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Abs t r ac t .  Presence of irrelevant features is a fact of life in many real- 
world applications of classification learning. Although nearest-neighbor 
classification algorithms have emerged as a promising approach to ma- 
chine learning tasks with their high predictive accuracy, they are ad- 
versely affected by the presence of such irrelevant features. In this pa- 
per, we describe a recently proposed classification algorithm called VFI5, 
which achieves comparable accuracy to nearest-neighbor classifiers while 
it is robust with respect to irrelevant features. The paper compares both 
the nearest-neighbor classifier and the VFI5 algorithms in the presence 
of irrelevant features on both artificially generated and real-world data 
sets selected from the UCI repository. 

1 I n t r o d u c t i o n  

Inductive classification or concept learning algorithms derive some form of clas- 
sification knowledge from a set of training examples. In most  real-world applica- 
tions of classification learning, it is common to include all available information 
about  the domain in the training data, and expect the learning algorithm some- 
how select the relevant portions [2]. This is a valid assumption since exactly which 
features are relevant to the target concept being learned may  be unknown. 

In recent years, instance-based nearest-neighbor (NN) classification algo- 
r i thms have emerged as a promising approach to machine learning, with re- 
searchers reporting excellent results on many  real-world induction tasks [1]. The 
nearest neighbor algori thm normally represents instances as feature-value pairs. 
In order to predict the class of a novel instance, first its distance to each of 
the training instances is computed. Then the class value of the test instance is 
predicted to be the class of the training example with shortest distance, tha t  is 
the nearest neighbor. Learning in nearest-neighbor classifiers consists of s imply 
storing the training instances in memory,  leaving all the computat ion to the 
classification phase. For that  reason, these kind of algorithms are called lazy 
learners [8]. The kNN algorithm is a generalization of the NN algorithm, where 
the classification is based on a major i ty  voting of the nearest k neighbors. 
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One solution to the problem of irrelevant features is to separately learn 
weights for features so that  the irrelevant ones are assigned low weight values 
and therefore their effect on the distance measure is reduced. Feature selection 
is the extreme case of feature weighting, where only zero and one are used as 
weight values. The nearest-neighbor classifier is then run with only these se- 
lected features that  have one as their weight value. Although feature selection 
is a special case of feature weighting, Kohavi et al. reported that  increasing 
number of possible weights beyond two (zero and one) has very little benefit 
and sometimes degrades performance [12]. Wettschereck et al. provide a good 
review and an empirical evaluation of feature weighting methods for a class of 
lazy learning algorithms [16]. Some researchers have developed algorithms just 
for the selection of relevant features [3, 13-15]. 

In this paper we present a classification learning algorithm that  achieves 
high accuracy, comparable to nearest-neighbor classifier, and is not adversely 
affected by the presence of irrelevant features. The VFI5 (Voting Feature Inter- 
vals) algorithm described here is quite robust with respect to irrelevant features, 
yet achieves good performance on existing real-world datasets. The VFt5 algo- 
rithms eliminates the adverse effect of irrelevant features by its inherent voting 
mechanism. 

The rest of the paper is organized as follows. Section 2 explains the VFI5 
classification learning algorithm in detail. Section 3 presents an evaluation of 
the VFI5 algorithm on artificially generated data  sets that  contain a varying 
number of irrelevant features. Section 4 evaluates the VFI5 algorithm on some 
existing data sets with artificially added irrelevant features. Section 5 concludes 
the paper. 

2 V F I 5  C l a s s i f i c a t i o n  L e a r n i n g  A l g o r i t h m  

The VFI5 classification algorithm is an improved version of the early VFI1 al- 
gorithm [5,7], which is a descendent of the CFP algorithm [11]. It has been 
applied to the problem of differential diagnosis of Erythemato-Squamous dis- 
eases [6] and arrhythmia analysis of ECG signals [9]; and very promising results 
were obtained. Here, the VFI5 algorithm is described in detail. 

The VFI5 classification learning algorithm represents a concept in terms of 
feature value intervals, and makes a classification based on feature votes. It is a 
non-incremental learning algorithm; that  is, all training examples are processed 
at once. Each training example is represented as a vector of feature values plus 
a label that  represents the class of the example. From the training examples, 
the VFI5 algorithm constructs feature value intervals for each feature. The term 
interval is used for feature value intervals throughout the paper. An interval 
represents a set of values of a given feature where the same set of class values 
are observed. Two neighboring intervals represent a different set of classes. For 
each interval, a lower bound of the values and the number of examples of each 
class in that  interval are maintained. Thus, an interval may represent several 
classes by storing the number of examples for each class. 
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Fig .  1. A sample training dataset  with two features and two classes. 
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F ig .  2. Intervals constructed by VFI5 with their class counts for the sample dataset.  
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F ig .  3. Votes of intervals for the sample dataset.  
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In order to describe the VFI5 algorithm, consider the sample training dataset 
in Figure 1. In this dataset, we have two linear features f l  and f2, and there are 
3 examples of class A and 4 examples of class B. There are 9 intervals for each 
feature. The intervals formed in the training phase of the VFI5 algorithm are 
shown in Figure 2. 

The training process in the VFI5 algorithm is given in Figure 4. The lower 
bounds of intervals are learned by finding the end poinls for each feature and for 
each class. The procedure find_end_points( TrainingSet, f, c) finds the lowest and 
the highest values for feature f from the examples of class c in the TrainingSet. 
The lowest and highest values are called the end points, and for each feature 
there are 2C end points where C is the number of distinct classes in the domain. 
VFI5 constructs a point interval at each distinct end point. Further, for linear 
features a range interval is constructed between every consecutive end points. 
These range intervals do not cover the end point values. Maximum number of 
intervals constructed for linear features is 4C + 1. 

Each interval is represented by a vector of < lower, vote1, . . . ,  votec > where 
lower is the lower bound of tha t  interval, votei is the vote given to class i by 
that  interval. These votes are computed as 

interval_class_vote[f , i, c] = interval_class_count[f, i, c] 
class_count[c] 

where interval_class_count[f,i, c] is the number of examples of class e which 
fall into interval i of feature f .  The individual vote of feature f for class c, 
interval_class_vote[f, i, c], is then normalized to have the sum of votes of feature 
f equal to 1. Hence, the vote of feature f is a real-valued vote in [0,]]. This 
normalization guarantees that,  unless otherwise specified, each feature has the 
same weight in the voting. Class votes of the intervals for the data  set given in 
Figure 1 are shown in Figure 3. 

Note that  since each feature is processed separately, no normalization of 
feature values is required. 

The VFI5 classifier is shown in Figure 5. The process starts by initializing 
the votes of each class to zero. The classification operation includes a separate 
preclassification step on each feature. The preclassification of feature f involves a 
search for the interval on feature f into which e I falls, where e] is the value test 
example e for feature f .  This search is performed by the f ind_interval function 
in Figure 5. If that  value is unknown (missing), that  feature does not participate 
in the classification process. Hence, the features containing missing values are 
simply ignored. Ignoring the feature about which nothing is known is a very 
natural and plausible approach. 

If the value for feature f of example e is known, the interval i into which e/ 
falls is determined. An interval may contain training examples of several classes. 
The classes in an interval are represented by their normalized votes. The votes 
of an interval are already stored as part of its representation. These votes of 
the interval is used as the vote vector of the corresponding feature. After every 
feature completes their preclassification process, the individual vote vectors are 
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t ra in(Tra in ingSe t ) :  
begin 

for each feature f 
ff f is linear 

for each class c 
EndPo in t s [ f ]  = EndPo in t s [ f ]  U f ind_end_points(TrainingSet ,  f ,  c); 

sort( EndPoin t s[ f ] ) ;  

for each end point p in EndPo in t s [ f ]  
form a point interval from end point p 
form a range interval between p and the next endpoint r p 

else /* f is nominal */  
form a point interval for each value of f 

end. 

for each interval i on feature f 
for each class c 

interval_class_count[f ,  i, c] = 0 
count_instances(f, Train ingSe t ) ;  
for each interval i on feature f 

for each class c 
interval_class_vote[f ,  i, c] = int . . . .  l_cl . . . . . . .  tly, ~, c] class-count[c] 
normalize interval_class_vote[f,  i, e]; 

/* such that  ~ c  interval_class_vote[f,  i, c] = 1 */  

Fig .  4. Training in the VFI5 Algorithm. 

classify(e): 
/* e: example to be classified */ 
begin 

for each class c 
vote[c]  = 0 

for each feature f 
for each class c 

f e a t u r e _ v o t e [ y ,  c] = 0 /*  vote of feature f for class e */ 
if ey value is known 

i = find_interval(f, el)  
feature_vote[f ,c]  = interval_class_vote[f,  i, c] 
for each class c 

vote[c] = vote[c] + feature_vote[f ,c];  
return class e with highest vote[c]; 

end. 

F ig .  5. Classification in the VFI5 Algorithm. 
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summed up to get a total vote vector < vote1,..., votec >. Finally, the class 
with the highest vote from the total  vote vector is predicted to be the class of 
the test instance. 

3 Empir i ca l  Eva luat ion  on Artif ic ial  D a t a  Sets  

In order for an empirical comparison of kNN and VFI5 algorithms, we have 
artificially generated data sets with varying number of relevant and irrelevant 
features and measured the predictive accuracies of these algorithms. 

We have generated data sets where the number of relevant features ranges 
from 1 to 6. We call these data  sets Rn, where n represents the number of relevant 
features. These artificial data sets contain two classes. The instance space is 
divided into two regions of equal volume. 50 randomly generated instances are 
distributed to each of the regions uniformly. Therefore such a data  set contains 
100 instances. Once an artificial data  set Rn with n relevant features is generated, 
we further added varying number of irrelevant features to the data set. The 
number of irrelevant features ranged from 0 to 20. For each such a data set, we 
computed the 5-fold cross-validation accuracies of both NN and VFI5 algorithms. 
We have repeated this process for 100 times and reported the results in Figure 6. 
We have run the kNN algorithm for k values of 1, 3 and 5. 

It is clear from Figure 6 that  VFI5 is much less affected by the existence of 
irrelevant features in the data  set. On the other hand, the predictive accuracy 
of the kNN algorithm almost linearly drops as the number of irrelevant features 
increases. Also the slope of the accuracy plot decreases as the number of relevant 
features increases, as expected. 

4 Empir i ca l  Eva luat ion  on E x i s t i ng  D a t a  Sets  

In order to compare the kNN and VFI5 classifiers we also tested them on six 
existing data sets selected from the UCI repository [4]. Since most of the datasets 
in the UCI repository are carefully constructed by eliminating irrelevant features, 
we modified the data  sets by artificially adding increasing number of irrelevant 
features. We used 1, 3 and 5 as the values of k in the kNN algorithm. The 
comparison of the classification accuracies kNN and VFI5 algorithms on six 
UCI-Repository data  sets with increasing number of artificially added irrelevant 
features is depicted in Figure 7. 

The experiments indicate that ,  although, both algorithms achieve about the 
same predictive accuracy without relevant features, the accuracy of the nearest- 
neighbors classifier drops quickly when irrelevant features are added. On the 
other hand, the accuracy of the VFI5 classifier remains at about the same level 
as the case without the irrelevant features. 

This shows that  the VFI5 algorithm is robust with respect to the existence 
of irrelevant features. The robustness of the VFI5 algorithm is due to the voting 
mechanism used in the classification. Since the votes of an interval, in turn a 
feature, are normalized, an irrelevant feature gives about the same vote to all 
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the classes in the domain. Therefore have no effect on the outcome of the voting. 
The main advantage of the VFI5 algorithm is that  it achieves this robustness 
without requiring an external help for feature selection. 

These experiments also indicate that ,  for higher values of k, the kNN algo- 
r i thm becomes more robust to irrelevant features. 

5 C o n c l u s i o n  

In this paper, a voting based classification algorithm called VFI5 is described. 
The VFI5 algorithm is compared with the nearest-neighbor algorithm which has 
been reported to achieve high accuracy values. These algorithms were tested 
on both artificially generated and existing data sets with increasing number 
of artificially added irrelevant features. Our experiments showed that ,  in most 
data  sets, both algorithms achieve about  the similar predictive accuracy without 
relevant features. However, when irrelevant features are added, the accuracy of 
VFI5 algorithm remains at about the same level or exhibit very small amount  
of decrease, while the accuracy of the nearest neighbor classifier drops quickly. 
This shows that  the VFI5 algorithm is robust with respect to the existence of 
irrelevant features. The VFI5 algorithm achieves this by the voting mechanism 
used in the classification, where the votes of an irrelevant feature are about the 
same for all classes, and therefore have no effect on the outcome. The main 
advantage of the VFI5 algorithm is that  it achieves this robustness without 
requiring an external help for feature selection. 
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