Tagging English by Path Voting Constraints

Gokhan Tir and Kemal Oflazer
Department of Computer Engineering and Information Science
Bilkent University, Bilkent, Ankara, TR-06533, TURKEY
{tur,ko}0@cs.bilkent.edu.tr

January 21, 1998

Abstract:We describe a constraint-based tagging approach where in-
dividual constraint rules vote on sequences of matching tokens and tags.
Disambiguation of all tokens in a sentence is performed at the very end
by selecting tags that appear on the path that receives highest vote. This
constraint application paradigm makes the outcome of the disambiguation
independent of the rule sequence, and hence relieves the rule developer from
worrying about potentially conflicting rule sequencing found in other sys-
tems. The approach can also combine statistically and manually obtained
constraints, and incorporate negative constraint rules that rule out certain
patterns. We have applied this approach to tagging English text from the
Wall Street Journal and the Brown Corpora. Our results from the Wall
Street Journal Corpus indicate that with 400 statistically derived constraint
rules and about 657 hand-crafted constraint rules, we can attain an aver-
age accuracy of 97.56% on the training corpus and an average accuracy of
97.12% on the testing corpus with 11-fold cross-validation. We can also re-
lax the single tag per token limitation and allow ambiguous tagging which
lets us trade recall and precision.

1 Introduction

Tagging is one of the preliminary steps in many natural language processing
systems in which the proper part-of-speech tag of the tokens comprising the
sentences are disambiguated using either statistical or symbolic local contex-
tual information. There has been a large number of studies in tagging using
various techniques. Part-of-speech tagging systems have used either a sta-
tistical approach where a large corpora has been used to train a probabilistic

model which then is used to tag unseen text, (e.g., Church [4], Cutting et
al. [5], DeRose [6]), or a constraint-based approach which employs a large
number of hand-crafted linguistic constraints that are used to eliminate im-
possible tags or morphological parses for a given word in a given context,
recently most prominently exemplified by the Constraint Grammar work
[7, 11, 12, 13]. Brill [1, 2, 3] has presented a transformation-based learning
approach, which induces tagging rules from tagged corpora.

This paper presents a novel approach to constraint-based tagging which
relieves the rule developer from worrying about conflicting rule ordering
requirements and constraints. The approach depends on assigning votes to
constraints via statistical and/or manual means, and then letting constraints
vote on matching sequences on tokens. This approach does not reflect the
outcome of matching constraints to the set of morphological parses immedi-
ately as usually done in constraint-based systems. Only after all applicable
rules are applied to a sentence, all tokens are disambiguated in parallel.
Thus, the outcome of the rule applications is independent of the order of
rule applications.

In the following sections we describe tagging by voting constraint rules
and then present the results from tagging English.

2 Tagging by Path Voting Constraints

This section outlines our approach to constraint-based tagging where con-
straints vote on matching parses of sequential tokens. We assume that sen-
tences are delineated and that each token is assigned all possible tags by
a lexicon or by a morphological analyzer. We represent each sentence as a
standard chart using a directed acyclic graph (DAG) where nodes represent
token boundaries and arcs are labeled with ambiguous interpretations of
tokens. For instance the sentence

I can can the can.

would be represented by the graph shown in Figure 1 where bold arcs denote
the correct tags.

We describe constraints on the ambiguous interpretation of tokens using
rules with two components

R = (017027"'7071;‘/)

where the C; are, in general, feature constraints on a sequence of the ambigu-
ous parses, and V' is an integer denoting the vote of the rule. For English,
the features that we use are:

(can,MD) (can, MD) (can, MD)

(can, VB)

) (can, VBP) (

(can, VB)

) (can, VBP) 1

(can, NN)

(can, VBP)

(can, NN)

Figure 1: Representing Sentences with a directed acyclic graph

1. LEX: the lexical form,
2. TAG: the tag.

It is certainly possibly to extend the set of features used, by including fea-
tures such as initial letter capitalization, any derivational information, etc.
Figure 2 highlights the voting constraints paradigm.

Wl W2 w3 W4 Wn Tokens
t1 t1 t1 tl tl
t2 t2 t t2 Parses/Tags
t t3 t3
R1 R3 R2 Rm Voting Rules

Figure 2: Voting Constraint Rules

The following examples illustrate some rules:

1. ([TAG=MD], [TAG=VB]; 100) and ([TAG=MD], [TAG=RB], [TAG=VB];
100) are two constraints with a high vote to promote modal followed
a verb possibly with an intervening adverb.

2. ([TAG=DT ,LEX=that], [TAG=NNS]; -100) demotes a singular de-
terminer reading of that before a plural noun.

3. ([TAG=DT, LEX=each], [TAG=JJ, LEX=other]; 100) is a rule with
a high vote that captures a collocation [8].

The constraints apply to a sentence in the following manner: Assume
for a moment all possible paths from the start node to the end node of a

Path 1 Vote=0

O (I,PRP) U (can, MD) (can, MD) O

(can, MD)

O
O
O

(the,DT)

Path 5 ° Vote=0
@ (I,PRP) U (can, MD) U (can, VB) U (the,DT) U (can, NN) Q
Path 64 : Vote=0

(can, NN) (the,DT)

(can, NN) Q

Q (1,PRP) U (can, NN)

Figure 3: All paths in the Sentence DAG

@,
O
O

sentence DAG are explicitly enumerated, and that after the enumeration of
these paths, paths are augmented by a vote. In Figure 3, these initial votes
are shown to be 0, they in fact would be initialized to the sum of lexical
votes for the token/tag combinations on the path, extracted from a training
corpus, as explained later.

For each path, we apply each constraint to all possible sequences of token
parses. For instance let R = (Cq,Cq,---,Cy; V) be a constraint and let
Wi, Wig1, **, Witn—1 be a sequence of token parses labeling sequential arcs of
the path. We say R matches this sequence of parses, if w;,i <j<i4+n—-1
is subsumed by the corresponding constraint C;_;_y. When such a rule
matches, the vote of the path is incremented by V. When all constraints are
applied to all possible sequences in all paths, we select the path(s) with the
maximum vote. If there are multiple paths with the same maximum vote,
the tokens whose parses are different in these paths are assumed to be left
ambiguous.

Given that each token has on the average more than 2 possible tags,
the procedural description above is very inefficient for all but very short
sentences. However, the observation that our constraints are localized to a
window of a small number of tokens (say at most 5 tokens in a sequence),
suggests a more efficient scheme originally used by Church [4].

Assume our constraint windows are allowed to look at a window of at
most size k sequential parses. Let us take the first k& tokens of a sentence

and generate all possible paths of k arcs (spanning k + 1 nodes), and apply
all constraints to these “short” paths. Now, if we discard the first token and
consider the (k4 1) token, we only need to consider and extend only those
paths that have accumulated the maximum vote among paths whose last
k — 1 parses are the same. The reason for this is that since the first token is
now out of the context window, it can not influence the application of any
rules, hence only the highest scoring (partial) paths need to be extended, as
lower scoring paths can not later accumulate votes to surpass the current
highest scoring paths.

We can describe the procedure in a more formal way as follows: Let
wy, Wy, - -+, W, is a sequence of sentence tokens, amb(w;) be the number of
ambiguous tags for token w;, and k be the maximum context window size
(determined at run time). The procedure then is:

1. P={all Hf;ll amb(w;) paths of the first k — 1 tokens }
2. 1=k
3. while: < s

4. begin
4.1) Create amb(w;) copies of each path in P and extend each such
copy with one of the distinct tags for token w;.

4.2) Apply all constraints to the last k tokens of every path in P,
updating path votes accordingly. (The rules are indexed by the
tag of their last constraint for fast access!)

4.3) Remove from P any path p if there is some other path p’ such
that vote(p') > vote(p) and the last k — 1 tags of path p are same
as the last k — 1 tags of p'.

44) i=i+1

end

3 Results from Tagging English

We have evaluated our approach using 11-fold cross validation on the Wall
Street Journal Corpus and 10-fold cross validation on a portion of the Brown
Corpus from the Penn Treebank CD.

We used two classes of constraints: (i) we extracted a set of tag k-grams
from a training corpus and used them as constraint rules with votes assigned

as described later below, and (ii) we hand-crafted a set rules mainly incor-
porating negative constraints (demoting impossible or unlikely situations),
or lexicalized positive constraints. These were constructed by observing the
failures of the statistical constraints on the training corpus and fixing them.

Rules derived from the training corpus For the statistical constraint
rules, we extracted tag k-grams from the tagged training corpus for k = 2,
and k£ = 3. For each tag k-gram, we computed a vote which is essentially
very similar to the rule strengths used by Tzoukermann et al.[9] except that
we do not use their notion of genotypes exactly in the same way. Given a tag
k-gram tq,t3,...t, let n = count(t; € Tags(w;),t2 € Tags(wit1),...,tk €
Tags(wiyk—1)) for all possible ¢’s in the training corpus, be the number
of possible places the tags sequence can possibly occur. Here Tags(w;)
is the set of tags associated with the token w;. Let f be the number of
times the tag sequence tq,1q,...¢; actually occurs in the tagged text, that

is f = count(ty,t3,...t,). We smooth f/n by defining p = f;ff so that

neither p nor 1 — p is zero. The uncertainty of p is given as \/p(1 — p)/n [9].
We then compute the vote for this k-gram as

Vote(ty,ta,...t,) = (p— /p(1 — p)/n) * 100.

This formulation thus gives high votes to k-grams which are selected most of
the time they are “selectable.” And, among the k-grams which are equally
good (same f/n), those with a higher n (hence less uncertainty) are given

higher votes.

After extracting the k-grams as described above for k = 2 and k = 3, we
ordered each group by decreasing votes and did an initial set of experiments
with these, to select a small group of constraints performing satisfactorily.
We selected the first 200 (with highest votes) of the 2-gram and the first 200
of the 3-gram constraints, as the set of statistical constraints. It should be
noted that the constraints obtained this way are purely constraints on tag
sequences and do not use any lexical or genotype information.

Hand-crafted rules In addition to these statistical constraint rules, we
introduced 657 hand-crafted constraint rules. Most of the hand-crafted con-
straints imposed negative constraints (with large negative votes) to rule out
certain tag sequences that we encountered in the Wall Street Journal Cor-
pus. Another set of rules were lexicalized rules involving the tokens as well as
the tags. A third set of rules were for idiomatic constructs and collocations

was also used. The votes for negative and positive hand-crafted constraints
are selected to override any vote the statistical constraints may have.

Initial Votes To reflect the impact of lexical frequencies we initialize
the total vote of each path with the sum of the lexical votes for the to-
ken and tag combinations on it. These lexical votes for the parse ¢;; of
token w; are obtained from the training corpus in the usual way, i.e., as
count(w;s, t; ;)/count(w;) and then are normalized to between 0 and 100.

Experiments on WSJ and Brown Corpora We tested our approach
on two English Corpora from the Penn Treebank CD. We divided a 5500
sentence portion of the Wall Street Journal Corpus into 11 different sets of
training texts (with 5000 sentences and more than 118,500 words on the
average), and corresponding testing texts (with 500 sentences and more
than 11,800 sentences on average), and then tagged these texts using the
statistical rules and hand-crafted constraints. The hand-crafted rules were
obtained from only one of the training text portions, and not from all, but for
each experiment the 400 statistical rules were obtained from the respective
training set.

We also performed a similar experiment with a portion of the Brown
Corpus. We used 4000 sentences (about 100,000 words) with 10-fold cross
validation. Again we extracted the statistical rules from the respective train-
ing sets, but the hand-crafted rules were the ones developed from the Wall
Street Journal training set. For each case we measured the accuracy by
counting the correctly disambiguated tokens.

Table 1 presents a set of tagging results for this case from the 11-fold
experimentation on the Wall Street Journal Corpus. These results are the
average of the 11 experiments done on 11 different training and testing texts.

Table 2 presents the tagging results from the experimentation on the
Brown Corpus.

We feel that the results in the last rows of the Tables 2 and 1 are quite
satisfactory and warrant further extensive investigation. On the Wall Street
Journal Corpus, our tagging approach is on par or even better than stochas-
tic taggers making closed vocabulary assumption. Weischedel et al. [14]
report a 96.7% accuracy with 1,000,000 words of training corpus. Our re-
sults are very close to that of Brill’s transformation-based tagger which can
reach 97.2% accuracy with closed vocabulary assumption and 96.5% accu-
racy with open vocabulary assumption with no ambiguity [3]. Our tagging

Constraint Set | Train. Set Test Set

Accuracy | Accuracy
1 95.47 94.30
142 96.35 95.48
143 96.28 95.14
14243 96.53 95.73
i+4 56.86 56.24
1+2+4 97.52 97.06
1+3+4 97.30 96.66
14243+4 97.56 97.12

(1) Lexical Votes (2) 200 2-grams (3) 200 3-grams (4) 657 Manual Constraints

Table 1: Results from tagging the Wall Street Journal with both statistically
and manually derived voting constraints rules

speed is also quite high. With over 1000 constraint rules (longest spanning
5 tokens) loaded, we can tag at about 1600 tokens/sec on a Ultra Sparc 140,
or a Pentium 200.

It is also possible for our approach to allow for some ambiguity. In
the procedure given earlier, in item 4.3, if one selects all (partial) paths
whose accumulated vote is within p (0 < p < 1) of the (partial) path with
the largest vote, then a certain amount of ambiguity can be introduced, at
the expense of a slowdown in tagging speed and and an increase in memory
requirements. In such a case, instead of accuracy, one needs to use ambiguity,
recall and precision defined as follows:[10]:

. #Parses
Ambiguity = ————
morguty #Tokens

#Tokens Correctly Disambiguated

Recall =
ced #Tokens

#Tokens Correctly Disambiguated

Precision =
#Parses

Table 3 presents the results from tagging one of the Wall Street Journal
test sets using the same set of constraints but with p ranging from 95% to
99%. These compare quite favorably with the k-best results of Brill[3], but
reduction in tagging speed is quite noticeable, especially for lower p’s. Any
improvements in single tag per token tagging (by additional hand crafted
constraints) will certainly be reflected to these results also.

Constraint Set | Train. Set Test Set

Accuracy | Accuracy
1 95.75 94.25
142 96.78 95.76
143 96.50 95.10
14243 96.91 96.02
1+4 96.11 §5.30
1+2+4 97.07 96.50
1+3+4 96.74 96.19
1+243+4 97.11 96.57

(1) Lexical Votes (2) 200 2-grams (3) 200 3-grams (4) 657 Manual Constraints

Table 2: Results from tagging the Brown Corpus with both statistically and
manually derived voting constraints rules

P Test Set

Recall | Precision | Ambiguity
0.99 97.97 96.22 1.018
0.98 98.35 94.76 1.038
0.97 98.61 92.70 1.063
0.96 98.77 90.67 1.089
0.95 98.87 88.95 1.111

Table 3: Recall and precision results on a test set with some tokens left
ambiguous

4 Conclusions

We have presented an approach to constraint-based tagging that relies on
constraint rules voting on sequences of tokens and tags. This approach can
combine both statistically and manually derived constraints, and relieves the
rule developer from worrying about rule ordering as removal of tags is not
immediately committed but only after all rules have a say. Using positive or
negative votes, we can promote meaningful sequences of tags or collocations,
or demote impossible tags. Our approach is quite general and is applicable
to any language. Our results from the Wall Street Journal Corpus indicate
that 400 statistically derived constraint rules and about 657 hand-crafted

constraint rules, we can attain an average accuracy of 97.56% on the training
corpus and an average accuracy of 97.12% on the testing corpus. We can
also relax the single tag per token limitation and allow ambiguous tagging
which lets us trade recall and precision. Our future work involves extending
to open vocabulary case and evaluating unknown word performance.

References

[1]

Eric Brill. A simple-rule based part-of-speech tagger. In Proceedings of
the Third Conference on Applied Natural Language Processing, Trento,
Ttaly, 1992.

Eric Brill. Some advances in rule-based part of speech tagging. In
Proceedings of the Twelfth National Conference on Articial Intelligence
(AAAI-94), Seattle, Washinton, 1994.

Eric Brill. Transformation-based error-driven learning and natural lan-
guage processing: A case study in part-of-speech tagging. Computa-
tional Linguistics, 21(4):543-566, December 1995.

Kenneth W. Church. A stochastic parts program and a noun phrase
parser for unrestricted text. In Proceedings of the Second Conference
on Applied Natural Language Processing, Austin, Texas, 1988.

Doug Cutting, Julian Kupiec, Jan Pedersen, and Penelope Sibun. A
practical part-of-speech tagger. In Proceedings of the Third Conference
on Applied Natural Language Processing, Trento, Italy, 1992.

Steven J. DeRose. Grammatical category disambiguation by statistical
optimization. Computational Linguistics, 14(1):31-39, 1988.

Fred Karlsson, Atro Voutilainen, Juha Heikkild, and Arto Anttila. Con-
straint Grammar-A Language—Independent System for Parsing Unre-
stricted Text. Mouton de Gruyter, 1995.

Beatrice Santorini. Part-of-speech tagging guidelines fro the penn tree-
bank project. Available at http://www.ldc.upenn.edu/, 1995. 3rd
Revision, 2nd Printing.

Evelyne Tzoukermann, Dragomir R. Radev, and William A. Gale. Com-
bining linguistic knowledge and statistical learning in french part-of-
speech tagging. In Proceedings of the ACL SIGDAT Workshop From

10

[10]

[11]

[12]

[13]

[14]

Texts to Tags: Issues in Multilingual Language Analysis, pages 51-57,
1995.

Atro Voutilainen. Morphological disambiguation. In Fred Karlsson,
Atro Voutilainen, Juha Heikkild, and Arto Anttila, editors, Constraint
Grammar-A Language—Independent System for Parsing Unrestricted
Text, chapter 5. Mouton de Gruyter, 1995.

Atro Voutilainen. A syntax-based part-of-speech analyzer. In Proceed-
ings of the Seventh Conference of the Furopean Chapter of the Associ-
ation of Computational Linguistics, Dublin, Ireland, 1995.

Atro Voutilainen, Juha Heikkild, and Arto Anttila. Constraint Gram-
mar of FEnglish. University of Helsinki, 1992.

Atro Voutilainen and Pasi Tapanainen. Ambiguity resolution in a re-
ductionistic parser. In Proceedings of EACL’93, Utrecht, Holland, 1993.

Ralph Weischedel, Marie Meteer, Richard Schwartz, Lance Ramshaw,
and Jeff Palmucci. Coping with ambiguity and unknown words through
probabilistic models. Computational Linguistics, 19(2):359-382, 1993.

11

