PERMUTING MARKOV CHAINS TO
NEARLY COMPLETELY DECOMPOSABLE FORM

TUGRUL DAYAR*

Abstract. This paper highlights an algorithm that computes, if possible, a nearly completely decomposable
(NCD) partitioning for a given Markov chain using a specified decomposability parameter. The algorithm is
motivated by search for connected components (CCs) of an undirected graph. The nestedness of the NCD
partitionings for increasing values of the decomposability parameter is demonstrated on the Courtois matrix.
The relation among the degree of coupling, the smallest eigenvalue of the coupling matrix and the magnitude
of the subdominant eigenvalue of the block Gauss-Seidel (BGS) iteration matrix induced by the underlying
NCD partitionings is investigated on the same matrix. Experimental results that appear elsewhere show that
the partitioning algorithm may be used successfully in two-level iterative solvers such as block successive over-
relaxation (BSOR) and iterative aggregation-disaggregation (IAD).
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1. Introduction. Nearly completely decomposable (NCD) Markov chains [3], [8], [11] are
irreducible stochastic matrices that can be symmetrically permuted to a block form as in
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where the nonzero elements of the off-diagonal blocks are small compared with those of the
diagonal blocks [11, p. 286]. Let P = diag(Pi1, Pa2,..., Pnn) + E. The diagonal blocks Pj;
are square, of order n;, with n = YV n;. The quantity ||E||s is referred to as the degree of
coupling and is taken to be a measure of the decomposability of P. When the chain is NCD,
it has eigenvalues close to 1, and the poor separation of the unit eigenvalue implies a slow rate
of convergence for standard matrix iterative methods [4, p. 290]. The smaller ||E|| is, the
more ill-conditioned P becomes [8, p. 258]. On the other hand, if P were reducible, we would
decompose the chain into its irreducible (i.e., isolated) and transient subclasses of states as in
equation (1.20) of [11, p. 26] and continue our analysis on the irreducible subclasses. If || E||oo
were zero, then P would be completely decomposable.

Such matrices arise in queuing network analysis, large-scale economic modeling, and com-
puter systems performance evaluation. The long-run measures of interest for these systems
may be obtained from the long-run distribution of state probabilities by solving a homogeneous
system of linear equations with a singular coefficient matrix under a normalization constraint
[11, p. 16].

An algorithm (see [12, Section 3] and [11, Section 6.3.5]) that is currently being used for
finding an ordering of states as in equation (1) searches for the strongly connected components
(SCCs) of the directed graph (digraph) [6, p. 2] associated with the matrix obtained by zeroing
the elements of P that are less than a user specified decomposability parameter ¢, a real number
between 0 and 1. The partitioning of such a graph into its SCCs is unique (see [6, pp. 113-122]).
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The subset(s) of states output by the SCC search algorithm are identified as forming the NCD
blocks P;;. As we show in the next section, this algorithm may fail to produce a correct NCD
partitioning of the state space, and therefore needs reconsideration.

Among other existing partitioning algorithms that take into account the values of the
nonzero elements of the underlying matrix, the one proposed in a different context by Sezer
and Siljak [9, 10] which is motivated by search for connected components (CCs) of an undirected
graph may be used to compute NCD partitionings of P. Another algorithm, version 1 of the
Threshold Parameterized Block Ordering Algorithm (TPABLO, see Criterion 1 in [2]), has a
set of five input parameters, and albeit powerful, is not easy to fine-tune.

In the next section, we show that the SCC search algorithm of the MARkov Chain Analyzer
(MARCA) software package (see [11, p. 502]) fails using the 8 X 8 Courtois matrix. In the third
section, we present the algorithm due to Sezer and giljak in a Markov chain setting. In the
fourth section, we take a close look at the NCD partitionings the CC search algorithm computes
for the Courtois matrix and point out the relation among the degree of coupling, the smallest
eigenvalue of the coupling matrix and the magnitude of the subdominant eigenvalue of the block
Gauss-Seidel (BGS) iteration matrix induced by the underlying NCD partitionings. In the fifth
section, we conclude with some observations.

2. A counter-example. Consider the 8 x 8 NCD matrix [3]

1 2 3 4 5 6 7 8
1 0.85 0 0.149 0.0009 0 0.00005 0 0.00005
2 0.1 0.65 0.249 0 0.0009  0.00005 O 0.00005
3 0.1 0.8 0.0996  0.0003 O 0 0.0001 O
p— 4 0 0.0004 O 0.7 0.2995 0 0.0001 O
5 0.0006 0 0.0004  0.399 0.6 0.0001 0 0
6 0 0.00005 0 0 0.00005 0.6 0.2499 0.15
7 0.00003 O 0.00003 0.00004 O 0.1 0.8 0.0999
8 0 0.00005 O 0 0.00005 0.1999  0.25 0.55

which has a degree of coupling equal to 0.001 for the state space partitioning {1,2,3}, {4,5},
{6,7,8}. Now, let € = 0.125. If we zero out the elements in P that are less than ¢, we obtain a
matrix with the following nonzero structure:
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where an X denotes a nonzero. Conducting an SCC search on the digraph associated with this
new matrix yields the partitioning {1}, {2, 3},{4,5},{6,8},{7}. However, it is not true that the
submatrix associated with states {6,8} is an NCD block, and hence the symmetric permutation
suggested by this state space partitioning is NCD with decomposability parameter 0.125. Both
states 6 and 8 have transitions to state 7 with probability greater than 0.125. This example
shows that it is not possible to identify SCCs as NCD blocks.
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3. The algorithm. The problem with the SCC search algorithm is that it misclassifies
subsets {1} and {6,8} as forming NCD blocks. One solution would be to group state 1 with
the subset {2,3} to which it has a transition with probability 0.149, and to group states 6,7,8
into a separate subset so that they do not have any transitions with probability larger than or
equal to 0.125 to outside states. Thus, we end up with the partitioning {1,2,3}, {4,5}, {6,7,8}.
Hence, for the particular value of ¢ under consideration, an NCD partitioning of the Courtois
matrix exists with || E||s = 0.001.

The CC search algorithm due to Sezer and giljak provides a simpler way to obtain the same
NCD partitioning. First, construct an undirected graph whose vertices are the states of P by
introducing an edge between vertices ¢ and j if p;; > € or pj; > €, and then identify its CCs
(see [9, p. 322]). Since Markov chains that arise in real-life applications are mostly large and
sparse, we assume that the input to the algorithm is the matrix P stored in Compact Sparse
Row (CSR) Harwell-Boeing format, which requires three arrays: one real and one integer of
size nz (i.e., number of nonzeros in P), and one integer of size n + 1 [11, pp. 80-81]. A simple
implementation is then provided by the following;:

Algorithm. Finding an NCD form corresponding to a decomposability parameter 0 < € < 1

of a Markov chain P:

Step 1. Make one pass over P and PT simultaneously and form the symmetric boolean matrix
A in which a; ; is set to true if p; ; > € or p;; > €. The elements of A that are not set
to true are considered false.

Step 2. Search for the CCs of the undirected graph associated with the true elements in A.
Each CC is a subset of the NCD partitioning.

One can declare P as non-NCD for the chosen ¢ if all n states end up in the same (and only)
subset after step 2. Otherwise, P should be declared NCD.

Note that there is no need to store A as a two-dimensional array. It suffices to store pointers
to the beginning of each row in the CSR format (requiring n+ 1 integers) and the column indices
of the true elements in A (requiring at most 2nz integers), effectively an adjacency list structure.
It is possible to do this using a temporary boolean array of length n while scanning the rows
of P and PT, and marking its appropriate entries true according to the criterion in Step 1.
When the row of interest is processed, this boolean array of length n may be scanned from left
to right and the column indices of its true entries stored in linear storage. Then the boolean
array should be cleared for processing the next row of P and PT. The transpose of P should be
held separately in CSR format during Step 1 since P and PT will be scanned simultaneously
in a row-by-row manner. Otherwise, it is necessary to process P stored in CSR format both
row-by-row and column-by-column, which is undesirable. Additional space used by the CC
search in Step 2 is linear in n [1, p. 181]; hence, the space requirement of the NCD partitioning
algorithm is O(n + nz) integers and O(nz) reals.

The time complexity of the transposition of P stored in CSR format in Step 1 is negligible
since it does not involve any comparisons. The same step involves O(nz) floating-point compar-
isons for the test. The time complexity of the CC search in Step 2 is O(n+nz) [1, pp. 180-181].
Therefore, the time complexity of the NCD partitioning algorithm is O(n + nz).

Consider, for instance, the case where P is a normwise very small perturbation of the
identity matrix, I. For a myriad of values for €, the output of the algorithm will be the
partitioning in which each state forms an NCD block of its own. The result is expected; such
matrices are called coupling matrices [8, p. 249] and they arise when NCD Markov chains are
aggregated based on an NCD partitioning.

For the Courtois matrix, A is given by



4 TUGRUL DAYAR

1 2 3 4 5 6 7 8
1 101 0 0 0 0 O
2 0110 0 0 0 O
3 1 1.0 0 0 0 0 O
4 0001 1 0 0O
5 0 001 1 0 0 O
6 00 00 0 1 11
7 0 0 00 0 1 11
8 0 0 00 0 1 11

where a 1 indicates a true value. The output of step 2 is the partitioning {1,2,3},{4,5},{6,7,8}.
We should remark that TPABLO version 1 [2] with the set of parameters a € {0.0,0.5,1.0}, 5 €
{0.0,0.5,1.0},7 = 0.125, minbs = 1, mazbs = 8 on the Courtois matrix gives the partitioning
{1},{2},{3},{4}.{5},{6},{7},{8} in all nine cases. Here, a is the density parameter for diagonal
blocks, 3 is the connectivity parameter among blocks, v has the same meaning as €, minbs and
mazbs are respectively the desirable minimum and maximum order of diagonal blocks.

The NCD partitioning obtained by the CC search algorithm may be used in two-level
iterative solvers for Markov chains such as block successive over-relaxation (BSOR) [11, Section
3.3] and iterative aggregation-disaggregation (IAD) [11, Section 6.3]. Since the partitioning
algorithm has linear time complexity in the problem size and does not involve any floating-
point operations, the overhead associated with using it as a preprocessing step can be considered
negligible.

4. Relationship between degree of coupling and asymptotic convergence rate.
Consider the following homogeneous system of linear equations with a normalization constraint

T(P—-1)=0, |r|]1=1,

for the purpose of computing the unknown (1 x n) stationary vector .
Now let the block Gauss-Seidel (BGS) splitting of the coefficient matrix A = P — I corre-
sponding to the block form in equation (1) be given by

(2) A=L-(D-U),

where L, — D, U represent respectively strictly block lower-triangular, block diagonal, strictly
block upper-triangular parts of A. For the splitting in equation (2) the BGS iteration may be
expressed as

aktD) = 2B e k=01, -,

where

(3) Teas = L(D — U)_l

and 7% is the approximate solution vector at the kth iteration. It is known that the spectral
radius of Tpgs is equal to one; furthermore, 7 is the left eigenvector corresponding to the
unit eigenvalue of Tgs. The method of BGS will converge to the stationary vector for all
7(0) ¢ R(I — Tggs) (i-e, the initial approximation is not in the range of (I — Tpas)) if Thas
does not have eigenvalues other than the unit eigenvalue on the unit circle (that is, if Trgs is
primitive). The asymptotic convergence rate of the BGS method depends on the magnitude
of the subdominant eigenvalue of the iteration matrix, given by v(Tsgs) := max{|A| | A €
0(Tpags), A # 1}. Here 0(TBas) denotes the set of eigenvalues of Trgs. The smaller v(Tas)
is, the higher the asymptotic convergence rate of BGS.
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Next, consider the coupling matrix C'*) computed in the aggregation step at the kth

iteration of IAD, and whose ijth element is given by (see [11, p. 308])

(4) eif) = (@ In V) Pye.

Here e is a column vector of ones and 7; denotes the ith subvector of 7 partitioned conformally
with P in equation (1). For an NCD partitioning, the coupling matrix will be a perturbation
of the identity matrix. The smallest eigenvalue of the (exact) coupling matrix indicates the
inherent degree of ill-conditioning in the system. The disaggregation step of TAD uncouples
the approximate solution vector using a BGS iteration to obtain an improved solution. We
should also remark that IAD converges in a smaller number of iterations with a smaller degree
of coupling [11, p. 340].

In Table 1, we present NCD partitionings for the Courtois matrix. While determining
these partitionings we incremented the decomposability parameter € by 0.025 times various
powers of 10 as long as we had at least two subsets in the partitioning. Notice that for a
given value of €, the largest number of subsets in a computed partitioning is unique. There
are 6 such partitionings and they are all nested [9] within each other for increasing values of
€. In Table 1, we report the smallest of such €’s. For the computed partitionings, the degree
of coupling values increase from 0.0001 up to 0.4500. In the same table, we also provide the
magnitude of the subdominant eigenvalue of the BGS iteration matrix given in equation (3)
and the minimum eigenvalue of the exact coupling matrix in equation (4) using MATLAB. The
exact coupling matrix C' is computed using the exact stationary distribution 7 obtained with
the Grassman-Taksar-Heyman (GTH) method [7].

Table 2 presents the last three NCD partitionings in Table 1 with their singletons grouped
together. Observe that grouping singletons together sometimes has the effect of reducing the
degree of coupling for a given NCD partitioning.

Results in Tables 1 and 2 for the Courtois matrix show that the degree of coupling and the
smallest eigenvalue of the coupling matrix are inversely proportional. There is also correlation
between the degree of coupling and the magnitude of the subdominant eigenvalue of the BGS
iteration matrix. There seems to be a threshold for || F||s (0.15 for the Courtois matrix) below
which 7(TBgs) remains reasonably small. However, in between two NCD partitionings, the one
that has the smaller || F||o. may not necessarily have the smaller v(Tsgs). For example, com-
pare line 3 of Table 1 with line 2 of Table 2. Hence, the relationship is not monotonic. Finally,
there is correlation between the magnitude of the subdominant eigenvalue of the BGS iteration
matrix and the smallest eigenvalue of the coupling matrix. There seems to be a threshold this
time for min(o(C')) (0.75 for the Courtois matrix) above which v(Tpas) remains reasonably
small. However, an NCD partitioning that has the larger min(o(C')) may not necessarily have
the smaller 7v(TBgs). Again, the relationship is not monotonic.

TABLE 1
NCD partitionings for the Courtois matriz.
Partition € |E||lco v(TBGgs) min(a(C))
{1,2,3,4,5},{6,7,8} 0.125e—3 0.0001  0.0000 0.9998
{1,2,3},{4,5},{6,7,8} 0.925e —3 0.0010 0.0429 0.9985

{1}.,{2,3},{4,5},{6,7.8} 0.150e+ 0 0.1500 0.0539  0.7501
{1}.{2,3},{4,5},{6},{7,8}  0.250e+0 0.4000 0.9956  0.4732
{11,42,3},{4,5},{6}.{7} {8}  0.275¢+0 0.4500 0.9959  0.4000
{11.42,3},{4} {5} .{6},{7} {8} 0.400e+0 0.4500 0.9985  0.3007
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TABLE 2
Effects of grouping singletons in NCD partitionings for the Courtois matriz.
Partition € |E|co Y(TBgs) min(a(C))

(2,31, {4,5},{78}.{1,6} 0.250e+0 0.4000 0.9956 0.5745
{2,3},{4,5},{1,6,7,8}  0.275¢+0 0.1499  0.0573 0.8762
{2,3},{1,4,5,6,7,8}  0.400e+0 0.1490  0.0002 0.8834

5. Conclusion. In this paper, we highlight a simple and useful algorithm that is able to
compute NCD partitionings of Markov chains. The time and space complexity of the partition-
ing algorithm is linear in the number of nonzeros of the underlying Markov chain. In a recent
paper [5], numerical experiments with BSOR and IAD on a test suite of large, sparse Markov
chains have shown that there is merit in using the CC search algorithm especially when the
chain is highly ill-conditioned. In practice, however, one may opt for a more balanced parti-
tioning of blocks, and therefore end up using a partitioning with a larger value of the degree of
coupling. Such a choice may depend on the order of the coupling matrix if TAD is the solver
of choice, on the order of the largest diagonal block, and/or on available memory. In the same
paper, it is shown that the partitioning time of TPABLO is substantial when compared with
other partitioning techniques, and the partitionings TPABLO computes for a large number of
parameter combinations provide no winning solver when used with BSOR or TAD on a rep-
resentative subset of matrices in the test suite. Finally, grouping singletons in a given NCD
partitioning into a separate subset may help because it is likely to reduce the value of the degree
of coupling, and thereby improve the convergence rate of two-level iterative solvers.
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