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ABSTRACT

UPDATING LARGE ITEMSETS
WITH EARLY PRUNING

Necip Fazil Ayan
M.S. in Computer Engineering and Information Science
Supervisor: Prof. Dr. Erol Arkun
July, 1999

With the computerization of many business and government transactions, huge
amounts of data have been stored in computers. The existing database systems
do not provide the users with the necessary tools and functionalities to cap-
ture all stored information easily. Therefore, automatic knowledge discovery
techniques have been developed to capture and use the voluminous informa-
tion hidden in large databases. Discovery of association rules is an important
class of data mining, which is the process of extracting interesting and frequent
patterns from the data. Association rules aim to capture the co-occurrences of
items, and have wide applicability in many areas. Discovering association rules
is based on the computation of large itemsets (set of items that occur frequently
in the database) efficiently, and is a computationally expensive operation in
large databases. Thus, maintenance of them in large dynamic databases is an
important issue. In this thesis, we propose an efficient algorithm, to update
large itemsets by considering the set of previously discovered itemsets. The
main idea is to prune an itemset as soon as it is understood to be small in the
updated database, and to keep the set of candidate large itemsets as small as
possible. The proposed algorithm outperforms the existing update algorithms
in terms of the number of scans over the databases, and the number of can-
didate large itemsets generated and counted. Moreover, it can be applied to

other data mining tasks that are based on large itemset framework easily.

Key words: Data mining, association rules, large itemsets, update of large

itemsets, early pruning.
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OZET

ERKEN ELIMINASYON ILE
YOGUN NESNE KUMELERININ GUNCELLENMESI

Necip Fazil Ayan
Bilgisayar ve Enformatik Mihendisligi, Yiksek Lisans
Tez Yoneticisi: Prof. Dr. Erol Arkun
Temmuz, 1999

Bilisim uygulamalarinin yayginlagmasi ile, bilgisayarlarda buytuk miktarlarda
veri depolanmasina baglanmigtir. Gunumiuz veri tabani sistemleri, kullaniciya
depolanan butiun bilgilere kolayca ulagsabilecegi araclari ve fonksiyonlari sun-
mamaktadir. Buyik veri tabanlarinda sakli olan bu bilgilere ulagmak ve bu
bilgileri kullanmak tizere, otomatik bilgi kesfetmeye yarayan teknikler gelistiril-
mektedir. Bu tekniklerden biri olan baginti kurallar1 bulma, depolanan veriler-
den, ilging ve siklikla rastlanan semalari tanima iglevinin, yani veri aragtirmasi-
nin ¢ok onemli bir dalidir. Bagint1 kurallari, nesnelerin bir arada olma du-
rumlarini belirlemeyi amaclar ve bir ¢ok alanda genig kullanilabilirlige sahip-
tir. Bagint1 kurallar1 bulma, yogun nesne kiimelerinin (verilerde sik¢a bir
arada gorlilen nesnelerin) hesaplanmasi esasina dayanir ve biiyiik veri taban-
larinda hesaplanmasi oldukc¢a pahali bir iglemdir. Bu ytizden, daha 6nce belir-
lenmig bagint1 kurallarinin korunmasi olduk¢a 6nemli bir konudur. Bu tezde,
daha onceden bulunmusg olan nesne kiimelerini goz oniine alarak, yogun nesne
kimelerini giincellemekte kullanilan hizli bir algoritma sunulmaktadir. Algo-
ritmanin temel fikri, herhangi bir nesne kiimesini giincellenen veri tabaninda
yogun olmadigi anlasilir anlagilmaz elemek ve boylece yogun olmasi muhtemel
nesne kimelerinin sayisini olabildigince kiicik tutmaktir. Sunulan algoritma,
veri tabani tizerindeki tarama sayisi ile tiretilen ve sayilan nesne kiimelerinin
say1si bakimindan daha once 6nerilen buitiin gincelleme algoritmalarindan daha
iyidir. Ayrica, sunulan algoritma yogun nesne kiimelerinin hesaplanmasi esasi-

na dayanan diger veri aragtirmasi iglerine de kolayca uyarlanabilir.

Anahtar kelimeler: Veri arastirmasi, baginti kurallar1, yogun nesne kimeleri,

yogun nesne kiimelerinin gincellenmesi, erken eliminasyon.
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Chapter 1

Introduction

With the storage of huge amounts of data in every field of life, it has become a
difficult and time consuming task to examine and properly interpret the stored
information. The human beings have become incapable of managing all the
information stored in various forms of databases. The automatic knowledge
discovery tools have emerged in order to overcome this difficulty, and have
taken great attention of the researchers in the database literature. Knowledge
discovery process includes all pre-processing steps on the data stored, discov-
ering interesting patterns on the data, and the post-processing of the results
found on the data. Pre-processing of the data includes the cleaning of data
and preparing data to the discovery of frequent interesting patterns. Data
mining refers to the discovery of interesting and frequent patterns from the
data in the knowledge discovery process. These interesting patterns may be
in the form of associations, deviations, regularities, etc. Post-processing step
is the pruning of the discovered patterns and the presentation of them in an

understandable and easy-to-handle manner to end-users.

Association rules are just one of the patterns that can be extracted from
data by means of data mining techniques. Specifically, an association rule,
X =Y, is a statement of the form “for a specified fraction of the total trans-
actions, a particular value of the attribute set X determines the value of an
attributes set Y with a certain confidence”. In this sense, association rules

aim to explain the presence of some attributes according to the presence or
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absence of some other attributes. The problem was studied first by Agrawal et
al. [AIS93] in 1993 on a supermarket basket data, and has been widely explored
to date. On a supermarket basket data, an example association ruleis “In 10%
of the transactions, 85% of the people buying milk also buy yoghurt in that
transaction”. Here, the support of the rule is 10%, and the confidence of the
rule is 85%.

Because of the applicability and usefulness of association rules in many
fields such as supermarket transactions analysis, telecommunications, univer-
sity course enrollment analysis, word occurrence in text documents, user’s visit
to WWW pages, etc., many researchers have proposed efficient algorithms to
discover association rules. The problem of discovering co-occurrences of items
in a small data is a very simple task. However, the large volume of data makes

this problem difficult and efficient algorithms are needed.

In [AIS93], the problem of discovering association rules is decomposed into
two parts: Discovering all frequent patterns (represented by large itemsets) in
the database, and generating the association rules from those frequent itemsets.
The second subproblem is a straightforward problem, and can be managed in
polynomial time. On the other hand, the first task is difficult especially for
large databases. The Apriori [AS94] is the first efficient algorithm on this
issue, and many of the forthcoming algorithms are based on this algorithm.
We leave the analysis of the major algorithms for extracting association rules

to Chapter 2.

1.1 Motivation

Since the discovery of large itemsets in a large database is a computationally
expensive process, their maintenance is also an important issue in dynamic
databases. When the existing database is updated by adding new transactions
or deleting existing ones, the computation of large itemsets in the updated
database again is very costly, because it repeats much of the work done in
the previous computations. There are two possibilities when the database is

updated: (1) Some of the old large itemsets are no longer large in the updated
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database, and (2) some new itemsets that were not large previously may be-
come large in the updated database. The straightforward solution is to re-run
an association algorithm on the updated database. However, as we noted previ-
ously, this discards all the rules discovered previously, and repeats all the work
done. The maintenance of large itemsets has been an important issue, and a
few algorithms were proposed to efficiently update large itemsets by taking the
set of previously discovered rules into account. Instead of finding all large item-
sets again, they generally use some heuristics to remove some of the old large
itemsets, and to add new ones without doing much work. Especially, when the
size of the added transactions is large, these algorithms perform much better

than re-running an association rule algorithm over the updated database.

The efficiency of an update algorithm strongly depends on the size of the set
of candidate itemsets (possibly large itemsets). The smaller the set of candidate
itemsets is, the more efficient the update algorithm would be. In this thesis,
we propose an efficient algorithm called Update With Early Pruning (UWEP)
which updates large itemsets when new transactions are added to the existing
database. It works iteratively on the new set of transactions, like most of the

update algorithms. The major advantages of UW EP are:

1. It scans the old database of transactions at most once and new database

exactly once.

2. It generates and counts the minimum number of candidates in order to

determine the set of new large itemsets.

The first advantage is achieved by converting the databases into inverted
files, and counting itemsets over these inverted structures instead of scanning
databases. UW E P takes its power from reducing the set of candidate itemsets
to a minimum. This is achieved by pruning an itemset that will become small
from the set of generated candidate set as early as possible by means of a look-
ahead pruning. In other words, it does not wait for the k" iteration for pruning
a small k-itemset as the other algorithms do, but removes it from consideration
as soon as it is determined to be small. Moreover, UW E P promotes an itemset
to the set of candidate itemsets if and only if it is large both in the new

transactions and in the updated database. This feature yields a much smaller
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candidate set when some of the old large itemsets are eliminated due to their
absence in the new set of transactions. UW E P is proposed as the best update
algorithm in terms of the number of scans over the database, and the number

of candidates generated and counted.

1.2 Overview of the Thesis

This thesis is organized as follows. Chapter 2 gives a broad survey on data
mining, and association rules. The analysis of the algorithms to discover the
association rules and the challenges faced are explained in this chapter in de-
tail. Chapter 3 presents the algorithm UW E P, which is an efficient algorithm
to update large itemsets. The completeness and optimality of UW EP, and
the experimental and theoretical comparison with the existing algorithms are
discussed in this chapter. In Chapter 4, the case of deleted transactions is
examined in detail, and the challenges in update of large itemsets for the case
of deletion are discussed. Finally, the thesis concludes with some future work

in Chapter 5.



Chapter 2

A Survey in Association Rules

2.1 Knowledge Discovery and Data Mining

With the recent developments in computer storage technology, many organi-
zations have collected and stored massive amounts of data. Even though very
useful information is buried within this data, this information is not readily
available for the users. Obviously, there is a need for developing techniques
and tools that assist users to analyze and automatically extract hidden knowl-
edge. Knowledge discovery in databases (K DD) includes techniques and tools
to address this need.

Fayyad et al. [FPSS96a] defines knowledge discovery in databases as follows:

“KDD is the non-trivial process of identifying valid, novel, poten-

tially useful, and ultimately understandable patterns in the data.”

K DD, in fact, aims at discovering unexpected, useful and simple patterns,
and it is an inter-disciplinary research area. It is of interest to researchers in
machine learning, pattern recognition, databases, statistics, artificial intelli-
gence, expert systems, graph theory, and data visualization. K DD systems

generally use methods, algorithms, and techniques from all of these fields.

K DD process is an interactive and iterative multi-step process which uses

3
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data mining techniques to extract interesting knowledge according to some
specific measures and thresholds. Fayyad et al. [FPSS96a, FPSS96b] and Man-
nila [Man96, Man97] describe the steps of knowledge discovery as follows:

1. Understanding the domain, the prior knowledge and the goals of end-user,
2. creating a target data set,

3. pre-processing the data set (selection of data resources, cleaning the data
from errors and noise, handling unknown values, reduction and projection

of data, etc.),
4. choosing the data mining task and algorithm,
5. searching for interesting and frequent patterns (data mining),

6. post-processing the discovered patterns (further selection, elimination or

ordering of patterns, visualization of the results), and

7. putting the results into use.

Note that data mining is a step of K DD and aims at discovering frequent
and interesting patterns in data. These patterns can be of the form of regular-
ities, exceptions, co-occurrences, etc. Data mining is an application dependent
issue and different applications may require different data mining techniques.
Fayyad et al. [FPSS96a, Fay98] classify the primary data mining techniques
into 5 categories as predictive modeling, clustering, summarization, dependency
modeling, and deviation detection. Classification and regression are examples of
predictive modeling, association rules are examples of summarizing, functional
dependencies are examples of dependency modeling, and sequential patterns

are examples of deviation detection.

Chen et al. [CHY96] classify data mining methods according to three crite-

ria:

1. What kind of databases to work on (relational, attribute—oriented, etc.)
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2. What kind of knowledge to be mined (association rules, classification rules,
characteristics rules, discriminating rules, sequential patterns, deviations,

similarity, clustering, regression, etc.)

3. What kind of techniques to be utilized (data—driven miner, query—driven

miner, interactive miner, etc.)

The easiest application areas for K DD seem to be the ones where human
experts can be found in that area but the data is continuously changing. An-
other appropriate application area involves the fields that are difficult for the
human beings to handle. In general, data mining techniques are useful in deci-
sion making, information management, query processing, and process control.
The major areas in which data mining methods have been applied are database
marketing, financial applications, weather forecasting, astronomy, molecular bi-
ology, health care data, and scientific data. For a good overview of application

areas, refer to [FPSS96a].

The data mining task is a difficult problem. As pinpointed in [Fay98], the
most important challenge in data mining is that the data mining problems are
ill-posed problems. Many solutions exist for a given problem, but there is no
absolute answer for the quality of the results. This is fundamentally different
from the difficulties faced in well-defined problems like sorting data or matching
a query to records. In most of the data mining applications, the size of the
database is very large and moreover a large volume of data should be collected
in order to reach stable and valid results. Generally, the results of the data
mining activity is very large and post-processing of the results is inevitable for
understanding them. Data mining is a discovery-driven process, i.e., end-users
generally do not know what to discover in advance. The major challenges faced

in knowledge discovery in databases are summarized in [FPSS96a] as follows:

Large databases,

high dimensionality of databases,

over fitting,

different types of data,
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e changing data and knowledge,

e missing and noisy data,

e complex relationships between attributes,

e usefulness, certainty and expressiveness of results,
e understandability of results,

e interactive mining at multiple abstraction levels,
e user interaction and usage of prior knowledge,

e integration with other systems,

e mining from multiple sources of data, and

e protection of privacy and security.

2.2 Association Rules

Association rules are one of the promising aspects of data mining as a knowl-
edge discovery tool, and have been widely explored to date. They allow to
capture all possible rules that explain the presence of some attributes accord-
ing to the presence of other attributes. An association rule, X = Y, is a
statement of the form “for a specified fraction of transactions, a particular
value of an attribute set X determines the value of attribute set Y as another
particular value under a certain confidence”. Thus, association rules aim at
discovering the patterns of co-occurrences of attributes in a database. For in-
stance, an association rule in a supermarket basket data may be “In 10% of
transactions, 85% of the people buying milk also buy yoghurt in that trans-
action.” The association rules may be useful in many applications such as
supermarket transactions analysis, store layout and promotions on the items,
telecommunications alarm correlation, university course enrollment analysis,
customer behavior analysis in retailing, catalog design, word occurrence in

text documents, user’s visits to WWW pages, and stock transactions.
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The problem of discovering association rules was first explored in [AIS93]
on supermarket basket data, that is the set of transactions that include items
purchased by the customers. In this pioneering work, the data was considered
to be binary, i. e. an item exists in a transaction or not, and the quantity of

the item in the transaction is irrelevant.

In [AIS93], mining of association rules was decomposed into two subprob-
lems: discovering all frequent patterns (represented by large itemsets defined
below), and generating the association rules from those frequent itemsets. The
second subproblem is straightforward, and can be done efficiently in a reason-
able time. However, the first subproblem is very tedious and computationally
expensive for very large databases and this is the case for many real life appli-
cations. In large retailing data, the number of transactions are generally in the
order of millions, and number of items (attributes) are generally in the order
of thousands. When the data contains NV items, then the number of possibly
large itemsets is 2. However, the large itemsets existing in the database are
much smaller than 2V. Thus, brute force search techniques, which require ex-
ponential time, waste too much effort to obtain the set of large itemsets. To
reduce the number of possibly large itemsets, many efficient algorithms have
been proposed. These algorithms generally use clever data structures (such as
hash tables, hash trees, lattices, multi-hypergraphs, etc.) in order to reduce

the size of possibly large itemsets and speedup the search process.

Most of the association rule algorithms make multiple passes over the data.
A counter is associated with each itemset that is used to keep its number of
occurrences in the database. In the first pass over the database, the set of large
itemsets of length 1 (one item actually) are determined by counting each item in
the database. Each subsequent pass aims to find the large itemsets of a certain
length in increasing order, i.e., second pass finds the large itemsets of length
two, and so on. Fach pass starts with a seed set consisting of the large itemsets
found in the previous pass, and tries to generate a set of possibly large itemsets
for that pass (candidate itemsets), and minimize the cardinality of that set.
Then, by scanning the database, the actual support for each candidate itemset
is computed and those that are large are qualified to the set of the seed set

of next pass. This process goes on until no new large itemsets are found in a



CHAPTER 2. A SURVEY IN ASSOCIATION RULES 10

pass.

Generally, the efficiency of an association rule algorithm depends on the size
of the candidate set (while generating and counting), and the number of scans
over the database. As suggested in [AY98a, CHY96], most of the association
rule algorithms concentrate on the following aspects to extract large itemsets

efficiently:
1. Reducing I/0 time by reducing the number of scans over the database,

2. minimizing the set of candidate itemsets,

3. counting the supports of candidate itemsets over the database in less time,

and

4. parallelizing the itemset generation.
In this sense, association rule algorithms generally differ on

1. the generation of the candidates,
2. counting of the support of a candidate itemset,
3. number of scans over the database, and

4. the data structures employed.

Readers are referred to [Z098] for a theoretical discussion of the association

rule discovery process.

2.3 Formal Problem Description

2.3.1 Definitions

Agrawal et al. define the problem of discovering association rules in databases

in [AIS93, AS94].
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Let I = {Il,...,1,} be a set of literals, called items. Let D be a set of
transactions, where each transaction T is a set of items such that 7' C I, and

each transaction is associated with a unique identifier called T'ID.

Definition 2.1 An itemset X is a set of items in I. An itemset X is called

a k-itemset if it contains k items from I.

Definition 2.2 A transaction T satisfies an itemset X if X CT. The sup-
port of an itemset X in D, supportp(X), is the number of transactions in D
that satisfy X.

Definition 2.3 An itemset X is called a large itemset if the support of X
in D exceeds a minimum support threshold explicitly declared by the user, and

o small itemset otherwise.

Definition 2.4 The negative border of a set S C P(R), closed with respect
to the set inclusion relation, is the set of minimal itemsets X C R not in S.
The negative border of the set of large itemsets is the set of itemsets that are

generated as a candidate but fail to qualify into the set of large itemsets.

Definition 2.5 An association rule is an implication of the form X = Y,
where X CI,Y C1I,and XNY = 0. X is called the antecedent of the rule,
and Y is called the consequent of the rule. The rule X = Y holds in D with
confidence ¢ where ¢ = 22222 XWY) e pyie X = Y has support s in D

supportp(X)
if the fraction s of the transactions in D contain X UY .

Example 2.1 Consider the example transaction database ET DB in Table 2.1.
There are 5 transactions in the database with T1Ds 100, 200, 300, 400, and
500. The set of items [ = {A, B,C, D, E}. There are totally (2°—1) = 32 non-
empty itemsets (each non-empty subset of I is an itemset). A is a 1-itemset and
AB is a 2-itemset, and so on. supportgrpp(A) = 4 since 4 transactions include

A in it. Let’s assume that the minimum support (minsup) is taken as 40%.

Then, {A,B,C,D,AB,AC,AD,BD, ABD} are the set of large itemsets since
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TID | Items
100 | A,B,C
200 | B,D
300 | A,C,D
400 | A,B,D
500 | A,B,D.E

Table 2.1: An Example Transaction Database

their support is greater than or equal to 2 (40% x5), and the remaining ones are
small itemsets. Let’s assume that the minimum confidence (minconf) is set to

60%. Then, A = D is an association rule with respect to the specified minsup

supportgrpp(AD) % 100 =
support grpp(A)

% x 100 = 75%). On the other hand A = C is not a valid association rule

and minconf (its support is 3, and its confidence is

since its confidence is 50%.

2.3.2 Problem

Given a set of transactions D, the problem of mining association rules is to
generate all association rules that have support and confidence greater than
the user-specified minsup and minconf, respectively. Formally, the problem is

generating all association rules X = Y, where supportp(X UY') > minsup x

|D| and support p(XUY)

supporin (%) > munconf.

The problem of finding association rules can be decomposed into two parts

[AIS93, AS94]:

Step 1: Generate all combinations of items with fractional transaction sup-

supportp(X)

Dl ) above a certain threshold, called minsup.

port (i.e.,

Step 2. Use the large itemsets to generate association rules. For every large
itemset [, find all non-empty subsets of [. For every such subset a, output a
rule of the form a = (I — a) if the ratio of supportp(l) to supportp(a) is at
least minconf. If an itemset is found to be large in the first step, the support
of that itemset should be maintained in order to compute the confidence of the

rule in the second step.
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generate_rules(L);
for all large k-itemsets Iy, £ > 2, in L do
begin
H; = { consequents of rules from [} with one item
in the consequent }
ap_genrules(ly, Hy)
end

ap_genrules(ly, H,,);
if k> m + 1 then
begin
H,p1 = apriori_gen(H,,)
for all h,,.1 € H,,4+1 do
begin
con f = supportp(lx)/supportp (I — hmy1)
if conf > minconf then
add (Ix — hmt1) = hmtr to the rule set
else
delete h,,1q from H,, 44
end
ap_genrules(ly, Hyt1)
end

Figure 2.1: Rule Generation Algorithm

The second subproblem is straightforward, and an efficient algorithm for ex-

tracting association rules from the set of large itemsets is presented in [AMST96].

The algorithm uses some heuristics as follows:

1. If @ = (I — a) does not satisfy the minimum confidence condition, then

for all non-empty subsets b of a, the rule b = (I — b) does not satisfy

the minimum confidence, either. Because, the support of a is less than or

equal to the support of any subset b of a.

2. If (I — a) = a satisfies the minimum confidence, then all rules of the form

of (I — b) = b must have confidence above the minimum confidence.

The rule generation algorithm is given in Figure 2.1. Firstly, for each large

itemset [, all rules with one item in the consequent are generated. Then, the



CHAPTER 2. A SURVEY IN ASSOCIATION RULES 14

apriori_gen(Lj_y);

1 C,=0

2 for all itemsets X € Ly_; and Y € L;_; do

3 if Xi=Y1 A ANXp_2=Yr 2 A Xj_1 <Yy then begin
4 C=X1Xe...X1Ye1

) add C to C},

6 end

7

delete candidate itemsets in C} whose any subset is not in Ly_4

Figure 2.2: Candidate Generation Algorithm

consequents of these rules are used to generate all possible rules with two items
in the consequent, etc. The apriori_gen function in Figure 2.2 is used for this

purpose.

On the other hand, discovering large itemsets is a non-trivial issue. The
efficiency of an algorithm strongly depends on the size of the candidate set.
The smaller the number of candidate itemsets is, the faster the algorithm will
be. As the minimum support threshold decreases, the execution times of these
algorithms increase because the algorithm needs to examine a larger number

of candidates and larger number of itemsets.

2.4 Apriori and Partition Algorithms

In this section, we would like to present two association rule algorithms, namely
Apriori [AS94, AMS196] and Partition [SON95]. The Apriori algorithm is
a state of the art algorithm and most of the association rule algorithms are
somehow variations of this algorithm. Thus, it is necessary to mention Apriore

in detail for an introduction to association rule algorithms.

The Aprior: algorithm works iteratively. It first finds the set of large 1-
itemsets, and then set of 2-itemsets, and so on. The number of scans over the
transaction database is as many as the length of the maximal itemset. Aprior:

is based on the following fact:
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Apriori()

L, = { large 1-itemsets}

k=2

while L;_; # 0 do

begin
Cy = apriori_gen(Lg_1) %See figure 2.2
for all transactions ¢ in D do
begin

C' = subset(Cy, t)
for all candidates ¢ € C* do

c.count = c.count + 1
end
Ly = {c € Clc.count > minsup}
k=k+1
end

Figure 2.3: Apriori Algorithm

“All subsets of a large itemset are also large.”

This simple but powerful observation leads to the generation of a smaller can-

didate set using the set of large itemsets found in the previous iteration.

The Apriori algorithm presented in [AMS*96] is given in Figure 2.3. Apriori

first scans the transaction database D in order to count the support of each

item ¢ in I, and determines the set of large 1-itemsets. Then, one iteration is

performed for each of the computation of the set of 2-itemsets, 3-itemsets, and

so on. The k" iteration consists of two steps:

1. Generate the candidate set C) from the set of large (k—1)-itemsets, Ly_1.

2. Scan the database in order to compute the support of each candidate

itemset in C},

The candidate generation procedure computes the set of potentially large

k-itemsets from the set of large (k — 1)-itemsets. A new candidate k-itemset

is generated from two large (k — 1)-itemsets if their first (k — 2) items are the

same (The new itemset contains the items in those two large itemsets in order).
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In fact, the candidate set C% is a superset of large k-itemsets. The candidate
set 1s guaranteed to include all possible large k-itemsets because of the fact
that all subsets of a large itemset are also large. Since all large itemsets in
Lj_1 are checked for contribution to a candidate itemset, the candidate set Cy
is certainly a superset of large k-itemsets. The pruning step in apriori_gen
function is necessary to reduce the size of the candidate set. For example, if
Ly_q includes AB, AC, then a candidate ABC is generated in the join step of
apriori_gen. However, it can not be a large itemset if L;_; does not include
BC(C', so it can be pruned from the candidate set. For efficiently finding whether
a subset of a large itemset is small or not, a hash table is used for storing the

large itemsets.

After the candidates are generated, their counts must be computed in order
to determine which of them are large. The counting step of an association
rule algorithm is very crucial in the efficiency of the algorithm, because the
set of candidate itemsets may be possibly huge. Aprior: handles this prob-
lem by employing a hash tree for storing the candidates. The subset function
in apriori_gen is used to find the candidate itemsets contained in a transac-
tion using this hash tree structure. For each transaction ¢ in the transaction
database D, the candidates contained in ¢ are found using the hash tree, and
then their counts are incremented. After examining all transactions in D, the
set of candidate itemsets are checked to eliminate the small itemsets, and the

ones that are large are inserted into Ly.

Example 2.2 Consider again the transaction database given in Table 2.1.
Suppose that the minimum support is set to 0%, i.e., 2 transactions. In
the first pass, Ly = {A,B,C,D}. The apriori_gen function computes Cy =
{AB,AC,AD,BC,BD,CD}. The database is scanned to find which of them
are large, and it is found that Ly, = {AB,AC,AD,BD}. This set is used
to compute C5. In the join step ABC, ABD, and ACD are inserted into Cs.
However, ABC' can not be large because BC' is not an element of L. Similarly,
ACD can not be large because C'D is not an element of Ly. Thus, ABC and
ACD are pruned from the set of candidate itemsets. The database ts scanned
and it is found that Ly = {ABD}. Cy is found to be empty, and the algorithm

terminates.
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The major drawback of the Aprior: is the number of scans over the database.
Especially for the huge databases, the 1/O overhead incurred reduces the per-
formance of the algorithm. In [AMS196], two variations of Apriori were also
presented to overcome this I/O cost. The Aprior: T'1D algorithm constructs
an encoding of the candidate itemsets and uses this structure to count the
support of itemsets instead of scanning the database. This encoded structure
consists of elements of the form < TID,{X;} > where each X} is a large
k-itemset. In other words, the original database is converted into a new table
where each row is formed of a transaction identifier and the large itemsets con-
tained in that transaction. The counting step is over this structure instead of
the database. After identifying new large K-itemsets, a new encoded structure
is constructed. In subsequent passes, the size of each entry decreases with re-
spect to the original transactions and the size of the total database decreases
with respect to the original database. Apriori_T'ID is very efficient in the
later iterations but the new encoded structure may require more space than

the original database in the first two iterations.

To increase the performance of Aprior:_T'ID, a new algorithm, namely
Apriori_Hybrid, was proposed in [AMST96]. This algorithm uses Apriori in
the initial passes, and then switches to Aprior:_T'I D when the size of the en-
coded structure fits into main memory. In this sense, it takes benefits of both

Apriort and Apriori_T1D to efficiently mine association rules.

The three algorithms mentioned above scale linearly with the number of

transactions and the average transaction size.

The UW EP algorithm is based on the framework of Partition algorithm
[SONO95]. Thus, we would like to describe this algorithm in detail. The ma-
jor advantage of Partition algorithm is scanning the database exactly twice
to compute the large itemsets by means of constructing a transaction list for
each large itemset. Initially, the database is partitioned into n overlapping
partitions, such that each partition fits into main memory. By scanning the
database once, all locally large itemsets are found in each partition, i.e., item-
sets that are large in that partition. Before the second scan, all locally large
itemsets are combined to form a global candidate set. In the second scan of the

database, each global candidate itemset is counted in each partition and the
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global support (support in the whole database) of each candidate is computed.

Those that are found to be large are inserted into the set of large itemsets.

The correctness of the Partition algorithm is based on the following fact:

“A large itemset must be large in at least one of the partitions.”

The same argument is applied when updating the large itemsets, and a formal

proof can be found in [SON95].

Two scans over the database are sufficient in Partition. This is due to the
creation of tidlist structures while determining large 1-itemsets. A tidlist for
an item X is an array of transaction identifiers in which the item is present. For
each item, a tidlist is constructed in the first iteration of the algorithm, and the
support of an itemset is simply the length of its tidlist. The support of longer
itemsets are computed by intersecting the tidliests of the items contained in
the itemset. Moreover, the support of a candidate k-itemset can be obtained
by intersecting the tidlists of the large (k — 1)-itemsets that were used to
generate that candidate itemset. Since the transactions are assumed to be
sorted, and the database is scanned sequentially, the intersection operation

may be performed efficiently by a sort-merge join algorithm.

For higher minimum supports, Aprior: performs better than Partition be-
cause of the extra cost of creating tidlists. On the other hand, when the
minimum support is set to low values and the number of candidate and large
itemsets tend to be huge, Partition performs much better than Aprior:. This
is due to the techniques in counting the support of itemsets and fewer number
of scans over the database. One final remark is that the performance of the
Partiteon algorithm strongly depends on the size of partitions, and the distri-
bution of transactions in each partition. If the set of global candidate itemsets

tends to be very huge, the performance may degrade.
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2.5 Analysis of Algorithms

AILS [AIS93] is the first study on the association rules. It works iteratively and
computes large k-itemsets in the k%" iteration. Thus, it makes as many passes as
the length of maximal itemset over the database. The candidates are generated
and counted at the same time. Once the set of large k-itemsets is determined,
the database is scanned to identify large (k + 1)-itemsets. By processing each
transaction sequentially, the large itemsets contained in that transaction are
extended with the other items in the transaction, and the support of the new
candidate is incremented. In this sense, AIS generates too many candidates

which turn out to be small in the database, causing it to waste too much effort.

Apriort [AS94, AMST96] also works iteratively and it makes as many scans
as the length of maximal itemset over the database. The candidate k-itemsets
are generated from the set of large (k—1)-itemsets by means of join and pruning
operations. Then the itemsets in the candidate set are counted by scanning the
database. Aprior: forms the foundation of the later algorithms on association

rules.

Apriori TID and Apriori_Hybrid [AS94, AMS*96] have the similar ideas
in Apriore. The former uses an encoded structure which stores the itemsets
that exist in each transaction. In other words, the items in the transaction
are converted to an itemset representation. The candidates are generated as
in Aprizor: but they are counted over the constructed encoding. The latter
algorithm tries to get benefits of both Aprior: and Aprior: TID by using
Apriort in the initial passes and switching to the other in later iterations.

Both algorithms make as many passes as the length of maximal itemset.

Offline Candidate Determination (OCD)[MTV94] is very similar to Apriors.
It also makes as many passes as the length of the maximal itemset. It differs
from Aprior: in the candidate generation algorithm. Both generate the candi-
dates from the set of Ly_; but OCD generates a new candidate from two large
(k — 1)-itemsets if they have k — 2 items in common while Apriori generates
it if & — 2 items of two large (k — 1)-itemsets are same. The candidates are

counted after generating the candidates and by scanning the database.
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Set Oriented Mining (SETM) [HS95] uses SQ L commands to mine associ-
ation rules. The number of scans over the database is equal to the length of
maximal itemset. The candidate set C}, is generated by the natural join of Lj_4
with L; in the attribute T/ D, and it is implemented by a merge-sort join. The
candidates are counted using SQL commands. SETM generates too many

candidates with respect to Aprior: and is less efficient.

Readers are referred to [HP96] for the evaluation of the algorithms above,
and their cost of computation. Lower and upper bounds for their computa-

tional complexity are provided in this paper.

The motivation behind Dynamic Hashing and Pruning (DHP) [PCY95a] is
the attempt to reduce the size of candidate 2-itemsets. Park et al. realized
that the dominant factor in an association rule algorithm is the generation and
counting of candidate 2-itemsets. It first finds the set of large 1-itemsets and
creates a hash table for the candidate 2-itemsets. In the later iterations, it
generates the candidates from the set of Ly_; by incorporating the knowledge
in the hash table to the algorithm. An itemset is put into the candidate set
if and only if its subsets are in L;_; and it is hashed into a hash entry whose
value is at least the minimum support. It counts the supports of candidate
itemsets by scanning the database. It also creates a hash table for the candidate
(k 4 1)-itemsets in this scan. DHP constantly performs well for low level
minimum supports and executes better in the later iterations, especially in the
second iteration. In [PCY97], sampling techniques are incorporated into the
framework of DH P. With the advantage of controlled sampling, the proposed

algorithms produce rules with high accuracy.

As we pointed out in Section 2.4, Partition [SON95] is the best algorithm in
terms of scans over the database. It makes at most two scans over the database
by means of partitioning the database into n partitions, finding large itemsets in
each partition, and determining which of them are large in the whole database.
It executes iteratively while finding large itemsets in a particular partition, but
the number of scans is limited to one by using a ti¢dlest structure we mentioned
previously. It counts the supports of the candidates over the created tidlists
instead of the database. The major advantages of Partition are the reduction

in [/O cost, and usage of main memory while computing large itemsets.
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MONET System [HKMT95] discovers association rules by using only a
general-purpose database management system and the operations of relational
algebra, union and intersection operations. The database is stored as a set
of items (columns), where T'1 Ds of the transactions that contain the item are
enumerated in this column. The candidates are generated by the method em-
ployed in Aprior:. It does not scan the whole database to count the supports
of itemsets, but intersects the columns of items contained in the itemset and
finds its length instead. This approach is in fact the same as the tidlest struc-
ture employed in Partition. The performance of the system strongly depends

on the implementation of the union and intersection operations.

In [Toi96], Toivonen uses sampling to discover the association rules. The
algorithm picks a random sample and computes the large itemsets with a lower
minimum support (in order not to miss any large itemset). Then, it verifies
this set of large itemsets and its negative border against the entire database. If
no itemset in the negative border is large in the entire database, this approach
finds the set of large itemsets in one pass over the database. Otherwise, it
requires an additional scan over the database. The candidate are generated
and counted as in Apriori. The reduced I/O cost is the major advantage of
the algorithm. Zaki et al. [ZPLO97] also analyze the effects of sampling on the
discovery of association rules, and propose efficient and optimal strategies for

choosing a sample size.

Dynamic Itemset Counting (DIC) [BMUTI7] attempts to reduce the num-
ber of scans over the database. As soon as it suspects that a k-itemset may be
large, it begins to count its support without waiting the k' iteration. Thus,
the number of scans is generally smaller than the length of the maximal item-
set. The database is logically partitioned into sets of size of M, and database
is processed sequentially by reading chunks of size of M. A new candidate is
added to the candidate set when all its subsets are large at that point. In other
words, it does not wait for the k%" iteration to generate candidates, but does
that in every M transactions read. The candidates up to that point are counted
while reading M transactions. The experiments yielded that DIC generally
makes two passes if the data is homogeneously distributed in the database and

M is suitably chosen.
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Four algorithms in [ZPOL97a|, Eclat, Max Eclat, Clique, MazClique, make
only one pass over the database. They use one of the itemset clustering schemes
(equivalence classes or mazimal hypergraphs) to generate potential maximal
large itemsets (maximal candidates). Each cluster induces a sub-lattice and
this lattice is traversed bottom-up or hybrid top-down/bottom-up to generate
all frequent itemsets and all maximal frequent itemsets, respectively. Clusters
are processed one by one. The tidlist structure in Partition is employed in
these algorithms, and the supports of candidate itemsets are computed by a
simple tntersection operation. They have low memory utilization since only
frequent k-itemsets in the processed cluster must be kept in main memory at

that time.

Maxz—Miner [Bay98| attempts to look aheadin order to quickly identify longer
itemsets, and prune their subsets as soon as possible. It scales linearly on the
number of frequent patterns and the size of the database irrespective of the
length of longest pattern. The candidate generation and counting processes
are similar to Apriorz, and it requires at most NV passes where N is the length
of maximal itemset. Maz—Miner especially performs well when the size of large

itemsets increases, but the number of scans is a drawback.

Carma [Hid99] is a recently proposed algorithm for computing association
rules online, which requires exactly two passes over the database. In the first
scan of the database, a lattice of potentially large itemsets with respect to the
scanned transactions is constructed. The user is free to change the support
threshold in the first scan. In a second scan, the algorithm determines the
support of each itemset in the lattice, and removes the itemsets that are small
with respect to the whole set of transactions. While the lattice is constructed,
a new candidate is inserted or removed according to the upper and lower bound
values associated with each itemset. The counting process takes place in the

second scan.

Aggarwal et al. [AY98c| uses the preprocess-once-query-many paradigm of
OLAP in order to generate the rules quickly, again by using a lattice structure

to pre-store itemsets. The algorithm is proportional to the size of the rule set.

Table 2.2 summarizes the sequential association rule algorithms in terms of
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Algorithm Number Candidate Candidate
of scans Generation Counting
AlS N Extend L;_; with items Scan database
in each transaction
Apriort N Join Ly_; with Ly Scan database
Apriori _TID N Join Ly_; with Ly Scan the encoded
itemset representation
oCcD N Join Ly_; with Li_4 Scan the database
SETM N Join Ljy_q with Ly S L commands
DHP N Join Ly_q with L;_; and Scan database
check its hash entry
Partition 2 Join Ly_; with Li_4 Intersect tidlists
MONET N Join Ly_; with Li_4 Intersect columns
Sampling <2 Join Ly_; with Li_4 Scan database
DIC <N Check all its subsets Scan database
(generally 2) | whether they are large
MazxClique 1 Examine maximal Intersect tidlists
frequent itemsets

Maz—Miner N Join Ly_; with Li_4 Scan database
Carma 2 According to upper Scan database

and lower bounds

Table 2.2: An Overview of Association Rule Algorithms

number of scans over the database, methods used to generate and count the

candidates. N refers to the length of maximal itemset in the column Number

of Scans.

As well as the sequential algorithms above, a number of parallel and dis-

tributed algorithms for discovering large itemsets were presented. Candidate

Distribution, Data Distribution, and Count Distribution [AS96] are the paral-

lelized versions of Aprior:, and Count Distribution was shown to be superior
to the others. DM A [CNFF96] attempted to parallelize the Partition algo-
rithm, and PDM [PCY95b] is a parallelization of DH P. Finally, Par-FEclat,
Par-MazFclat, Par-Clique, and Par-MazClique [ZPOL97b] are the parallel
versions of the four algorithms in [ZPOL97a].
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2.6 Variations of Association Rules

As we pointed out in Section 2.2, the association rule algorithms rely on the
existence or absence of items in a transaction. They do not take the other
properties of attributes, such as quantity, weight, hierarchical information, into
account. In this section, we will briefly mention some variations of association

rules, which are also based on the generation of itemsets.

2.6.1 Association Rules with Hierarchy

In most cases, taxonomies (is—a hierarchies) over the items are available. Such
a taxonomy, for instance, “jackets and ski pants are outer wear which is a type
of cloth, and shoes and hiking boots are footwear”. Generalized (multiple—
level) association rules [SA95] aim to find association rules between items in
different levels of a taxonomy as well as the rules between items in the same
level. An example of a generalized association rules states that “jackets =
footwear”. A straightforward but not efficient solution is to generate a new
column for the levels of hierarchy that are not in the original database of
transactions (generally the levels except the bottom level). Efficient algorithms,
which incorporate hierarchical information into the algorithm, were proposed
in [SA95, HF95]. An object-oriented approach is proposed in [FL.96] and SQ L
queries are used to find multiple-level association rules in [TS98]. Finally,

flexible multiple-level association rules are discussed in [SS98b].

2.6.2 Constrained Association Rules

In real life, end-users are generally interested in a small subset of the asso-
ciation rules extracted from a database. For instance, a user may want to
see the associations only between some items. In [SVA9T7], constrained asso-
ciation rules, which handles the constraints that are boolean expressions over
the presence or absence of some items, were proposed. One example of a con-
straints that can be handled is (Jacket A Shoes) V (descendants(Clothes) A

—ancestors(Hikingboots)), which expresses the constraint on the rules that
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either (a) contain both jackets and shoes, or (b) contain descendants of clothes
and do not contain ancestors of hiking boots. Instead of discovering all rules
and pruning some of them with respect to the given constraints, they in-
corporate the constraints into the association rule algorithm. In [NLHP9S8,
LNHP99], constrained association queries are introduced to handle more com-
plicated constraints in association rule discovery. One example of a constrained
association query is {(S1,52)|S1.Type C {Snacks} N Sy.Type C {beers} A
max (S, Price) < min(Sy, Price)}, which finds pairs of sets of cheaper snack
items and sets of more expensive beer items. In a recent study, Bayardo et
al. [BAGY99] push constraints on the minimum support, minimum confidence
and a new constraint that guarantees every rule has a predictive advantage

over its simplifications.

2.6.3 Quantitative Association Rules

The original association rule problem handles only the case for boolean at-
tributes, i.e., an item exists or not. For handling the quantity of numeri-
cal attributes and categorical attributes that can take more than two values,
quantitative association rules were proposed in [SA96a]. An example quanti-
tative association rule is (Age : 30..39) A (Married : Yes) = (NumCars :
2)(40%,90%), which means “In 40% of the total transactions, 90% of the peo-
ple whose age is between 30 and 40 and who are married have two cars”.
In [SA96a], an efficient algorithm, which attempts to divide the values of quan-
titative and categorical attributes into ranges which maximize the strength of

the association rules, was proposed.

The important point in computation of quantitative association rules is how
to partition the values of a quantitative attribute into non-overlapping parti-
tions optimally. Fukuda et al. [FMMT96] introduced optimized association
rules, which tries to find the partitioning of values of numerical attributes to
maximize the support or confidence. The same concept was also investigated
in [RS98] for numerical and categorical attributes. Wang et al. [WTL98] pro-

posed an interestingness—based interval merger for combining different intervals
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to one in order to maximize the interestingness of a rule. In another study re-
lated to numerical attributes [KFW98], fuzzy association rules were proposed.
A fuzzy association rule is of the form of “If X is A, then Y is B” where
X,Y are sets of attributes and A, B are fuzzy sets which describe X and Y
respectively. It is assumed that the fuzzy sets for each attribute are provided
as input. In [FWST98], a clustering schema is employed to extract those fuzzy

sets.

2.6.4 Sequential Patterns

The association rules aim at discovering co-occurrences at a certain time. With
the storage of data over a long time period and development of temporal
databases, the discovery of sequential patterns became an important issue. An
example of a sequential pattern is “Customers typically rent “Star Wars” then
“Empire Strikes Back” and then “Return of the Jedi”.” [AS95]. The items in
a sequential pattern need not be consecutive but only in that order. Three
algorithms were proposed in [AS95] to extract sequential patterns in a trans-
action database. This work was extended to handle sliding windows and hier-
archical information in [SA96b]. Mannila et al. [MTV95, MT96] discovers the
frequent episodes (a collection of events in a certain pattern), and generalized
episodes (episodes that satisfy certain conditions) in a sequence of data. Gu-
ralnik [GWS98] and Das et al. [DLM*98] also propose efficient algorithms for

discovering frequent episodes.

2.6.5 Periodical Rules

In a sequence of data, association rules may reveal periodical properties. More-
over, some of the rules may have enough support in a smaller time period even
it does not have enough support in the global database. Ozden et al. [ORS98]
introduce cyclic association rules, which are the rules that have the specified
confidence and support in regular time intervals. One such rule states that
“People buy newspapers along with milk every Sunday”. Instead of finding

the rules at each time point, and then attempting to generate periodical rules
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from those set of rules, two algorithms that incorporate some heuristics to the
algorithm were proposed in [ORS98]. These algorithms handle only the case
where the rules are repeated in every ¢ time points. In [RMS98], this study is
extended to find the calendric association rules which follow the patterns in a
user-specified calendar. Moreover, the algorithms for extracting rules in any
calendar were proposed. These studies are based on the full periodicity, i.e.,
the rule must be valid in every time point in the pattern. Han et al. [HDY99]
drop this restriction and attempt to find partial periodic patterns, which is a

looser kind of periodicity.

2.6.6 Weighted Association Rules

All items in the data are treated with the same importance in previous associ-
ation rule algorithms. Cai et al. [CFCK98] generalized this to the case where
items are assigned weights to reflect their importance. The weights may cor-
respond to special promotions on some products or their price. They define
wetghted support of an itemset and association rule. The previous methods
are not applicable by changing only the computation of support because the
bottom-up property of itemsets (all subsets of a large itemset are also large) is

not valid. Thus, they propose a new algorithm in [CFCK98].

2.6.7 Negative Association Rules

Savasere et al. [SON98| investigate the negative association rules instead of
positive associations between items. One such rule is “Most of the people buy
frozen food do not buy vegetables”. The straightforward solution is to set
minimum support and confidence as low as possible. However, this solution
yields many and uninteresting negative association rules. The idea is to ex-
tract the combinations of items where a high degree of positive association is
expected but the actual support is significantly smaller than what is expected.

An efficient algorithm was presented in [SON95].
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2.6.8 Ratio Rules

While association rules try to discover the co-occurrences of items, ratio rules
introduced in [KLKF98] try to find correlations between the quantities or prices
of different items. An example of a ratio rule is “Customers typically spend
1:2:5 dollars on bread: milk: butter”. A one—pass algorithm is presented to
find ratio rules in [KLKF98]. The proposed method attempts to determine
how good the derived rules are by introducing guessing error. Ratio rules can
be used for estimating the missing values, even if multiple values are missing

simultaneously.

2.7 A Criticism on Large Itemset Framework

Most of the association rule algorithms work in a bottom-up fashion, i.e., first
the set of large 1-itemsets is found, then set of large 2-itemsets is generated
and this process is repeated until a set of large itemsets of a certain length is
empty. The general heuristic is the fact that “All subsets of a large itemset
are also large”. Thus, before an itemset is found large, all of its subsets must
be verified against the database. When the size of large itemsets existing
in the database tends to increase, this process may yield a bottleneck. For
instance in USA census data, the size of the large itemsets may increase up

240 gubsets

to 40, and the computation of those itemsets require all of its
must be firstly validated. Therefore, most of the algorithms, except Maz—
Miner [Bay98], perform poorly when the cardinality of maximal large itemset

is large (when greater than 10).

Aggarwal et al. [AY98a, AY98b] pinpoint to some of the drawbacks of item-
set generation in the computation of association rules. They claim that the
mintmum support criterion in the computation of large itemsets may reveal
wrong association rules. Readers are suggested to see the example in [AY98a).
They also show that the minimum support framework is not suitable in dense
data sets in which the number of large itemsets tend to be very huge. Negative
association rules and the datasets in which different attributes have varying

densities are shown to be good examples of dense data sets. They propose
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another concept called collective strength for more efficient and reliable compu-
tation of large itemsets. The collective strength of an itemset is defined to be
a number between 0 and oo, where 0 indicates a perfect negative correlation

and oo indicates a perfect positive correlation.

The weaknesses of the minimum support-confidence framework were also
noticed by Brin et al. In [BMUT97], implication strength of itemsets was
shown to be more accurate than minimum support-confidence. The implication
strength of a rule is a number between 0 and co, where a value of 1 indicates
the rule is as strong as it is expected under statistical assumptions, and a value
greater than 1 indicates a presence greater than expected. In [BMS97], the
association rules were generalized to correlation rules, and a more accurate

measure, chi—square test, was proposed to evaluate the strength of an itemset.

2.8 A Discussion on Association Rules

As we pointed out earlier, the major problem in data mining, so in association
rules, is that there is no certain criteria to decide which of the discovered rules
are really interesting. The interestingness of a rule is generally dependent on
the user and on the application. Different measures for interestingness were
proposed in the literature, but none of them is applicable in every application.
One common point in all of them is that interestingness is directly related to
the expectancy of the rule. In other words, a pattern is interesting if it is not

known prior to the data mining process or contradicts the beliefs of the user

[ST95, ST96b].

Mainly, there are two strategies to increase the interestingness of the dis-

covered rules:

1. Incorporate some heuristics to the algorithm

2. Find a set of rules and prune some of them according to some interest

measure after the discovery process

In the first strategy, either constraints are pushed to the algorithm [NLHP9S]
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or some sort of interest measures are used to eliminate the uninteresting rules
during the discovery of association rules. The collective strength [AY98a], im-
plication strength [BMUT97], chi-square test [BMS97] or expected value [AS95]
are some of those heuristics pushed into the algorithm. The incorporation of
some heuristics into the algorithm results in significant improvement in the

computation of the rules, thus it is a preferable method.

The second strategy is necessary, even if the first strategy is also applied
in the discovery process, since the interestingness varies from user to user and
from application to application. The general methodology is to remove the
rules which are known in advance, which contain uninteresting attributes or
which are redundant. Brin et al. [BMUT97] suggest to remove the rules that
are transitively implied and that are not minimal. In [TKR*95], a rule cover,
which tries to minimize the antecedents of the rules, is defined to eliminate
redundant rules. In the same work a clustering algorithm is also applied on
the rules to help the user understand the patterns more easily. The usage
of templates were proposed in [KMR*T94]. Templates specify the attributes
that can occur in the antecedent and consequent of a rule, and they can be
restrictive or inclusive. This is in fact the same as constrained association rules,
but less efficient than the case where the constraints are incorporated into the

algorithm.

Finally, we would like to mention the user interaction in discovery of asso-
ciation rules. Although there are efficient algorithms for extracting association
rules, the user interaction is at the minimum level. Generally, the user only sets
the minimum support and confidence thresholds, and then waits for the results
until all the rules are found. Online association rule mining [AY98¢c, Hid99] tries
to avoid this situation by allowing the user to change the thresholds during the
discovery process. A semi-automatic miner which is activated every time the
data exhibits certain changes was proposed in [ST96a]. In [NLHP98, LNHP99],
a two-phase architecture which allows the user to control the search process
was proposed. However, the discovery process is still a black-box, which do
not allow the user much to be involved in the search process. Data mining is
a problem which do not have only one answer, therefore we believe that more

user—controlled systems are needed in data mining applications.



Chapter 3

Updating Large Itemsets

Maintenance of association rules is an important problem. When new transac-
tions are added to the set of old transaction database, how can we update the
association rules already discovered in the set of old transactions efficiently?
Naturally, when new transactions are added to a database, some of the exist-
ing frequent patterns may disappear whereas new frequent patterns that did
not exist before may also emerge. The straightforward solution is to re-run
an algorithm, say Aprior: [AS94], on the set of whole transactions, i.e., old
transactions plus new transactions. However, this process is not efficient since
it ignores the previously discovered rules, and repeats all the work done previ-
ously. Therefore, algorithms for efficiently updating the association rules were
proposed in [CHNW96, CLK97, 0S98, SS98a, TBAR9T7]. These algorithms
take the set of association rules in the old database into account, and use this
knowledge 1) to remove itemsets that do not exist in the updated database,
and 2) to add new rules which were not in the set of old transactions but im-
plied in the updated database. Particularly, when the size of old transactions
is large, these algorithms discover the new set of association rules much faster

than by re-running an algorithm over the whole database.

In this thesis, we propose an algorithm called UW EP (Update With Early
Pruning) that follows the approaches of FUP, [CLK97] and Partition Up-
date [OS98] algorithms. It works iteratively on the new set of transactions,

like the previous algorithms. The advantages of UW E P are that it scans the

31
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existing database at most once and new database exactly once, and it gener-
ates and counts the minimum number of candidates in order to determine the
set of new large itemsets. Similar to [SON95], in one scan of the database,
it creates a tidlist for each item in the database, and uses these structures in
order to compute the support of supersets of that item. Moreover, it prunes an
itemset that will become small from the set of generated candidates as early
as possible by a look-ahead pruning. In other words, it does not wait for the
k" iteration for pruning a small k-itemset. This look-ahead pruning results in
a much smaller number of candidates in the set of new transactions. Another
reason for generating a smaller candidate set is the fact that UW E P promotes
a candidate itemset to the set of large itemsets only if it is large both in the
new set of transactions and in the whole database. This feature yields a much
smaller candidate set when some of the old large itemsets are eliminated due
to their absence in the new set of transactions, and this can be done without

scanning the old database.

This chapter is organized as follows. In Section 3.1, a formal description of
updating large itemsets is presented. The related algorithms are discussed in
Section 3.2. Section 3.3 presents the UW E P algorithm. Section 3.4 describes
the data structures used in UW E'P. Section 3.5 gives an example execution of
the algorithm and its performance comparison with the other algorithms. In
Section 3.6, we prove the correctness of the UW E P algorithm, and that it gen-
erates and counts a minimum number of candidates. Details of the experiments
and performance results on synthetic data are provided in Section 3.7, and a
theoretical discussion of the performance comparison of the update algorithms

is presented in Section 3.8.

3.1 Formal Problem Description

Table 3.1 summarizes the notation used in the remainder of this chapter.
Given DB, db,|DB]|,|db|, minsup and Lpg, the problem of updating associa-
tion rules is to find the set Lppig, of large itemsets in DB + db.
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Notation Definition

DB The set of old transactions

db The set of new transactions
DB + db The total set of transactions

| Al The number of transactions in the transaction database A
mensup Minimum support threshold

X A set of items (i.e., one itemset)

support4(X) | Support of X in the set of transactions A
tidlist 4(X) | Transaction list of X in the set of transactions A

'k Qat of candidate kitemaets in a cot of francactione A
\_/A WU UL \/(,bll\/ll\/l(,b\]\_/ v lU\JlllD\JUD lll QU DU U Ul viQliioavululiy /14
Lk Set of large k-itemsets in a set of transactions A

A

PruneSet | Set of large itemsets in DB that have 0 support in db
Unchecked | Set of large k-itemsets in DB that are not counted in db

Table 3.1: Notation Used in Algorithm UW E P

3.2 Previous Algorithms

Updating association rules was first introduced in [CHNW96]. The FUP al-
gorithm proposed by Cheung et al. [CHNW96] works iteratively and its frame-
work is similar to Apriori [AS94] and DHP [PCY95a]. At the k" iteration it

performs three operations as follows:

1. Scan dbfor all X € L% 5. If X’s support in the updated database is smaller
than the minimum support threshold, remove it from consideration (It is

a loser). Otherwise, put it into the set of large itemsets in the updated

database.

2. In the same scan, count the supports of itemsets that are in the candidate
set of db but not in the set of large itemsets of DB. If the support of an
itemset in db is smaller than the minimum support threshold, remove it

from the candidate set of db.

3. For the remaining itemsets in the candidate set of db, count their support
in DB and decide which of them will be placed in the set of large itemsets
of the updated database.

Initially, the candidate set of 1-itemsets of db is the set of items which

exist in at least one transaction in db. At the end of the k** iteration, the
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new set of candidates are computed from the set of large k-itemsets in the
updated database. There are three optimizations employed in FUP, two of
which are based on the reduction of transactions (i.e., if X is a small itemset
in D, remove X from the transactions in D). The other is the computation
of an upper bound value for the support of an itemset, and deciding whether
the itemset is small without scanning the database. Formally, an upper bound

value for the support of an itemset X is defined as
bx = min(support(Y)) for all Y C X and |Y]| = |X]| — 1.

FUP, [CLK97] is a generalization of the FFUP algorithm that handles in-
sertions to and deletions from an existing set of transactions. In the case of
deletion, the set of candidates are pruned using the upper bound values of the
candidate itemsets so that only possibly large itemsets are counted through
the scan of the database. The algorithms FUP and FUP, scan DB and db as
many times as the length of the maximal large itemset in the updated database,

and generates a large number of candidates in db since it generates C% from

k—1
LDB—l—db'

In [SS98a, TBARI7], the concept of negative border, that was introduced
in [Toi96], is used to compute the new set of large itemsets in the updated
database. The negative border consists of all itemsets that were candidates
but did not have enough support while computing large itemsets in DB. In

other words,

NBD(Ly) = Cy — Ly.

They assume that the negative border of the set of large itemsets in DB and
their counts in DB are also available, and use this knowledge to reduce the
number of scans over DB. In [TBAR9T], the set of large itemsets in db is first
computed by a scan of db. In the same scan, the supports of all itemsets in
Lpp and NBD(Lpg) over db are also counted. Then, all itemsets that are
large both in DB and db are promoted to the set of large itemsets in DB + db.
If an itemset X is large in db but small in DB, X and its supersets are checked
against DB using the negative border of Lpg. If such an item is promoted to
the set of large itemsets in D B+db, the negative border is computed again, and

this process is repeated until there is no change in the negative border. This
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algorithm scans db as many times as the length of maximal large itemset in db
and DB at most once. However, recomputing negative border again and again
reduces its performance. The approach in [SS98a] is very similar to the one
in [TBAR97]. It first counts the supports of itemsets in Lpg and NBD(Lpg)
over db. If any of the itemsets in the negative border is found to be large in db,
then it computes Ly, and validates those against DB by scanning DB once.

Its major advantage is that it does not scan DB if there is no new itemset in

db.

The most recent work [OS98] uses the framework in [SON95], and assume
that the set of large itemsets in the old database is available. Then, it com-
putes the large itemsets in db by using one of the existing algorithms, namely
Partition [SON95]. Its final step is counting the support of large itemsets in
DB against db, and vice versa. This requires one scan over DB and one scan
over db using the Partition [SON95]. The only difference between this algo-
rithm and re-running Partition algorithm is that it does not find large itemsets

in DB but assumes that it is available in a file.

3.3 Update with Early Pruning (UW EP)

In this section, we will explain how our algorithm works, and the optimiza-
tions it employs. The algorithm UW EP is presented in Figure 3.1. Inputs to
the algorithm are DB, db, Lpp (along with their supports in DB), |DB|, |db|,
and mensup. The output of the algorithm is Lppig, the set of large itemsets
in DB + db.

We can break down the algorithm UW E P into five steps as identified below.
1. Counting 1l-itemsets in db and creating a tidlist for each item in db

2. Checking the large itemsets in DB whose items are absent in db and

their supersets for largeness in DB + db

3. Checking the large itemsets in db for largeness in DB + db
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UWEP(DB,db, Lpg,|DB]|, |db|, minsup);

1 C}, = all 1-itemsets in db whose support is greater than 0
2 PruneSet = Lpg — C},

3 nitial pruning(PruneSet) %See Figure 3.2

4 k=1

5 while C% # 0 and L% 5 # 0 do begin

6 Unchecked = L%

7 for all X € C% do

8 if X is small in db and X is large in DB then

9 remove X from Unchecked

10 if X is small in DB + db then

11 remove all supersets of X from Lpp

12 else

13 add X to LDB-l—db

14 end

15 else if X is large both in db and DB then begin
16 remove X from Unchecked

17 add X to LDB-l—db and st

18 end

19 else if X is large in db but small in DB then begin
20 find supportpp(X) using tidlists

21 if X is large in DB + db then

22 add X to LDB-l—db and st

23 end

24 for all X € Unchecked do begin

25 find supportq,(X) using tedlists

26 if X is small in DB + db then

27 remove all supersets of X from Lpp

28 if X is large in DB + db then

29 add X to LDB-l—db

30 end

31 k=k+1

32 Ok = generate_candidate(L%) %See Figure 3.3
33 end

Figure 3.1: Update of Frequent Itemsets

36
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initial_pruning(PruneSet);
while PruneSet # () do begin
X = first element of PruneSet
if X is small in DB + db then
remove X and all its supersets from Lpp and PruneSet
else
begin
add the supersets of X in Lpg to the PruneSet
add X to Lppig and remove X from Lpp
end

O -1 O O k= W N~

Ne)

10 remove X from PruneSet
11 end

Figure 3.2: Initial Pruning Algorithm

4. Checking the large itemsets in DB that are not counted over db for
largeness in DB + db

5. Generating the candidate set from the set of large itemsets obtained at

the previous step.

In the first step of the UW E P algorithm (line 1 in Figure 3.1), we count the
support of 1-itemsets and create a tidlist for each 1-itemset in db. The idea of
using tidlists was first discussed in [SON95] in order to count the support of
candidate k-itemsets. A tidlist for an itemset X is an ordered list (ascending
or descending) of the transaction identifiers (71 D) of the transactions in which
the items are present. The support of an itemset X is the length of the cor-
responding tedlist. It is assumed that the transactions are sorted according to

T'IDs and thus the created tidlists are also sorted in the same order of T'I Ds.

The second part of the algorithm (procedure initial_pruning in Figure 3.2)
deals with the 1-itemsets whose support is 0 in db but large in DB. In
this case, for an itemset X, it is by definition true that supportppia(X) =
supportpp(X). If X was previously small in DB, then it is also small in
DB + db since its support has not changed and the number of total transac-
tions has increased. On the other hand, if X is large in DB, we have to check
whether supportpp(X) > minsup x |DB + db| or not. The itemset X could

be large or small in the updated database, and we examine each case below.
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In the following, we will introduce three lemmas that are useful in pruning
the candidate itemsets. Their proofs can be found in [AS94, CHNW96, CLK97,
TBAROT].

Lemma 3.1 All supersets of a small itemset X in a database D are also small
in D.

Proof. Let Y be a superset of X, i.e., X C Y. If a transaction contains Y,
then that transaction certainly contains X in it. Then, supportppia(X) >
supportppiap(Y). Hence, if supportppia(X) < minsup x |DB + db|, then
supportppyap(Y) < minsup X |DB + db|, which means Y is small in DB + db.
O

Now suppose that X is small in the updated database. Then, by Lemma 3.1,
any superset of X must also be small in the updated database. UW E P differs
from the previous algorithms [CHNW96, CLK97] at this point, by pruning all
supersets of an itemset from the set of large itemsets in DB as soon as it is
established to be small. In the previous algorithms, a k-itemset is only checked
in the k' iteration, but UW EP does not wait until the k% iteration in order

to prune the supersets of an itemset in Lpg that are small in Lpgg.

Definition 3.1 Let X be a k-itemset which contains items Iy, ..., I. An im-
mediate superset of X is a (k+1)-itemset which contains the k items in X and

an additional item Ipyq.

Now, suppose that X is large in the updated database. Then, we add all
immediate supersets of X in Lpp to the PruneSet, which holds the itemsets
that must be checked before checking the itemsets in C},. Then, for each
element in the PruneSet, we check whether its support exceeds the minimum
support threshold. The operations of pruning and adding immediate supersets
are repeated for each itemset in the PruneSet. So, all itemsets in Lpp that
contain a non-existing item in db are removed from Lppg, and the ones that
are large are added to Lppyg before advancing to the first iteration. This

pre-pruning step is particularly useful when the data skewness is present in the
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set of transactions. For example, in a supermarket, soup is probably large in

winter transactions while it may be small in summer transactions.

Lines 4-33 in Figure 3.1 are used

1. to check whether any candidate itemset in db qualifies to be large in the

whole database and to adjust their supports in Lpgy4, and

2. to check whether any of the large itemsets in DB which are small in db

qualifies to be in the set of Lppyas.

The two for loops between lines 4-33 perform these two operations. Let us

investigate the first case: checking the candidates in db in the k' iteration.

Lemma 3.2 Let X be an itemset. If X ¢ Lpg, then X € Lppyagp only if
X € Lg.

Proof. Since X ¢ Lpg, supportps(X) < minsup X |DB|. In order to satisfy
X € Lppiap, supportppiap(X) > minsup x |DB + db|.

Suppose that X ¢ Lg. Then, supporty(X) < minsup x |db|. Then,

supportppyap(X) = supportpp(X) + supporty,(X) < (minsup x |DB]) +
(minsup x |db|) < minsup x |DB + db|.

This is a contradiction. Therefore, supportqy (X) > minsup x |db|, which
means that X € Lg. O

Corollary 3.1 Let X be an itemset. If X is small both in DB and db, then
X can not be large in DB + db.

Now suppose that X is a candidate k-itemset in db. If it is small in db,
then we have to check whether X is in Lpg or not. If it is also small in DB
(i.e., X ¢ Lpg), X can not be a large itemset in DB + db by Corollary 3.1.
Otherwise, we have to check the support of X in DB + db. Since we have the
support of X in DB and db in hand, we can quickly determine whether it is
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large or not. If (supportpp(X) + supports (X)) < minsupx |DB + db|, then
X is small in DB + db. By Lemma 3.1, all supersets of X must also be small,
thus they are eliminated from Lpg. Otherwise, X is large and we add X to
Lppiap. Another advantage of our algorithm occurs here by not adding X to
the set of L, to keep the candidate set smaller, which we will explain later in

detail.

Now assume that a candidate k-itemset X is large in db. There are two

possibilities: X is either large or small in DB.

Lemma 3.3 Let X be an itemset. If X € Lpg and X € Lg, then X €

Lpyas-

Proof. Since X € Lppg, supportpg(X) > minsup x |DB|, and since X € Ly,
supportgy(X) > minsup x |db|. If we add these two terms, supportpp(X) +
supportgy(X) > munsup x |DB|+ minsup x |db|. Thus, supportppya(X) >
minsup X (|[DB| + |db|) > minsup x |DB + db]. 0

If X is large in DB, then X is also large in DB + db by Lemma 3.3. In this
case, we add the corresponding supports of X in db and DB, and put X into
Lppigy with the new support. If X is small in DB, we have to check whether
it is large in DB + db or not. However, we do not have the support of X in DB
since it is not large. We can obtain it by scanning DB. In this scan, for each
1-itemset in DB, we determine its support and its tidlist, as explained before
in this section. We will then use these tidlists in order to find the support
of longer itemsets whenever they are needed. After counting the support of
X in DB, we place X into Lppyg if its support in DB + db is larger than
minsup X |DB + db.

An important issue here is to decide which candidates go to the set of large k-
itemsetsin db. FUP, [CLK97] algorithm places all itemsets that are large in the
whole database into L% in the k' iteration. Others [0S98, TBAR97, SS98a]
place those candidates that are large in db regardless of whether they are small
or large in DB. We choose another strategy and put only those candidates
into C%, that are large in db and DB + db. In other words, if a k-itemset X is
large in db but small in DB + db, we do not place it into L,. This is the most
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Cases In In In Add to | Add to | Prune supersets
DB db DB+db| C% Lypia from Lppg
Case 1 | Small | Small Small No No No
Case 2a | Small | Large Small No No No
Case 2b | Small | Large Large Yes Yes No
Case 3a | Large | Small Small No No Yes
Case 3b | Large | Small Large No Yes No
Case 4 | Large | Large Large Yes Yes No

Table 3.2: Possible Cases in Addition of Transactions

important advantage of UW E P since this significantly reduces the number of

candidates in db.

In UWEP, there is a possibility that a large k-itemset in DB may not
be generated in C% since we include those candidates that are large both in
db and DB + db. The solution is to keep the set of itemsets that must be
verified against db, namely Unchecked, which contains the large k-itemsets in
DB that are not generated in db. In the beginning of the k" iteration, we
place all large k-itemsets in DB to the set of Unchecked (line 6 in Figure 3.1).
Whenever we check a candidate k-itemset in C% we will remove it from the
set Unchecked. When we complete the first for loop between lines 7-23 in
Figure 3.1, Unchecked contains the large itemsets in DB that are not verified
against db. The second for loop is used to verify them against db. Since we do
not generate them from L%, we do not have their supports in db, therefore
we have to compute their support from the tidlests of the individual items
contained in that itemset. If the total support of any element in Unchecked
exceeds the minimum support threshold, it is added to Lppyg;. Otherwise, the

supersets of that itemset are removed from Lpp again by Lemma 3.1.

All possible cases that arrive in adding transactions and the actions taken

by UWEP are summarized in Table 3.2.

Figure 3.3 gives the candidate generation procedure that is adopted from
[SON95]. For two (k — 1)-itemsets in L%, if the first (k — 2) items are the
same, then a candidate k-itemset is generated from those (k — 1)-itemsets by

concatenating the last item in the second itemset to the end of the first itemset,
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generate_candidate(L%!);
1 Ck =9
2 for all itemsets X € L5 and Y € Lf; " do
3 if X =Y1A-- AXp_2 =Y 2A Xs_1 <Y1 then begin

4 C=X1Xy... X1

5 if all subsets S of C is an element of L% ' then begin
6 tidlistdb(C) = tidlistdb(X) N tidlistdb(Y)

7 supportq(C) = |tedlist 4(C)|

8 add C to C%,

9 end

10  end

Figure 3.3: Candidate Generation Algorithm in UW E P

assuming that the last item of the second itemset is greater than the last item
in the first itemset. However, a candidate generated in this process is pruned

from the set of candidates if any of its (k — 1)-subsets is not large.

3.4 Data Structures Employed

ITEMSET is a list of item numbers, and TRANSLIST is a list of trans-
actions. ITEMTRANS is a list of records consisting of an ITEMSET,
its TRANSLIST, and its support in the set of transactions (i.e., length of
TRANSLIST). Cfy is a queue of ITEMTRANS and L%y is a hash table
where each entry consists of a queue of ITEMTRANS. We use a queue for the
entries of L% 5 and C} 5 because we gradually add new itemsets to those sets
and thus we should minimize the time for addition. The reason behind using
a hash table is to find a specific itemset in a short time. It is not necessary to

use a hash table for C}5 because we create and process C g sequentially.

The most important part of the UW E P algorithm is the operation of prun-
ing supersets. Therefore, the data structures to keep the large itemsets in DB
are very important for an efficient update algorithm. Finding supersets just
before pruning them is costly because we have to find all supersets of an item-

set X that are large in DB, and no more. There are two methods for finding
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supersets of a k-itemset X if we want to find them just before pruning.

1. Add one item in Ly and check whether it is in L%, and repeat this

. . 1
process for all items in Lpp

2. Check for each item in L%% whether it consists of the itemset X

Both of these methods require unnecessary computations. Thus, we com-
pute the supersets of an itemset X during the storage of the old large itemsets
in a data structure. We keep a hash table for storing the large itemsets in DB
for finding a specific itemset efficiently. Each entry in the hash table consists
of a queue of itemsets along with their support and list of supersets that are
large in DB. While entering a k-itemset X into the hash table, we find all of
its subsets of length £ — 1, and push X into the list of their supersets. Since all
of X’s subsets are also large, we do not make any unnecessary computation.
The hash table for storing large itemsets allows us to efficiently find the entry
where an itemset is placed, so inserting supersets is a cheap operation with
this strategy. When we want to prune the supersets of an itemset X, we find
them stored in a list associated with that itemset. Each itemset in the list of
X’s supersets is removed from the hash table, and this operation is repeated

for each of the supersets of the itemsets in that list.

Example 3.1 Let A be the itemset we want to prune from Lpg. Let AB, AC,
AD be its supersets that are large. We remove them from the hash table, and
then remove the supersets of AB, AC, and AD. For instance, if the superset
list of AB is ABC and ABD, then we also remove ABC, ABD, and their
large supersets from the hash table.

Another source of improvement in the implementation is the usage of an
inverted list for the transaction database. When we compute the set of large
itemsets in a set of transactions D B initially, we create a file where each item is
associated with a list of transaction identifiers in which the item exists. During
the update operation, we can use this inverted file for counting the supports of
the itemsets that are small in DB but large in db. The inverted file allows us

to directly reach the transactions containing a specific item, and computing its
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DB db

TID | Items TID | Items

1 A,C,D,EF

2 B,D,F

3 ADE 1 AF

4 A,B,D,EF 2 B,C,F

) AB,C,E.F 3 A,C

6 B,F 4 B.,F

7 AD,EF 5) A,B,C

8 A,B,D,F 6 A,C,D

9 AD,F

Table 3.3: Set of Transactions DB and db

support in DB. This is certainly more efficient than reading all transactions
and identifying the transactions containing a specific itemset. Especially for
large transaction databases, this optimization improves the I/O time in the
computation of large itemsets. UW EP also allows us to update the list of
transaction identifiers associated with itemsets: We only add the transaction
identifiers of the transactions in db containing that item to the TRANSLIST
of that item. (We assume that none of the transaction identifiers in DB are

used for the transactions in db, and T'I Ds in db are greater than those in DB.)

3.5 An Example Execution of the Algorithm

We now introduce an example that illustrates the benefits of our algorithm and
compare the number of candidates generated and counted with Aprior: and
FUP, algorithms. We will write an itemset {A;,...,A,} as Ay,..., A,, and a
pair (itemset, support) refers to an itemset and its support in the corresponding

set, of transactions.

Example 3.2 In Table 3.3, the set of transactions in DB and db are provided.
|DB| = 9,|db| = 6,|DB + db| = 15. The minimum support threshold minsup

is set to 0.3. Thus, an itemset X must be present in at least 3 transactions in

DB (i.e., [|DB]| x0.3] = [2.7] =3), in at least 2 transactions in db, and in at
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least 5 transactions in DB + db in order to be a large itemset. The execution

of the algorithm for this database is described below.

Initially, we assume that the set of large itemsets in DB are given. In the
example database DB, the sets of large k-itemsets along with their counts are

as follows.
Lpp = {(A,7),(B,5),(D,7), (E,5), (F,8)}
L% = {(AB,3),(AD,6),(AE,5),(AF,6),(BD,3),(BF,5),
(DE,4),(DF,6),(EF,4)}
L%y = {(ABF,3),(ADE,4),(ADF,5),(AEF,4),(BDF,3),(DEF,3)}
Lbp = {(ADEF,3)}

In the first step of the algorithm, db is scanned in order to find the support
of 1-itemsets in db. In this scan, we generate the tidlist for each 1-itemset. In

the example, the candidate 1-itemsets in db, along with their supports, are:
Cc}b = {(Av 4)7 (Bv 3)7 (Cv 4)7 (Dv 1)7 (Fv 3)}

Note that we do not include F in ('}, since its support is zero in db. On the
other hand, F is added to the PruneSet in order to check itemsets including
E in Lpg. Since the support of £ is 5 and is thus large in DB + db, we
remove it from Lppg and include it in Lppi4 and add its supersets in L3, to
the PruneSet, namely AFE, DE, EF'. Then for each element of the PruneSet,
we repeat the same operation. We add AF to Lppig since its support is also
5. However, the supports of DE and EF are 4, and they fail to qualify to go
into Lppigp. In this step, we remove DFE and EF' and all their supersets from
Lpp, namely ADE, DEF,AEF, ADEF (By Lemma 3.1). After these pruning
operations, the new sets of large itemsets in DB and set of large itemsets in

DB + db are as follows.
LIDB = {(Av 7)7 (Bv 5)7 (Dv 7)7 (Fv 8)}

Lig ={(AB,3),(AD,6),(AF,6),(BD,3),(BF,5),(DF,6)}
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L} = {(ABF,3),(ADF,5),(BDF,3)}
L4DB =0
Lppyay = {(E,5),(AE,5)}

In the first iteration, A, B,C, D, I are added to Lppyqs. We add all large
l-itemsets in db to L},, namely A, B,C, F. We do not include D in Ly, since
it does not qualify to be large in db. After the first iteration,

Ly = {(A,4),(B,3),(C,4),(F,3)}, and
Lpra = {(A,11),(B,8),(C,6),(D,8),(£,5), (F,11)}

In the second iteration, we begin with the set of candidates in db,
02, = {(AB,1),(AC,3),(AF,1),(BC,2),(BF,2),(CF,1)}, and
Unchecked = {AB, AD, AF, BD, BF, DF}.

AB is found to be small in db, but large in DB. AB fails to be large in
DB + db since supportppia(AB) = 4. By Lemma 3.1, we remove ABF' from
Lpp. The itemset AC is large in db but small in DB. Since we do not have
support of AC in DB in hand, we find AC’s support in DB by intersecting
the tidlists of A and C in DB, which is 2. (tidlistpp(A) = {1,3,4,5,7,8,9},
tidlistpp(C) = {1,5}, their intersection is {1,5}) Since the total support of
AC is 342=5, AC is added to Lppta (Application of Lemma 3.2). AF is small
in db, with a total support of 7. Therefore, AF is added to Lppyg, but we do
not include it in L3,. BC is large in db but small in DB. So, we compute the
support of BC in DB, which is 1. The total support of BC' is 3, so we do not
include it in Lpgya nor in L?%,. BF is large both in DB and db. So it is large
in DB + db with a support of 7. Since C'F'is small both in DB and db, it is
small in DB 4+ db by Corollary 3.1. Up to this point, we checked each element

of C3,, but not all elements of L% 5. At this moment,
Unchecked = {AD,BD,DF'}.

We did not compute the supports of these itemsets in db since we did not

include D in L}, so for each of them we have to compute its support in db
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using tidlists of the items contained in the itemset. Supports of AD, BD, DF
in db are 1, 0, 0, respectively. We find the total support of these itemsets by
adding their supports in DB and db. In our case, the supports of AD, BD, DF
in DB + db are 7,3,6, respectively. AD and DF' are found to be large in the
whole database, so we add them to Lppyg. Since BD is small in the whole

database, we have to remove its supersets from Lpg, namely BDF'.
At the end of the second iteration, we find that
L3, = {(AC,3),(BF,2)}, and
Lygia = {(AC,5),(AD,7),(AE,5), (AF,7),(BF,7),(DF,6)}
Before proceeding to third iteration, we compute
3, =0
Unchecked = {ADF'}

Since, C'3, = (), we proceed with checking the elements of Unchecked. The
support of ADF' is 0 in db and its support in DB +db is 5. Thus, we add ADF
into Lppiqg and finish the update operation. The final set of large itemsets in
DB + db are:

LlDB-I—db = {(Av 11)7 (378)7 (076)7 (D78)7 (E75)7 (Fv 11)}
Lygia = {(AC,5),(AD,7),(AE,5), (AF,7),(BF,7),(DF,6)}

L%B+db = {ADF75}

3.5.1 Comparison with the Existing Algorithms

Table 3.4 shows the number of candidates generated and counted by the Apriorz,
FUP,, and UW EP algorithms over the example database given in Table 3.3.
It is worth noting that the Aprior: algorithm re-runs over the whole set of

transactions, and therefore counting candidates over DB and db is irrelevant.

As Table 3.4 shows, our algorithm generates a much smaller number of
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Aprior: | FUP, | UWEP
Iteration 1 | Candidates generated in db 6 6 5
Candidates counted in DB - 1 1
Candidates counted in db - 6 6
Total # of candidates counted 6 7 7
Iteration 2 | Candidates generated in db 15 15 6
Candidates counted in DB - 2 2
Candidates counted in db - 9 9
Total # of candidates counted 15 11 11
Iteration 3 | Candidates generated in db 1 1 0
Candidates counted in DB — 0 0
Candidates counted in db — 1 1
Total # of candidates counted 1 1 1

Table 3.4: Number of Candidates Generated and Counted in the Example
Database

candidate sets than Aprior: or F'UP; in this specific example (We will analyze
the general case later in detail). Especially for the second iteration, UW E P

achieves % = 60% improvement over the two algorithms. Overall, UW EP

has a performance improvement of %
that, the candidates counted by UW E P is the same as F'U P,, but the number

of candidates generated by F'UP, is larger than the one generated by UW EP.

= 50% over the two algorithms. Note

In the case of running the Partition Update algorithm (PU) of [OS98], the
number of candidates counted is much greater than that of UWEP. In db
there are four large 1-itemsets and three large 2-itemsets. In order to find
them, 11 candidates are generated and counted in db. Since we know the
support of four of them in DB, PU has to count only 3 candidates on DB.
However, it has to count 17 large itemsets of DB over db since their supports
in db are not available. Therefore, a total of 3 itemsets are counted in DB and
11+ 17 = 28 itemsets are counted in db. On the other hand, UW EP counts 3
candidates in DB and 6 + 9 + 1 = 16 candidates in db. Even only one scan of
db and DB is enough for counting itemsets, the number of candidates counted

is very high in comparison to the UW E P algorithm, where UW E P achieves

28—16

5~ = 43% improvement over Partition Update algorithm in the number of

candidates counted in db.
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3.6 Completeness and Efficiency of the Algo-

rithm

The algorithm UW E P presented in Figure 3.1 correctly and completely com-
putes the set of large itemsets in the updated database.

Lemma 3.4 Given a set of old transactions (DB), a set of new transactions
(db), and a set of itemsets Lpp which are large over DB, the algorithm in
Figure 3.1 discovers all the large itemsets over DB + db correctly.

Proof. Let X be a k-itemset. By Corollary 3.1, X must be large in either DB
or db, or both. Thus, in order to compute large itemsets in DB + db, we have
to check large itemsets in DB against db, and large itemsets in db against DB.

Let us investigate these two cases:
Case 1: Checking for all X € Lpgp against db

In the initial pruning step (algorithm in Figure 3.2), all itemsets X in Lpg
such that supports(X) = 0 are checked. If X is small in DB + db, all of its
supersets are removed from consideration since they can not also be large in
DB + db by Lemma 3.1. If X is large in DB + db, we put it into Lpgia,
and its immediate supersets into the PruneSet. This process is repeated until
the PruneSet is empty. In the end, any large itemset in DB whose support
in db is zero is checked against db. Thus, before the while loop on line 5
in Figure 3.1, Lpp contains the large itemsets in DB whose support in db is
greater than zero, and Lppiq contains all large itemsets containing the items

whose support is zero in db.

In the k' iteration, Unchecked is initialized to the set of large k-itemsets
in DB. Any element of Unchecked that is present in C% is checked on lines
9 and 16. If an itemset in Unchecked does not exist in C% then the second
for loop counts their support in db, and decides which of them are large in the
updated database. Therefore, all elements of L% 5 are checked against db, and

the ones that are large in DB + db are determined.

Case 2: Checking for all X € Ly against DB
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In the UW EP algorithm, C% contains possibly large itemsets over DB+ db,
instead of possibly large itemsets in db. In the first for loop, only those in C%
that are large over DB + db are put into L%, (lines 17 and 22). If a k-itemset
X is large in db but not in DB + db, then it is a waste of effort to put it into
L, because by Lemma 3.1, it is not possible that a superset of X is large in
DB+ db. Since any superset of X is certainly small in DB+ db, we do not need
to check whether any superset of X is large in db or not (even if a superset of
X is large in db, it will be certainly small in the updated database). Since our
purpose is to generate the large itemsets in DB + db, putting X into L%, is a

waste of effort, and reduces the performance of the algorithm.

Thus, the first for loop checks for all the itemsets in C¥% against DB. If any
large itemset in C, is also large in DB, then we simply put it into L}z, 4, on
line 17 by Lemma 3.3. If it is small in DB, then we count its support in DB
using tidlists, and decide to put it into L%z, ; and L% on line 22. Therefore,

all large itemsets in db are checked against DB.

As a consequence of Case 1 and Case 2, the algorithm UW EP computes
the large itemsets in DB + db correctly and completely. a

Lemma 3.5 The number of candidates generated and counted by the algorithm
UWEP in Figure 3.1 is minimum.

Proof. The only candidate generation operation is over db. Therefore, to
prove that the number of candidates generated is minimum, we only deal with
the set of candidates in db. ('}, contains only the itemsets whose support is
greater than zero. This is the minimum bound because to decide which of the
itemsets is large in DB + db, we have to know at least the support of each
item in db. Therefore, C}, contains the minimum number of candidates. In
the k' iteration, we put only the itemsets that are large over DB 4+ db into
L%,. The completeness of this operation is shown in the proof of Lemma 3.4.
We have to put those itemsets that are large over DB + db into L%, because,
their supersets are possibly large over DB + db, and we have to check them in
order to complete the update operation. Since, we do not include any other

itemset in L, this is the minimum bound for a level-wise algorithm. As shown



CHAPTER 3. UPDATING LARGE ITEMSETS 51

in Figure 3.3, the candidate set C%M is computed from L%, so the number of

candidates generated in db is also minimum.

Since the candidates generated in db is minimum, the number of candidates
counted in db is also minimum. The only remaining issue is the number of
candidates counted in DB. Since, we only scan DB in order to find the support
of an itemset that is not large in DB, this is also the lower bound. Hence, the

number of candidates counted is minimum. O

3.7 Experimental Results

In order to measure the performance of UW E P, we conducted several experi-
ments using the synthetic data introduced in [AS94]. Before proceeding to the
details of the experiments, we would like to present the parameters used in the

data generation procedure.

The synthetic data generated in [AS94] mimics the transactions in the re-
tailing environment. Our synthetic data generation procedure is a simple ex-
tension of the method used in [AS94]. We generated a transaction database of
size 2 x |DB|, where the first |DB| transactions were placed into the set of old

[DB|
10

transactions. From the remaining transactions, we took the first transac-

tions for the first incremental database, took the first % transactions for
the second incremental database, and so on. Since all transactions are gen-
erated using the same statistical pattern, the transactions in the incremental
database exhibit the same regularities in the original database. In the experi-
ments, we used the following parameters. Number of maximal potentially large
itemsets=|L|=2000, number of transactions=|D|=200,000, average size of the
transactions=|T'|=10, number of items=N=1000 and average size of the max-
imal potentially large itemset=|I|=4. We follow the notation T'z.ly.Dm.dn
used in [CHNWO96] to denote databases in which |DB| = m thousands, |db] = n

thousands, |T'| = « and |I| = y. Readers not familiar with these parameters

are referred to [AS94].

For the first experiment, we measured the speedup gained by UW E P over
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Speedup

Minimum Support (%)

Figure 3.4: Speedup by UW EP over Partition Algorithm

rerunning Partition algorithm [SON95]. We have chosen Partition since it is
one of the best association rule algorithms and the same data structures and
methodology for finding large itemsets are used in both algorithms. Figure 3.4
shows the results for 7'10./4.0100.d10. The y-axis in the graph represents

FEzecution Time of Partition

Ezxecution Time of UWEP
can be seen from Figure 3.4, UW EP performs much better than re-running

and z-axis represents different support levels. As it

Partition. Figure 3.4 shows that at lower support levels, the speedup gain of
UW EP increases from 1.5 to 6 as the minimum support decreases from 3%
to 0.1%. For support levels higher than 3%, the speedup seems to converge to
1.5.

In the second experiment, we measured the effect of the size of the incre-
mental database on the execution time of the algorithms. Figure 3.5 shows
the execution times for UW E'P and Partition algorithms for 7'10.14.D100.dn,
where n varies from 10 to 100, with the minimum support set to 0.5%. For
smaller sizes of the incremental database, UW E P achieves a much better per-

formance than Partiteon. As the size of the new transactions increases, the
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Figure 3.5: Execution Times of UW EP and Partition Algorithms

execution time of UW EP gets closer to that of the Partition. On the other
hand, despite adding 100% transactions, UW EP still performs better than
re-running Partition. One interesting feature of UW E P is that its execution
time is linear to the size of incremental database under a specified minimum
support. In this sense, UW E P can scale up linearly to the size of incremental

database whatever the minimum support is.

The third experiment investigates the number of candidates generated and
counted for the three update algorithms, Partition Update, F'U Py, and UW EP.
For this experiment, we generated an increment database containing a smaller
number of items than that in the original database. Table 3.5 shows the number
of candidates generated and counted for three algorithms for 7'10.74.D0100.d10
with 900 items in the new set of transactions. The reason behind smaller
number of items in the incremental database is to see the effects of data skew-
ness in the update of large itemsets. As Table 3.5 shows, UW EP generates
a much smaller number of candidates in comparison to the other two algo-

rithms, between 32%-53% of those generated by FU P, and Partition Update.
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(1) (2) (3) | Imprv. | Imprv.
minsup PU | FUP, |UWEP | on (1) | on (2)
Candidates | 0.75% | 100177 | 99797 53759 | 46% 46%
Generated 0.5% | 146431 | 161746 90884 | 38% 44%
in db 0.1% | 351652 | 511717 | 239662 | 32% 53%
Candidates | 0.75% | 100341 | 53762 53762 | 46% -
Counted 0.5% | 147740 | 91417 91417 | 38% -
in db 0.1% | 379352 | 251963 | 251963 | 34% -
Candidates 0.75% 206 187 187 9% -
Counted 0.5% 1612 571 571 | 65% -
in DB 0.1% | 28040 8675 8675 | 69% -
Total 0.75% | 100547 | 53949 53949 | 46% -
Candidates 0.5% | 149352 | 91988 91988 | 38% -
Counted 0.1% | 407392 | 260638 | 260638 | 36% -

Table 3.5: Number of Candidates Generated and Counted on Synthetic Data

The number of candidates counted by UW E P is exactly the same as that by
FUP;. However, the Partition Update algorithm counts more candidates than
UW EP counts, up to 69%. The results indicate that UW EP performs much
better than the other two algorithms when some of the large itemsets in DB

are absent in db, thus in DB + db, as well.

3.8 Theoretical Discussion of the Update Al-

gorithms

3.8.1 Number of Candidates

UW EP yields a smaller candidate set in comparison to other update algo-
rithms. FUP, [CLK97], which is a generalization of FUP [CHNWY96], exam-
ines a large k-itemset only in the k** iteration and generates the candidate
set C% from the set of large (k — 1)-itemsets in the updated database. Then,
by means of a few optimizations, it prunes some of the candidates and counts

the remaining over DB and db. PartitionUpdate(PU) finds the set of large
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itemsets in db and then checks large itemsets in DB against db and vice versa.
Thus, it generates the candidate set C% from the set of large (k—1)-itemsets in
the incremental database. Similarly, the algorithms in [SS98a, TBAR97] gen-
erate the candidate set C% from the set of large itemsets L%, with the same
number of candidates in PU. On the other hand, UW E P generates the set of
candidate set C% from the set of itemsets that are large both in db and in the
updated database. This results in a much smaller candidate set in comparison

to the mentioned algorithms.

In some special cases, the difference between the number of candidates gen-
erated by UWEP and by the other update algorithms may converge. When
the large itemsets in DB and DB + db are nearly same, UWEP and FUP,
generates and counts nearly the same number of candidates. However, when
the data is skewed and db does not include most of the large itemsets in DB,
UW EP outperforms FUP and FUP,. PU algorithm may perform better
when db contains a smaller number of large itemsets. This is also valid for the
other update algorithms since they generate the candidates only over db. How-
ever, as we proved in Section 3.6, UW E'P generates and counts the minimum
number of candidate itemsets for a level-wise algorithm. Hence, UW E'P is the

best algorithm in terms of the number of candidates generated and counted.

3.8.2 Time Complexity

The motivation behind the update algorithms is using the background knowl-
edge to avoid repetition of the computation of old large itemsets. Thus, re-
running an association rule algorithm, say Apriori [AS94], performs worse than
any update algorithm since the set of old large itemsets are ignored and all the

work done previously is repeated.

UW EP takes its power from pruning the large itemsets as early as pos-
sible and generating the minimal number of candidates. This smaller num-
ber of candidates to be examined brings an advantage to UW EP in terms of
time complexity. In the experimental work, we did not compare UW EP and
FUP; in terms of time complexity because the underlying data structures and

methodologies for counting the supports of itemsets are completely different.
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In such an experiment, the results solely depend on the difference between
the frameworks (Partition algorithm used by UW EP and Aprior: algorithm
used by FUP,) of these two algorithms, instead of the efficiency of the update
algorithms. Theoretically, it is expected that UW EP performs better than
FUP, because it generates a smaller number of candidates than the latter.
The differences between the two algorithms are the pruning step of UW EP
and the pruning optimizations employed in F'UP,. The pruning operation in
UW E P requires less time because of the data structures used for storing large
itemsets. Pruning candidate itemsets in FFUP, is also efficient by means of
storing upper bounds for itemsets. However, each candidate itemset is checked
for the pruning operation and this may require more time. Especially, in the
second iteration, the candidate set is very huge and checking for pruning each
itemset is costly. UW E'P generates its candidate set carefully and minimizes
it instead of generating an extremely large set and then pruning it. Actually,
the number of candidates counted is the same. The difference between the
candidates generated and candidates counted is the drawback of the FUP;
algorithm, and this gives an advantage to UW EP.

In addition to the improvement on the size of the candidate set, UW EP
requires fewer scans over DB and db. F'UP, requires a scan over the set of
transactions for each iteration while UW EP requires at most one scan over
DB and exactly one scan over db for the whole computation. Especially for
large datasets, this also yields a great improvement over F'UP,. However, as
we noted earlier, this is a direct consequence of the underlying frameworks of

two algorithms.

PartitionUpdate( PU) algorithm also performs worse than UW E P, because
it first generates the candidate set on db without using the information about
the old large itemsets. Thus, it may generate and count itemsets that have
no chance to be large in the whole database. Besides, PU does not prune the
large itemsets in DB and checks for each large itemset in DB whether it is
large in the whole set of transactions. The only benefit of the PartitionUpdate
algorithm comes from using the set of large itemsets in DB from a file instead
of computing them again. In terms of number of scans over the database, PU

makes an extra scan over db in comparison to UW EP in order to check the
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large itemsets in DB against db.

The candidates are generated over db in [SS98a, TBARI7], too. The same
arguments in PU apply to these algorithms, and their performances are also
worse than UWEP. The major disadvantage of the algorithms in [SS98a,
TBAROI7] is the storage and re-computation of the negative border, that re-
quires much space and time, respectively. Moreover, many scans over the in-
cremental database are required in both algorithms. Number of scans over DB
depend on the number and size of new large itemsets, and it may be greater

than one.
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Case of Deleted Transactions

In this chapter, we will examine the case where some of the existing transactions
in DB are removed from D B. Throughout this chapter, we will use db™ for the
set of transactions that will be deleted, and DB — db for the set of transactions

that remain in the database after the update.

In order to give an intuition about the problems in deletion, we first in-
vestigate the possible cases according to whether an itemset X is small or
large in DB and db~. We will provide examples to illustrate different cases in
DB — db. In the examples below, we will take |DB| = 100, |db~| = 10, and
minsup = 20%. For X to be large in the updated database, its support in
DB — db must be greater than or equal to 18.

Case 1: X is large in DB and small in db™.
In this case, X must be large in DB — db.

Lemma 4.1 If X is large in DB and small in db~, then X must be large in
DB — db.

Proof. Since X is large in DB, supportpg(X) > |DB| x minsup. Since X
is small in db~, supportg-(X) < |db~| x minsup. If you multiply the second
expression by -1 and add two equations, supportpp(X) — supporty-(X) >

38
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|DB| x minsup— |db~| x minsup, which is equal to supportpp_a(X) > |DB —
db| x minsup. Thus, X is large in the updated database. a

Case 2: X is large in DB and large in db™.

X can be large in DB—db. Consider the case where supportpp(X) = 30 and
supportg—(X) = 2. Then, supportpp_qa(X) = 28, so X is large in DB — db.

X can be small in DB—db. Consider the case where supportpg(X) = 20 and
supportgy,—(X) = 5. Then, supportpp_qg(X) =15, so X is small in DB — db.

Case 3: X is small in DB and small in db™.

X can be large in DB—db. Consider the case where supportpgs(X) = 19 and
supportg—(X) = 1. Then, supportpp_qa(X) = 18, so X is large in DB — db.

X can be small in DB—db. Consider the case where supportpg(X) = 15 and
supportg—(X) = 1. Then, supportpp_a(X) = 14, so X is small in DB — db.

Case 4: X is small in DB and large in db™.

In this case, X must be small in DB — db.

Lemma 4.2 If X is small in DB and large in db—, then X must be small in
DB — db.

Proof. Since X is small in DB, supportpg(X) < |DB| x minsup. Since X is
large in db~, supportg—(X) > |db~| x minsup. If you multiply the second by
-1 and add two equations, supportpp(X)— supporty-(X) < |DB| x minsup —
|db~| x minsup, which is equal to supportpg_a(X) < |DB — db| x minsup.
Thus, X is small in the updated database. a

Table 4.1 summarizes the possible cases in deletion of transactions. When
we update a set of transactions by deleting some of the transactions, there
are two possible cases: The existing large itemsets may become small after
update (Case 2 in Table 4.1), or some itemsets that are small in the original
database may become large after update (Case 4 in Table 4.1). Because of

these reasons, to find the set of large itemsets in the updated database, we



CHAPTER 4. CASE OF DELETED TRANSACTIONS 60

Cases |In DB | In db~ In DB —db

Case 1 | Large | Small Certainly large
(=] J O

Case 2 | Large | Large || May be small or large

Case 3 | Small | Small || May be small or large

Case 4 | Small | Large Certainly small

Table 4.1: Possible Cases in Deletion of Transactions

have to check whether the old large itemsets are still large or not, and whether

some itemsets are added to the set of large itemsets or not.

4.1 Existing Approaches

Update of large itemsets in case of deletion of transactions is not studied much.
To the best of our knowledge, there are two update algorithms handling deletion
of transactions: FUP, [CLK97] and Thomas’s algorithm [TBAR97].

In [TBAROT], the logic is similar to the case of addition of transactions.
They use the negative border of DB in order to efficiently compute the large
itemsets in DB — db. The paper did not discuss the case of deletions in detail,

so we can not provide a detailed analysis of the algorithm here.

FUP,, for the case of deleted transactions, is presented in Figure 4.1. The
candidate set is generated over DB — db, and then it is partitioned into two
sets: Py contains the ones that are large in DB and () contains the others.
db is scanned to find the support of each candidate itemset. By Lemma 4,
candidate itemsets that are large in db are removed from ). Since we have
the support of itemsets in P, in DB and db, it is trivial to find the ones that
are large in the updated database. For the itemsets in (), we have to find
their supports in DB — db by scanning the updated database. Then, we decide
which of the itemsets in the candidate set promote to the set of large itemsets

in DB — db.

The major disadvantage of F'UP, is that it scans the databases as many
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FUP;_delete(k)

1 Ckg 4 = generate_candidate( L5 4)

2 ifCfg_u # 0 then

3  begin

4 Partition Cf5_,, into P, = Cfp_u N Lhp and Qr = Chy_u — P
5 for each X € P, U@}, do

6 compute supporty-(X) by scanning db~

7 for each X € P, do

8 compute supportpp_ap(X)

9 Remove candidates which are large in db~ from Qg

10 for each X € @) do

11 compute supportpp_qp(X) by scanning DB — db

12 Add candidates in Py U Qy which are large in DB — db to L,5_4
13 Stop if |[Lg_p] < k41

14 end

Figure 4.1: FUP, Algorithm: Deletion of Transactions

times as the length of the maximal itemset. As we will investigate in Sec-
tion 4.2, the intuition behind F'U P, seems to be the best solution in the case

of deleted transactions.

4.2 Challenges in Update for Deletion Case

In case of added transactions, a large itemset in DB + db must be large in
at least one of DB and db. Thus, finding large itemsets in the incremental
database is sufficient to determine the set of large itemsetsin D B+db. However,
in the case of deleted transactions, a new itemset can be added to the set of
large itemsets in DB — db if it is small both in db and DB. In other words, a
small itemset in db can be large in the updated database. As a consequence,
keeping the set of large itemsets in db is not sufficient to find the large itemsets
in DB—db. The candidate set for any iteration must also include those itemsets

that are small in db but large in DB — db.

Because of this reason, there are two possible approaches.

1. Keep small itemsets in db as well as the large itemsets.
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2. Generate the candidate set CF g, from L .

The first approach is a costly operation because the set of small itemsets in
a database is much larger than the set of large itemsets. If we denote the
set of small k-itemsets in db by S¥ and all itemsets of length k by PS}, then
Sk = PS, — LY. Finding all itemsets of length k, eliminating the ones in
Lk, . and counting their supports is very expensive in terms of time and space.

Thus, this approach is not an efficient solution.

The second approach is used in FU P, algorithm [CLK97]. As in case of ad-
dition of transactions, they generate the candidates over the updated database
instead of the incremental database. The methodology used by [CLK97] seems
to be the best solution to this problem without using the knowledge of old

large itemsets. Let us investigate the reasons behind this claim.

Let us think L% 5 . as two separate sets. Let OldLarge be the set of
itemsets in DB — db that are large in DB and OldSmall the set of itemsets in
D B—dbthat are small in DB. For any itemset X in OldSmall, the supersets of
X are also small in DB, and Lpg does not contain them. Thus, the candidate
set must contain those containing X. The only improvement we can do is
reducing the number of itemsets that contain no items from OldSmall .i.e.,

the itemsets that can be generated from the set OldLarge.

Example 4.1 Let LY, , = {A,B,C,D,E}. Let OldLarge = {A, B,C, D}
and OldSmall = {D,E}. FUP, puts into Clg_, all itemsets of length 2
containing the items in L35 _,. The candidate set for an update algorithm
should contain AD,AFE,BD, BE,CD,CFE, and DE, because D and E are
previously small and none of the itemsets containing them exists in the set of
old large itemsets. The only improvement we can do is to prune any of AB, AC
and BC. One possible solution is not to generate candidates over OldLarge
but this does not work when at least one of AB, AC and BC ts small in DB.
If one of them is small, then it has a chance to be large after the deletion of

transactions, so we have to put it into the candidate set.

Since we know the large (k + 1)-itemsets in DB, one possible approach to

reduce the size of the candidate set is not to include those that are large in
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DB. However, it does not seem doable directly with the generate_candidate
function, because generate_candidate function computes the candidates from
L% 5 _ 4, without any other information. Then, we have to modify the candidate
generation function to use the information on L% . This can be done by
generating the candidates over OldLarge and removing those that are in L5 .
However, this requires generating the candidates and pruning them, that is

same as the method used in FUP,. As a result, there is no way to generate

only the candidates over OldLarge which are small in DB.

The best solution for generating candidate set seems to be using L% 5, in
the generate_candidate function. Therefore, we can not make an improvement

on the size of the candidate set by the optimization employed in UW E P.

Moreover, the early pruning strategy in UW E P does not bring an advantage
in case of deleted transactions with respect to the algorithm FUP,. In other
words, early pruning does not result in a smaller candidate set in the later
iterations. As it can be seen in Figure 4.1, F'U P, makes a kind of pruning by

To conclude, we can say that the optimizations employed in UW E P do not
work in the case of deletions. Without using negative border, F'U P, seems to
be the optimal level-wise algorithm when some of the transactions are deleted
from the database. The only drawback of FU P, is the number of scans over
the databases. This problem can be solved using the framework of UW EP,
i.e., the framework in the Partition algorithm [SON95].



Chapter 5

Conclusion

Discovering association rules is an important class of data mining, and associ-
ation rules have a wide area of usage. Although many efficient algorithms have
been proposed up to now, extracting association rules is still a computationally

expensive operation in large databases.

Since it 1s a time-consuming operation, the maintenance of association rules
is also an important issue, especially in dynamic databases in which frequent
additions and deletions take place. Instead of computing all the rules again,
we proposed an efficient algorithm in this thesis, which uses the previously
discovered rules in order to find the set of new association rules. Update With
Farly Pruning (UWEP), as presented in this thesis, attempts to minimize the
number of candidates generated and counted over the incremental database.
Specifically, we show that UW EP generates and counts the optimally min-
imum number of candidates. Moreover, it outperforms the existing update
algorithms in terms of the number of scans over the databases. While the
other update algorithms make as many passes as the length of maximal large
itemset, UW E P requires at most scan over the old database, and exactly one

scan over the incremental database.

We presented a theoretical comparison of UW E P with the other update al-
gorithms, and showed that UW E P outperforms the others theoretically. More-

over, experimental results indicate that our theoretical analysis is valid in real
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life, too. The experiments on synthetic data, which is assumed to imitate the

real life [AS94], supported our claim about the optimality of our algorithm.

5.1

Future Work on UWEP

Some possible future work are summarized as follows.

We said that the number of scans over the databases is limited to one.
However, this requires that the memory should be big enough to hold the
sets of inverted lists, and the set of candidate itemsets generated. This
requirement can be overcome by applying memory buffering techniques,

or a partitioning framework applied in the Partition algorithm [SON95].

We studied on the framework of association rules, and proposed an algo-
rithm to update large itemsets efficiently. However, there are data mining
tasks which are also based on the generation of large itemsets. We believe
that UW E P can be modified easily to be applicable to other data mining

tasks, such as discovering sequential patterns or deviations.

We showed that the case of deletions and modifications is more difficult
to handle than the case of additions. The more efficient applicability of

UW EP to those cases is an interesting future work.

The logic in UW EP may be used to develop an efficient algorithm to
mine the association rules in a large database. By considering each trans-
action (or a certain set of transactions) as an incremental database, can we

develop a new algorithm to find all the rules valid on the whole database?
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