An Efficient Algorithm To Update Large
Itemsets With Early Pruning

Necip Fazil Ayan

Dept. of CEIS, Bilkent University, 06533, Ankara, Turkey
fayan@cs.bilkent.edu.tr

Abdullah Uz Tansel
PhD Program in CS, Graduate Center
Baruch College, The City University of New York

tansel@baruch.cuny.edu

Erol Arkun
Dept. of CEIS, Bilkent University, 06533, Ankara, Turkey
arkun @bilkent.edu.tr

Abstract

Although many efficient algorithms have been proposed for the discovery
of association rules, the process of updating large itemsets is still a com-
plicated issue for dynamic databases that involve frequent additions. We
present an efficient algorithm for updating large itemsets (UW EP) when
new transactions are added to the set of old transactions in a transaction
database. UW EP employs a dynamic look-ahead strategy in updating the
existing large itemsets by detecting and removing those that will no longer
remain large after the contribution of the new set of transactions. UW EP
executes iteratively, but it differs from the other proposed algorithms by
scanning the existing database at most once and the new database exactly
once. Moreover, it generates and counts the minimum number of candidates
in the new database. The experiments on synthetic data show that UW E P
outperforms the existing algorithms in terms of the candidates generated and
counted.

Keywords. Maintenance of association rules, dynamic pruning, large item-
sets.

1 Introduction

With the recent developments in computer storage technology, many organizations

have collected and stored massive amounts of data. Even though very useful in-

1

formation is buried within this data, this information is not readily available for
the users. Obviously, there is a need for developing techniques and tools that assist
users to analyze and automatically extract hidden knowledge. Knowledge discovery

in databases includes techniques and tools to address this need.

Association rules are one of the promising aspects of data mining as a knowledge
discovery tool, and have been widely explored to date. An association rule, X =Y,
is a statement of the form "for a specified fraction of transactions, a particular value
of an attribute set X determines the value of attribute set Y as another particular
value”. Thus, association rules aim at discovering the patterns of co-occurrences
of attributes in a database. The problem of discovering association rules was first
explored in [2] on supermarket basket data, that is the set of transactions that
include items purchased by the customers. In this pioneering work, mining of
association rules was decomposed into two subproblems: discovering all frequent
patterns (represented by large itemsets defined below), and generating the associa-
tion rules from those frequent itemsets. The second subproblem is straightforward,
and can be done efficiently in a reasonable time. However, the first subproblem is
very tedious and computationally expensive for very large databases and this is the
case for many real life applications. Many efficient algorithms have been proposed
for finding the frequent patterns in a database [1, 2, 4, 5, 6, 9, 10, 11, 13, 15, 17].

Maintenance of association rules is an important problem. When new trans-
actions are added to the set of old transaction database, how can we update the
association rules discovered in the set of old transactions efficiently? Naturally,
when new transactions are added to a database, some of the existing frequent pat-
terns may disappear whereas new frequent patterns that do not exist before may
also emerge. The straightforward solution is to re-run an algorithm, say Aprior: [4],
on the set of whole transactions, i.e., old transactions plus new transactions. How-
ever, this process is not efficient since it ignores the previously discovered rules, and
repeats all the work done previously. Therefore, algorithms for efficiently updating
the association rules were proposed in [7, 8, 12, 14, 16]. These algorithms take
the set of association rules in the old database into account, and use this knowl-
edge 1) to remove itemsets that do not exist in the updated database, and 2) to
add new rules which were not in the set of old transactions but implied in the
updated database. Particularly, when the size of old transactions is large, these
algorithms discover the new set of association rules much faster than by re-running

an algorithm over the whole database.

In this paper, we propose an algorithm called UW EP (Update With Early
Pruning) that follows the approaches of FUP;, [8] and Partition Update [12] al-

gorithms. It works iteratively on the new set of transactions, like the previous

algorithms. The advantages of UW EP are that it scans the existing database at
most once and new database exactly once, and it generates and counts the mini-
mum number of candidates in order to determine the new set of association rules.
Similar to [15], in one scan of the database, it creates a tidlist for each item in the
database, and uses these structures in order to compute the support of supersets
of that item. Moreover, it prunes an itemset that will become small from the set of
generated candidates as early as possible by a look-ahead pruning. In other words,
it does not wait for the k' iteration for pruning a small k-itemset. This look-ahead
pruning results in a much smaller number of candidates in the set of new trans-
actions. Another reason for generation of a smaller candidate set is the fact that
UW EP promotes a candidate itemset to the set of large itemsets only if it is large
both in the new set of transactions and in the whole database. This feature yields
a much smaller candidate set when some of the old large itemsets are eliminated
due to their absence in the new set of transactions, and this can be done without
scanning the old database.

The rest of the paper is organized as follows. In Section 2, formal descriptions of
discovering and updating association rules, and related algorithms are presented.
Section 3 presents the UW EP algorithm as well as an example to demonstrate
it. In this section, we also prove the correctness of UW E P algorithm, and that it
generates and counts a minimum number of candidates. Details of the experiments
and performance results on synthetic data are provided in Section 4. The paper

concludes with a discussion of the results in Section 5.

2 Formal Problem Description

2.1 Discovery of Association Rules

Agrawal et al. define the problem of discovering association rules in databases
in [2, 4]. Let I = {[1,...,1,} be a set of literals, called items. Let D be a set
of transactions, where each transaction 7' is a set of items such that 7" C I, and
each transaction is associated with a unique identifier called T'ID. Let X, called
an itemset, be a set of items in I. An itemset X is called a k-itemset if it contains
k items from I. We say that a transaction T' satisfies X if X C T. The support
of an itemset X in D, supportp(X), is defined as the number of transactions in D
that satisfy X. An itemset X is called a large itemset if the support of X in D
exceeds a minimum support threshold explicitly declared by the user, and a small
itemset otherwise.

By an association rule, we mean an implication of the form X = Y, where

XCILYCI and XNY = (. We call X the antecedent of the rule, and Y

the consequent of the rule. The rule X = Y holds in D with confidence ¢ where
¢ = 2ueportp(XUY) “phe pyle X = Y has support s in D if the fraction s of the

supportp (X)
transactions in D contain X UY.

Given a set of transactions D, the problem of mining association rules is to
generate all association rules that have support and confidence greater than the
user-specified minsup and minconf, respectively. Formally, the problem is gener-

ating all association rules X = Y, where supportp(X UY) > minsup x |D| and

supportp (XUY)
supportp(X)

The problem of finding association rules can be decomposed into two parts [2, 4]:

> munconf.

Step 1@ Generate all combinations of items with fractional transaction support
(i.e., %&) above a certain threshold, called minsup.

Step 2: Use the large itemsets to generate association rules. For every large
itemset [, find all non-empty subsets of [. For every such subset a, output a rule of
the form @ = (I — a) if the ratio of support(l) to support(a) is at least minconf. If
an itemset is found to be large in the first step, the support of that itemset should
be maintained in order to compute the confidence of the rule in the second step.

The second subproblem is straightforward, and an efficient algorithm for ex-
tracting association rules from the set of large itemsets is presented in [3]. On the
other hand, discovering large itemsets is a non-trivial issue. The efficiency of an al-
gorithm strongly depends on the size of the candidate set. The smaller the number
of candidate itemsets is, the faster the algorithm will be. As the minimum support
threshold decreases, the execution times of these algorithms increase because the
algorithm needs to examine a larger number of candidates and larger number of
itemsets. Association rule algorithms generally differ on a) the generation of the
candidates, b) counting of the support of a candidate itemset ¢) number of scans
over the database, and d) the data structures employed. Readers are referred to

[1,2,4,5,6,9,10, 11, 13, 15, 17] for some algorithms for discovering large itemsets.

2.2 Update of Association Rules

Table 1 summarizes the notations used in the remainder of the paper. Updating
association rules was first introduced in [7]. Given DB, db,|DB|, |db|, minsup and
Lpp, the problem of updating association rules is to find the set Lpgiq of large
itemsets in DB + db.

The FUP algorithm proposed by Cheung et al. [7] works iteratively and its
framework is similar to Aprior: [4] and DHP [13]. Initially, the candidate set of
1-itemsets of db is the set of items which exist in at least one transaction in db. At
the end of the k" iteration, the new set of candidates are computed from the set of

large k-itemsets in the updated database. There are three optimizations employed

4

Notation Definition

DB The set of old transactions

db The set of new transactions
DB + db The total set of transactions

| Al The number of transactions in the transaction database A
meinsup Minimum support threshold

support4(X) | Support of X in the set of transactions A
tidlist 4(X) | Transaction list of X in the set of transactions A

'k Aot of candidate Lkoitamaatae in » cot of francsctiona A
/A WU UL \/(,bll\/ll\/l(,b\]/ v lU\JlllD\JUD lll QU DU U Ul vidlioavulivliliy /1
Lk Set of large k-itemsets in a set of transactions A

A

PruneSet | Set of large itemsets in DB that have 0 support in db
Unchecked | Set of large k-itemsets in DB that are not counted in db

Table 1: Notations Used in the Paper

in F'U P, two of which are based on the reduction of transactions (i.e., if X is a small
itemset in D, remove X from the transactions in D). The other is the computation
of an upper bound value for the support of an itemset, and deciding whether the
itemset is small without scanning the database.

FUP; [8] is a generalization of the FUP algorithm that handles insertions to
and deletions from an existing set of transactions. The algorithms FUP and FU P,
scan DB and db as many times as the length of the maximal large itemset in
the updated database, and generates a large number of candidates in db since it
generates C% from L]Z)_B1+db-

In [14, 16], the concept of negative border, that was introduced in [17], is used
to compute the new set of large itemsets in the updated database. The negative
border consists of all itemsets that were candidates but did not have enough support
while computing large itemsets in DB, i.e., NBD(Ly) = Cy — Li. It is assumed
that the negative border of the set of large itemsets in DB and their counts in DB
are available. In [16], the set of large itemsets in db is first computed by a scan over
db. In the same scan, the supports of all itemsets in Lpg and NBD(Lpg) over db
are also counted. Then, all itemsets that are large both in DB and db are promoted
to the set of large itemsets in DB + db. If an itemset X is large in db but small
in DB, X and its supersets are checked against DB using the negative border of
Lpp. If such an itemset is promoted to the set of large itemsets in DB + db, the
negative border is computed again, and this process is repeated until there is no
change in the negative border. This algorithm scans DB at most once and db as
many times as the length of the maximal large itemset in db. However, recomputing
the negative border again and again reduces its performance. The approach in [14]

is very similar to the one in [16]. It first counts the supports of itemsets in Lppg and

NBD(Lppg) over db. If any of the itemsets in the negative border is found to be
large in db, then it computes Ly, and validates those against DB by scanning DB
once. Its major advantage is that it does not scan DB if there is no new itemset
in db.

A recent study [12] uses the framework in [15], and assumes that the set of large
itemsets in the old database is available. Then, it computes the large itemsets in
db by using Partition [15]. Its final step involves computing the support of large

itemsets in DB against db, and vice versa. This requires one additional scan of DB

and db.

3 Update with Early Pruning (UWEP)

3.1 Description of the Algorithm

In this section, we will explain how our algorithm works, and the optimizations
it employs. The algorithm UW E P is presented in Figure 1. Inputs to the algorithm
are DB, db, Lpp (along with their supports in DB), |DB]|, |db|, and minsup. The
output of the algorithm is Lpgig, the set of large itemsets in DB + db.

We can break down the algorithm UW EP into five steps as identified below.

1. Counting l-itemsets in db and creating a tidlist for each item in db

2. Checking the large itemsets in DB whose items are absent in db and their
supersets for largeness in DB + db

3. Checking the large itemsets in db for largeness in DB + db

4. Checking the large itemsets in DB that are not counted over db for largeness
in DB + db

5. Generating the candidate set from the set of large itemsets obtained at the
previous step.

In the first step of the UWEP algorithm(line 1 in Figure 1), we count the
support of 1-itemsets and create a tidlest for each 1-itemset in db. The idea of
using tidlists was first discussed in [15] in order to count the support of candidate
k-itemsets. A tidlist for an itemset X is an ordered list (ascending or descending) of
the transaction identifiers (T'1 D) of the transactions in which the items are present.
The support of an itemset X is the length of the corresponding tidlist. It is assumed
that the transactions are sorted according to T'IDs and thus the created tidlists
are also sorted in the same order of 11 Ds.

The second part of the algorithm (procedure initial_pruning in Figure 2) deals
with the 1-itemsets whose support is 0 in db but large in DB. In this case, for an
itemset X, it is by definition true that supportppia(X) = supportpp(X). If X was
previously small in DB, then it is also small in DB + db since its support has not

6

UWEP(DB,db, Lpg,|DB]|, |db|, minsup);

1 C}, = all 1-itemsets in db whose support is greater than 0
2 PruneSet = Lg — C},

3 wnitial pruning(PruneSet) %See Figure 2

4 k=1

5 while C}, # 0 and L%, # 0 do begin

6 Unchecked = L% 5

7 for all X € C% do

8 if X is small in db and X is large in DB then

9 remove X from Unchecked

10 if X is small in DB + db then

11 remove all supersets of X from Lpp

12 else

13 add X to LDB-l—db

14 end

15 else if X is large both in db and DB then begin
16 remove X from Unchecked

17 add X to LDB-l—db and st

18 end

19 else if X is large in db but small in DB then begin
20 find supportpp(X) using tidlists

21 if X is large in DB + db then

22 add X to LDB-l—db and st

23 end

24 for all X € Unchecked do begin

25 find supportq(X) using tidlists

26 if X is small in DB + db then

27 remove all supersets of X from Lpp

28 if X is large in DB + db then

29 add X to LDB-l—db

30 end

31 k=k+1

32 Ok = generate_candidate(L5™) %See Figure 3
33 end

Figure 1: Update of Frequent Itemsets

initial_pruning(PruneSet);
1 while PruneSet # () do begin

2 X = first element of PruneSet

3 if X is small in DB + db then

4 remove X and all its supersets from Lpg and PruneSet
5 else

6 begin

7 add the supersets of X in Lppg to the PruneSet

8 add X to Lppig and remove X from Lpp

9 end
10 remove X from PruneSet
11 end

Figure 2: Initial Pruning Algorithm

changed and the number of total transactions has increased. On the other hand, if
X is large in DB, we have to check whether supportpg(X) > minsup x |DB + db|
or not. The itemset X could be large or small in the updated database, and we
examine each case below.

In the following, we will introduce three lemmas that are useful in pruning the

candidate itemsets. Their proofs can be found in [4, 7, 8, 16].
Lemma 1 All supersets of a small itemset X in a database D are also small in D.

Now suppose that X is small in the updated database. Then, by Lemma 1, any
superset of X must also be small in the updated database. UW EP differs from
the previous algorithms [7, 8] at this point, by pruning all supersets of an itemset
from the set of large itemsets in DB as soon as it is established to be small. In the
previous algorithms, a k-itemset is only checked in the k'* iteration, but UW EP
does not wait until the k** iteration in order to prune the supersets of an itemset

in Lpp that are small in Lpgg.

Definition 3.1 Let X be a k-itemset which contains items Iy,...,I,. An imme-
diate superset of X is a (k + 1)-itemset which contains the k items in X and an
additional item Ijyq.

Now, suppose that X is large in the updated database. Then, we add all immedi-
ate supersets of X in Lpp to the PruneSet, which holds the itemsets that must
be checked before checking the itemsets in CJ,. Then, for each element in the
PruneSet, we check whether its support exceeds the minimum support threshold.

The operations of pruning and adding immediate supersets are repeated for each

8

itemset in the PruneSet. So, all itemsets in Lpp that contain a non-existing item
in db are removed from Lpp, and the ones that are large are added to Lppia
before advancing to the first iteration. This pre-pruning step is particularly useful
when the data skewness is present in the set of transactions. For example, in a
supermarket, soup is probably large in winter transactions while it may be small
in summer transactions.

Lines 4-33 in Figure 1 are used 1) to check whether any candidate itemset in db
qualifies to be large in the whole database and to adjust their supports in Lppiap
and 2) to check whether any of the large itemsets in DB which are small in db
qualifies to be in the set of Lpgig. The two for loops between lines 4-33 perform
these two operations. Let us investigate the first case: checking the candidates in
db in the k" iteration.

Lemma 2 Let X be an itemset. If X ¢ Lpp, then X € Lppyay only if X € Ly.

Corollary 1 Let X be an itemset. If X is small both in DB and db, then X can
not be large in DB + db.

Now suppose that X is a candidate k-itemset in db. If it is small in db, then
we have to check whether X is in Lpp or not. If it is also small in DB (i.e.,
X ¢ Lpgp), X can not be a large itemset in DB + db by Corollary 1. Otherwise,
we have to check the support of X in DB + db. Since we have the support of
X in DB and db in hand, we can quickly determine whether it is large or not. If
(supportpp(X)+ supports (X)) < minsupx |DB+db|, then X is small in DB+ db.
By Lemma 1, all supersets of X must also be small, thus they are eliminated from
Lpp. Otherwise, X is large and we add X to Lpgig. Another advantage of our
algorithm occurs here by not adding X to the set of L% to keep the candidate set
smaller, which we will explain later in detail.

Now assume that a candidate k-itemset X is large in db. There are two possi-

bilities: X is either large or small in DB.
Lemma 3 Let X be an itemset. If X € Lpg and X € Ly, then X € Lppiap.

If X is large in DB, then X is also large in DB + db by Lemma 3. In this case,
we add the corresponding supports of X in db and DB, and put X into Lppia
with the new support. If X is small in DB, we have to check whether it is large in
DB + db or not. However, we do not have the support of X in DB since it is not
large. We can obtain it by scanning DB. In this scan, for each 1-itemset in DB,
we determine its support and its tedlist, as explained before in this section. We

will then use these tidlists in order to find the support of longer itemsets whenever

generate_candidate(L%!);
1 Ck =0
2 for all itemsets X € L5 and Y € Lf; " do
3 if X =Y1A-- AXp_2 =Y 2A Xs_1 <Y1 then begin

4 C=X1Xy... X1V

5 if all subsets S of C is an element of L% ' then begin
6 tidlistdb(C) = tidlistdb(X) N tidlistdb(Y)

7 supportq(C) = |tedlist 4(C)|

8 end

9 end

Figure 3: Candidate generation procedure

they are needed. After counting the support of X in DB, we place X into Lpgia
if its support in DB + db is larger than mensup x |DB + db|.

An important issue here is to decide which candidates go to the set of large
k-itemsets in db. FUP; [8] algorithm places all itemsets that are large in the whole
database into L% in the k' iteration. Others [12, 16, 14] place those candidates
that are large in db regardless of whether they are small or large in DB. We choose
another strategy and put only those candidates into C% that are large in db and
DB + db. In other words, if a k-itemset X is large in db but small in DB + db,
we do not place it into L%,. This is the most important advantage of UW E P since

this significantly reduces the number of candidates in db.

In UWEP, there is a possibility that a large k-itemset in DB may not be
generated in Cf,, since we include those candidates that are large both in db and
DB + db. The solution is to keep the set of itemsets that must be verified against
db, namely Unchecked, which contains the large k-itemsets in DB that are not
generated in db. In the beginning of the k" iteration, we place all large k-itemsets
in DB to the set of Unchecked (line 6 in Figure 1). Whenever we check a candidate
k-itemset in C% , we will remove it from the set Unchecked. When we complete the
first for loop between lines 7-23 in Figure 1, Unchecked contains the large itemsets
in DB that are not verified against db. The second for loop is used to verify them
against db. Since we do not generate them from L%, we do not have their supports
in db, therefore we have to compute their support from the tidlists of the individual
items contained in that itemset. If the total support of any element in Unchecked
exceeds the minimum support threshold, it is added to Lpgig. Otherwise, the

supersets of that itemset are removed from Lpp again by Lemma 1.

Figure 3 gives the candidate generation procedure that is adopted from [15].

10

DB db

TID | Items TID | Items

1 A,C,D,EF

2 B,D,F

3 ADE 1 AF

4 A,B,D,EF 2 B,C,F

5) A,B,C,E.F 3 A,C

6 B,F 4 B.,F

7 AD,EF 5 A,B,C

8 A,B,D,F 6 A,C,D

9 AD,F

Table 2: Set of Transactions DB and db

For two (k — 1)-itemsets in L%, if the first (k — 2) items are the same, then a
candidate k-itemset is generated from those (k — 1)-itemsets by concatenating the
last item in the second itemset to the end of the first itemset, assuming that the
last item of the second itemset is greater than the last item in the first itemset.
However, a candidate generated in this process is pruned from the set of candidates

if any of its (k — 1)-subsets is not large.

3.2 An Example Execution of the Algorithm

We now introduce an example that illustrates the benefits of our algorithm and
compare the number of candidates generated and counted with Aprior: and FUP,
algorithms. We will write an itemset {Aq,...,A,} as Ay,..., A4,, and a pair
(itemset, support) refers to an itemset and its support in the corresponding set
of transactions.

In Table 2, the set of transactions in DB and db are provided. |DB| =9, |db| =
6,|DB + db| = 15. The minimum support threshold minsup is set to 0.3. Thus, an
itemset X must be present in at least 3 transactions in DB, in at least 2 transactions
in db, and in at least 5 transactions in DB + db in order to be a large itemset.

Initially, we assume that the set of large itemsets in DB are given. In the
example database DB, the sets of large k-itemsets along with their counts are as
follows.

Lpg = {(4,7),(B,5),(D,7),(E,5),(F,8)}

L3, ={(AB,3),(AD,6),(AE,5),(AF,6),(BD,3),(BF,5),
(DE,4),(DF,6),(EF,4)}

L} = {(ABF,3),(ADE,4),(ADF,5),(AEF,4),(BDF,3),(DEF,3)}

11

Ly = {(ADEF,3))

In the first step of the algorithm, db is scanned in order to find the support of
l-itemsets in db. In this scan, we generate the tidlist for each 1-itemset. In the
example, the candidate 1-itemsets in db, along with their supports, are:

Cap = {(4,4),(B,3),(C,4),(D,1),(F,3)}.

Note that we do not include E in C}, since its support is zero in db. On the
other hand, E is added to the PruneSet in order to check itemsets including F
in Lpp. Since the support of £ is 5 and is thus large in DB + db, we remove it
from Lpp and include it in Lppi4 and add its supersets in L2, to the PruneSet,
namely AE, DFE, EF. Then for each element of the PruneSet, we repeat the
same operation. We add AFE to Lppyg since its support is also 5. However,
the supports of DE and EF are 4, and they fail to qualify to go into Lppia.
In this step, we remove DFE and EF' and all their supersets from Lpg, namely
ADE,DEF, AEF, ADEF (By Lemma 1). After these pruning operations, the new
sets of large itemsets in DB and set of large itemsets in DB + db are as follows.

LIDB ={(4,7),(B,5),(D,7),(F,8)}

L} g ={(AB,3),(AD,6),(AF,6),(BD,3),(BF,5),(DF,6)}
L} = {(ABF,3),(ADF,5),(BDF,3)}

Lpp =10

Lppyar = {(£,5),(AE,5)}

In the first iteration, A, B,C, D, F' are added to Lppys. We add all large 1-
itemsets in db to LY, namely A, B,C, F. We do not include D in Lg, since it does
not qualify to be large in db. After the first iteration,

Lglb ={(4,4),(B,3),(C,4),(F,3)}, and
LlDB-I—db = {(Av 11)7 (Bv 8)7 (Cv 6)7 (Dv 8)7 (Ev 5)7 (Fv 11)}

In the second iteration, we begin with the set of candidates in db,
C3 ={(AB,1),(AC,3),(AF,1),(BC,2),(BF,2),(CF,1)}, and
Unchecked = {AB,AD,AF, BD, BF, DF'}.

AB is found to be small in db, but large in DB. AB fails to be large in DB + db
since supportppiar(AB) = 4. By Lemma 1, we remove ABF from Lpg. The
itemset AC' is large in db but small in DB. Since we do not have support of AC
in DB in hand, we find AC"’s support in DB by intersecting the tidlests of A and
C in DB, which is 2. (tidlistpp(A) = {1,3,4,5,7,8,9}, tedlistps(C) = {1,5},
their intersection is {1,5}) Since the total support of AC is 3+2=5, AC is added
to Lpp+ar (Application of Lemma 2). AF is small in db, with a total support of 7.
Therefore, AF' is added to Lppia, but we do not include it in L3,. BC' is large in
db but small in DB. So, we compute the support of BC' in DB, which is 1. The
total support of BC' is 3, so we do not include it in Lppyq nor in L3,. BF is large

12

both in DB and db. So it is large in DB + db with a support of 7. Since C'F'is

small both in DB and db, it is small in DB + db by Corollary 1. Up to this point,

we checked each element of C7,, but not all elements of L%,5. At this moment,
Unchecked = {AD, BD,DF}.

We did not compute the supports of these itemsets in db since we did not include
D in L}, so for each of them we have to compute its support in db using tidlists
of the items contained in the itemset. Supports of AD, BD, DF in db are 1, 0, 0,
respectively. We find the total support of these itemsets by adding their supports
in DB and db. In our case, the supports of AD, BD,DF in DB + db are 7,3,6,
respectively. AD and DF' are found to be large in the whole database, so we add
them to Lppigp. Since BD is small in the whole database, we have to remove its
supersets from Lppg, namely BDF.

At the end of the second iteration, we find that

L3, = {(AC,3),(BF,2)}, and

L2DB-|—db = {(AC, 5)7 (ADv 7)7 (AEv 5)7 (AFv 7)7 (BFv 7)7 (DFv 6)}
Before proceeding to third iteration, we compute

3 =g

Unchecked = {ADF'}

Since, C3, =), we proceed with checking the elements of Unchecked. The
support of ADF' is 0 in db and its support in DB+ db is 5. Thus, we add ADF into
Lppiap and finish the update operation. The final set of large itemsets in DB + db
are:

LlDB-I—db = {(Av 11)7 (Bv 8)7 (Cv 6)7 (Dv 8)7 (Ev 5)7 (Fv 11)}
L2DB-|—db = {(AC, 5)7 (ADv 7)7 (AEv 5)7 (AFv 7)7 (BFv 7)7 (DFv 6)}
L%B+db = {ADF,5}

3.3 Completeness and Efficiency of the Algorithm

The algorithm UW EP presented in Figure 1 correctly and completely computes
the set of large itemsets in the updated database.

Lemma 4 Given a set of old transactions (DB), a set of new transactions (db),
and a set of itemsets Lpp which are large over DB, the algorithm in Figure 1
discovers all the large itemsets over DB + db correctly.

Proof. Let X be a k-itemset. By Corollary 1, X must be large in either DB or
db, or both. Thus, in order to compute large itemsets in DB + db, we have to
check large itemsets in DB against db, and large itemsets in db against DB. Let
us investigate these two cases:

Case 1: Checking for all X € Lpgp against db

13

In the initial pruning step (algorithm in Figure 2), all itemsets X in Lpp such
that supports(X) = 0 are checked. If X is small in DB + db, all of its supersets are
removed from consideration since they can not also be large in DB+db by Lemma 1.
If X is large in DB + db, we put it into Lppyg, and its immediate supersets into
the PruneSet. This process is repeated until the PruneSet is empty. In the end,
any large itemset in DB whose support in db is zero is checked against db. Thus,
before the while loop on line 5 in Figure 1, Lpp contains the large itemsets in DB
whose support in db is greater than zero, and Lppi 4 contains all large itemsets
containing the items whose support is zero in db.

In the k% iteration, Unchecked is initialized to the set of large k-itemsets in
DB. Any element of Unchecked that is present in C% is checked on lines 9 and 16.
If an itemset in Unchecked does not exist in C% then the second for loop counts
their support in db, and decides which of them are large in the updated database.
Therefore, all elements of L% 5 are checked against db, and the ones that are large
in DB 4+ db are determined.

Case 2: Checking for all X € Ly against DB

In the UWEP algorithm, C% contains possibly large itemsets over DB + db,
instead of possibly large itemsets in db. In the first for loop, only those in C% that
are large over DB + db are put into L%, (lines 17 and 22). If a k-itemset X is large
in db but not in DB + db, then it is a waste of effort to put it into L¥, because it
is not possible that a superset of X is large in DB 4+ db by Lemma 1. Since any
superset of X is certainly small in DB + db, we do not need to check whether any
superset of X is large in db or not. Because, even if a superset of X is large in db,
it will be certainly small in the updated database. Since our purpose is to generate
the large itemsets in DB + db, putting X into L%, is a waste of effort, and reduces
the performance of the algorithm.

Thus, the first for loop checks for all the itemsets in C% against DB. If any
large itemset in C% is also large in DB, then we simply put it into L%B_I_db on line 17
by Lemma 3. If it is small in DB, then we count its support in DB using tidlists,
and decide to put it into L} g, and L% on line 22. Therefore, all elements large
in db are checked against DB.

As a consequence of Case 1 and Case 2, the algorithm UW EP computes the
large itemsets in DB + db correctly and completely. a

Lemma 5 The number of candidates generated and counted by the algorithm UW E P

in Figure 1 is minimum.

Proof. The only candidate generation operation is over db. Therefore, to prove

that the number of candidates generated is minimum, we only deal with the set

14

Aprior: | FUP, | UWEP
Iteration 1 | Candidates generated in db 6 6 5
Candidates counted in DB - 1 1
Candidates counted in db - 6 6
Total # of candidates counted 6 7 7
Iteration 2 | Candidates generated in db 15 15 6
Candidates counted in DB - 2 2
Candidates counted in db - 9 9
Total # of candidates counted 15 11 11
Iteration 3 | Candidates generated in db 1 1 0
Candidates counted in DB — 0 0
Candidates counted in db - 1 1
Total # of candidates counted 1 1 1

Table 3: Number of candidates generated and counted in the example database

of candidates in db. CJ, contains only the itemsets whose support is greater than
zero. This is the minimum bound because to decide which of the itemsets is large
in DB + db, we have to know at least the support of each item in db. Therefore, C},
contains the minimum number of candidates. In the k** iteration, we put only the
itemsets that are large over DB + db into L%,. The completeness of this operation
is shown in the proof of Lemma 4. We have to put those itemsets that are large
over DB + db into L%, because, their supersets are possibly large over DB + db,
and we have to check them in order to complete the update operation. Since, we
do not include any other itemset in L%, this is the minimum bound for a level-wise
algorithm. As explained in Figure 3, the candidate set 05;'1 is computed from L%,
so the number of candidates generated in db is also minimum.

Since the candidates generated in db is minimum, the number of candidates
counted in db is also minimum. The only remaining issue is the number of candi-
dates counted in DB. Since, we only scan DB in order to find the support of an
itemset that is not large in DB, this is also the lower bound. Hence, the number

of candidates counted is minimum. O

3.4 Comparison with the Existing Algorithms

Table 3 shows the number of candidates generated and counted by the Apriore,
FUP,, and UWEP algorithms over the example database given in Table 2. It is
worth noting that the Apriori algorithm re-runs over the whole set of transactions,

and therefore counting candidates over DB and db is irrelevant.

15

As Table 3 shows, our algorithm generates a much smaller number of candidate
sets than Aprior: or FUP,. Especially for the second iteration, UW E P achieves
% = 60% improvement over the two algorithms. Overall, UW EP has a per-
formance improvement of % = 50% over the two algorithms. Note that, the
candidates counted by UW E P is the same as F'U P,, but the number of candidates
generated by F'UP; is larger than the ones generated by UW EP.

In case of running the Partition Update algorithm (PU) of [12], the number
of candidates counted is much greater than that of UW EP. In db there are four
large 1-itemsets and three large 2-itemsets. In order to find them, 11 candidates are
generated and counted in db. Since we know the support of four of them in DB, PU
has to count only 3 candidates on DB. However, it has to count 17 large itemsets
of DB over db since their supports in db are not available. Therefore, a total of 3
itemsets are counted in DB and 11 + 17 = 28 itemsets are counted in db. On the
other hand, UW EP counts 3 candidates in DB and 6 + 9 + 1 = 16 candidates in
db. Even only one scan of db and DB is enough for counting itemsets, the number
of candidates counted is very high in comparison to the UW E P algorithm, where
UW EP achieves a % = 43% improvement over Partition Update algorithm in
the number of candidates counted in db.

UW EP also yields a smaller candidate set in comparison to other update al-
gorithms. FUP, [8], which is a generalization of FUP [7], examines a large k-
itemset only in the k'™ iteration and generates the candidate set C% from the set
of large (k — 1)-itemsets in the updated database. Then, by means a few optimiza-
tions, it prunes some of the candidates and counts the remaining over DB and db.
PartitionUpdate(PU) finds the set of large itemsets in db and then checks large
itemsets in DB against db and vice versa. In this sense, it generates the candidate
set C% from the set of large (k — 1)-itemsets in the incremental database. The
algorithms in [16, 14] generate the candidate set C%, from the set of large itemsets
L1 with the same number of candidates in PU. On the other hand, UW EP
generates the set of candidate set C% from the set of itemsets that are large both
in db and in the updated database. This results in a much smaller candidate set in

comparison to the mentioned algorithms.

4 Experimental Results

In order to measure the performance of UW E P, we conducted several experiments
using the synthetic data introduced in [4]. Before proceeding to the details of the
experiments, we would like to present the parameters used in the data generation

procedure.

16

-

(R]
6 "n 200
\ —~
51 8
n 8
g 150
Q4 . 2
3 o
3 £ ®
g i F
»3 g 100
5
15}
o ')
1 ./
0 il L - L 1 L .l L 0 L L L L L L L
0 1 2 3 4 5 0 10 20 30 40 50 60 70 80 90 100 110
Minimum Support (%) Size of Increment (thousands)

Figure 4: a) Speedup by UW EP over Partition algorithm b) Execution times of
UWEP vs. Partition algorithms

The synthetic data generated in [4] mimics the transactions in the retailing en-
vironment. Our synthetic data generation procedure is a simple extension of the
method used in [4]. We generated a transaction database of size 2 x |DB)|, where

the first |DB| transactions were placed into the set of old transactions. From

the remaining transactions, we took the first % transactions for the first in-
cremental database, took the first DB ansactions for the second incremental

10
database, and so on. Since all transactions are generated using the same sta-

tistical pattern, the transactions in the incremental database exhibit the same
regularities in the original database. In the experiments, we used the following
parameters. Number of maximal potentially large itemsets=|L|=2000, number
of transactions=|D|=200,000, average size of the transactions=|7T|=10, number of
items=N=1000 and average size of the maximal potentially large itemset=|I|=4.
We follow the notation T'w.ly.Dm.dn used in [7] to denote databases in which
|DB| = m thousands, |db] = n thousands, |T'| = z and |I| = y. Readers not

familiar with these parameters are referred to [4].

For the first experiment, we measured the speedup gained by UW EP over
rerunning Partition algorithm [15]. We have chosen Partition since the same data
structures and methodology for finding large itemsets are used in both algorithms.
Figure 4a shows the results for 710.74.D100.d10. The y-axis in the graph represents

FExecution Time of Partition

Ezxecution Time of UWEP ?
seen from Figure 4a, UW EP performs much better than re-running Partition.

and x-axis represents different support levels. As it can be

Figure 4a shows that at lower support levels, the speedup gain of UW E'P increases

from 1.5 to 6 as the minimum support decreases from 3% to 0.1%. For support

17

(1) (2) (3) | Imprv. | Imprv.
minsup PU | FUP, |UWEP | on (1) | on (2)
Candidates | 0.75% | 100177 | 99797 53759 | 46% 46%
Generated 0.5% | 146431 | 161746 90884 | 38% 44%
in db 0.1% | 351652 | 511717 | 239662 | 32% 53%
Candidates | 0.75% | 100341 | 53762 53762 | 46% -
Counted 0.5% | 147740 | 91417 91417 | 38% -
in db 0.1% | 379352 | 251963 | 251963 | 34% -
Candidates 0.75% 206 187 187 9% -
Counted 0.5% 1612 571 571 | 65% -
in DB 0.1% | 28040 8675 8675 | 69% -
Candidates | 0.75% | 100547 | 53949 53949 | 46% -
Counted 0.5% | 149352 | 91988 91988 | 38% -
Totally 0.1% | 407392 | 260638 | 260638 | 36% -

Table 4: Number of candidates generated and counted on synthetic data

levels higher than 3%, the speedup seems to converge to 1.5.

In the second experiment, we measured the effect of the size of the incremental
database on the execution time of the algorithms. Figure 4b shows the execution
times for UW EP and Partition algorithms for 7'10.74.D100.dn, where n varies
from 10 to 100, with the minimum support set to 0.5%. For smaller sizes of the
incremental database, UW E P achieves a much better performance than Partition.
As the size of the new transactions increases, the execution time of UW EP gets
closer to that of the Partition. On the other hand, despite adding 100% trans-
actions, UW E P still performs better than re-running Partiteon. One interesting
feature of UW EP is that its execution time is linear to the size of incremental
database under a specified minimum support. In this sense, UW EP can scale up

linearly to the size of incremental database whatever the minimum support is.

The third experiment investigates the number of candidates generated and
counted for the three update algorithms, Partition Update, FU P;, and UW EP. For
this experiment, we generated an increment database containing a smaller number
of items than that in the original database. Table 4 shows the number of generated
and counted candidates for three algorithms for 7'10.74.0100.d10 with 900 items
in the new set of transactions. The reason behind smaller number of items in the
incremental database is to see the effects of data skewness in the update of large
itemsets. As Table 4 shows, UW E P generates a much smaller number of candidates

in comparison to the other two algorithms, between 32%-53% of those generated

18

by FUP, and Partition Update. The number of candidates counted by UW EP
is exactly the same as that by FFUP,. However, the Partition Update algorithm
counts more candidates than UW E P counts, up to 69%. The results indicate that
UWEP performs much better than the other two algorithms when some of the
large itemsets in DB are absent in db, thus in DB + db, as well.

5 Conclusion

We presented an efficient algorithm, UW E P, for updating large itemsets when a
set of new transactions are added to the database of transactions. We proved that
UWEP generates and counts the possible minimum number of candidates for a
level-wise algorithm. The major advantages of UW E P over the previously proposed
update algorithms are the facts that it prunes the supersets of a large itemset in
DB as soon as it is known to be small in the updated database, without waiting
until the k% iteration. Moreover, UW EP generates the set of candidate set C%,
from the set of itemsets that are large both in db and in the updated database. As
shown in Section 4, this methodology yields a much smaller candidate set especially
when the set of new transactions does not contain some of the old large itemsets.
We have conducted experiments on synthetic data and found that UW EP
achieves a better performance than re-running Partition [15] algorithm over the
whole set of transactions. Naturally, this is true for re-running other algorithms like
Apriori [4] since the previous work is discarded and the entire database is scanned
again. Especially for the smaller support levels, the speedup obtained by UW E P
is very large. Moreover, experiments on the number of candidates generated and
counted show that UW E P outperforms Partition Update and FU P, algorithms.
There are several directions for future research. We are in the process of ex-
tending our performance experiments and compare speedup of UW E P against the
other update algorithms [14, 16] to gain a better insight about the performance
of UWEP. We also plan to extend our algorithm to handle deleted or modified

transactions as well.

References

[1] Charu C. Aggarwal and Philip S. Yu. Online generation of association rules.
In Proceedings of ICDE’98, pages 402—411, February 1998.

[2] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association rules
between sets of items in large databases. In Proceedings of ACM SIGMOD 93,
pages 207-216, May 1993.

19

3]

[12]

[13]

[14]

[15]

Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen,
and A. Inkeri Verkamo. Fast discovery of association rules. In Usama Fayyad,
Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramaswamy Uthurusamy,
editors, Advances in Knowledge Discovery and Data Mining, pages 307-328.
AAAI/MIT Press, 1996.

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining asso-

ciation rules. In Proceedings of VLDB’9}, pages 487-499, 1994.

Roberto J. Bayardo. FEfficiently mining long patterns from databases. In
Proceedings of ACM SIGMOD’98, pages 85-93, 1998.

Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Sergey Tsur. Dynamic
itemset counting and implication rules for market basket data. In Proceedings

of ACM SIGMOD’97, pages 255-264, June 1997.
David Wai-Lok Cheung, Jiawei Han, Vincent T. Ng, and C. Y. Wong. Main-

tenance of discovered association rules in large databases: An incremental

update technique. In Proceedings of ICDE’96, pages 106-114, February 1996.

David Wai-Lok Cheung, Sau Dan Lee, and Benjamin Kao. A general incre-
mental technique for maintaining discovered association rules. In Proceedings

of DASFAA’97, pages 185-194, April 1997.

Christian Hidber. Online association rule mining. Technical Report TR-98-033,
International Computer Science Institute, Berkeley, September 1998.

Maurice Houtsma and Arun Swami. Set-oriented mining of association rules

in relational databases. In Proceedings of ICDE’95, pages 25-33, 1995.

Heikki Mannila, Hannu Toivonen, and A. I. Verkamo. Efficient algorithms for
discovering association rules. In Proceedings of KDD’94, pages 181-192, July
1994.

Edward Omiecinski and Ashok Savasere. Efficient mining of association rules

in large dynamic databases. In Proceedings of BNCOD 98, pages 49-63, 1998.

Jong Soo Park, Ming-Syan Chen, and Philip 5. Yu. An effective hash based
algorithm for mining association rules. In Proceedings of ACM SIGMOD 95,
pages 175-186, May 1995.

N. L. Sarda and N. V. Srinivas. An adaptive algorithm for incremental mining
of association rules. In Proceedings of DEXA Workshop’98, pages 240-245,
1998.

A. Savasere, Fdward Omiecinski, and S. Navathe. An efficient algorithm for
mining association rules in large databases. In Proceedings of VLDB’95, pages

432-444, September 1995.
Shiby Thomas, Sreenath Bodagala, Khaled Alsabti, and Sanjay Ranka. An

efficient algorlthm for the incremental updation of association rules in large

databases. In Proceedings of KDD’97, pages 263266, 1997.

Hannu Toivonen. Sampling large databases for association rules. In Proceedings

of VLDB’96, pages 134-145, September 1996.

20

