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Abstract. Experimental results for large, sparse Markov chains, especially the ill-conditioned nearly
completely decomposable (NCD) ones, are few. We believe there is need for further research in this area,
specifically to help in understanding the effects of the degree of coupling of NCD Markov chains and their
nonzero structure on the convergence characteristics and space requirements of iterative solvers. The
work of several researchers has raised the following questions that led to research in a related direction.
How one must go about partitioning the global coeflicient matrix into blocks when the system is NCD
and a two-level iterative solver (such as block SOR) is to be employed? Are block partitionings dictated
by the NCD normal form of the stochastic one-step transition probability matrix necessarily superior to
others? Is it worth investing alternative partitionings? Better yet, for a fixed labeling and partitioning
of the states, how does the performance of block SOR (or even that of point SOR) compare to the
performance of the iterative aggregation-disaggregation (IAD) algorithm? Finally, is there any merit in
using two-level iterative solvers when preconditioned Krylov subspace methods are available? We seek
answers to these questions on a test suite of thirteen Markov chains arising in seven applications.
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1. Introduction. Solving for the stationary distribution of an irreducible Markov
chain amounts to computing a positive solution vector to a homogeneous system of linear
equations with a singular coefficient matrix subject to a normalization constraint. That
is, the (n x 1) unknown stationary vector = in

(1) Az =0, |lz|[; =1

is to be found. Here A = I — PT is an n x n singular M-matrix [6] and P is a one-step
stochastic transition probability matrix.

Of special interest are nearly completely decomposable (NCD) Markov chains [21].
An NCD Markov chain may be symmetrically permuted to the normal form

ny Ng - ny
[ P P - Py o\ ny

(2) Poyn = Py Py - Py ny
Pni Pyg -+ Pyn nyN

in which the nonzero elements of the off-diagonal blocks are small compared with those
of the diagonal blocks. The subblocks P;; are square and of order n;, with n = vazl n;.
Let P = diag(Pi1, Pas, ..., Pyn) + E. The quantity ||E||o is referred to as the degree of

coupling and is taken to be a measure of the decomposability of the matrix.
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Despite recent advances, practicing performance analysts generally prefer iterative
methods based on splittings when they want to compare the performance of newly devised
algorithms against existing ones, or when they need candidate solvers to evaluate the
performance of a systems model at hand. Experimental results for large, sparse Markov
chains, especially the ill-conditioned NCD ones, are few. We believe there is a need
for further research in this area, specifically to help in understanding the effects of the
degree of coupling of NCD Markov chains and their nonzero structure on the convergence
characteristics and space requirements of iterative solvers.

The work of several researchers [23, 16, 17, 15, 8, 22, 18] has raised important and
interesting questions that led to research in a related direction. These questions are
the following: “How must one go about partitioning the global coefficient matrix A
in (1) into blocks when the system is NCD and a two-level iterative solver (such as
block SOR) is to be employed? Are block partitionings dictated by the NCD normal
form of P necessarily superior to others? Is it worth investing alternative partitionings?
Better yet, for a fixed labeling and partitioning of the states, how does the performance
of block SOR (or even that of point SOR) compare to the performance of the iterative
aggregation-disaggregation (IAD) algorithm [32]? Finally, is there any merit in using two-
level iterative solvers when preconditioned Krylov subspace methods [3, 26, 13, 24, 11, 27]
are available?”

Four block partitioning techniques are considered. The first one results from the
near-complete decomposability test (ncdtest) of the MARkov Chain Analyzer (MARCA)
[33]. It determines the strongly connected components of the transition probability ma-
trix by ignoring the nonzeros less than a prespecified decomposability parameter. Then
symmetric permutations are performed to put the matrix into the form in which the di-
agonal blocks form the strongly connected components. In a recent paper [9], it is shown
that the ncdtest algorithm may fail to produce a correct NCD partitioning of the state
space. The same paper highlights an improved NCD partitioning algorithm, which has
the same run-time complexity as that of nedtest. We name this new NCD partitioning
algorithm newncd and experiment with it. Also two straightforward partitionings are
investigated. The equal partitioning forms (approximately) equal order blocks. The sec-
ond straightforward partitioning, other, uses blocks of order respectively 1,2.3,... Finally,
the Threshold PABLO (TPABLO) partitioning algorithm [8] is considered on some of
the test problems.

When seeking answers to these questions, we have not considered two-level solvers of
the inner-outer iteration type [22], but have attempted at solving diagonal blocks (and the
coupling matrix [21] in IAD) directly by Gaussian elimination. The memory needed to
solve the coupling matrix is set aside at the beginning and what is left is used for diagonal
blocks. Blocks of order 1 and 2 are treated separately. We obtain the LU factorizations of
as many diagonal blocks as possible given available memory and do this in such a way that
smaller blocks are treated first, leaving the big blocks to be solved using point SOR when
there is insufficient memory. Currently, we use a considerably large tolerance (i.e., 1072),
a relaxation parameter of 1.0 (hence, Gauss-Seidel), and a maximum number of iterations
of 100 with the point SOR algorithm when solving diagonal blocks. Furthermore, the
block Gauss-Seidel correction [36] in the disaggregation step of IAD is replaced by block
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SOR.

Preconditioned Krylov subspace methods [28] are state-of-the-art iterative solvers
developed mostly in the last fifteen years that may be used, among other things, to solve
for the stationary distribution of Markov chains [34]. A concise discussion on popular
Krylov subspace methods and the motivation behind preconditioning may be found in
[4]. In this study, we consider the methods Generalized Minimum RESidual (GMRES),
Direct Quasi-GMRES (DQGMRES), BiConjugate Gradient (BCG), Conjugate Gradient
Squared (CGS), BiConjugate Gradient Stabilized (BCGStab), and Quasi-Minimal Resid-
ual (QMR) with Incomplete LU (ILU) factorization preconditioning. Chapter 4 of [34]
presents some of these methods for Markov chains.

Results of experiments on a test suite of thirteen Markov chains show that two-level
iterative solvers are in most cases superior to ILU preconditioned Krylov subspace solvers.
For two-level iterative solvers, there are cases in which a straightforward partitioning of
the coefficient matrix gives a faster solution than can be obtained using the nedtest or
newncd partitioning algorithms. However, in between newned and nedtest, the former
gives faster converging iterations than the latter in a larger number of the test cases. In
general, it is possible to solve each of the problems (except one which takes a minimum of
about 82 seconds to solve) in less than 1 minute. This includes time spent for partitioning
or preconditioning.

Section 2 discusses the methods used in the experiments with their space and time
complexities per iteration and introduces relevant issues. The results of the numerical
experiments are analyzed in Section 3 after a detailed description of the implementation
framework. Appendices A through G provide a detailed explanation of each test problem,
the nonzero plots of the underlying matrices, information about the matrices and the
partitionings, and the complete results.

2. Numerical Solution Methods. The term iterative methods refers to a wide
range of techniques that use successive approximations to obtain a more accurate solution
to a linear system at each step. Iterative methods of one type or another are the most
commonly used methods for obtaining the stationary probability from either the stochas-
tic transition probability matrix or from the infinitesimal generator of a Markov chain.
This choice is due to several reasons. First, in iterative methods, the only operations
in which the matrices are involved are multiplications with one or more vectors. These
operations preserve the nonzero structure of the matrix. This may lead to considerable
savings in memory required to solve the system especially when dealing with large, sparse
matrices. Besides, an iterative process may be terminated once a prespecified tolerance
criterion has been satisfied, and this may be relatively lax. For instance, it may be
wasteful to compute the solution of a mathematical model correct to full machine preci-
sion when the model itself contains errors. However, a direct method (such as Gaussian
elimination) is obligated to continue until the final operation has been performed.

In this study, we experiment with the (point) successive overrelaxation (SOR) method
[34, 4], a stationary iterative method. Moreover, two types of two-level iterative methods
are considered: block SOR (BSOR) [34, 28, 22] and IAD [36, 32, 34, 10]. As for projection
techniques, we choose to implement and experiment with the Krylov subspace methods

GMRES [29], DQGMRES [30], BCG [4], CGS [31], BCGStab [37], and QMR [12].
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2.1. Successive Over Relaxation (SOR). Stationary iterative methods are
methods that can be expressed in the simple form [4]

(3) ) =70 4 k=0,1,...,

where neither T' nor ¢ depend on the iteration count k. Equation (1) can be written in
the form of (3) by splitting the coefficient matrix A. Given a splitting

A=M-N
with nonsingular M, we have the iterative procedure

(4) gD = MIN B =7k =0,1,..

9

where z(©) is the initial guess. 7' = M~'N is the iteration matrix, and in our case, the
vector ¢ appearing in (3) is just the zero vector.

For convergence of (4), it is required that limy_,., 7% exists (since z(®) = T*z(©)). A
necessary condition for convergence is for all eigenvalues of T' to be less than or equal to
1 in modulus, i.e., p(T) < 1, where p(T') is the spectral radius of 7. When p(7T') = 1, the
unit eigenvalue of T' must be the only eigenvalue with modulus 1 for convergence to be
realized.

In general [4], stationary iterative methods differ in the way the coefficient matrix
is split. The splitting uniquely defines the iteration matrix, and hence, determines the
convergence rate of the method. For the SOR method with relaxation parameter w, the
splitting 1s

1 l—w
A—(;D—L)—(TD—I-U),
where D, — L, —U represent respectively diagonal, strictly lower triangular, strictly upper
triangular parts of A. The iteration matrix for (forward) SOR is then given by
Tsor = (éD — L)_l(l—wD +U).

w

The SOR iteration may be expressed as

1 i—1 n .
90 = (-l o 1 (Bt 5 st} 2
i\ j=1

j=it1
or in matrix form as

(5) e® ) = (1 —w)z® 4w {D_I(L:Jc(k"'l) + Ul’(k))} .

It can be verified for (5) that the solution vector & (which is the transpose of the
stationary probability vector) is the eigenvector corresponding to the unit eigenvalue
of the SOR iteration matrix. The SOR method converges only if 0 < w < 2. The
optimal value of w is that which maximizes the difference between the unit eigenvalue
and the subdominant eigenvalue of Tspor. Therefore, the convergence rate of SOR is
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highly dependent on w. In general, it is not possible to compute in advance the optimal
value of w. Even when this is possible, the cost of such computation is usually prohibitive.

It is worth stressing that for 0 < w < 1, p(Tsor) = 1. Given an irreducible coefficient
matrix, for the case of underrelaxation, the unit eigenvalue is the dominant eigenvalue of
the iteration matrix (see [3, p.362]) and one has a converging iteration.

Table 2.1 at the end of this section presents a summary of the operations per iteration
and the storage requirement for all the methods used in the experiments. Only the
space required to store the matrices and vectors that appear in the iteration loop of the
algorithms is considered. The order of the coefficient matrix is given by n. The SAXPY
column gives the number of scalar times vector plus vector operations (excluding inner
products) per iteration. The meaning of “Precond Solve” will be explained in the next
subsection, where we discuss two-level iterative methods and the partitionings used.

2.2. Two-Level Iterative Methods. These methods follow a decompositional ap-
proach in solving systems of linear equations. If the model is too large or too complex to
analyze as an entity, it is divided into subsystems, each of which is analyzed separately,
and a global solution is then constructed from the partial solutions. Ideally, the problem
is broken into subproblems that can be solved independently, and the global solution is
obtained by concatenating the subproblem solutions. Although two-level iterative meth-
ods generally require more computation per iteration than stationary iterative methods,
this is usually offset by a faster rate of convergence.

The convergence study of classical block methods, such as Block Jacobi and Block
SOR, for Markov chains appear, for instance, in [16]. To study the convergence of
non-stationary two-level iterative methods of the inner-outer iteration type, consider the
defining homogeneous system of linear equations in (1). Let A be partitioned as

[ A A o Ay
A Ay oo Aoy
(6) : : . :
Anvi An2 - Ann

Now consider the splitting A = M — N, where A has the form in (6) and M is a

nonsingular block diagonal matrix given by
(7) M = diag(An, AQQ, . ,ANN)
At each iteration of these two-level methods, N linear systems of the form

Aiil’gk-l—l) = Z;, 1=1,...
are solved at the second level. Nonstationarity of the method implies the possibility
to perform different number of iterations at the second level for each of the N linear
systems. The following theorem regarding the convergence of non-stationary block two-
level methods for Markov chains appears in [22].

THEOREM 2.1. Let P be a transition matriz of a finite homogeneous Markov chain.
Consider A = I — PT partitioned as in (6) and the splitting A= M — N defined in (7). If
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each matriz Ay, 1 <1 < N, is either strictly or irreducibly column diagonally dominant,
then Block Jacobi and Block GS both give convergent iterations.

When applied to NCD Markov chains, one possibility is to order and partition the
state space so that the stochastic matrix of transition probabilities has the form in (2).
Obviously a zero degree of coupling (i.e., || E||cc = 0) implies a completely decomposable
matrix. In NCD systems, there are eigenvalues close to 1. The poor separation of the
unit eigenvalue results in slow rate of convergence for standard matrix iterative methods.
Two-level iterative methods in general do not suffer from this limitation which makes
them suitable for such systems.

2.2.1. Block SOR (BSOR). Let A be partitioned as in (6). We introduce the
block splitting

A:DN—(LN—I-UN),

where Dy is a block diagonal matrix and Ly and Uy are respectively strictly lower and
upper block triangular matrices. We then have

[ Dy 0 .- 0 \
Dy = 0 D.22 0 Ja
0 0 - Dun
0 - 0\ [0 Uyg - Uy \
P B A
Lo Ina oo 0 0 0 - 0

In analogy with (5), the BSOR method is given by
kD) — (1-— w):z;(k) +w {D]_VI(LN:L'(HI) + UNJ}(k))} )

If we write this for each subvector, we get

1—1 N

where the subvectors x; are partitioned conformally with D;; for ¢ = 1,2,..., N. This
implies that at each iteration we must solve N systems of linear equations

(8) Dz =z, i=1,2,...,N,

i
where

i—1 N
zi = (1 —w) Di xgk) tw (Z Lijfﬂ;kﬂ) + > Uijl’;k)) , t=1,2,...,N.
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The right-hand side z; has to be computed before the ¢th system is solved. A step that
solves a (preconditioned) system as in (8) is called one “Precond Solve” throughout the
paper.

If the matrix A is irreducible (which is the case in our experiments), then it is
clear from (8) that at each iteration we are going to solve N nonhomogeneous systems
of equations with nonsingular coefficient matrices. This can be achieved by employing
either direct or iterative methods. Different criteria may affect the choice of the method
for solving a diagonal block as there is no requirement to use the same method to solve all
diagonal blocks. In general, for a given coefficient matrix A, the larger the order of blocks
(and hence the smaller the number of blocks), the fewer the (outer) iterations required
to achieve convergence (see [34, p.141]). The reduction in the number of iterations is
usually offset to a certain degree by an increase in the number of operations that are to
be performed at each iteration. However, this is not always true as it is highly dependent
on matrix structure. We return to implementation issues in Section 3.

2.2.2. Iterative Aggregation-Disaggregation (IAD).Suppose we have a
(NCD) Markov chain characterized by a probability matrix P having the block structure
in (2), and let 7 be the stationary distribution of P (i.e., 7P = m, ||x||; = 1) partitioned
conformally with P such that 7 = (7, 72,...,7N).

For each diagonal block Pj;, in the transition probability matrix P, there exists a
stochastic complement S;; [21]. The stochastic complement reflects the behavior of the
system within the corresponding block of states. Each stochastic complement is itself
a stochastic transition probability matrix of an irreducible Markov chain whose state
space is composed of the states of that block. The probability that the system is in
a certain state of block ¢ given that the process is in one of the states of that block,
can be determined from the conditional stationary probability vector of the ith block,
7i/||7i||1. This can be computed by solving (7;/||7:||1)S: = #:/||7i||1- As can be inferred,
a stochastic complement may be too expensive to compute as it has an embedded matrix
inversion. One way to overcome this problem is to approximate S; by accumulating the
mass in the off-diagonal blocks of the :th row of blocks into the diagonal block P; on
a row-by-row basis. This can be achieved in various ways. An approximation to the
conditional stationary vector of the corresponding block can then be found by solving
the linear system as described before.

It is possible to compute the probability of being in a given block of states if we have
an N x N stochastic matrix whose ¢jth element denotes the probability of transitioning
from block ¢ to block j. This matrix is called the coupling matrix and it characterizes the
interactions among blocks. To construct this matrix, we need to shrink each block F;; of
P down to a single element. This is accomplished by first replacing each row of each block
by the sum of its elements. Mathematically, the operation performed for each block is
P;; e, where e is a column vector of 1’s whose length is determined by the context in which
it is used. The sum of elements of row k of block P;; gives the probability of leaving state
k of block 2 and entering one of the states of block 7. To determine the total probability of
leaving (any state of) block ¢ to enter (any state of) block j, we need to sum the elements
of P;; e after each of these elements has been weighed by the probability that the system
is in (one of the states of) block ¢. These weighing factors may be obtained from the
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elements of the stationary probability vector; they are the components of 7;/||7;||1. Hence
the ¢jth element of the coupling matrix is given by (7;/||7:|[1)P;je. The stationary vector
of the coupling matrix gives the stationary probability of being in each block of states.
More precisely, the multiplicative constants mentioned before, form the elements of the
stationary vector of the coupling matrix. However, forming the coupling matrix requires
computing the stationary vector. This can be achieved by approximating the coupling
matrix by starting with an approximate stationary vector and improving the approximate
solution iteratively. The method motivated as such has come to be known as iterative
aggregation-disaggregation (IAD) [36, 32, 34, 10].

It is possible to perceive each iteration of the TAD algorithm as being formed of
a preprocessing step followed by one iteration of a two-level method, such as BSOR.
The preprocessing step corresponds to the solution of the coupling matrix and is called
aggregation. The BSOR iteration is the disaggregation step. In the IAD algorithm, the
residual error (i.e., ||7(I — P)||) decreases by a factor of || E|| at each iteration if each
diagonal block and the coupling matrix are solved exactly. This global convergence result
of IAD with block Gauss-Seidel at the second level is given in [32]. The study of local
and global convergence of IAD (with the possibility of using iterative solution methods
for the aggregation step) appear in [17] and [18].

One of the crucial steps in the IAD algorithm is solving the coupling matrix accu-
rately. The coupling matrix is a singular irreducible stochastic matrix of order N whose
states form a single communicating class. Consequently it has a unique unit eigenvalue
and (N — 1) other eigenvalues. The smaller the degree of coupling the closer these other
eigenvalues to 1. One has several alternative methods to consider for solving the cou-
pling matrix. We choose to use Gaussian elimination (GE) for several reasons. Since the
coupling matrix is a singular M-matrix with 0 column sums, GE preserves column diag-
onal dominance in exact arithmetic throughout its computation. Hence, the multiplier
element at each step is bounded by 1 thereby avoiding the need of pivoting. Besides,
iterative methods tend to converge slowly if all the nonunit eigenvalues of the coupling
matrix are close to 1. On the other hand, GE may suffer from unstability in the presence
of rounding errors on coupling matrices [10] obtained from the NCD form in (2).

2.2.3. Partitioning Techniques. Four block partitioning techniques are consid-
ered. The first one is the ncdtest partitioning algorithm in MARCA. This algorithm
searches for the strongly connected components (SCCs) of the directed graph (digraph)
associated with the matrix obtained by zeroing the elements of P that are less than a user
specified decomposability parameter 7, a real number between 0 and 1. The subset(s)
of states output by the SCC search algorithm are identified as forming the NCD blocks
P;;. If the matrix is not already in the form (2), then symmetric permutations are per-
formed to put it into the form in which the diagonal blocks form the SCCs. The nedtest
algorithm may fail to produce a correct NCD partitioning of the state space due to the
possibility of having nonzeros greater than or equal to 7 in the off-diagonal blocks. This
is simply because the algorithm zeroes out the elements that are smaller than ~, but not
those that are larger. The example in [9] shows how this can happen and presents an im-
proved NCD partitioning algorithm, which has the same run-time complexity as that of
ncdtest. We name this new NCD partitioning algorithm newned and experiment with it.
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For clarity, we use v’ to denote the decomposability parameter of the newned algorithm.
Also two straightforward partitionings are investigated. The equal partitioning has v/n
blocks of order y/n if n is a perfect square. If n # L\/ﬁﬂ, there is an extra block of
order n — |\/n| ?. The second straightforward partitioning, other, has nb blocks of order
respectively 1,2,...,nbif n = 27, 4 (and possibly an extra block of order n — 37 4 if
the difference is positive). This last partitioning ensures that there are about v/2n blocks
and the largest block solved is of order roughly v/2n.

We have also experimented with the TPABLO partitioning algorithm [8] on some
of the test problems. The original PABLO (PAramaterized BLock Ordering) algorithm
presented in [23] aims at obtaining dense diagonal blocks by performing symmetric per-
mutations of a given sparse coefficient matrix using two input parameters. The first
parameter o > 0 is used to ensure that the addition of a new state to a diagonal block
will keep the ratio, of the percentage of nonzero elements in that block to the percentage
of nonzero elements in that block if the state were not added, above a. The second
parameter 0 < § <1 is used to ensure that each state in a diagonal block is adjacent to
at least a certain proportion, i.e., 3, of the states inside the diagonal block. In addition
to these two parameters, TPABLO has three other parameters requiring a total of five
parameters. The third parameter v > 0 either makes sure the permuted matrix does
not have any elements in the off-diagonal blocks that are larger than + in absolute value,
or it makes sure all elements in the diagonal blocks are above v in absolute value with
the possibility that some elements in the off-diagonal blocks are also larger than + in
absolute value. The fourth and fifth parameters minbs and maxbs are used to control
the minimum and maximum permissible order of diagonal blocks, respectively.

The next subsection discusses a different class of solvers, namely those that are based
on the Krylov subspace.

2.3. Projection Methods. Projection methods differ from stationary and two-
level iterative methods in that successive approximations are computed from small di-
mension subspaces. Projection methods, themselves, differ from each other in the way
subspaces are selected and solution approximations are extracted from them. A projec-
tion step is defined formally with two objects: a subspace K of dimension m from which
the approximation is to be selected and another subspace £ (of the same size m) that
is used to set the constraints necessary to extract the new approximated solution vector
from K [24, 27].

Consider the linear system
(9) Az =b.

Let V = [v1,v2,...,0,] and W = [wy,ws, ... ,w,]| be respectively the bases of K and £
[34]. Then we can write the approximate solution as & = Vy, where y is now a vector of
IR™. This gives us m degrees of freedom, and in order to extract a unique y we require
that the residual vector b — A% be orthogonal to L; i.e.,

b—AVy Lw;, 1=1,2,...,m.
In matrix form this can be written as

WT(b— AVy) =0,
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which yields,
y = [WTAv] " 'wTs,

Thus the minimum assumption that must be made in order for the projection processes to
be feasible is for WL AV to be nonsingular. If we start with #(©) as an initial approximate
solution to the system, then z(®) may be adjusted by a vector § such that z(® + ¢ is a
solution, i.e., A(z(®) 4 6§) = b. If we set ro = b— Az(®, then

AO+8)=b = AzO+A5=b = A§=b— A2 =1,

and hence the projection step is applied to the system Aé = ry to compute the unknown
vector 6. It follows that a general projection algorithm may be given by [34]:

Until Convergence Do:

1. Select a pair of subspaces K and £, and an initial guess z.

2. Choose bases V' = [v1,vq,...,0,] and W = [w,ws, ... ,wy,] for K and L.
3. Compute

r «— b— Az,

Yy [WTAV]_IWTT,

T «— T4 Ay.

Ficure 2.1 Algorithm: Prototype Projection Method.

Let (x,y) denote the inner product of vectors « and y. For a matrix A, denote by
||z|| 4 the A-norm of vector «, which is defined as ||z|| , = (Ax, :1;)1/2.

Projection methods are classified in two main groups [24, 27]. The first is when
the Krylov subspace K is taken as K = £ = span{rg, Arg,..., A" 'rg} and V = W
is an orthogonal basis of K. This represents the class of Galerkin projection methods
(also known as orthogonal projection methods). In this group of methods, each iteration
minimizes ||z — Z||, in the direction of the residual vector r (= b — Az). The second
group of projection methods is when £ = AK = span{Arq, A*rq,..., A™ro} (and hence
W = AV). Each iteration of this kind of methods minimizes the 2-norm of the residual
vector, i.e., ||b — AZ||, = min,ex ||b — Az||,. This explains why these methods are referred
to as minimal residual methods.

In this study, we consider six Krylov subspace methods. To provide effective solvers,
all methods are used with preconditioners. The main idea behind preconditioning is
to transform the linear system so that the difference between the dominant and the
subdominant eigenvalue of the preconditioned coefficient matrix is larger than what it
used to be in the original system. We return to preconditioning techniques later in this
subsection. The pseudocodes of all methods but DQGMRES may be found in [4]. For
DQGMRES, we refer to [30].

2.3.1. Generalized Minimum Residual (GMRES). The Generalized Minimum
Residual method [29] lies in the class of minimal residual methods and is designed to solve
nonsymmetric linear systems. The GMRES version [4, pp.18-21] discussed in this subsec-
tion is based on the Arnoldi method which is a modified Gram-Schmidt orthogonalization
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procedure applied to the Krylov subspace span{rg, Arg,..., A" 'ry} to form the basis of
the subspace and store it in a Hessenberg matrix. The GMRES iterates are constructed
as

2 = 20 4 yo® 4 fge®),

where v() are the Arnoldi vectors that span K,, and y; are the coefficients that minimize
the residual 2-norm ||b — Az®||,. The GMRES algorithm has the property that this
residual norm can be determined before computing the iterate. This enables postponing
the expensive operation of forming the iterate until the residual norm is deemed small
enough. To control the storage requirements, restarts are used, i.e., the iterate is formed
after each m iterations. At each restart a new basis of the Krylov subspace is formed;
hence, we have GMRES(m).

The crucial element for successful application of GMRES(m) resolves around the
decision of when to restart, that is the choice of m. Obviously if no restarts are used
(i.e., m = n), GMRES, and all orthogonalizing Krylov subspace methods, converge in
n steps. However, because of storage limitation this may not be feasible for large n.
The amount of computation and storage required by GMRES in one iteration increases
linearly with the (inner) iteration count ¢. This is regarded as the major drawback of the
method.

2.3.2. Direct Quasi-GMRES (DQGMRES). The Direct Quasi-Generalized
Minimum Residual method is a direct version of the Quasi-GMRES (QGMRES) method
[30] in which the Arnoldi process of GMRES is replaced with an incomplete orthogonal-
ization procedure. There are no restarts involved and only the last k vectors need to
be kept, hence incomplete orthogonalization and DQGMRES(k). DQGMRES may save
computations over GMRES but not storage.

2.3.3. BiConjugate Gradient (BCG). The BiConjugate Gradient method is an
orthogonal projection method and it takes an advantage over GMRES by reducing the
storage demand [4, pp.21-23]. This is achieved by replacing the orthogonal sequence of
residuals (formed by GMRES to build the basis of the Krylov subspace) by two mutually
orthogonal sequences of residual vectors

r) = p=0) _q Ap®) ) = 1) g AT (R,
The two sequences of search directions are
p®) = p=1) g pk-D 5K = =) g 51
To ensure the bi-orthogonality relation
PR = 50T Ap) = 0 for k £ j,

one sets

FE=1)T (k1) BT ()

W= T AR B = o
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It is observed that the convergence behavior of BCG is quite irregular. The method
breaks down when z(*=D"7#k-1 ~ 0. Another possible breakdown situation is when
ﬁ(k)Tq(k) ~ 0. To increase the effectiveness of BCG, variants such as CGS [31] and

BCGStab [37] have been proposed.

2.3.4. Conjugate Gradient Squared (CGS). Consider the residual vector r*)
computed at the kth iteration of BCG. This vector may be written as a product of r(©)
and an kth degree polynomial in A [4] such that

rF) = P (A)r©),

The same polynomial is applicable to #*) (i.e., ##®) = P,(A)#®)). As can be inferred,

k) in k itera-

the role of the polynomial Py(A) is to reduce the initial residual +(® to r(
tions. Therefore, applying the same polynomial twice (i.e., r¥) = PZ(A)r(©) will logi-

cally reduce r(©

method [31].
The rate of convergence of CGS is generally twice that of BCG. However, this is not

much faster. This approach leads to the Conjugate Gradient Squared

always the case since a reduced residual vector r*) may not be reduced any further. This
explains the highly irregular behavior of CGS. Moreover, rounding errors are very likely
to occur in CGS as local corrections to the current solution may be very large, and hence
the final computed solution may not be very accurate [4, pp.25-27]. Another property
which seems to be paradoxic at first glance is that the method tends to diverge if one
chooses to start with an initial guess close to the solution. For what concerns the time
complexity, CGS is almost as expensive as BCG. However, it is worth mentioning that
CGS does not involve computations with AT,

2.3.5. BiConjugate Gradient Stabilized (BCGStab). The BiConjugate Gra-
dient Stabilized method [37] was developed so that it is as fast as CGS while avoiding
the often irregular convergence patterns of the latter [4, pp.27-28]. It can then be said
that BCGStab is suitable for nonsymmetric linear systems. The idea behind this method
is to use a kth degree polynomial other than Py, say )i, to further reduce the residual
vector [37]. In other words, instead of writing the residual as r¥) = P2(A)r(®), one writes
r(?) = Qr(A)Po(A)r(®. BCGStab requires slightly more computations per iteration than
CGS and BCG as it requires two matrix-vector products and four inner products.

2.3.6. Quasi-Minimal Residual (QMR). The Quasi-Minimal Residual method
[12] attempts to overcome the problems of irregular convergence behavior and breakdowns
observed in some of the projection methods such as BCG. The QMR method uses a
least squares approach similar to that followed in GMRES. However, GMRES uses an
orthogonal basis for the constructed Krylov subspace whereas QMR uses a bi-orthogonal
one. Thereby, the obtained solution is viewed as quasi-minimal residual solution, which
explains the name.

To avoid breakdowns, QMR uses look-ahead techniques which makes it more robust
than BCG. These techniques enable QMR to prevent all breakdowns except the so-called
“incurable breakdown”. The version of QMR [4, pp.23-25] we used in our experiments
is simpler than the full QMR method with look-ahead, but it is still more robust than
BCG. The algorithm we used includes a relatively inexpensive recurrence relation for
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computing the residual vector at the expense of a few extra vectors of storage and vector
update operations per iteration. It also avoids performing a matrix-vector product to
compute the residual vector. A full-fledged implementation of QMR with look-ahead is

available through netlib at http://netlib.cs.utk.edu/liblist.html.

TABLE 2.1
Summary of Operations and Storage Requirements.
Matrix-

Inner Vector | Precond Storage
Method Product | SAXPY | Product Solve Requirement
SOR 0 1 1@ 0 matrix+n
BSOR 0 1 1 NP matrix+2n
IAD 1 2 2 (N + 1)b 2 matrices+N+2n
GMRES(M)” =1 21 1 1 2matrices ¥+

(24 5)n +1m

DQGMRES(k)f k+2 2k +3 1 1 2 matrices®+n(2k + 1)
BCG 2 5 1/19 1/19 2 matrices®+9n
CGS 2 7 2 2 2 matrices®+10n
BCGStab 4 6 2 2 2 matrices®+9n
QMR 2 8 1/1¢ 1/1¢ 2 matrices®+15n

% The method performs no real matrix-vector product or preconditioner solve, but the
number of operations is equivalent to a matrix-vector multiply.

b Since the order of diagonal blocks (and for TAD also the number of blocks) in the
partitioning are not necessarily the same, the size of the operands in the given counts are
most likely different.

¢ Two square matrices of orders n and N.

4 Note that the (inner) iteration count i ranges between 1 and m.

¢ The coefficient matrix and the preconditioner.

f Note that the operation counts are given for number of iterations larger than k.

9 One with the coefficient matrix, one with its tranpose.

2.3.7. Preconditioners. A very important issue for iterative methods is the con-
cept of preconditioning. Although preconditioning can be used in all iterative methods,
we employ it in Krylov subspace methods only. The idea behind preconditioning is to ac-
celerate the convergence process by redistributing the eigenvalues of the coefficient matrix
so that the difference between the dominant and the subdominant eigenvalue becomes
larger without changing the solution vector. Therefore, the need for a preconditioner
becomes vital when dealing with NCD systems.

Again consider the system of linear equations in (9), which can be transformed into
the right-preconditioned equivalent system

AM™Y(Mz) = b,
or into the left-preconditioned equivalent system

M™'Ax = M™'b,
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where the preconditioner matrix M (also called preconditioner) has the property that it
is a cheap approximation of A. The more M~! resembles A~!, the faster the method
converges [20].

In the case of right-preconditioning, the system AM ™'y = b is solved for the unknown
y = Mz, and the final solution z is obtained through the post-transformation z = M~1y.
To use right-preconditioning, M should also be chosen so that M ~'v is cheap to compute
for any arbitrary vector v.

In the left-preconditioning case, the system is solved based on imposing the necessary
stopping constraints on the preconditioned residual vector r = M~ (b— Az). The matrix
M~ need not be formed explicitly and the preconditioned residual may be computed by
solving the system Mr = b — Ax. Therefore, the preconditioner M should be chosen so
that solving any linear system of the form Mv = u for any vector v is cheap.

Various types of preconditioners have been (and are still being) developed (see [28,
5]). Their efficiency is highly dependent on the system to be solved, and it is quite
difficult to forecast which preconditioner is the best for a given system. In this study, we
only consider preconditioners obtained from Incomplete LU factorizations (ILU). First,
an LU factorization of the coefficient matrix A is initiated. Throughout the factorization,
nonzero elements are omitted according to different rules. These rules characterize the
ILU type. Thus, instead of ending up with an exact LU factorization, what we obtain is
of the form

(10) A=LU+E,

where F, called the remainder, is expected to be small in some sense. The incomplete
LU factors L and U are respectively lower and upper triangular matrices.

Recall that the coefficient matrices appearing in the systems of interest are irreducible
singular M-matrices. It has been shown that ILU factorizations exist for such matrices [7]
(in exact arithmetic) and that they are at least as stable as the complete LU factorization
without partial pivoting (see [20, p.152]).

Three types of incomplete LU factorizations are considered. The first imposes on
the computed preconditioner the same nonzero structure as the original matrix and is
called ILUO. The idea of ILUO is to drop all fill-in elements which occur during the LU
factorization (recall that a fill-in element refers to a nonzero element introduced in the
matrix which holds the LU factors in a location where there was initially a zero element
in the original matrix).

The second is called ILUTH and is a threshold-based approach. In ILUTH, the fac-
torization takes place in a row-by-row manner. The dropping rule of this preconditioning
technique is to zero out all elements having an absolute value less than a prespecified
threshold. The only exception is that the dropping rule does not apply to the diagonal
elements which are kept no matter how small they become. The dropping rule is applied
just after the multipliers are formed, once, and applied one more time right after the
reduction of a row is over.

The third type of ILU preconditioner forces the computed factors to have at most a
prespecified fixed number of nonzero elements per row and is called ILUK. This approach
enables the user to control the amount of fill-in. Therefore, it is suitable in case there is
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only a fixed amount of memory available to store the incomplete factors L and U. Each
time a row has been reduced, a search is conducted to find the K largest elements in
absolute value, a timewise costly process. All other elements in the row are annihilated.
As for ILUTH, the diagonal elements are preserved regardless of their magnitude.

Finally, we should stress that not much work has been done in studying what con-
stitutes a good incomplete factorization for Markov chain models [26, 24, 27]. Further
studies are still needed.

2.4. Stopping Criteria. One of the most critical steps in iterative methods is to
decide when to stop the iteration. A good stopping criterion should (see Section 4.2 in
)

e identify when the error e = z(¥) — z is small enough to stop,
e stop if the error is no longer decreasing, or decreasing too slowly, and
e limit the maximum amount of time spent iterating.

Ideally the iteration should stop when the magnitudes of entries of the error e
fall below a user supplied threshold, stop_tol. Nevertheless, since the exact solution z is
generally not known, it is practically not feasible to compute e*¥). Instead, the residual
vector r® = b — Az® for Az = b which is more readily computed, is used. The user
may choose the value of stop_tol as the approximate uncertainty in the entries of A and
b relative to respectively® || A|| and |[b]|.

The quantity ||e®||, known as the forward error, is hard to estimate directly. Hence,
it is usually the backward error that is used to bound the forward error. The normwise
backward error is defined in [4, p.53] as the smallest possible value of max{||6A|/|| Al
166]//110]|}, where 2®) is the exact solution of (A+ 5A):1;(k) = (b + 6b), and it can also
be written as ||r*||/||A]|. The backward error is more practical to use than the forward
error since it can be easily computed using 7*) and the coefficient matrix:

e® =2 _ g = A7 (A2® —p),

hence
(11) le@] < AT e
_ sl
(12) = A7 - 1] - :
[ Al

For a singular matrix A, the group inverse A# can replace A~! in equations (11) and (12).
The expression ||[A7!|| - ||A|| is referred to as the condition number of A. From equa-
tion (11), we see that, if the algorithm stops due to the test ||r(*¥)|| < stop_tol, the for-

Y|. There also exist the concepts of

ward error can be upper-bounded by stop_tol || A~
relative forward error defined by ||e®]|/||z¥|| and relative backward error defined by
=N /(| All - ||=®)|]). Directly from equation (12) we can upper-bound the relative for-

ward error in the following way:

le™]
=]

Ir™]
AN - l=®

< JATH - (1A -

! The norm is not important as long as we are consistent.
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Different stopping criteria has been suggested for the convergence test of iterative
methods. Several criteria are discussed in [2, 14]. Unfortunately, there is no single
stopping criterion known to be suitable for all iterative methods. Hence, selecting the
most appropriate one is a difficult decision to make during the implementation of the
solver. However, knowing the solvers and the implicit residual each produces helps. The
amount of computation required by the convergence test is another constraint which
should be taken into consideration.

3. Numerical Results. In this section, we discuss implementation issues and
overview the results of the numerical experiments performed on the thirteen test cases.
Details corresponding to each of the seven applications can be found in Appendices A
through G. The applications are named pushout, 2D, ned, telecom, gn, leaky, and mutex.

3.1. Implementation Issues. Since we are dealing with large sparse systems?, we

are required to use a sparse storage scheme. We use the compact sparse row (CSR)
Harwell-Boeing format [25, 34|, which requires three arrays: one real and one integer of
size nz (i.e., number of nonzero elements in the coeflicient matrix), and one integer of size
n 4+ 1. Unless otherwise specified, by reductions we mean row-reductions. This strategy
is used to take full advantage of the row-by-row storage of the CSR format. We would
like to remark that we generate and store all test matrices using the MARCA package.
Later these files are used as input to the solvers.

All code is written in Fortran and compiled in double precision with ¢77 on a SUN
Sparcstation with 64 Mb RAM running Solaris 2.5. The numerical experiments are timed
using a C function that reports CPU time. SOR, the two-level iterative solvers, the four
partitioning algorithms, and the three ILU preconditioners are part of the MARCA soft-
ware package. The Krylov subspace methods are implemented using two one-dimensional
arrays defined at the beginning of the driver program to hold double precision and integer
values.

In two-level iterative methods, we attempt to solve diagonal blocks, and the coupling
matrix in TAD, directly by Gaussian elimination. The memory needed to solve the
coupling matrix is set aside at the beginning and what is left is used for the diagonal
blocks. If there is not enough space for solving the coupling matrix, the method fails.
Blocks of order 1 and 2 are treated separately. We obtain the LU factorizations of as
many diagonal blocks as possible given available memory and do this in such a way that
smaller blocks are treated first, leaving the big blocks to be solved using SOR when there
is insufficient memory. In order to accelerate this process we use a considerably large
tolerance 1073, a maximum number of iterations of 100, and a relaxation parameter of
1.0 (hence, Gauss-Seidel) with the SOR algorithm when solving the remaining diagonal
blocks. Furthermore, the block Gauss-Seidel correction [36] in the disaggregation step
is replaced by BSOR. The results reported are always those that are obtained using the
optimal relaxation parameter w with one significant digit after the decimal point.

The newned partitioning algorithm is implemented so that if there are states that are
left in singletons after the NCD partition corresponding to a decomposability parameter

2 The average order of the seven problems we experimented with is 33,278; the largest matrix is of
order 104,625 and the smallest one is of order 8, 258.
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~" is determined, they are grouped into a single subset which forms the last NCD block.
When choosing decomposability parameters v for nedtest, we report the smallest and
largest values of v (as 0.10 times a power of 10) for which there are at least two blocks
in the partition. On the other hand, when experimenting with newncd, we had to work
on a finer scale with ~ since there were not as many possibilities as v of ncdtest. Hence,
we report the smallest and largest values of 7' (in two decimal digits of precision times a
power of 10) for which there are at least two blocks in the partition.

The dimension of the Krylov subspace we used for (restarted) GMRES is 20 (i.e.,
m = 20). The number of vectors kept in DQGMRES is 20 (i.e., k£ = 20) in all but one of
the applications (¢gn), where we had to limit k£ to 7 or 9 depending on the preconditioner
used. With each Krylov subspace solver, we used three different thresholds for the ILUTH
preconditioner: 1072, 1072, and 107°. Due to the amount of fill-in and the computation
time, it is futile to experiment with a threshold value of 107 in two of the applications
(gn and mutez). In ILUK, we allowed a maximum of 10 nonzero elements per row of the
preconditioned matrix (i.e., K = 10). In all the Krylov subspace methods implemented,
we use left-preconditioning and take the ILU preconditioner as M = LU (see (10) in
Section 2.3).

In order to regulate the amount of fill-in produced, ILUTH is implemented in such
a way that before the reduction of a given row, the number of free entries in the double
precision work array is divided by the number of remaining rows to be reduced. This
gives us the maximum number of allowable nonzero elements that can be stored for
the current row. If the reduction gives a higher number of nonzero elements than the
allowable maximum, the threshold is multiplied by 10 and the dropping rule is applied
again. This is repeated until the number of nonzero elements in a given row becomes
less than or equal to the allowable maximum. The first row of the matrix is not reduced,

and the method is forced to fail if the magnitude of any reduced diagonal element is less
than 10739,

In ILUK, the Kth largest value in magnitude, say max, in the reduced row is deter-
mined. Then all elements having an absolute value less than max are set to zero. If the
number of nonzero elements in the row is still higher than K, the reduced row is scanned
from left to right and elements having an absolute value equal to max are set to zero
until the number of nonzero elements becomes K. As in ILUTH, the reduction does not
include the first row of the matrix and the method fails if any reduced diagonal element
is found to be less than 10739,

In order to reduce the possibility of underflow and overflow, each row of the coefficient
matrix is multiplied by the inverse of the largest value in magnitude in that row (i.e.,
absolute value of the diagonal element). This is a scaling operation and it transforms
the system to a more suitable form without altering the global solution. Normalizing the
solution vector at each iteration is an alternative way to limit the effect of underflow and
overflow and up to a certain extent control the irregular convergence behavior of some
iterative methods. The drawback of this strategy is that it may lead to considerable loss
of precision due to rounding errors that occur at each iteration or to even divergence. In
SOR, BSOR, and TAD, which are all part of MARCA, the coefficient matrix is scaled and

the solution vector is normalized at each iteration. As for the Krylov subspace methods
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we implemented, the coefficient matrix is not scaled and the solution vector is normalized
only upon termination.
The stopping criteria we use in SOR and two-level solvers are respectively

stop if k> mazit or |z® — 2V < stop_tol
and

stop if k> mazit or |2® — 2"V < stoptol or
(Hl‘(k) — 2=V < stop_tol; and
() = 2Dl = 240 — 22| )| < stop-toly)

where k is the iteration count, maz:t is the maximum number of iterations the algorithm
will be permitted to perform, and stop_tol is the user-specified stopping tolerance, which
should be less than 1 and greater than machine epsilon.

The stopping criterion we use in the Krylov subspace methods of interest is

stop if k> mazit or |r®|_ < stop_tol or
(Ir®loo < stoptoly and |(|[r™]s — [[r*7 V|| < stop_toly).

The stopping tolerance, stop_tol, is set to 107!°, meaning we consider the entries of A
(our right-hand side is 0) to have errors in the range +107'°||A||. The use of stop_toly
and stop_toly forces the solver to terminate when the norm of the residual is decreasing
too slowly while the difference between two successive iterates is small enough. In the
experiments, we set stop_tol; and stop_tol, to 107¢ and 10712, respectively. As for mazit,
we use 100, 500, or 1,000 depending on the solver and the particular problem at hand.
For each problem solved (see Table 3.1), the true residual and the relative backward
error in the solution are computed (see [14, 2]). The true residual is computed as ||AZ]| _,
where & is the normalized approximate solution upon termination. The relative back-

oo Al

at iteration k, then ||r|| denotes ||[r®)|| . These norms are byproducts of all Krylov
subspace methods except GMRES and DQGMRES, and need not be computed sepa-

rately. Due to this, we compare ||r®)||, (and not ||r¥)||_ ) with stop_tol at each (inner)

z

ward error is computed as ||AZ ). If a Krylov subspace solver terminates

iteration of GMRES. At the end of each restart the true residual is computed explicitly
from the unnormalized current approximation and then compared with stop_tol. As for
DQGMRES, it is the scalar gamma that is compared with stop_tol at each iteration (see
the algorithm in [28]). Hence, in these two solvers, ||r|| upon termination is explicitly
computed using the solution vector. If BCGStab converges due to the convergence test
||s]|., < stop-tol (see the BCGStab algorithm on p.27 in [4]), then ||r|| stands for ||s]|_,
upon termination. In this case a superscript “s” (i.e., *) is inserted in the corresponding
cell. A dagger (i.e., J[) in the same column indicates termination due to stop_toly (see
Section 2.4) although the residual norm ||r|| upon termination was found to be less than
1071% On the contrary, a double dagger (i.e., *) is used to denote those cases where
the termination was normal but ||r|| turned out to be larger than 107'°. An asterisk
(i.e., *) following the iteration number means the solver failed to converge in that many
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iterations. Hence, the existence of a residual norm ||r|| larger than 107'° and the absence
of an asterisk in the #it column denotes those cases where the termination was due to
stop_toly. The column heading ||Az| denotes the infinity norm of the difference between

the last two approximations of SOR, BSOR, and TAD.

TABLE 3.1
Notation Used in the Tables of Results.

n Order of the coefficient matrix
nz Number of nonzero elements in the coefficient matrix
nzlu Number of nonzero elements in the incomplete LU factorization
w Optimal relaxation parameter for SOR, BSOR, and TAD
v/ Decomposability parameter for nedtest/newncd
Time Time (in seconds) taken by the method or the preconditioner
#it Number of iterations performed
7l Infinity norm of the residual incurred by the method upon

termination (exception for GMRES and BCGStab)

||Az True residual upon termination

Bk.Error  Relative backward error upon termination

||Az] Infinity norm of the difference between the last two iterates
Blocks Number of diagonal blocks solved iteratively

Partition. Partitioning technique used

3.2. Overview of Results. We consider seven models, six of which appear in [35]
and one is discussed in [1]. All seven models arise in Markov chain applications. Three
of these models (i.e., pushout, ncd, and mutex) are chosen and two more test prob-
lems for each one generated (namely, medium, hard, ncd_altl, ned_alt2, mutex_altl,
and mutex_alt2) giving us a total of thirteen test problems. The original pushout test
problem is given the name easy as will be explained later. In the appendices, we provide
information about each test matrix and their bandwidth®. We also give the degree of
coupling for each partitioning (i.e., || F|| for the partitioning in (2) of Section 1) and the
coefficient of asymmetry (i.e., (ao, a;), where ag = 0.5||A+ AT||;,a; = 0.5]|A — AT||;, and
a, < ay implies high asymmetry) for each test matrix. The majority of these matrices
would be ranked among the largest of the matrices considered in the Matrix Market [19].

None of the thirteen test matrices is highly asymmetric. Two of the problems (i.e.,
ned and mutex) give test matrices with symmetric nonzero structure. Furthermore, the
nedtest algorithm is unable to find partitionings in NCD normal form as in (2) except
for the ned test matrices. In fact, the degree of coupling values corresponding to various
partitionings in all the other test matrices are notoriously large (see the discussion in
2.2.3). The symmetric nonzero structure of the ned test problem seems to have helped
the nedtest algorithm. Finally, we would single out leaky, ned_alt2, ned, ned_altl, and
telecom as NCD test cases based on the smallest decomposability parameter that could
be used with the newned partitioning algorithm. These test cases have degree of coupling
values ranging (in the given order) from 0.2e—101 to 0.9e—2. The test cases medium, gn,

3 We adopt the convention that higher and lower bandwidths do not include the diagonal.
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hard, easy, and 2D have degree of coupling values between 0.7e +0 and 0.1e + 0. Hence,
they are not as NCD. The remaining test cases mutezx, mutexr_altl, and mutex_alt2 lie
somewhere in between, all with degree of coupling 0.2e — 1.

The time spent for partitioning using equal and other is negligible. On the other
hand, the time to partition a given test matrix using the ncdtest and newncd algorithms
has two components: time spent to determine the partition and time to permute the
coefficient matrix according to the ordering of states in the computed partition. The
time taken by the ncdtest and newncd partitionings used in our experiments does not
exceed respectively 1 and 1.8 seconds except for matrices generated from the ¢qn, leaky,
and mutex test problems. The time spent by nedtest and newned for the gn test matrix
is no more than 5.4 and 6.8 seconds, respectively. The time spent by ncdtest and newned
for the leaky test matrix is no more than 2.8 and 8.5 seconds, respectively. Finally, the
time spent by necdtest and newned for the mutex test matrices is no more than 5.5 and
5.8 seconds, respectively.

Numerical experiments show that two-level iterative solvers are, in general, superior
to SOR and Krylov subspace solvers with the chosen preconditioners. Out of ten test
matrices for which two-level iterative solvers are winners, BSOR is the fastest solver
for seven test matrices, three times with equal (ned_alt2, mutex_altl, mutex_alt2), two
times with other (easy, ned_altl), one time with nedtest (gn) and newned (leaky) each.
IAD is the fastest solver for three test matrices, two times with newned (hard, ned) and
one time with equal (medium). CGS and BCGStab with ILUTH(107°) each turns out
to be the fastest solver for one test matrix (telecom and 2D, respectively). SOR is the
winner for one test matrix (mutez).

It is noticed that the more balanced, in terms of the order of blocks, is the parti-
tioning, the better two-level iterative solvers take advantage of the divide-and-conquer
notion, and hence the faster they converge. For those test cases in which two-level solvers
are winners, none of the diagonal blocks are solved iteratively. The IAD algorithm proves
to be competitive with BSOR. When the coupling matrix is of reasonable size, IAD usu-
ally gives good performance. We especially recommend IAD for those cases that have
a small degree of coupling. However, the drawback of TAD is that it may fail if the
coupling matrix is reducible or require an unreasonably long time to converge when the
coupling matrix is large. Straightforward partitionings, especially equal, are very com-
petitive with those of newned. Out of ten test matrices, the equal and other partitionings
provide winners for respectively four and two test matrices.

SOR does not give satisfactory results; it converges in less than 1,000 iterations in
only eight of the test matrices. Interestingly, the optimal relaxation parameter for SOR
and BSOR always happens to be equal to or larger than 1.0. For IAD, the optimal
relaxation parameter turns out to be 0.9 for a few test matrices, otherwise it is larger.
In most of the experiments, 1.0 is the optimal choice.

Among the Krylov subspace methods of interest, it is clear that BCGStab performs
the best. It converges for all the test matrices with at least one preconditioner. Its
total solution time is always the shortest or very close to that of an outperforming
Krylov subspace solver. CGS comes second and GMRES third, the latter being more
costly in terms of memory requirements and number of flops per iteration. QMR is also
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competitive in some cases; however, it almost always terminates with the alternative
stopping criterion. There are cases in which DQGMRES takes a smaller number of
iterations than the corresponding GMRES solver, but even in those cases its solution
time is almost always longer. BCG performs very poorly and converges only for a few
test matrices.

We should point out that the ILUO preconditioner leads to better total solution
time than all the other ILU preconditioners for five test matrices (easy, ¢n, mutez,
mutex_altl, mutex_alt2) out of twelve with which we could use ILU preconditioners.
As for the threshold preconditioners, ILUTH(1073) is the best preconditioner for two
test matrices (medium, hard) whereas ILUTH(107%) is the best preconditioner for five
test matrices (2D, ned, ned_altl, ned_alt2, telecom). There are cases which show that a
denser preconditioner is not always the better preconditioner. The problem with ILUK is
the long time overhead to form the preconditioner. The ILUTH(107?) and ILUTH(107?)
preconditioners are superior to ILUO for test matrices that are of medium order (around
20,000 states), have narrow bandwidth (such as 2D) or are relatively more ill-conditioned
(such as ned_alt2, ned, ned_altl, telecom, hard, medium). When the Markov chain is ill-
conditioned (such as leaky), incomplete LU factorization may fail causing preconditioned
Krylov subspace methods to fail as well. Moreover, we see that the ILUO preconditioner
may be very effective if the coefficient matrix is quite large, but sparse (such as ¢n),
or dense (such as mutex). For the latter type of matrices, SOR is recommended. It
is clear that Krylov subspace solvers are affected adversely with higher ill-conditioning.
However, higher ill-conditioning does not always imply poorer performance. It is noticed
in some cases that it may even help a solver, especially IAD, to converge faster.

We executed the TPABLO partitioning algorithm on five of the test matrices and
recorded the computed partitionings for « = 8 = 0.5, minbs = 10, mazbs = 200. Then
we solved for the stationary distribution using both BSOR and IAD with the recorded
block structure and the optimal threshold value v of TPABLO (see Section 2.2.3), which
we picked from {0.10e+0,0.10e—1,0.10e—2,0.10e—3}. When choosing the test matrices,
we tried to form a representative set of problems with different degrees of difficulty and
sparsity patterns. Unfortunately, it was not possible to use TPABLO with the ¢n and
mutex test matrices. The winners of these experiments are given in Table 3.2. The
figures in the P.Time column indicate partitioning times. Note that the last column
has more information than the same column of the tables in the appendices. The first
integer again stands for the number of blocks solved iteratively. The integer after the
colon is the number of blocks in the partition, and the arguments inside the parantheses
are respectively the order of the smallest and largest blocks.

TABLE 3.2
Solvers with TPABLQO ordering, « = § = 0.5, minbs = 10, maxzbs = 200.
Matrix ‘ Solver ‘ w ‘ P.Time ‘ Time ‘ #it ‘ Bk.Error ‘ Blocks ‘
easy IAD, ~=0.10e-3]|1.0 63| 82| 9]0.24e—13|0: 103( 8—200)
medium | IAD, v =0.10e—2 1.1 6.5 8.6 71078 —130: 103( 8—200)
2D IAD, ~=0.10e4+0]| 1.1 9.2 48| 19]0.18¢—11|0: 129(129— 129)
ned BSOR,y =0.10e —1 | 1.5 6.7| 16.2| 67]0.6le—15|0:1,040( 10— 52)
telecom |IAD, ~v=0.10e—1|1.0 52| 23.7| 4910.99¢e—13|0: 196( 6 — 200)
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Note that TPABLO gives mostly balanced partitionings for the chosen parameters,
and 1t turns out to be the case that, when input to the two-level solvers of MARCA,
all diagonal blocks in these partitionings are solved directly. Also, in the partitionings
TPABLO computes, it can come up with blocks of order less than minbs (or larger
than maxbs, something observed in our experiments). None of the TPABLO solvers
considered provide a winner when compared with the results in the appendices though
BSOR with TPABLO v = 0.10e — 1 is competitive with ncdtest v = 0.10e — 3 for
the ncd test matrix. The partitioning provided by TPABLO for the 2D matrix is an
equal partitioning, however, with a different ordering of the states. The solution time
for 2D is better than its IAD with equal counterpart if we exclude the partitioning time.
However, in both the ned and 2D test matrices, there is a faster IAD solver with a newncd
partitioning. Our conclusion regarding TPABLO is that it may give faster converging
orderings, but with a set of five parameters, it is quite difficult to fine-tune.

4. Acknowledgments. We thank Wail Gueaieb for providing the framework to
carry out the experiments with the Krylov subspace solvers, Yousef Saad for his comments
on this work, and Daniel Szyld for supplying the TPABLO routines and his comments
on an earlier version.
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Appendix

A. Complete Buffer Sharing with Pushout Thresholds in ATM Networks.
Broadband Integrated Services Digital Networks (B-ISDNs) are to support multiple types
of traffic such as voice, video, and data. The Asynchronous Transfer Mode (ATM) is the
support technique of choice for B-ISDNs by the standards committees. In this mode of
operation, all information is carried using fixed size packets (called ‘cell’s) so as to share
the network among multiple classes of traffic. Since multiclass traffic will be carried on B-
ISDNs, different quality of service requirements will be imposed by different applications.

One type of congestion control for ATM networks deals with discarding cells at ATM
buffers in order to guarantee a prespecified cell loss rate. One bit in each ATM header
is reserved to assign the space priorities of cells. This bit indicates whether the given
cell is high or low priority. Priority cell discarding is a buffer management scheme in
which higher priority cells are favored in receiving buffer space. An efficient technique
for determining the cells to be discarded when congestion occurs is the complete buffer
sharing scheme with pushout thresholds.

In the system under consideration, there are two classes of traffic arriving to an
ATM buffer of size K. Time is divided into fixed size slots of length equal to one cell
transmission time. The arrival of traffic class [ (= 1,2) to the buffer is modeled as a
Bernoulli process with probability of cell arrival p; in a slot.

The states of the corresponding queueing system may be represented by the ordered
pair (z,7), where ¢ and j are the number of class 1 and class 2 cells in the buffer, re-
spectively [1]. Let k (= ¢ 4 j) denote the total number of cells in the buffer at state
(¢,7). Then, a natural state space ordering that places the states with the same num-
ber of total cells in the buffer (i.e., k) consecutively, gives rise to a block matrix with

?:o(k +1) = (K + 1)(K + 2)/2 states. The first block consists of the state (0,0) (i.e.,
the state in which the buffer is empty), the second block has states (0,1), (1,0), the third
block has states (0,2),(1,1),(2,0), and so on. The kth block has k + 1 states. That is, we

have the following ordering:
(0,0) < (0,1) < (1,0) <(0,2) < (1,1) <(2,0) <--- < (K,0)

During a time slot, no cells, one cell, or two cells may arrive. If one or two cells arrive,
then this happens at the beginning of a slot. A cell departure occurs by the end of the
slot if the buffer has at least one cell at the beginning of the slot. Hence, an arriving cell
cannot be transmitted before the end of the next slot. With these assumptions, a cell is
discarded if and only if two cells arrive to a full buffer. The pushout threshold for class 2
cells is given by T3 and the pushout threshold of class 1 cells is given by 71 (= K —1T3). If
two cells arrive to a full buffer (i.e., ¢ +j = K), then a class 2 cell is discarded if j > Ty,
otherwise a class 1 cell is discarded if j < T;. When j = T3, the lower priority traffic
class cell is discarded. One may view the system as if there is temporary space to store
up to two arrivals while the buffer is full and a decision as to which class of cell will be
discarded is made.

It is assumed that at steady-state the head of the queue (i.e., the cell that will be
leaving the buffer at the end of the current time slot—if there was one to begin with) is
a type 1 cell with probability ¢/(¢z 4 j) and it is a type 2 cell with probability j/(¢ + j).
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The discrete-time Markov chain corresponding to these assumptions is block tridiago-
nal (with the exception of the first row of blocks) where each diagonal block is tridiagonal
and has a different block size (see Figure A.1). Depending on the selected threshold, the
nonzero elements in the last row of blocks change making it difficult to apply analytical
solution techniques to such a system with control.

To study the effect of the threshold, three test cases are generated. In all test cases,
K and T, are fixed to 200 and 20, respectively. In the first test case, which we call easy,
we set p1 = 0.99 and p; = 0.99. The second test case, medium, is generated by choosing
p1 = 0.1 and p; = 0.5. Setting p; and py respectively to 0.1 and 0.9 gives us a third
test case which we call hard. The coefficient matrices of the three test cases are of the
same order n = 20,301 and have the same number of nonzero elements nz = 140, 504,
bandwidth, and nonzero structure. Tables A.2, A.3 and A.4 show the results of nedtest,
equal, other, and newncd partitionings applied to the three coefficient matrices. As
can be seen from Table A.2, choosing v = 0.10e — 1 causes the coefficient matrix to be
partitioned into blocks of order 1 with the exception of one block which is of order 2. Such
cases are not interesting and we do not consider them in our experiments. The possible
values of 4’ for the newned partitioning algorithm on the easy test matrix range between
0.11e40 and 0.98e¢ + 0 with 0.11e+ 0 being the smallest degree of coupling corresponding
to the values of 4" we tested in the mentioned range. The time to partition the pushout
test matrices using nedtest and newncd is not larger than 1 and 1.4 seconds, respectively.
Table A.5 gives information about the symmetric nonzero structure and bandwidth of
the three test matrices.

The first thing we notice in the results of the easy test matrix is that IAD with nedtest
~v = 0.10e —1 requires an unreasonably long solution time due to the order of the coupling
matrix (see Table A.6). However, BSOR performs very well especially with the other and
nedtest v = 0.10e — 2 partitionings. The former happens to be the winning solver for this
test matrix. This may be explained by examining the nonzero structure of the pushout
matrices (see Figure A.1). The easy test matrix is block tridiagonal (with the exception
of the first row of blocks) where diagonal blocks are tridiagonal with increasing block sizes
as we move down the matrix. Hence, the matrix is narrow banded in the first few rows and
the bandwidth increases down the matrix. This enables the other partitioning to gather
most of the nonzero elements within diagonal blocks. The ncdtest partitioning with
~v = 0.10e — 2 gave a similar block structure to that of other and hence close performance.
We just want to show by experimenting with ncdtest v = 0.10e—1 that a partitioning may
lead to poor performance if it does not take advantage of the divide-and-conquer nature
of two-level iterative methods. For this particular partitioning, all diagonal blocks are of
order 1 except one which is of order 2 (see number of blocks for v = 0.10e—1 in Table A.2).

TaBLE A.1
Characteristics of the Pushout Threshold Problem.
symmetric
n nz nz structure

20,301 140,504 no




26 T. DAYAR and W. J. STEWART

TABLE A.2
Partitioning Results for the easy Test Matriz.
~y number of  smallest largest degree
nedtest blocks block size  block size of coupling
0.10e — 3 308 1 5,050 0.99¢ + 0
0.10e — 2 4,060 1 162 0.10e +1
0.10e — 1 20,300 1 2 0.10e +1
number of last degree
blocks block size of coupling
equal 143 137 0.99¢ 4+ 0
other 201 0 0.10e +1
' number of  smallest largest degree
newncd blocks block size  block size of coupling
0.11e 40 3 22 20,048 0.11e 40
0.25¢ +0 31 22 19,026 0.25¢ +0
0.50e 40 258 4 4,951 0.99¢ + 0
0.75¢ +0 333 2 10,357 0.99¢ 4 0
0.98¢ +0 398 2 19,499 0.99¢ 4+ 0

The newncd partitionings are not competitive with nedtest, equal, and other when BSOR
is used though for all values of 4" they give solution in less than one minute. When TAD
is used, the newnecd partitioning for 4" = 0.25e 4+ 0 is rather competitive with necdtest
partitionings, but not with equal and other partitionings. For the other two values of
~" for the newned partitioning, IAD fails to produce a solution due the reducibility of
the corresponding coupling matrices. The results of CGS, GMRES, and BCGStab with
ILUO are very competitive for this test case. All Krylov subspace solvers except BCG
converge with all the preconditioners used, however they require longer time, in most of
the converging cases, than SOR and BSOR due to the preconditioning time overhead for
ILUTH(107?), ILUTH(107°), and ILUK(10). We should remark that CGS and BCGStab

n=20301

xin* nz= 140504

L
18 2
1n*

1 L
a 0s 1

FIGURE A.1 Pushout Threshold.
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TABLE A.3
Partitioning Results for the medium Test Matriz.

~y number of  smallest largest degree
nedtest blocks block size  block size of coupling

0.10e — 2 4 1 20,295 0.95¢ +0

0.10e — 1 720 1 19,477 0.95¢ +0

0.10e +0 20,300 1 2 0.95¢ + 0
number of last degree

blocks block size of coupling

equal 143 137 0.93¢ 4+ 0
other 201 0 0.55¢ + 0
' number of  smallest largest degree

newncd blocks block size  block size of coupling
0.23e +0 77 3 14,198 0.72¢ 4+ 0
0.25¢ +0 86 3 10,220 0.7le +0
0.30e +0 67 4 7,430 0.69¢ + 0
0.35¢ +0 46 4 10,901 0.73¢ + 0
0.50e + 0 2 2 20,299 0.95¢ +0

with ILUK(10) converge in only 1 iteration whereas 2 iterations are necessary for GMRES
and DQGMRES. This suggests that the preconditioned matrix formed by ILUK (10) is

very well-conditioned.

The medium and hard test matrices seem to be somewhat more “stift” versions of
the easy test matrix although the smallest degree of coupling that is computed for our
choices of 4’ for both of these matrices turns out to be larger than that of the easy test
matrix (see Tables A.2, A.3, and A.4). Comparing the results of easy, medium, and
hard test matrices, we see that Krylov subspace solvers perform worse as we move from
easy to hard (see Tables A.6, A.7, and A.8). Nevertheless, BCGStab is affected the least
among them and it becomes the next to best solver for the hard test matrix due to the
poor performance of its competitors. IAD with the newncd 4" = 0.20e + 0 partitioning is
the winner for the hard test matrix. BCG converges for only one test matrix (i.e., hard)
of the pushout threshold problem. The residual infinity norm that comes as a byproduct
of BCG is observed to be unstable and too much oscillating which illustrates the irregular
convergence behavior of BCG. It converges for the hard test matrix with ILUTH(107?)
like all other Krylov subspace solvers since the chosen threshold value gives a dense and
strong preconditioner. From the pushout threshold example, it seems that “stiffness”
affects the performance of Krylov subspace solvers and SOR adversely. Performance
degradation is also observed for BSOR. On the other hand, even though the solution
time might have increased, the number of iterations taken to convergence by BSOR and
[AD with the nedtest and newned partitionings for a fixed decomposability parameter
decrease when we go from easy to medium, then to hard. The behavior of the two-level
solvers with the equal and other partitionings is rather irregular, and IAD with the equal
partitioning fails due to a reducible coupling matrix for the hard test matrix although
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TABLE A .4
Partitioning Results for the hard Test Matriz.
~y number of  smallest largest degree
nedtest blocks block size  block size of coupling
0.10e — 3 2 1 20,300 0.99¢ + 0
0.10e — 2 134 1 20,168 0.99¢ + 0
0.10e — 1 2,286 1 18,016 0.99¢ + 0
number of last degree
blocks block size of coupling
equal 143 137 0.96e + 0
other 201 0 0.91e+0
' number of  smallest largest degree
newncd blocks block size  block size of coupling
0.82e —1 2 12 20,289 0.26e +0
0.20e + 0 201 3 4,860 0.38¢ 4+ 0
0.50e 4+ 0 201 2 12,306 0.68¢ + 0
0.90e 4+ 0 2 2 20,299 0.99¢ + 0

the same partitioning had provided a winner with BSOR for medium.

TABLE A5
Lower, Higher Bandwidths and Coefficients of Asymmetry of the pushout Test Matrices.
lower higher coefficient
matrix bandwidth bandwidth  of asymmetry
easy 201 201 (2.97,1.96)
medium 201 201 (1.90,0.94)
hard 201 201 (1.97,0.99)
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TABLE A.6
Numerical Results for easy (n = 20,301, nz = 140,504).
SOR
‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘
[1.0]0.71e — 10| 4.8 31[0.69¢ —12[0.21e — 12|
BSOR
Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘
~v=0.10e =3 | 1.0 | 0.61e — 11 6.1 710.60e — 15| 0.18¢ — 15 0
~v=0.10e —2 | 1.0 | 0.28¢ — 10 2.1 710.15e — 14 | 0.47e — 15 0
~v=0.10e —1 | 1.0 | 0.36e — 10 80| 24]0.34e — 12| 0.10e — 12 0
equal 1.0 | 0.11e — 10 3.9 710.10e —14 | 0.31e — 15 0
other 1.0 1 0.84e — 11 1.9 710.81e—1510.25¢ — 15 0
v'=025e+0|1.1]0.1le—10| 41.0| 15]0.21e —12 | 0.64e — 13 0
7' =0.50e +0|1.0]0.52¢e — 10| 26.1| 52|0.49¢ — 12| 0.15e — 12 0
v'=0.75e+0|1.1]044e—10| 17.3| 16 |0.42e — 12| 0.13e — 12 0
IAD
‘ Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ || Az ‘ Bk.Error ‘ Blocks ‘

~v=0.10e =3 [ 0.9 0.65e — 10 | 22.1| 37 |0.84e —13 | 0.26e — 13 0
~v=0.10e =2 [ 0.9 0.99¢ — 10 | 249.0 | 52 | 0.12e — 12 | 0.36e — 13 0
v =0.10e — 1 | 0.9 | requires unreasonably long time (large coupling matrix)
equal 0.9]0.90e—10| 16.4| 41]|0.14e —12{0.42¢ — 13 0
other 091053e —101] 1541 5210.10e —12]0.32¢ — 13 0
~'=025¢+0|1.0]0.14e — 10 | 34.5 910.30e — 13 | 0.91e — 14 0
v'=0.50e+0|1.0 failed (reducible coupling matrix)
v'=0.75e¢+0|1.0 failed (reducible coupling matrix)
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TABLE A.6 continued
Numerical Results for easy (n = 20,301, nz = 140,504).

‘ Preconditioner ‘ nzlu ‘ Time ‘ MFlops ‘

ILUO 140,504 0.5 0.2

ILUTH(10?) | 110,010 | 6.1 0.5

ILUTH(lO_S) 166,503 6.3 0.8

ILUK(10) 201,187 | 18.5| 9.8
‘ Method ‘ Preconditioner ‘ Time ‘ #it ‘ [|7]] ‘ ||Az ‘ Bk.Error
ILUO 2.6 710.65e —12 |0.23e — 15| 0.69¢ — 16
GMRES ILUTH(lO_S) 1.8 510.65e —13 | 0.40e — 13| 0.12¢ — 13
(m=20) |ILUTH(10~%) | 14| 3|0.26e—14 |0.27e — 14|0.82¢ — 15
ILUK(lO) 1.0 210.60e —12 | 0.26e — 13| 0.81e — 14
ILUO 4.1 710.65e—12 |0.23¢ —15|0.69¢ — 16
DQGMRES ILUTH(lO_S) 3.0 510.65e —13 | 0.40e — 13| 0.12¢ — 13
(k=20) |ILUTH(10-5) | 22| 3|0.26e— 14 |0.27e — 14 |0.82¢ — 15
lLUK(lO) 1.8 210.60e —12 | 0.26e — 13| 0.81e — 14
ILUO 297.9 | 500% 0.13e — 06 | 0.40e — 09 | 0.12e¢ — 09
BCG ILUTH(lO_B) 270.6 | 500% 0.46e — 03 | 0.51e — 04 | 0.16e — 04
ILUTH(lO_S) 308.5 | 500* 0.13e — 07 | 0.17e — 08 | 0.51e — 09
ILUK(10) 348.0 | 500% 0.13¢ — 01 | 0.19¢ — 02 | 0.85¢ — 03
ILUO 2.4 410.62¢ —10 |0.37e —13]0.11e — 13
CGS ILUTH(lO_S) 1.7 310.45e—13 | 0.26e —13|0.79¢ — 14
ILUTH(lO_s) 1.5 210.33¢—16 |0.21e —16 | 0.63e — 17
ILUK(lO) 0.8 1{0.13¢ —10 |0.31le —12]0.95e — 13
ILUO 2.6 410.47¢ —12 |0.96e — 15| 0.29¢ — 15
BCGStab ILUTH(lO_S) 1.5 310.11e —10° | 0.64e — 11 | 0.19¢ — 11
ILUTH(10_5) 0.8 110.17¢e — 10 [0.25e¢ —10|0.75e — 11
ILUK(lO) 0.8 110.11e—12 | 0.58¢ — 14| 0.18¢ — 14
LU0 57| 8042 —08 | 043¢ —11]0.13¢ — 11
QMR ILUTH(lO_S) 4.0 610.44e —09 |0.32¢ — 09 | 0.99¢ — 10
ILUTH(lO_S) 3.6 410.52¢ —08 |0.78 — 08| 0.24e — 08
ILUK(lO) 4.5 510.46e —10 | 0.18¢ — 10| 0.55e — 11




TWO-LEVEL SOLVERS FOR LARGE, SPARSE MARKOV CHAINS

TABLE A.7

Numerical Results for medium (n = 20,301, nz = 140,504).

SOR
‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘
[ 1.1]0.68¢ — 10| 51.4|352[0.40e — 10 [ 0.44¢ — 10 |
BSOR
Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘
~v=0.10e =2 | 1.0 | 0.11e — 15 | 211.9 210.21e — 16 | 0.23e — 16 0
~v=0.10e =1 | 1.0 | 0.93e — 10 | 343.0 | 24 | 0.21e — 10| 0.23e — 10 1
v =0.10e4+0 | 1.1 ]0.97e—10| 19.6 | 57| 0.34e —11 | 0.37e — 11 0
equal 1.0 0.18e — 11 4.5 210.28¢ — 15| 0.3le — 15 0
other 1.210.38¢e — 10| 4351218 [0.17e — 10 | 0.18e — 10 0
7' =0.25e+0|1.9]0.34e — 10| 27.8 810.62e — 11 | 0.68e — 11 0
v =030e+0|1.3[026e—10| 77.8| 78]0.47e—11|0.52¢ — 11 0
7' =0.35e+0|1.2]047e—10|105.3| 70 |0.91e — 11| 0.10e — 10 0
IAD
Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ || Az ‘ Bk.Error ‘ Blocks ‘
v =0.10e —2 | 1.0 | 0.56e — 16 | 211.0 210.31e — 16 | 0.34e — 16 0
v =0.10e —1 | 1.0 | 0.99¢ — 10 | 318.8 | 27 | 0.36e — 10 | 0.40e — 10 1
v =0.10e + 0 | 1.0 | requires unreasonably long time (large coupling matrix)
equal 1.0 | 0.59¢ — 15 5.5 210.59¢ — 16 | 0.65e¢ — 16 0
other 1.0 | 0.40e — 10 471 1110.72e — 11 1 0.79¢ — 11 0
7' =0.25e+0|1.3]094e—10| 27.3 6]0.3le — 12 | 0.34e — 12 0
7' =030e+0|1.2]0.8e—10| 37.9| 24|0.13e — 11 | 0.15e — 11 0
7' =035e+0|1.2]0.55e—10| 58.7| 24|0.29e — 11 | 0.32e — 11 0
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TABLE A.7 continued
Numerical Results for medium (n = 20,301, nz = 140, 504.

‘ Preconditioner ‘ nzlu ‘ Time ‘ MFlops

ILUO 140,504 0.5 0.2

ILUTH(10~?) | 275,253 | 6.4 1.5

ILUTH(10~) | 554,148 | 88| 5.0

ILUK(10) 201,189 | 19.8|  10.8
‘ Method ‘ Preconditioner ‘ Time ‘ #it ‘ [|7]] ‘ ||Az ‘ Bk.Error
ILUO 209 | 64|0.86e — 10T [ 0.23¢ — 10 | 0.25¢ — 10
GMRES ILUTH(lO_S) 4.9 910.15¢e—09 |0.45¢ — 16 | 0.50e — 16
(m=20) |ILUTH(10"%) | 4.6| 7]0.22¢—08 |0.30¢—110.33¢ — 11
ILUK(lO) 541 1210.73e — 11 [0.12¢ —13]0.13e — 13
ILUO 63.4| 7210.13¢ —11 |0.40e — 12| 0.44e — 12
DQGMRES ILUTH(lO_S) 13.8] 1910.82¢ — 04* | 0.86e — 08 | 0.95¢ — 08
(k=20) |ILUTH(10-5) | 7.4| 9|0.11e— 05| 0.76¢ — 06 | 0.84¢ — 06
lLUK(lO) 73| 12]10.73e — 11 | 0.12e — 13| 0.13e — 13
ILUO 298.7 | 500% 0.17¢ + 03 | 0.15e — 02 | 0.12¢ + 00
BCG ILUTH(lO_B) 396.7 | 500* 0.39¢ — 02 | 0.26e — 08 | 0.28¢e — 08
ILUTH(lO_S) 598.1 | 500% 0.21e — 01 | 0.40e — 09 | 0.44e — 09
ILUK(10) 343.4 | 500% 0.15e + 00 | 0.10e — 03 | 0.12¢ — 03
ILUO 291.6 | 500% 0.16e + 15 | 0.23e — 02| 0.19¢ + 00
CGS ILUTH(lO_S) 4.0 510.17¢ — 10 [0.35¢ — 16| 0.38¢ — 16
ILUTH(10_5) 577.5 | 500% 0.24e + 05 [ 0.13e — 08 | 0.15e¢ — 08
ILUK(lO) 5.5 810.11e — 11 | 0.19¢ — 14 | 0.20e — 14
ILUO 17.6 | 30(0.35¢ —10° | 0.92¢ — 11 | 0.10e — 10
BCGStab ILUTH(lO_S) 3.2 410.14¢ — 10 |0.73¢e — 16 | 0.80e — 16
ILUTH(10_5) 2.5 210.599e — 11 |0.42e¢ — 16 | 0.46e — 16
ILUK(10) 4.5 710.34e — 10° | 0.57e¢ — 13 | 0.63e — 13
ILUO 366.3 | 500% 0.25¢ — 05 | 0.35¢ — 06 | 0.39¢ — 06
QMR ILUTH(lO_S) 6.5 710.76e — 06 | 0.30e — 12| 0.33e — 12
ILUTH(lO_S) 663.8 | 500* 0.92¢ — 10 | 0.12¢ — 12| 0.13e — 12
ILUK(lO) 9.8 1210.12e — 07 [0.20e — 10| 0.22¢ — 10
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TABLE A.8

Numerical Results for hard (n = 20,301, nz = 140,504).

SOR
‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘
| 1.0 [ 0.57e — 06 | 147.0 | 1,000 | 0.97e — 07 | 0.42¢ — 04 |
BSOR

Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘
~v=0.10e —3 [ 1.0 | 0.29¢ — 16 | 119.9 210.41e — 16 | 0.46e — 14 0
~v=0.10e —2 | 1.0 | 0.96e — 15 | 181.7 210.23e — 17| 0.26e — 15 0
~v=0.10e —1 [ 1.0 | 0.68e — 10 | 122.0 810.59e — 14 | 0.67e — 12 0
equal 1.0 10.77e — 06 | 338.7 | 1,000% 0.33e — 07 | 0.52¢ — 05 0
other 1.0 [ 0.78e — 06 | 185.1 | 1,000% 0.72¢ — 07 | 0.23e — 04 0
~"'=10.20e4+0[1.6 | 0.90e — 10| 54.6 146 | 0.15e — 10 | 0.17e — 08 0
~'=0.50e +0 | 1.2 | 0.64e — 10 | 74.7 27 1 0.46e — 13 | 0.52¢ — 11 0

IAD

Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘
~v=0.10e =3 | 1.0 | 0.20e — 16 | 120.0 210.41le — 16 | 0.46e — 16 0
~v=0.10e =2 | 1.0 | 0.36e — 15 | 182.0 210.11e — 17 0.13e — 15 0
~v=0.10e =1 | 1.0 | 0.32¢ — 10 | 304.5 810.29e — 14 | 0.33e — 12 0
equal 1.0 failed (reducible coupling matrix)
other 1.310.98¢ — 10| 37.0|141|0.48¢ — 11 | 0.54e — 09 0
~v'=0.20e+0]1.4/091le—10| 29.8| 59 |0.12¢ — 11| 0.14e — 09 0
~'=0.50e+0|1.10.18¢ —10| 60.2| 13 |0.35¢ — 13 |0.40e — 11 0
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TABLE A.8 continued
Numerical Results for hard (n = 20,301, nz = 140,504).

‘ Preconditioner ‘ nzlu ‘ Time ‘ MFlops ‘

ILUO 140, 504 0.5 0.2

ILUTH(1072) 860,386 | 12.4 10.5

ILUTH(107%) | 1,750,723 | 42.4 50.3

ILUK (10) 201,187 | 17.7 8.4
‘ Method ‘ Preconditioner ‘ Time ‘ #it ‘ [|7]] ‘ ||Az ‘ Bk.Error
ILUO 207.1 | 480 | 0.96e — 10 | 0.45e — 10 | 0.52¢ — 08
GMRES | ILUTH(107?) 352 40]0.13e —11 | 0.38e — 12| 0.43e — 10
(m=20) |ILUTH(10-%) | 22.8| 16|0.40e — 11 |0.79¢ — 12| 0.90¢ — 10
ILUK(10) 163.2 | 340 | 0.86e — 10 | 0.34e — 10 | 0.38¢ — 08
ILUO 479.2 | 500% 0.72e¢ — 09 | 0.34e — 09 | 0.38¢ — 07
DQGMRES | ILUTH(107?) 50.3 | 41]0.19¢ —12 | 0.57e — 13 | 0.65e — 11
(k=20) |ILUTH(10-%) | 25.5| 16 |0.40e — 11 |0.79¢ — 12 | 0.90¢ — 10
ILUK (10) 491.0 | 5007 0.21e — 11 | 0.99¢ — 12| 0.11e — 09
ILUO 297.1 | 5007 0.82e 4+ 06 | 0.14e — 02 | 0.64e — 01
BCG ILUTH(1073) |839.7 | 500% 0.47¢ + 00 | 0.67¢ — 03 | 0.55¢ — 01
ILUTH(107%) | 171.0 | 58 | 0.29¢ — 10 | 0.18¢ — 10 | 0.21e — 08
ILUK(10) 346.0 | 5007 0.74e + 03 | 0.77e — 03 | 0.57¢ — 01
ILUO 291.2 | 500* 0.30e + 07 | 0.34e — 03 | 0.98e — 01
CGS ILUTH(107?) 372 23|0.14e — 10 | 0.42¢ — 11 | 0.48e — 09
ILUTH(107?) 343 | 12]0.60e —10 | 0.12e — 10 | 0.14e — 08
ILUK(10) 337.8 | 5007 0.11e + 15 | 0.11e — 02 | 0.12¢ + 00
ILUO 43.1| 7310.31e —10° | 0.15¢ — 10 | 0.17e — 08
BCGStab | ILUTH(1073) | 22.7| 14{0.98¢ — 10 |0.29¢ — 10 | 0.33¢ — 08
ILUTH(107?) 244 910.60e —10° | 0.12e¢ — 10 | 0.14e — 08
ILUK (10) 40.2 | 59 | 0.55¢ —10° | 0.26e — 10 | 0.30e — 08
ILUO 358.6 | 500 0.27¢ — 04 | 0.25¢ — 04 | 0.30e — 01
QMR ILUTH(107%) | 50.4| 28|0.21e — 07 |0.63¢ — 08 | 0.71e — 06
ILUTH(107%) | 57.1| 18 |0.41e — 08 | 0.83¢ — 09 | 0.94e — 07
ILUK(10) 410.6 | 5007 0.26e — 04 | 0.21e — 04 | 0.44e — 01
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B. A Two-Dimensional Markov Chain Model. As the title suggests, in this
problem we consider a two-dimensional Markov chain. In the first dimension of the
chain, the state variable assumes all values from 0 through N,. Similarly, in the second
dimension, the state variable takes on values from 0 through N,. The state space is
sketched in Figure B.1.

This two-dimensional Markov chain model allows for transitions from any non-
boundary state to adjacent states in the North, South, Fast, West, North-East, North-
West, South-East, and South-West directions. However, in the model we used in our
experiments, only transitions to the South, East and North-West are permitted (taking
the others to be 0). From any non-boundary state (u,v), transitions to the South are
assigned the value v, transitions to the East are assigned the value 2025.0, and transitions
to the North-West are assigned the value u [33]. The state space of the Markov chain
is of size (N, + 1)(N, + 1). The values of N, and N, are both set to 128, yielding a
matrix, 2D, of order n = 16,641 and number of nonzero elements nz = 66,049. The
partitioning results of the 2D test matrix are illustrated in Table B.2. The time taken
by the ncdtest and newned partitioning algorithms does not exceed 1 second for the 2D
matrix. Interestingly, for this test matrix the newncd algorithm finds a partition with
equal size blocks and a degree of coupling of 0.11e 4+ 0. The characteristics of the test
matrix and bandwidth information are reported in Tables B.1 and B.3.
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FIGURE B.1 A Two-Dimensional Markov Chain Model Model.

TABLE B.1
Characteristics of the Two-Dimensional Markov Chain Problem.
symmetric
n nz nz structure

16,641 66,049 no
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n= 162841 nz = 86,049
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FIGURE B.2 2D.

TABLE B.2
Partitioning Results for the 2D Test Matriz.
5 number of  smallest largest degree
nedtest blocks block size  block size of coupling
0.10e — 2 513 1 16,129 0.94e +0
0.10e — 1 5,913 1 11,449 0.95¢ + 0
number of last degree
blocks block size of coupling
equal 129 0 0.98¢ + 0
other 182 170 0.97¢ 40
v number of  smallest largest degree
newncd blocks block size block size  of coupling
0.57e —1 129 129 129 0.11e 4+ 0
0.88¢ 4+ 0 129 129 129 0.11e 4+ 0
TaBLE B.3
Lower, Higher Bandwidths and Coefficient of Asymmetry of the 2D Test Matriz.
lower higher coefficient
matrix bandwidth bandwidth  of asymmetry
| 2D 65 129 (2.00,1.00) |

For the 2D test matrix, BCGStab with ILUTH (10~°) outperforms all other solvers

(see Table B.4).

CGS with ILUTH(107%) comes a close second.

GMRES with

ILUTH(107%) and BCGStab with ILUTH(107?) follow as close third. The major in-

convenience of BCG that is observed in 2D and most of the test cases is its convergence

behavior. The residual infinity norm of BCG tends to decrease in the first few iterations

but stagnates or increases thereafter. This behavior is observed in most of the test ma-

trices with all the preconditioners used. The residual may not be an accurate indicator

of the number of correct digits in the approximate solution (see [24], p. 1168). Note

also that the ILUO preconditioner is generally quite weak for the 2D test matrix. As for
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two-level solvers, it can be seen from Table B.4 that BSOR and TAD require relatively
long time to converge with the nedtest partitionings v = 0.10e — 2 and v = 0.10e — 1, al-
though they both take 2 iterations to converge. The ncdtest algorithm with v = 0.10e —2
partitions the matrix to 512 diagonal blocks of order 1 and one last block of order 16,129,
and similarly nedtest with v = 0.10e — 1 partitions the matrix to 5,192 diagonal blocks
of order 1 and one last block of order 11,449. These partitionings do not take advantage
of the divide-and-conquer nature of two-level iterative methods; we can easily infer that
the 2 iterations are entirely used to solve the large block in each partitioning. This may
explain the relation between the low iteration count and the long time to converge. The
equal and other partitionings take larger number of iterations but converge in less time as
they partition the matrix more uniformly. TAD with the nednew 4" = 0.57¢ —1 partition-
ing is the fastest two-level solver for this problem. Also, the same newncd partitioning is
much better than those of nedtest and it outperforms equal and other partitionings for
BSOR. Finally, the performance of SOR is poor for this test matrix.

TABLE B.4
Numerical Results for 2D (n = 16,641, nz = 66,049).
SOR
‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘
[ 1.4]0.96c — 10| 29.6 314 [0.71e — 11 [0.57¢ — 10 |
BSOR
Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘
~v=0.10e —2 [ 1.0 ] 0.26e — 15| 62.3 210.22e —17(0.17e — 16 0
~v=0.10e —1 [ 1.0]0.57¢e —15] 35.1 210.30e —1710.24e — 16 0
equal 1.310.95¢ — 10| 33.9 211 |0.72e — 11 | 0.58e — 10 0
other 1.210.98e — 10| 35.1]205|0.79¢ — 11 | 0.63e — 10 0
~'=0.57¢—1[1.80.87e —10| 22.4 | 180 | 0.15e — 11 | 0.12¢ — 10 0
IAD
Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘
~v=0.10e —2 [ 1.0 0.74e — 15| 54.9 210.22e —17|0.17e — 16 0
~v=010e —1 [1.0]0.37e — 15| 106.6 210.22e —1710.17e — 16 0
equal 1.110.77e — 10 9.9| 4310.23e —11 [ 0.18e — 10 0
other 1.0 088 —10| 11.6| 51|0.30e —11 | 0.24e — 10 0
~'=0.57e —1]1.0 | 0.84e — 10 5.6 | 27(0.62e — 11 [ 0.49¢ — 10 0
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TABLE B.4 continued

Numerical Results for 2D (n = 16,641, nz = 66,049).

‘ Preconditioner ‘ nzlu ‘ Time ‘ MFlops ‘

ILUO 66,049 0.2 0.05

ILUTH(103) | 138,392 | 27|  0.60

ILUTH(10~) | 250,807 | 3.3| 1.40

ILUK(10) 165, 819 9.0 4.80
Method ‘ Preconditioner ‘ Time ‘ #it ‘ [|7]] ‘ ||Az ‘ Bk.Error
ILUO 67.4 | 240 | 0.63e — 10 | 0.26e — 09 | 0.20e — 08
GMRES ILUTH(lO_S) 29| 10]10.54e — 13 [0.79¢ — 14 | 0.63e — 13
(m=20) |ILUTH(10-5) | 1.6] 4]0.97e—13 |0.15¢ —12]0.12¢ — 11
ILUK(lO) 421 13(10.17e—12 |0.47¢ —12]0.37e — 11
ILUO 139.9 {200 | 0.98¢ — 12 | 0.17e — 11 | 0.14e — 10
DQGMRES ILUTH(lO_S) 46| 10|0.54e —13 [0.79¢ — 14 | 0.63e¢ — 13
(k=20) |ILUTH(10-5) | 24| 4]0.97e—13 |0.15¢ —12|0.12¢ — 11
lLUK(lO) 6.5 13|10.17e—12 | 0.47e —12|0.37e — 11
ILUO 166.6 | 500* 0.77e + 04 | 0.70e — 02 | 0.99¢ — 01
BCG ILUTH(lO_B) 230.5 | 500% 0.36e — 03 | 0.98¢ — 04 | 0.10e — 02
ILUTH(10-%) | 20| 3|0.74¢—10 |0.34¢ — 10 | 0.27¢ — 09
ILUK(10) 252.1 | 5007 0.18¢ 4+ 02 | 0.11e — 02| 0.15¢ — 01
ILUO 164.4 | 500* 0.25¢ +14 | 0.11le — 01 | 0.11e 4 00
CGS ILUTH(lO_S) 2.4 510.42e — 11 | 0.52e — 12| 0.41e — 11
ILUTH(lO_s) 1.3 210.24e—11 [ 0.11le—11 | 0.87e — 11
ILUK(lO) 4.1 810.19¢ — 10 | 0.32¢ — 10 | 0.26e — 09
ILUO 12.71 38 10.66e — 10° | 0.70e — 10 | 0.55e¢ — 09
BCGStab ILUTH(lO_S) 2.2 510.36e —10° | 0.44e — 11 | 0.35e¢ — 10
ILUTH(10_5) 1.0 210.73¢ —10° | 0.75¢ — 10 | 0.59¢ — 09
ILUK(lO) 3.8 810.65e —11° | 0.11e — 10 | 0.90e — 10
ILUO 217.31500% 0.30e — 04 |0.26e — 04 10.12¢ — 02
QMR ILUTH(lO_S) 6.2 11]0.36e —08 |0.43¢ —09 |0.34¢ — 08
ILUTH(10~%) | 2.6 | 3|0.74¢—10 |0.34¢ — 10 | 0.27¢ — 09
ILUK(10) 791 131]0.15e — 09 | 0.25¢ — 09 | 0.20e — 08
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C. An NCD Queueing Network of the Central Server Type. The model
illustrated in Figure C.1 represents the system architecture of a time-shared, multipro-
grammed, paged, virtual memory computer. The system [33] consists of
a set of V; terminals from which V; users generate commands,

a central processing unit (CPU),
a secondary memory device (SM),

a filing device (FD).

Mo

Ficure C.1 An NCD Queueing Network of the Central Server Type Model.

A queue of requests is associated with each device and the scheduling is assumed to
be FCFS (first-come, first-served). When a user generates a command at the terminal,
it remains inactive until the system responds. Symbolically, this user enters the CPU
queue. The system behaves in such a way that after a certain time period, called the
compute time, either a page fault or an input/output (file request) occurs. In the case
of a page fault, the process currently in the system enters the SM queue, otherwise, in
the case of a file request, it joins the FD queue. Processes that terminate their service
at the SM or FD queue return to the CPU queue. A command commit is symbolically
represented by a departure of the process from the CPU to the terminals.

Let ng, ny and ny respectively be the number of processes in the CPU, SM and
FD queues at a certain time. Then the degree of multiprogramming at that moment is
given by n = ng + n1 + na. Let (uo(n))™!, ¢(n) and r(n) respectively denote the mean
service time at the CPU, the mean compute time between two page faults, and the mean
compute time between two input/output requests. It follows that the probabilities that
a process leaving the CPU will be directed to the SM or to the FD queue are respectively
given by p1(n) = (no(n)q(n))~" and pa(n) = (po(n)r(n))~". The probability that a process
leaving the CPU to the terminals is given by po(n) = (po(n)e(n))™" = 1 — (p1(n) + p2(n)),
where ¢(n) is the mean compute time of a process [24].

We assign a specific value to each parameter. The rate at which processes move
from the CPU queue to the SM device is taken to be p;(n)ro(n) = 100(n/128)'*. The
mean compute time between two input/output requests r(n) is taken as 20 ms so that
p2(n)po(n) = 0.05, and the mean compute time of a process ¢(n) is equal to 500 ms giving
po(n)po(n) = 0.002. The mean think-time of a user at a terminal is estimated to be on the
order of A™' = 10 5. The mean service time of the SM is taken as (¢1(n))™" = 5 ms and
that of the FD to be (u2(n))™' = 30 ms. The total number of users in the system, NV, is
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Ny +4—-1

41 ) = 23,426 and number of

set to 50 yielding a matrix, ned, of order n = (

nonzero elements nz = 156, 026.

Two more test cases are generated from this model. The first one, necd_altl, is
obtained by setting the mean service time of the FD to (us(n))™! = 3,000 s. The second
test case, ncd_alt2, is more ill-conditioned than ned_altl and is generated by setting
the mean think-time of a user at a terminal to A™' = 10,000 s. The smallest degree
of coupling we came across for the ned_alt2 test matrix for the values of 4" we used
is 0.81e — 4. Naturally, the three test matrices, ned, ned_altl, and ned_alt2, have the
same order, number of nonzero elements, and nonzero structure. The characteristics,
partitioning results, and bandwidths of all the test matrices for this model are reported
in Tables C.1 through C.5. The time to partition the ncd test matrices using necdtest
and newncd does not exceed 1 and 1.8 seconds, respectively.

TasrLe C.1
Characteristics of the NCD Queueing Network Problem.
symmetric
n nz nz structure
23,426 256,026 yes

xi10* n=23428 nz= 158,028

Qs

L 1 L '
a <X 1 13 2

FIGURE C.2 ncd.

The equal partitioning of the ned test matrix leads to a reducible coupling ma-
trix causing IAD to fail (see Table C.6). So does newncd 4" = 0.10e — 2 for the necd
and ncd_alt] test matrices (see Tables C.6 and C.7). With the nedtest v = 0.10e — 3
and other partitionings, IAD outperforms BSOR though both methods solve the same
blocks iteratively. This shows the advantage of IAD over BSOR in solving the cou-
pling matrix directly, in the aggregation step, when it is not too large. The win-
ning solver for the ned test matrix is, however, IAD with newned +" = 0.10e + 0.
For this partitioning, the coupling matrix is of order 1,221. This is also one of sev-
eral test cases which demonstrates the superiority of BCGStab over other Krylov sub-
space solvers. The performance of QMR on this problem is commendable as well.
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TaBLE C.2
Partitioning Results for the ncd Test Matriz.

~y number of  smallest largest degree
nedtest blocks block size block size of coupling

0.10e — 4 3 1,275 20,825 0.85¢ — 4

0.10e — 3 51 1 1,326 0.28¢ — 3

0.10e — 2 51 1 1,326 0.28¢ — 3
number of last degree

blocks block size of coupling

equal 154 17 0.10e +1
other 216 206 0.10e +1
' number of  smallest largest degree

newncd blocks block size  block size of coupling
0.81e — 4 21 528 5,456 0.16e — 3
0.10e — 2 51 1 1,326 0.28¢ — 3
0.10e +0 1,221 2 326 0.36e — 2
0.98¢ +0 51 2 22,101 0.35e — 2

The performance of SOR in all parts of the ned test problem is very poor and uninter-
esting.

The ned_alt2 test matrix is a more ill-conditioned version of the ned test matrix.
The same cannot be said of ncd_altl since the smallest degree of coupling of the newncd
partitionings for ned_altl is the same as the corresponding one for ned. See the degree
of couplings for various partitionings of these three test matrices in Tables C.2, C.3, and
C.4. Close investigation of the results in Tables C.6, C.7, and C.8 also confirms this
situation. All Krylov subspace solvers with the ILUK(10) preconditioner perform better
for ned_altl than they do for ned. For the other preconditioners, the performance of
Krylov subspace solvers become worse. Note that for ned_altl, the ILUK preconditioner
preserves the same density, but the ILUTH preconditioners become sparser. On the
other hand, the performance of two-level solvers in general improve considerably for
ned-altl, BSOR with the other partitioning becoming the fastest solver. BSOR with
the nedtest v = 0.10e — 3 partitioning comes a close second (see Table C.7). As for
the ned_alt2 test matrix, Krylov subspace solvers show very poor performance, possibly
because the coefficient matrix is more ill-conditioned than both necd and ned_altl and
the preconditioners used are not sufficiently robust. We see improvements among the
two-level solvers with the equal and newncd 4" = 0.10e + 0 partitionings. BSOR with
the equal partitioning is the winner for this test matrix followed by BSOR with newned
~v"=0.10e 4+ 0 as a close second. The decomposability parameter 0.10e — 7 with necdtest
partitions the ned_alt2 test matrix to 3 diagonal blocks of order 1,275, 1,326 and 20, 825.
This unbalanced partitioning and solving the largest block iteratively with a tolerance of
1072 are most likely the reasons behind the poor performance of BSOR and IAD for this
particular partitioning (see Table C.8).
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TaBLE C.3
Partitioning Results for the ncd_altl Test Matriz.
~y number of  smallest largest degree
nedtest blocks block size block size  of coupling
0.10e — 6 51 1 1,326 0.20e — 2
0.10e — 5 51 1 1,326 0.20e — 2
0.10e — 4 150 1 1,225 0.2le — 2
0.10e — 3 1,326 1 51 0.23e — 2
0.10e — 2 1,326 1 51 0.23e — 2
number of last degree
blocks block size of coupling
equal 154 17 0.10e +1
other 216 206 0.10e +1
' number of  smallest largest degree
newncd blocks block size  block size of coupling
0.82e — 4 21 h28 5,456 0.16e — 3
0.10e — 2 51 1 1,326 0.28¢ — 3
0.10e +0 1,221 2 326 0.23e — 2
0.98¢ +0 51 2 22,101 0.2le —2
TaBLE C.4
Partitioning Results for the ncd_alt2 Test Matriz.
~y number of  smallest largest degree
nedtest blocks block size  block size of coupling
0.10e — 7 3 1,275 20,825 0.8le — 4
0.10e — 6 25 406 3,654 0.8le — 4
0.10e — 5 51 1 1,326 0.81e — 4
0.10e — 4 51 1 1,326 0.8le — 4
0.10e — 3 51 1 1,326 0.8le — 4
0.10e — 2 51 1 1,326 0.8le — 4
number of last degree
blocks block size of coupling
equal 154 17 0.10e +1
other 216 206 0.10e +1
' number of  smallest largest degree
newncd blocks block size  block size of coupling
0.81e — 4 51 1 1,326 0.81e —4
0.10e — 1 1,273 2 58 0.35e — 2
0.10e +0 1,221 2 326 0.35e — 2
0.98¢ +0 51 2 22,101 0.35e — 2
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TaBLE C.5
Lower, Higher Bandwidths and Coefficients of Asymmetry of the ncd Test Matrices.
lower higher coefficient
matrix  bandwidth bandwidth  of asymmetry
ned 460 460 (2.00,0.98)
ned_altl 460 460 (2.00,0.98)
ned_alt2 460 460 (2.00,0.98)
TaBLE C.6
Numerical Results for ned (n = 23,426, nz = 156,026 ).
SOR
‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘
| 1.0 [ 0.36e — 04 | 173.4 [ 1,000% 0.30e — 06 | 0.18¢ — 05 |
BSOR
Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘
~v=0.10e =3 | 1.0]0.45e — 10| 27.2 2110.23e — 16 | 0.14e — 16 0
equal 1.010.12e — 04 | 222.1 | 1,000% 0.54e — 07 | 0.35e — 07 0
other 1.0 1 0.97¢ — 04 | 208.1 | 1,000 0.33e — 06 | 0.30e — 06 0
~"'=0.10e —2 | 1.0 | 0.49¢ — 10 | 25.3 21 10.29¢ — 16 | 0.17e — 16 0
~"=0.10e +0| 1.4 | 0.42¢e — 10| 18.9 80 [ 0.57e — 14 | 0.34e — 14 0
IAD
Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘
v=0.10e -3 [1.0]0.60e —13] 21.5] 5][0.39¢ —16|0.23¢ — 16 | 0
equal 1.0 failed (reducible coupling matrix)
other 1.4 [0.98e — 10 [ 187.2 [ 623 | 0.17¢ — 12 | 0.10e — 12 | 0
v'=0.10e —2 | 1.0 failed (reducible coupling matrix)
7' =0.10e+0]1.0[0.17e —11] 10.5] 7[0.38¢—16]0.23¢ — 16 | 0




44

T. DAYAR and W. J. STEWART

TABLE C.6 continued
Numerical Results for ned (n = 23,426, nz = 156,026 ).

‘ Preconditioner ‘ nzlu ‘ Time ‘ MFlops ‘

ILUO 156,026 0.5 0.2

ILUTH(10"3) | 154,747 | 19.2 0.7

ILUTH(107°) | 282,825 | 19.8 1.5

ILUK(lO) 233,882 | 40.3 14.8
‘ Method ‘ Preconditioner ‘ Time ‘ #it ‘ [|7]] ‘ ||Az ‘ Bk.Error
ILUO 248.2 | 500% 0.45¢ — 05 | 0.14e — 05 | 0.29¢ — 05
GMRES ILUTH(lO_S) 253.7 | 500% 0.19¢ — 06 | 0.57e¢ — 07 | 0.35e — 07
(m=20) |ILUTH(10"%) | 59| 10]0.58¢ — 14 | 0.42¢ — 15| 0.25¢ — 15
ILUK(10) 177.4 1321 | 0.48¢ — 08 | 0.38¢ — 07 | 0.23e — 07
ILUO 547.9 | 500* 0.38¢ — 05 [ 0.11e — 05| 0.14e — 05
DQGMRES ILUTH(lO_S) 533.8 | 500* 0.58¢ — 09 [ 0.17¢ — 09 | 0.10e — 09
(k=20) |ILUTH(10-%) | 7.9| 10]0.58¢ — 14 |0.42¢ — 15 | 0.25¢ — 15
ILUK(10) 574.1 | 500* 0.52¢ — 07 | 0.99¢ — 06 | 0.21e — 05
ILUO 339.7 | 500% 0.82¢ — 01 | 0.22¢ — 04 | 0.91e — 03
BCG ILUTH(lO_B) 337.9 | 500* 0.17¢ — 01 | 0.52¢ — 04 | 0.18¢ — 03
ILUTH(lO_S) 16.7] 1810.83e —11 |0.12¢ — 10| 0.74e — 11
ILUK(lO) 404.5 | 500*| 0.46e — 01 | 0.21e — 05 |0.11e — 05
ILUO 329.5 | 500% 0.58¢ + 03 | 0.25¢ — 04 | 0.24e — 03
CGS ILUTH(lO_S) 328.7 1 500*1 0.93e¢ + 05 | 0.12¢ — 04 | 0.26e — 04
ILUTH(lO_s) 4.7 510.17¢e — 10 | 0.12¢ — 11 | 0.75e — 12
ILUK(lO) 54.6 | 69]0.17¢e — 11 |0.57e — 11 | 0.34e — 11
ILUO 45.9 | 69 |0.82e —10° | 0.20e — 11 [ 0.12¢ — 11
BCGStab ILUTH(lO_S) 36.5 | 5510.50e —10% | 0.62¢ — 11 | 0.37e — 11
ILUTH(10_5) 3.8 410.78 — 10 |0.57e — 11| 0.34e — 11
ILUK(10) 102.9 | 129 | 0.40e — 08 | 0.36e — 07 | 0.22¢ — 07
LU0 109.0 | 5007 0.65¢ — 05 [0.29¢ — 05 | 0.28¢ — 04
QMR ILUTH(lO_S) 63.8 | 781]0.13e — 07 | 0.90e — 09 | 0.54e — 09
ILUTH(lO_S) 1251 11 (0.27¢e —08 | 0.20e —09 | 0.12¢ — 09
ILUK(10) 86.7 | 911]0.54e — 07 | 0.13e — 05 | 0.80e — 06




TWO-LEVEL SOLVERS FOR LARGE, SPARSE MARKOV CHAINS

TABLE C.7

Numerical Results for ned_altl (n = 23,426, nz = 156,026 ).

SOR
‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘
| 1.0 [ 0.39¢ — 03 | 167.7 [ 1,000% 0.80e — 08 | 0.87¢ — 08 |
BSOR
Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘

v=0.10e—6]1.0|0.38¢ —11| 15.6 710.48¢ —16 | 0.24e — 16 0
v=0.10e —4|1.0|0.14e — 10 | 19.4 16 | 0.41le — 16 | 0.21e — 16 0
v=10.10e =3 | 1.0 | 0.18¢ — 10 4.5 1710.39e — 16 | 0.20e — 16 0
equal 1.0 1 0.35e — 03 [ 222.9 | 1,000* 0.45¢ — 07 [ 0.71e — 07 0
other 1.00.7le—10| 2.4 910.78¢ — 15| 0.39¢ — 15 0
v=10.10e —2]1.0|0.63e —10 | 19.5 14 10.59e — 17 | 0.29e¢ — 17 0
v7=0.10e+0]1.0|0.6le—10| 6.1 2310.76e — 16 | 0.38¢ — 16 0

IAD

Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘

v=10.10e —6|1.0|0.34e — 11 | 19.2 410.48¢ — 16 | 0.24e — 16 0
v=0.10e —4]1.0|0.13e =10 | 16.6 310.48e — 16 | 0.24e — 16 0
v=10.10e =3 |1.0|0.12¢ — 11 4.9 310.48e — 16 | 0.24e — 16 0
equal 1.0 1 0.31e — 05 | 285.8 | 1,000% 0.45¢ — 08 | 0.22¢ — 08 0
other 1.0 | 0.46e — 10 5.8 710.3le —15|0.15e — 15 0
~v=10.10e — 2| 1.0 failed (reducible coupling matrix)
7=0.10e+0]1.0[0.56e—10] 33.7] 28]0.52¢ — 16 | 0.26e — 16 | 0
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TABLE C.7 continued

Numerical Results for ned_altl (n = 23,426, nz = 156,026 ).

‘ Preconditioner ‘ nzlu ‘ Time ‘ MFlops ‘

ILUO 156,026 0.5 0.2

ILUTH(10) | 89,732 | 19.1 0.4

ILUTH(10-°) | 198,984 | 19.7 1.0

ILUK(lO) 234,088 | 30.1 4.1
‘ Method ‘ Preconditioner ‘ Time ‘ #it ‘ [|7]] ‘ ||Az ‘ Bk.Error
ILUO 248.6 | 500* 0.31e — 06 | 0.20e — 07 | 0.12¢ — 07
GMRES ILUTH(lO_S) 224.0 | 500% 0.13¢ — 05 | 0.31e — 06 | 0.24e — 06
(m=20) |ILUTH(107%) | 7.1| 13]0.14e —12 | 0.59¢ — 15 | 0.29¢ — 15
ILUK(lO) 7.8 141]0.21e — 147 [ 0.26e — 14 | 0.13¢ — 14
ILUO 554.8 | 500* 0.81e — 06 | 0.94e — 07 | 0.67e — 07
DQGMRES ILUTH(lO_S) 537.0 | 500* 0.51e — 06 | 0.74e — 07 | 0.46e — 07
(k=20) |ILUTH(10-%) | 9.8| 13]0.14e — 12 |0.59 — 15 | 0.29¢ — 15
ILUK(10) 17.2 | 20| 0.11e — 08¢ | 0.72¢ — 09 | 0.36¢ — 09
ILUO 339.0 | 500% 0.64e — 03 | 0.74e — 07 | 0.44e — 07
BCG ILUTH(lO_S) 280.2 | 500% 0.34¢ — 06 | 0.19¢ — 09 | 0.95¢ — 10
ILUTH(lO_S) 15.3 ] 19(0.60e — 10 | 0.40e — 09 | 0.20e — 09
ILUK(lO) 9.0 1110.44e —11 |0.60e —13]0.30e — 13
ILUO 328.9 | 500% 0.16e + 15 | 0.12¢ — 05 | 0.52¢ — 05
CGS ILUTH(lO_S) 271.2 | 500% 0.18e + 10 | 0.13e — 05| 0.62e¢ — 05
ILUTH(lO_s) 5.7 710.16e —11 | 0.67¢e — 14 |0.33¢ — 14
ILUK(lO) 3.3 410.62¢e —10 | 0.48¢ —16|0.24e — 16
ILUO 59.4 | 8310.49e —10° | 0.13e — 13 | 0.63e — 14
BCGStab ILUTH(lO_S) 65.3 1117 10.21e —10° | 0.93e¢ — 14 | 0.46e — 14
ILUTH(10_5) 4.5 6]0.53e —10° | 0.22¢ — 12 | 0.11e — 12
ILUK(lO) 3.3 410.40e —10 |0.47¢ — 16 | 0.23¢ — 16
ILUO 408.8 1 500*1 0.13e — 04 10.41e —0510.15e — 03
QMR ILUTH(lO_S) 151.3 {218 | 0.82¢ — 08 | 0.15¢ — 11 | 0.73e — 12
ILUTH(lO_S) 11.0] 11]0.13¢ —08 |0.56e — 11 | 0.28¢ — 11
ILUK(lO) 10.8 ] 11(0.43e—11 |0.78e —13]0.39¢ — 13
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TaBLE C.8
Numerical Results for ned_alt2 (n = 23,426, nz = 156,026 ).

SOR

B

[|Az]]

| Time | #it |

||Az

‘ Bk.Error ‘

[1.0]0.28¢ — 03 [176.2 | 1,000"

0.17¢ — 07 [ 0.17e — 07 |

BSOR
Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘
~v=10.10e =7 [1.0]0.32¢ — 02 | 1,766.0 1007 0.63e — 08 | 0.42¢ — 08 1
~v=0.10e =6 | 1.0 |0.15¢ — 10 164.6 210.24e — 17 (0.12¢ — 17 0
~v=0.10e =5 | 1.0 | 0.68¢ — 10 48.2 201 0.13¢ — 16 | 0.67¢ — 17 0
equal 1.010.69e — 10 2.0 510.32¢ — 14 10.16e — 14 0
other 1.0 | 0.24e — 03 207.6 | 1,000% 0.18e — 07 | 0.13e — 07 0
~"=0.10e — 1 | 1.8 | 0.87¢ — 10 58.6 271 10.18¢ — 13| 0.93¢ — 14 0
~'=0.10e +0 [ 1.1 | 0.49¢ — 10 1.9 210.13e — 15| 0.64e — 16 0
IAD
Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘
~v=0.10e =7 [1.0]0.32e — 02 | 1,792.0 { 100%| 0.63e — 08 | 0.42e¢ — 08 1
~v=0.10e —6 [ 1.0 ]0.14e — 12 169.7 210.32¢e — 17 | 0.16e — 17 0
~v=0.10e =5 [ 1.0 ] 0.27e — 12 34.3 410.34e — 17| 0.17e — 17 0
equal 1.210.29¢ — 10 3551108 |047¢ —1510.24e — 15 0
other 1.0 1 0.70e — 10 204.5 1739 | 0.34e — 12 | 0.17¢ — 12 0
~'=0.10e — 1| 1.2 |0.81e — 10 154 11 (0.65e —15|0.33e — 15 0
~"'=0.10e +0 | 1.0 | 0.79¢ — 11 4.9 210.74e — 17 | 0.38e — 17 0
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TaBLE C.8 continued
Numerical Results for ned_alt2 (n = 23,426, nz = 156,026 ).

‘ Preconditioner ‘ nzlu ‘ Time ‘ MFlops ‘

ILUO 156,026 0.5 0.2

ILUTH(107®) | 154,747 | 17.7| 0.7

ILUTH(107%) | 241,259 | 18.3 1.2

ILUK(10) 234,073 | 45.3|  18.6
‘ Method ‘ Preconditioner ‘ Time ‘ #it ‘ [|7]] ‘ ||Az ‘ Bk.Error
ILUO 269.4 | 5007 0.18e — 06 | 0.65e — 08 | 0.47e — 07
GMRES | ILUTH(107?) |267.3 | 500% 0.48¢ — 06 | 0.10e — 06 | 0.13¢ — 06
(m=20) |ILUTH(1075) | 24.0 | 40|0.58¢ — 12 | 0.32¢ — 13 | 0.16¢ — 13
ILUK(10) 48.5 | 8310.36e —09 | 0.65e — 15 | 0.32¢ — 15
ILUO 558.2 | 5007 0.20e — 06 | 0.98e — 08 | 0.64e — 07
DQGMRES | ILUTH(107%) | 536.7 | 500% 0.56e — 06 | 0.16e — 06 | 0.52¢ — 06
(k=20) |ILUTH(10-%) | 58.7| 56|0.45¢ — 15 | 0.18¢ — 16 | 0.91e — 17
ILUK(10) 561.4 | 5007 0.35e¢ — 09 | 0.63e — 15 | 0.32e — 15
ILUO 342.2 1 5007 0.12¢ 4+ 05 | 0.15¢ — 04 | 0.45¢ — 03
BCG ILUTH(107%) | 340.0 | 500 0.36e — 03 | 0.52¢ — 06 | 0.10e — 05
ILUTH(107?) 185 23(0.30e —10 |0.14e —11 | 0.72e — 12
ILUK(10) 398.3 | 5007 0.36e — 01 | 0.35¢ — 10 | 0.18e — 10
ILUO 335.5 | 5007 0.74e + 08 | 0.14e — 04 | 0.92¢ — 04
CGS ILUTH(107%) | 335.3 | 500 0.28¢ + 07 | 0.68¢ — 06 | 0.13¢ — 05
ILUTH(107?) 14.9 1 190.96e — 10 |0.43e — 11 |0.22¢ — 11
ILUK(10) 212.1 {273 1 0.30e — 10 | 0.13e — 17 | 0.65e — 18
ILUO 302.3 | 443 | 0.60e — 10° | 0.41e — 12 | 0.20e — 12
BCGStab | ILUTH(1073) |125.0 | 183 | 0.41e — 10° | 0.12¢ — 11 | 0.58¢ — 12
ILUTH(107?) 13.9 | 18(0.93e¢ —10° [ 0.53e — 11 [ 0.27e — 11
ILUK(10) 246 | 31{0.17e —09 |0.30e — 16 | 0.15e — 16
ILUO 422.5 1 500% 0.23e — 05 | 0.39¢ — 06 | 0.35¢ — 05
QMR ILUTH(107%) | 418.7 | 500% 0.16e — 05 | 0.46e — 07 | 0.26e — 07
ILUTH(107?) 21.5 | 22]0.50e —10 |0.19¢ — 11 |0.96e — 12
ILUK(10) 477.0 | 500* 0.62¢ — 05 | 0.53e — 11 | 0.27e — 11
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D. A Telecommunication Model. A model of a telecommunication problem
is considered to study the effect of impatient telephone customers on a computerized
telephone exchange [33]. The model is shown in Figure D.1. In this model each customer
makes a request for service. Then the customer has to wait a certain period for a reply.
If the reply has not arrived at the end of that period, the customer has the right to either
give up and leave the network, or wait for some period of time before trying again.

K2 K1

A
] i —
Arrivals J’ i ia

L
lost if q'
j=K2
3

success  q_

gives up

lostif
i=K1

FIGURE D.1 Telecommunication Model.

All customers have to pass by station 52 which is dedicated to a special processing
task. These customers are processed by a single server according to a processor sharing
discipline. Each customer may wait in S2 for a certain time which is defined as an upper
bound on its service duration: whenever its patience is exhausted, the customer simply
gives up processing (with a fixed probability 1 — h).

In case the customer decides to keep trying, it joins an infinite server station S1 where
it remains for a certain period, called the thinking-time, before joining back station 52
for another attempt.

We are interested in studying the number of customers in S1 and 52 in the long run.
Let ¢ and j be the number of customers respectively in S1 and S2. Then the state of the
network may be described by the pair (z,7). When j > 1, the rate of

e service completions in 52 is g,

e departures due to impatience is j7.
When ¢ > 1, the rate of departures from S1 is ¢A. External arrivals to 52 are assumed
to have a Poisson distribution of rate A.

As we are interested in finite Markov chains, we let K1 and K2 be the maximum sizes
of S1 and 52, respectively. Customers arriving to a full station are lost. It is important to
choose large values for K1 and K2 so that the probability of saturation is negligible. In
that case, the truncation of the state space will have little effect, and hence, the resulting
steady-state probabilities may be taken as an accurate approximation of those of the
infinite capacity network.

The following values are taken from [24] to be used in our experiments:

A=06, p=10, 7=005 h=085 X\=50.
The state space of the Markov chain is of size (K14 1)(K2 4 1). We set K1 = 30 and
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xi0* n=20481 nz= 101041

L 1 I
a 0.8 1 15 2

FIGURE D.2 telecom.

TABLE D.1
Characteristics of the Telecommunication Problem.
symmetric
n nz nz structure
20,491 101,041 no

TABLE D.2
Partitioning Results for the telecom Test Matriz.

5 number of  smallest largest degree
nedtest blocks block size block size  of coupling

0.10e — 1 1,981 1 31 0.10e +1
0.10e +0 14,389 1 28 0.10e +1
number of last degree

blocks block size of coupling

equal 144 42 0.99¢ + 0
other 202 190 0.99¢ + 0
v number of  smallest largest degree
newncd blocks block size  block size of coupling
0.55e — 2 3 1 20,488 0.87e — 2
0.15¢ + 0 563 2 3,257 0.26e + 0
0.81e 40 661 2 19,170 0.82e 4+ 0

K2 = 660 which gives the telecom matrix of order n = 20,491 and number of nonzero
elements nz = 101,041. Results of the ncdtest, equal, other, and newned partitionings
are shown in Table D.2. The smallest degree of coupling of the telecom test matrix for
the values of 4" used with the newned partitioning algorithm is 0.87e —2. The time taken
by the nedtest and newncd partitioning algorithms does not exceed 1 and 1.2 seconds
for the telecom test matrix, respectively. Tables D.1 and D.3 provide information about
the symmetric nonzero structure and bandwidth of the test matrix.
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TABLE D.3
Lower, Higher Bandwidths and Coefficient of Asymmetry of the telecom Test Matriz.
lower higher coefficient
matrix  bandwidth bandwidth of asymmetry
telecom 31 60 (2.27,1.14) |

The telecom matrix is a test case in which some of the Krylov subspace solvers
turn out to be the fastest solvers. CGS with ILUTH(107?) is the winner for telecom.
BCGStab and GMRES with ILUTH(107?) follow as close second and third, respectively
(see Table D.4). The ILUO preconditioner and, to a certain extent, the ILUK(10) precon-
ditioner are very ineffective for this test problem. The ncdtest algorithm does not give
balanced partitionings for the telecom test matrix (see Table D.2), and two-level solvers
do not perform well with ncdtest when v = 0.10e — 1 and v = 0.10e + 0 are used. The
performance of TAD with the equal and other partitionings is clearly superior to that of
BSOR. Nevertheless, BSOR with the newned v = 0.15e + 0 partitioning is the fastest
two-level solver. The performance of SOR for this test matrix is very poor.

TABLE D .4
Numerical Results for telecom (n = 20,491, nz = 101,041).
SOR
‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘
| 1.0 [ 0.63e — 04 [ 122.9 [ 1,000 0.11e — 05 | 0.12¢ — 05 |
BSOR
Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘

~v=0.10e =1 [ 1.6 | 0.86e — 10 | 55.6 | 303 | 0.38e — 12 | 0.36e — 12 0
~v=0.10e +0 [ 1.2 ]0.49¢ — 08 | 253.2 | 956 | 0.18¢ — 08 | 0.17e — 08 0
equal 1.410.17¢e — 08 ] 99.0 | 185 | 0.15e — 10 | 0.14e — 10 0
other 1.6 | 0.64e — 10 | 221.4 | 465 | 0.10e — 12 | 0.95e — 13 0
~'=0.55¢ —2 | 1.0 0.40e — 10 | 21.2 710.21le —13 | 0.20e — 13 0
~'=0.15e+0 | 1.9 | 0.57e — 10 5.7 1310.99¢ — 13 | 0.93¢ — 13 0

IAD

Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘

~v=0.10e—1 [0.9]0.84e —10| 55.2| 32|0.40e —13 [ 0.37e — 13 0
v =0.10e +0 | 1.0 | 0.56e — 16 | 116.2 210.69¢ — 17| 0.65e — 17 0
equal 1.010.99¢ — 10| 10.1 810.16e — 12 | 0.15e — 12 0
other 1.010.73¢ — 10 | 18.9 | 28 |0.46e — 13 | 0.43e — 13 0
~'=0.55e —2[1.0 [0.28¢ —10| 21.4 710.15e —13 | 0.14e — 13 0
v'=0.15e +0 | 1.7 | 0.32e — 10 811 12]0.13e —12 | 0.12¢ — 12 0
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TABLE D.4 continued
Numerical Results for telecom (n = 20,491, nz = 101,041).

‘ Preconditioner ‘ nzlu ‘ Time ‘ MFlops ‘

ILUO 101,041 0.3 0.1

ILUTH(10-3) | 181,126 | 1.5 0.7

ILUTH(10~5) | 318,749 | 2.3 1.8

ILUK(10) 204,807 | 53| 3.2
‘ Method ‘ Preconditioner ‘ Time ‘ #it ‘ [|7]] ‘ ||Az ‘ Bk.Error
ILUO 197.1 | 500% 0.25¢ — 05 | 0.57e — 05 | 0.89¢ — 04
GMRES ILUTH(lO_S) 224.2 1 500% 0.13e — 05 | 0.12¢ — 05 | 0.26e — 05
(m=20) | ILUTH(10~%) | 3.3| 7]0.97¢—15 |0.72¢ — 16 | 0.68¢ — 16
ILUK(10) 231.5 | 500% 0.43e — 06 | 0.88¢ — 06 | 0.25¢ — 05
ILUO 455.5 | 500* 0.18¢ — 05 | 0.23e — 05 | 0.32¢ — 05
DQMRES ILUTH(lO_S) 294.5 1312 10.12¢ — 13 | 0.89¢ — 14 | 0.84¢ — 14
(k=20) |ILUTH(10~%) | 4.6| 7]0.97¢—15 |0.72¢ — 16 | 0.68¢ — 16
ILUK(10) 485.2 | 500* 0.30e — 06 | 0.22¢ — 06 | 0.28¢ — 06
ILUO 240.1 | 500 0.79¢ + 04 | 0.17e — 03 | 0.13e — 01
BCG ILUTH(lO_B) 307.3 | 500% 0.36e +01 | 0.11e — 03 | 0.15e — 03
ILUTH(lO_S) 11.3| 14 ]0.86e —10 [0.13e —10|0.12e — 10
ILUK(10) 328.9 | 500% 0.19¢ + 00 | 0.12e — 03 | 0.28e — 02
ILUO 236.0 | 500% 0.40e + 11 [ 0.34e — 03 | 0.10e — 01
CGS ILUTH(lO_S) 26.9| 4410.97¢ —10 | 0.16e — 09 | 0.16e — 09
ILUTH(lO_s) 2.5 310.22¢ —10 |0.16e — 11 0.15e — 11
ILUK(10) 321.3 | 500% 0.13e + 16 | 0.26e — 03 | 0.18e — 01
ILUO 241.6 | 500% 0.32e — 02 | 0.20e — 04 | 0.79¢ — 03
BCGStab ILUTH(lO_S) 4441 72 10.26e — 10° | 0.10e — 10 | 0.99¢ — 11
ILUTH(10_5) 2.5 310.26e—11 |0.20e —111]0.19¢ — 11
ILUK(10) 328.8 | 500* 0.14e — 06 | 0.76e — 07 | 0.93e — 07
ILUO 299.4 1 500 0.39¢ — 05 1 0.55¢ — 051 0.27¢ — 03
QMR ILUTH(lO_S) 39.8| 5410.77e — 07 | 0.31le — 07 | 0.29¢ — 07
ILUTH(lO_S) 7.0 710.11le — 09 | 0.84¢ — 11 {0.79¢ — 11
ILUK(10) 97.4 1125 0.15e — 07 | 0.71le — 09 | 0.67e — 09
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E. A Queueing Network with Blocking and Priority Service Model. The
model we shall discuss now is an open queueing network of three finite capacity queues
and two customer classes. Class 1 customers arrive from the exterior to queue 1 according
to a Poisson process with parameter ;. Similarly, class 2 customers arrive from outside
the network to queue 2 according to a Poisson process, but this time at rate A;. A
customer (from either class) will be lost if upon arrival it finds the corresponding queue
full. The servers at queues 1 and 2 provide exponential service respectively at rates puy
and py. After being served, customers in both of these queues try to join queue 3. If
queue 3 is full, class 1 customers are blocked (after service) and the server at queue 1
must halt. This server cannot resume serving the next customer unless a slot becomes
available in the buffer of queue 3 and the blocked customer is transferred. On the other
hand, when a class 2 customer has been served at queue 2 and finds the buffer at queue 3
full, it is simply lost. Queue 3 provides exponential service at rate us, to class 1 customers
and at rate ps, to class 2 customers. Customers departing after service from queue 3
leave the network. Figure E.1 illustrates this model. Cy — 1, k£ = 1,2, 3 denote the finite
buffer capacity at queue k.

T W

loss

G-1 a7
g/

T

loss loss

FiGure E.1 A Queueing Network Model.

The states of the Markov chain underlying this model may be represented by four-
component vectors [33]. Components 1 and 2 may be used to denote respectively the
number of customers in queues 1 and 2. Components 3 and 4 may be used to represent
respectively the number of class 1 and class 2 customers present in queue 3.

We assign the following values to the parameters in Figure E.1:

)\1 = 10, )\2 = 20, H1 = 30, Ha2 = 40, M3, = 50, U3, = 6.0.

The state space is of size C1C2C5(C5 + 1)/2; hence setting each of C; and C3 to 15 and
Cs to 30 gives the ¢gn matrix of order n = 104,625 and number of nonzero elements
nz = 593,115. The time to partition the gn test matrix using nedtest and newned does
not take more than 5.4 and 6.8 seconds, respectively. The smallest degree of coupling
we came across when using the newned partitioning algorithm is 0.25¢ 4+ 0. Additional
information about the test matrix is given in Tables E.1, E.2, and E.3.
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10t n=104825 nz=593115

FiGURE E.2 ¢n.

TaBLE E.1
Characteristics of the Queueing Network Problem.
symmetric
n nz nz structure
104,625 593,115 no

TABLE E.2
Partitioning Results for the qn Test Matriz.

5 number of  smallest largest degree

nedtest blocks block size block size  of coupling
0.10e +0 91,800 1 450 0.94e 4+ 0

number of last degree
blocks block size of coupling

equal 324 296 0.10e +1
other 457 429 0.10e +1
' number of  smallest largest degree
newncd blocks block size  block size of coupling
0.19¢ +0 15 6,975 6,975 0.25¢ + 0
0.30e +0 225 465 465 0.62e 4+ 0
0.37¢e +0 226 30 97,875 0.62e 4+ 0

The gn test case is the largest problem in this study. The number of blocks in the
partition obtained using ncdtest v = 107!, and hence the order of the coupling matrix
for TAD, is very large (i.e., 91,800, see Table E.2). This causes the solution time of IAD
to be unreasonably long for the gn test matrix when nedtest is used (see Table E.4).
Nevertheless, we still can find at least one partitioning for BSOR having satisfactory
convergence time. For the ¢n test matrix, BSOR with necdtest v = 0.10e + 0 emerges as
the fastest solver, SOR a distant second, and [AD with equal a distant third. Two-level



TWO-LEVEL SOLVERS FOR LARGE, SPARSE MARKOV CHAINS

TABLE E.3
Lower, Higher Bandwidths and Coefficients of Asymmetry of the gn Test Matrices.
lower higher coefficient
matrix  bandwidth bandwidth of asymmetry
an 2,728 5,385 (2.06,1.06) |

TABLE E.4
Numerical Results for gn (n = 104,625, nz = 593,115).
SOR
‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘
[ 1.2]0.85¢ — 10 | 93.4[134[0.24¢ — 10 [ 0.73¢ — 10 |
BSOR
Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘
~=0.10e+0 | 1.1 |0.66e —10 | 76.6 | 44 |0.32e — 11 | 0.98e — 11 | 91,350
equal 1.210.90e —10 | 111.6 | 113 | 0.22¢e — 10 | 0.66e — 10 0
other 1.2 | 0.86e — 10 | 130.1 | 136 | 0.24e — 10 | 0.73e — 10 2
v =0.19¢ 4+ 0 | 1.4 | 0.20e — 097 | 205.2 | 46 | 0.74e — 10 | 0.23¢ — 09 7
~"=0.30e +0|1.3]0.10e —09 |126.7| 136 | 0.86e — 11 | 0.26e — 10 0
IAD
Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘
v =0.10e + 0 | 1.0 | requires unreasonably long time (large coupling matrix)
equal 1.210.78e — 10 1 104.0 | 55 [0.11e — 10 | 0.34e — 10 0
other 1.2 10.72e — 10 | 117.1 | 65 | 0.24e — 11 | 0.72e — 11 2
v'=0.19¢e4+0 | 1.2 | 0.96e — 10 | 456.2 | 58 | 0.48¢ — 11 | 0.15e¢ — 10 8
v'=0.30e+0 | 1.3 |0.88¢ — 10 | 246.9 | 110 | 0.77e — 11 | 0.23e — 10 0

35

solvers with the newncd partitionings do not perform well on this (rather) non-NCD
problem. The performance of Krylov subspace solvers except BCG are satisfactory in
terms of the number of iterations taken to convergence. However, the order of the test
matrix and its wide bandwidth (see Table E.3) cause the computation of the ILUTH
and ILUK preconditioners to be very expensive and the total solution time unduly long.
We would like to remark that we use 1072 and 1072 as threshold values for the ILUTH
preconditioner, and do not experiment with 107°. On the other hand, CGS, BCGStab,
and QMR with ILUO preconditioning emerge as the fastest Krylov subspace solvers.
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TABLE E.4 continued
Numerical Results for gn (n = 104,625, nz = 593,115).

‘ Preconditioner ‘ nzlu ‘ Time ‘ MFlops ‘

ILUO 593,115 2.0 0.5

ILUTH(107%) | 1,020,335 798.4 6.6

ILUTH(IO_S) 1,073,171 | 1,064.9 11.0

ILUK(10) 1,046,092 952.4 12.8
Method ‘ Preconditioner ‘ Time ‘ #it ‘ [|7]] ‘ ||Az ‘ Bk.Error
ILUO 1,117.0 | 500*| 0.27¢ — 04 | 0.18e — 03 | 0.14e — 02
GMRES ILUTH(lO_Z) 204.3 | 801 0.30e —10 | 0.20e — 10| 0.62¢ — 10
(m = 20) ILUTH(1072) 207.0| 80|0.47¢ —10 |0.32¢ — 10| 0.95¢ — 10
ILUK(10) 130.0 | 40 0.39¢ — 10 | 0.19¢ — 10 | 0.56e¢ — 10
(9) | ILUO 477.3 1146 | 0.75e — 11 | 0.50e — 11 | 0.15e¢ — 10
DQGMRES(7) | ILUTH(107%) | 384.6 | 119 | 0.29¢ — 11 | 0.20e — 11 | 0.60e — 11
(7) | ILUTH(10-3) | 347.3|106 | 0.24e — 11 |0.16e — 11 | 0.48¢ — 11
(7) | ILUK(10) 314.5 | 96 |0.15¢ — 11 | 0.7le — 12 [ 0.21e — 11
ILUO 1,395.0 | 500% 0.27¢ — 01 | 0.43¢ — 02 | 0.11e + 00
BCG ILUTH(107%) | 1,759.0 | 500% 0.20e + 01 | 0.22¢ — 02 | 0.25¢ + 00
ILUTH(107%) | 1,787.0 | 500% 0.73¢ — 06 | 0.64e — 06 | 0.19¢ — 05
ILUK(10) 1,768.0 | 500% 0.20e — 01 | 0.10e — 02 | 0.16¢e + 00
ILUO 105.2 | 38(0.33e —10 | 0.22¢ — 10 | 0.66e¢ — 10
CGS ILUTH(lO_Z) 8771 2510.21le —10 | 0.14e — 10 | 0.43e — 10
ILUTH(lO_S) 86.1 | 2410.64e —10 |0.45¢ — 10 | 0.14e — 09
ILUK(10) 81.6 | 23|0.54e — 11 | 0.26e — 11 |0.79e¢ — 11
ILUO 125.3 | 45]0.78¢ — 10° | 0.52¢ — 10 | 0.16¢ — 09
BCGStab ILUTH(lO_Z) 87.1 | 2510.17e —10° | 0.11e — 10 | 0.34e — 10
ILUTH(107?) 87.3 | 2410.80e — 10 |0.54e — 10 | 0.16¢ — 09
ILUK(10) 86.4| 2410.93e —11 |0.45¢ — 11 |0.14e — 10
ILUO 17741 5210.32¢e — 08 10.60e —0810.18¢ — 07
QMR ILUTH(1072) 173.7] 4210.38¢ — 08 |0.36e — 08 | 0.11e — 07
ILUTH(107?) 185.6 | 4410.83¢ —09 |0.55¢ —09 |0.17¢ — 08
ILUK(10) 138.3 | 33]0.49¢ —09 |0.91e — 09 | 0.28¢ — 08
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F. A Multiplexing Model of a Leaky Bucket in Tandem. One of the major
problems in ATM networks is to control the congestion of intermediate buffers with fast
and simple mechanisms. Several policies have been proposed and evaluated with diverse
probabilistic hypothesis. The simplest mechanism is the leaky bucket. The problem is
to determine the behavior of this mechanism under external arrivals [33]. An evaluation
of this mechanism will enable its comparison with other, more complex mechanisms.

The traffic source is of an M/D/1/C type. The external arrival stream is modeled
as a Poisson process with rate A\. The queue is of size C' cells and has a single server
with service time D, which will be taken as unit time. Hence, the model may be viewed
as a one-dimensional discrete-time Markov chain with time slots of length D and state
descriptor N, denoting the number of cells produced by the Poisson source at time ¢,

The leaky bucket has a finite size of K cells and a service time given by 17D =
TD(1 — €), where T" is an integer. The state of the system is described by the state
variable k, which is the buffer occupancy (in terms of the number of cells).

The values used for the above parameters are

C=K=64 T=4, \=0.85 c=0.4959.

The leaky matrix we generated from this model has order n = C'x K x T'(1 —¢€) = 8,258
and number of nonzero elements nz = 197,474. This matrix is severely ill-conditioned
(with a degree of coupling 0.19e¢ — 101), although the degree of coupling values computed
for none of the nedtest partitionings reflects this fact. Information about the nonzero
structure of the leaky test matrix and its various partitionings are provided in Tables F.1,

TABLE F.1
Characteristics of the Leaky-Bucket Problem.
symmetric
n nz nz structure
8,258 197,474 no

n=6.258 nz=187.474
a

1000
2000 N
U,
3000
4000
““i
5000 N
€000

7000

enon
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FiGure F.1 leaky.
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TABLE F.2
Partitioning Results for the leaky Test Matriz.
~y number of  smallest largest degree
nedtest blocks block size block size of coupling
0.10e — 102 5 1 8,254 0.14e — 15
0.10e — 008 193 1 8,057 0.86e + 00
0.10e — 007 225 1 8,016 0.86e + 00
U.10e — UUb 229 1 3,010 U.80e 4+ 00U
0.10e — 005 265 1 7,976 0.86e 4 00
0.10e — 004 318 1 7,923 0.86e + 00
0.10e — 003 400 1 7,832 0.86e + 00
0.10e — 002 531 1 7,692 0.86e 4 00
0.10e — 001 778 1 7,427 0.86e 4 00
0.10e + 000 7,386 1 507 0.86e 4+ 00
number of last degree

blocks block size  of coupling

equal 91 158 0.10e+1
other 129 2 0.10e+1
' number of  smallest largest degree
newncd blocks block size block size of coupling
0.19¢ — 101 2 1 8,257 0.19¢ — 101
0.10e — 014 2 4 8,254 0.14e — 015
0.64e 4 000 64 4 8,005 0.50e + 000
TABLE F.3

Lower, Higher Bandwidths and Coefficient of Asymmetry of the leaky Test Matriz.

lower higher coefficient

matrix bandwidth bandwidth  of asymmetry
| leaky 191 435 (2.46,1.46) |

F.2, and F.3. The time to partition the leaky test matrix using the nedtest and newned
algorithms does not exceed 2.8 and 8.5 seconds, respectively.

The leaky test matrix is the most interesting case in our test suite. All ILU factoriza-
tion attempts of this test matrix fail which prevents us from experimenting with Krylov
subspace solvers using ILU preconditioners. When we do not use any preconditioner,
none of the Krylov subspace solvers except BCGStab, which terminates at iteration 359
with a residual of 0.75e — 10° after 102.8 seconds, converge in 500 iterations. In the
nedtest v = 0.10e — 8 partitioning, the matrix is partitioned to 193 diagonal blocks; the
largest block is of order 8,057 and there are 192 blocks of very small order (see Table F.2).
Choosing v = 0.10e 4 0 leads to a partitioning of 7,386 diagonal blocks; the largest block
is of order 507 and the rest of the blocks are very small. As a consequence of these two
unbalanced partitionings, BSOR and TAD cannot benefit from the divide-and-conquer
nature of two-level solvers. Hence, the time taken for solving the diagonal blocks is bi-
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ased towards solving the largest block in both partitionings. Going back to aggregation
in [AD, these two unbalanced partitionings make aggregation a detrimental step rather
than an accelerator for convergence causing IAD with nedtest v = 0.10e + 0 to take an
unreasonably long time. The equal and other partitionings, as always, provide more bal-
anced partitionings. However, the winner is BSOR/TAD with the newncd 4/ = 0.10e — 14
partitioning that has a total solution time of 16.8 seconds (of which 4.4 seconds is for
partitioning). IAD with equal and TAD with other are the next fastest solvers. Finally,
we should note that SOR has below average performance among other solvers for this
test matrix.

TABLE F .4
Numerical Results for leaky (n = 8,258, nz = 197,474).
SOR
‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘
[1.0[0.97e — 10 | 57.8]409 | 0.75¢ — 10 [ 0.38¢ — 09 |
BSOR
Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘

v =0.10e — 008 | 1.0 0.28¢ — 16 | 39.7 310.98¢e — 16 | 0.50e — 15 0
~=0.10e +000 | 1.0{0.94e — 10| 33.3 | 142 |0.11e — 10 | 0.55¢ — 10 0
equal 1.1 0.96e — 10 | 59.1 | 255 | 0.83e — 10 | 0.42¢ — 09 89
other 1.010.99¢ — 10| 73.8 1313 [0.77e — 10| 0.39¢ — 09 106
~"'=0.19¢ — 101 | 1.0 | 0.42¢ — 16 | 22.5 210.46e — 16 | 0.23e — 15 0
~"'=0.10e — 014 | 1.0 | 0.14e — 16 | 124 210.14e — 16 | 0.69¢ — 16 0
~'=0.64e + 000 | 1.0 | 0.14e — 13| 19.0 210.48¢ — 14 | 0.25e — 13 0

IAD

Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘

v =0.10e — 008 [ 1.1]0.40e — 10| 37.6| 2]0.40e —10[0.20e — 09 | 0
v = 0.10e 4+ 000 | 1.0 | requires unreasonably long time (large coupling matrix)
equal 1.010.92¢ — 10| 19.3| 72|0.14e — 11 | 0.74e — 11 89
other 1.0 0.86e —10 | 23.4| 82]0.12e — 11 | 0.61e — 10 106
~"'=0.19¢ — 101 | 1.0 | 0.28¢ — 16 | 21.1 210.46e — 16 | 0.23e — 15 0
~"'=0.10e — 014 | 1.0 | 0.42¢ — 16 | 124 210.14e — 16 | 0.69¢ — 16 0
~'=0.64e +000 | 1.0 | 0.14e — 13| 19.4 210.49e — 14 | 0.25¢ — 13 0




60 T. DAYAR and W. J. STEWART

G. Mutex—A Resource Sharing Model. In this model, M distinguishable
processes share a certain resource [33]. Each of these processes alternates between a
sleeping state and a resource using state. However, only P processes may concurrently
use the resource, where 1 < P < M. If a process currently in the sleeping state tries to
move to the resource using state while there are P processes already using the resource,
it simply fails to access the resource and remains in the sleeping state. Notice that when
P =1 this model reduces to the usual mutual exclusion problem, whereas when P = N
all the processes are independent. Let \; be the rate at which process 7 awakes from
the sleeping state wishing to access the resource and let p; be the rate at which this
same process releases the resource when it has a possession of it. Figure G.1 provides a
graphical illustration of this model. Each process ¢ is modeled by a two-state automaton
A;. The function f takes the value 1 when access is permitted to the resource and takes
the value 0 otherwise.

sleeping sleeping

Py f g f

using using

F1GURE G.1 A Resource Sharing Model (Mutez).

We set A\; = 1/i and p; = ¢, for ¢ = 1,2,..., M. Parameters P and M are fixed to 8

and 16, respectively. These values yield the mutexr matrix of order n = 25:0 ( » ) =

39,203 and number of nonzero elements nz = 563, 491.

Two more test cases are generated from this model. The mutex_altl test matrix
is obtained by setting u; = 10°4, whereas the mutex_alt2 test matrix is generated by
setting \; = 107%/¢ and u; = 10%4. As the values of P and M are fixed, the three
test cases have the same order, number of nonzero elements, and nonzero structure.
The partitioning results of these matrices are shown in Tables G.2, G.3, and G.4. The
time to partition the mutex test matrices using ncdtest and nednew does not exceed
5.5 and 5.8 seconds, respectively. The smallest degree of coupling we came across while
experimenting with the newned partitioning is 0.19e —1 for all three matrices. Tables G.1
and G.5 provide information about the nonzero structure and bandwidth of the three test
matrices generated from this model.

The mutexr test matrix is the densest of this study with an average of about 15
nonzero elements per row (see Figure G.2). Unsurprisingly, SOR outperforms all other



TWO-LEVEL SOLVERS FOR LARGE, SPARSE MARKOV CHAINS 61

solvers in terms of total solution time for the mutex test matrix (see Table G.6). This is
the only test matrix where SOR is superior to all the other solvers considered. The Krylov
subspace solvers CGS, BCGStab, GMRES, and DQGMRES with ILUO preconditioning

give very competitive results on all the mutex test matrices (see Tables G.6 through G.8).

xi0* n=238.209 nz= 583481

FIGURE G.2 mautez.

TaBLE G.1
Characteristics of the Mutex Problem.
symmetric
n nz nz structure
39,203 563,491 yes
TABLE G.2
Partitioning Results for the mutex Test Matriz.
5y number of  smallest largest degree
nedtest blocks block size block size  of coupling
0.10e — 2 256 1 256 0.10e + 1
number of last degree
blocks block size of coupling
equal 198 394 0.10e +1
other 280 143 0.10e +1
' number of smallest largest degree
newncd blocks block size block size of coupling
0.19¢ — 1 2 16,384 22,819 0.19¢ — 1
0.75e — 1 128 10 511 0.32¢ + 0
0.10e + 0 503 8 128 0.48¢ 4+ 0
0.15¢ +0 16,385 2 6,435 0.93e +0
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TaBLE G.3
Partitioning Results for the muter_alt] Test Matriz.
~y number of  smallest largest degree
nedtest blocks block size block size  of coupling
0.10e — 5 256 1 256 0.10e +1
number of last degree
blocks block size of coupling
equal 198 394 0.10e +1
other 280 143 0.10e +1
' number of smallest largest degree
newncd blocks block size block size of coupling
0.19¢ — 1 2 16,384 22,819 0.19¢ — 1
0.75e — 1 128 10 511 0.32¢ + 0
0.10e +0 503 8 128 0.48¢ 4+ 0
0.15¢ +0 16,385 2 6,435 0.93¢ +0
TABLE G.4
Partitioning Results for the muter_alt? Test Matriz.
~y number of  smallest largest degree
nedtest blocks block size block size  of coupling
0.10e — 8 256 1 256 0.10e +1
number of last degree
blocks block size of coupling
equal 198 394 0.10e +1
other 280 143 0.10e +1
' number of smallest largest degree
newncd blocks block size block size of coupling
0.19¢ — 1 2 16,384 22,819 0.19¢ — 1
0.75e — 1 128 10 511 0.32¢ + 0
0.10e +0 503 8 128 0.48¢ 4+ 0
0.15¢ +0 16,385 2 6,435 0.93¢e +0

However, it is BSOR with the equal and other partitionings that follows SOR respectively
as close second and third for the mutex test matrix. The wide bandwidth and the order of
each test matrix cause the ILUTH and ILUK preconditioning times to be extremely long.
The solvers obtained therefrom do not perform well, and there is no need to experiment
with a threshold value of 107°.

The test matrices mutex_altl and mutex_alt2 are not more ill-conditioned than the
mutex test matrix. See the degree of coupling values corresponding to 4" in Tables G.2,
G.3, and G.4. For the mutex_altl test matrix, BSOR with equal is the fastest solver fol-
lowed by SOR as close second and BSOR with other as close third. All Krylov subspace

solvers except BCG perform better than they do for the mutexr matrix (compare the
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TABLE G.5
Lower, Higher Bandwidths and Coefficients of Asymmetry of the mutex Test Matrices.
lower higher coefficient
matrix bandwidth bandwidth of asymmetry
mutezx 13,495 13,495 (1.64,0.69)
mutex_altl 13,495 13,495 (1.61,0.70)
mutex_alt2 13,495 13,495 (1.61,0.70)

results in Tables G.6 and G.7). Results of the mutex_alt2 test matrix also demonstrate
similar improvement, except for the ILUO and ILUK(10) preconditioners, in a few of the
solvers (see Table G.8). The ILUTH preconditioners corresponding to threshold values
1072 and 1072 are exactly the same for the mutex_altl and mutex_alt2 test matrices.
That is why we report the results corresponding to a single threshold value for these two
matrices. The winner for mutezr_alt2 is BSOR with equal. SOR comes a close second and
BSOR with other a third just as in mutex_altl. We should also remark that BCG with
ILUO and ILUK(10) converge for the mutex_alt2 test matrix when it does not within 500
iterations for the muter and mutex_altl test matrices. As for SOR, BSOR, and TAD,
they all take less time to converge as we move from mutex to mutex_altl and then to
mutex_alt2. The performance of two-level iterative solvers with the nedtest and newncd
partitionings for the mutex test matrices is below average.

TABLE G.6
Numerical Results for mutex (n = 39,203, nz = 563,491).
SOR
‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘
[1.1]0.40e —10] 9.7] 19[0.34c —12[0.41e —12]
BSOR
‘ Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘
~v=0.10e =2 [ 1.1 |0.16e —10 | 123.6 | 12| 0.74e — 13 | 0.90e — 13 3
equal 1.110.54e — 10| 11.6] 15]10.25¢ —1310.30e — 13 0
other 1.1]10.36e—10| 11.6 | 18| 0.40e —12 | 0.48e — 12 0
~'=0.75¢e — 1| 1.1 | 0.33¢ — 10 | 227.3 | 14 | 0.58¢ — 12 | 0.71e — 12 63
~'=0.10e +0 | 1.1 | 0.16e — 10 | 53.0 | 15|0.44e — 12 | 0.53e — 12 0
IAD
Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘
~v=0.10e —2 [1.1]0.12¢e —10{193.4 | 12 |0.87e —13 [ 0.11le — 12 10
equal 1.0]0.18e — 101 115.2 ] 12]0.51e — 13 | 0.62¢ — 13 0
other 1.010.71le —10 | 96.8| 14|0.72e — 12 | 0.88e — 12 0
~'=0.75¢e —1 | 1.0 | 0.42¢ — 10 | 288.0 | 12 | 0.64e — 12 | 0.78¢ — 12 66
~'=0.10e +0| 1.0 [0.17e — 10 | 135.3 | 12| 0.21e — 12 | 0.25e — 12 0
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TABLE G.6 continued
Numerical Results for mutex (n = 39,203, nz = 563,491).

‘ Preconditioner ‘ nzlu ‘ Time | MFlops ‘

ILUO 563,491 2.5 0.6

ILUTH(1072) | 301, 347 814.8 0.9

ILUTH(107%) | 496,693 876.9 3.0

ILUK(10) 392,037 | 1,215.4 15.8
‘ Method ‘ Preconditioner ‘ Time ‘ #it ‘ [|7]] ‘ ||Az ‘ Bk.Error
ILUO 11.8 | 10 |0.27e — 11 |0.24e — 11 |0.30e — 11
GMRES ILUTH(lO_Z) 96| 10]0.35e—11 |0.77e — 11 | 0.93e¢ — 11
(m = 20) | ILUTH(10~?) 13.7] 12]0.27e — 11 | 0.27¢ — 11 | 0.33¢ — 11
ILUK(10) 159 15]0.54e —11 | 0.48¢ — 11 | 0.58e¢ — 11
ILUO 15.3] 10 [0.27¢e — 11 |0.24e — 11 |0.30e — 11
DQMRES ILUTH(IO_Z) 13.3] 10 [0.35e —11 [0.77e — 11 |0.93e — 11
(k=20) |ILUTH(10-?) 18.1] 12]0.27e — 11 |0.27¢ — 11 | 0.33¢ — 11
ILUK(10) 221 15]0.594e — 11 |0.48¢ — 11 |0.58¢ — 11
ILUO 1,030.0 | 500% 0.95¢ — 02 | 0.49¢ — 02 | 0.11e — 01
BCG ILUTH(1072) 775.1 | 500% 0.32¢ — 01 | 0.61e — 02 | 0.85¢ — 01
ILUTH(107?) 972.9 | 500* 0.82e — 05 | 0.82e — 05 | 0.99¢ — 05
ILUK(10) 859.0 | 500* 0.28¢ + 00 | 0.13¢ — 01 | 0.43e — 01
ILUO 9.8 510.58¢ —10 |0.52¢ — 10| 0.63e¢ — 10
CGS ILUTH(1072) 7.9 510.15¢ — 10 | 0.32¢ — 10 | 0.39¢ — 10
ILUTH(lO_S) 11.4 610.93¢e—10 |0.93¢ —10|0.11e — 09
ILUK(10) 13.4 810.50e —10 | 0.44e — 10 | 0.54e — 10
ILUO 9.9 510.37e — 10 | 0.33¢ — 10 | 0.40e — 10
BCGStab | ILUTH(1072) 7.2 510.92e — 10° | 0.20e — 09 | 0.25¢ — 09
ILUTH(IO_S) 11.4 610.34¢e — 10 | 0.33¢ — 10| 0.41e — 10
ILUK(10) 12.7 810.90e — 10° | 0.79¢ — 10 | 0.96e — 10
ILUO 2641 1210.16e —08 1 0.14e — 08 1 0.17e — 08
QMR ILUTH(1072) 19.6 | 11 |0.46e —09 |0.10e — 08 | 0.12¢ — 08
ILUTH(107?) 28.2 | 13]0.63¢ —09 |0.63¢ —09|0.76e — 09
ILUK(10) 38.8| 20|0.10e — 08 |[0.92¢ —09|0.11e — 08




TWO-LEVEL SOLVERS FOR LARGE, SPARSE MARKOV CHAINS

TaBLE G.7
Numerical Results for mutex_alt! (n = 39,203, nz = 563,491 ).
SOR
‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘
[1.0]0.82¢ —10| 5.2| 10[0.12¢ — 14 [ 0.82e — 15 |
BSOR
Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘
~v=0.10e =5 [ 1.0 0.27e — 11 | 114.8 810.94e — 16 | 0.67e — 16 3
equal 1.010.27¢ — 10 4.5 310.76e —1310.b4e — 13 0
other 1.0 | 0.82e — 10 6.8 10|0.12e — 14 | 0.82e — 15 0
~'=0.75¢ — 1| 1.0 | 0.25e¢ — 11 | 213.6 910.46e — 15| 0.33e — 15 63
~'=0.10e +0 | 1.0 | 0.58¢ — 13 | 45.7| 10 0.35¢ — 18 | 0.25¢ — 18 0
IAD
Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘
~v=10.10e =5 [ 1.0 | 0.15e — 10 | 178.0 810.63e — 14 | 0.45e — 14 10
equal 1.0 10.36e — 111 90.9 210.41e —1410.29¢ — 14 0
other 1.0 0.83e — 11 | 84.2 410.11e — 15| 0.76e — 16 0
~'=0.7T5e —1 1.0 | 0.48¢ — 10 | 281.8 810.18¢e — 14 | 0.13e — 14 66
~'=0.10e +0|1.0|0.61le —11 | 87.3 410.79¢ — 16 | 0.56e — 16 0
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TABLE G.7 continued
Numerical Results for mutex_alt! (n = 39,203, nz = 563,491 ).

‘ Preconditioner ‘ nzlu ‘ Time | MFlops ‘

ILUO 563,491 2.6 0.6

ILUTH(102) | 301,347 | 814.4 0.9

ILUK(10) 392,037 | 1,163.9 15.8
‘ Method ‘ Preconditioner ‘ Time ‘ #it ‘ [|7]] ‘ Bk.Error
ILUO 721 6]0.26e—12 |0.10e —12|0.74e — 13
GMRES |ILUTH(107%) 33| 3|027e—12 |0.64e — 12| 0.45e — 12
(m =20) | ILUK(10) 11.6 | 11]0.21e — 137 | 0.20e — 16 | 0.14¢ — 16
ILUO 98| 60.26e—12 |0.10e —12|0.74e — 13
DQM RES ILUTH(1072) 50| 3/0.27e—12 |0.64e — 12| 0.45e¢ — 12
(k=20) |ILUK(10) 247 16 | 0.88e — 11 | 0.84e — 14 | 0.60e — 14
ILUO 1,028.0 | 500% 0.28e — 02 | 0.14e — 02 | 0.11e — 02
BCG ILUTH(1072) 779.1 | 500%| 0.30e — 07 | 0.87e — 07 | 0.62e — 07
ILUK(10) 858.6 | 500* 0.19¢ 4+ 00 | 0.21e — 04 | 0.15¢ — 04
ILUO 6.3 3/0.40e—11 |0.16e —11|0.11e —11
CGS ILUTH(107?) 341 2[0.79 —16 |0.19¢ —15|0.13e — 15
ILUK(10) 10.5| 61]0.13e—11 |0.13e — 14 | 0.90e — 15
ILUO 541 3]0.78 —10° | 0.31e — 10 | 0.22¢ — 10
BCGStab | ILUTH(1072) 27| 210.7le—13°{0.17e — 12| 0.12¢ — 12
ILUK(10) 95| 6|0.5le—11°]0.49¢ — 14 |0.35¢ — 14
ILUO 156 | 71]0.25e—09 |0.99¢ —10 | 0.70e — 10
QMR | ILUTH(1072) 55| 3]0.55e—09 |0.13e — 08 | 0.93¢ — 09
ILUK(10) 21.6 | 11 |0.24e —07 |0.23e — 10| 0.16e — 10




TWO-LEVEL SOLVERS FOR LARGE, SPARSE MARKOV CHAINS

TaBLE G.9
Numerical Results for mutex_alt? (n = 39,203, nz = 563,491 ).
SOR
‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘
[1.0]0.15e —12] 47| 9[0.50e —16 [ 0.35¢ — 16 |
BSOR
Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘
~v=10.10e =8 [ 1.0 | 0.5le — 13 | 101.0 310.8le—17|0.58¢ — 17 0
equal 1.0 1 0.22e — 15 3.9 21017 —1710.12e — 17 0
other 1.0 0.15e — 12 6.2 910.50e — 16 | 0.35e — 16 0
~'=0.75¢ — 1| 1.0 | 0.65e — 11 | 191.2 810.49¢ — 16 | 0.35e¢ — 16 58
7' =0.10e+0 | 1.1]0.53¢ — 10 | 40.8 810.14e — 11 | 0.10e — 11 0
IAD
Partition. ‘ w ‘ || Az ‘ Time ‘ #it ‘ ||Az ‘ Bk.Error ‘ Blocks ‘
~v=10.10e =8 | 1.0 | 0.80e — 10 | 162.1 510.32e — 13 | 0.23e — 13 7
equal 1.010.79¢ — 151 91.9 210.37e — 171 0.26e — 17 0
other 1.0 1 0.13e — 13 | 82.7 310.50e — 16 | 0.35e — 16 0
~'=0.7T5e —1 [ 1.0 | 0.58¢ — 11 | 252.5 710.97e — 14 | 0.69¢ — 14 61
~'=0.10e +0 | 1.0 | 0.46e — 13 | 80.1 310.50e — 16 | 0.35e — 16 0
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T. DAYAR and W. J. STEWART

TABLE .9 continued

‘ Preconditioner ‘ nzlu ‘ Time | MFlops ‘

ILUO 563,491 2.6 0.6

ILUTH(10%) | 301,347 | 803.7 0.9

ILUK(10) 392,037 | 1,158.4 15.8
‘ Method ‘ Preconditioner ‘ Time ‘ #it ‘ [|7]] ‘ ||Az ‘ Bk.Error
ILUO 7.1 6| 0.15e — 127 | 0.90e — 16 | 0.64c — 16
GMRES | ILUTH(107?) 25| 2|048e—13 |0.1le — 12| 0.81e — 13
(m =20) | ILUK(10) 11.7] 11]0.24e — 127 0.23¢ — 18 | 0.16¢ — 18
ILUO 17.7] 11]0.32e —12 | 0.28¢ — 15 | 0.20e — 15
DQMRES | ILUTH(1072) 39| 2|048e—13 |0.1le—12|0.81e — 13
(k=20) |ILUK(10) 246 16 |0.10e — 11 |0.22e — 18 | 0.16e — 18
ILUO 23.1| 11|0.37e —10 |0.14e —09 | 0.97e — 10
BCG ILUTH(102) | 774.3 | 500 0.61e — 04 | 0.26e — 04 | 0.18¢ — 04
ILUK 26.0 | 15|0.95¢e —10 |0.51e —10 | 0.36e — 10
ILUO 6.3 3[0.93e—12 |0.55e —15|0.39¢ — 15
CGS ILUTH(1072) 1.9 110.76e —15 | 0.18¢ — 14| 0.13e — 14
ILUK(10) 21.6 | 13]0.56e —15 | 0.66e — 14 | 0.47e — 14
ILUO 541 3/0.40e—11°]0.24e — 14| 0.17e — 14
BCGStab | ILUTH(107?) 1.9 1]10.17e =15 | 0.40e — 15 | 0.28¢ — 15
ILUK(10) 1531 910.63e—11 [0.37e — 15| 0.26e — 15
ILUO 13.8] 6]0.10e —08 |0.6le —12 | 0.43e — 12
QMR | ILUTH(107?) 3.6 2]0.19¢e —08 |0.46e — 08 | 0.33¢ — 08
ILUK(10) 31.7| 16 | 0.24e — 09 | 0.79¢ — 11 | 0.56e — 11




