A Redefinition of Least Generalizations
and its Application to
Inductive Logic Program Synthesis

Esra Erdem
Department of Computer Sciences
The University of Texas at Austin, Austin, TX 78712, USA

Email: esra@cs.utexas.edu

Pierre Flener
Department of Computer Engineering and Information Science
Bilkent University, 06533 Bilkent, Ankara, Turkey
Email: pf@cs.bilkent.edu.tr

Abstract

The ‘classical’ definition of the concept of least generalization (under #-subsumption) of a
clause set C is that it is a single clause. Since such a unique clause is sometimes over-general,
we re-define this concept as being a minimal-sized set of clauses, each member of this set being
the least generalization (under ‘classical’ §-subsumption) of some subset of C. The elements of
these subsets are two by two compatible, in the sense that their least generalizations (under
‘classical’ #-subsumption) are not too general. We show an algorithm for computing this
redefined concept.

The criterion for over-generality is of course problem-specific. We design such a criterion for
a problem frequently occurring in the inductive synthesis of recursive logic programs, namely
the closing of an open program that was synthesized in a schema-biased way, but that has
one of the place-holders of the used schema still undefined. After evidence for this undefined
relation has been abduced, it needs to be inductively generalized. A least generalization is
over-general if it is not admissible wrt a construction mode capturing the required dataflow
of the place-holder. We design a language for expressing such construction modes (for any
place-holder of any schema), and we define powerful admissibility and compatibility criteria.
We also prove a few theorems relating the problem-independent concept of compatibility with
the problem-specific concept of admissibility: these theorems show how to speed up certain
computations for this specific problem.

1 Introduction

We consider (part of) the problem of inductive synthesis of recursive programs from incomplete
specifications [7]. This is a machine learning problem, and we consider it in the logic programming
framework, taking thus an ILP (Inductive Logic Programming) approach [17]. Moreover, note
that we only focus on the learning of recursive programs, which is what we call inductive program
synthesis. Every now and then, inductive synthesizers appear, having the following basic synthesis
algorithm [7], given evidence for a top-level relation r (for instance, but not necessarily, in the form
of ground positive and negative examples):

1. Schema-biased ! creation of an open [15] recursive program that has two clauses for 7, namely
a non-recursive one for a base case and a recursive one for a step case. The program is open
in the sense that its recursive clause for r refers to a relation ¢ combining the partial results

LA schema is a program encoding the control-flow and data-flow of a class of programs (e.g. divide-and-conquer)
by abstracting away their specific computations and data structures [3].

(stemming from the recursive calls) into the overall results, which relation is still undefined
(i-e. has no clauses yet).

2. Abductive generation of evidence for ¢ by execution of the open program on the evidence for
r.

3. Inductive generalization of the abduced positive evidence and analysis of the result: if “ac-
ceptable,” use it as definition of ¢, thus completing the synthesis; otherwise, conjecture
necessary predicate invention [19] and recursively invoke the basic synthesis algorithm on
the entire abduced evidence, yielding a program for ¢, which, added to the initial program,
provides a program for r. In any case, this amounts to “closing” the open program.

Some synthesizers of this category are THEsYS [21], BMWk [11, 16], SYNAPSE [6, 3], LOPSTER [13],
CiLp [14], CRUSTACEAN [1], METAINDUCE [10], D1aLoGs [5, 23], etc (see Section 4.1 for details).
In order to illustrate this basic synthesis algorithm and to expose its potential weak spots, let us
study a few sample runs. However, in this paper, we will almost completely ignore the mechanics
of Steps 1 and 2: there are various ways of achieving the results reported hereafter (or similar
ones) and we invite the reader to accept them as such, because our focus will be mostly on Step 3.

Example 1 Starting from the informal specification:

lastElem(E, P, L) iff the last element of list L is F, and list P is the corresponding
prefix of L

the specifier could give the following specification by examples:

lastElem(a,[], [a])
last Elem(b, [c], [c, b]) —lastElem(g, [h], g, h])
lastElem(d, [f, €], [f, e, d])

Step 1 creates the open program (the undefined relation is called cons for convenience, since it is
similar to the cons in Lisp):

lastElem(E,[],[F]) —
lastElem(E,[HP|TP),L) — lastElem(E, TP, TL),cons(HP,TL, L)

Step 2 abduces the following evidence for the undefined relation:

cons(c, [b], [c, b]) —cons(h,[g], g, h])
cons(f,[e,d],[f, e, d])

Step 3 induces cons(A, [B|T],[A, B|T]) as least generalization under #-subsumption (denoted by
lgf, see Section 2.2), of the positive evidence, which is “acceptable” and can thus be unfolded into
the second clause, yielding the final program:

lastElem(E,[],[F]) —
lastElem(E,[HP|TP],[HP, B|T]) — lastElem(E, TP, [B|T])

which is correct with respect to (wrt) the informal specification above. O
Example 2 Starting from the informal specification:
reverse(L, R) iff list R is the reverse of list L

the specifier could give the following specification by examples:

reverse([],[])
reverse([a), [a])
reverse([b,], [c, b]) —reverse([g, k], [g, h])
reverse([d, e, f1,[f, e, d])

Step 1 creates the open program (the undefined relation is called last Elem for convenience):

reverse([],[]) <

reverse([HL|TL], R) — reverse(T L, TR),lastElem(HL,TR, R)

Step 2 abduces the following evidence for the undefined relation:

lastElem(a,[], [a])
last Elem(b, [c], [c, b]) ~lastElem(g, [h], [g, h])
lastElem(d, [f, €], [f, e, d])

Step 3 induces lastElem(A,T,[B|V]) as lgf of the positive evidence, which is not “acceptable.”
Recursive invocation of the basic synthesis algorithm on the abduced evidence yields the scenario
of Example 1, whose final program, added to the clauses for reverse above, yields a final program
for reverse that is correct wrt the informal specification above. O

So far, we have shown two successful executions of the basic synthesis algorithm, the latter
featuring a recursive invocation of this algorithm. It remains however to clarify the criterion of
“acceptability” of an lgf. There are many definitions for this, and we will come back to it in
Section 3.2. Basically, one would want the “output” parameters of the lgf to be constructed
from its “input” parameters: for instance, in cons(A, [B|T], [A, B|T]), parameter [A4, B|T] is con-
structed using parameters A and [B|T], whereas in last Elem(A, T, [B|V]), parameter [B|V] is not
constructed using parameters A and T'. Also, one would want the 1gf not to cover any abduced
negative evidence for the undefined relation.

Interlude: A divide-and-conquer schema. In all executions shown here, the schema under-
lying Step 1 is a divide-and-conquer schema, a quite general expression of which is as follows:

r(X,Y,7) —
solve(X,Y, Z)

r(X,Y,7) —
decompose(X, HX ,TX), %9 HX=HXy,...,HX,
W(TX1,TY:, Z), ..., 7(TXy, TY:, Z), %TX=TXy,..., TX,
compose(HX ,TY Y, Z) %TY=TY1,...,TY;

Parameter X of r is the induction parameter (in the sense that it is decomposed for recursive calls),
parameter Y is the optional “result” parameter (in the sense that it is constructed from partial
results T'Y; obtained through recursion), and parameter Z is the optional “passive” parameter (in
the sense that it is not decomposed for recursive calls, but serves to solve the base case and/or to
combine the partial results TY; of the step case into Y'). An even more general expression of this
schema would parameterize the numbers of induction, result, and passive parameters [3]. Step 1
of the basic synthesis algorithm instantiates the h, ¢, r, solve, and decompose “place-holders,” so
that the undefined relation actually is the compose place-holder.

Let us continue now and show an unsuccessful execution of the basic synthesis algorithm.
Example 3 Starting from the informal specification:
delOddFElems(L, R) iff list R is integer-list I without its odd elements

the specifier could give the following specification (by clausal evidence, now):

delOddElems([],[]) —
delOddElems([1],[]) < — delOddElems([5], [5])
delOddElems([2],[2]) —

delOddFElems([3,4],[4]) —

delOddFElems([6,7,8],[6,8]) —

—

Step 1 creates the open program (the undefined relation is called combine for convenience):

delOddElems([],[]) —
delOddElems([HL|TL], R) — delOddElems(TL,TR), combine(HL, TR, R)

Suppose Step 2 somehow abduces the following evidence for the undefined relation:

combine(1,[],[]) < odd(1) — combine(5,[], [5])
combine(2,[],[2]) — even(2)

combine(3, [4], [4]) — odd(3)

combine(6, [8], [6, 8]) — even(6)

Step 3 induces combine(X,T,V) «— as lgf of the positive evidence, which is not “acceptable.”
However, recursive invocation of the basic synthesis algorithm on the abduced evidence will not
yield a final program that is correct wrt the informal specification above. In fact, the combine
relation should be defined as follows:

combine(I, L, L) «— odd(I)
combine(I, L, [I|L]) — even(I)

In other words, combine is defined as the conjunction of several clauses, with bodies involving
relations other than combine, rather than as a unit clause (like cons in Example 1) or as two
clauses, one of which being recursive (like last Elem in Example 2). O

Objectives and organization of this paper. Basing Step 3 of the basic synthesis algorithm
on the computation of the 1gf of all the abduced positive evidence (which just consists of examples)
thus rests on two restrictive assumptions:

1. the undefined relation is definable by a single clause;
2. the undefined relation is definable by only using the equality relation.

The combination of these assumptions amounts to saying that the undefined relation is definable
by a unit clause. However, as Example 3 shows, this is not always the case. In this paper, we
will mostly address assumption 1, by showing how multi-clausal (i.e. conjunctive) definitions of
the undefined relation can be inductively inferred. This basically requires a re-definition of the
concept of 1gf: since unique, over-general lgfs, such as the one in Example 3, have to be avoided,
the 1dea is to re-define the lgf of a clause set C as a set of clauses ¢;, such that each ¢; is the
‘classical’ 1gf of a subset C; of C and such that the union of the C; is C. The clauses in C; ought to
be two-by-two “compatible,” in the sense that they construct their “result parameters” in the same
way. “Compatibility” is achieved if the ‘classical’ 1gf of C; also constructs its “result parameters”
in the same way: we approximate this by requiring that this lgf constructs its “result parameters”
in an “admissible” way, namely by respecting certain dataflow constraints captured in what we
call a “construction mode.” Such lgf clauses are non-recursive if the clauses in C are non-recursive,
but it may happen that the defined predicate does not have a correct non-recursive definition:
this is an undecidable property [19] and thus needs to be approximated by a heuristic, which we
call the “acceptability” criterion. In the rest of this paper, we will first give, in Section 2, precise
meanings to the words between double quotes. Then, in Section 3, we can design a powerful new
method for Step 3, called the Program Closing Method. 1t turns out that this method also lifts
assumption 2, but this requires that Steps 1 or 2 provide evidence for the undefined relation that
already contains all relations other than equality, or that a Step 4 be added to “really close” the
program by adding the missing discriminating literals with relations other than equality. This
means that our method can handle clausal evidence rather than just examples. We aim at making
our definitions and method as general as possible, so that they can be plugged into any inductive
synthesizer of the considered kind, whether existing or forthcoming: therefore, independence of the
schema underlying Step 1, independence of the place-holder representing the undefined relation,
and independence of the mechanisms for Steps 1 and 2 will be achieved. In Sections 4 and b, we
review related work and outline future work, respectively, and finally we conclude in Section 6.

2 Basic Concepts
After introducing the used notation in Section 2.1, we define the basic concepts underlying our

Program Closing Method, namely generality (in Section 2.2), construction modes (in Section 2.3),
admissibility (in Section 2.4), and compatibility (in Section 2.5).

2.1 The Notation

In expressions (i.e. literals or terms) appearing in logic programs, symbols starting with uppercase
letters designate (individual) variables, whereas all other symbols designate either functions or
relations, the distinction (if needed) being always clear from context. All these symbols may be
subscripted with natural numbers or mathematical variables (ranging over natural numbers).

When we want (or need) to group several terms into a single term, we represent this as a tuple,
using angled brackets. For instance, (f(X,Y),¢(X,Y, 7)) is a term representing the couple (or:
2-tuple) built of the two terms f(X,Y) and g(X,Y, 7).

When we do not want to (or cannot) fix the arity of a relation symbol, we use a
notation in conjunction with subscripted variables (subscripts starting from 1) as long-hand,

[43 2

and a vector notation as short-hand. For instance, atom r(X, 57, Z) is an abbreviation for
r(X,Y1,...,Y,, Z1,...,Z,), where mathematical variables y and z must be introduced in the con-
text, and can be particularized to any natural number.

2.2 Generality

For the sake of this paper, a very simple generalization model will suffice, namely 6-
subsumption [18]. Let us define it step by step, in a first-order logic setting.

Definition 1 (Term/literal generality)

A term/literal g is more general than term/literal s iff there exists a substitution o such that
s = go. We also say that g is less specific than s, that s is less general than g, or that s is more
specific than g. For literals, the two considered literals must be of the same sign, the same relation
symbol, and the same arity.

For instance, term/literal f(X,4,Y) is more general than term/literal f(2,4,72), with ¢ =
{X/2,Y/Z}.

This generality relation induces partial orders on the term and literal sets, the former having
all variables as greatest elements, the latter having no greatest element. Let us give names to the
least-upper-bound operators for these partially ordered sets, and recall their generic definitions.
The least general generalization, or simply least generalization, of two terms s and ¢, denoted by
lgt(s,t), is a term g that is more general than s and ¢, but less general than any other term u that
is more general than s and ¢. Similarly for the least generalization of two literals @ and b, denoted
by lgl(a,b), except that they must have the same sign, the same relation symbol, and the same
arity; otherwise, their least generalization is undefined. A more constructive definition of these
operators emerges as a property.

Property 1 (Least generalization, under #-subsumption, of two terms/literals)
For terms:

V, otherwise,

lgt(f(sl,...,sn),g(tl,...,tm)):{ flgt(s1,t1),...,1gt(sn,ts)), if f/n=yg/m

where V' is a new variable that will represent the two terms throughout the context.

Similarly for positive literals (or: atoms): 2

p(lgt(s1,t1),...,lgt(sn,tn)), if p/n=q/m
lgl(p(sla (RS Sn)’ Q(tla sy tm)) = { ugldei(inledT) ()) othe/rwise./
Similarly for negative literals:

—p(lgt(si,t1),...,1lgt(sp,tn)), if p/n=q/m
lgl(=p(se, - oy sn), (- tm)) = { unéeﬁl(leld V () othe/rwise./

2Note the use of the lgt operator on the right-hand side!

Computing the least generalization of two terms/literals is also known as anti-unification, and
its result as their least anti-instance. This is so because computing the greatest-lower-bound of
two terms/literals is nothing else but unification, which yields their most general specialization
(or: greatest instance) via the application of a substitution called the most-general unifier. The
least generalization of two terms/literals is unique (up to variable renaming), if it is defined. For
instance, the least generalization of terms/atoms f(1, E,s,[], L, [a, b]) and f(1,[a,b], X,[d], M, E)
is term/atom f(1,Q,W,T,Y, R). Note that) and R are different variable symbols, even though
both generalize terms F and [a, b] (though in different orders): this is so because otherwise the two
given terms/atoms would not be more specific than their least generalization.

We can now define a simple model of generality for clauses [18]. We assume that clauses are
seen as sets of (positive and negative) literals.

Definition 2 (Clause #-subsumption)

A clause g 6-subsumes a clause s iff there exists a substitution ¢ such that go C s. We also
say that g is more general than s under #-subsumption, that ¢ is less specific than s under 6-
subsumption, that s is less general than g under #-subsumption, or that s is more specific than g
under #-subsumption. Two clauses are 8-subsumption-equivalent iff they d-subsume each other. A
clause 1s reduced iff 1t is f-subsumption-equivalent to no proper subset of itself.

For instance, the clause combine(I,L,[I|L]) <« even(l) 6@-subsumes the clause
combine(X,[HL|TL],[X,HL|TL]) «— even(X),list(TL) with ¢ = {I/X,L/[HL|TL]}; but the
converse is not true.

When a clause g f-subsumes a clause s, then g is more general than s, in the sense that ¢ = s.
However, when ¢ is more general than s, then g does not necessarily #-subsume s. This may happen
when ¢ and s are recursive. For instance, take g as p(f(X)) — p(X) and s as p(f(f(X))) — p(X).
This is why #-subsumption is only an approximation of a generality model, but a correct one, and
even a sufficient one for our purposes (as we do not consider recursive clauses) [18].

Every set of #-subsumption-equivalent clauses has a unique (up to variable renaming) reduced
representative [18].

As a partial order, the #-subsumption relation induces a lattice on the clause set, with the
empty clause as unique top element. A constructive definition of the least upper-bound-operator
for this lattice emerges as a property [18].

Property 2 (Least generalization, under #-subsumption, of two clauses)
The least generalization under 0-subsumption (or lgf) of two clauses ¢ and d, denoted by lgb(c, d),
is the unique (up to variable renaming) clause {lgl({,m) | [€ e Am € d}.

For instance, the lgf of the clauses combine(2,[],[2]) < even(2) and combine(6, [8],[6, 8]) —
even(6) is combine(I, L, [I|L]) — even(I). In general, the resulting clause is not necessarily re-
duced, so a reduction algorithm may then need to be run to produce a reduced #-subsumption-
equivalent clause [18].

So far, we have only characterized the least generalization (under #-subsumption) of two clauses,
but we will also need to compute least generalizations of non-empty sefs of clauses. Again, a
constructive definition of this operator emerges as a property.

Property 3 (Least generalization, under @-subsumption, of a clause set)
The least generalization under 8-subsumption of a non-empty set C = D U {c} of clauses, denoted
by 1g0(C), is lgf(1gd(D), c) if D is non-empty, and ¢ otherwise.?

This is the ‘classical’ definition of this concept. In Section 3.2, we will propose a redefinition
thereof.
A useful property linking the previous two operators arises.

Property 4 If ¢ € C, then lg8(1g0(C),c) = lg6(C).

In this paper, we will not need a concept of relative #-subsumption (as we only want gener-
alizations in the absence of background knowledge). Also, we will only consider definite clauses,
rather than full clauses.

3Note that the outer occurrence of [gf refers to the operator used in the previous property! We thus use the
same operator-name (though with different arities) for both operators, assuming that no confusion will arise.

2.8 Construction Modes

Informally, a construction mode for a relation states which parameters are “constructed” from
which other parameters, also expressing whether such construction is mandatory or optional. For
instance, in append, the third parameter is mandatorily constructed from the first two parameters.
In combine (see Example 3 above), the third parameter is mandatorily constructed from the second
parameter and optionally from the first. We now incrementally define the notion of construction
mode.

2.3.1 Syntactic Construction

Let us first define some notions about syntactic construction.

Definition 3 (Leaves and vertices of a term)

The leaves of a term ¢, denoted by leaves(t), are the set of the variables and constants occurring
in t.

The vertices of a term ¢, denoted by vertices(t), are the multi-set of the variables and function
symbols (including the constant symbols) occurring in ¢.

For instance, leaves(1- B -1-nil) = {1, B, nil}, and leaves(a-T) = {a, T}, whereas vertices(1-
B-1-nil)={1,,B,-,1,-,nil}, and vertices(a - T) = {a,-, T}.

Definition 4 (Syntactic construction)

Term s is syntactically obtained from term t iff leaves(t) C leaves(s). We denote this by ¢ C s.
Term s syntactically contains term t iff vertices(t) C vertices(s), where C denotes multi-set
inclusion. We denote this by ¢ C s.

For instance, {a, b, ¢} is syntactically obtained from {(a, b, b), because leaves({a,b,b)) = {a,b} C
{a,b,c¢} = leaves({a,b,c)). However, {(a,b,c) does not syntactically contain {a,b,b), because
vertices({a,b,b)) = {a,b,b} £ {a,b, c} = vertices({a, b, c}).

For atoms of a given relation, one can express syntactic construction constraints: this will be
the role of construction modes (defined below).

The reason why we sometimes consider function symbols of arity higher than 0 (rather than just
constants) is that we want to achieve that f(a,b) [Z [a,b]. Similarly, the reason why we sometimes
consider multi-sets is that we want to achieve that [a,b,b] I [a,b]. Finally, note that the two
concepts are much more general than the sub-term (i.e. sub-tree) concept, and this additional
generality is crucial in many cases. For instance, in atom efface(d,[f,e,d], [f,€]), the vertices of
[f, €] are a sub-multi-set of the vertices of [f, e, d], but [f, e] is not a sub-tree of [f, e, d].

2.3.2 Semantic Construction

In order to capture more than just syntactic construction (which is basically achieved using equality
(=) only, inside a single atom), we have to extend this notion to definite clauses. Indeed, body
atoms may perform some computations of semantic construction of the head parameters, using
relations other than equality. These atoms cannot be “forward-compiled” into the head of the
clause, unlike equality atoms. For instance, in min(X,Y,X) — X <Y, one cannot “forward-
compile” X < Y into min(X,Y,X). Also, parameter Y does not syntactically contribute to
constructing result X (the third parameter), but it does so semantically.

2.3.3 Construction Modes

Definition 5 (Construction modes)

A construction mode m for a relation r of arity n is a total function from the set {1,2,...,n} into
the set {mayi, ..., mayn, mayau, musty, ..., must,,resi,...,res,, not}, such that res; is in the
range of m iff may; or must; also is in the range of m, and such that every res; is at most once
in the range of m. We also say that m(¢) is the mode of the i*h parameter of 7.

A construction mode m is often written in the more suggestive form r(m(1),...,m(n)). Do
not confuse the position ¢ of a parameter and the index j of its mode m(7), say must;. Since we
do not consider input/output modes in this paper, we often simply speak about modes here. For
instance, combine(may; , musty, resy) is a mode for combine.

In a first approximation, the intended semantics of a mode is as follows:

e mode must; means the parameter in the corresponding position is mandatory in syntactically
constructing the parameter in the corresponding position of res;;

e mode may; means the parameter in the corresponding position is optional for syntactically
constructing the parameter in the corresponding position of res;;

e mode may,;; means the parameter in the corresponding position is optional for syntactically
constructing any of the parameters in the corresponding positions of all res;;

e mode not means the parameter in the corresponding position is not used at all in syntactically
constructing any of the parameters in the corresponding positions of all res;.

We will refine (for semantic construction) and formalize all this hereafter, via the concept of
admissibility. Note that mode may,y; sort-of “generalizes” every may;, which itself “generalizes”
must; and not, and is thus always “safe” to use. The following figure illustrates this:

maya

T

may may, may,

must 1 mUStZ oo mustn

not

For instance, in sister(P,), neither parameter is syntactically constructed from the other one,
so its mode could be sister(mayqn, mayqn) in addition to the more “specific” sister(not, not).
However, the more “specific” a mode, the more useful it may be. Note that a mode is thus not
necessarily unique for a given relation.

Let us now see a few other examples of construction modes. We drop the indexes j of may;,
must;, and res; when they all have the same value.

Example 4 Using general knowledge of the divide-and-conquer de51gn methodology, it is possible

to conjecture that, in general, the construction mode of compose(HX TY Y,7) is

—

compose(nzgy, must, res, may),
where may denotes may, ..., may with h occurrences of may, and must denotes must, ..., must
with ¢ occurrences of must. (Remember that h is the number of heads HX;, and that ¢ is the
number of tails TX;, hence also the number of tails 7Y;.)
The TY; being obtained through recursion, they must all somehow be used to construct Y,
because some of the recursive calls would otherwise have been useless.

The H X; need not always be used to construct Y, as it depends on the particular program. For
instance, the mode for combine(H L, TR, R) (see Example 3) is combine(must, must, res), whereas
the mode for last Elem(HL, TR, R) (see Example 2) is last Elem(must, must, res), and the mode
for cons(HP,TL,L) (see Example 1), is cons(must, must,res). Also consider the program for
length(L, N) that expresses N as a Peano number and that has L as induction parameter: its
instance of compose is addOne(HL, TN, N) (defined by the clause addOne(-, X, s(X)) <) with
mode addl(not, must,res). So there is no fixed mode for the heads of the induction parameter,
and their most general mode thus is may.

The passive parameter Z also need not always be used to construct Y. For instance,
for insert(I,L,R), when L is the induction parameter, R the result parameter, and I the
passive parameter, the instance of compose is cons’(HL,TR,R,I) (defined by the clause
cons'(H,T,[H|T],-) <) with mode cons’'(must, must, res,not). However, for plateau(N, F, P)
(which holds iff non-empty list P has exactly N elements, all equal to term E), when N is
the induction parameter, P the result parameter, and F the passive parameter, the instance
of compose is cons’ (HN, TP, P, E) (defined by the clause cons”(_, T,[H|T], H) <) with mode
cons’ (not, must, res, must). So there also is no fixed mode for the passive parameter, and its most
general mode thus is may.

—_ —

Similarly, one can argue that, in general, the construction mode of decompose(X, HX ,TX) is

— —

decompose(res, m_ust, m_ust),
that the mode of solve(X,Y, 7) is
solve(may, may, may),

and that the mode of r(X,Y, 7) is
r(may, may, may).

All this can be even further generalized, namely for a more general divide-and-conquer schema
covering arbitrary n-ary relations rather than the unary, binary, and ternary relations covered by
the version given above. One would then have a vector X of 2 induction parameters, a vector Y
of y result parameters, and a vector 7 of z passive parameters, such that n =z +y+ 2z > 1. The
resulting general modes for its place-holders become quite complicated to express (one must have
recourse to tupling terms into a single term), and are beyond the scope of this paper, our objective
here being merely to establish some simple concepts. O

The key issue is that modes can easily be pre-computed for any schema, no matter how complex
they get, and that they can then be simply injected as arguments into the Program Closing Method
described in Section 3.

The definition of construction modes itself can be further generalized, allowing for instance a
set of modes for every argument position, rather than just a single mode. This would allow the
expression of a mode like intersection({must,, musts}, {resi},{ress}) for intersection(I, A, B)
(which holds iff set I is the intersection of sets A and B). We do not consider such modes in this
introductory paper, but the corresponding generalization is straightforward.

2.4 Admissibility

In a first version, the concept of admissibility captures the notion of what it means for an atom
to satisfy a construction mode for its relation. After refining a definition for this concept, based
purely on syntactic construction, we will generalize this concept and define what it means for a
definite clause to satisfy a construction mode for the relation in its head, and add considerations
of semantic construction.

2.4.1 Syntactic Admissibility of an Atom wrt a Construction Mode

Let m be a mode for a relation r, and let r(¢1,...,%,) be the considered atom, where n is a
natural number. Let the indexes in m run from 1 to k inclusive, where k is a natural number. Let

Must; = (t; | m(i) = must;), and let Must = (¢; | m(i) = must; for some j). Similarly for May;,
Mayau, May, Res;, Res, and Not.

For instance, let the construction mode be compose(mayaqn, musty, musts, resy, resa) and the
atom be compose(1,[b],[], [a,b],[a]). We then have that k = 2, Must; = ([b]), Musts = ([]),
Must = ([b],[1), May; = Mays = (), May = May.i = (1), Res; = {[a,b]), Resz = {[a]), and
Res = ([a, b], [a]).

According to the given informal approximate semantics of modes, for admissibility of atom
r(t1,...,tn) wrt mode m, we first need to express that every parameter in the corresponding
position of must; is mandatory in syntactically constructing the parameter in the corresponding
position of res;. Here, we prefer to use syntactic containment as actual instance of syntactic
construction.* Formally:

V1<j<k:Must; C Res; (1)

For instance, this is the case for the compose atom and mode mentioned above. Note that £ may
be 0, such as in sister(mayqu, mayqn). Condition (1) then trivially holds.

Next, we need to express that every parameter in the corresponding position of may; is optional
for syntactically constructing the parameter in the corresponding position of res;, and that every
parameter in the corresponding position of may,y is optional for syntactically constructing any of
the parameters in the corresponding positions of all res;. By themselves, these requirements lead
to no formula, because of the optional nature of this syntactic construction. But if we refine the
given approximate semantics by also requiring that the parameter in the corresponding position
of res; can only be syntactically obtained from® the parameters in the corresponding positions of
may;, mayqu, and must;, then we can formalize this as follows:

V1< j<k:Res; C{May;, Maya, Must;) (2)

So no leaves may be “invented” when building each Res;.

For instance, the atom addOne(a,0,s(0)) satisfies condition (2') for the construction mode
addOne(mayy, musty, resy) because: (s(0)) C ({a), (), (0)).

However, this requirement is a bit too strong, as new leaves do sometimes appear in parameters
with mode res;. Forinstance, a base constant of the type of such a parameter may appear: the atom
addPlateau(a,[],[a, s(0)]) does not satisfy condition (2) for mode add Plateau(may,, musty, resy),
because base constant 0 is “invented” by the parameter with mode res;. Since such base constants

cannot really be considered new, we should add them to the right-hand side:
V1< j<k:Res;j C{(May;, Mayar, Must;,0,nil,...) 2"

Also, two parameters with modes res; and res, respectively (where j # g) may share a new leaf:
the atom composes([b, ¢l, [8], [a, b, c], [a, b]) does not satisfy condition (2") for the construction mode
composes(musty, musts, resy, ress), because both res; parameters “invent” the same constant,
namely a. So shared leaves should also be exempted from the requirement above. This can only
be achieved by eliminating the “iteration” 1 < i < k from (2"): ©

leaves(Res) \ sharedLeaves(Res) C leaves({May, M ayqu, Must)) U{0,nil, ...} (2)

We do not allow for non-base non-shared constant leaves to be invented by res; parameters, mostly
because we have not yet encountered such a relation (such that it has a recursive definition).

Last, we would theoretically need to express that every parameter in the corresponding position
of not is not used at all in syntactically constructing any of the parameters in the corresponding
positions of all res;. However, to reduce the computations of admissibility checking, we decided not
to formulate such a negative check, thus essentially giving the not mode a “do not care” semantics.

To summarize so far: an atom r(¢1,...,%,) is admissible wrt a mode m for r iff conditions (1)
and (2) above are satisfied.

4This choice is largely motivated by the role of parameters with mode must; in the compose place-holder of
the divide-and-conquer schema. Indeed, these are the partial results obtained by recursive calls, so these recursive
calls would somehow be wasted if these values were not entirely used (i.e., using all their variables and functors) in
constructing the corresponding res; parameter. But we conjecture that this is a very natural and general choice.

5 Again, this choice is largely motivated by the compose place-holder of the divide-and-conquer schema.

6Let sharedLeaves(t) designate the set of leaves shared by all components of tuple ¢.

10

2.4.2 Semantic Admissibility of a Definite Clause wrt a Construction Mode

Let r(t1,...,tn) < B be a definite clause, where B represents a conjunction of atoms, called the
body of the clause, and r(¢1,...,t,) is called the head of the clause. It is crucial that body B
does not contain any equality atoms, because otherwise insufficient “structure” would be in the
parameters in the head. For instance, instead of insert(X,[Y|L],R) — X <Y,R = [X,Y|L], we
prefer insert(X,[Y|L],[X,Y|L]) — X <Y. We also constrain the clause to be non-recursive (this
will be motivated in Section 5).

Definition 6 (Proper and reconcilable clauses)
We refer to an equality-free non-recursive definite clause as a proper clause. Two proper clauses
are reconcilable iff they define the same relation (i.e. have the same relation in their heads).

Basically, the reasoning is the same as for atoms. In the head of the clause, every parameter
with mode must; is mandatory in constructing the parameter in the corresponding position of
res;, whether the construction is syntactic or semantic. So equation (1) is adapted as follows:

V1<j<k:Mustj C (Res;,B') (3)
where B’ is a tuple built of the atoms (seen as terms) of conjunction B. Similarly, (2) becomes:
leaves(Res) \ sharedLeaves(Res) C leaves({May, M ayau, Must, B')) U{0,nil, ...} 4)

For instance, the clause min(X,Y, X) — X <Y satisfies conditions (3) and (4) for the construction
mode min(may;, musty, resi), but not (the old) condition (1), because Y does not syntactically
contribute to constructing result X, though it does so semantically, as testified by the fact that (3)
holds.

Now we can finally propose the following definition of admissibility.

Definition 7 (Clause admissibility and clause set admissibility)

A proper clause r(t1,...,t,) < B is admissible wrt a mode m for r iff conditions (3) and (4) above
are satisfied.

A set of reconcilable clauses is admissible wrt a mode m for the relation in their heads iff each of
its clauses is admissible wrt m.

Lemma 1 (Preservation of admissibility under #-subsumption)
If proper clause ¢ is admissible wrt some mode m for the relation in its head, and if ¢ #-subsumes
proper clause d, then d is also admissible wrt m.

Proof: Let o be the witness substitution under which ¢ §-subsumes d (see Definition 2): co C d
(remember that clauses are here seen as atom sets). Supposing ¢ has the structure r(t) — B, for
some tuple ¢ and body B, this all means that d has the structure r(t)o — Bo, D, for some atom
conjunction D. Since ¢ is admissible wrt mode m for r, i.e. since conditions (3) and (4) are satisfied
for r(t) < B, the conditions (3)o and (4)o are also satisfied for r(t)o — Bo, by the rule of universal
instantiation, i.e. this proper clause (which is ¢o) is also admissible wrt m. Since d is known to
be a proper clause and since its only difference with co is D, the sets in the right-hand sides of
conditions (3) and (4) can only become larger, whereas their left-hand side sets are unchanged; so
the truth of these conditions is maintained for d. So we can conclude that d is also admissible wrt
m. O

We now prove a theorem establishing a sufficient criterion for deciding whether a clause set is
admissible or not.

Theorem 1 (Sufficient criterion for clause set admissibility)
Let C be a non-empty set of reconcilable clauses, and let m be a mode for the relation in their
heads. If [gf(C) is admissible wrt m, then C is admissible wrt m.

Proof: Let lgf(C) be admissible wrt m. Since C is made of reconcilable clauses for r, it follows
from Property 2 that lgf(C) itself is a definite clause for r. Also, by definition, lgf(C) #-subsumes

11

all clauses in C. So let d be an arbitrary clause in C; we have that lgf(C) #-subsumes d. By
Lemma 1, d is admissible wrt m. Since d was chosen arbitrarily, we can conclude that all clauses
of C are admissible wrt m, i.e. that C is admissible wrt m. O

Note that the converse of this theorem 1is not true. For instance, the set
{insert(1,[2],[1,2]) < ,insert(4,[3],[3,4]) <} is admissible wrt the construction mode
insert(may, must, res), but its least generalization insert(X, [Y], [K, M]) < is not admissible wrt
that mode.

2.5 Compatibility

Given a set of reconcilable clauses with relation 7 in their heads, and given a mode m for r, we now
want to define a relationship over this set, such that two clauses are related iff they construct their
parameters with mode res; in a “similar” way. This can be done via the concept of compatibility.

Definition 8 (Clause compatibility)
Two reconcilable clauses ¢ and d are compatible (with each other) wrt a mode m for the relation in
their heads iff lgf(c, d) is admissible wrt m. We also say that ¢ is compatible with d, and vice-versa.

For instance, the clauses combine(2,[],[2]) « even(2) and combine(6,[8],[6,8]) «—
even(6) are compatible wrt the mode combine(may, must,res), because their lgf, namely
combine(I, L, [I|L]) — even(I), is admissible wrt that mode.

Note that compatibility is thus a problem-independent concept: it is parameterized on the
problem-dependent definitions of admissibility and construction modes.

When a mode m has been clearly stated in context, we often drop the qualifier “wrt mode m,”
both for admissibility and for compatibility.

The compatibility relation is not reflexive, because its definition does not require the two
given clauses to be admissible wrt the given mode. For instance, the clause ¢(d, [f], [e, f]) is not
admissible wrt the mode g(may, must, res), therefore it is not compatible with itself wrt that
mode. The reason why the two given clauses are not required to be admissible wrt the given mode
is that we thus do not have to verify or ensure this before checking compatibility. We can do so
because reflexivity is an unnecessary property for our purposes on compatibility.

The compatibility relation is symmetric by construction, because the definition is based on
least generalizations (under #-subsumption), which already have this property.

Finally, the compatibility relation 1is not transitive. For instance, the clauses
insert(1,[1],[1,1]) «— and insert(2,[3],[2,3]) — are compatible wrt insert(must, must,res),
because their lgf, namely insert(X,[Y],[X,Y]) <, is admissible; also, the clauses
insert(1,[1],[1,1]) < and insert(b,[4],[4,5]) < are compatible, because their lgf, namely
insert(X,[Y],[Y, X]) <, is admissible; but insert(2,[3],[2,3]) < and insert(5,[4],[4,5]) — are
not compatible, because their 1gf, namely insert(X,[Y], [Z, K]) <, is not admissible. Upon close
inspection of the desired concept of compatibility, it turns out that transitivity is impossible to
achieve without sacrificing most of the power of the Program Closing Method described later. In-
deed, if compatibility were transitive, then some clauses would be found to be compatible (e.g. the
last two clauses above), although they do not construct their res; parameters in a similar way.

So far, we have only defined the compatibility of two clauses, but we will also need a notion of
compatibility of a non-empty set of clauses.

Definition 9 (Clause set compatibility)
A non-empty set C of reconcilable clauses is compatible wrt a construction mode m for the relation
in their heads iff any two clauses in C are compatible wrt m.

Note that a singleton set is thus trivially compatible wrt any mode. Also notice that a com-
patible subset of a set D of reconcilable clauses is a cligue (or: mazimal connected component) of
the graph with node set D and edge set induced by the compatibility relationship. For instance,
the set D = {insert(1,[1],[1,1]) <, insert(2,[3],[2, 3]) <, insert(5,4,[4,5]) <} has the following
compatibility graph:

12

insert(1,[1],[1,1])

:-. insert(2,[3],[2,3]) “ insert(5,4,[4,5]) ,-:

where the edges are induced by the compatibility relationship on this set, and the contours identify
the cliques.

Note that, due to the desirable absence of (reflexivity and) transitivity of compatibility, cliques
are not simply equivalence classes of an equivalence relation: this considerably complicates clique
finding, as seen in Section 3.

Checking whether a given set is compatible seems to be an extremely tedious and time-
consuming operation. Fortunately, the following theorem shows how to shortcut such a decision
process (for sets of at least two clauses, because, as pointed out, a singleton set is trivially com-
patible wrt any mode, so no decision procedure is needed then).

Theorem 2 (Sufficient criterion for clause set compatibility)
Let C be a set of at least two reconcilable clauses, and let m be a mode for the relation in their
heads. If [g6(C) is admissible wrt m, then C is compatible wrt m.

Proof: Let lgf(C) be admissible wrt m. Let ¢ and d be two arbitrary clauses in C. By construction,
lgf(C) B-subsumes lgf(c,d). So, by Lemma 1, lgf(c, d) is admissible wrt m. That is, by Definition 8
and since ¢ and d are reconcilable, clauses ¢ and d are compatible wrt m. Since ¢ and d were chosen
arbitrarily, set C is compatible wrt m, by Definition 9. O

Also, the following theorem shows that the least generalization (under #-subsumption) of a
clause set is compatible with every element of that set. (This is trivial for singleton sets, so
we restrict the theorem to sets of at least two elements, so that the proof can use the previous
theorem.)

Theorem 3 (Representative of a compatible clause set)
Let C be a set of at least two reconcilable clauses, and let m be a mode for the relation in their
heads. We have that C is compatible wrt m iff C U {{g8(C)} is compatible wrt m.

Proof: First assume that C is compatible wrt m. Then we have that:

CU{lgf(C)} is compatible wrt m

iff any clause ¢ € C is compatible with lgf6(C) wrt m (by Definition 9 and by the assumption)

iff {gf(1g0(C), ¢) is admissible wrt m (by Definition 8)

iff {gf(C) is admissible wrt m (by ¢ € C and Property 4)

implies C is compatible wrt m (by Theorem 2)

iff true (by the assumption).

Conversely, assume that C U {lgf(C)} is compatible wrt m. Then we immediately have that C is
compatible wrt m (as any subset of a set compatible wrt m is compatible wrt m). O

This basically means that the lgf of a compatible set can be taken as a representative of that
set, because it constructs its parameters with mode must; in a way “similar” to how this is done

13

for each element in that set. This is the crucial idea behind our Program Closing Method, which
is presented next.

3 The Program Closing Method

Given:

e an open logic program Q for a relation ¢, in the sense that it has no clauses for one used
relation, say r,

e aset £ of reconcilable clauses defining 7, called the evidence set,
e a construction mode m for r,

the objective of the Program Closing Method is to infer a closed program Q' = Q UR for ¢, where
R is a non-recursive logic program for r that is more general than & (in the sense that R = £).

This problem statement is not quite the same as the one of the general ILP task. Of course,
we do not want R to be equal to &, nor to cover all syntactically possible atoms for ». What is
wanted is rather that R covers an “extension” of £, such that this “extension” coincides with the
unknown intended relation 7.

In Section 3.1, we present the Program Closing Method itself, and in Section 3.2, we introduce
an acceptability criterion for the program R inferred by that method.

3.1 The Method

Basically, the idea of the Program Closing Method comes from Theorem 3: one can divide & into
a minimal number of subsets that are compatible wrt m, and then take the set of their least
generalizations (under @-subsumption) as representatives, i.e. as R. Note that R may thus be
conjunctively defined, as desired.

Let us first get a feeling for the desired algorithm, via some examples.

Example 5 For combine of Example 3, let £t be the following positive evidence set:

combine(L,[1[) — ()
combme(?, [1,12]) < (E2)
combine(3,[4],[4]) — (E3)
combine(6,[8],[6,8]) — (E4)

Also let £~ be the set containing the negative evidence, namely {— combine(5,[],[5])}, and let
the mode m be combine(may, must, res) (as dictated in general for the compose place-holder of
the divide-and-conquer schema, see Example 4).

If we check the compatibility of the entire set £t wrt m, using Theorem 2, we obtain that
lg0(ET) is combine(X, T, V) «, which is not admissible wrt m. So we cannot judge, using The-
orem 2, whether £T is compatible or not. But £t is not compatible, because F; and F are not
compatible. So we need a division of £ into a minimal number of subsets such that each one is com-
patible wrt m. In this case, the 2 subsets & = {F1, Es3} and & = {F, E4} are compatible wrt m,
because both lgf(&;), which is combine(X, T, T) «—, and Igf(&;), which is combine(X, T, [X|T]) —
are admissible wrt m. Divisions into 3 or 4 compatible subsets are also possible, but they would
not be “minimal.” Therefore, we get the following program for combine:

combine(X,T,T) —
combine(X, T, [X|T]) —

by collecting the [gfs of the 2 identified subsets. However, this program is not acceptable because
the atom of the negative evidence is covered by the second clause. To avoid this, there are two
solutions. First, there could be other open relations in the delOddElems program, and they would
discriminate between these two clauses for combine. The aim of our Program Closing Method is
not to infer the discriminants odd and even from the given evidence, so another method would need
to be invoked to do so (e.g., see the Proofs-as-Programs Method of the SYNAPSE technique [6, 3],

14

also see Section 4.1). Second, the present method could be given more informative evidence, such
as the following new set £'*:

combine(1,[],[]) < odd(1) (E1)
combine(2,[],[2]) — even(2) (E2)
combine(3, [4], [4]) — odd(3) (E3)
combine(6, [8], [6, 8]) — even(6) (E4)

Let &'~ also be {« combine(5,[],[5])}. If we check the compatibility of the entire set &'* wrt
m, we obtain that lgf(£'T) is combine(X,T, V) «, which is not admissible wrt m. So we need a
division of £ into a minimal number of subsets such that each one is compatible wrt m. In this
case, the subsets & = {F1, Es} and & = {E5, F4} are compatible wrt m, because both lgf(&]),
which is combine(X,T,T) «— odd(X), and {gf(&}), which is combine(X, T, [X|T]) — even(X), are
admissible wrt m. Therefore, we get the following program for combine:

combine(X, T, T) — odd(X)
combine(X, T, [X|T]) « even(X)

which is acceptable now, because the atom of the negative evidence is not covered by this program,
assuming that odd and even are primitives. O

Example 6 Let £T be the following evidence set for insert:

insert(3,[3],[3,3]) — (E1)
insert(1,[2],[1,2])) — (Fa)
insert(2,[1],[1,2])) — (Fs)

and let the mode m be insert(must, must,res). If we check the compatibility of the entire set
ET wrt m, we obtain that lgd(ET) is insert(X,[Y],[Z,T]) «+, which is not admissible wrt m. So
we need a division of £F into a minimal number of subsets such that each one is compatible wrt
m. In this case, the subsets & = {F1, E2} and & = {E1, Fs} are compatible wrt m, because
both lgf(&;1), which is insert(X,[Y],[X,Y]) <, and lgf(&;), which is insert(X,[Y],[Y, X]) <,
are admissible wrt m. Note that this division is not a partition. Therefore, we get the following
program for insert:

insert(X,[Y],[X,Y]) —
insert(X, [Y],[Y, X]) —

which is acceptable, but of course only an approximation, because the initial evidence is not very
informative. O

In these two examples, while we are trying to find some subsets of the given positive evidence
set such that they are compatible wrt the given mode, we are actually trying to find the minimal
number of cliques of the compatibility graph over this set such that these cliques contain all the
given positive evidence. Note that & and &£ do not form a partition in Example 6, while they do
form a partition in Example 5. Actually, in Example 6, we could have used a partition such as
&1 = {Fs} and & = {E4, Es3}, but we preferred a cover such as & = {E1, Ex} and & = {F1, Es},
because the more evidence in a subset, the “better” its least generalization is (that is, the more
further evidence it covers). Therefore, what we try to find is a node cliqgue cover (NCC) of the
compatibility graph of the given evidence set for a given relation wrt a given mode. Finding a
node clique cover of a graph is referred to as the node cliqgue cover problem (or shortly cliqgue cover
problem) in graph theory: we try to find the minimum number of cliques that cover the nodes of
the given undirected graph, such that a node already covered by a clique may also be covered by
another clique [12]. This is an NP-complete problem. Note that we do not try to find a minimum
set cover, i.e. the smallest subset S of the given subsets of a finite set ¢ such that the union of
the members of § is equal to U, which is a more general problem. Indeed, finding an NCC fits
our goal better, in the sense that it is more natural to represent the compatibility relation wrt the
given mode amongst the evidence set by a graph (as edges) rather than by a set; and this makes
finding an NCC more efficient than finding a minimal set cover.

15

Now we can finally introduce our re-definition of the concept of least generalization (under
@-subsumption) of a set of clauses:

Definition 10 (Least generalizations,” under f-subsumption, of a clause set)

The least generalizations under @-subsumption of a non-empty set C of clauses wrt an over-
generality criterion G, denoted by lgsf(C, G), are the set of ‘classical’ least generalizations, under
f-subsumption, of the node cliques of the graph with node set C and edge set induced by the
compatibility relation wrt G.

It remains to see how to (efficiently) solve the NCC problem. The NCC problem being an
NP-complete problem, there does not exist a polynomial time algorithm for it, assuming P # N P.
We approach NP-complete problems in two ways [8]:

e try to find as much improvement as possible over straightforward exhaustive search to find
the optimal solution, such as by using branch-and-bound or dynamic programming;

e try to find a “good” solution within an acceptable amount of time, using problem-specific
methods, called “heuristics,” such as neighborhood search, in which, using a pre-selected set
of local operators, an initial solution is improved repeatedly until a “local optimum” solution,
i.e. a “good” solution, has been obtained.

We used the first approach in [2], but it is very inefficient in time for our purposes, so we now
choose the second approach, that is, we use an approximation algorithm for the NCC problem.

The literature has a number of heuristic algorithms for the graph coloring problem, from which
we can construct algorithms for the NCC problem. In [12], an algorithm for edge clique covering
(ECC) is constructed without using the heuristics for graph coloring, but rather a heuristic in-
troduced by Kellerman for the keyword conflict problem. We used the approximation algorithm
introduced in [12] for the ECC problem to construct an approximation algorithm for the NCC
problem. Note that there is an approximation algorithm for the NCC problem iff there is an
approximation algorithm for the ECC problem [12].

We now switch the terminology to our particular problem, and talk about clauses (of the
evidence) instead of nodes, and about compatibility (wrt a mode) instead of connectedness via
an edge. The approximation algorithm forms the minimal number of cliques, labeled C1, ..., Cp,
examining the clauses one by one. In the description of the algorithm, CurrentClause is the label
of the current clause being examined, and & is the number of the cliques that have been created
so far. The heuristic is that when a clause labeled ¢ is being examined, the next clauses to be
examined are the ones that are compatible with ¢ wrt mode m, and labeled j, where j < ¢. In the
description of the algorithm, ClausesToBeEzamined 1s the set of the labels of the next clauses
to be examined when the clause labeled CurrentClause is being examined.

Algorithm ClauseCliqueCover
Inputs:
— a set £ of n reconcilable clauses (defining a relation r), whose elements F; are labeled from 1 to n;
— a construction mode m for r.
Output:
— a set C of cliques covering &, labeled C,...,Cy, with p minimum such that each C; is compatible wrt m.
Initialize the number of cliques: k& — 0;
Initialize the label of the current clause being examined: CurrentClause — 1;
while CurrentClause < n do
begin
ClausesToBe Ezamined — {j|j < CurrentClause A compatible(CurrentClause, j, m)};
if ClausesToBeExamined = {} then
begin {Create a new clique}
k—k+1;
Cy — {CurrentClause};

CurrentClause «— CurrentClause + 1

"Note the plural!

16

end ;
else {Try to insert CurrentClause into existing cliques C4,...,Cg}
begin
Initialize the clique into which CurrentClause may be inserted: | — 1;
Initialize the union of cliques into which CurrentClause is inserted: V — {};
while [< £ and V # ClausesToBeExamined do
begin
if C; C ClausesToBeFExamined then
begin
Cr — CyU{CurrentClause};
V—VUug;
end ;
l—14+1;
end ;
Update ClausesToBeFEzamined to account for those clauses that were covered by the
cliques into which C'urrentClause is inserted:
ClausesToBeExzamined — ClausesToBe Examined \ 'V,
while ClausesToBe Examined # {} do
begin {Add new cliques}
Find the smallest I, with 1 <1 < k, such that |C; N ClausesToBe Examined| is maximal:
k—k+1;
Cr — (Ci N ClausesToBeExamined) U {CurrentClause};
ClausesToBe Ezamined — ClausesToBeExamined \ C

end ;
CurrentClause — CurrentClause + 1
end
end ;
Suppose C1, ..., Cy are the cliques produced so far: examine them one by one to see if the

clauses covered by a clique are also covered by a subset of the union of the remaining cliques:
if a clique is subsumed by the union of the remaining cliques, then eliminate it;
p < the number of remaining cliques

Thus, for our particular problem, we get the following algorithm for computing lgsé(E, m):

Algorithm Igsf

Inputs:

— a set & of reconcilable clauses (defining a relation r);

— a construction mode m for 7.

Output:

— a non-recursive logic program R for r, such that R = £.
Ci,...,Cp — ClauseCliqueCover(E, m);

R — {lgb(Ch),...,1g6(Cp)}

Finally, the algorithm of the Program Closing Method is as follows:

Algorithm ProgramClosingMethod

Inputs:
— an open logic program Q for a relation ¢, but with no clauses for one used relation, say r;
— an evidence set & of clauses defining r;
— a construction mode m for 7.

Output:

— a closed logic program Q' for ¢, such that @' = QU R,

where R is a non-recursive logic program for 7, such that R = &.

R — lgsh(&, m);

Q' —QUR

17

This algorithm correctly enacts all the scenarios envisaged in Examples 1 through 6, if coupled
with the following acceptability criterion.

3.2 The Acceptability Criterion

The Program Closing Method always succeeds, but, as seen in Example 2, its result is not always
acceptable. Indeed, sometimes it is necessary to reject its result and instead invoke an entire new
synthesis (of a recursive program for r) from its evidence for r, precisely because the Program
Closing Method cannot infer a recursive program for r. Such rejection plus auxiliary synthesis
corresponds to necessary predicate invention, ‘necessary’ in the sense that a recursive program R
for r cannot be eliminated by unfolding for occurrences of r in Q. If the result R of the Program
Closing Method is deemed acceptable, then relation/predicate r is ‘unnecessary’ in the sense that
the non-recursive program R can be unfolded for occurrences of r in Q. Now, it is in general
undecidable whether predicate invention is necessary (via rejection) or not (via acceptance) [19].
So a heuristic is needed to judge the output of the Program Closing Method, and we call this
heuristic the acceptability criterion.

Our proposed acceptability criterion is as follows. The program R inferred by the Program
Closing Method is acceptable iff the following conditions hold:

1. program R does not cover any of the negative evidence for r;
2. the number of clauses in R is “not too large.”

The first condition is obvious, as it avoids over-generalization. Note that negative evidence plays
no role in the Progam Closing Method per se, but it may or may not be useful in the abduction
step of the basic synthesis algorithm; also, note that both the Progam Closing Method and the
acceptability criterion can even perform in the absence of negative evidence. The proposed work
is thus suitable for the current trend on learning from positive evidence only, as negative evidence
is hard to come by in some application settings. The second condition needs to be refined for
each particular synthesis technique that uses the Program Closing Method. For instance, if only
carefully chosen evidence is presented to the synthesis technique, say n clauses, then “not too
large” could mean, say, “less than n = 2”. An alternative way of expressing this idea is to require
that the size of each clique is larger than 2, say (remember that the 1gf of each clique is a clause

of R).

Example 7 Let £ be the following evidence set for insert:

insert(1,[],[1]) < (E1)
insert(3,[4],[3,4]) — (E2)
insert(4,[2], [2,4]) — (E3)
insert(6,[5,7],[5,6,7]) — (E4)
insert(5,[1,3],[1,3,5]) — (Es)
insert(7,[3,6,8],[3,6,7,8]) — (E6)

and let the construction mode m be insert(must, must,res). Then we get the following three
cliques: & = {FE1, E2}, &2 = {Es, F4}, and & = {E5, Fs}, and their least generalizations are:

insert(X, L, [X|L]) —
insert(X, [Y|L],[Y, X|L]) —
insert(X,[Y, Z|L], Y, Z, X|L]) —

But this program does not fit our acceptability criterion, because the number of clauses is not less
than 3 (which is half the size of the evidence set). In this program, the mth clause achieves insertion
of a number into the mth position of a list of numbers, but this program is not as general as we
want because it does not cover insertion of a number into the mth position of a list of numbers,
where m > 3. This cannot be done with a finite non-recursive program (unless other predicate
symbols are added), so the result of the Program Closing Method is inadequate and detecting this
is what the acceptability criterion is for. O

18

4 Related Work

There are two kinds of related work. First, in Section 4.1, we review inductive synthesis techniques
that more or less follow the basic synthesis algorithm of Section 1, by showing how they deviate from
that algorithm as well as in what sense the Program Closing Method presented here generalizes the
corresponding methods in these techniques, and could thus be plugged into them to increase their
power (i.e. the size of the class of relations for which programs can be successfully synthesized), if
not to correct their flaws. Then, in Section 4.2, we compare our Program Closing Method to other
methods, which have been proposed independently of particular synthesis techniques.

4.1 Related Synthesis Techniques

This paper is a considerable extension of the second author’s previous work on the SYNAPSE
synthesis technique [6, 3], and is based on the advances reported by the first author [2]. SYNAPSE
features a slight variation of the basic synthesis algorithm, and starts from positive examples as well
as properties (expressed by non-recursive definite clauses) as specification of the top-level relation.
It is biased by a (hardwired) divide-and-conquer schema, which is however more informative than
the one in Section 1, in the sense that the compose place-holder is split into a conjunction of
two place-holders, namely processCompose for combining partial results into overall results, and
discriminate for discriminating between alternative instances of the former. The key difference
with the basic synthesis algorithm is that its Step 2 only abduces examples of processCompose,
so that a Step 4 needs to be added to abduce the instances of discriminate, which is done by
a Proofs-as-Programs Method, using the properties. The clause completion method of SYNAPSE,
called the MSG Method, is a precursor to the version presented here, in the sense that the definition
of admissibility is considerably more powerful now: less evidence is now considered admissible, and
we also handle clausal evidence, and hence semantic construction. The definitions of construction
mode and compatibility also have undergone some changes, so the theorems all had to be re-proved
accordingly.

The DIALOGS synthesis technique [5] now [23] exploits the advances presented here. It also
features a slight variation of the basic synthesis algorithm, as it starts from no specification at all
and collects its (positive) evidence by querying the specifier. The key difference with the basic
synthesis algorithm is that its Step 1 does not instantiate the solve place-holder, so that its Step 2
simultaneously abduces evidence of solve and of compose, and that its Step 3 decides which pieces
of this evidence are used to instantiate which of these place-holders.

The METAINDUCE synthesis technique [10] exactly follows the basic synthesis algorithm, using
the divide-and-conquer schema of Section 1, and starts from positive and negative examples of the
top-level relation. Examples 1 to 3 can be acted out by this technique, including the erroneous
decision about the lgf of Example 3, due to the absence of the concepts of construction mode,
admissibility, and compatibility. Its acceptability criterion simply is that the (unique) lgf should
not cover any negative evidence and that the variables of the unique res parameter are a subset of
the variables of the two must parameters. There is thus no concept of may parameters, and the
non-consideration of constants and functors sometimes leads to wrong decisions.

The CiLp synthesis technique [14] follows the basic synthesis algorithm, except that its Step 3
is based on the concept of sub-unification, rather than anti-unification, and that it is its Step 3
that instantiates the solve place-holder, rather than its Step 1. The underlying schema is less
informative than the one in Section 1, in the sense that it has fewer place-holders and does not
prescribe the data-flow; therefore, a heuristic analysis (based on input-mode declarations) needs to
be done to figure out the necessary parameters of the compose place-holder, instead of precompiling
this once and for all at the schema-level with more precise constraints on the data-flow. The
technique cannot induce multi-clausal instances of compose, and its acceptability criterion reduces
to the over-generalization check (by rejecting programs that cover some negative evidence) (of
course, it is sub-unification that allowed many simplifications of this criterion).

The CRUSTACEAN synthesis technique [1] is a successor of the LOPSTER technique [13], in the
sense that a few features have been improved. However, it cannot perform necessary predicate
invention, so that its Step 3 never calls CRUSTACEAN recursively. CRUSTACEAN is basically a
predecessor of CILP and thus also has the drawbacks of CILP.

19

The THESYS synthesis technique [21] is a precursor to all these techniques, but it is set in the
functional programming paradigm. In case of an unacceptable lgf at its Step 3, it does not call
itself recursively for the necessary predicate invention, but rather tries to avoid this by generalizing
the given examples and re-trying from scratch (also see [4]). For instance, THESYS cannot infer a
functional program for reverse corresponding to the naive (quadratic) reverse program of Exam-
ple 2, but instead infers a non-naive (linear) reverse program based on difference lists (i.e., based
on the introduction of an accumulator parameter). However, such an accumulator introduction is
not always possible; for instance, synthesizing a product functional /relational program leads to the
necessary invention of a sum function/relation, which cannot be avoided through generalization
of product. THESYs was the first schema-biased inductive synthesizer, and has been extended,
revised, and reformulated over the years as the BM Wk technique [11, 16], and was also transposed
to a higher-order logic framework [9].

Many other techniques of inductive synthesis of recursive programs, although they are not all
schema-biased, are reviewed in [7].

4.2 Related Methods

The SIERES learning technique [22] is not really schema-biased and thus does not really follow the
basic synthesis algorithm. However, it features a few components not unlike our Program Closing
Method and its conceptual apparatus. Indeed, it also computes the lgf of evidence (which must
however be unit clauses); it constructs clauses that fit argument dependency graphs (a kind of
primitive schemas that prescribe the data-flow but not the control-flow); and it uses input-mode
declarations to guide this construction towards non-over-general clauses. However, there is no
notion of compatibility, and hence no possibility of division of the evidence into cliques, i.e. no
inferability of multi-clausally defined predicates.

The INDICO learning technique [20] is not at all an instance of the basic synthesis algorithm.
However, it features an interesting method for conjecturing the heads of possible clauses, hence
providing already much of the discriminating information that otherwise has to be discovered
together with the characterizing information when starting from most-general clause heads. The
method first partitions (i.e. does not divide) the evidence (which must be unit clauses) into subsets
according to the functors (e.g. type constructors) appearing in it; then it computes the lgf of
each obtained subset so as to produce a series of clause heads, from which a top-down clause
specialization process can then be started. This method is obviously related to, but more specialized
than, our clique finding mechanism.

5 Future Work

The Program Closing Method presented here is already very powerful (as it generalizes and corrects
all “competing” methods known to the authors), but it can nevertheless be extended in various
ways, which we examine now.

The existential case. The (positive) evidence abduced by Step 2 of the basic synthesis algorithm
is not always in the form of proper clauses, and the Program Closing Method is then inapplicable as
it stands. Such is the case when the top-level relation is non-deterministic given particular values for
the chosen induction parameter and passive parameters (if any): the recursive call to the top-level
relation for a tail of the induction parameter (obtained through decompose) may then yield (upon
backtracking) several values for the designated result parameter, but only one of them is actually
used to construct (through compose) the result corresponding to the undecomposed induction
parameter. Several such values either lead to abduced (positive) evidence with disjunction or with
existentially quantified variables.

Example 8 Consider the following specification:

firstN(N, L, R) iff list R is the first N elements of list L, which has at least V elements,
where N is a Peano number.

20

If Step 2 generates the open program (using L as induction parameter):
firstN(N,L,R) — L=_N=0,R=]]
firstN(N,L,R) — L = [HL|TL], firstN(TN,TL,TR), compose;(HL, TN, TR, N, R)

then, from the evidence firstN(s(s(0)),[a,b,¢c],[a,b]) —, at best the following (disjunctive!) evi-
dence for compose; could be abduced (depending on the other evidence for firstN):

composey(a,0,]],s(s(0)),[a,b]) V
compose(a, s(0),[b], s(s(0)), [a, b]) V
composey(a, s(s(0)),[b, €], s(s(0)), [a, b]) —

because there are three correct instances of the recursive call first N(T'N,[b,c], TR). First of all,
note that this is not a definite clause, so that the method seen here is not applicable. Also, only
one of the three involved atoms for compose;, namely the second one, is actually useful for proving
the query «— firstN(s(s(0)),[a,b,], [a,b]). Note that it also is the only one to be admissible wrt
mode compose (mayqn, musty, musta, resy, ress).

Similarly, if Step 2 generates the open program (using N as induction parameter):

firstN(N,L,R) — N =0,L = _,R=]
firstN(N,L,R) — N = s(TN), first N(TN,TL, TR), composes(TL, TR, L, R)

then, from the same evidence firstN(s(s(0)),[a,b,¢],[a,b]) <, at best the following evidence for
composes could be abduced (depending on the other evidence for firstN):

JA, T . composes([A|T],[A], [a, b, c], [a,b]) —

because firstN(s(0),[A|T],[4]) summarizes all the instances of the recursive
call firstN(s(0),TL,TR). Again, this is not a definite clause, so that the method seen here is
not applicable. Also, only one instance of this evidence, namely composes([b, ¢], [b], [a, b, ¢], [a, b]),
is actually useful for proving the query — firstN(s(s(0)),[a,b,¢],[a,b]). Note that it also is the
only one to be admissible wrt mode composes(musty, musty, resy, ress). O

In a forthcoming paper, we will show how to handle this existential case (for an old version
of this solution, consult [3]). Essentially, the useless components of the evidence, respectively the
useless instances of the evidence, have to be eliminated, and the admissibility criterion plays a
crucial role here: the more precise it is, the better the results of this elimination process.

Recursive evidence. As of now, the Program Closing Method is restricted to abduced evidence
in the form of non-recursive (proper) clauses. There is no real theoretical obstacle to also allowing
recursive clauses as evidence (except for the mentioned inadequacy of computing the least gener-
alization under #-subsumption of two recursive clauses). In fact, our restriction to non-recursive
clauses was rather motivated by a pragmatic choice: if the abduced evidence were recursive, then
the evidence for the top-level relation would most likely also have been recursive; but that would
in turn mean that the specifier would have to provide such evidence; but it seems (to us) that
doing so is tantamount to already writing the program itself and that the specifier would then
most likely not need an inductive synthesizer to write the program.

Number of undefined relations. The basic synthesis algorithm assumes there is only one
undefined relation by the time Step 3 is reached, hence that the top-level relation can be defined in
terms of a chain (rather than a tree) of invented predicates. (Note that, upon recursive invocation
of the basic synthesis algorithm, a different schema can be selected at each level.) However, such is
not always the case, as shown by the approach of DiaLoas [5, 23]. It would thus be interesting to
investigate in full generality how to adapt the Program Closing Method when its evidence is about
multiple undefined relations.

Background knowledge. An almost certain criticism of our work is that we compute general-
izations in the absence of background knowledge (not to mention our usage of the “old-fashioned”
@-subsumption model for generality). However, note that we assume that the abduced evidence

21

for the undefined relation already contains all the necessary relations, so that the responsibility of
discovering them does not lie with the Program Closing Method, but with its “clients,” whether
they achieve this by interaction with an oracle (as in DiaLogs [5, 23]), or by extraction from
the evidence for the top-level relation (as in SYNAPSE [6, 3]), or by some form of “background
knowledge usage miracle” [7] (as in the vast majority of inductive synthesizers). (Also remember
that #-subsumption suffices for non-recursive clauses, which is the case here, as argued earlier.) So
our choices are rather justified, but one can of course investigate the use of background knowledge
and/or a stronger model of generality in order to “push” the mentioned assumption inside the
Program Closing Method.

6 Conclusion

We have given a new definition of the concept of least generalization (under #-subsumption) of
a set C of clauses, denoted by lgf(C). The ‘classical’ approach is to define lgf(C) as a single
clause. Since such a unique clause is sometimes too general, we have here re-defined {gf(C) as
being a set of clauses, each member of this set being the least generalization (under ‘classical’
@-subsumption) of some subset of C. The considered subsets have C as their union, but do not
necessarily constitute a partition of C. These subsets are here called compatible sets, because their
elements are two by two compatible, in the sense that their least generalizations (under ‘classical’
@-subsumption) are not too general. Moreover, these subsets must each be of maximal size such
that their least generalizations (under ‘classical’ #-subsumption) are not too general. Or, in other
words, the number of these subsets must be minimal.

The criterion for over-generality is of course problem-specific. We have here designed such a
criterion for a problem frequently occurring in the inductive synthesis of recursive logic programs,
namely the completion (or: closing) of an open program that was synthesized in a schema-biased
way, but that has one of the place-holders of the used schema still undefined. Since a schema
captures the data-flow of all programs designed by a certain methodology, it also captures the data-
flow of the undefined place-holder, and it is this data-flow that gives rise to the over-generality
criterion for this problem: a least generalization (under #-subsumption) is over-general if it is
not admissible wrt a certain construction mode. We have designed a language for expressing
such construction modes (for any place-holder of any schema), and we have defined a powerful
admissibility criterion. We have also proposed a few theorems relating the problem-independent
concept of compatibility with the problem-specific concept of admissibility: these theorems show
how to speed up certain computations for this specific problem.

Let us now return the discussion to the general problem. We have shown an algorithm that
computes the least generalization (under f-subsumption) of a set of clauses, according to our new
definition. This amounts to (1) finding the node clique cover of an undirected graph, whose nodes
are the given clauses and whose edges represent the compatibility relationships among these clauses;
and (2) computing the least generalizations (under #-subsumption) of these cliques, according to
the ‘classical’ definition. This algorithm is thus fully general, and may be used, with an appropriate
over-generality criterion, for any particular instance of the problem that the reader may encounter.

Acknowledgments

We thank Baudouin Le Charlier and Pierre-Yves Schobbens (both at the University of Namur,
Belgium) for some insightful remarks during a presentation of a preliminary version of the method
presented here. We are also grateful to the Machine Learning Group at the University of Texas at
Austin, for their helpful comments during a discussion of a preliminary version of this paper.

References
[1] D.W. Aha, S. Lapointe, C.X. Ling, and S. Matwin. Inverting implication with small training

sets. In F. Bergadano and L. De Raedt (eds), Proc. of ECML’94, pp. 31-48. LNAI 784,
Springer-Verlag, 1994.

22

[2] E. Erdem. An MSG Method for Inductive Logic Program Synthesis. Senior Project Final Re-
port, Bilkent University, Ankara (Turkey), May 1996.

[3] P. Flener. Logic Program Synthesis from Incomplete Information. Kluwer Academic Publish-
ers, 1995.

[4] P. Flener. Predicate invention in inductive program synthesis. Technical Report BU-CEIS-
9509, Bilkent University, Ankara (Turkey), 1995.

[5] P. Flener. Inductive Logic Program Synthesis with DIALOGS. In S. Muggleton (ed), Proc. of
ILP’96, pp. 175-198. LNAI 1314, Springer-Verlag, 1997.

[6] P. Flener and Y. Deville. Logic program synthesis from incomplete specifications. J. of Sym-
bolic Computation 15(5-6):775-805, May/June 1993.

[7] P. Flener and S. Yilmaz. Inductive synthesis of recursive logic programs: Achievements and
prospects. Submitted to J. of Logic Programming.

[8] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, 1979.

[9] M. Hagiya. Programming by example and proving by example using higher-order unification.

In M.E. Stickel (ed), Proc. of CADE’90, pp. 588-602. LNCS 449, Springer-Verlag, 1990.

[10] A. Hamfelt and J. Fischer Nilsson. Inductive metalogic programming. In S. Wrobel (ed), Proc.
of ILP’94, pp. 85-96. GMD-Studien Nr. 237, Sankt Augustin (Germany), 1994.

[11] Y. Kodratoff and J.-P. Jouannaud. Synthesizing LISP programs working on the list level
of embedding. In A'W. Biermann, G. Guiho, and Y. Kodratoff (eds), Automatic Program
Construction Techniques, pp. 325-374. Macmillan, 1984.

[12] T. Kou, L.J. Stockmeyer, and C.K. Wong. Covering edges by cliques with regard to keyword
conflicts and intersection graphs. Comm. of the ACM 21(2):135-139, Feb. 1978.

[13] S. Lapointe and S. Matwin. Sub-unification: A tool for efficient induction of recursive pro-
grams. In Proc. of ICML’92, pp. 273-281. Morgan Kaufmann, 1992.

[14] S. Lapointe, C.X. Ling, and S. Matwin. Constructive inductive logic programming. In S. Mug-
gleton (ed), Proc. of ILP’93, pp. 255-264. Technical Report IJS-DP-6707, J. Stefan Institute,
Ljubljana (Slovenia), 1993.

[15] K.-K. Lau and M. Ornaghi. The relationship between logic programs and specifications: The
subset example revisited. J. of Logic Programming 30(3):239-257, 1997.

[16] G. Le Blanc. BMWk revisited: Generalization and formalization of an algorithm for detect-
ing recursive relations in term sequences. In F. Bergadano and L. De Raedt (eds), Proc. of

ECML’9, pp. 183-197. LNAI 784, Springer-Verlag, 1994.

[17] S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. J. of
Logic Programming 19-20:629-679, May/July 1994.

[18] G.D. Plotkin. A note on inductive generalization. In B. Meltzer and D. Michie (eds), Machine
Intelligence 5:153-163. Edinburgh University Press, Edinburgh (UK), 1970.

[19] 1. Stahl. Predicate Invention in ILP: An Overview. Technical Report 1993/06, Fakultat Infor-
matik, Universitat Stuttgart (Germany), 1993.

[20] I. Stahl, B. Tausend, and R. Wirth. Two methods for improving inductive logic programming
systems. In P. Brazdil (ed), Proc. of ECML’93, pp. 41-55. LNAI 667, Springer-Verlag, 1993.

[21] P.D. Summers. A methodology for LISP program construction from examples. J. of the ACM
24(1):161-175, Jan. 1977.

23

[22] R. Wirth and P. O’Rorke. Constraints for predicate invention. In S. Muggleton (ed), Inductive
Logic Programming, pp. 299-318. Volume APIC-38, Academic Press, 1992.

[23] S. Yilmaz. Inductive Synthesis of Recursive Logic Programs. M.Sc. thesis. Technical Report
BU-CEIS-9717, Bilkent University, Ankara (Turkey), 1997.

24

