Number of intrinsic deflections (fo1), Fristence of ragged R wave (fi2)

which is a boolean feature, Fristence of diphasic derivation of R wave (fa3)

A. REAL-WORLD DATASETS 157

which is a boolean feature, Fristence of ragged P wave (f24) which is a hoolean
feature, Fristence of diphasic derivation of P wave (fa5) which is a boolean
feature, Fristence of ragged T wave (fa6) which is a boolean feature, Fristence
of diphasic derivation of T wave (fz5) which is a boolean feature. The above
11 features measured for the DI channel are all measured for the DIT (from
feature fig to fze), DIIT (from feature fio to f51), AVR (from feature f5s to
Je3), AVL (from feature fgs to fz5), AVF (from feature frs to fzr), V1 (from
feature fss to fag), V2 (from feature figo to fi1), V3 (from feature fi12 to
fi23), V4 (from feature fiaq to fias), V5 (from feature fizg to fi4r), and V6
(from feature fi4s to fis9) channels. The following 9 features are measured
from the DI channel: Amplitude of J.J wave (f160) measured in x0.1 milivolts,
Amplitude of @ wave (fi61) measured in x0.1 milivolts, Amplitude of R wave
(fi62) measured in x0.1 milivolts, Amplitude of S wave (f163) measured in x0.1
milivolts, Amplitude of R” wave (figs) measured in x0.1 milivolts, Amplitude of
S” wave (fis5) measured in x0.1 milivolts, Amplitude of P wave (fig6) measured
in x0.1 milivolts, Amplitude of T wave (f167) measured in x0.1 milivolts, QRSA
(fies) which is the sum of the areas of all segments divided by 10, QRSTA
(fi69) which is equal to QRSA+0.5 x width of T'wave x 0.1 X height of T'wave.
The above 9 features measured for the DI channel are all measured for the
DIT (from feature fizg to fiz9), DIII (from feature figo to fige), AVR (from
feature figo to fige), AVL (from feature fao to fane), AVF (from feature fiq
to far9), V1 (from feature fyg t0 fi29), V2 (from feature fizg to fazq), V3
(from feature foug to faag), V4 (from feature fiso to fase), V5 (from feature
J260 10 fas9), and V6 (from feature fizg to fare) chanmels.

There are several missing feature values. Class distribution of this dataset
is very unfair and instances of classes 11, 12, and 13 do not exist in the current
dataset. Class 01 (normal) is the most frequent one. Although the ECG
of some patients show the characteristics of more than one Arrhythmia, in
constructing the dataset it is assumed that no patient has more than one

cardiac Arrhythmia.

Breast Cancer: Breast Cancer data set contains 273 patient records. All
the patients underwent a surgery to remove tumors, all of them were followed

up five years later. The objective here is to predict whether or not breast

A. REAL-WORLD DATASETS 158

cancer would recur during that five year period. The recurrence rate is about
30 %, and hence such prognosis is important for determining post-operational
treatment. The data set contains nine variables that were measured, including
both numeric and binary values. The prediction is binary: either the patient

did suffer a recurrence of cancer or not.

Cleveland and Hungarian Data: Both datasets are about the heart
disease diagnosis. Fach dataset is described with same features. Cleveland
data was collected from the Cleveland Clinic Foundation and Hungarian data

was collected from the Hungarian Institute of Cardiology.

These databases contain 76 attributes originally, but in MI. field 13 of them
is used. All attributes are numeric valued and 6 of them have nominal values.
The class is determined according to the presence of heart disease, that is, this
is binary classification problem. There are no missing values in these datasets

for the features that we have used.

Dermatology: The differential diagnosis of erythemato-squamous diseases
is a real problem in Dermatology. They all share the clinical features of ery-
thema and scaling, with very little differences. The diseases in this group
are psoriasis (C7), seboreic dermatitis (Cy), lichen planus (C3), pityriasis rosea
(C4), cronic dermatitis (Cs), and pityriasis rubra pilaris (Cg). Usually a biopsy
is necessary for the diagnosis but unfortunately these diseases share many
histopathological features as well. Another difficulty for the differential diag-
nosis is that a disease may show the features of another disease at the beginning
stage and may have the characteristic features at the following stages. Patients
were first evaluated clinically with 12 features which are erythema (f1), scaling
(f2), definite borders (f3), itching (f4), koebner phenomenon (fs), polygonal
papules (fe), follicular papules (f7), oral mucosal involvement (fg), knee and
elbow involvement (fq), scalp involvement (f10), family history (f11), and age
(f34). Afterwards, skin samples were taken for the evaluation of 22 histopatho-
logical features which are melanin incontinence(f12), eosinophils in the infil-
trate (f13), PNL infiltrate (fi4), fibrosis of the papillary dermis (f15), exocytosis
(fi6), acanthosis (fi7), hyperkeratosis (fis), parakeratosis (fi9), clubbing of the
rete ridges (fa0), elongation of the rete ridges (fo1), thinning of the suprapap-

illary epidermis (fa2), spongiform pustule (fa3), munro microabeess (f2a), focal

A. REAL-WORLD DATASETS 159

hypergranulosis (fa5), disappearance of the granular layer (fa), vacuolisation
and damage of basal layer (fa7), spongiosis (fas), saw-tooth appearance of retes
(fa9), follicular horn plug (f30), perifollicular parakeratosis (fa1), inflammatory
monoluclear inflitrate (fs2), and band-like infiltrate (f33). The values of the
histopathological features are determined by an analysis of the samples under

a microscope.

In the dataset constructed for this domain, the family history feature has
the value 1 if any of these diseases has been observed in the family, and 0
otherwise. The age feature simply represents the age of the patient. Every
other feature (clinical and histopathological) was given a degree in the range
of 0 to 3. Here, 0 indicates that the feature was not present, 3 indicates the

largest amount possible, and 1, 2 indicate the relative intermediate values.

Diabetes: This data set contains diabetes diseases collected from Na-
tional Institute of Diabetes and Digestive and Kidney Diseases. The diagnos-
tic, binary-valued variable investigated is whether the patient shows signs of
diabetes according to World Health Organization criteria (i.e., if the 2 hour
post-load plasma glucose was at least 200 mg/dl at any survey examination or
if found during routine medical care). The population lives near Phoenix, Ari-
zona, USA. Several constraints were placed on the selection of these instances
from a larger database. In particular, all patients here are females at least
21 years old of Pima Indian heritage. The data set contains records of 768

patients with 8 features.

Glass Data: This dataset consists of attributes of glass samples taken
from the scan of an accident. The Glass dataset contains 214 instances of
which belongs to one of six classes. In this dataset there are 9 features. All

feature values are continuous.

Horse Data: In this dataset there are 368 instances. Number of attributes
is 22 and the number of classes is 2. Seven of these features are linear and fifteen
of them are nominal. The 24% of the feature values is missing (unknown). The
features V3, V25, V26, V27, and V28 are deleted from the original Horse-colic
(called Horse in this thesis) dataset and feature V24 is used as the class.

A. REAL-WORLD DATASETS 160

Tonosphere Data: The radar data was collected by a system in Goose
Bay, Labrador. This system consists of a phased array of 16 high-frequency
antennas with a total transmitted power on the order of 6.4 kilowatts. The
targets were free electrons in the ionosphere. Good radar returns are those
showing evidence of some type of structure in the ionosphere. Bad returns
are those that do not; their signals pass through the ionosphere. Received
signals were processed using an autocorrelation function whose arguments are
the time of a pulse and the pulse number. There were 17 pulse numbers for the
Goose Bay system. Instances in this database are described by 2 attributes per
pulse number, corresponding to the complex values returned by the function

resulting from the complex electromagnetic signal.

Iris Flowers: Iris flowers dataset from Fisher [26] consists of four integer
valued continuous features and a particular species of iris flower. There are
three different classes: iris virginica, iris setosa, iris versicolor. The four at-
tributes measured were sepal length, sepal width, petal length and petal width.

The dataset contains 150 instances, 50 instances of each three classes.

Liver: This data set contains 345 instances and collected by BUPA Medical
Research T.td. Fach instance constitutes the record of a single male individ-
ual. There are 6 attributes and the first 5 variables are all blood tests which
are thought to be sensitive to liver disorders that might arise from excessive
alcohol consumption. The last attribute presents drinks number of half-pint
equivalents of alcoholic beverages drunk per day. The purpose of this data set

is to determine whether patient has liver disorders or not.

Musk: This dataset describes a set of 92 molecules of which 47 are judged
by human experts to be musks and the remaining 45 molecules are judged to be
non-musks. The goal is to learn to predict whether new molecules will be musks
or non-musks. However, the 166 features that describe these molecules depend
upon the exact shape, or conformation, of the molecule. Because bonds can
rotate, a single molecule can adopt many different shapes. To generate this data
set, the low-energy conformations of the molecules were generated and then
filtered to remove highly similar conformations. This left 476 conformations.

Then, a feature vector was extracted that describes each conformation.

A. REAL-WORLD DATASETS 161

This many-to-one relationship between feature vectors and molecules is
called the “multipleinstance problem”. When learning a classifier for this data,
the classifier should classify a molecule as musk if ANY of its conformations is
classified as a musk. A molecule should be classified as non-musk if NONE of

its conformations is classified as a musk.

Page-blocks: The problem consists in classifying all the blocks of the
page layout of a document that has been detected by a segmentation process.
This is an essential step in document analysis in order to separate text from
graphic areas. Indeed, the five classes are: text (1), horizontal line (2), picture
(3), vertical line (4) and graphic (5). Tt is compiled by Donato Malerba at
the University of Bari. This dataset is one of the largest datasets in the UCI
Repository. This dataset is abbreviated as page in this thesis.

Segmentation: Thisis an image segmentation data compiled by the Vision
Group at the University of Massachusetts.The instances were drawn randomly
from a database of 7 outdoor images. The images were handsegmented to
create a classification for every pixel. Fach instance is a 3x3 region. The

classes are brickface, sky, foliage, cement, window, path, grass.

Wine Data: This dataset is about recognizing wine types. This data is
provided by Pharmaceutical and Food analysis and technologies. The classes
are separable. In a classification context, this is a well-posed problem with
“well behaved” class structures. This dataset is the result of the chemical
analysis of wines grown in the same region in Italy but derived from three
different cultures. The analysis determined the quantities of 13 constituents
found in each of the three types of wines. The dataset contains 178 instances.

All features are linear.

