WEIGHTED K NEAREST NEIGHBOR CLASSIFICATION ON
FEATURE PROJECTIONS!

H. Altay Giivenir and Aynur Akkus
Department of Computer Engineering and Information Science
Bilkent University, 06533, Ankara, Turkey
{guvenir, akkus} @cs.bilkent.edu.tr

Abstract. This paper proposes an extension to the & Nearest Neighbor algorithm on Feature
Projections, called KNNFP. The ANNFP algorithm has been shown to achieve comparable
accuracy with the well-known kNN algorithm. However, KNNFP algorithm has a very low
time complexity compared to KNN. The extension to KNNFP introduced here assigns weights to
features, therefore it is called W kNNFP, for Weighted k Nearest Neighbor on Feature Projections.
The paper also introduces a weight learning algorithm, called SFA, for Single Feature Accuracy.
It is based on the assumption that the weight of a feature is proportional with the accuracy
that will be obtained by considering only that feature. The SFA algorithm is not specific to
WENNFP, so it can be used with many other classification algorithms. An empirical evaluation
of the SFA algorithm on real-world datasets shows that it achieves an important improvement
in the classification accuracy of the WANNFP algorithm.

1. Introduction

Learning to classify objects, from a given set of classified examples, is one of the fundamen-
tal problems in machine learning. Researchers in the field have been working on designing
classification algorithms that are accurate and also fast in training and classification.

One of the simplest, yet very accurate, classification methods in the literature is the well-known
kNN, for k nearest neighbor, algorithm (Duda & Hart, 1973; Dasarathy, 1990). It is based
on the assumption that examples that are close in the instance space belong to the same class.
Therefore, an unseen instance should be classified as the the majority class of its & (1 < k)
nearest neighbors in the training dataset. Although the NN algorithm is quite accurate, the
time required to classify an instance is high, since the distance (or similarity) of that instance to
all the instances in the training set have to be computed. Therefore, the classification time in
kNN algorithm is proportional to the number of features and the number of training instances.

'This project is supported by TUBITAK (Scientific and Technical Research Council of Turkey) under Grant
EEEAG-153.

On the other hand, the kNNFP (k Nearest Neighbors on Feature Projections) algorithm has
been proposed to achieve fast classification by storing training instances as their projections on
each feature dimension separately (Akkus & Giivenir, 1996). This allows the classification of
a new instance to be made much faster than NN algorithm, since all projected values can be
stored in a data structure that allows fast search. The ANNFP algorithm first makes a set of
predictions, one for each feature, using kNN algorithm on the projections on a feature. Then,
the final classification of an instance is determined through a majority voting on individual
classifications made by each feature.

The KNNFP algorithm assumes that all the features are equally relevant, that is, each feature has
the same power in the voting. To a certain extent, the voting approach reduces the hindrance
of irrelevant features. However, if there are many irrelevant features, or the relevancies of the
features vary a great deal, then voting alone is not sufficient.

This paper presents an extension to the KNNFP algorithm that incorporates weights for features,
and a heuristic approach to learn these weights. The resulting algorithm is called WANNEFP.
The weight learning approach introduced here is called SFA for Single Feature Accuracy, since
it determines the weight of a feature as the accuracy obtained by using that feature alone. This
approach is not specific to WENNFP; it can be used with other classification algorithms, as well.

The next section gives an overview of the previous work on learning feature weights. The third
section introduces the WANNFP Algorithm. Then, the SFA feature weight learning algorithm
is described. The fifth Section gives the results of our experiments to compare KNNFP and
WENNFP algorithms on some real-world datasets. The last section concludes with some
remarks on both WANNFP and SFA algorithms.

2. Previous Work on Learning Feature Weights

One of the central problems when classifying objects is discriminating between features that are
relevant to the target concept and that are irrelevant. Many researchers have addressed the issue
of features’ relevancies in order to reduce the impact of irrelevant features and to increase the
impact of more relevant features in classification task by investigating feature weighting (Aha,
1990) or feature selection (Langley & Sage, 1994; Skalak, 1994).

The kNN is the basis for many classification algorithms, where all training instances are stored
in the memory as points. An instance is classified as the majority class of its k& nearest neighbors
in the training set. Success of the kNN classifier depends on which instances are deemed
least distant, which is determined by its distance function. However, such a distance function
allows redundant, irrelevant, interacting, or noisy features to have as much effect on distance
computations as other features. ANN can perform poorly when such features exists in the
dataset. In order to eliminate the negative effect of such irrelevant features, feature subset
selection approaches are investigated, where the space of subsets of feature sets are considered
to determine the relevant and irrelevant features (John, Kohavi, Pfleger, 1994). Briefly, the
induction algorithm is run on the training data with different subsets of features, using usually
cross-validation to estimate its accuracy with each subset. These estimates are used as an
evaluation metric for directing search through the space of feature sets. Aha and Bankert
(1994), Langley and Sage (1994), Skalak (1993) have reported improved results in accuracy

over simple kNN. On the other hand, the disadvantage of using a feature selection method is
that it treats features as either completely relevant or irrelevant. However, in many real-world
datasets the degree of relevance may be in between these two extremes.

In most early distance-based classification methods, a numerical value is assigned to features to
modify the distance measure for each feature relevancy. Wettschereck and Aha (1995) presents
a work on feature weighting methods introducing a five-dimensional framework. The feedback
dimension is the first dimension which concerns whether the feature weighting method receives
feedback from the induction algorithm. The weighting methods that receive such feedback
are called feedback methods, and the ones which doesn’t receive any feedback are called
ignorant methods. Incremental hill-climbers (Wettschereck & Aha, 1995), IB4 (Aha, 1992),
and EACH’s weighting method (Salzberg, 1991) are categorized as feedback method according
to this framework. Continuous optimizers under feedback method consist of GA-WKNN (Kelly
& Davis, 1991) and £-NNy sy (Wettschereck, 1994). The work presented by Dietterich and
Wettschereck (1995) consists of feature weighting by mutual information categorized as ignorant
methods.

3. The Weighted k-NNFP Algorithm

The KNNFP algorithm was introduced for classification based on feature projections using k
nearest neighbor algorithm (Akkus & Giivenir, 1996). Our motivation for kANNFP was the
encouraging results of the knowledge representation technique based on feature partitions,
introduced by Giivenir and Sirin (1996). The basic assumption of the KNNFP algorithm is that
each feature can contribute the classification process and the majority voting provides a correct
classification.

The implementation of the kNNFP algorithm is non-incremental; namely, all training instances
are taken and processed at once. An important characteristic of this algorithm is that instances
are stored as their projections on each feature dimension. In the training phase, each training
instance is stored simply as its projections on each feature dimension. If the value of a training
instance is missing for a feature, that instance is not stored on that feature.

In order to classify an instance, a preclassification separately on each feature is performed. In
this preclassification, we use the KNN algorithm for a single dimension. That is, for a given
test instance ¢ and feature f, the preclassification for & = 1 will be the class of the training
instance whose value on feature f is the closest to that of the ¢. For a larger value of &, the
preclassification is a bag (multiset) of classes of the nearest & training instances. In other words,
each feature has exactly k votes, and gives these votes for the classes of the nearest training
instances. In some cases, especially for nominal features, there may be ties to determine the first
k nearest neighbors. In such cases ties are broken randomly. For the final classification of the
test instance ¢, the preclassification bags of each feature are collected using bag union. Finally,
the class that occurs most frequently in the collection bag is predicted to be the class of the test
instances. In other words, each feature has exactly k votes, and gives these votes for the classes
of the nearest training instances. Also note that, since each feature is processed separately, no
normalization of feature values is needed.

The KNNFP algorithm stores the feature projections of training instances in a sorted order.

Therefore, the classification of a new instance requires a simple search of the nearest training
instance values on each feature.

Although the majority voting for final classification can reduce the effect of irrelevant and noisy
features to some extent, we wanted to investigate the effects of incorporating feature weights to
the voting in this paper. So, if we multiplied the votes of each feature with its weight. Here,
we assumed that these feature weights would be provided externally, (Section 4 will describe a
simple method for learning these weights). We called the resulting algorithm Weighted ANNFP
(WENNFP, for short). The classification algorithm in WANNFP is outlined in Figure 1.

All the projections of training instances on linear features are stored in memory as sorted values.
In Figure 1, the votes of a feature is computed by the function k Bag(f, ¢, k), that returns a bag of
size k containing the classes of the k nearest training instances to the instance ¢ on feature f. The
distance between the values = and y on a feature dimension f is computed using di ff(f, z,y)
metric as follows:
|zs —yg| if fis linear
diff(f,z,y) = 0 if fisnominal and z; = ys (1
1 if fisnominal and z; # ys

Note that the bag returned by kBag(f,t, k) does not contain any UNDETERMINED class as
long as there are at least & training instances whose f values are known. Then, the number
of votes for each class is incremented by multiplying the weight of that feature by number of
votes that a feature gives to that class, which is determined by the count function. The value of
count(c, Bag) is the number of occurrences of class ¢ in bag Bag.

4. Weight Learning based on Single Feature Accuracies

Here we propose a simple method for estimating the weights of features. This method is
motivated by the work of Holte (1993) since each feature is processed independently in ANNFP
algorithm. Holte reports the results of experiments measuring the performance of very simple
rules on the datasets commonly used in machine learning research. The specific kind of
rules studied is called /-rules, which classify an object on the basis of a single feature. This
study motivated us to examine the classification accuracy of the KNNFP algorithm on the
basis of a single feature. Therefore, those accuracies can be used directly as weight of the
corresponding feature, since those accuracies reflect how much each feature can contribute to
the final classification. We call this weight learning algorithm SFA, for Single Feature Accuracy.

The SFA algorithm is also efficient interms of its time complexity. It has been shown that the
training time complexity of KNNFP algorithm is O(n - mdot log m), and time complexity for
testing an instance is O(n - logm), where n is the number of features and m is the number
of training instances (Akkus & Giivenir, 1996). Therefore, the execution of one fold in cross-
validatation in SFA algorithm has the complexity of O(mdot logm), since only one feature is
used in each fold. The time complexity of learning the weight of one feature is O(f - m -logm),
where f is the number of folds in cross-validation. Finally, the time complexity of SFA is
O(n - f-m-logm).

In order to investigate the effects on accuracy, we have performed some experiments on real-
world datasets. For these experiments, feature weights are learned by running ANNFP algorithm

classify(t, k):
/* t: test instance, k: number of neighbors */
begin
for each class c
vote[c] = 0

for each feature £
/* put k nearest neighbors of test instance t
on feature f into Bag */
Bag = kBag(f, t, k)
for each class c
vote[c] = vote[c] + weight[f] * count (c, Bag);
prediction = UNDETERMINED /* class 0 */
for each class c
if vote[c] > votel[prediction] then
prediction = c

return (prediction)
end.

Figure 1: Classification in the weighted KNNFP Algorithm.

on the basis of a single feature by 10-fold cross-validation for each feature. These estimated
accuracies are used as the weights of corresponding features in kNNFP algorithm. Since it takes
feedback from £NNFP algorithm, it can be categorized as feedback method.

5. Experiments on Real-World Datasets

In this section, we present an empirical evaluation of the SFA weight learning algorithm on the
accuracy of the WENNFP algorithm. In order to evaluate the effect of SFA, we first ran the
WENNFP on a dataset without any feature weights, that is treating all features equally. Then we
used the SFA algorithm to learn feature weights, and run the WANNFP again with these learned
weights. We repeated this for values of k£ from 1 to 10, in order to see also the effect of k. The
SFA algorithm used the same WANNFP algorithm, that is the same £ value is used in weight
learning and comparisons.

The datasets used in the experiments were selected from the collection of datasets provided
by the machine learning group at the University of California at Irvine (Murphy 1995). The
properties of these datasets are given in Table 1. In this table, name of the real-world datasets
are shown with the size of the dataset, number of features, number of classes, number of missing
feature values, and number of linear features.

The accuracy results of WANNFP with and without feature weights are given in Table 2. In
this table, the first row of each k value presents the accuracy of the WANNFP algorithm with
equal feature weigths, while the second row shows the accuracy obtained by WANNFP using

Table 1: Comparison on some real-world datasets.

Data Set: cleveland glass horse hungarian iris liver sonar wine
No. of Instances 303 214 368 294 150 345 208 178
No. of Features 13 9 22 13 4 6 60 13
No. of Classes 2 6 2 2 3 2 2 3
No. of Missing values 6 0 1927 784 0 0 0 0
No. of Linear features 5 9 7 5 4 6 60 13

Table 2: Accuracies (%) of the WANNFP. (U) Unweighted, (W) with weights learned by SFA.

Data Set: cleveland glass horse hungarian iris liver sonar wine
U k=1 63.5 50.8 69.3 67.2 86.0 51.8 57.7 85.8
w 63.5 52.7 70.9 70.0 89.3 52.7 61.1 88.7
U k=2 64.6 60.6 70.9 68.7 89.3 51.8 63.9 89.7
w 68.9 63.0 73.1 70.1 90.7 53.0 66.3 92.0
U k=3 69.9 62.5 69.0 73.1 90.7 54.4 65.5 92.0
w 70.5 63.0 71.2 73.8 94.0 55.9 67.8 94.3
U k=4 70.2 60.2 67.9 71.1 90.7 52.9 64.1 91.4
w 72.2 61.6 69.0 72.8 94.0 53.8 65.0 94.8
U k=5 72.5 63.5 70.1 73.1 92.7 55.8 63.1 93.7
w 72.9 63.9 70.9 73.8 93.3 57.3 67.9 94.9
U k=6 73.8 63.1 70.9 73.1 91.3 59.0 67.9 94.3
w 75.1 63.4 71.2 72.8 92.7 60.5 68.9 96.1
U k=7 74.5 68.5 70.4 72.7 91.3 61.6 67.9 97.1
W 76.9 68.1 72.8 73.1 93.3 61.3 69.8 96.0
U =8 74.5 65.2 69.6 73.7 93.3 58.7 67.4 96.6
w 75.5 66.2 72.3 73.7 94.7 59.6 69.3 97.2
U =9 76.2 66.3 70.9 74.1 95.3 59.0 66.4 96.6
w 78.5 67.7 73.1 74.4 96.0 60.1 68.8 97.7
U k=10 76.2 64.4 70.9 73.1 94.7 60.1 67.8 96.0
W 78.2 67.2 72.3 73.1 94.7 62.7 70.3 97.2

the feature weights learned by the SFA algorithm. The accuracy is measured using the 10-fold
cross-validation technique. That is, the whole dataset is partitioned into 10 subsets. The nine of
the subsets form the training set, and the last one is used as the test set. Therefore each instance
in the dataset is used as training instance for nine times and as test instance for only once.

The experiments on these datasets indicate that the SFA method can increase the accuracy of
the WENNEFP algorithm on the average 2 percentage points.

We also observe that the accuracy of both ANNFP and WANNFP algorithms increase with the
increasing value of k. However, no relation between the value of k£ and accuracy is observed.

6. Conclusions

A version of the well-known £NN algorithm that stores the classification knowledge as the

projections of the training instances on the features, called ANNFP algorithm, had been shown
to be successful on most real-world datasets in UCI-repository. In this paper, we have presented
an extension of kNNFP that incorporated feature weights, called WANNFP. We also gave
a simple heuristic approach for learning relative weights for feature. This weight learning
technique, called SFA, assigns a weight to a feature as the classification accuracy that would
have been obtained if only that feature were used in the classification.

Our experiments revealed that this weight learning method assigns low weights to completely
irrelevant features, and high weights to relevant ones, as expected. Further, WANNFP can
achieve higher accuracies using these weights learned by SFA algorithm in real-world dataset.
The reason for this success is due to the feedback received from the classification algorithm.
We can conclude that this weight learning method could be successful for other classification
algorithms that use feature weights. As a further work we plan to investigate these weight
learning methods on artificial datasets.

References

Aha, D. W.(1990) “A Study of instance-based algorithms for supervised learning tasks: Mathe-
matical, empirical, and psychological evaluations,” Doctoral dissertation, Department of Infor-
mation & Computer Science, University of California, Irvine.

Aha, D. W.(1992). “Tolerating noisy, irrelevant and novel attributes in instance-based learning
algorithms,” International Journal of Man-Machine Studies, 36(1), 267-287.

Aha, D. W. & Bankert, R. L. (1994). “Feature selection for case-based classification of cloud
types: An empirical comparison,” In D. Aha (Ed.) Case-Based Reasoning: Papers from the
1994 Workshop (TR WS-94-01). Menlo Park, CA: AAAI Press.

Akkus, A. & Giivenir, H. A. (1996). “k Nearest Neighbor Classification on Feature Projections,”
Proceedings of the 13" International Conference on Machine Learning. Lorenza Saitta (Ed.),
Bari, Italy: Morgan Kaufmann. pp. 12-19.

Dasarathy, B. V., (1990). Nearest Neighbor (NN) Norms, NN Pattern Classification Techniques.
IEEE Computer Society Press.

Duda, R.O. & Hart, PE., (1973). Pattern Classification and Scene Analysis. New York: Wiley
& Sons.

Giivenir, H. A., & Sirin, I. (1996). “Classification by Feature Partitioning,” Machine Learning,
23:47-67.

Holte, C. R. (1993). “Very Simple Classification Rules Perform Well on Most Commonly Used
Datasets,” Machine Learning, 11:63-91.

John, G. H., Kohavi, R., & Pfleger, K. (1994). “Irrelevant features and the subset selection prob-
lem,” Proceedings of the 11*" International Conference on Machine Learning. New Brunswick,
NJ: Morgan Kaufmann. pp. 293-301.

Kelly,J.D., & Davis, L.(1991). “A Hybrid Genetic Algorithm for Classification,” In Proceedings

of the Twelfth International Joint Conference on Artificial Intelligence, 645-650.

Langley, P., & Sage, S. (1994). “Oblivious decision trees and abstract cases,” Working Notes of
the AAAI-94 Workshop on Cased-Based Reasoning, AAAI Press, Seattle, pp. 113-117.

Murphy, P. (1995). UCI Repository of machine learning databases - Maintained at the Depart-
ment of Information and Computer Science, University of California, Irvine, Anonymous FTP
from ics.uci.edu in the directory pub/machine-learning-databases.

Salzberg,S. (1991). “A nearest hyperectangle learning method,” Machine Learning, 6,251-276.

Skalak, D. B. (1994). “Prototype and feature selection by sampling and random mutation hill-
climbing algorithms,” Proceedings of the 11** International Conference on Machine Learning.
New Brunswick, NJ: Morgan Kaufmann. pp. 293-301.

Wettschereck, D. (1994). “A study of Distance-Based Machine Learning Algorithms,” PhD
Thesis, Oregon State University.

Wettschereck, D., Aha W., D. (1995). “Weighting Features,” First International Conference on
Case-Based Reasoning, Lisbon, Portugal: Springer-Verlag. pp. 347-358

Wettschereck, D., Dietterich, T. G. (1995). “An Experimental Comparison of the Nearest
Neighbor and Nearest-hyperrectangle Algorithms,” Machine Learning, 9: 5-28.

