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Abstract

A new machine learning algorithm for the diagno-
sis of cardiac arrhythmia from standard 12 lead FCG
recordings is presented. The algorithm is called VFI5
for Voting Feature Intervals. VFI5 is a supervised and
mductive learning algorithm for inducing classification
knowledge from examples. The input to VFI5 is a train-
g set of records. Fach record contains clinical mea-
surements, from ECG signals and some other infor-
mation such as sex, age, and weight, along with the
deciston of an expert cardiologist. The knowledge rep-
resentation is based on a recent technique called Feature
Intervals, where a concept is represented by the projec-
tions of the training cases on each feature separately.
Classification in VFI5 is based on a majority voting
among the class predictions made by each feature sepa-
rately. The comparison of the VFI§ algorithm indicates
that it outperforms other standard algorithms such as
Naive Bayestan and Nearest Neighbor classifiers.

1. Introduction

In several medical domains the machine learning algo-
rithms were actually applied, for example, two classifi-
cation algorithms are used in localization of primary tu-
mor, prognostics of recurrence of breast cancer, diagno-
sis of thyroid diseases, and rheumatology [4]. Another
example is the CRLS system applied to a biomedical
domain [5]. This paper presents a new machine learn-
ing algorithm for another medical problem, which 1s the
diagnosis of cardiac arrhythmia from standard 12 lead
ECG recordings. The algorithm is called VFI5 for Vot-
ing Feature Intervals. The VFI5 algorithm is similar to
the VFI algorithm [2], which has been applied to a der-
matological diagnosis problem [1]. The input to VFI5
is a training set of records of patients. Each record con-
tains clinical measurements, from ECG signals, such as
QRS duration, RR, P-R and Q-T intervals and some
other information such as sex, age, weight, together
with the decision of a cardiologist. There are a to-
tal of 279 attributes (features) per patient in a record.
Diagnosis of the cardiologist is either normal or one

of 15 different classes of arrhythmia. VFIb is a su-
pervised, inductive and non-incremental algorithm for
inducing classification knowledge from examples. The
knowledge representation is based on a recent technique
called Feature Intervals, where a concept (class) is rep-
resented by the projections of the training cases on each
feature (attribute) separately. Classification in VFI5 is
based on a majority voting among the class predictions
(votes) made by each feature separately. A feature
makes its prediction based on the projections of train-
ing instances on that feature. The VFIb algorithm can
incorporate further information about the relevancy of
a feature during the voting process. Therefore, it uses
a weighted majority voting, where the weight of a fea-
ture represents its relevancy. We have also developed a
genetic algorithm to learn the respective weights of fea-
tures. The comparison of the VFI5 algorithm indicates
that it outperforms other standard algorithms such as
Naive Bayesian classifier assuming normal distribution
for linear feature (NBCN) and the Nearest Neighbor
(NN) classifiers. On the same dataset of ECG record-
ings, NBCN and NN performed with an accuracy of
50% and 53%, respectively; whereas VFI5 achieved an
accuracy of 62%. The paper describes the VFI5 algo-
rithm, and 1its application to diagnosis of cardiac ar-
rhythmia. A detailed empirical comparison of VFI5
with NBC and NN on arrhythmia dataset is given.

2. Dataset

The aim is to distinguish between the presence and
types of cardiac arrhythmia and to classify it in one of
the 16 groups. Currently, there are 452 patient records
which are described by 279 feature values. Class 01
refers to normal ECQG, class 02 to Ischemic changes
(Coronary Artery Disease), class 03 to Old Anterior
Myocardial Infarction, class 04 to Old Inferior Myocar-
dial Infarction, class 05 to Sinus tachycardy, class 06
to Sinus bradycardy, class 07 to Ventricular Prema-
ture Contraction (PVC), class 08 to Supraventricular
Premature Contraction (PVC), class 09 to Left bun-
dle branch block, class 10 to Right bundle branch block,



class 11 to 1. degree AtrioVentricular block, class 12
to 2. degree AtrioVentricular block, class 13 to 3. de-
gree AtrioVentricular block, class 14 to Left ventricule
hypertrophy, class 15 to Atrial Fibrillation or Flutter,
and class 16 refers to the rest. The first 9 features
are fi1: Age; fo: Sex; f3: Height; fa: Weight; f5: the
average QRS duration in msec.; fs: the average dura-
tion between onset of P and Q waves in msec.; f7: the
average duration between onset of Q@ and offset of T
waves in msec.; fg: the average duration between two
consecutive T waves in msec.; fy: the average duration
between two consecutive P waves in msec. The features
from f1g to f14 are the vector angles in degrees on front
plane of QRS (f10), T (f11), P (f12), QRST (f13), and
J (f14) respectively. The feature fi5 is heart rate which
is the number of heart beats per minute. The follow-
ing 11 features are measured from the DI channel; fi6:
average width of Q wave in msec.; f17: average width
of R wave in msec.; fig: average width of S wave in
msec.; fig: average width of R’ wave in msec.; fa0:
average width of S’ wave in msec.; fz1: number of in-
trinsic deflections; fos: existence of diphasic R wave
(boolean); faz: existence of notched R wave (boolean);
faa: existence of notched P wave (boolean); fas: exis-
tence of diphasic P wave (boolean); fas: existence of
notched T wave (boolean); fa7: existence of diphasic
T wave (boolean). The above 11 features measured for
the DI channel are all measured for the DII (features
fag—f39), DIII (features fio—f51), AVR (features fzo—
fe3), AVL (features fes—fr5), AVF (features frs—fs7),
V1 (features fss—fog), V2 (features figo—f11), V3 (fea-
tures fii12—fi23), V4 (features fia4—fi3s5), V5 (features
fiz6—f1a7), and V6 (features fras—fis9) channels. The
following 9 features are measured from the DI chan-
nel: J point depression (fiso) measured in milivolts,
amplitude of Q wave (fi61) measured in milivolts, am-
plitude of R wave (f152) measured in milivolts, ampli-
tude of S wave (f163) measured in milivolts, amplitude
of R’ wave (fis4) measured in milivolts, amplitude of S’
wave (f1e5) measured in milivolts, amplitude of P wave
(f166) measured in milivolts, amplitude of T wave (fis7)
measured in milivolts, QRSA (fiss) which is the sum of
the areas of all segments divided by 10, QRSTA (fis9)
which is equal to QRSA+ 0.5 x width of T'wave x 0.1 x
height of Twave. The above 9 features measured for
the DI channel are all measured for the DII (features
firo—fi79), DIII (features fiso—fise), AVR (features
f190*f199), AVL (features fzoo*fzog), AVF (features
Jo10f210), V1 (features fosg—fa20), V2 (features fozo—
J239), V3 (features foso—faa0), V4 (features foso—fos0),
V5 (features fago—fa269), and V6 (features faro—faro)
channels. The values of these features have been mea-
sured using the IBM-Mt. Sinai Hospital program.

About 0.33% of the feature values in the dataset are
missing. Class distribution of this dataset is very un-
fair and instances of classes 11, 12, and 13 do not exist
in the current dataset. Class 01 (normal) is the most
frequent one. Although the ECG of some patients show
the characteristics of more than one arrhythmia, in con-
structing the dataset it is assumed that no patient has
more than one cardiac arrhythmia.

3. The VFI5 Algorithm

The VFI5 classification algorithm is a feature projec-
tion based algorithm. The feature projection based
concept representation has started with the work by
Giivenir and Sirin [3]. The VFI5 algorithm represents
the concept with intervals separately on each feature,
and makes a classification based on feature votes. It is
a non-incremental classification algorithm; that is, all
training examples are processed at once. Each training
example 1s represented as a vector of either nominal
(discrete) or linear (continuous) feature values plus a
label that represents the class of the example. From
the training examples, the VFI5 algorithm constructs
intervals for each feature. An interval is either a range
or pownt interval. A range interval is defined on a set
of consecutive values of a given feature whereas a point
interval is defined a single set of values. For point inter-
vals, only a single value is used to define that interval.
For range intervals, on the other hand, since all range
intervals on a feature dimension are linearly ordered, it
suffices to maintain only the lower bound for the range
of values. For each interval, a value and the votes of
each class in that interval are maintained. Thus, an in-
terval may represent several classes by storing the vote
for each class.

The training process in the VFI5 algorithm is given
in Figure 1. First, the end points for each class ¢ on
each feature dimension f are found. End points of a
given class ¢ are the lowest and highest values on a
linear feature dimension f at which some instances of
class ¢ are observed. On the other hand, end points
on a nominal feature dimension f of a given class ¢
are all distinct values of f at which some instances of
class ¢ are observed. The end points of each feature f
is kept in an array EndPoints[f]. There are 2k end
points for each linear feature, where k is the number of
classes. Then, for linear features the list of end-points
on each feature dimension is sorted. If the feature is a
linear feature, then point intervals from each distinct
end point and range intervals between a pair of distinct
end points excluding the end points are constructed. If
the feature is a nominal feature, each distinct end point
constitutes a point interval.



train(TrainingSet):
begin
for each feature f
for each class ¢
EndPoints[f] = EndPoints[f] U
find_end_points(TrainingSet, f, ¢);
sort(EndPoints[f]);

if f is linear
for each end point p in EndPoints[f]
form a point interval from end point p
form a range interval between p and
the next endpoint# p
else /* f is nominal */
each distinct point in EndPoints[f] forms a point interval

for each interval ¢ on feature dimension f
for each class ¢
interval_count[f, 7, ¢] = 0
count_instances(f, TrainingSet),
for each interval ¢ on feature dimension f
for each class ¢
interval_vote[f, i c] — interval_count[f, i, c]
class_count[c]
normalize intervalwote[f, i, cl;

/* such that Z intervalwote[f, i, ¢]=1%/
end.

Figure 1: Training phase in the VFI5 Algorithm.

The number of training instances in each interval is
counted and the count of class ¢ instances in interval
i of feature f is represented as interval_count[f, i, ]
in Figure 1. These counts for each class ¢ in each in-
terval ¢ on feature dimension f are computed by the
count_instances procedure. For each training exam-
ple, the interval ¢ in which the value for feature f of
that training example e (ef) falls is searched. If inter-
val 7 is a point interval and e; is equal to the lower
bound (same as the upper bound for a point interval),
the count of the class of that instance (e.) in interval
¢ 1s incremented by 1. If interval ¢ is a range interval
and ey is equal to the lower bound of ¢ (falls on the
lower bound), then the count of class e, in both inter-
val 7 and (¢ — 1) are incremented by 0.5. But if e falls
into interval ¢ instead of falling on the lower bound,
the count of class e. in that interval 1s incremented
by 1 normally. There is no need to consider the upper
bounds as another case, because if e; falls on the upper
bound of an interval ¢, then e; is the lower bound of
interval ¢ + 1. Since all the intervals for a nominal fea-
ture are point intervals, the effect of count_instances
is to count the number of instances having a particular
value for nominal feature f.

To eliminate the effect of different class distributions,
the count of instances of class ¢ in interval ¢ of feature f
is then normalized by class_count[c], which is the total
number of instances of class c.

The classification in the VFIH algorithm is given in
Figure 2. The process starts by initializing the votes

classify(e): /* e: example to be classified */
begin
for each class ¢
vote[e] = 0

for each feature f
for each class ¢
featurewvote[f,c] = 0 /* vote of feature f for class ¢ */

if ey value is known
¢ = find_interval(f, ey)

for each class ¢
featurewote[f, c] = intervalwote[f, i, c]

for each class ¢
vote[c] = vote[c] + featurewote[f, cl;

return class ¢ with highest vote[c];
end.

Figure 2: Classification in the VFI5 Algorithm.

of each class to zero. The classification operation in-
cludes a separate preclassification step on each feature.
The preclassification of feature f involves a search for
the interval on feature dimension f into which e; falls,
where e; is the value test example e for feature f. If
that value is unknown (missing), that feature does not
participate in the classification process. Hence, the fea-
tures containing missing values are simply ignored. Ig-
noring the feature about which nothing is known is a
very natural and plausible approach.

If the value for feature f of example e is known, the
interval ¢ into which e; falls is found. That interval
may contain training examples of several classes. The
classes in an interval are represented by their votes in
that interval. For each class ¢, feature f gives a vote
equal to interval_vote[f, i, ], which is vote of class ¢
given by interval ¢ on feature dimension f. If e; falls
on the boundary of two range intervals, then the votes
are taken from the point interval constructed at that
boundary point. The individual vote of feature f for
class ¢, feature_vote[f,c], is then normalized to have
the sum of votes of feature f equal to 1. Hence, the
vote of feature f is a real-valued vote less than or equal
to 1. Each feature f collects its votes in an individual
vote vector (voteyi,...,voteg ), where votey . is the
individual vote of feature f for class ¢ and k is the
number of classes. After every feature completes their
preclassification process, the individual vote vectors are
summed up to get a total vote vector {votey, ..., votey).
Finally, the class with the highest vote from the total
vote vector is predicted to be the class of the test in-
stance.



4. Experimental Results

For supervised concept learning (classification) tasks,
the classification accuracy of the classifier 1s one mea-
sure of performance. The most commonly used met-
ric for classification accuracy is the percentage of cor-
rectly classified test instances over all test instances.
To measure the classification accuracy, 10-fold cross-
validation technique is used in the experiments. That
is, the whole dataset 1s partitioned into 10 subsets. The
9 of the subsets is used as the training set, and the tenth
is used as the test set. This process is repeated 10 times
once for each subset being the test set. Classification
is the average of these 10 runs. This technique ensures
that the training and test sets are disjoint. The VFIb
algorithm achieved 62% accuracy on the arrhythmia
dataset.

The VFI5 learning algorithm can incorporate fea-
ture weights, provided externally, into classification.
We used a genetic algorithm to learn weights of fea-
tures. Using these weights, the VFI5 algorithm has
achieved 68% accuracy, in the same experiments.

We have also applied some other well-known classi-
fication algorithms to our arrhythmia domain in order
to compare the performance of the VFIb5 classifier with
them. The Naive Bayesian Classifier (NBCN), which
assumes that the linear feature values of each class are
normally distributed, has achieved a classification accu-
racy of 50% measured by 10-fold cross-validation. The
classification accuracy of the classical Nearest Neigh-
bor (NN) algorithm is 53%. Thus, the VFI5 algorithm
performs better than these two other algorithms on the
arrhythmia domain.

5. Conclusions

In this paper, a new supervised inductive learning al-
gorithm called VFI5 is developed and applied to the
problem of distinguishing between the presence and
types of cardiac arrhythmia. The dataset is a set of
patients described by a set of attributes and classified
by our medical expert. The VFI5 classifier learns the
concept from these preclassified examples and classi-
fies new patients. The classification accuracy of VFIb
is higher than those of the common NBCN and NN
classifiers.

Since the features are considered separately both in
learning and classification, the VFIbH algorithm, in par-
ticular, is applicable to concepts where each feature, in-
dependent of other features, can be used in the classifi-
cation of the concept. This separate consideration also
provides a simple and natural way of handling unknown
feature values. In other classification algorithms, such

as the NN algorithm, a value must be replaced by the
unknown value.

Another advantage of the VFI5 classifier i1s that,
instead of a categorical classification, 1t can return a
probability distribution over all classes, that is a more
general probabilistic classification.

The classification output of VFIb 1s also comprehen-
sible to the users via a user interface, from which the
user can get more information such as the confidence of
the classification, the next probable class, and whether
and how much the attributes of the domain supports
the final classification as well as the predicted class.
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