Dependency Parsing with an Extended Finite State Approach

Kemal Oflazer
Computing Research Laboratory
New Mexico State University,
Las Cruces, NM, 88001
and

Department of Computer Engineering

Bilkent University
Bilkent, Ankara, 06533, Turkey

koQcrl .nmsu.edu

January 22, 1999
Abstract

This paper presents a dependency parsing scheme using an extended finite state ap-
proach. The parser augments input representation with ”channels” so that links rep-
resenting syntactic dependency relations among words can be accommodated, and
iterates on the input a number of times to arrive at a fixed point. Intermediate config-
urations violating various constraints of projective dependency representations such
as no crossing links, no independent items except sentential head, etc, are filtered via
finite state filters. We have applied the parser to dependency parsing of Turkish.

1 Introduction

Recent advances in the development of sophisticated tools for building finite state systems (e.g.,
XRCE Finite State Tools (Karttunen et al., 1996), AT&T Tools (Mohri et al., 1998)) have
fostered the development of quite complex finite state systems for natural language processing.
In the last few years, there have been many studies on developing finite state parsing systems.
Koskenniemi and his colleagues (1990; 1992) have used finite state techniques for parsing by
reductionistic constraints. Recently Ait-Mokthar and Chanod (1997) has presented a finite
state parser which incrementally revises the syntactic representation it generates. Grefetstette
(Grefenstette, 1996) has used finite state techniques for constituent bracketing and extracting
grammatical relations. There have also been a number of approaches to natural language
parsing using extended finite state approaches in which a finite state engine is applied multiple
times to the input, or various derivatives thereof, until some stopping condition is reached.
Roche (1997) presents an approach for parsing in which the input is iteratively bracketed using
a finite state transducer. Abney(1996) presents a finite state parsing approach in which a
tagged sentence is parsed by transducers which progressively transform the input to sequences
of symbols representing phrasal constituents. This paper presents an approach to dependency
parsing using an extended finite state model resembling the approaches of Roche and Abney.
The parser produces outputs that encode a labeled dependency tree representation of the
syntactic relations between the words in the sentence.

Dependency

Constituency red

apple

Figure 1: Dependency vs. Constituency Representations for The tall man ate the red apple.

The outline of the paper is as follows. In Section 2 reviews the salient points of dependency
syntax. Section 3 briefly discusses aspects of Turkish relevant for this work. Section 4 very
briefly summarizes basic relevant concepts on finite state transducers. Section 5 presents our
approach to dependency parsing with an extended finite state approach. Section 6 presents
some very preliminary results from our experiments with parsing Turkish sentences. Finally,
Section 7 discusses some extensions and future work.

2 Dependency Syntax

Dependency approaches to syntactic representation use the notion of syntactic relation to as-
sociate surface lexical items. Figure 1 shows dependency and constituency representations for
a simple English sentence.! The book by Melé¢uk (1988) presents a comprehensive exposition
of dependency syntax. Computational approaches to dependency syntax have recently become
quite popular (e.g., a workshop dedicated to computational approaches to dependency gram-
mars has been held at COLING/ACL’98 Conference). Jarvinen and Tapananinen have demon-
strated an efficient wide-coverage dependency parser for English (Tapanainen and Jéarvinen,
1997; Jarvinen and Tapanainen, 1998). The work of Sleator and Temperley(1991) on link
grammar, an essentially lexicalized variant of dependency grammar, has also proved to be in-
teresting in a number of aspects. Dependency-based statistical language modeling and analysis
have also become quite popular in statistical natural language processing (Lafferty et al., 1992;

Eisner, 1996; Chelba and et al., 1997).

Robinson(1970) gives four axioms for well-formed dependency structures, which have been as-
sumed in almost all computational approaches. In a dependency structure of a sentence (i) one
and only one word is independent, i.e., not linked to some other word, (ii) all others depend
directly on some word, (iii) no word depends on more than one other, and, (iv) if a word A
depends directly on B, and some word C intervenes between them (in linear order), then C
depends directly on A or on B, or on some other intervening word. This last condition of

'We draw dependency arcs from the dependent to the head.
2

Links from Dependents Link to Head

—>

e pme B B[]

Word

Figure 2: Links and Inflectional Groups

projectivity (or various extensions of it; see e.g., Lau and Huang (1994)) is usually assumed by
most computational approaches to dependency grammars as a constraint for filtering configu-
rations. It has also been used as a simplifying condition in statistical approaches for inducing
dependencies from corpora (e.g., Yiiret(1998).)

3 Turkish

Turkish is an agglutinative language where a sequence of inflectional and derivational mor-
phemes get affixed to a root (Oflazer, 1993). Derivations are very productive, and the syntactic
relations that a word is involved in as a dependent or head element, are determined by the
inflectional properties of the one or more (intermediate) derived forms. In this work, we as-
sume that a Turkish word is represented as a sequence of inflectional groups (IGs hereafter),
separated by “DBs denoting derivation boundaries, in the following general form:
root+Infl,;"DB+Infl,"DB+-.-"DB+Infl,
where Infl; denote relevant inflectional features including the part-of-speech for the root or
any of the derived forms. For instance, the derived determiner saglamlagtirdigimizdaki
(literally, the (one) on the one we caused to become strong) would be represented as:?
saglam+Adj "DB+Verb+Become”DB+Verb+Caus+Pos "DB+Adj+PastPart+P1sg”DB
+Noun+Zero+A3sg+Pnon+Loc”DB+Det

This word has 6 IGs:
1. saglam+Adj 2. +Verb+Become 3. +Verb+Caus+Pos

4. +Adj+PastPart+Plsg 5. +Noun+Zero+A3sg+Pnon+Loc 6. +Det

An interesting observation that we can make about Turkish is that, when a word is considered
as a sequence of IGs, syntactic relation links only emanate from the last IG of a (dependent)
word, and land on one of the IG’s of the (head) word on the right (with minor exceptions), as
exemplified in Figure 2. A second observation is that, with minor exceptions, the dependency
links between the 1Gs, when drawn above the IG sequence, do not cross. Figure 3 shows
a dependency tree for the following sentence laid on top of the words segmented along IG

2The morphological features other than the obvious POSs are:+Become: become verb,+Caus: causative verb,
PastPart:Derived past participle, Plsg: 1sg possessive agreement, A3sg: 3sg number-person agreement,+Zero:Zero
derivation with no overt morpheme, +Pnon: No possessive agreement, +Loc:Locative case, +Pos: Positive Polarity.

3

Det Pos Subj

Mod Det Mod Obi/[3
ij v v) .
(Buleski] @)ahge—de [gijl-iin][bbyle][bij;zij]+ﬁne-si herkes—i]ki‘le—di]

D AD] N D N ADV VN PN ADV V

Last Iine shows the final POS for each word.

Figure 3: Dependency Links in an example Turkish Sentence

boundaries.

(1) Bu eski bahge-de+ki giil-iin
bu(this)+Det old+Adj bahge(garden)+A3sg+Pnon+Loc +Det giil (rose)+Noun+A3sg+Pnon+Gen
The growth of the rose

boyle bliyti+me-si
béyle(like-this)+Adv bilyii (grow)+Verb+Pos "DB+Noun+Inf+A3sg+P3sg+lon
like this in this old garden impressed everybody.

herkes-i cok etkile-di.

5

herkes (everybody)+Pron+A3sg+Pnon+Acc ok (very)+Adv etkile (impress)+Verb+Pos+Past+A3sg

4 Finite State Transducers

Finite state transducers (FST hereafter) are finite state devices that map between two regular
languages U and L (Kaplan and Kay, 1994; Mohri, 1996; Mohri, 1997). Figure 4 summarizes
the basic ideas of a FST. The transitions of a FST are labeled with symbol pairs u : [, either,
but not both of which, can be the ¢ symbol. The symbol u is the “upper” symbol belonging
to the alphabet of the “upper”’language, and [is the “lower” symbol belonging to the alphabet
of the “lower” regular language. FSTs are defined by regular expressions over such pairs of
symbols.? An example of such regular expression is given on the upper right side of Figure
4. Clearly, such description machinery for finite state transductions are too low level, and one
needs higher level notations to describe complex operations. The expression on the lower right
side of the same figure use the language primitives of XRCE Finite State Tools (Karttunen
et al., 1996), and describes a transducer which inserts the symbols "[NP" and "NP]", around
patterns in the upper language which match the regular expression D A* N.

A important operation on FSTs that we will be referring to in the following sections is the

composition operation. Let Ty and T, be two transducers mapping between upper and lower

SWhen both the upper and lower symbols are the same, one of them suffices notationally.

4

Upper Regular Language ZYZYZyC

I

a:b [z:x y:0]"c:c 0:b

|

xxxcb

* —p ¢ D 9
Lower Regular Language DA'N (NP NP]

Figure 4: Finite State Transducers

languages U; and L, and Uy and Ly respectively. Then, the composed transducer T'= T} o Ty
maps between U = 17 (Ly N Uy) and L = Ty(Ly N Uy).*

5 Finite State Dependency Parsing

Our approach relies on augmenting the input with “channels” that (logically) reside above the
IG sequence and “laying” links representing dependency relations in these channels, as depicted
Figure 5 a). The parser operates in a number of iterations: At each iteration of the parser, an
empty channel is added to the input and any possible links are established using these channels,
until no new links can be added. An abstract view of this is presented in parts b) through e)
of Figure 5.

5.1 Representing Channels and Syntactic Relations

The sequence (or the chart) of 1Gs is produced by a FST incorporating a morphological ana-
lyzer, with each IG being augmented by two pairs of delimiter symbols, as <(IG)>. Word final
IGs (WFIG), IGs that links will emanate from, are further augmented with a special marker @.

47=! stands for the reverse transduction from I to U.

a) Input sequence of IGs are augmented with symbols to represent Channels.

(IG)) (G, (Gy)... AG)... (G,) (G,)

b) Links are embedded in channels.

(IG)) (G, (Gy)... AG)... (G,) (G,)

¢) New channels are “stacked on top of each other".

(IG)) (G, (Gy)... AG)... (G,) (G,)

d) So that links that can not be accommodated in lower channels can be established.

dG)) IG;) (IGy)... AG))... AG,.,) (IG,)

Figure 5: Channels and Links

Channels are represented by pairs of matching symbols that surround the <. .. (and the)...>
pairs. Channels are inserted by a FST as shown in Figure 6, which depicts the initial insertion.
Symbols for new channels (upper channels in Figure 5) are stacked so that the symbols for the
most recent channels are those closest to the (...).%> The symbol 0 indicates that the channel
segment is not used while 1 indicates that the channel is used by a link that starts at some IG
on the left and ends at some IG on the right. If a link starts from an IG (ends on an IG), then
a start (stop) symbol denoting the syntactic relation is used on the right (left) side of the IG.
The syntactic relations (along with symbols used) that we currently encode in our parser are

the following:®

1. S: Subject 2. 0: Object, 3. M: Modifier (adverbs/adjectives)
4. P: Possessor, 5. C: Classifier 6. D: Determiner
7. T: Dative Adjunct 8. L: Locative Adjunct 9. A: Ablative Adjunct

10. I: Instrumental Adjunct

For instance, with three channels, two IGs of the bah¢edeki in Figure 3, would be represented

5At any time, the number of channel symbols on both sides of an IG are the same.
5We use the lower case symbol to mark the start of the link and the upper case symbol to encode the end of the link.

6

<(IG))>< (I1G,)>< (IGy)... <(IG)>... <G,))><IG,)

[Add Channel } <— Transducer

!

<0(IG,)0> <0(IG,)0>.. <0(1G,)0>... <0(IG, ,)0><0(IG,)0>

Figure 6: Inserting Empty Channels

as <MDO (bahge+Noun+A3sg+Pnon+Loc) 000> <000 (+Det@)00d>

5.2 Components of a Parser Stage

The basic strategy of a parser stage is to recognize by a rule (encoded as a regular expression)
a dependent IG and a head IG and link them by modifying the “topmost” channel between

those two. To achieve this:

1. We put temporary brackets to the left of the dependent IG and to the right of the head
IG, making sure that (i) the last channel in that segment is free, and (ii) the dependent is
not already linked (at one of the lower channels.)

2. We mark the channels of the start, intermediate and ending 1Gs with the appropriate
symbols encoding the relation thus established by the brackets, and

3. We remove the temporary brackets.

A typical linking rule looks like the following:”
[LL IG1 LR] [ML IG2 MR]* [RL IG3 RR] (->) "{s" n"s}"

This rule says: (optionally) bracket (with {S and S}), any occurrence of morphological pattern
IG1 (dependent), followed by any number of occurrences of pattern 1G2, finally ending with
a pattern IG3 (governor). The symbols L(eft)L(eft), LR, ML, MR, RL and RR are regular
expressions that encode constraints on the bounding channel symbols. For instance, LR is the
pattern "@" ")" "o" ["0" | 1]* ">" which checks that (i) this is a WFIG is word-final(has
a "@"), (ii) the right side “topmost” channel is empty (channel symbol nearest to ")"is "0"),
and (iii) the IG is not linked to any other in the lower channels (the only symbols on the right
side are 0s and 1s.)

An example of a simple rule which links a dative case marked nominal to the immediately
following postposition that subcategorizes for a dative object is the following:

"We use the XRCE Regular Expression Language Syntax; see http://www.xrce.xerox.com/research/-
nltt/fst/fssyntax.html for details.

7

[LL DativeNominal LR] [RL DativePostPos RR] (->) "{o" "0}" }

where DativeNominal and DativePostPos are regular expressions for morphological patterns
matching dative nominal morphological parses (nouns, pronouns, infinitives, nominal partici-
ples, etc.) and morphological patterns for dative requiring postpositions, respectively.

[LL NominativeNominalA3pl LR] [ML AnyIG MR]* \\\hspace*{lcm} \hspacex{icm} [RI
[FiniteVerbA3sg | FiniteVerbA3pl] RR]1(->) "\{S" "S\}"

is used to bracket a segment starting with a plural nominative nominal, as subject of a
finite verb on the right with either +A3sg or +A3pl number person agreement (allowed in
Turkish.) The regular expression NominativeNominalA3pl matches any nominal IG with
nominative case and A3pl plural agreement, while the regular expression [FiniteVerbA3sg

| FiniteVerbA3pl] matches any finite verb IG with either A3sg or A3pl agreement. The
regular expression AnyIG matches any IG.

All the rules are grouped together into a parallel bracket rule defined as follows:
define Bracket [

Patternl (->) 7{;" . . "},
Pattern2 (->) 7{,” . . .7},
Pattern3 (->) 7{3” . . .73}7,
PatternN (->) "{," . . .7, }”

1;

which will produce all possible bracketing of the input IG sequence.®

5.3 Filtering Crossing Link Configurations

The bracketings produced by Bracket contain configurations that may cause crossing links.
This happens when the left side channel symbols of the IG immediately right of a open bracket
contains the symbol 1 for one of the lower channels, indicating a link entering the region, or
when the right side channel symbols of the IG immediately to the left of a close bracket contains
the symbol 1 for one of the lower channels, indicating a link exiting the segment, i.e., either or
both of the following patterns appear in the bracketed segment:
{s<...1...0C...) ... or)0 ... 1 ...>s}

Configurations generated by bracketing are filtered by FSTs implementing suitable regular
expressions that reject inputs having crossing links.

A second configuration that may appear is the following: A rule may attempt to put a link
in the topmost channel even though the corresponding segment is not utilized in a previous

8{; and ;} are pairs of brackets; there is a distinct pair for each syntactic relation to be identified.

8

channel, e.g., the one previous channel may be all 0s. This constraint filters such cases to

prevent redundant configurations from proliferating for later iterations of the parser.’

For these two configuration constraints we define FilterConfigurations
define FilterConfigurations [FilterCrossinglinks .o. FilterEmptySegments];}Z

We can now define one phase (of one iteration) of the parser as:

define Phase Bracket .o.
FilterConfigurations .o.
MarkChannels .o.

RemoveTemporaryBrackets;

The transducer MarkChannels modifies the channel symbols in the bracketed segments to either
the syntactic relation start and end symbols or a 1. Finally, the transducer RemoveTemporaryBrackets,

removes the brackets.

The formulation up to does not allow us to bracket an IG on two consecutive non-overlapping
links in the same channel. We would need a bracketing configuration like .. .{S <...> ...{M <
...> 8}...<...>M} ... but this would not be possible within Bracket, as patterns check that
no other brackets are within their segment of interest. Simply composing the Phase transducer
with itself without introducing a new channel solves this problem, giving us a one-stage parser,

i.e., define Parse Phase .o. Phase;

5.4 Enforcing Syntactic Constraints

The rules linking the 1Gs are overgenerating in that they may generate configurations that
may violate some general or language specific constraints. For instance, more than one subject
or one object may attach to a verb, or more that one determiner or possessor may attach to
a nominal, an object may attach to a passive verb (conjunctions are handled in the manner
described in Jarvinen and Tapanainen(1998)), or a nominative pronoun may be linked as a
direct object (which is not possible in Turkish), etc. Constraints preventing these may can
be encoded in the bracketing patterns, but doing so results in complex and unreadable rules.
Instead, each can be implemented as finite state filters which operate on the outputs of Parse
by checking the symbols denoting the relations. For instance we can define the following regular
expression for filtering out configurations where two determiners are attached to the same IG.

define AtMostOneDet ["<" [“[[$"D"]"1] & LeftChannelSymbols*]
u(u AnyIG (u@u) u)u
RightChannelSymbols* ">" Jx;

®This constraint is a bit trickier since one has to check that the same number of channels on both sides are empty;
we limit ourselves to the last 3 channels in the implementation.

9

The FST for this regular expression makes sure that all configurations that are produced have

at most one D symbol among the left channel symbols.'® Other constraints (for instance, no
objects for passive marked verbs) can check any subsequent IG patterns, and kill a configuration

if a passive IG is found.

Once all such constraints (that we will assume will be labeled as Cons;, Consy ...Cons,),

they can be composed to give one FST that enforces all of these:

define SyntacticFilter [Cons; .o. Consy .o.o. Comns,];

5.5 Iterative application of the parser

Full parsing consists of iterative applications of the Parser and SyntacticFilter FSTs. Let
Input be a transducer that represents the word sequence. Let LastChannelNotEmpty be a
transducer which detects if any configuration has at least one link established in the last channel

added, defined as follows:

define LastChannelNotEmpty ["<" LeftChannelSymbols+ " (" AnyIG ("@") ")"
RightChannelSymbols+ ">"]* -
["<" LeftChannelSymbols* 0 "(" AnyIG ("@") ")"
0 RightChannelSymbols* ">"]*;}

MorphologicalDisambiguator is a reductionistic finite state disambiguator which performs
accurate but very conservative local disambiguation and multi-word construct coalescing, to
reduce morphological ambiguity without making any errors.

The iterative applications of the parser can now be given (in pseudo-code) as:

/% Map words to a transducer representing a chart of IGs */
M = [Input .o. MorphologicalAnalyzer] .o. MorphologicalDisambiguator;
repeat {
M =M .o. AddChannel .o. Parse .o. SyntacticFilter;
by
until ([M .o. LastChannelNotEmpty].l == { })
M =M .o. OnlyOneUnlinked ;
Parses = M.1;

This procedure iterates until the most recently added channel of every configuration generated
is unused (i.e., the (lower regular) language recognized by M .o. LastChannelNotEmpty is

10The crucial portion at the beginning says “it is not the case that there is more than one substring containing D.”

10

empty.)

The step after the loop, M = M .o. OnlyOneUnlinked, enforces the constraint that in a correct
dependency parse all except one of the word final IGs have to link as a dependent to some head.
This transduction filters all those configurations (and usually there are many of them due to
the optionality in the bracketing step.) Then, Parses defined as the (lower) language of the
resulting FST has all the strings that encode the IGs and the links.

5.6 Robust Parsing

It is possible that either because of grammar coverage, or ungrammatical input, a parse with
only one unlinked WFIG may not be found. In such cases Parses above would be empty.
One may however opt to accept parses with £ > 1 unlinked WFIGs when there are no parses
with < k unlinked WFIGs (for some small k.) This can be achieved by using the lenient

composition operator (Karttunen, 1998). Lenient composition, notated as .0., is used with

a generator—filter combination. When a generator transducer G is leniently composed with a
filter transducer, F, the resulting transducer, G .0. F, has the following behavior when an
input is applied: If any of the outputs of G in response to the input string satisfies the filter
F, then G .0. F produces just these as output. Otherwise, G .0. F outputs what G outputs.
Karttunen originally used lenient composition in an elegant formulation of constraint ranking in
optimality theory (Karttunen, 1998) which also involved selecting parses will smaller violations
of the constraints. It is this latter application of lenient composition that we can import into

our formulation.

Let Unlinked_i¢ denote a regular expression which accepts parse configurations with less than
or equal 7 unlinked word-final 1Gs. For instance for « = 2, this would be defined as follows:

~[[$[ngn LeftChannelSymbols* u(u AnyIG ng" u)u [uou | 1]* ||>||:|:|'~ > 2 :l}’

This regular expression will accept only those outputs where the number of unlinked WFIGs
not greater than 2.

Replacing lineM = M .o. OnlyOneUnlinked, with, for instance, M = M .0. Unlinked 1 .0O.
Unlinked 2 .0. Unlinked_3; will have the parser produce outputs with up to 3 unlinked
WFIGs, when there are no outputs with a smaller number of unlinked WFIGs. Thus it is
possible to recover some of the partial dependency structures when a full dependency structure
is not available for some reason. The caveat would be however that since Unlinked_1 is a very
strong constraint, any relaxation would increase the number of outputs substantially.

6 Preliminary experiments with dependency parsing of Turkish

Our work to date has mainly consisted of developing and implementing the representation and

finite state techniques involved here, along with a non-trivial grammar component. At this
11

Avg. Words/Sentence: | 11.6 (Min=4 — Max=23)
Avg. IGs/Sentence: 16.6 (5 — 36)

Avg. Parser Iterations: | 5.3 (3 - 8)

Avg. Parses/Sentence: | 28.35 (2 - 132)

Table 1: Preliminary Statistics from Parsing

point, we have not done any large scale experimentation on coverage, but rather restricted our
attention to a small corpus of 20 sentences (some of which are quite complex) from Turkish

news text.

The grammar has two major components. The morphological analyzer is a full coverage an-
alyzer built using XRCE tools, slightly modified to generate outputs as a sequence of 1Gs for
a sequence of words. When an input sentence is (again represented as a transducer denoting
a sequence of words) is composed with the morphological analyzer (see pseudo-code above),
a transducer for the chart representing all 1Gs for all morphological ambiguities (remaining
after disambiguation) is created. The dependency relations are described by a set of about 30
patterns much like the ones exemplified above. The rules are almost all non-lexical establishing
links of the types listed earlier. Conjunctions are handled by linking the left conjunct to the
conjunction, and linking the conjunction to the right conjunct (possibly at a different channel).
There are an additional set of about 25 finite state constraints that impose various syntactic and
configurational constraints. The resulting Parser transducer had 2707 states 27,713 transitions
while the SyntacticConstraints transducer had 28,894 states and 302,354 transitions.

Table 1 presents our preliminary results for parsing our corpus. Although these results are very
preliminary, we are encouraged by the approach and the results. The finite state transducers
compile in about 2 minutes on Apple Macintosh 250 Mhz Powerbook. Parsing is about a second
per iteration including lookup in the morphological analyzer. With completely morphologically
disambiguated input, parsing is instantaneous. The number of iterations also count the last

iteration where no new links are added.

Figure 7 presents the input and the output of the parser for a sample Turkish sentence. The
output of the parser is processed with a Perl script to provide a more human-consumable
presentation:

7 Discussion and Conclusions

We have presented the architecture and implementation of novel extended finite state depen-

dency parser, with preliminary results from Turkish. We have formulated, but not yet imple-

mented at this stage, two extensions. Crossing dependency links are very rare in Turkish and

almost always occur in Turkish when an adjunct of a verb cuts in a certain position of a (dis-
12

continuous) noun phrase. We can solve this by allowing such adjuncts to use a special channel
“below” the IG sequence so that limited crossing link configurations can be allowed. Links
where the dependent is to the right of its head, which can happen with some of the word order
variations allowed in Turkish, can similarly be handled with a right-to-left version of Parser

which is applied during each iteration.

In addition to the reductionistic disambiguator that we have used just prior to parsing, we have

implemented a number of heuristics to limit the number of potentially spurious configurations
that result because of optionality in bracketing, mainly by enforcing obligatory bracketing from
sequential dependency configurations (e.g., the complement of a postposition is immediately
before it.) Such heuristics force such dependencies to appear in the first channel at the first

possible chance and hence prune many potentially useless configurations popping up in later

stages. The robust parsing technique has been very instrumental during the process mainly in
the debugging of the grammar, but we have not made any substantial experiments with it yet.

Our ongoing work is on extending both the formulation of the approach to cover limited forms
of crossing links, in increasing the coverage of the grammar. We expect to present a more
comprehensive evaluation in the final version.

8 Acknowledgments

This work was partially supported by a NATO Science for Stability Program Project Grant, TU-
LANGUAGE made to Bilkent University. A portion of this work was done while the author was
visiting Computing Research Laboratory at New Mexico State University. The author thanks
Lauri Karttunen of Xerox Research Centre Europe, Grenoble for making available XRCE Finite
State Tools.

References

Steven Abney. 1996. Partial parsing via finite state cascades. In Proceedings of the ESSLLI’96 Robust Parsing
Workshop.

Salah Ait-Mokhtar and Jean-Pierre Chanod. 1997. Incremental finite-state parsing. In Proceedings of ANLP’97,
pages 72 — 79, April.

Ciprian Chelba and et al. 1997. Structure and estimation of a dependency language model. In Processings of
Eurospeech’97.

Jason Eisner. 1996. Three new probabilistic models for dependency parsing: An exploration. In Proceedings of
the 16th International Conference on Computational Linguistics (COLING-96), pages 340-345, August.

Gregory Grefenstette. 1996. Light parsing as finite-state filtering. In ECAI ’96 Workshop on Extended finite
state models of language. August.

Timo Jarvinen and Pasi Tapanainen. 1998. Towards an implementable dependency grammar. In Proceedings
of COLING/ACL’98 Workshop on Processing Dependency-based Grammars, pages 1-10.

Ronald M. Kaplan and Martin Kay. 1994. Regular models of phonological rule systems. Computational
Linguistics, 20(3):331-378, September.
13

Lauri Karttunen, Jean-Pierre Chanod, Gregory Grefenstette, and Anne Schiller. 1996. Regular expressions for
language engineering. Natural Language Engineering, 2(4):305—-328.

Lauri Karttunen. 1998. The proper treatment of optimality theory in computational linguistics. In Lauri
Karttunen and Kemal Oflazer, editors, Proceedings of the International Workshop on Finite State Methods in
Natural Language Processing—-FSMNLP, June.

Kimmo Koskenniemi, Pasi Tapanainen, and Atro Voutilainen. 1992. Compiling and using finite-state syntactic
rules. In Proceedings of the 14th International Conference on Computational Linguistics, COLING-92, pages
156-162.

Kimmo Koskenniemi. 1990. Finite-state parsing and disambiguation. In Proceedings of the 13th International
onference on Compulational Linguistics, , pages -

John Lafferty, Daniel Sleator, and Davy Temperley. 1992. Grammatical trigrams: A probabilistic model of link
grammars. In Proceedings of the 1992 AAAI Fall Symposium on Probablistic Approaches to Natural Language.

Bong Yeung Tom Lai and Changning Huang. 1994. Dependency grammar and the parsing of Chinese sentences.
In Proceedings of the 1994 Joint Conference of 8th ACLIC and 2nd PaFoCol.

Igor A. Melcuk. 1988. Dependency Syntax: Theory and Practice. State University of New York Press.

Mehryar Mohri, Fernando Pereira, and Michael Riley. 1998. A rational design for a weighted finite—state
transducer library. In Lecture Notes in Computer Science, 1436. Springer Verlag.

Mehryar Mohri. 1996. On some applications of finite-state automata theory to natural language processing.
Natural Language Engineering, 2:1-20.

Mehryar Mohri. 1997. Finite-state transducers in language and speech processing. Computational Linguistics,
23(2):269-311, June.

Kemal Oflazer. 1993. Two-level description of Turkish morphology. In Proceedings of the Sizth Conference
of the European Chapter of the Association for Computational Linguistics, April. A full version appears in
Literary and Linguistic Computing, Vol.9 No.2, 1994.

Jane J. Robinson. 1970. Dependency structures and transformational rules. Language, 46(2):259-284.

Emmanuel Roche. 1997. Parsing with finite state transducers. In Emmanuel Roche and Yves Schabes, editors,
Finite-State Language Processing, chapter 8. The MIT Press.

Daniel Sleator and Davy Temperley. 1991. Parsing English with a link grammar. Technical Report CMU-CS-
91-196, Computer Science Department, Carnegie Mellon University.

Pasi Tapanainen and Timo Jarvinen. 1997. A non-projective dependency parser. In Proceedings of ANLP’97,
pages 64 — 71, April.

Deniz Yuret. 1998. Discovery of Linguistic Relations Using Lexical Attraction. Ph.D. thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology.

14

Input Sentence:

Diinya BankasiTtrkiye Direktort hiikkiimetin izledigi ekonomik programin sonucunda énemli
adimlarin atildiginm soyledi.

(Word Bank Turkey Director said that as a result of the economic program followed by the
government, important steps were taken.)

Parser Output after 3 iterations:

Parsel:

<000 (dUnya+Noun+A3sg+Pnon+Nom@) 00c><C00 (banka+Noun+A3sg+P3sg+Nom@) 0c0>

<010 (tUrkiye+Noun+Prop+A3sg+Pnon+Nom@)01c><CCO (direktOr+Noun+A3sg+P3sg+Nom@) s00>

<001 (hUkUnet+Noun+A3sg+Pnon+Gen@) 10s><S01 (izle+Verb+Pos) 100><001 (+Ad j+PastPart+P3sg@) 1m0>

<011 (ekonomik+Adj@) 11m><MM1 (program+Noun+A3sg+Pnon+Gen@) 10p><P01 (sonuC+Noun+A3sg+P3sg+Loc@) 110>
<011 (Onem+Noun) 110><011 (+Adj+With@) 11m><M11 (adIm+Noun+A3pl+Pnon+Gen@) 118>

<S11(at+Verb) 110><011 (+Verb+Pass+Pos) 110><011 (+Noun+PastPart+A3sg+P3sg+Acc@) 110>

*okk

<0LS (sO0yle+Verb+Pos+Past+A3sg@) 000>

*okk

Parse?2:

<000 (dUnya+Noun+A3sg+Pnon+Nom@) 00c><C00 (banka+Noun+A3sg+P3sg+Nom@) 0c0>
<010 (tUrkiye+Noun+Prop+A3sg+Pnon+Nom@) 01c><CCO (direktOr+Noun+A3sg+P3sg+Nom@) 00>
<001 (hUkUnet+Noun+A3sg+Pnon+Gen@) 10s><S01 (izle+Verb+Pos) 100><001 (+Ad j+PastPart+P3sg@) 1m0>
<011 (ekonomik+Adj@) 11m><MM1 (program+Noun+A3sg+Pnon+Gen@) 10p><P01 (sonuC+Noun+A3sg+P3sg+Loc@) 110>
<011 (Onem+Noun) 110><011 (+Adj+With@) 11m><M11 (adIm+Noun+A3pl+Pnon+Gen@) 11s>
<SL1(at+Verb) 100><001 (+Verb+Pass+Pos) 100><001 (+Noun+PastPart+A3sg+P3sg+Acc@) 100>
*okok
<008 (s0yle+Verb+Pos+Past+A3sg@) 000>
*okok

The only difference in the two are parses are in the locative adjunct attachment (to verbs at-

and soyle, highlighted with **x).

Dependency tree for the second parse:

Cm———mm C s M——=—————————————— M
c-—-C c c---CC s s——-3 m n---MM P-
dUnya banka tUrkiye direktOr hUkUnet izle ekonomik program
Noun Noun Noun Noun Noun Verb Adj Adje Noun
A3sg A3sg Prop A3sg A3sg Pos PastPart A3sg
Pnon P3sg A3sg P3sg Pnon P3sg@ Pnon
Nom@ Nom@ Pnon Nom@ Gen® Gen®
Nom@
__ S
1= L S
--P 1 n—---M s-—-SL o—--0 §
sonuC Onem adIm at s0yle
Noun Noun Adj Noun Verb Verb Noun Verb
A3sg Witho A3pl Pass PastPart Pos
P3sg Pnon Pos A3sg Past
Loc@ Gen®@ P3sg A3sg
Acc@

Figure 7: Sample Input and Output of the parser
15

