Left-to-Right Constraint-based Parsing of Head-final Languages

Zelal Gungordu
Department of Computer Engineering and Information Science
Bilkent University, Ankara 06533, Turkey
zelal@cs.bilkent.edu.tr

July 28, 1998

Abstract

We present a parsing algorithm for HPSG grammars that are specified in the form of a type hierarchy,
with the constraints governing certain types imposed on the respective types in the hierarchy. The
algorithm works directly on the representations provided by the HPSG formalism, making essential
use of the selection features governed by the formalism. Parsing a string starts with an underspecified
structure (assigned to that string), and proceeds by attaching every word of the input, from left to right,
to that global structure, thereby dynamically changing it as the parse progresses. We propose certain
strategies for a head-final language that guarantee the correct parse/parses with the least possible
number of processing steps in most cases (and with minimal reanalysis in the remaining ones), which
makes the algorithm particularly interesting for such languages.

1 Introduction

Constraint-based theories of grammar in general are highly lexicalized, meaning that they aim to represent
as much of the linguistic information as possible in the lexicon. The presentation of Head-driven Phrase
Structure Grammar (HPSG) by Pollard and Sag (1994) achieves this goal to a certain extent by the
use of a type hierarchy and highly articulated lexical entries, but also leaves a good deal of information
outside the lexicon, in the form of principles and phrase structure schemata. More recently, Sag (1997) has
introduced an alternative view of certain concepts in the theory, which relies heavily on a type hierarchy,
supporting a totally “lexicalized” characterization of HPSG grammars. We present a left-to-right parsing
algorithm for such grammars that works directly on the representations provided by the HPSG formalism,
combining bottom-up projection with top-down prediction in an essential way. The reader will notice (in
the sections to come) that the algorithm exhibits a left-corner parsing behaviour, only that behaviour is
expressed in terms of the selection information encoded in lexical entries rather than syntactic categories in
phrase structure rules. Also, a concept of selecting daughter takes over the significance that the linguistic
concept head bears in head-corner parsing (Kay, 1989).

Parsing a string in this approach always starts with an underspecified global structure, and proceeds
by attaching every word in the input string, from left to right, to that structure, thereby gradually
constraining the structure as the parse progresses. Once all the words in the input are consumed, the
parser returns the global structure as its output, which — to be an acceptable one — is required to be fully
specified.

Although the algorithm involves a certain degree of non-determinism, it is possible to adopt a number
of strategies which in the case of a head-final language guarantee the correct parse/parses with the least
possible number of processing steps in most cases (and with minimal reanalysis in the remaining ones).
Therefore, we particularly propose the present algorithm for parsing head-final languages. Accordingly,

after a general description of the algorithm in Sections 3-6, we focus in Section 7 on parsing a head-final
language, more specifically Turkish (also a “free” word order language), and provide examples from that
language to illustrate how the algorithm works.

It is noted by van Noord (1997) that maintaining a chart in the case of constraint-based parsing often
turns out to be highly costly (in terms of space). Note that the present algorithm does not make use of
such a chart, yet parsing efficiency in certain cases could be improved, in a particular implementation,
using memoization selectively (as proposed by van Noord (1997) for head-corner parsing); see Section 7.

2 The Formalism

The present work is based on a version of the HPSG formalism presented in Chapter 9 of Pollard and
Sag (1994), slightly modified along the lines of Sag (1997). The hierarchy of constituent structures and
the DTRS feature have been eliminated from the formalism. Instead, a feature geometry of phrasal signs
has been devised that directly reflects constituent structures of phrases. This modification enables one
to formalize the universal principles of HPSG (such as the Head Feature Principle, Valence Principle,
and Semantics Principle) and also any language specific (parochial) principles, in the form of constraints
imposed on certain phrase types in the hierarchy.

We assume the hierarchy of phrasal signs given in (1), which is a much simpler version of the one proposed
by Sag (1997), but is nevertheless sufficient for our purposes. The Head Feature Principle, for example,
can then be formulated as a constraint on phrases of type headed-phrase (hd-ph) as in (2). (following the
formalization in (Sag, 1997)).

(1) phrase

.

non-hd-ph hd-ph

.

hd-adj-ph hd-nexus-ph

e S

hd-spr-ph hd-subj-ph hd-comp-ph hd-mark-ph hd-fill-ph

(2) Head Feature Principle:
HEAD
hd-ph = HD-DTR [HEAD]

This way, the grammar of a language needs only be specified in the form of a type hierarchy, with
the constraints governing certain types imposed on the respective types in the hierarchy, including the
inventory of words that belong to the various lexical types (Sag, 1997).

3 Use of Underspecification

The algorithm starts parsing a string always with an underspecified (global) structure (assigned to that
string), and proceeds from left to right by attaching every word in the input string to STRUCT, as soon as
that word is encountered and fully processed. It is a well-known fact that the possibility of left recursive
structures in natural languages poses a fundamental problem for this kind of word by word parsing in
general. (Examples of such structures include N’s with post-modifier PPs in English and German, for
instance, and also embedded sentences with a sentence-initial complement clause in head-final languages
such as Turkish.) Milward (1994) notes that the solution required is a way of encoding an infinite number
of tree fragments, and presents an overview of different approaches in the literature to tackle the problem
in that way.

To deal with the problem here we let the parser commit itself to decisions, concerning the attachment of
newly encountered constituents, which it may nonmonotonically revise at subsequent stages of processing,
if the need arises. One must however make sure that the nonmonotonicity embodied in the parser doesn’t
have any undesirable consequences on its soundness. To that end, one can take account of the fact that
in HPSG any kind of selection is always realized via objects of type synsem that are structure-shared
with the sYNSEM values of the daughters being selected. Thus, any nonmonotonic operation affecting the
SYNSEM value of an object in the structure should be avoided, since it may override certain constraints
imposed by the grammar on the structure at the previous stages of processing.! Moreover, one has to
further ensure that there are no constraints imposed by the grammar on the type of the object to which
the nonmonotonic operation applies that relates anything within the syNSEM value of the object to a
field affected by nonmonotonicity. For that, only for processing purposes we modify the type hierarchy
in (1) introducing a new type called hd-ph-pr — with no linguistic significance — inserted between the
types phrase and hd-ph (i.e. a subtype of phrase and a supertype of hd-ph).? This new type has the two
appropriate features HD-DTR and NON-HD-DTRS® that take values of type sign and list(sign), respectively.
It is essential that there are no constraints in the grammar imposed on the type hd-ph-pr that relate
any non-SYNSEM feature value to the SYNSEM value itself, or any other field within that value. The
nonmonotonicity in processing is then limited to only non-syNsEM fields of underspecified objects of type
hd-ph-pr in STRUCT, to avoid overriding any constraints imposed on the structure by the grammar.

4 Phrase Specification/Construction

We present a totally transparent approach for parsing HPSG grammars, one that works directly on the
representations provided by the HPSG formalism. To that end, it makes systematic use of the selection
features governed by the formalism, such as the valence features sPrR, sSUBJ and coMPs, and the head
selection features MOD and SPEC, in determining the type of phrase that a particular word (that is, the
one just being processed) may be a part of.* During the processing of a single word, every special selection
feature-value pair (cf. Section 6) in the lexical entry of that word non-deterministically triggers either of
the following steps:

i) Phrase specification: The further specification of an underspecified phrase hd-ph-pr object in
STRUCT, as an instance of one of the most specific phrase types (e.g. hd-adj-ph, hd-spr-ph, hd-
subj-ph, etc) that is signified by the selection feature in question.

ii) Phrase construction: The construction of a new phrase object of the type (one of the most
specific ones) signified by the selection feature in question, which is then attached to STRUCT as
a daughter of one of the underspecified phrase hd-ph-pr objects.

Moreover, a phrase specification/construction step may further lead the parser to predict any yet unen-
countered daughter(s) of the phrase just specified/constructed, which is (are) being selected for via the
selection feature initiating that step (as further discussed in Section 6).

! Although the selection of filler daughters is actually realized via objects of type local that are structure-shared with the
LOCAL values of the selected filler daughters, that doesn’t invalidate the present argument, since the LOCAL value of a sign is
essentially a part (substructure) of its SYNSEM value.

2Here we deal with parsing headed phrases only. In other words, we do not deal with certain structures that are assumed
to be non-headed in HPSG, such as coordinate structures.

3That is, in addition to the appropriate features it inherits from its supertypes, e.g. SYNSEM, PHON.

*In that respect, the present approach bears a certain resemblance to the work on compilation of HPSG grammars into
feature-based TAGs by (Kasper et al., 1995), which also exploits the selection features in the HPSG formalism in projecting
the lexical types of HPSG grammars to the elementary trees of the TAG formalism.

Given that phrases in natural languages may have structures with an arbitrary number of embeddings,
one needs a way of keeping track of the underspecified phrase objects in STRUCT for the purposes of
both steps mentioned above. To that end, we make use of a stack of phrases, PRED(ICTED)-PHRASES,
whose elements are simply pointers to the underspecified substructures of STRUCT that are predicted
by some already encountered daughter; e.g. complement daughters predicted by lexical heads, and head
daughters predicted by specifiers, adjuncts or markers. Only one of those predicted daughters — the one
on the top of the stack — is considered to be active at any given point in the course of the parse, meaning
that the parser can only further specify that underspecified phrase (via a specification step), or attach a
newly constructed phrase as a daughter of only that phrase (via a construction step).

A phrase specification step always leads the parser to pop the active phrase, which is now fully specified
as an instance of one of the most specific phrase types, off the stack. In addition, a phrase specifica-
tion/construction step may further lead the parser to push new underspecified phrases onto the stack
that are predicted by the word just being processed (as mentioned above).

PRED-PHRASES, at the beginning of the parse, is initialized to contain a pointer to the global structure,
STRUCT, the only attachment site available at that stage. At the end of the parse, PRED-PHRASES
must be empty for the string to be grammatical, which guarantees that any predicted phrases in the course
of the parse will indeed have been encountered by the end. It should be noted that any underspecified
phrase during processing is pushed onto the stack, and that a phrase is popped off the stack only after
(and as soon as) it is fully specified (i.e. constrained as an instance of one of the most specific phrase
types). Consequently, requiring the stack to be empty guarantees that the initially underspecified structure
assigned to the input string at the start will have been fully specified by the end of the parse. Also,
although STRUCT itself may be popped off the stack at some point before the end of the parse, any
change caused by specification/construction steps to the elements on the stack even after that point will
have an immediate effect on STRUCT, since those elements are essentially pointers to certain substructures

of STRUCT.

5 Parsing Algorithm

The main body of the parsing algorithm and the grammaticality principle are presented in (3) and (4),
respectively. ‘ND’ stands for ‘non-deterministically’, and ‘STACK (X)’ is a function that returns a stack
whose only element is a pointer to object X. Note that the non-determinism in step (3ci) is due to the
possibility of lexical ambiguity in the language, and the one in step (3cii) is due to the choice the parser
is supposed to make between a phrase specification step and a corresponding phrase construction step, as
mentioned in Section 4. The algorithm, in its most general form, doesn’t commit itself to any particular
strategy to deal with the non-determinism introduced by these two steps (see however the discussion in
Section 7).

(3) Main Body:

a. Constrain STRUCT as an object of type hd-ph-pr.
b. Initialize PRED-PHRASES to STACK (STRUCT).
c. For each WORD encountered do

i. (ND) Fetch LEX for WORD from LEXICON.

ii. (ND) Attach LEX to STRUCT.
d. Return STRUCT.

(4) Grammaticality Principle:

At the end of the parse (i.e. once all the words in the input are processed), PRED-PHRASES must be empty.

Although the main body itself is general, the attachment process, (3cii), varies for languages with different
word order properties as a result of the fact that those languages employ different linear precedence
constraints to account for the word order restrictions they exhibit. Accordingly, that process should be
similar for languages with similar word order properties.

Following the notion of ‘dynamics in algorithm development’ introduced by Milward (1994), one can view
the parse of a given input string using this algorithm in a dynamic way, as a sequence of states, where a
pair of consecutive states represents a transition from the former state in the pair to the one following, by
the complete processing of a single word in the input string (cf. step (3c) in the main body above). Each
state is then composed of the values of the global structure, STRUCT, and the stack of predicted phrases,
PRED-PHRASES, at a certain stage of the parse. In the initial state of the parse, STRUCT is only
constrained as an object of type hd-ph-pr, and PRED-PHRASES only contains a pointer to STRUCT. In
the final state, PRED-PHRASES must be empty for the string to be grammatical (and STRUCT then
will have been constrained as an instance of one of the most specific phrase types, since that is the only
way it may have been popped off the stack); cf. Section 4).

6 Attachment Process

As mentioned earlier, the parser benefits from the selection features in the formalism to determine the
type of the phrase that a particular word with a particular selection feature-value pair may be a part of.
So, for example, a non-empty sSUBJ value in a given word’s lexical entry indicates that a phrase headed
by that word (i.e. a projection of the word) is to function as the head daughter in a head-subject phrase.
Similarly, a non-empty sPr value signals (for a projection of the word) a head daughter role in a head-
specifier phrase. In addition to these valence features, via which heads select for their arguments, the
HPSG formalism also equips certain non-head daughters such as adjuncts, specifiers and markers with
special features that enable them to select for the heads they are to modify or specify. Adjuncts, for
instance, select for their heads via the MoD feature, for which they always have a value of type synsem
that is to be structure-shared with the syNsEM value of the head daughter in a head-adjunct phrase.
(Likewise, specifiers and markers select for their heads via a synsem-valued spEcC feature.) Consequently,
a synsem-valued MOD (sPEC) feature may be considered an indication of a non-head daughter role in a
head-adjunct (head-specifier or a head-marker) phrase. The point to note is that, depending on the word
order restrictions a certain language exhibits, a particular special selection feature-value pair X (such as
the ones mentioned above) should lead the parser to either of the following two alternatives:

i) If the daughter bearing X is expected to follow the daughter that it selects for via X (according
to the word order restrictions in the language), then, on encountering a word with X, the parser
should infer that the daughter that is being selected for must have already been encountered, and
hence no further prediction is necessary.

ii) If the daughter bearing X is expected to precede the daughter it selects for via X, then processing a
word with X should lead the parser to predict the daughter that is selected for, by pushing it onto
the stack of predicted phrases.

So, for example, in a head-final language where arguments and adjuncts always precede their heads, a
synsem-valued MOD feature enables the parser to predict the head daughter at the time of processing the
adjunct daughter. In the case of a non-empty SuBJ value, on the other hand, the parser infers that a
phrase that has already been attached to STRUCT is to function as the subject of a projection of the
word just being processed. One can then summarize the attachment process as follows:

(5) Attachment Process:

a. For each special selection value in LEX do
i. (ND) Perform a specification/construction step.

b. Push any daughters predicted in (ai) onto the stack.

One must note that the order in which the selection features are considered in (5a) is significant. For
instance, for some languages all headed phrases except head-complement phrases are constrained in the
grammar to have a head daughter with an empty coMPs value, meaning the head must have already
‘consumed’ all its complements. Consequently, while parsing such languages (grammars), the parser
should first consider the coMPs feature in step (5a). Note also that in case of two or more specifica-
tion/construction steps called in (5a), each one of those works on the output of the one called just before,
thereby recursively projecting the word (being processed) to several (embedded) phrase objects. Also, as
mentioned earlier in Section 3, the parser is allowed during this process to non-monotonically re-attach
certain phrases already attached as daughters of underspecified (hd-ph-pr) phrases in STRUCT, thereby
moving those daughters further down to embedded phrases. Finally, any daughters predicted by speci-
fication/construction step(s) in (5a) are pushed onto the stack in (5b), in the reverse order as they are
predicted, with the assumption that all phrase types specify continuous structures.

7 Implementational Issues

We have implemented an HPSG parser for Turkish, a “free” word order, head-final language, using the
present algorithm, in the LIFE programming language (Ait-Kaci and Lincoln, 1988). LIFE provides the
programmer with features from three different programming paradigms, namely functional programming,
logic programming and object-oriented programming; e.g. functions, predicates, a Prolog-like resolution
strategy, unification, memoization, an inheritance-based sorted feature system, multiple inheritance and
constrained sorts (Ait-Kaci et al., 1994). The Turkish grammar embodied in the parser merely consists
of a type (sort) hierarchy, with the universal and language specific principles imposed as constraints on
certain phrase types in the hierarchy. To deal with the “free” nature of word order in Turkish, we assume a
flat structure for Turkish sentences, in which all complements (including subjects) are treated in the same
way.® Consequently, Turkish sentences are considered instances of hd-comp-ph rather than hd-subj-ph.

LIFE’s (Prolog-like) depth-first resolution strategy with backtracking makes it seem natural, in such an
implementation, always to give a specification step priority over a corresponding construction step. In
fact, if one constrains the global structure, STRUCT, at the beginning of the parse, to be a finite verb
projection, that strategy for Turkish almost always leads the parser to the correct parse/parses without
any backtracking of a successful specification/construction step (and with minimal backtracking in the
remaining cases; see below). This is a consequence of the fact that in all phrase types in Turkish except
hd-comp-ph the selecting daughter (with a special selection feature-value pair) precedes the daughter that
it selects for. And for head-complement phrases we adopt a strategy where consecutively encountered con-
stituents are first attached as non-head daughters of the same clause, and are later re-attached (lowered)
as non-head daughters of the embedded clauses once the respective heads of those clauses are encountered.

Let us now consider, as an example, the parse of (6), with a sentence-initial NP complement.

(6) Kiguk ¢ocuk uyu-yor.
little child sleep-PROG

“The little child is sleeping.’

5To that end, we make use of a lexical rule that applies to non-base verbs, removing the only element in the suBJ list of
the input entry, and placing it within the comPps list of the output verb, thereby allowing that verb to select its subject via
the comps feature, rather than suBJ.

Assuming that STRUCT is constrained to be a finite verb projection (i.e. to have a verb[fin] HEAD value)
at the start, the first word ‘“kigik” in (6) would lead the parser to the parse state in (7),° where ‘kigik’ is
attached as the non-head daughter of a newly constructed head-adjunct phrase (by a construction step for
head-adjunct phrases initiated by the synsem valued MOD feature in the lexical entry of ‘kig¢ik’). That
phrase is further attached as the non-head daughter of STRUCT (the then active phrase). Note also that
the yet-to-come head-daughter, [z], of the head-adjunct phrase is pushed onto the stack, and that daughter
is constrained as an NP at this stage of the parse (via a constraint on type hd-adj-ph in the grammar
(type hierachy) that imposes a structure-sharing — indicated by [in (7) — between the MOD value of the
non-head daughter of any hd-adj-ph object and the sYNSEM value of its head daughter).

After that, the second word ‘cocuk’ would simply be attached, by a specification step, to the active phrase
], leading to the parse state in (8). Note that [z has now been further constrained as hd-comp-ph, and
popped off the stack (by the specification step just mentioned).

Finally, the finite verb ‘uyuyor’ is attached as the head daughter of STRUCT again by a specification
step that further constrains STRUCT as hd-comp-ph, popping it off the stack, as shown in (9). Notice
that the stack is now empty, satisfying the Grammaticality Principle, (4), for the output structure to be
acceptable.

(7) STRUCT
[hd-ph-pr i
SYNSEM [HEAD werb[fin] |
hd-adj-ph
SYNSEM [HEAD noun |
hd-comp-ph
(({ PHON (kuguk) }> >
NON-HD-DTRS NON-HD-DTRS
SYNSEM [MoD [1 |
\ HD-DTR word /
HD-DTR [hd-ph-pr]
i SYNSEM [HEAD]
| HD-DTR sign |

PRED-PHRASES
<[ELEI>

8Concerning this parse state, and the ones to come, one should note the following: i) To improve the readibility — and also
due to space limitations — we only show the feature values essential to the ongoing discussion. ii) The stack PRED-PHRASES
is represented in the list notation with the top element on the stack on the left end of the list. iii) Re-entrancies not within
a single feature structure should be viewed as pointers to the same linguistic object from an implementational point of view.

STRUCT

hd-ph-pr
SYNSEM [HEAD werb[fin] |
[hd-adj-ph
SYNSEM [HEAD [5] noun]
[hd-eomp-ph]
PHON (kuguk)
< NON-HD-DTRS SYNSEM [MoD [|
NON-HD-DTRS
HD-DTR word
[hd-comp-ph 1
PHON (gocuk)
HD-DTR
SYNSEM [HEAD]
L HD-DTR word
| HD-DTR sign
PRED-PHRASES
<[>
(9) STRUCT
[hd-comp-ph
SYNSEM [HEAD werb[fin] |
[hd-adj-ph i
SYNSEM HEAD [3] noun |
hd-comp-ph
PHON (kigik)
NON-HD-DTRS
< SYNSEM [MoD] >
NON-HD-DTRS
HD-DTR word
hd-comp-ph
PHON (gocuk)
HD-DTR
SYNSEM @ | HEAD [3] |
i |_ HD-DTR word]
word
HD-DTR PHON {uyuyor)
_ comrs () _
PRED-PHRASES
<>

One must note (about this parse) that constraining STRUCT as a finite verb projection at the start
prevents the parser from applying a specification step for head-adjunct phrases while processing the first
word ‘kiigik’ in (6) instead of the construction step mentioned earlier. If that specification step were
allowed then STRUCT would be constrained as an NP of type hd-adj-ph, and the verb ‘wyuyor’ would
force the parser to backtrack all the way to processing ‘kicik’, to provide the correct parse.

However, in the case of a sentence-initial S[fin] complement, such as the one in (10),” even when STRUCT
is constrained as before at the start the parser can still attach the embedded verb ‘wuyuyor’ as the head
daughter of STRUCT by a specification step, which then leads to backtracking by the main verb ‘sandim’,
but only to the point of processing the previous word ‘uyuyor’. A construction step then (instead of
specification) constructs a new hd-comp-ph object headed by ‘uyuyor’ re-attaching the sentence-initial
NP as a non-head daughter of the newly constructed phrase, and further attaches that phrase as a
non-head daughter of STRUCT. The main verb ‘sandim’ can then be attached as the head-daughter of
STRUCT, providing the correct parse.

"Note that Turkish is a pro-drop language and the first person singular subject in (10) has been dropped.

(10) [Kiciik ¢ocuk uyu-yor] san-di-m.
little child sleep-PROG think-PAST-15G

‘T thought that the little child was sleeping.’

One can further improve the parsing efficiency in such cases using the memoization mechanism (provided
by LIFE) selectively (van Noord, 1997), by making the parser memorize S[fin] structures only.

8 Conclusions

We have presented a left-to-right parsing algorithm for HPSG grammars that are specified in the form
of a type hierarchy, with the constraints governing certain types imposed on the respective types in
the hierarchy. The algorithm works directly on the representations provided by the HPSG formalism,
combining bottom-up projection with top-down prediction in an essential way. We have proposed certain
strategies for Turkish, which can further be readily adopted for other head-final languages such as Japanese
and Korean, that guarantee the correct parse/parses with the least possible number of processing steps
in most cases (and with minimal reanalysis in the remaining ones).

References

H. Ait-Kaci and P. Lincoln. 1988. Life: A natural language for natural language. Technical Report
ACA-5T-074-88, Systems Technology Laboratory, Austin, Tex.

H. Ait-Kaci, B. Dumant, R. Meyer, and P. V. Roy, 1994. The Wild LIFF Handbook. Digital-Paris
Research Laboratory, prepublication edition.

R. Kasper, B. Kiefer, K. Netter, and K. Vijay-Shanker. 1995. Compilation of HPSG to TAG. In
Proceedings of the 33th Annual Meeting of the Association for Computational Linguistics, Cambridge,
Mass.

M. Kay. 1989. Head-driven parsing. In Proceedings of the International Workshop on Parsing Technology,
Pittsburgh, Pa.

D. Milward. 1994. Dynamic dependency grammar. Linguistics and Philosophy, 17:561 — 605.

C. Pollard and 1. A. Sag. 1994. Head-Driven Phrase Structure Grammar. CSLI Lecture Notes. CSLI and
University of Chicago Press, Stanford, Ca. and Chicago, Ill.

I. A. Sag. 1997. English relative clause constructions. Journal of Linguistics, 33(2):431 — 484.

G. van Noord. 1997. An efficient implementation of the head-corner parser. Computational Linguistics,
23(3):425 — 456.

