PROCESSING OF CONTINUOUS QUERIES FROM
MOVING OBJECTS IN MOBILE COMPUTING
SYSTEMS

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER
ENGINEERING AND INFORMATION SCIENCE
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Hiseyin Gokmen Gok
January, 1999

1

I certify that I have read this thesis and that in my opin-
ion it is fully adequate, in scope and in quality, as a thesis

for the degree of Master of Science.

Assoc. Prof. Dr. Ozgiir Ulusoy(Principal Advisor)

I certify that I have read this thesis and that in my opin-
ion it is fully adequate, in scope and in quality, as a thesis

for the degree of Master of Science.

Asst. Prof. Dr. Tugrul Dayar

I certify that I have read this thesis and that in my opin-
ion it is fully adequate, in scope and in quality, as a thesis

for the degree of Master of Science.

Asst. Prof. Dr. Ugur Gudikbay

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet Baray, Director of Institute of Engineering and Science

11

ABSTRACT

PROCESSING OF CONTINUOUS QUERIES FROM MOVING OBJECTS
IN MOBILE COMPUTING SYSTEMS

Hiseyin Gokmen Gok
M.S. in Computer Engineering and Information Science
Supervisor: Assoc. Prof. Dr. Ozgﬁr Ulusoy
January, 1999

Recent advances in computer hardware technology and wireless communi-
cation networks have led to the emergence of mobile computing systems. In
a mobile computing environment, a user with a wireless connection to the in-
formation network can access data via submitting queries to the data server.
Since the mobility is the most distinguishing feature of the mobile computing
paradigm, location becomes an important piece of information for the so called
location-dependent queries where the answer to a query depends on the current
location of the user who issued the query. A location-dependent query submit-
ted by a mobile user can become more difficult to process when it is submitted
as a continuous query for which the answer changes as the user moves. The
answer to a location-dependent continuous query is a set that consists of tuples
< 5, begin, end > indicating that object S is the answer of the query from time
begin to time end. Once the tuples in the answer set are determined, the next
step is to determine when to send these tuples to the user. The transmission
time of the tuples is critical in the sense that it can affect the communica-
tion overhead imposed on the wireless network and the availability of tuples
in case of disconnections. In this thesis, we propose three tuple transmission
approaches that determine the transmission time of a tuple in the answer set of
a location-dependent continuous query. We also design and implement a sim-
ulation model to compare the performance of the proposed tuple transmission

approaches under different settings of environmental parameters.

Key words: Mobile Computing, Mobile Database Systems, Location-Dependent

Queries, Continuous Queries, Simulation.

v

OZET

MOBIL ILETISIM ORTAMLARINDA HAREKETLI KULLANICILARDAN
GONDERILEN SUREKLI SORGULARIN ISLENMESI

Hiseyin Gokmen Gok
Bilgisayar ve Enformatik Mihendisligi, Yiksek Lisans
Tez Yoneticisi: Dog. Dr. (“)zgiir Ulusoy
Ocak, 1999

Bilgisayar donanimi ve telsiz iletisim ag1 teknolojilerindeki geligmeler mo-
bil iletigim ortamlarinin gelismesine yolagti. Mobil iletisim ortamlarinda, bilgi
agina telsiz baglantisi olan kullanicilar, veri sunucusuna sorgular gondererek
veriye ulagirlar. Mobil iletigim ortamlarinda kullanicilarin hareketli olmasi ne-
deniyle, kullanicilarin konumlar1 konuma-dayalt sorgular acisindan 6nemli bir
bilgidir. Konuma-dayali sorgular surekli sorgular haline getirildiginde daha
da karmasgiklagirlar, ¢cinki sorgunun cevabi mobil kullanicinin hareket etmesi
nedeniyle siurekli degigir. Konuma-dayali sirekli bir sorgunun cevap kimesi
< S, baslangig, bitis > gibi elemanlardan olugur ve her bir eleman S nes-
nesinin baslangi¢ ve bitig stureleri arasinda sorgunun cevabi oldugu anlamina
gelir. Cevap kiimesindeki elemanlarin belirlenmesinden bir sonraki agama bu
elemanlarin mobil kullaniciya ne zaman gonderilecegidir. Bu zamanlama tel-
siz ag uzerindeki iletigim yukinu ve baglanti kopuklugu durumunda sorgu
cevabinin ne kadarinin kullaniciya gonderilmig oldugunu etkilemesi agisindan
kritiktir. Bu tezde konuma-dayali sturekli sorgularin cevap kiimesindeki ele-
manlarin mobil kullanicilara gonderilis zamanim belirleyen t¢ degisik metot
onerilmektedir. Bunun yaninda, onerilen metotlarin degisik ortamlardaki per-
formanslarim kargilagtirabilmek amaciyla bir simiilasyon modeli tasarlanmig ve

gerceklegtirilmigtir.

Anahtar kelimeler: Mobil Iletisim, Mobil Veritabani Sistemleri, Konuma

Dayali Sorgular, Strekli Sorgular, Simiilasyon.

To my family

vi

ACKNOWLEDGMENTS

[am very grateful to my supervisor Assoc. Prof. Dr. Ozgﬁr Ulusoy for his
invaluable guidance and motivating support during this study. His instruction

will be the closest and most important reference in my future research.

[would also like to thank John Wu for the discussions about porting CSIM to
Linux, Sirvan Yildiz who shared many good ideas with me, thereby contributing
valuable suggestions, Yicel Saygin for the words of encouragement, Halime
Sultan for the great motivation throughout the whole study, and my family for
giving me the patient understanding and love without which this study could

not have been completed.

Finally, I would like to thank my committee members Asst. Prof. Dr.
Tugrul Dayar and Asst. Prof. Dr. Ugur Gudikbay for their comments, and

everybody who has in some way contributed to this study.

Contents

1 Introduction
2 Related Work
3 Background and Motivation

4 Tuple Transmission Approaches
4.1 Immediate Transmission (IT) Approach
4.2 Delayed Transmission (DT) Approach
4.3 Periodic Transmission (PT) Approach.
4.4 Adaptive Periodic Transmission (APT) Approach

4.5 Mixed Transmission (MT) Approach

5 Simulation Model
5.1 Mobile Client Model
5.2 Wireless Network Manager

5.3 Server Model

Vil

10

15

15

16

16

17

18

21

CONTENTS

6 Experiments and Results
6.1 System Performance Metrics oL
6.2 Parameter Settingso o oL oL
6.3 The Base Experiment L.
6.3.1 Evaluation of the Impact of Query Duration
6.3.2 Evaluation of the Impact of Disconnection Period
6.4 Evaluation of the Impact of Hotspots
6.4.1 Evaluation of the Impact of Query Duration
6.4.2 Evaluation of the Impact of Disconnection Period

6.4.3 Evaluation of the Impact of Query Hotspots

7 Conclusions and Future Work

Viil

30

30

31

33

36

37

38

42

42

44

47

List of Figures

1.1

3.1

3.2

5.1

5.2

3.3

6.1

6.2

6.3

6.4

6.5

6.6

6.7

System Model of a Mobile Computing Environment..

Basic Communication Between an MH and an MSS.

Possible Effects of an Explicit Update.

The Simulation Model.
Mobile Client Model.

Server Model.

Average Number of Bits Transmitted vs Data Update Rate.
Average Number of Control Messages vs Data Update Rate.

Average Number of Retransmitted Tuples per CQ vs Data Up-
date Rate.

Availability of Tuples vs Data Update Rate.

Average Number of Retransmitted Tuples vs Maximum Query

Duration.

Average Number of Bits Transmitted vs Maximum Query Du-

ration. e

Availability of Tuples vs Disconnection Period.

X

LIST OF FIGURES X

6.8 Average Number of Bits Transmitted vs Data Update Rate. . . 40
6.9 Average Number of Retransmitted Tuples vs Data Update Rate. 40
6.10 Average Number of Control Messages vs Data Update Rate. . . 41
6.11 Availability of Tuples vs Data Update Rate. 41

6.12 Average Number of Bits Transmitted vs Maximum Query Du-

ration. L e 43
6.13 Availability of Tuples vs Disconnection Period. 44
6.14 Average Number of Bits Transmitted vs Data Update Rate. . . 45

6.15 Average Number of Retransmitted Tuples per CQ vs Data Up-
date Rate. 45

List of Tables

5.1

5.2

3.3

6.1

6.2

Mobile Client Model Parameters 24
Wireless Network Manager Parameters 25
Server Model Parameters oL 27
Parameter Settings for The Base Experiment 32
Parameter Settings L L. 39

xi

Chapter 1

Introduction

Recent advances in computer hardware technology and wireless communication
networks have led to the emergence of mobile computing systems [PB93, FZ94].
In a mobile computing environment, a user with a wireless connection to the
information network does not require to maintain a fixed position in the net-

work [Chr93, WC95].

Mobility has opened up new areas of research in networking and distributed
database management systems because traditional techniques developed for
those systems have been based on the assumption that the location of the
hosts and the connections among them do not change. In a mobile computing
environment, users carrying portable computers wish to maintain transpar-
ent network access through wireless links while they move from one place to
another. It is expected that in the near future, millions of mobile users will
make use of integrated voice, data, and image applications [PB94]. Therefore,
the existing hardware and software systems need to be improved based on the

features and the requirements of this new computing environment.

The principal features of mobile computing are: wireless communication,
mobility and portability [F794]. Wireless communication is much more difficult
than wired communication because the surrounding environment interacts with
the signal introducing noise and echoes [FZ94]. Some of the implications of us-

ing wireless communication are: susceptibility to disconnection, highly variable

CHAPTER 1. INTRODUCTION 2

network conditions, and low bandwidth availability. It seems that the wireless

network bandwidth will remain a major limitation and performance bottleneck

for mobile system design in the near future [PB93, FZ94, WC97, SW98].

A mobile computer can be disconnected from the network intentionally or
due to failures. It can also be possible to predict the disconnections. For exam-
ple, a weak radio link, or a partially depleted battery may warn of disconnection
possibility. Once disconnected, a mobile computer can later reconnect to the
network but in environments with frequent disconnections, it is essential for
the mobile computer to be able to operate in stand-alone mode during the

disconnection period.

The ability to change location while connected to the network increases the
volatility of some information. Certain data considered static for stationary
computing becomes dynamic for mobile computing. For example, although a
stationary computer can be configured statically to prefer the nearest server, a
mobile computer needs a mechanism to determine which server to use. Mobility
makes the location of the user a fast-changing data. Hence, processing of user

queries depending on the location of the mobile user is an important issue that

needs to be handled.

Mobile (portable) computers are to be carried by users, so their design must
not be liberal in their use of space and power. Portability places pressure on
the design of the mobile system in terms of both hardware and software design
due to the requirements for the consideration of low power consumption, risk
of data loss, and small surface area available for the user interface. Therefore,
portability entails limited resources available on board to handle the dynamic
mobile computing environment. As a result of that, it might be required to
operate a mobile computer in the doze mode for conserving energy. During
this mode of operation, the clock speed is reduced and no user computations
are performed. The mobile computer waits in the doze mode until it receives
a message from the rest of the network. Upon receipt of any such message, the

mobile computer resumes its normal mode of execution.

A widely accepted mobile system model [PB93, WC95, BMM96, TKN96,
WC97, PS97], as shown in Figure 1.1, consists of two distinct sets of entities:

CHAPTER 1. INTRODUCTION 3

Cell ... Cell
//'.MH @ \u @ v
\, | ‘/ l
VH @ I Mss | @M
Fixed Host
Cell R&d Host -
L -~ Cell
MSS MSS
. MH ! \ L
o ME@ gy _MH@ Oun

Figure 1.1: System Model of a Mobile Computing Environment.

mobile hosts and fixed hosts. A mobile host (MH) is able to move without
losing its network connection. Some of the fixed hosts that are called mobile
support stations (MSS) have the ability to communicate with mobile hosts via
wireless network. A cell is a geographical coverage area under an MSS. Each
MH is associated with an MSS (i.e., it belongs to the cell serviced by the MSS).
An MH can directly communicate with an MSS if the MH is physically located
within the cell serviced by the MSS. In order to communicate with an MH
that is not in the same cell, the source MH contacts with its local MSS which
forwards the message to the MSS of the target MH over the wired network.
The receiving MSS then transmits the message over wireless network to the

target MH.

When an MH is engaged in a data transfer, it is possible that it can move
out of the coverage area of the local MSS. Unless the data transfer is passed on
to the current cell of the MH, it will be lost. Therefore, the task of forwarding
data between the static network and the MH must be transferred to the new

cell’s MSS. This process, called hand-off, is transparent to the user [PB93].

Since the mobility is the most distinguishing feature of the mobile computing

CHAPTER 1. INTRODUCTION 4

paradigm, location becomes an important piece of information for the so called
location-dependent queries [SWCD97, SWCD98, TUW98, WXCJ98]. Consider
a database representing information about moving objects and their position in
addition to information about stationary objects. A typical query submitted
to a hotel management system might be: “display motels (with room price
and availability) that are within 5 miles of my position”; or in a battlefield a
typical query submitted might be: “display the friendly tanks within 10 miles
of my position”. Such queries may be issued from a moving object (e.g., car
of a mobile user) or from a stationary user. Consequently, the answer to a
location-dependent query may depend on the location of the MH which issued

the query and/or the locations of the objects represented in the database.

A location-dependent query can become more difficult to process when it
is submitted as a continuous query (CQ) [SWCD97, SWCD98]. The driver
querying the motels in the above example may request the answer to the query
to be continuously updated so that he/she can find a motel with a reason-
able price. It is clear that the answer to such a query changes with the car
movement and continuously updating driver’s location would impose a serious
performance and wireless bandwidth overhead. Existing database management
systems (DBMSs) are not well equipped to handle continuously changing data
such as the position of moving objects, since the data is assumed to be con-
stant unless it is explicitly modified. The position of a moving object changes
continuously as a function of time. Hence, the answer to a CQ depends not

only on the database contents but also on the time at which the query is issued.

In [SWCD97, SWCD98], a new data model called Moving Objects Spatio-
Temporal (MOST) is proposed for databases containing position information
about moving objects. MOST models the position of a moving object as a
function of time. Therefore, the answer to the query: “retrieve the current
position of the object O” in the MOST data model is different for time points
t; and t, even if the value of the attribute specifying O’s position has not been

explicitly updated.

Consider again the CQ: “display motels within 5 miles of my position”
issued by a person driving a car. When such a CQ is entered in the MOST

data model, the query is evaluated once and a set of tuples is returned as the

CHAPTER 1. INTRODUCTION 3

answer. The answer set consists of tuples < 5, begin,end > indicating that
object S is the answer of the CQ from time begin to time end. Once the answer
to the query is computed, a decision has to be made in order to determine
the time to transmit the tuples in the answer set of the CQ to the MH. There
are two basic approaches introduced in [SWCD97] to transmit the tuples to
the MH: Immediate Transmission (IT) and Delayed Transmission (DT). In
the I'T approach, the whole answer set is transmitted immediately after being
computed. In the DT approach, each tuple < S, begin,end > is transmitted

to the mobile host at time begin.

In this study, we present three new approaches for the transmission of the
tuples in the answer set of a location-dependent CQ). The first approach called
Periodic Transmission (PT) transmits the tuples in the answer set periodically.
At each w time units, this method transmits all the tuples < S, begin, end >
satisfying the condition ¢ < begin < ¢+ w where t is the current time
and w is the size of the time window. In the second approach which we call
Adaptive Periodic Transmission (APT), as an extension to the first approach,
w 1s dynamically adjusted according to the communication overhead chang-
ing due to environmental parameters such as data update rate, disconnection
frequency, and disconnection period. The final approach, called Mized Trans-
mission (MT), differs from the first two approaches in that data objects are
partitioned into two groups: one consisting of “hot” objects of updates and the
other of “cold” objects of updates. This approach transmits the “hot” tuples
as in APT and “cold” tuples as in IT.

We have implemented a simulation model of a mobile client-server system
that supports processing of CQs issued by MHs over the database of moving
objects. The simulation model is used to study the performance of the proposed
approaches in terms of the communication overhead from the server to the MH

and also to investigate performance enhancements of these approaches over the

basic schemes provided in [SWCD97, SWCD98|.

The remainder of this thesis is organized as follows. Chapter 2 discusses the
related work. Chapter 3 presents the background and the motivation for our
work. Chapter 4 describes the approaches provided to determine the transmis-

sion time of the tuples in the answer set of location-dependent C(Qs. Chapter 5

CHAPTER 1. INTRODUCTION 6

presents the simulation model used to evaluate the performance of the proposed
approaches. Chapter 6 describes the experiments conducted and discusses the
results obtained. Concluding remarks and the future work are presented in

Chapter 7.

Chapter 2

Related Work

The field of mobile database systems has been a hot research topic during
the last couple of years. A mobile computing environment can be character-
ized by frequent disconnections of MHs, significant limitations of bandwidth
and power, resource restrictions, and fast changing locations. All such char-
acteristics associated with mobile systems make traditional techniques used in
distributed computing systems inadequate and raise new challenging research

problems.

There exist a considerable a number of papers discussing general issues
and research challenges related to mobility. The new challenges in mobile
data management are identified and their technical significance is investigated
in [IB93, 1B94]. [DHB97] focuses on the differences between data manage-
ment solutions in a mobile computing environment and those in a distributed
database environment. The impact of mobility on current software systems is
discussed in [PB93]. Fundamental software design problems particular to the
mobile computing environment are addressed in [FZ94]. A general architecture

for a mobile information system is described in [PB94].

There has recently been much research concerning transaction processing
strategies for the mobile computing environment. Distributed transaction pro-

cessing issues are reexamined to account for the requirements of the mobile

CHAPTER 2. RELATED WORK 8

environment and an algorithm is proposed in [EJB95] to coordinate the execu-
tion of the operations of a transaction running at different servers. That paper
also provides a comparison between the proposed algorithm and existing solu-
tions that use the two-phase-commit protocol. [WC9T] proposes a transaction
processing system that supports disconnections. Movement behavior of the
MHs is captured in a transaction model presented in [DHB97]. [Chr93] pro-
poses an open-nested transaction model for the mobile computing environment.
Employing semantic knowledge to achieve a high degree of concurrency and to

simplify recovery in the presence of failures are discussed in [WC95].

Location management of MHs has also been studied intensively. Distributed
location management schemes are provided in [AP95, RB95] to keep track of
the location of an MH. Another distributed location management strategy with
fast location update and query, and load balancing among location servers is
proposed in [PS97]. [TKN96] combines the problem of location management
and query processing. It discusses several strategies for efficient processing
of queries to obtain the location of an MH, queries to determine whether an
MH is currently active, and queries to obtain information from an MH. Query

optimization considering both resource utilization and power consumption at

MHs is discussed in [AG93, GA93].

The problems associated with the indexing of the dynamic attributes (such
as location) in a mobile database system are addressed in [TUW98]. A variant
of the quadtree structure for indexing dynamic attributes is proposed and an al-
gorithm for generating the index periodically that minimizes the CPU and disk
access cost is provided. Indexing the position of moving objects as a dynamic
attribute for location-dependent queries is exclusively discussed in [TUW]. A
solution with a simple algorithm evolving the index through time with optimal

overhead is proposed.

Development of caching strategies to reduce the communication cost has
attracted the database community since communication in a mobile computing
environment is expensive. Some caching strategies are introduced in [BI94].
The performance of these algorithms and the impact of MH’s disconnection
times on these strategies are evaluated. [WL95] proposes a caching strategy

to maintain cache consistency so that locks are not required for read-only

CHAPTER 2. RELATED WORK 9

transactions. The concept of “air-storage” by treating the wireless media as a
layer of cache storage is considered in [LS97]. Another study [BI93] broadcasts

the timestamps of the latest changes in items as an invalidation mechanism.

The problem of cache invalidation in mobile environments is addressed in
detail in [BJ96]. The basic idea behind the APS approach presented in our
thesis was inspired from the adaptive caching algorithm introduced in that
paper. However, our context of adaptiveness is completely different. The
problem we address is the determination of transmission times of the tuples
in the answer set of a location dependent CQ), rather than the problem of
cache invalidation. In order to adapt to the environmental parameters, the
APS approach focuses on the overhead caused by the control messages and the
retransmissions whereas the adaptive caching algorithm in [BJ96] deals with

the overhead of the false cache invalidation.

The most relevant work to ours is the one presented in a series of pa-
pers [SWCD97, SWCD98, WXCJ98, WSCY]. Issues related to moving objects
databases such as indexing, location updates of moving objects, modeling, and
querying moving objects are exclusively addressed in these papers. A new data
model (MOST) is proposed to model moving objects. Future Temporal Logic
(FTL) is proposed as the query language for the MOST data model. An algo-
rithm for processing FTL queries in the MOST data model is also provided.
Two basic approaches are provided for the problem of when to transmit the

tuples in the answer set of a CQ.

Chapter 3

Background and Motivation

According to the Moving Objects Spatio-Temporal (MOST) data model pro-
posed in [SWCD97, SWCD98|, a static attribute of a database object is an
attribute that changes only when an explicit update is applied on it; in con-
trast a dynamic attribute of a database object changes over time according to
a certain function even it is not explicitly updated. For example, each of the
z, y coordinates of a moving object that specify the position of the object in
two dimensional space, is a dynamic attribute. In the MOST data model, a

dynamic attribute A is represented by 3 subattributes:

1. Awalue
2. A.updatetime

3. A.function

A.function is a function of time (¢) which has value 0 at ¢ = 0. At time
A.updatetime the value of A is A.value. Thus, until the next update time, the
value of A at time A.time 41 is given by A.value+ A. function(ty). Unlike the
traditional database systems where the same value for the attribute is returned
unless the attribute has not been explicitly modified, in the MOST data model

the value of a dynamic attribute depends on the time at which it is queried.

An explicit update of a dynamic attribute changes the value of the above 3

subattributes that represent the position of a moving object. Therefore, the

10

CHAPTER 3. BACKGROUND AND MOTIVATION 11

MSS

Answer set consisting of tuples

MH

Continuous Query

Figure 3.1: Basic Communication Between an MH and an MSS.

attributes representing the position of a moving object can remain unchanged,
while the position of the moving object changes. In the MOST data model,
the database implicitly represents future states such as the future positions of
moving objects, therefore queries referring to the future rather than the current

state of the system can be answered.

Consider again the query: “display motels within 5 miles of my position”
issued by a moving object. Recall that the answer to this query has to be
continuously updated (at least until a motel with a reasonable price is found).
Continuously evaluating such a query would be very inefficient. The query
processing algorithm proposed in [SWCD97, SWCD98| evaluates the query
once and returns a set of tuples. Figure 3.1 illustrates the basic communication
between an MH and an MSS. For an issued CQ, the answer set consists of tuples
< S, begin, end > which means that object S satisfies the query between the
times begin and end. In other words the MH will display object S on its screen

between the times begin and end.

The work of [SWCD97, SWCD98] considers a centralized DBMS equipped
with the MOST capability. Once the tuples to be transmitted to the MH are
determined, the next step is to determine when to transmit all these tuples.
In this study, the problem we attack is determination of the time to transmit
the tuples in the answer set of an issued location-dependent CQ. The selection

among the choices of transmitting all the tuples together at the time they are

CHAPTER 3. BACKGROUND AND MOTIVATION 12

L
Ans(CQq1) = {< 5,3,10 >}
Ans(CQ2) ={< 0,7,9>}

(Initial answer sets)

II.
Ans(CQq1) = {< 5,5,13 >}
Ans(CQ2) ={< 0,7,9>}

(Answer sets after an update on object 5)

II1.

Ans(CQy) = {}
Ans(CQ2)={< 0,7,9>,< 5,4,7>}

(Answer sets after another update on object 5)

Figure 3.2: Possible Effects of an Explicit Update.

determined, or delaying the transmission of a tuple until its begin time, or
transmitting the tuples periodically can affect the MH which issued the CQ in

terms of both communication cost and power consumption.

There are two basic dimensions of the communication overhead regarding

the transmission of the tuples in the answer set of a CQ:

1. Control Message Overhead: According to the point to point communica-
tion paradigm [SWD%196], a message to be transmitted is appended to a

fixed size control message.

2. Tuple Retransmission Overhead: An explicit update to an object in the
database may change the tuples referring to the updated object as shown
in Figure 3.2. The same object may satisfy the query but begin and/or end
attribute of the tuple may change (Figure 3.2, I and II). It is also possible
that a tuple referring to the updated object may no longer satisfy the query
(Figure 3.2, II and III), and/or a new object may satisfy one or more of

the active queries that it did not satisfy previously (Figure 3.2, IT and III).

CHAPTER 3. BACKGROUND AND MOTIVATION 13

Suppose that the subattributes representing the position of a moving object
S are explicitly updated at time ¢; and the tuple < S, begin, end > referring to
Sis updated accordingly (i.e., the tuple still satisfies the corresponding query).

As far as the begin time of the tuple is concerned, there are two possible cases:
Case 1. t; < begin
Case 2. t; > begin

In the first case, a retransmission of the tuple to the corresponding MH
is necessary only if the tuple was previously transmitted to the MH. In the
second case, a retransmission is mandatory because the tuple must have been

transmitted to the MH by the time begin.

We want to make it clear that various tuple transmission approaches may
handle Case 1 differently because it is possible to transmit a tuple at anytime
t < begin. In contrast, retransmission at the time of update cannot be avoided
with any approach in Case 2. Therefore, from now on we limit the scope of
the retransmissions to exclude the ones that are due to an explicit update at

t1 > begin.

In order to minimize the control message overhead, all tuples to be trans-
mitted to the MH should be gathered and form a single message. This means
that all tuples in the answer set are transmitted at anytime before the begin
time of the tuple with the earliest begin. On the other hand, such a strategy
increases the probability that the tuple will be retransmitted to the MH in case
of an explicit update. In order to minimize the probability of retransmission
of a tuple in case of an explicit update, the tuple should be transmitted by
its begin time. However, in the worst case such a strategy will lead to a situ-
ation where each tuple is appended to a control message. It is clear that the
efforts for reducing the control message overhead increases the retransmission

overhead and vice versa.

Given the same set of tuples as the answer to a CQ, different tuple trans-
mission strategies will lead to different number of control messages and re-
transmissions. This means that different amount of communication overhead

is involved with each strategy. Therefore, the tuple transmission time is critical

CHAPTER 3. BACKGROUND AND MOTIVATION 14

especially for the applications where message transmission service is charged
a fixed amount of money per byte basis. For example, RAM Mobile Data
Corporation charges a minimum of 4 cents per message, with the exact cost
depending on the size of the message [WSCY]. Given a set of tuples as the
answer to a CQ, different tuple transmission approaches produce bills with

different amounts.

Underlying tuple transmission approach also affects the duration the MH
operates in doze (energy saving) mode. CQs are processed entirely by the
server. That is why, the number of transmissions and the total time the MH
spends listening to the communication channel must be minimized in order to
minimize the energy spent by the MH. Energy preservation is critical because
MHs have limited battery capacity, two or three hours under normal use, which

is expected to increase only 20% over the next 10 years [PB94, IB94]

Given the same set of tuples as the answer to a CQ), various tuple trans-
mission strategies may differ in the ability to support the stand-alone working
capability of an MH in case of disconnection. That is, when an MH is dis-
connected after receiving a number of tuples that are in the answer set of
an issued CQ), it can continue displaying the received tuples during the dis-
connection period in the stand-alone mode (although the updates cannot be
transmitted to it). The performance of tuple transmission approaches in terms

of supporting the above ability may also be critical in some applications (e.g.,

in a battlefield).

Chapter 4

Tuple Transmission Approaches

In this chapter, we present the approaches which determine the transmission
time of tuples in the answer set of a CQ issued by an MH. We also discuss the
benefits and drawbacks of the approaches in terms of control message overhead,

tuple retransmission overhead, and the handling of disconnection behavior.

4.1 Immediate Transmission (IT) Approach

According to the IT approach presented in [SWCD97, SWCD98], all the tuples
that belong to the answer set of a C(Q) issued by an MH are transmitted at once
at the time the query processing is finished. Upon receiving the answer set, the
MH displays them on the screen accordingly. This approach has the following

characteristics:

1. It minimizes the control message overhead. All tuples are gathered in a

single message which also means a single control message.

2. When a tuple is changed due to an explicit update of an object after the

query is processed, it has to be retransmitted.

3. In case the MH disconnects after sometime it has received the answer set

of its query, it has the whole answer set.

15

CHAPTER 4. TUPLE TRANSMISSION APPROACHES 16

4.2 Delayed Transmission (DT) Approach

According to the DT approach proposed in [SWCD97, SWCD98], a tuple
< S, begin, end > is transmitted to the MH at time begin. Upon receiving a
tuple, the MH immediately displays it on the screen. This approach has the

following characteristics:

1. It maximizes the control message overhead. Each tuple is appended to a

control message and then transmitted.

2. The probability that a tuple has to be retransmitted in case of an explicit

update to a database object, is minimized.

3. In case the MH disconnects after sometime it has started to receive the

tuples in the answer of its CQ), it has the partial answer set.

4.3 Periodic Transmission (PT) Approach

PT is an intermediate approach lying between I'T and DT. According to this
approach, at each w time units, all the tuples < S, begin, end > satisfying the
condition t < begin < t+ w where t is the current time, are transmitted to the
MH. We call w the window size which specifies the time interval containing the
begin time of the tuples to be transmitted. This approach has the following

characteristics:

1. The control message overhead is less than that of the DT approach but
greater than that of the I'T approach.

2. The probability that a tuple has to be retransmitted in case of an explicit
update to a database object is less than it is in the I'T approach but greater
than it is in the DT approach.

3. In case the MH disconnects after sometime it has started to receive the

tuples in the answer of its query, it has the partial answer set.

CHAPTER 4. TUPLE TRANSMISSION APPROACHES 17

4.4 Adaptive Periodic Transmission (APT) Ap-

proach

The PT approach maintains a constant window size (w) for determining the
tuple transmission times. The value of w affects both the control message
overhead and the retransmission overhead. Large values of w reduces the con-
trol message overhead while increasing the retransmission overhead. Likewise,
small values of w reduces the retransmission overhead while increasing the

control message overhead.

Data update rate and the resulting overhead due to the retransmission of
the updated tuples may vary during the execution of a mobile system. It might
be appropriate to have a large w value in order to reduce the control message
overhead when updates to the database objects are rare. Similarly, it might
be appropriate to have a small w value in order to reduce the retransmission
overhead when the updates are frequent. Taking into account the above facts,
the APT approach adjusts w by evaluating the information about the rela-
tive overheads due to control messages and retransmissions. The period of

adjustment of w is called the evaluation period of the window size.

The control message overhead is specified by the number of control message
bits transmitted with the original tuples (excluding updated tuples) in the
answer set of a C(Q). The retransmission overhead is specified by the number of
bits transmitted as the retransmission messages which consist of the updated
tuples and their control messages. We capture the information about these two

overheads in a parameter called overhead ratio that can be defined as follows:

Definition 4.4.1 The overhead ratio V; during the i'" evaluation period is the
ratio of control message overhead C; over retransmission overhead R; during

that period. It is specified by the formula

C;
Vi=—
R;

APT uses the overhead ratio as a measure to evaluate the performance with

w for the last evaluation period. Comparing the values of the overhead ratios

CHAPTER 4. TUPLE TRANSMISSION APPROACHES 18

for the last two evaluation periods, APT decides how to adjust w for the next
evaluation period. At the :** evaluation, the window size is adjusted by using

the following formula:

Di=Vi— Vi,

e D; > 0 means that the control message overhead relative to the retrans-
mission overhead during the :** evaluation period is higher when compared
to the (z — 1) evaluation period. So, the window size should be increased

to reduce the control message overhead.

e [; < 0 means that the retransmission overhead relative to the control
message overhead during the i** evaluation period is higher when com-
pared to the (i — 1) evaluation period. So, the window size should be

decreased to reduce the retransmission overhead.

Formally,
w+e ifD; >0
w=1s w—e¢ ifD; <0
w otherwise

It can be easily confirmed that the probability that an updated tuple will
be retransmitted depends on the value of w. Large values of w increase the
retransmission probability while the small values of w decrease that probability.
Similarly, the value of w also affects the availability of the tuples in the answer
set in case of disconnections. Large values of w makes it possible for the MH

to have more tuples compared to the case with small values of w.

4.5 Mixed Transmission (MT) Approach

APT presented above maintains a single window size for the whole database.
This approach does suffer from the following shortcoming. The database may
consist of a mixture of frequently changing objects (e.g., moving objects like

cars) and rarely changing objects (e.g., motels). It may happen in this database

CHAPTER 4. TUPLE TRANSMISSION APPROACHES 19

system that w cannot be increased because of the heavy retransmission over-
head caused by frequently changing objects. On the other hand, small values
of w are not appropriate for rarely changing objects since this would increase
the control message overhead although this overhead is supposed to be minimal

for such objects.

In order to handle the above problem, the MT approach partitions the
database into two disjoint sets: one consisting of “hot” database objects (i.e., fre-
quently changing) and the other consisting of “cold” database objects (i.e., rarely
changing). This approach transmits the tuples referring the “cold” database
objects as in the IT approach and the tuples referring the “hot” database ob-
jects as in the APT approach. Therefore, the control message overhead and
the retransmission overhead is mostly limited to those associated with tuples
referring to “hot” database objects. Consequently, we modify the definition of

the overhead ratio to cover only “hot” database objects (O},).

Definition 4.5.1 The overhead ratio V;(Oy) for “hot” database objects dur-
ing the i evaluation period is the ratio of control message overhead C;(O})
over retransmission overhead R;(Oy) during that period. It is specified by the

formula

Ci(On)
i(On)

Vi(Op) =

=

MT decides how to adjust w for the next evaluation period using the following

equation.

D;(0p) = Vi(Or) — Vic1(On)

Formally,

7

w(Oh) +e if DZ(O}L) >0
w(Oh) = w(Oh) —e if DZ(O}L) <0

w(Op) otherwise

Thus, the control message overhead for the tuples referring to “cold” objects
is minimized by making use of the fact that those objects are rarely updated.
The retransmission and control message overheads for the tuples referring to

“hot” objects is reduced by transmitting these tuples as in APT.

CHAPTER 4. TUPLE TRANSMISSION APPROACHES 20

The availability of the tuples in the answer set of a CQ in case of disconnec-
tion can be considered separately for the tuples referring to “cold” and “hot”
objects. All the tuples referring to “cold” objects will be available to the MH
but the availability of the tuples referring to “hot” objects will depend on the

current value of w(Oy,).

Chapter 5

Simulation Model

We have designed a simulation model to compare the performance of tuple
transmission approaches I'T, DT, PT, APT, and MT under different settings
of environmental parameters such as the data update rate and disconnection
period. Our simulation model is based on the performance models proposed in
previous related works such as [BJ96, LS97]. These models have been extended

to support modeling of processing location-dependent CQs.

Having more than one cell in the simulation model brings hand-offs into
the picture. Suppose that an MH transmitted a query in the cell serviced by
M SS; and moved to a new cell serviced by M 5SS, before the completion of the
query. The only way M SS; can transmit the tuples in the answer set of the
query is by sending tuples to M S5, over the fixed network so that M S5, can
forward the tuples to the MH as long as the MH stays in its current cell.

Considering the existence of more than one cell in the simulation model in-
troduces the communication overhead over the fixed network. Since the fixed
network has a high bandwidth compared to the wireless network !, we think
that the mobility of MHs in multiple cells would not affect the relative perfor-
mance of tuple transmission approaches in terms of communication overhead.
Therefore, to eliminate the unnecessary details from our simulation model, we

assume that the mobile system is limited to a single cell managed by a central

LATM provides 155 Mbps and the current cellular technology provides bandwidth in the
order of 10 Kbps.

21

CHAPTER 5. SIMULATION MODEL 22

Query Generator Update Generator
Wireless
Client Manager | F----------1 Network [~ Server Manager
Manager
Resource Manager Resource Manager
Mobile Client Model Server Model

Figure 5.1: The Simulation Model.

data server (lying on an MSS) and a fixed number of mobile clients.

As shown in Figure 5.1, the simulation model consists of three basic com-
ponents:

1. Mobile Client Model

2. Wireless Network Manager

3. Server Model

In the following sections, we describe each component in detail.

5.1 Mobile Client Model

Each mobile client is formed of 3 modules as shown in Figure 5.2: a Resource
Manager which models the client CPU for handling the query results, a Query
Generator which generates the query requests, and a Client Manager which
processes the query requests and passes them to the server, models the discon-
nection operation, and receives and processes the tuples transmitted from the

server.

Client queries are submitted from an MH to the server to be processed and

CHAPTER 5. SIMULATION MODEL

Mobile Client Model

Resource Manager

CPU

use CPU

Query Generator

Message Request

. Generate Query
Mobile Client Manager
. Submit Query
. Display Tuple Query Request
. Disconnect/Connect
Connection | Query Tuple(s)

Wireless Network Manager

Figure 5.2: Mobile Client Model.

23

CHAPTER 5. SIMULATION MODEL 24

Parameter Meaning
NumMobile Hosts Number of MHs
Query RequestSize Size of a CQ submitted by an MH

ThinkTime Mean think time between queries in connect mode

DisconnectTime Mean disconnect time

MazxzQueryDuration | Maximum query duration

Disconnect Prob The probability that the MH will be disconnected
after issuing a query

ClientMsgTime CPU time to process a message per byte basis

ConnectMsgSize Size of a connection indication message

Table 5.1: Mobile Client Model Parameters

a message (messages) containing the tuples that form the answer to the query
is (are) transmitted back to the MH. The messages containing the tuples are
processed by the MH and the tuples are displayed on the screen of the MH

accordingly.

Table 5.1 lists the parameters of the Mobile Client Model. Each of the Num-
MobileHosts MHs generates a single stream of CQ with size QueryRequestSize.
The arrival of a new query is separated from the completion of the previous
query by an exponentially distributed think time with a mean of ThinkTime.
The query duration is chosen randomly by the Query Generator and has the
maximum value MazQueryDuration. The probability that an MH will enter
into a disconnection mode after issuing a query is determined by using Dis-
connectProb and the time delay before the disconnection is chosen uniformly
within the execution time of the issued query. The duration that the MH will
stay disconnected is chosen from an exponential distribution with a mean of
DisconnectTime. When the MH later reconnects to the network, it sends a

message having size Connect M sgSize to inform the Server Manager.

No I/O time is modeled in the Resource Manager Module since we assume
that the buffer pools of MHs are large enough to hold all the tuples received
in response to an issued CQ. Each MH has a single CPU and the CPU time

for processing a message per byte basis is determined by ClientMsgTime.

CHAPTER 5. SIMULATION MODEL 25

Parameter Meaning
NetworkBandwidth | Wireless network bandwidth
ControlMsgSize Size of a control message on the wireless network

Table 5.2: Wireless Network Manager Parameters

5.2 Wireless Network Manager

Table 5.2 lists the parameters of the Wireless Network Manager. The Wireless
Network Manager component assumes that all messages are of equal priority
that will be served on a First-Come First-Served (FCFS) basis with a service
rate of NetworkBandwidth. When a message is to be transmitted, it is appended

to a control message having size ControlMsgSize.

When the Wireless Network Manager finds out (i.e., while sending a message
to an MH) that an MH is disconnected, it informs the Server Manager about
the disconnection so that the transmission of the tuples to the MH can be

paused until the MH reconnects to the network.

5.3 Server Model

The central server model has 3 modules as shown in Figure 5.3: a Resource
Manager Module which models the server CPU time for query and update
processing, an Update Generator which generates update requests, and a Server
Manager Module which coordinates the query requests from MHs and update

requests from the Update Generator.

The input parameters for the Server Model are listed in Table 5.3. The
Resource Manager Module that models the database and physical resources of
the system has NumCPU CPUs. The CPU time for processing a query and
an update are specified by the parameters ServerQueryTime and ServerUp-
dateTime, respectively. All query and update requests are processed with the
same priority on an FCFS basis. The database is modeled as a collection of

DatabaseSize objects each with size ObjectSize. No 1/O operation is modeled

CHAPTER 5. SIMULATION MODEL

Server Model

Resource Manager

CPU

use CPU

Update Generator

. Generate Update

Server Manager

. Process Query
. Process Update

Update

. Transmit Tuple

Connection/
Disconnection| Query
Message

Wireless Network Manager

Figure 5.3: Server Model.

CHAPTER 5. SIMULATION MODEL

27

Parameter Meaning

NumCPU Number of CPUs

ServerQueryTime | Service time for a query in the data server
ServerUpdateTime | Service time for an update in the data server
DatabaseSize Number of objects in the database

ObjectSize Size of a database object

Query Duration Duration of the CQ issued by an MH

MaxNumTuple Maximum number of tuples that can satisfy a CQ
TupleSize Size of a tuple

FEvaluationPertod | Time period to adjust the window size

WindowSize Initial window size

€ Threshold value for the adjustment of the window size
Update ArrTime Mean interarrival time between updates

HotUpdate Bounds | Data object bounds of hot update range

ColdUpdate Bounds | Data object bounds of cold update range

HotUpdate Prob Probability that an update will be applied to a “hot” object
HotQueryProb Probability that a tuple will refer to a “hot” object

H ot prrnnfnp Dfr'nl)
aovthen i

cUUC L

UK oLy

Prohabhilitv that an 111’\(1';:“13(1 tunle referrine

i L_IUL,UUJLJU‘/V vLILu Qi PUavCl vupiC 1CICLg

will be removed from the corresponding answer set

a
QG

to

v

ColdRemoveProb

Probability that an updated tuple referring to a “cold” object
will be removed from the corresponding answer set

Table 5.3: Server Model Parameters

CHAPTER 5. SIMULATION MODEL 28

since we assume that the buffer pool in the server is large enough to hold the

entire database.

Duration of a CQ) submitted by an MH is determined by the MH and spec-
ified by the parameter QueryDuration. When a CQ is issued by an MH, it
is processed by the Server Manager and the set of tuples satisfying the query
are determined. The number of tuples in the answer set of a CQ is uniformly
determined with a maximum of MaxNum Tuple tuples. The size of each tuple is
specified by TupleSize. If a query is executed by the server at time ¢, the begin
time of a tuple in the answer set is uniformly distributed within the interval
[t,t + QueryDuration]. Similarly, the end time for that tuple in the answer
set is uniformly distributed within the interval [begin,t + Query Duration].

The Server Manager also decides when and which tuples should be trans-
mitted to the MH depending on the underlying tuple transmission approach
(i.e., one of the IT, DT, PT, APT, MT approaches). The window size is
also adjusted by the Server Manager for the APT, and the MT approaches.
The window size is evaluated and adjusted every EvaluationPeriod time units.
Depending on the underlying policy, the window size is incremented or decre-
mented by a small integer e. We assume that the time needed to evaluate and
adjust the window size is negligible and therefore do not take it into account

in our model.

At the server, a single stream of updates is generated. These updates are
separated by an exponentially distributed update interarrival time with a mean
of UpdateArrTime. Our model can specify different update and query pat-
terns. For the central data server, HotUpdateBounds and ColdUpdateBounds
parameters are used to specify the “hot” and “cold” regions of the database
respectively for update requests. HotUpdateProb and HotQueryProb specify
the probability that an update will be applied to a database object in the “hot”
database region and a tuple in the answer set of a CQ will refer to a “hot”
object, respectively. Hot RemoveProb and Cold Remove Prob specity the prob-
ability that an tuple referring to a “hot” object and a “cold” object will be

removed from the answer set, respectively.

When a database object is explicitly updated, we assume that all the tuples

CHAPTER 5. SIMULATION MODEL 29

in the answer set of every C(Q) that refer to the updated object, are changed.
For simplicity we ignore the possibility that the updated object may satisfy
new queries that it did not satisfy before. We also assume that the attributes
representing the position of the MH that issued the query do not change un-
til the query processing is completed; because, such a change results in the
reevaluation of the query and in this study we focus on the retransmissions
rather than the reevaluations. However, this assumption does not mean that

the querying MH is a stationary object.

When a tuple in an answer set is updated, it is immediately retransmitted
to the corresponding MH. The original tuple (before update) may be in use at
the MH at the time of the update and MH must be informed about the update

to the tuple immediately so that it can invalidate the original tuple.

When the Wireless Network Manager detects that an MH is disconnected,
it informs the Server Manager to pause transmitting tuples to the MH until
it reconnects to the network. When the MH reconnects, the Server Manager

resumes transmitting the valid tuples (tuples with end time < current time)

to the MH.

Chapter 6

Experiments and Results

In this chapter, we present the performance results for the tuple transmission
approaches for CQs that we discussed in Chapter 4. A number of simulation
experiments have been conducted to study the behavior of different tuple trans-
mission algorithms under various data update rates, maximum query duration,

disconnection period and update/query patterns.

Experiments were designed to evaluate the relative performance of the algo-
rithms in terms of communication overhead imposed on the wireless network
and the availability of tuples in case of disconnections. All experiments were
performed on SunSparc Workstations running SUNOS, using the CSIM [Sch92]
simulation package. Fach experiment was run until a total of 5000 CQs are
completed. Each experiment is repeated 30 times with different seeds in order
to obtain a statistically significant sample of CQs. The presentation of perfor-
mance results is preceded by a discussion of the performance metrics and the

parameter settings.

6.1 System Performance Metrics

The primary performance metric in this study is the average number of bits
transmitted to an MH in response to a CQ. The number of bits transmitted

for a CQ is computed by summing up the total number of bits transmitted

30

CHAPTER 6. EXPERIMENTS AND RESULTS 31

as tuples and control messages in response to a CQ. Another metric used is
the availability of tuples in the answer set of a CQ in case of a disconnection.
The availability of tuples in case of a disconnection is specified as the ratio of
the number of tuples received by the MH prior to disconnection over the total
number of tuples that would have been received by the end of the disconnection

period if the MH had been connected to the network.

6.2 Parameter Settings

The values of the simulation parameters were chosen so as to be comparable
to the related simulation studies such as [BJ96, LS97]. Since there is no data
available for modeling the tuples in the answer set of a C(Q), we are concerned

here with performance trends rather than with exact performance predictions.

Table 6.1 provides the values of the simulation parameters which are com-
mon to all experiments except where otherwise specified. There are 100 MHs
and the mean think time between queries for an MH is 1000 seconds. The max-
imum duration of a query an MH can request is varied from 240 seconds to 360
seconds in order to examine how query duration affects the performance of the
tuple transmission approaches. The size of a CQ) request is 256 bytes. An MH
disconnects from the network after it issues a CQ once per 10 queries. The
mean disconnection time is varied from 50 to 1000 seconds in order to observe
the performance trends of the tuple transmission approaches in case of both
short and long disconnections. When the MH reconnects to the network after
the disconnection period, it sends a 4 byte message to the Server indicating
the reconnection. The CPU time for processing a byte while sending/receiving

messages is 0.0001 second.

The bandwidth of the wireless network is 19200 bits per second which is a
reasonable data transmission rate in current cellular network technology. Each
message to be transmitted is appended to a 256 byte control message by the
Wireless Network Manager.

The database is modeled to be consisting of 1000 database objects with an

CHAPTER 6. EXPERIMENTS AND RESULTS

Parameter Value

NumMobile Hosts 100

ThinkTime 1000 s
MazxQueryDuration | varied from 240 s to 360 s
Query RequestSize 256 bytes
Disconnect Prob 1/10
DisconnectTime varied from 50 s to 1000 s
Connect MessageStize | 4 bytes

Client MsgTime 0.0001 s/byte
NetworkBandwidth 19200 bps
ControlMsgSize 256 bytes
DatabaseSize 1000 objects
ObjectSize 256 bytes

TupleSize 264 bytes

Update ArrTime varied from 1 s to 5 s
HotUpdate Bounds All the database
NumC PU 1

ServerQueryTime 0.01 s
ServerUpdateTime 0.02 s

Max NumTuple 40 tuples

Hot RemoveProb 0.01

WindowSize 180 s

FEvaluation Pertod 500 s

€ 1s

Table 6.1: Parameter Settings for The Base Experiment

32

CHAPTER 6. EXPERIMENTS AND RESULTS 33

object size of 256 bytes. A tuple contains a database object plus 4 bytes for
each of the begin and the end attributes. The interarrival time of the database
updates is varied from 1 second to 5 seconds in order to observe the behavior of
the tuple transmission approaches under various levels of update rates. Unless
otherwise specified, it is assumed that all the database consists of “hot” objects.
The server has a single CPU and the server CPU times for processing a query

and an update are set to 0.01 seconds and 0.02 seconds, respectively.

An answer to a C(Q can contain at most 40 tuples. The probability that
an updated tuple will be removed from the corresponding answer set is set
at 0.01. The initial window size for the PT, and the APT approach is 180
seconds which was experimentally observed to provide the best performance.
The window size is evaluated every 500 seconds and can be incremented or

decremented by 1 second.

6.3 The Base Experiment

We first examine the performance results of the proposed tuple transmission
approaches under varying data update rates by setting MaxQueryDuration
and DisconnectTime to 300 seconds. Performance of the MT approach is not
examined in this experiment because the behavior of MT is the same as that
of APT since all the database objects are assumed to be “hot”. Figures 6.1

through 6.4 show the performance results obtained.

As illustrated in Figure 6.1, DT performs the worst among all tuple trans-
mission approaches in terms of the average number of bits transmitted in re-
sponse to a CQ. This result is due to involving the highest control message
overhead caused by the transmission of each tuple separately as shown in Fig-
ure 6.2. At low data update rates the performance results of IT, PT, and APT
are close to each other. Transmitting all the tuples at once or transmitting
them periodically with w = 180 seconds in PT and APT, does not make much
difference in terms of the control message overhead. As Figure 6.2 shows, the
control message overhead involved with IT is close to that of PT and APT at

low data update rates.

CHAPTER 6. EXPERIMENTS AND RESULTS

10500.0

Number of Bits Transmitted

5500.0

Figure 6.1: Average Number of Bits Transmitted vs Data Update Rate.

Number of Control Messages

Figure 6.2: Average Number of Control Messages vs Data Update Rate.

8000.0 -

e

|

0.2

0.3

04 05 06 07 08 09 1.0
Data Update Rate (Update/Second)

22.0

17.0 -

12.0 -

7.0

e

&—oAPT 7
G—oDT
A—AIT
*—*PT

04 05 06 07 08 09 1.0
Data Update Rate (Update/Second)

34

CHAPTER 6. EXPERIMENTS AND RESULTS 35

3-0 I T T
S—= APT
Cc—oODT
B - A—AIT
% *——k PT
=
B 2.0 a
& ;
c
& |
©
o
© 10 - .
(0]
0
E |
0.005 T e M H J/E

02 03 04 05 06 07 08 09 1.0
Data Update Rate (Update/Second)

Figure 6.3: Average Number of Retransmitted Tuples per CQ vs Data Update
Rate.

1-0LA JARY JARY JARY JARY
B—G—— %
2
B
3
03O O ———0o g
<
S— APT
C—oDT
AS—AIT
*——k PT
0.0 : :

02 03 04 05 06 07 08 09 1.0
Data Update Rate (Update/Second)

Figure 6.4: Availability of Tuples vs Data Update Rate.

CHAPTER 6. EXPERIMENTS AND RESULTS 36

As the data update rate is increased, all the curves start to move upward due
to the increasing retransmission overhead as shown in Figure 6.3. Furthermore,
the performance difference between I'T, PT, and APT in terms of the average
number of bits transmitted becomes apparent with the high data update rates.
PT and APT approaches have an important benefit over I'T in terms of the
retransmission overhead. Another observation is that the periodic adjustment
of w according to the criterion we have formulated in APT approach provides

some improvement over the performance of PT.

The reader may notice from Figure 6.3 that the number of retransmissions
per CQ may not always be zero with the DT approach. This may seem con-
tradictory as we have limited the scope of retransmissions to those of Case 2
(in Chapter 3) which exclude the retransmissions due to an update after the
begin time of a tuple. However, when a tuple is changed due to an explicit
update to the database, it is immediately retransmitted. Therefore, Case 2

retransmissions are also possible with DT.

As we discussed before, supporting the ability for an MH to work in the
stand-alone mode in case of disconnections can be very important in some
applications. Figure 6.4 shows the availability of tuples in the answer set of a
CQ in case of disconnections. As expected, IT has the highest availability since
this approach transmits all the tuples together as soon as they are determined.
The performances of PT and APT in terms of availability are nearly the same.
DT is the worst approach in supporting the stand-alone working ability since
the transmission of a tuple is delayed until its begin time. We also observe
that increasing data update rate does not have an impact on the performance

of any approach in terms of availability.

6.3.1 Evaluation of the Impact of Query Duration

In this experiment, we examine the performance in terms of the average number
of bits in response to a CQ for the four tuple transmission approaches as
the maximum query duration is varied while setting Update ArrTime to 1.
Increasing the maximum query duration increases the probability that a tuple

will be updated therefore the probability that it will be retransmitted as shown

CHAPTER 6. EXPERIMENTS AND RESULTS 37

4.0 . .
[72]
Ro
o
)
|_
©
o)
= /
2
a) L
o N
S & o APT
E o—oODT
5 A—AIT
Z *—%PT
Y- S e
0.0 & : :
240.0 270.0 300.0 330.0 360.0

Maximum Query Duration (second)

Figure 6.5: Average Number of Retransmitted Tuples vs Maximum Query
Duration.

in Figure 6.5. This increase is dramatic in IT since IT is the most prone

approach to retransmissions.

The average number of bits transmitted in response to an issued CQ in-
creases as the query duration increases as shown in Figure 6.6. As compared
to Figure 6.1, the relative performance of the approaches does not change and
DT is still the worst performing approach. The performance difference between
IT and the other two approaches PT and APT becomes more apparent as the

query duration is increased.

6.3.2 Evaluation of the Impact of Disconnection Period

In this section, we investigate the impact of the time period an MH stays discon-
nected after issuing a CQQ on the availability of the tuples. MazQueryDuration
is set to 300 seconds. As expected, the availability of tuples in IT is always 1
independent of the disconnection period. The availability of tuples in all the

CHAPTER 6. EXPERIMENTS AND RESULTS 38

&— APT
G—oDT
AS—AIT
*—k PT

11500.0 ;/@//U .

9500.0

Number of Bits Transmitted

7500.0 : ' :
240.0 300.0 360.0

Maximum Query Duration (second)

Figure 6.6: Average Number of Bits Transmitted vs Maximum Query Duration.

other approaches decreases up to a certain point as the disconnection period
increases as shown in Figure 6.7. After that particular point, the availability
of tuples remains constant. This is a reasonable result because the availability
of tuples is the same for disconnection periods longer than the query duration.
Suppose that an MH issued a CQ with duration 200 seconds and is discon-
nected. The availability of tuples will be the same for disconnections lasting

more than 200 seconds.

6.4 Evaluation of the Impact of Hotspots

As we discussed earlier the database may consist of a mixture of frequently
changing and rarely changing objects. We set up an experiment in order to
observe the performance of five tuple transmission approaches in case there
exists a hotspot in the database. Table 6.2 lists the values of the related

parameters used in this experiment. According to the new update pattern in

CHAPTER 6. EXPERIMENTS AND RESULTS 39

—
(@]

Availability
o
(6]
|
|
|
|
q

&— APT
C—oDT
AS—AIT
— PT

OO 1 1 1 |
50.0 250.0 450.0 650.0 850.0
Disconnection Period (second)

Figure 6.7: Availability of Tuples vs Disconnection Period.

this experiment, 80% of the updates are applied to 20% of the database and

the object a tuple will refer to is uniformly chosen from the database.

The comparison of Figures 6.1 and 6.8 shows that the relative performance
of IT, PT, and APT does not change in terms of the average number of bits
transmitted in response to a CQ. MT performs the best in terms of reducing

the communication overhead. Figures 6.9 and 6.10 show that transmitting

Parameter Value

HotUpdate Bounds | 1-200

ColdUpdate Bounds | 201-1000

Hot RemoveProb 0.01

Cold Remove Prob 0.04

HotUpdate Prob 0.8

HotQueryProb 0.2

WindowS1ize 180 s (for PT & and APT), 150 s (for MT)

Table 6.2: Parameter Settings

CHAPTER 6. EXPERIMENTS AND RESULTS

11500.0

8500.0 -

Number of Blts Transmitted

5500.0 ‘

M oo APT
f &—oDT

O—aMT
A—AIT
*—*k PT

|

02 03 04 05 06 07

0.8 09

Data Update Rate (Update/Second)

Figure 6.8: Average Number of Bits Transmitted vs Data Update Rate.

1.0

O— APT

Number of Retransmitted Tuples

|

02 03 04 05 06 07

0.8 09

Data Update Rate (Update/Second)

1.0

40

Figure 6.9: Average Number of Retransmitted Tuples vs Data Update Rate.

CHAPTER 6. EXPERIMENTS AND RESULTS

I
20.0 M 7
(7]
o o—S APT
3 o—oDT
$ 15.0 - O—HaMT]
= A—AIT
g *—% PT
S 100 - 1
S
’5]
O
[M%
=] |
pd
OO | | | | | | |
02 03 04 05 06 07 08 09 1.0

Data Update Rate (Update/Second)

41

Figure 6.10: Average Number of Control Messages vs Data Update Rate.

Availability

1.0LA LN\ JARN JARN JARN
Bb—a—=- = gl
— ~Sp— & o
0.5—6—6——0
&S—< APT
G—oDT
H—+MT
A—AIT
*—% PT
OO | | | | | | I
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Data Update Rate (Update/Second)

Figure 6.11: Availability of Tuples vs Data Update Rate.

CHAPTER 6. EXPERIMENTS AND RESULTS 42

the tuples referring to “hot” objects as in APT and the tuples referring to
“cold” objects as in IT reduces the communication overhead and offers the
best performance among all the tuple transmission approaches we presented in

case of a hotspot in the database.

MT performs closer to the performance of IT than that of DT, PT, and
APT in terms of the availability of tuples in case of a disconnection (Fig-
ure 6.11). Since the tuples forming the answer set are chosen uniformly from
the database, 80% of the tuples in the answer set of a CQ are supposed to be
those referring to “cold” objects. MT transmits the tuples referring to “cold”
objects immediately at the time they are determined. Therefore, those tuples
are always available to the MH in case of a disconnection. Tuples referring to
“hot” objects are partially available in case of a disconnection and the above

combination leads to a higher availability of tuples than those of PT and APT.

6.4.1 Evaluation of the Impact of Query Duration

In this experiment, we examine the performance in terms of the average num-
ber of bits in response to a CQ for the five tuple transmission approaches as
the maximum query duration is changed. Figure 6.12 shows the performance
results. Existence of a hotspot in the database does not change the overall
effect of increasing query duration. The results shown in Figure 6.12 are close
to that of Figure 6.6. Additionally, MT still performs the best as the maximum

query duration is changed.

6.4.2 Evaluation of the Impact of Disconnection Period

We investigate the impact of the time period an MH stays disconnected after
issuing a C(Q on the availability of the tuples. Figure 6.13 shows the per-
formance results. Our observations with the experiment of Section 6.3.2 are
also valid in this experiment. MT provides a performance between I'T and the
remaining tuple transmission approaches in terms of availability of tuples in

case of a disconnection. The performance of MT at the point after which the

CHAPTER 6. EXPERIMENTS AND RESULTS 43

9500.0 -

Number of Bits Transmitted

6500.0 : ' '
240.0 270.0 300.0 330.0 360.0

Maximum Query Duration (second)

Figure 6.12: Average Number of Bits Transmitted vs Maximum Query Dura-
tion.

CHAPTER 6. EXPERIMENTS AND RESULTS 44

—
(@]

m
jmnln

Availability
o
(6]
|
|
|
|
q

&— APT
C—oDT
O—8MT
A—AIT
*—k PT

OO 1 1 1 |
50.0 250.0 450.0 650.0 850.0
Disconnection Period (second)

Figure 6.13: Availability of Tuples vs Disconnection Period.

availability of tuples remains constant is consistently higher compared to the

performance of DT, PT, and APT.

6.4.3 Evaluation of the Impact of Query Hotspots

In a mobile database system, it is also possible that some objects are accessed
more frequently than the others. We examine the impact of such a situation in
this experiment by setting HotQueryProb to 0.8. It means that the hotspot
of updates which is bounded by HotUpdate Bounds is now a hotspot in terms

of access workload too.

As shown in Figure 6.14, the new query pattern does not change the rel-
ative performance of the tuple transmission approaches we propose in terms
of the average number of bits transmitted in response to a CQ). However, the
performance difference between MT and the other approaches becomes more

apparent with the high data update rates. In this experiment, the answer to

CHAPTER 6. EXPERIMENTS AND RESULTS 45

11800.0 -

S— APT
C—oDT
O—aMT
A—AIT
*—*PT

Number of Bits Transmitted

|

0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1.0
Data Update Rate (Update/second)

Figure 6.14: Average Number of Bits Transmitted vs Data Update Rate.

00F o o ‘VAPT | /A

Number of Retransmitted Tuples

|

0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1.0
Data Update Rate (Update/second)

0.0

Figure 6.15: Average Number of Retransmitted Tuples per CQ vs Data Update
Rate.

CHAPTER 6. EXPERIMENTS AND RESULTS 46

a CQ consists of mostly “hot” objects. Therefore, retransmissions are more
frequent compared to the previous experiments (see Figure 6.15). Heavy re-
transmission overhead makes IT perform worse than DT with an update rate

of 1 update per second.

Chapter 7

Conclusions and Future Work

In a mobile computing environment, a user (a mobile host) with a wireless con-
nection to the information network is not required to maintain a fixed position
in the network. The characteristics of mobile computing environments such as
frequent disconnections of mobile hosts (MHs), significant limitations of band-
width and power, resource restrictions, and fast-changing locations make the
existing hardware and software systems inadequate to be used in such envi-
ronments. Therefore, traditional networking and data management techniques
need to be improved based on the requirements of mobile computing environ-

ments.

MHs can access information via submitting queries to the information server
over the network. Some of these queries are called location-dependent queries
as the answer to such kind of queries depends on the current location of the
user who issued the query [SWCD97, SWCD98, TUW98, WXCJ98]. As an
example, consider the following query: “display motels that are within 5 miles
of my position” submitted to a hotel management system by a person driv-
ing a car. Suppose that the above query is submitted as a continuous query
(CQ) [SWCDIT7, SWCD98] (i.e., answer to the query has to be continuously
updated as the car moves). It is clear that the answer to the query changes
with the car movement and continuously transmitting a new answer to the MH
depending on the new position of the car would impose a serious performance

overhead.

47

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 48

Movwing Objects Spatio-Temporal (MOST) data model proposed in [SWCD97,
SWCD98] returns a set of tuples as the answer to a CQ. The answer set con-
sists of tuples < 5, begin, end > indicating that object S is the answer of the
CQ from time begin to time end. Once the answer to a CQ is determined, an
interesting question arises in MOST: when should the tuples in the answer set

be transmitted?

The answer to the above question is critical in the sense that it can affect
the communication overhead imposed on the network, the power consumption
at MHs and the availability of tuples in case of disconnections. For exam-
ple, the Immediate Transmission (IT) approach [SWCD97, SWCD98] which
transmits all the tuples to the MH at the time they are determined causes too
much retransmission overhead due to the updates to the database, whereas the
Delayed Transmission (DT) approach [SWCD97, SWCD98] which delays the
transmission of a tuple until its end time causes each tuple to be transmitted

in a separate message and therefore too much control message overhead.

In our thesis, we present three new approaches for the transmission of the
tuples in the answer set of a location-dependent CQ). The first approach called
Periodic Transmission (PT) transmits the tuples in the answer set periodically.
At each w time units, this method transmits all the tuples < S, begin, end >
satisfying the condition ¢ < begin < ¢+ w where t is the current time
and w is the size of the time window. In the second approach which we call
Adaptive Periodic Transmission (APT), as an extension to the first approach,
w 1s dynamically adjusted according to the communication overhead chang-
ing due to environmental parameters such as data update rate, disconnection
frequency, and disconnection period. The final approach, called Mized Trans-
mission (MT), differs from the first two approaches in that data objects are
partitioned into two groups: one consisting of “hot” objects of updates and the
other of “cold” objects of updates. This approach transmits the “hot” tuples
as in APT and “cold” tuples as in IT.

We have also designed and implemented a simulation model that supports
modeling of processing location-dependent CQs in order to examine the pre-
sented tuple transmission approaches under different setting of environmental

parameters. In particular, we have examined the effects of alternative tuple

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 49

transmission approaches in terms of the average number of bits transmitted in
response to a C(Q) and the availability of tuples in the answer set of a C(Q) in case
of a disconnection while varying data update rate, maximum query duration,

disconnection period and update/query pattern.

The experiments conducted demonstrate that the control message overhead
caused by DT dominates the retransmission overhead caused by IT. In other
words, DT performs worse than IT in terms of the average number of bits
transmitted in response to a CQ). Furthermore, PT reduces the retransmission
overhead of IT and the control message overhead of DT and therefore leads
to a better performance. We also observed that by adjusting the window size
on the basis of the communication overhead, APT offers a small improvement
over PT. The final observation is that, relying on the existence of hotspots in
the database, MT performs the best among all the approaches presented in
this study.

As far as the availability of tuples is concerned, IT performs the best in all
the experiments conducted. The performance of MT which is a combination
of IT and APT is worse than that of IT but better than that of APT. PT and
APT perform close to each other. Finally, DT has the poorest performance in

terms of supporting the stand-alone mode working capability of an MH.

We conclude that the choice between IT, MT, and APT depends on the
answer to the following question: How critical is it for the MHs to be able to
continue displaying tuples on the screen in case of disconnections? Once the
tradeoff between the high availability of tuples in case of disconnections and the
low communication overhead is determined, the appropriate tuple transmission
approach would be one of the approaches we propose (MT, APT) for low

communication overhead, or IT otherwise.

One possible direction of future research is to extend our simulation model
to support caching of database objects at MHs. Frequently accessed database
objects can be broadcast by the data server to MHs and stored in caches of
MHs. In such a system, the data server processes the CQs submitted by MHs
and transmissions will be limited to only those tuples referring to objects that

are not cached at the MH. For the tuples referring to objects that are cached at

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 50

the MH, only begin and end attributes, and the object id need to be transmitted
to the MH. Such a caching mechanism can reduce the communication overhead
significantly especially if database objects are large. Integrating a caching
strategy pops up new issues such as cache invalidation mechanisms and the

period of the broadcast cycle which are subject to further investigation.

Another interesting direction of future research can be the investigation of
distributed query processing issues in which the database might be distributed

over MHs as well as fixed ones.

Bibliography

[AG3]

[AP95]

[BI93]

[BI94]

[BJ96]

[BMMO96]

[Chr93]

Rafael Alonso and S. Ganguly. Query optimization for energy effi-
ciency in mobile environments. In Proceedings of the International
Workshop on Foundations of Models and Languages for Data and
Objects, Aigen, Austria, 1993.

B. Awerbuch and D. Pelig. Online tracking of mobile users. Journal
of the ACM, 42(5):1021-1058, September 1995.

D. Barbara and Tomasz Imielinski. Adaptive stateless caching in
mobile environments: An example. Technical report, Matsushita

Information Technology Laboratory, 1993.

D. Barbara and Tomasz Imielinski. Sleepers and workaholics:
Caching strategies for mobile clients. In Proceedings of the ACM
SIGMOD Conference on Management of Data, pages 1-12, 1994.

Omran Bukhres and Jin Jing. Analysis of adaptive caching algo-
rithms in mobile environments. Information Sciences, pages 1-27,

1996.

Omran Bukhres, S. Morton, and M. Mosman. Mobile computing
architecture for a battlefield environment. In Proceedings of the
International Symposium on Cooperative Database Systems for Ad-

vanced Applications, 1996.

P. K. Chrysanthis. Transaction processing in mobile computing
environment. In Proceedings of IEEE Workshop on Advances in
Parallel and Distributed Systems, pages 7T7-83, Princeton, New Jer-
sey, October 1993.

o1

BIBLIOGRAPHY 52

[DHBYT]

[EJBO5]

[FZ94]

[GA93]

[1B93]

[1B94]

[LS97]

[PBY3]

[PBY4]

[PS97]

M. H. Dunham, A. Helal, and S. Balakrishnan. A mobile trans-
action model that captures both data and movement behavior.

MONET, 2(2):115-127, 1997.

Ahmed Elmagarmid, Jin Jing, and Omran Bukhres. An efficient
and reliable reservation algorithm for mobile transactions. In Pro-

ceedings of the jth International Conference on Information and

Knowledge Management (CIKM’95), 1995.

G. H. Forman and J. Zahorjen. The challenges of mobile computing.
IEEE Computer, 27(6), April 1994.

Sumit Ganguly and Rafael Alonso. Query optimization in mo-

bile environments. Technical report, Rutgers University, December

1993.

Tomasz Imielinski and B. R. Badrinath. Data management for

mobile computing. ACM SIGMOD RECORD, 22(1):34-39, 1993.

Tomasz Imielinski and B. R. Badrinath. Mobile wireless comput-

ing: Challenges in data management. Communication of ACM,

37(10):18-28, October 1994.

H. V. Leong and A. Si. Database caching over the air storage. The
Computer Journal, 40(7), 1997.

E. Pitoura and B. Bhargava. Dealing with mobility: Issues and
research challenges. Technical Report TR-97-070, Department of

Computer Sciences, Purdue University, 1993.

E. Pitoura and B. Bhargava. Building information system for mo-
bile environments. In Proceedings of the 3rd International Confer-

ence on Information and Knowledge Management, pages 371-378,
Guithesburg, MD, November 1994.

R. Prakash and M. Singhal. Dynamic hashing + quorum = efficient
location management for mobile computing systems. In Proceedings
of ACM Symposium on Principles of Distributed Computing, page
291, Santa Barbara, August 1997.

BIBLIOGRAPHY 33

[RBY5]

[Sch92]

[SWOS]

[SWCDYT]

[SWCDYS]

[SWD*96]

[TKN96]

[TUW]

[TUW9S]

[WC95]

S. Rajagopalan and B. R. Badrinath. An adaptive location man-
agement strategy for mobile ip. In Proceedings of the 1st ACM
Mobicom, November 1995.

H. Schwetman. CSIM User’s Guide. MCC Corporation, 1992.

A. P. Sistla and O. Wolfson. Minimization of communication cost

through caching in mobile environments. [FEFE Transactions on

Parallel and Distributed Systems, 9(4):378-390, April 1998.

A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and
querying moving objects. In Proceedings of the 15th International
Conference on Data Engineering, pages 422-432, Birmingham, UK,
April 1997.

A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Query-
ing the Uncertain Position of Moving Objects, chapter Temporal
Databases: Research and Practice, pages 310-337. Lecture Notes
in Computer Science (Springer Verlag), 1998.

A. P. Sistla, O. Wolfson, S. Dao, K. Narayonan, and R. Raj. An
architecture for consumer-oriented online database services. In Pro-
ceedings of the 6th International Workshop on Research Issues in
Data Engineering: Interoperability of Nontraditional Database Sys-

tems, New Orleans, LA, February 1996.

M. Tsukamoto, R. Kadobayashi, and S. Nishio. Strategies for query

processing in mobile computing. In Mobile Computing, pages 595—
620. Kluwer Academic Publishers, 1996.

Jamel Tayeb, Ozgur Ulusoy, and O. Wolfson. Indexing mobile ob-

jects for location-dependent queries. In preparation.

Jamel Tayeb, Ozgur Ulusoy, and O. Wolfson. A quadtree based
dynamic attribute indexing method. The Computer Journal, 41(3),
1998.

G. D. Walborn and P. K. Chrysanthis. Supporting semantics-based
transaction processing. In Proceedings of the 11th Symposium on

Reliable Distributed Systems, pages 31-40, September 1995.

BIBLIOGRAPHY 54

[WC97]

[WLO5]

[WSCY]

[WXCJ98]

G. D. Walborn and P. K. Chrysanthis. Pro-motion: Management
of mobile transactions. In Proceedings of 11th ACM Annual Sym-
posium on Applied Computing, 1997.

M. H. Wong and W. M. Leung. A caching policy to support read-
only transactions in a mobile computing environment. Technical

Report CS-TR-95-07, Chinese University of Hong Kong, May 1995.

O. Wolfson, P. Sistla, S. Chamberlain, and Y. Yesha. Updating and
querying databases that track mobile units. To appear in a special

issue of the Distributed and Parallel Databases Journal.

O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving objects
databases: Issues and solutions. In Proceedings of the 10th Inter-
national Conference on Scientific and Statistical Database Manage-

ment, pages 111-122, Capri, Italy, July 1998.

