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ABSTRACT

MULTILEVEL HEURISTICS FOR TASK ASSIGNMENT
IN DISTRIBUTED SYSTEMS

Murat Ikinci
M.S. in Computer Engineering and Information Science

Supervisor: Assoc. Prof. Dr. Cevdet Aykanat
June, 1998

Task assignment problem deals with assigning tasks to processors in order to
minimize the sum of execution and communication costs in a distributed sys-
tem. In this work, we propose a novel task clustering scheme which considers
the differences between the execution times of tasks to be clustered as well as
the communication costs between them. We use this clustering approach with
proper assignment schemes to implement two-phase assignment algorithms
which can be used to find suboptimal solutions to any task assignment prob-
lem. In addition, we adapt the multilevel scheme used in graph/hypergraph
partitioning to the task assignment. Multilevel assignment algorithms reduce
the size of the original problem by collapsing tasks, find an initial assignment
on the smaller problem, and then projects it towards the original problem by
successively refining the assignment at each level. We propose several clus-
tering schemes for multilevel assignment algorithms. The performance of all
proposed algorithms are evaluated through an experimental study where the as-
signment qualities are compared with two up-to-date heuristics. Experimental
results show that our algorithms substantially outperform both of the existing

heuristics.

Key words: Task assignment, distributed systems, task clustering, multilevel

task assignment methods, Kernighan-Lin Heuristic.
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OZET

DAGITIK SISTEMLERDE COK DUZEYLI
GOREV ATAMA ALGORITMALARI

Murat Ikinci
Bilgisayar ve Enformatik Mihendisligi, Yiksek Lisans
Tez Yoneticisi: Dog. Dr. Cevdet Aykanat
Haziran, 1998

Gorev atama probleminin amaci bir dagitik sistemdeki gorevlerin iglemcilere
yurtutme ve iletigim giderlerinin toplamini en kiiciik yapacak bi¢cimde atamaktir.
Bu calismada, gorevlerin iletigim zamanlarimin yani sira yuritme zamanlar:
arasindaki farki da dikkate alan yeni bir topaklama yontemi onerilmigtir. Bu
topaklama yontemi uygun atama yontemleri ile birlikte her turla gorev atama
problemine en iyiye yakin ¢oziumler bulabilecek olan iki-evreli atama algo-
ritmalar1 olugturmak i¢in kullanilmigtir. Bunlara ek olarak, ¢izge/hipercizge
parcalamada kullanilan ¢ok duzeyli ¢izenek gorev atama problemine uyarlan-
migtir. Cok duzeyli atama algoritmalar1 gorevleri birlegtirerek asil problemi
kuciltir, en kicik problem i¢in bir baslangi¢c atamasi bulur, sonra bu ata-
may1 her diuzeyde iyilestirerek asil probleme dogru yansitir. Bu ¢alismada ¢ok
duzeyli atama algoritmalar: i¢in bir ¢ok topaklama gizenegi onerilmigtir. Butun
onerilen algoritmalar iki gincel algoritma ile karsilagtiriltmg ve bagarimlar:
bir deneysel caligma ile degerlendirilmigtir. Deney sonuclar1 gostermistir ki

onerilen algoritmalar varolan iki algoritmadan da daha iyi ¢calismaktadir.

Anahtar kelimeler: Gorev atama, dagitik sistemler, gorev topaklama, ¢ok

duzeyli gorev atama yontemleri, Kerninghan-Lin algoritmasi
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Chapter 1

Introduction

Due to the great advances in VLSI technology and the advent of high speed
communication links, there has been a rapid increase in the number of the
distributed computing systems in the past few years. The assignment of tasks
to processors is an essential issue in exploiting the capabilities of a distributed
system. In a careless assignment, processors may spend most of their time
communicating with each other instead of performing useful computations.
The task assignment problem in distributed systems deals with finding a proper
assignment of tasks to processors such that total execution and communication

costs are minimized.

The problem was first introduced and solved by Stone [1]. Stone reduced
the task assignment problem to multiway cut problem by which the optimal
assignments can be found in polynomial time for two-processor systems. Un-
fortunately the task assignment problem is known to be NP-complete [2] for
three and more processors systems in general. Stone extends his method to
more than two processors. He examines an auxiliary two-processor problem
where a certain processor is singled out and all other processors are merged
into a new one. He then shows that the tasks assigned to single processor
retain this assignment in some optimal solution. This method is effective when
many tasks are assigned to single processor. But computational results show
that this is not the case especially for large problems. Lo [3] uses this method

to reduce the number of tasks to be assigned. Her algorithm then completes
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the assignment by using a greedy approach.

For the general task assignment problem, efficient branch-and-bound algo-
rithms such as presented by Chern et. al. [4] and Magirou and Milis [2] can
be used to find the optimal assignments, but they are infeasible in terms of
computation time. So, several heuristic based algorithms have been proposed
to produce suboptimal assignments effectively. Most of those assignment al-
gorithms use clustering approaches in which the highly interacting tasks are
merged to reduce the original problem into a smaller and easier one. The as-
signment algorithms which use clustering approaches can be classified into two
groups; single-phase assignment algorithms and two-phase assignment algo-
rithms. In single-phase assignment algorithms such as presented by Magirou [5]
and Kopidakis et. al. [6], the processors are also considered for clustering as
well as tasks. In those algorithms, clustering a processor and a task effectively
represents assignment of that task to that processor. Two tasks can be merged
to form a new cluster but two processor is not considered for clustering. Two-
phase assignment algorithms such as presented by Efe [7], Williams [8] and
Bowen et.al. [9] consists of two consecutive phases as; clustering phase and
assignment phase. In the clustering phase, the highly communicating tasks are
merged to form new clusters, and those clusters are then assigned to processors
according to a heuristic in the assignment phase. Traditional clustering algo-
rithms do not consider the differences between the execution characteristics of
clustered tasks. They usually tend to form clusters of highly communicating
tasks. In those clustering algorithms, clustering of dissimilar tasks can not
be avoided. In this work, we present a clustering scheme which considers the
difference between the execution times of tasks as well as the communication

costs between them.

Multilevel approaches [10] are widely used for graph/hypergraph parti-
tioning problems. In this work, we adapted the multilevel scheme used in
graph /hypergraph partitioning problem to the task assignment problem to find
suboptimal solutions. In this scheme, the original task assignment problem is
reduced down to a series of smaller task assignment problems by clustering
tasks, and then an initial assignment is found for the smallest task assignment

problem. This initial assignment is then projected back towards the original
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problem by periodically refining the assignments. Since the original problem
has more degrees of freedom, such refinements decrease the cost of assignments.
A class of local refinement algorithms that tend to produce very good results are
based on the Kernighan-Lin (KL) heuristic [11]. For task assignment problem,
we exploit the refinement scheme presented by Fiduccia-Mattheyses (FM) [12]
which is a commonly used variation of KL. In our case, FM, starting from an
initial assignment, performs a number of passes until it finds a locally minimum
assignment. Each pass consists of a sequence of task reassignments and may
have a linear time complexity in terms of the graph size by using appropriate

data structures.

The organization of the thesis is as follows. The formal definition of task
assignment problem and previous work is presented in Chapter 2. In this chap-
ter, we also give the key points for the motivation of this work. In Chapter 3,
we present the proposed clustering and assignment schemes for two-phase task
assignment approaches. A two-phase task assignment algorithm (AC2) which
uses those clustering and assignment schemes is also presented in Chapter 3. A
multilevel approach based on FM refinement along with the different clustering
schemes is presented in Chapter 4. Finally, experimental results obtained by

the proposed algorithms are summarized in Chapter 5.



Chapter 2

Problem Definition and

Previous Work

In this chapter, we define the task assignment problem and we mention about
the previous work carried out to solve it. At the end of this chapter, we give

the basic motivation behind our work.

2.1 Problem Definition

Let’s begin with the following model of task-processor system and try to
find a task assignment that minimizes total execution and communication
costs. Formally, consider a set of n heterogeneous processors labelled as P =
{p1,p2,P3, -, Pn} and a set of m tasks labelled as T' = {¢;,1s, 13, ..., t,,}. From
now on, indices h, 7, j, k and ¢ will be used to represent tasks, whereas indices

p, g, v will be used to represent processors.

Let’s assume that we have a task interaction graph (TIG), G = (T, ') whose
nodes represent tasks. The edges of GG represent the interactions between the

pair of tasks in T, i.e., the edges in & are defined as:

E ={(7,j)] some data needed to be transferred between tasks ¢ and j}
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In some applications such as scheduling, the direction of the edges in G
is important. However, in our context, direction makes no difference and we
consider G to be an undirected graph. Each edge (¢,7) in TIG is associated
with a communication cost ¢;; which is the cost to incur when tasks ¢ and j
are assigned to different processors. Since we consider identical communication
links between processors, ¢;; will be constant for all pairs of processors that
tasks ¢ and j are assigned to. That is, the communication costs do not depend
on the processors that the tasks are assigned to. In addition, assigning tasks
¢ and j to the same processor does not introduce any communication cost. In

other words ¢;; will be 0, if we assign tasks ¢ and j to the same processor.

Let z;, be the execution cost of task ¢ on processor p. The execution costs
of the same task on different processors need not to be equal because of the
different capabilities of heterogeneous processors in the system. Let X; be the

sum of the execution costs of task 2 on each processor p € P. In other words;

Xi = inp

peP

The objective of the task assignment problem is to find an assignment func-
tion A : T' — P that minimizes the sum of execution and communication costs.
More formally, task assignment problem can be formulated as a minimization

problem;

Min (Z Z AipTip + Z Z aip(l — ajp)cij) subject to

=1 p=1 (¢,7)€E p=1
n
dap=1, i=1,23,..,m
p=1

ap, €40,1}, p=1,2,3,...,n,1=1,2,3,...,m .

Here, a;, = 1, if task ¢ is assigned to processor p and «a;, = 0 otherwise. The
constraint }_; a;, = 1 enforces the fact that each task ¢ should be assigned
to one processor. As it can be realized from the formulation, task assignment
problem is very similar to some other well known NP-complete problems such
as graph partitioning [10] and quadratic assignment [13]. In addition to those
similarities, Stone [1] and Magirou [5] find a close correspondence between task

assignment problem and multi-way cut problem.
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2.2 Previous Work

Numerous studies have been performed to solve the task assignment problem.
One of the first is by Stone [1], who used network flow algorithms with a
graph theoretical approach to solve the problem for two-processor systems in
polynomial time. Stone’s algorithm begins with modification of the TIG by
adding two nodes labelled as S7 and S3 that represent processors P; and P,
respectively. S; and S, represent unique source and unique sink nodes in the
flow network. For each task node, an edge is added from the specific node
to each of S; and S;. The weight of an edge between a task and Sy is equal
to the execution cost of that task on the other processor P,, and the weight
of an edge between a task and Sy is equal to the execution cost of that task
on the other processor P;. In the modified graph (Stone calls it commodity
flow network), each two-way cut that separates the distinguished nodes S; and
Sy, represents a solution to the task assignment problem and the weight of
the cutset represents the total cost for that assignment. The minimum weight
cutset obtained by the application of the maximum network flow algorithm
correspond to an optimal solution to the task assignment problem. Stone
extended his algorithm to more than two processors using a heuristic. For
an n-processor system, Stone’s algorithm adds a distinguished node for each
processor to TIG. For each task node, an edge from that task node to each
distinguished node is also added to the TIG. In this case, the weight of the
edge between task node ¢ and distinguished node p is equal to;
X;
(n—1)

An n-way cut partitions the nodes of commodity flow network into n disjoint

— Tip-

subsets in such a way that each subset contains exactly one distinguished node.
Any n-way cut represents a solution to the task assignment problem. To find
an n-way cut, Stone reduced the n-processor problem to several two-processor
problems. However, this method is unable to find a complete solution to the

problem in most of the cases.

After Stone’s work, researchers tried to find exact assignment algorithms

for restricted cases. Bokhari [14] presents an O(mn?) algorithm for TIGs that
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have a tree topology, and Towsley [15] presents an O(mn?) algorithm for serial-
parallel TIGs by generalizing Bokhari’s approach. In another work, Fernandez-
Baca [16] presents an O(mn**+!) algorithm for the problem where the TIG is
a k-ary tree. For other cases, the problem is known to be NP-complete in

general [2].

For general problems, several heuristics have been proposed. Lo’s algo-
rithm [3] is one of the well known heuristics. It consists of three phases :
grab, lump and greedy with complexities O(nm?|E|log m), O(m?*|E|log m)
and O(nm?) respectively. In the grab phase, Lo [3] uses Stone’s [1] approach
to find a partial assignment of tasks to processors. The partial assignment
found in grab phase is the prefix of all optimal solutions [3]. If the assignment
is complete then it is optimal. If there are some tasks remaining unassigned
then the lump phase tries to find an optimal assignment by assigning all re-
maining tasks to one processor. If the lump phase fails to assign all remaining
tasks to a processor, then greedy phase is invoked. The greedy phase tries
to find the clusters of heavily interacting tasks. To do this, the greedy phase
modifies TIG by eliminating the edges whose weight is smaller than the average
weight of the edges in TIG. Then, any connected component of the modified
TIG is used as a cluster of tasks. Those clusters are then assigned to their best
processors. Here, and hereafter, we will refer the processor which executes a
task or a cluster of tasks with minimum execution cost, as the best processor
of that task or task cluster. Lo’s algorithm seems to work well in systems that
has small number of processors (e.g. n=3,4). However, in the case of medium-
to-large number of processors (e.g. n > 5), the performance of the grab phase
degrades drastically. That is, the number of tasks grabbed drastically decreases
with increasing n. Furthermore, the performance of the clustering approach

used in the greedy phase degrades substantially with increasing n.

Another recent heuristic is presented by Kopidakis et. al. [6]. They trans-
form the minimization of total execution and communication costs into a max-

imization problem as;

Max ( Z Cij (Z aipajp) + Z Z(l — aip)xip) subject to
(

1,7)EE p=1 =1 p=1
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Zaipzl, 1=1,2,3,....m
p=1

ap, €40,1}, p=1,2,3,..,n, 1=1,23,....m

By doing so, they try to treat processor-to-task edges (pt-edges) and task-
to-task edges (tt-edges) in a common framework. In their approach, TIG is
augmented to include each processor as a node, and the weight of each pt-edge
(i,p) € E, 1 € T,p € P is set to;

Xi — Tip

n—1

Cip =

to express the term;
Z zip(1 — aip)
p=1

in the maximization problem. Kopidakis et. al. present an O(m(m +n)?) time
task assignment algorithm by using the above formulation and graph model.
Their algorithm is a pure clustering algorithm in which contraction of a pt-edge
means an assignment and contraction of a tt-edge means clustering of tasks.
The scaling between the weights of pt-edges and tt-edges is the main problem
in their algorithm. The averaging on the execution times of tasks is not a good
solution to this problem. Assume that some of the processors in the system
is very slow relative to the others. Then, the weight of the pt-edges between
fast processors and tasks will be high relative to tt-edges. Then, averaging will
not provide a normalization between pt-edges and tt-edges in heterogeneous
systems. So, their approach still suffer from lack of a proper scaling between

tt-edges and pt-edges for comparison.

In most of the heuristic models, researchers tried to form task clusters with
a minimum cost of intercluster communication. Efe [7] and Bowen et. al. [9]
proposed clustering heuristics for the task assignment problem. The main
problem in their approaches is that, the difference between the execution costs

of the clustered tasks on the same processors is not taken into consideration.
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Figure 2.1: Clustering alternatives of task ¢ in G = (T, F)

2.3 Motivation

Most of the task assignment algorithms using clustering approach tend to min-
imize the intercluster communication costs first, and then they find a local
optimal solution to task assignment problem by assigning those task clusters
to their best processors. Since they don’t consider the difference between the
execution times of tasks in a cluster on the same processors, they also tend to

form clusters of tasks that are not similar to each other.

For the sample TIG given in Fig. 2.1, traditional clustering algorithms tend
to merge tasks ¢ and h since (¢, h) € E is the edge with maximum weight. Let’s
investigate the validity of this decision by looking at the different clustering

alternatives for task .

o If we cluster tasks ¢ and j then;

— 10 units of communication cost is saved,

— but at least min,ep {zi, + ;5 = (2+ 1) = 3 units of execution cost

is introduced.
o If we cluster tasks ¢ and k then;

— 50 units of communication cost is saved,

— but at least minyep {zi, + Tkp} = (2 + 200) = 202 units of execution

cost is introduced.

o If we cluster tasks ¢ and h then;
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— 100 units of communication cost is saved,

— but at least minyep {x;p + 21,} = (2004+200) = 400 units of execution

cost is introduced.

So it seems that there is some deficiency in clustering tasks ¢ and & together.
This deficiency can not be avoided without taking the execution times of tasks

into the consideration.

In addition to this observation, we can say that a task is usually assigned
to one of the processors that executes it with low costs relative to the other
processors. In other words, a task is rarely assigned to its worst processor in
an optimal solution in terms of execution costs. For example, task ¢ is not
very likely to be assigned to Ps in an optimal solution of the sample problem
given in Fig. 2.1. So averaging approaches adopted in the schemes presented
by Stone [1], Lo [3] and Kopidakis et. al. [6] make some wrong decisions while
assigning tasks to the processors. Because, execution times of a task on some
processors may be very high relative to the majority of the processors. If we
use an averaging scheme, then we have to eliminate those processors from the

calculation.

In a clustering approach, the communication cost between a task ¢ and a
cluster is equal to the sum of communication costs between task ¢ and all
tasks in that cluster. In most of the traditional assignment algorithms that
use clustering approach, clusters are formed iteratively (i.e., new clusters are
formed one at a time) based on the communication costs between tasks and
clusters. This approach corresponds to agglomerative clustering in clustering
classification. In those approaches, the communication cost between a task
and a cluster would automatically create a large volume of communication
and iterative clustering algorithms proceed in the next step by contracting an
edge neighbour to one just contracted. This problem is known as the polariza-
tion problem in general. Kopidakis et. al. [6] proposed two solutions for this
problem. First solution is to use hierarchical clustering approaches such as
matching-based algorithms instead of the iterative algorithms. In hierarchical
clustering algorithms, several new clusters may be formed simultaneously. This

approach solves the polarization problem, but the experimental results given
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in [6] show that it generally leads to decrease in the assignment quality. Other
solution presented by Kopidakis et. al. is that they set the communication cost
between a task 2 and a cluster equal to the maximum of the communication
costs between task 2 and the tasks in that cluster instead of sum of them.
Choosing the maximum communication cost prevents polarization towards the
growing cluster. However, this scheme causes unfairness between clusters and

usually, it does not yield good clusters in terms of communication costs.

According to the first observation, if we find a clustering scheme that con-
siders the similarities of tasks while looking at the communication costs, it will
give better clusters than the traditional clustering approaches. Second obser-
vation says that the assignment algorithm should be optimistic up to a point.
That is, while looking at the execution times of a task on different processors,
we have to eliminate the worst processors. Finally, third observation displays
the need for a clustering scheme which avoids polarization during agglomera-
tive clustering. These observations are the key points for the motivation of the

proposed work.



Chapter 3

Single Level Assignment

Algorithms

Task assignment algorithms which use clustering approaches usually consist
of two phases; clustering phase and assignment phase. In clustering phase,
highly communicating tasks are merged to form new clusters, and then, those
clusters are assigned to their best processors in the assignment phase. Many
work show that the assignment order of clusters affects the assignment quality
of a task assignment algorithm. In this chapter, we present new clustering and

assignment approaches for two-phase task assignment algorithms.

3.1 Clustering Phase

In most of the previous clustering approaches to the task assignment prob-
lem, such as algorithms proposed by Efe [7] and Bowen et. al. [9], clustering
phase and assignment phase are strictly separated from each other. In those
algorithms, clustering phase is usually followed by the assignment phase. Clus-
tering phase, as the first phase of those algorithms, has more flexibility than
assignment phase, so success of assignment phase heavily depends on the suc-

cess of clustering phase. Main decisions about the solution are given in the

12
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clustering phase and assignment phase usually completes the solution by us-
ing a straightforward heuristic, such as assigning all the clusters to their best
processors as in Lo’s greedy part [3]. The problem with clustering approach
is that, the optimal solution to the reduced problem is not always an optimal
solution to the original graph. This is because of the wrong decisions made
in the clustering phase of the algorithms. In such algorithms, total intertask
communication costs within the clusters are tried to be maximized to minimize
the communication costs between clusters. However, this approach does not
give good clusters, especially when the processors are heterogeneous. In this
section, we will present a new clustering approach that considers the differences

between execution costs of tasks on the same processors.

Let’s assume that (¢,7) € E for tasks ¢ and j in G. If tasks ¢ and j are
assigned to different processors, then their contribution to the total cost with

edge (,7) will be at least;
¢ij + mingep{zip} + minyep{z;p}

where the last two terms are the minimum execution costs of tasks ¢ and j. If
tasks ¢ and j are assigned to the same processor, then their contribution to the

total cost with edge (¢,7) will be at least;
minpep{Tip + Tjp}.

Let «;; be the profit of clustering tasks ¢ and j together. Generally, tasks ¢
and j are decided to be in the same cluster, if the cost of assigning them to
different processors is more than the cost of assigning them to same processor.

We can derive an optimistic equation for «y; by subtracting those two costs;

@ij = ¢ij + minpep{Tip} + mingep{z;p} — mingep{zi, + 5p} (1)

In our clustering approach, we consider the clustering of tasks ¢ and 7 whose
clustering profit «;; is maximum. The profit metric in Eq. 1 can be rewritten

as;

aij = cij — dij (2)

where d;; effectively represents the dissimilarity between tasks ¢ and j in terms

of their execution characteristics. That is,

dij = minpeP{xip + xjp} - (minpeP{xip} + minpeP{xjp}) .
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Tasks | z;1 ;2 %43

1 65 30 15
2 50 45 100
3 1100 5 100
4 85 45 10
5 10 95 100
6 85 30 95
7 35 25 90
25 | 60 140 200

14 | 150 75 25
2,57 | 95 165 290

Figure 3.1: TIG and execution times for a sample task assignment problem.

) (2.5)
=/ N/
10/10 25/15
7) (7)

14) 75Lz?>////jfgz> 14) 75/-45 @;gj
37 10/-70 3/10/-60
25/-25 25/15 25/-25
5/-50
6) 5/5 ; 6
Step 3 Step 4

Figure 3.2: Clustering steps of sample TIG given in Fig. 3.1
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Note that d;; > 0 since;
Minyep{®ip + Tjp} > mingep{zip} + mingep{z;p}, Vi, J,p.

In other words, sum of the minimum execution costs of tasks ¢ and j on their
best processors is always less than or equal to the minimum of sum of execution
costs of tasks ¢ and j on the same processors. Dissimilarity metric achieves its
minimum value of d;; = 0 when both tasks ¢ and 7 have the minimum execution
cost on the same processor, i.e. when their best processors are the same. As
seen in Eq. 2, the profit of a clustering decreases by increasing dissimilarity
between the respective pair of tasks. Hence, unlike the traditional clustering
approaches, our clustering profit does not only depend on the intertask com-
munication costs but also depends on the similarities of tasks to be clustered.

It is an optimistic metric, but it is worth to be optimistic up to a point.

Figure 3.2 presents the steps of our clustering algorithm for the sample task
assignment problem defined in Fig. 3.1. The execution costs of the new clusters
are also presented in Fig. 3.1. Our clustering algorithm stops when all of the
clustering profits are negative. At the end of our clustering algorithm, two new
clusters are formed; first one is formed by merging tasks 1 and 4, and second
one is formed by merging tasks 2, 5 and 7. By doing so, two decisions are
given in the clustering phase; tasks 1 and 4 should be assigned to the same
processor, and tasks 2, 5 and 7 should be assigned to the same processor.
With this decisions, the original problem is reduced to a smaller problem by
contracting the clustered tasks together. We found the optimal solution to the
problem in Fig. 3.1 by using the branch-and-bound [2] algorithm presented by
Magirou and Milis [2]. The cost of optimal solution for the sample problem is
255 units. We observe that a straightforward assignment on the coarsest TIG
obtained at the end of Step 4 of Fig. 3.2 achieves the same optimal solution.
Here, straightforward assignment corresponds to assigning each task cluster
to its best processor. That is, task clusters {1,4}, {2,5,7}, {3} and {6} are
assigned to their best processors P;, Py, P, and P, respectively. This result
shows that our clustering algorithm produced perfect clusters for the sample
problem. It means that decisions which are given in the clustering phase are
completely correct for the sample problem. Lo’s algorithm [3] give a solution

whose cost is 275 units while the algorithm proposed by Kopidakis et. al. [6]
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give a solution whose cost is 285 units for the same problem.

We have presented a profit metric for clustering two tasks, but we can
extend our metric to clusters of k-tasks (2 < k < m) by preserving the general
principles of our approach. Let S be the set of tasks to be considered for
clustering, and ag be the clustering profit of tasks in S. Then,

as = %Z Z ¢ij + Z minyep {Tip} — mingep {Z J}Z'p} :
€S JES 1€S i€eS

We apply pure agglomerative clustering algorithm in our clustering ap-
proach. TIG is initially considered to have n clusters of exactly one task each.
At each pass, the algorithm merges a set of clusters into a new cluster. Let S
be the set of clusters that are decided to be merged in our clustering algorithm
into a new cluster labelled as k. Then the execution times of the new cluster
on each processor p is;

Thp = Z Tip, Vp=1,2,...,n.
€Sy
All external edges of the tasks in S are merged to form the adjacency list of
new cluster k£ while deleting the internal edges. Then, algorithm continues in

the same way as far as the largest clustering profit remains above zero.

Our clustering scheme is iterative, but it inherently solves the polarization
problem. Because, our clustering scheme does not only consider the communi-
cation costs of tasks but it also considers the difference between the execution
times of the tasks being clustered. As in most of the clustering algorithms, the
communication cost between a task and a cluster is large relative to that of a
pair of single tasks in our clustering scheme. But the difference between the
execution times of a task and a cluster is also large relative to that of a pair
of single tasks. So our clustering gain metric does not degenerate when the

clusters get bigger.

3.2 Assignment Phase

Clustering phase does not give any solution to the task assignment problem, so

we must somehow assign the clusters of tasks to processors after the clustering
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phase of the algorithm. Numerous research on iterative assignment algorithms
have shown that quality of an assignment heavily depends on the order in
which the tasks are assigned. There are a lot of assignment heuristics that
try to find a reasonable order in the assignment of tasks. One of them is by
Williams [8]. Williams sorted tasks by their sum of communication costs and
than assigned tasks in that order to their best processors. This algorithm is
a straightforward but efficient algorithm. In this section, we present two new
assignment heuristics that are used to determine the assignment order; assign-
ment according to clustering loss and assignment according to grab affinity.
In both of the heuristics, each cluster selected for assignment is assigned to its

best processor.

3.2.1 Assignment According to Clustering Loss

In the previous section, we presented a profit metric ag for clustering a set (.5)
of tasks into a new cluster. If ag is positive, clustering the tasks in S may be a
good decision. Let assume that all clustering profits of task ¢ with other tasks is
negative. Then forming a cluster including task ¢ is meaningless, so it is better
to assign task 2 to its best processor. But if there are more than one tasks
that have negative clustering profits for all their clustering alternatives, then
the order in which clusters are assigned may affect the solution quality of the
algorithm. Our experiments showed that assigning the task with most negative
clustering profits first gives better solutions to the task allocation problems.
This is reasonable, because the task with most negative clustering profits is
the most independent task in general. So, in case of faulty assignment, other

tasks will not be affected very much.

3.2.2 Assignment According to Grab Affinity

The word grab is first used by Lo [3] to identify the first phase of her algorithm.
In grab phase, Lo’s algorithm tries to find a prefix to optimal solution by using
maximum flow algorithm on commodity flow network. In each iteration of the

grab phase, a number of tasks may be grabbed by a processor, and these tasks
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are then assigned to a processor. Assume that only one task (task ¢) is grabbed
by a processor p in a step of grab phase. Then, the following inequality must
hold;

X;
n_l—l'sz Z Cij—I'xip
(i.J)EE
For any task ¢, let;
X;
r, = n—1 _2$ip_ Z Cij

(3,7)eE

where p is the best processor of task 2. If r; is greater than 0, then task ¢ is
assigned to its best processor in any optimal assignment. For r; < 0, a greater
r; means that task ¢ is more likely to be assigned to its best processor in an
optimal solution. Due to this observation, selecting the task ¢ with greatest
r; for assigning first, is more likely to give better solutions to task assignment
problem. We use this criteria to determine the cluster of tasks to be assigned

first in the assignment phase of our algorithms.

After assigning task ¢ to a processor, if we assign another task j adjacent to
task ¢ to the same processor, then there will be a communication cost which is
saved. So, after assigning a task to a processor, we must adjust the execution
times of the tasks which are adjacent to that task in TIG. In this case, Lo [3]
proposed a method for adjusting the execution costs of tasks. We also used
this method in our algorithms. Assume that task ¢ is assigned to processor p
and task j is an unassigned task which is adjacent to task z in TIG. Then, new

execution cost of task j on processor ¢ € P such that (¢ # p) is;
Tjy = Tjq + iy (3)

and execution cost of task j on processor p will not change.

3.3 AC2 Task Assignment Algorithm

In one phase algorithms such as the one presented by Kopidakis et.al. [6] scaling
and polarization problems generally leads to bad solutions. In this section, we
present a two-phase assignment algorithm (AC2) which has a loose asymptotic
upper bound of O(|E|*n + |E|mlogm) in worst case. AC2 consists of two

phase; clustering phase and assignment phase.



CHAPTER 3. SINGLE LEVEL ASSIGNMENT ALGORITHMS 19

AC2 (G, )
Q<90
for each task ¢ € T do
compute clustering profit a;; for each task k& € Adj[i] according to Eq. 1
choose the best mate j € Adj[i] of task ¢ with a;; = mawje gq;p) {ir }
INSERT (Q,1, oyj)
mateli] — j
while @ # 0 do
if key[¢] > 0 then
i — EXTRACT-MAX (Q)
CLUSTER (G, Q,z, 1, mate[t])
else
select the task ¢ with maximum assignment affinity

ASSIGN (G, Q,z,1)

Figure 3.3: AC2 task assignment algorithm

In the clustering phase, our algorithm uses pure agglomerative clustering
approach to form the clusters of tasks by using the clustering profit described
above. In the assignment phase, one of the two assignment criteria can be used
to determine the task to be assigned. In our implementation, we use assignment
with grab affinity as the assignment criterion. The task which is selected for
assignment is assigned to its best processor according to the modified execution
times of tasks. The pseudo codes for clustering phase and assignment phase of

our algorithm are given in Fig. 3.4 and Fig. 3.5 respectively.

In the AC2 assignment algorithm given in Fig. 3.3, the property Adj[:] for
task ¢ represents the set of all tasks which are adjacent to task . The property
mate[i] for task 7 contains the best clustering alternative of task ¢ among all
adjacent unassigned tasks and property keyli] contains the queuing key for task
¢ which is equal to the clustering profit of tasks ¢ and mate[i]. The algorithm
continuously forms supertasks by merging pairs of tasks whose clustering profits
are positive. When the clustering profits of all task pairs are negative, then a

task which is selected according to one of our assignment criteria, is assigned
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CLUSTER (G,Q,x,1,j)
DELETE(Q, 7)
merge tasks ¢ and j into a new supertask k
construct Adj[k] by performing weighted union of Adj[i] and Adj[j]
update Adj[h] accordingly for each task h € Adj[k]
for each processor p € P do
Thp < Tip + Tjp
for each h € Adj[k] do
compute clustering profit apr = agp
if key[h] < apr then
INCREASE-KEY (Q,h, ap) with mate[h] = k
elseif mate[h] = ¢ or mate[h] = j then
recompute the best mate £ € Adj[h] of task h
DECREASE-KEY (Q, h, an)
choose the best mate ¢ € Adj[k] for task k
INSERT (Q,k, axs) with mate[k] = {

Figure 3.4: AC2 clustering algorithm

ASSIGN (G,Q,z,1)
DELETE(Q,?)
assign task ¢ to its best processor
for each task j € Adj[i] do
Adjlj] — Adjlj] - {i}
for each processor ¢ € P — {p} do
Tjq < Tjq T Cij

Figure 3.5: Assignment algorithm for task ¢ to processor p
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to its best processor. Assignment of a supertask to a processor effectively
means assignment of all its constituent tasks to that processor. Note that
after the assignment of a task, the clustering profits of some unassigned task
pairs may become positive. If so, the algorithm forms intermittent clusters.
Our algorithm terminates when all tasks are assigned to processors. In AC2,
we use a priority queue (Max-heap) to get the pair of task with maximum

clustering profit.

After each clustering and assignment phase of AC2 the key values for unas-
signed tasks are changed. So, the key values of the tasks in the priority queue
must be updated appropriately after each clustering and assignment of tasks.
The update operations on the priority queue is achieved by using increase-key
and decrease-key operations. When a task pair (¢,7) is clustered into a su-
pertask k£ then, we have to update clustering profits of adjacent tasks on the
priority queue. If the clustering profit of an adjacent task h with new task k is
greater than the old key value of task h, then task k will be the best mate for
task h with a greater key value which is equal to apx. Otherwise, the algorithm
recomputes the best clustering profit of task h, only if the old best mate of
task h is either task ¢ or task j. In this case, the key value of task h have to be
decreased. In all other cases, the key value and best mate of task h will remain
unchanged. When a task ¢ is assigned to its best processor, the execution times
of all unassigned tasks adjacent to task ¢ are updated according to Eq. 3. Al-
though, TIG seems to be updated in the algorithm for the sake of simplicity of
presentation, the topology of TIG is never changed in our clustering algorithm.
In addition, pt-edges are not explicitly considered in our implementation for

run-time efficiency, instead they are considered implicitly.

In this work, we implemented another assignment algorithm (AC3) in which
at most three tasks are clustered instead of two. AC3 is able to find the
heavily communicating triple tasks in the TIG in one iteration of the clustering
algorithm. With this characteristic, it has a more powerful clustering scheme
than AC2. The implementation of AC3 is very similar to AC2, but it needs

substantially more computation time than AC2.



Chapter 4

Multilevel Task Assignment
Algorithms

Multilevel graph partitioning methods have been proposed leading to successful
graph partitioning tools such as Chaco [17] and MeTiS [10]. These multilevel
heuristics consist of three phases, namely coarsening, initial partitioning and
uncoarsening. In the first phase, multilevel clustering is successively applied
starting from the original graph by adopting various clustering heuristics until
the number of tasks in the coarsened graph reduces below a predetermined
threshold value. In the second phase, the coarsest graph is partitioned using
various heuristics. In the third phase, the partition found in the second phase
is successively projected back towards the original graph by refining the pro-
jected partitions on intermediate level graphs using several heuristics. In this
chapter, we try to adopt this multilevel scheme to task assignment problem.
Our multilevel algorithms also have these three phases. In the first phase, TIG
will be coarsened by using several clustering heuristics. In the second phase,
an initial assignment will be found on the reduced task assignment problem.
In the third phase, the assignment found in the second phase is successively
projected back to the original problem by refining the assignment in each in-
termediate level. Since the original problem has more degrees of freedom, such

refinements decrease the cost of assignments at each level.

22
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7 L

Initial Assignment

Figure 4.1: Multi level assignment for a system of three processors

4.1 Clustering Phase

In this phase, the given TIG G = Gy = (T, Eo) is coarsened into a sequence
of smaller TIGs Gy = (11, F1), G2 = (13, Es),...,Gy = (T, Ey) satisfying
|To| > |T1| > |T3] > ... > |Tk|. This coarsening is achieved by coalescing disjoint
subsets of tasks of TIG G; into supertasks such that each supertask in GG; forms
a single task of G;y1. The execution time of each task of (G;11 on a processor
becomes equal to the sum of its constituent tasks of the corresponding super-
task in GG;. The edge set of each supertask is set equal to the weighted union of
the edge sets of its constituent tasks. Coarsening phase terminates when the
number of tasks in the coarsened TIG reduces below the number of processors
(n) or reduction on the number of tasks between successive levels is below 90
percent (i.e., 0.90|7%| < |Tx+1]|). In the clustering phase, we apply our cluster-
ing profit metric presented in Section 2.1. We present five heuristics to reduce
TIG; matching-based clustering (MC), randomized semi-agglomerative cluster-
ing (RSAC2), semi-agglomerative clustering (SAC2), agglomerative clustering
(AC2) and multi-multi level assignment(MLA ).
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4.1.1 Matching-Based Clustering

Matching-based clustering works as follows. For each edge (¢,7) € E; in the
TIG Gy the clustering profit «;; for tasks ¢ and 7 is calculated. Then, each pair
of adjacent tasks ¢ and j are visited in the order of descending clustering profit
a;. If both of the adjacent tasks are not matched yet, then those two adjacent
tasks are merged into a cluster. By doing so, our clustering algorithm tries to
form clusters of tasks that provide maximum clustering profits over all tasks.
If the clustering profit of tasks ¢ and j is less than 0, then those two tasks
are not matched and the matching algorithm terminates at this point. At the
end, unmatched tasks remain as singleton clusters. This matching scheme does
not give the maximum weighted matching in terms of edge clustering profits,
because it is very costly to find maximum weighted matching on a graph. Our
scheme only tries to find a matching close to the maximum matching by using
a heuristic. Matching-based clustering allows the clustering of only pairs of
tasks in a level. In order to enable the clustering of more than two tasks at

each level, we have provided agglomerative clustering approaches.

4.1.2 Randomized Semi-Agglomerative Clustering

In this scheme, each task 7 is assumed to constitute a singleton cluster, C; = {¢}
at the beginning of each coarsening level. Here, C; also denotes the cluster
containing task ¢ during the coarse of clustering. Then, clusters are visited in a
random order. If a task ¢ has already been clustered (i.e. |C;| > 1), then it is not
considered for being the source of a new clustering. However, an unclustered
task can choose to join with a supertask cluster as well as a singleton cluster.
That is, all adjacent clusters of an unclustered task are considered for selection.
A task ¢ is tried to be included in an adjacent cluster C; which has the maximum
clustering profit with task ¢ among all adjacent clusters of task ¢. Selecting the
cluster C; adjacent to task ¢ corresponds to including task ¢ in the cluster C; to
grow a new multitask cluster C; = C; = C;U{¢}. For this case, if the clustering
gains of a task ¢ are all negative, then task ¢ remains unclustered. That is, task
¢ will be a singleton cluster for the next level. The clustering quality of this

scheme is not predictable, because it highly depends on the order in which the
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clustered tasks are visited. That is, at each run, this clustering scheme gives
different clusters of tasks. So, it is not used in an assignment algorithm, but
instead, we used this clustering scheme in a randomized assignment algorithm
which we run many times to find solutions to a task assignment problem whose

best result is expected to be quite close to an optimal solution.

4.1.3 Semi-Agglomerative Clustering

This version of clustering approach is very similar to the randomized semi-
agglomerative clustering approach. The only difference is that, a single task
to be clustered is not selected randomly, instead, a single task with the high-
est clustering profit among others is selected as the source of the clustering.
The solution quality obtained by the semi-agglomerative clustering approach
is more predictable. In fact, it gives relatively better solution quality than the
average solution quality of the randomized version. But it is also very likely to

be stuck on a local optimal solution whose refinement is not easy.

4.1.4 Agglomerative Clustering

In semi-agglomerative clustering approaches, single tasks are enforced to be in-
cluded in a cluster. In those approaches, some very good clustering alternatives
that can be obtained by merging two multitone clusters are not considered. In
the agglomerative clustering, two multitone clusters can be merged together
in a single level. By doing so, we try to eliminate the deficiencies in semi-
agglomerative clustering approaches. This clustering approach is very similar
to the AC2 clustering algorithm presented in Section 3.1. But, in this case, it
is adopted to the multilevel scheme. We do not use a randomization scheme

for agglomerative clustering approach.
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4.1.5 Multi-Multi Level Assignment

In all of the above algorithms, the original TIG is reduced by clustering tasks
into a single task. Another approach to reduce the original problem could be to
assign some of tasks in each level of the algorithm. In this section, we present
a multilevel algorithm which reduces the original problem by successively as-
signing some of the tasks in each level. Let’s assume that we have a multilevel
assignment algorithm which uses the randomized semi-agglomerative cluster-
ing approach. It is obvious that, at each run, this algorithm will give different
assignments for the same task assignment problem. If we run this algorithm
for sufficiently large times, the cost of the best assignment obtained in those
runs can be expected to be very close to the cost of optimal solution to that
task assignment problem. In this algorithm, 5 different assignments are found
for a given task assignment problem by using a randomized multilevel assign-
ment algorithm. From those 5 assignments, we choose the best 4 assignments
to eliminate the negative effects of significantly bad assignments. If task ¢ is
assigned to the same processor p in all of the 4 assignments, then it is assigned
to processor p at the current level. Then, task ¢ and all edges of task : are
deleted from the TIG for the next levels. In next levels, task ¢ will not be con-
sidered as a task in any phase. But in the refinement phase, task ¢ will be free
to be assigned to any other processor at higher levels. After this assignment,
we have to adjust the execution costs of the adjacent tasks to reflect the assign-
ment. For any edge (¢,7) € E, we add ¢;; to all execution times of task j on all
processors except processor p. This approach gives very good assignments for
any task assignment problem, but it has a relatively high running time. This
tradeoff can be lowered by using less than 5 assignments at a time, but in that

case, 1t is likely to get worse solutions.

4.2 Initial Assignment Phase

The aim of this phase is to find an assignment for the task assignment problem
in the coarsest level. We can find the initial assignment by using our single

level task assignment algorithms as well as Lo’s [3] algorithm. It is obvious that
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good initial assignments usually lead to better solutions to the original task
assignment problem. So, in our multilevel algorithms, we use the two-phase
task assignment algorithm AC2 described in Section 3.3 to find the initial

assignment for a task assignment problem.

4.3 Uncoarsening Phase

At each level /, assignment A, found on the set T} is projected back to an
assignment A,y on the set T,_y. The constituent tasks of each supertask
in Gy_1 is assigned to the processor that the respective supertask is assigned
to in Gy. Obviously, this new assignment A,_; has the same cost with the
previous assignment A,. As the next step, we refine this assignment by using
a refinement algorithm starting from the initial assignment A,_;. Note that,
even if the assignment A, is at a local minima (i.e. reassignment of any single
task does not decrease the assignment cost), the projected assignment Ay_4
may not be at a local minima. Since Gy_y is finer, it has more degrees of
freedom that can be used to further improve the assignment A,_; and thus
decrease the assignment cost. Hence, it may still be possible to improve the

projected assignment A,_; by local refinement heuristics.

Kernighan and Lin (KL) [11] proposed a refinement heuristic which is ap-
plied in refinement phase of the graph partitioning tools because of their short
run-times and good quality results. KL algorithm, starting from an initial par-
tition, performs a number of passes until it finds a locally minimum partition.
Each pass consists of a sequence of vertex swaps. Fiduccia and Mattheyses
(FM) [12] introduced a faster implementation of KL algorithm by proposing
vertex move concept instead of vertex swap. This modification as well as proper
data structures, e.g., bucket lists, reduced the time complexity of a single pass
of KL algorithm to linear in the size of the graph. In coarsening phase of our
assignment algorithm, we use FM approach with some modifications to refine
the assignments in intermediate levels. In this version of FM, we propose task

reassignment concept instead of vertex move in graph /hypergraph partitioning.

Let task ¢ be assigned to processor p in an assignment. The reassignment
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gain of task ¢ from processor p to another processor ¢ is the decrease in the
cost of assignment, if task ¢ is assigned to the processor ¢ instead of processor
p. In other words, reassignment gain for task ¢ from processor p to processor ¢

is equal to :

Gip—q = (xip + Z czy) - (xiq + Z czy) )
J€Adj[1),als]=q J€Adj[d,als]=p

where a[j] denotes the current processor assignment for task j. Our FM algo-
rithm begins with calculating the maximum reassignment gain for each task
¢ in current TIG. Those tasks are inserted into a priority queue according to
their maximum reassignment gains. Initially all tasks are unlocked, i.e., they
are free to be reassigned to the other processors. The algorithm selects an
unlocked task with the largest reassignment gain from the priority queue and
assigns it to the processor which gives the maximum reassignment gain. After
the reassignment of a task ¢, the algorithm locks task ¢ and recalculates the
reassignment gains of all tasks adjacent to task :. Note that, our algorithm
does not allow the reassignment of the locked tasks in a pass since this may
result in trashing. A single pass of the algorithm ends when all of the tasks are
locked, i.e, (all tasks have been reassigned). At the end of a FM pass, we have a
sequence of tentative task reassignments and their respective gains. Then from
this sequence, we construct the maximum prefix subsequence of reassignments
with the maximum sum which incurs the maximum decrease in the cost of the
assignment. The permanent realization of the reassignments in this maximum
prefix subsequence is efficiently achieved by rolling back the remaining moves
at the end of the overall sequence. Now, this assignment becomes the initial
assignment for the next pass of the algorithm. The roll-back scheme in FM
provides hill-climbing ability in refinement. So, FM does not stuck to a trivial
local optimal assignment. The overall refinement process in a level terminates
if the maximum prefix sum of a pass is not positive. In the case of multi-
level assignment algorithms, FM refinement becomes very powerful, because
the initial assignment available at each successive uncoarsening level is already

a good assignment.



Chapter 5

Experimental Results

5.1 Data Sets

We have evaluated the performance of the proposed algorithms for randomly
generated problem instances. We can classify the set of problem instances
which are used in this work into two groups according to topologies of their re-
spective TIGs. In the first group, we have generated problem instances whose
TIGs are trees and in the second group, we have generated problem instances
whose TIGs are general graphs. Optimal assignments can be effectively ob-
tained by using Bokhari’s task assignment algorithm [14] for the problem in-
stances with tree TIGs and so, the performance of the proposed algorithms can
be determined accurately. On the other hand, it is infeasible to compute the
optimal assignments for the problem instances with general TIGs. In this case,
the assignments of the proposed algorithms are compared to the best known
assignment for any specific problem instance. The best known assignments
for the problem instances with general TIGs are determined by running our
randomized multilevel assignment algorithm described in Chapter 4 for 100000
times on each problem instance and choosing the best assignment among the

results of these 100000 runs.

In generation of problem instances with general TIGs, the topologies of T1Gs

are selected from the set of DWT symmetric matrices in Harwell-Boing matrix

29
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Edge Degrees
Topology | m  |E| | min maz avg o cov
DWT59 59 104 1 5 3.53  T7.40 2.10
DWT66 66 127 1 5 3.85 5.15 1.34
DWTT72 72 75 1 4 2.08 524 252
DWTS87 87 227 1 12 5.22 21.61 4.14
DWT162 | 162 510 1 8 6.30 22.09 3.51
DWT198 | 198 597 1 11 6.03 30.10 4.99
DWT209 | 209 767 3 16 7.34 3257 4.44
DWT221 | 221 704 3 11 6.37 23.87 3.75
DWT234 | 234 300 1 9 256 2248 8.77
DWT245 | 245 608 1 12 496 40.63 8.19
DWT307 | 307 1108 ) 8 7.22 19.14 2.65
DWT310 | 316 1069 3 16 6.90 25.94 3.76
DWT361 | 361 1296 3 8 T7.18 25.52 3.55
DWT419 | 419 1572 5 12 750 35.68 4.75
DWT492 | 492 1332 2 10 541 43.17 7.97

Table 5.1: Properties of DWT symmetric matrices

collection. We have used 15 different topologies in generation of the problem
instances. Properties of the matrices which are used as general graph topolo-
gies are summarized in the Table 5.1. During the test data generation, the
execution costs are randomly selected integers which follow a uniform distri-
bution within interval [1, I.]. Similarly, the communication costs are randomly
selected integers which follow a uniform distribution within interval [1, I.]. In
all of our experiments, we have fixed I. to 100 for each edge in TIG. Since the
generation of realistic problems is critical for the validation of the proposed
algorithms, we have tried to avoid generation of trivial problems. To do this,

we have used different I.’s for each task ¢ according to the following equation.

]6 = Z Cij

In this way, we have tried to keep execution costs and communication costs
comparable with each other. In this equation, r.., 1s the communication ratio
which is varied in order to estimate the impact of the relative size of execution
and communication costs. In our experiments, we have generated problem
instances for 3 different values of r.,, which are 0.7, 1.0 and 1.3. Another

parameter in generation of the problem instances is the number of processor
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0.6 Quality of Random Solutions in Trees (n=6 Rcom=1)
@ Random Version ‘

Q Q
N

Figure 5.1: Percent relative distance of the best solutions provided by 100000
runs of the randomized multilevel assignment algorithm on trees

(n). In our experiments, we have generated problem instances with 3, 6, 9,
12, 15 and 18 processors. For each different combination of parameters (TIG,
N, Teom), 20 different random problem instances are generated and solved by

proposed algorithms

In generation of problem instances with tree TIGs, we have created random
tree topologies as follows. First, we have created completely connected graphs
with m nodes (m is the number of tasks) whose edges are randomly weighted.
Then, we have found the minimum spanning trees of those graphs. These
minimum spanning trees are used as random tree topologies in our experiments.
For a fixed m, we have generated 20 different tree topologies to avoid the effects
of tree diameters on the assignment qualities. As in the case of general graphs,
we have generated 20 random problem instances for each different tree topology,
i.e. 400 problem instances are generated for each fixed m. For this case, n and
Teom are chosen from the same sets described above and execution costs and

communication costs are assigned in the same manner.
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As a measure of the solution quality, the relative distance from the best
known solution to a problem instance (best known solutions are optimal so-
lutions for trees) is calculated for each of the implemented algorithms. The
percent relative distance for an algorithm A is equal to the;

100 x M,
Sp
where Sp is the quality of the best known solution and S4 is the quality of
the solution provided by algorithm A. By using optimal solutions provided by
Bokhari’s algorithm on trees, we have tested the solution qualities of the best
known solutions provided by our randomized multilevel assignment algorithm.
As it can be seen from Fig. 5.1, it provides solutions which are very close to
their optimal solutions in quality for trees. So, it shows that our quality metric

is reliable for general graphs.

5.2 Implementation of the Algorithms

We have implemented two single level task assignment algorithms; AC2 and
AC3 according to clustering and assignment schemes described in Chapter 3.
The solutions provided by AC2 and AC3 are refined by using a two-level FM
scheme in order to see the effects of refinement on the single level algorithms.
In the first level of FM, solutions are refined by reassigning only the clusters of
tasks which are formed by the clustering schemes of AC2 and AC3. In second
level of FM, refined solutions are projected back into the original problem
and the projected solutions are refined by reassigning the tasks of the original

problem.

In addition to those single level algorithms, we have implemented 4 multi-
level task assignment algorithms which use the clustering schemes; matching-
based clustering (MC), semi-agglomerative clustering (SAC2), agglomerative
clustering (AC2) and multi-multi level assignment (MLA) described in Chap-
ter 4. For the sake of ease of presentation, we call multilevel algorithms with

the name of their clustering schemes. For example, multilevel task assignment

algorithm which uses MC is called as MC-ML (ML stands for multi level).
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KLZ (G, %)
modify the TIG G = (E,T) into G' = (E',T U P)
sort the edges of G’ according to their weights in descending order
for each edge e € E’ in decreasing order of their weights do
if e = (p,¢) is a pt-edge where p € P and i € E then
if task ¢ is not assigned then
assign task 2 and all tasks clustered with task ¢ to processor p
else if e = (4,7) is a tt-edge where ¢,7 € T then
if task ¢ is not assigned then
if task j is not assigned then
merge two clusters represented by task ¢ and j together
else
let p be the processor to which task j is assigned
assign task ¢ and all tasks clustered with task ¢ to processor p
else if task j is not assigned then
let p be the processor to which task ¢ is assigned
assign task j and all tasks clustered with task j to processor p

Figure 5.2: Asymptotically faster implementation proposed for the KLZ as-
signment algorithm

So, our 4 multilevel algorithms are MC-ML, SAC2-ML, AC2-ML and MLA-
ML. We have used assignment with grab affinity to find an initial solution in
the coarsest level of the multi level assignment algorithms. The refinement

phase of all multilevel assignment algorithms are implemented as described in

Chapter 4.

The algorithms proposed by Lo [3] and Kopidakis et. al. [6] are also im-
plemented in this work for relative performance evaluation. The former and
the latter algorithms are referred to here as VML and KLZ respectively. The
implementation proposed by Kopidakis et. al. [6] for their MaxEdge algorithm
leads to O(m(m + n)?) time computational complexity. In this work, we pro-
pose an asymptotically faster implementation for the KLZ algorithm. The
proposed scheme displayed in Fig. 5.2 runs in O((|E| + mn)log(|E| + mn)).

The solutions provided by those algorithms are also refined. In the refinement
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of the solutions provided by VML, the grabbed tasks are locked to prevent
them from being reassigned to the other processors, since they are already

assigned to their optimal processor.

5.3 Effects of the Assignment Criteria

In Chapter 3, we have presented two assignment heuristics to determine the
cluster of tasks to be assigned first. We have tried both of the assignment
heuristics along with the one proposed by Williams [8] in our AC2 algorithm
for various task assignment problems to find their effects on the solution qual-
ities. As seen in Fig. 5.3, both of the assignment heuristics give approximately
same solution qualities on different problem instances. However, assignment ac-
cording to grab affinity gives slightly better solutions on average. Lo’s work [3]
shows that when the number of processors in a task assignment problem is
small, a task will have higher chance of being grabbed. So, it is likely that
assignments according to grab affinity give better solution qualities for the sys-
tems that have small number of processors. However, if we use assignment
according to grab affinity in our single level task assignment algorithms, we
need a second priority queue to keep the grab affinities of unassigned tasks.
Since our single level assignment algorithms (AC2 and AC3) calculates maxi-
mum clustering profits of unassigned tasks, we do not need a second priority
queue in our algorithms which use assignment according to clustering loss. So
there is a trade off. For the sake of uniformity, we use assignment according to

grab affinity in all single level task assignment algorithms which we are tested.

5.4 Experiments with Tree TIGs

Figures 5.4, 5.5 and 5.6 illustrate the percent qualities of the proposed algo-
rithms for 3, 9 and 15 processors systems with tree TIGs respectively. As
seen in Fig. 5.4, VML performs substantially better than KLZ on 3-processor
systems. However, Figs. 5.5 and 5.6 show that KLZ substantially outperforms

VML for 9-processor and 15-processor systems. This situation is due to the
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Quality Before Refinement (n=9 rcom=1.0)

!@Williams H Clustering Loss O Grab Affinity \

Quality After Refinement (n=9 rcom=1.0)

EWilliams E Clustering Loss OGrab Affinity

Figure 5.3: Percent relative performance of assignment heuristics applied to

AC2 algorithm
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fact that the grab phase of VML works only for small number of processors
especially for 2 and 3 processors. But, as seen in Figs. 5.4-5.6, there is no clear
winner among the refined versions of VML and KLZ. Figures 5.4-5.6 show that
qualities of the solutions provided by the proposed algorithms are obviously
and constantly superior in any case. As seen in Figs. 5.4-5.6, the assignment
qualities of all proposed algorithms based on clustering approaches decrease
with increasing number of tasks. However, the assignment quality of MLA-ML
does not affected from the number of tasks. This finding can be most prob-
ably due to the fact that assignment gets importance over clustering in task

assignment problems whose TIGs are sparse.

The relative solution qualities of experimented algorithms on tree TIGs
are summarized in Tables 5.2 and 5.3. As seen in Table 5.2, our AC2 and
AC3 algorithms produce substantially better solutions than other assignment
algorithms. In Table 5.2, it is also observed that AC2 produces slightly better
solutions than AC3. This finding can be attributed to the fact that forming
clusters of 3 tasks in trees is not a good approach because, there is no 3-cliques
in trees. So AC2 has an advantage in sparse graphs, although AC3 is more
powerful in general. Another important observation in Table 5.2 is that the
performances of all experimented algorithms get worse with increasing n and
Teom- Lhis situation can be most probably due to the fact that it becomes
harder to find optimal solutions for the task assignment problems with large n

and 7.om.

If we look at the solution qualities of VML and KLZ in Table 5.2, we can see
that VML gives better assignments than KLZ only for the 3-processor systems.
The performance of VML drastically decreases with increasing number of pro-
cessors. This is expected, because the performance of VML mainly depends on
the success of its grab phase. The grab phase works only for small number of
processors. For the task assignment problems with large number of processors,
the assignments of VML is generally provided by the greedy phase. The results
in Table 5.2 shows that straightforward clustering scheme in greedy phase of

VML usually leads to bad assignments relative to other clustering schemes.

The relative assignment qualities of our multilevel algorithms and the re-

fined versions of single level algorithms are summarized in Table 5.3. As seen
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in Table 5.3, SAC2-ML and AC2-ML give substantially better solutions than
others, and MLA-ML gives worst solution qualities among the multilevel algo-
rithms. This is also expected, because the success of MLA-ML highly depends
on the refinement phase of its random assignments. Numerous work has shown
that the performance of FM schemes deteriorates for too sparse graphs. As
seen in Table 5.4, the improvements which are provided by FM on the solu-
tions of our algorithms are less than 1% for all cases. Although it works well on
the solutions of VML and KLZ, the solution qualities of them are still worse
than all of our algorithms even after the refinement. As seen in Table 5.4,
solutions of multilevel algorithms are generally refined more than our single
level algorithms. This is because of the fact that FM is more suitable for mul-
tilevel schemes, and its performance can be increased by imposing appropriate

number of levels.



CHAPTER 5. EXPERIMENTAL RESULTS 38

Quality Before Refinement (n=3 rcom=1.0)
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Figure 5.4: Percent qualities of algorithms for 3-processor systems in trees
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80 Quality Before Refinement (n=9 rcom=1.0)
EVML BKLZ OAC2 BAC3 |

18 Quality After Refinement (n=9 rcom=1.0)
EVML BEKLZ OAC2 BEAC3 @MC-ML EBSAC2-ML ODAC2-ML EMLA-ML

Figure 5.5: Percent qualities of algorithms for 9-processor systems in trees
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100 Quality Before Refinement (n=15 rcom=1.0)
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Figure 5.6: Percent qualities of algorithms for 15-processor systems in trees
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Existing Proposed
Algorithms Algorithms

I I VAV RS T 7 A 1O A 10
Tcom n V VI L nL/A | AUZ AU

3 10.02 14.33 | 1.25 1.25
6| 66.78 2234 | 1.92 1.77
0.70 | 9| 88.02 27.48 | 2.28 2.00
12 | 102.04 31.16 | 2.29 2.23
15 | 111.92 34.50 | 2.40 2.45
18 | 120.94 37.63 | 2.52 2.56

3| 10.15 1749 | 1.31 1.35

6| 50.77 25.02| 2.05 2.23
1.00 | 9| 6541 29.74 | 2.40 2.55
12 | 75.93 34.77 | 2.55 2.85
15| 82.25 37.53 | 2.80 3.18
18 | 89.62 40.76 | 2.89 3.42

31 10.18 17.38 | 1.13 1.41

6| 41.49 24.47 | 1.89 2.29
1.30 | 9| 52.73 28.66 | 2.23 2.64
12| 61.00 33.24 | 2.33 2.92
15| 65.77 35.89 | 2.44 3.27
18 | 71.61 39.16 | 249 3.37

Table 5.2: Averages of percent qualities of solutions provided by single level
algorithms in trees
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Existing
Algorithms Proposed Algorithms
Teom | 7 | VML KLZ | AC2 AC3 MC-ML SAC2-ML AC2-MLL MLA-ML
3| 241 1.54 | 0.81 0.76 0.74 0.68 0.73 0.30
6| 521 348 | 1.42 1.32 1.37 1.36 1.40 1.29
070 | 9| 6.72 5.15| 1.80 1.61 1.74 1.78 1.81 1.91
12| 845 649 | 1.90 1.86 1.88 1.89 1.91 2.51
151 10.10 7.84 | 2.03 2.07 2.07 2.08 2.02 2.94
18 | 11.06  9.33 | 2.23 2.20 2.30 2.27 2.24 3.32
3| 447 421 0.86 0.90 0.76 0.55 0.73 0.29
6| 896 838 | 1.48 1.64 1.45 1.41 1.41 1.21
1.00| 9| 11.74 11.68| 1.96 2.07 1.93 1.86 1.92 1.86
12 | 14.08 13.95| 2.14 2.29 2.20 2.13 2.12 2.40
15 | 16.55 15.98 | 2.37  2.58 2.37 2.36 2.34 2.88
18 | 1748 17.77 | 2.49 2.82 2.66 2.61 2.49 3.07
3| 564 6541076 0.93 0.68 0.38 0.62 0.23
6| 12.18 12.16 | 1.28 1.65 1.35 1.11 1.23 0.97
1.30 | 9| 16.01 15.54 | 1.73 2.08 1.76 1.49 1.65 1.57
12 | 18.31 18.69 | 1.83 2.26 1.90 1.76 1.80 1.93
151 2147 20.76 | 1.96 2.60 2.05 1.82 1.92 2.41
18 | 22.56 22.69 | 2.09 2.73 2.31 2.04 2.08 2.67

Table 5.3: Averages of percent qualities of refined solutions of the algorithms

in trees
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Existing
Algorithms Proposed Algorithms
Teom | 7| VML KLZ | AC2 AC3 MC-ML SAC2-ML AC2-MLL. MLA-ML
3 7.10 12.33 ] 0.09 0.11 0.34 0.19 0.16 0.00
6| 61.06 18.33 | 0.10 0.12 0.35 0.21 0.09 0.00
0.70 | 9| 80.79 21.81| 0.09 0.05 0.39 0.16 0.14 0.00
12 | 93.07 24.18 | 0.07 0.05 0.33 0.10 0.08 0.00
15 ] 101.23 26.20 | 0.04 0.05 0.27 0.06 0.04 0.00
18 | 109.35 27.81 | 0.02 0.03 0.23 0.04 0.02 0.00
3 5.23 12.77 | 0.10 0.07 0.40 0.26 0.20 0.00
6| 41.34 16.16 | 0.17 0.16 0.49 0.28 0.25 0.00
1.00 | 9| 53.12 1763 | 0.12 0.10 0.53 0.23 0.12 0.00
12| 61.36 20.34 | 0.07 0.13 0.40 0.12 0.08 0.00
15 ] 65.21 21.13 | 0.08 0.15 0.44 0.14 0.08 0.00
18 | 71.53 22.51 | 0.08 0.17 0.35 0.11 0.08 0.01
3 3.99 10.40 | 0.04 0.07 0.39 0.31 0.09 0.00
6| 2887 11.84 | 0.18 0.21 0.53 0.39 0.21 0.00
1.30| 9| 36.25 12.64| 0.12 0.13 0.67 0.27 0.15 0.00
12| 42.14 14.10 | 0.10 0.24 0.59 0.25 0.10 0.00
15| 43.80 14.62 | 0.15 0.25 0.60 0.29 0.18 0.00
18 | 48.57 15.99 | 0.08 0.16 0.54 0.19 0.11 0.00

Table 5.4: Averages of percent refinements on the solutions of the algorithms

in trees
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5.5 Experiments with General TIGs

We have experimented the performance of the proposed task assignment algo-
rithms on the problem instances with general TIGs. Figures 5.7, 5.8 and 5.9
illustrate the percent qualities of the proposed algorithms for 3, 9 and 15 pro-
cessors systems with general TIGs respectively. Missing bars in Figs. 5.7-5.9
denote that the respective algorithm achieves the qualities of the best known
assignments for all of the 20 problem instances with respective TIG topology.
As in the case of tree topologies, VML performs better than KLZ for only 3-
processor systems. As seen in Figs. 5.7-5.9, the proposed algorithms drastically
outperform both VML and KLZ. The assignment qualities of the proposed al-
gorithms are not affected from the number of tasks. As seen in Figs. 5.7-5.9,
MLA-ML performs substantially better assignments than all of the proposed

algorithms.

The relative solution qualities of all experimented algorithms are summa-
rized in Tables 5.5 and 5.6. As seen in Table 5.5, our AC3 algorithm produces
substantially better solutions than other single level algorithms. This is most
probably due to fact that AC3 algorithm finds the 3-cliques of highly interact-
ing tasks in TIGs. Usually, AC3 is expected to produce better clusters of tasks
then AC2, and this power of AC3 improves the solution qualities as expected.

If we look at the Table 5.6, it can be noticed that MLA-ML produces so-
lutions which are at most 0.88% worse than the best known solutions. This
situation shows that FM scheme works well on task assignment problems whose
TIGs are general graphs. This result is not surprising because, the experimen-
tal studies on graph partitioning problems [10] showed that FM works well
for dense graphs in multilevel scheme. Another interesting observation in Ta-
ble 5.6 is that the performance of MLA-ML monotonically decreases with in-
creasing communication costs. This is most probably because of the fact that
the coarsening gets more important in those problems. Since MLA-ML does
not use coarsening to reduce the original TIG, it automatically produces worse

solutions when r.,,, is increased.

As seen in Table 5.6, MC-ML produces better solutions than SAC2-ML and
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AC2-ML. This is most probably because of the fact that MC-ML has more
levels than both of SAC2-ML and AC2-ML for the same problem. So, it best
uses the power of FM scheme in refinement steps to produce better solutions.

In fact, as seen in Table 5.7, FM improves the initial assignments of MC-ML
more than the initial assignments of SAC2-ML and AC2-ML.

As seen in Table 5.5, VML and KLZ produces substantially worse solutions
than all other algorithms. Although FM improves the solutions of them very
well, they both give the worst solution qualities even after the refinement in

all of the cases.
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30 - Quality Before Refinement (n=3 rcom=1.0)

EVML BKLZ OAC2 BAC3 |

3 Quality After Refinement (n=3 rcom=1.0)
EVML EBKLZ OAC2 EAC3 EMC-ML ESAC2-ML OAC2-ML EMLA-ML

25

Figure 5.7: Percent qualities of algorithms for 3-processor systems in general
graphs



CHAPTER 5. EXPERIMENTAL RESULTS 47

70 Quality Before Refinement (n=9 rcom=1.0)

‘BVML BKLZ OAC2 BAC3-

9 - Quality After Refinement (n=9 rcom=1.0)
EOVML BKLZ OAC2 BAC3 @MC-ML BSAC2-ML OAC2-ML EMLA-ML

Figure 5.8: Percent qualities of algorithms for 9-processor systems in general
graphs
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80 - Quality ‘Before Refinement (n=15 rcom=1.0)
EVML BKLZ OAC2 MAC3
[ J

Quality After Refinement (n=15 rcom=1.0)
16 - OVML BKLZ OAC2 BAC3 @MC-ML @ SAC2-ML OAC2-ML EMLA-ML

Figure 5.9: Percent qualities of algorithms for 15-processor systems in general
graphs
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Existing Proposed
Algorithms | Algorithms

I I VAV RS T 7 A 1O A 10
Tcom | VLML nL/A | AUZ AU9D

3| 12.04 998 0.96 0.58
6| 45.35 12.61 | 1.20 0.78
0.70 | 9| 5855 14.15| 1.26 0.75
12 | 66.81 15.68 | 1.36 0.83
15| 73.16 16.86 | 1.28 0.77
18 | 77.98 18.12 | 1.35 0.79
31 9.08 1827 1.63 1.23
6 | 26.68 21.97 | 2.48 1.54
1.00 | 9| 33.98 23.79 | 2.67 1.66
12 | 38.74 26.15 | 2.87 1.81
15 | 42,52 27.68 | 2.98 1.91
18 | 45.68 29.68 | 2.91 1.80
3| 6.04 2753 1.76 1.30
6 | 16.72 3252 | 3.30 2.04
1.30 | 91 20.94 3494 | 3.82 2.30
12 | 24.07 37.72 | 3.87 2.50
15| 26.80 39.36 | 4.36 2.80
18 | 29.01 41.66 | 4.07 2.66

Table 5.5: Averages of percent qualities of solutions provided by single level
algorithms in general graphs
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Existing
Algorithms Proposed Algorithms
Teom | 7 | VML KLZ | AC2 AC3 MC-ML SAC2-ML AC2-ML MLA-ML
3 031 0.21]0.07 0.03 0.03 0.05 0.04 0.01
6| 081 0.55]0.15 0.13 0.10 0.13 0.13 0.03
070 9| 1.20 0.91|0.24 0.15 0.19 0.23 0.24 0.04
12} 1.76 1.36 | 0.33 0.23 0.29 0.34 0.32 0.09
151 224 180 0.33 0.21 0.36 0.38 0.32 0.09
181 246 2.12 | 0.50 0.29 0.51 0.48 0.48 0.13
3] 1.23 124|035 0.33 0.16 0.21 0.23 0.02
6| 2.7 215]0.73 0.50 0.47 0.64 0.63 0.10
1.00 | 9| 3.53 292|094 0.72 0.83 0.99 0.88 0.13
12| 438 3.84 | 1.16 0.85 1.08 1.16 1.10 0.21
151 521 4.73 | 1.38 1.00 1.22 1.43 1.32 0.25
181 5.89 5.11 | 1.45 1.00 1.27 1.44 1.41 0.27
3] 2.13 263|051 049 0.35 0.36 0.43 0.08
6| 427 446 | 1.20 0.95 0.81 0.98 1.02 0.32
1.30| 9| 594 5.71| 1.69 1.16 1.46 1.61 1.61 0.48
12| 732 6.56 | 1.72 1.32 1.54 1.71 1.59 0.61
151 7.99 822|218 1.64 1.87 2.07 2.04 0.88
18| 9.26 885 2.06 1.58 1.84 1.99 1.94 0.81

Table 5.6: Averages of percent qualities of refined solutions of the algorithms

in general graphs
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Existing
Algorithms Proposed Algorithms
Teom | 7 | VML KLZ | AC2 AC3 MC-ML SAC2-ML AC2-MLL MLA-ML
31140 935 0.66 0.29 2.06 1.05 0.68 0.00
6| 44.09 11.60 | 0.74 0.29 1.89 0.90 0.75 0.00
0.70 | 915690 12.73| 0.62 0.27 1.59 0.76 0.62 0.00
12 | 64.58 13.83 | 0.64 0.25 1.54 0.70 0.64 0.01
15 | 70.38 14.56 | 0.55 0.25 1.47 0.63 0.56 0.00
18 | 75.03 15.54 | 0.48 0.17 1.47 0.59 0.48 0.01
3| 731 16.53 | 0.93 0.49 2.96 1.72 1.08 0.00
6| 23.46 19.37 | 1.38 0.64 3.33 1.83 1.49 0.00
1.00 | 9 30.00 20.37 | 1.31 0.53 2.98 1.65 1.37 0.03
12 1 33.81 21.85| 1.29 0.57 2.83 1.62 1.37 0.02
15 | 36.78 22.46 | 1.18 0.49 2.89 1.55 1.22 0.02
18 1 39.31 24.09 | 1.07 0.37 2.76 1.42 1.11 0.07
3| 3.46 2437|091 0.48 2.77 1.72 0.98 0.01
6| 11.95 27.52 | 1.73  0.67 3.88 2.65 1.91 0.11
1.30 | 9| 14.53 28.76 | 1.72 0.74 4.02 2.42 1.82 0.25
12 1 16.26 30.71 | 1.74 0.74 3.69 2.39 1.86 0.21
15 | 18.28 30.64 | 1.68 0.73 3.79 2.36 1.83 0.30
18 1 19.24 32.28 | 1.58 0.72 3.83 2.23 1.70 0.31

Table 5.7: Averages of percent refinements on solutions of the algorithms in
general graphs
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5.6 Run-Time Performance of The Proposed

Algorithms

All of the algorithms are implemented and run on a workstation equipped with
a 133 MHz PowerPC processor with 512-Kbyte external cache and 64 Mbytes
of memory. The average running times of the proposed algorithms are sum-
marized in Fig. 5.10. All running times are normalized according to average
running times of KLZ. VML is not included in Fig. 5.10 for the sake of scaling
because, its running time is very large relative to others. As seen in Fig. 5.10,
average running times of our multilevel assignment algorithms are comparable
with KLZ. Only MLA-ML needs substantially more computation time, but this
can be reduced by using less than 5 random solutions at each level. Among the
single level assignment algorithms, AC2 needs approximately 30% less compu-
tation time than KLZ on average. But AC3 needs approximately 25% more
computation time on average. This is because of the search carried out to find

the best triple clustering alternative for each task in AC3.
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Normalized Average Running Times

C—AC2 [CIACS3 I MC-ML
5 I AC2-ML CTOMLA-ML —KLZ

Figure 5.10: Normalized average running times of the proposed algorithms
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Conclusion

In this work, we have investigated the task assignment problem in distributed
systems. We have proposed efficient clustering and assignment schemes for two-
phase assignment algorithms based on an optimistic clustering metric which
considers the differences between the execution times of tasks to be clus-
tered. We have evaluated the validity of our clustering and assignment schemes
through an experimental study. In these experiments, we have generated ran-
dom problem instances whose TIGs are trees and general graphs. For the
problem instances whose TIGs are trees, our algorithms produced assignments
which are at most 3% worse than the optimal solutions. For general TIGs, our
algorithms produced assignments which are very close to the optimal solutions.
These results are very encouraging because, at significantly lower execution

time, we obtain assignments with costs very close to the optimal assignments.

We have also adapted the multilevel scheme used in graph/hypergraph par-
titioning to task assignment. Experimental results indicated that the multilevel
assignment algorithms perform well on a variety of task-processor systems. In
the refinement phase of the multilevel algorithms, we have used a variation
of FM. In this version of FM, we have introduced task reassignment concept
instead of vertex move in graph/hypergraph partitioning. We have also used
the FM algorithm in the refinement of the assignments provided by single level

algorithms. Experimental results showed that our FM refinement significantly

o4
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improved the assignment qualities of proposed algorithms especially for rela-

tively dense TIGs.

We should note that in this work, we have focused on only the problem of
minimizing total execution and communication costs of an assignment. How-
ever, other issues such as load balancing, memory restrictions, queuing delays,
precedence constraints and communication link loads can also be taken into
consideration. An obvious extension to this research is to increase the com-
plexity of the proposed methods to include such factors. Thus, task assignment

problem continues to offer a wide variety of challenging problems.
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