A
LARGE VOCABULARY SPEECH
RECOGNITION SYSTEM FOR
TURKISH

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER
ENGINEERING AND INFORMATION SCIENCE
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

by
Cemal Yilmaz

August, 1999



I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Enis Cetin (Co-supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Mibeccel Demirekler

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Ugur Gudikbay

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet Baray

Director of Institute of Engineering and Science

1



ABSTRACT

A
LARGE VOCABULARY SPEECH RECOGNITION SYSTEM
FOR TURKISH

Cemal Yilmaz
M.S. in Computer Engineering and Information Science
Supervisors: Assoc. Prof. Dr. Kemal Oflazer
and Prof. Dr. A. Enis Cetin
August, 1999

This thesis presents a large vocabulary isolated word speech recognition system

for Turkish.

The triphones modeled by three-state Hidden Markov Models (HMM) are
used as the smallest unit for the recognition. The HMM model of a word is
constructed by using the HMM models of the triphones which make up the
word. In the training stage, the word model is trained as a whole and then
each HMM model of the triphones is extracted from the word model and it
is stored individually. In the recognition stage, HMM models of triphones are
used to construct the HMM models of the words in the dictionary. In this way,

the words that are not trained can be recognized in the recognition stage.

A new dictionary model based on trie structure is introduced for Turkish
with a new search strategy for a given word. This search strategy performs
breadth-first traversal on the trie and uses the appropriate region of the speech
signal at each level of the trie. Moreover, it is integrated with a pruning

strategy to improve both the system response time and recognition rate.

Keywords: Speech recognition, triphones, Hidden Markov Model (HMM),

trie-based dictionary model, trie-based search strategy

11



OZET

TURKCE ICIN GENIS SOZCUK DAGARCIKLI KONUSMA
TANIMA SISTEMI

Cemal Yilmaz
Bilgisayar ve Enformatik Mihendisligi, Yiksek Lisans
Tez Yoneticileri: Dog. Dr. Kemal Oflazer
ve Prof. Dr. A. Enis Cetin
Agustos, 1999

Bu tezde Tirkege i¢in konugmaciya bagimli, genig sozcik hazneli konugma

tanima sistemi sunulmaktadir.

Bu sistemde sozctikler tgli-fon temelli Sakli Markov Modeller ile model-
lenir. Bu tugli-fonlar sistemdeki en kucik birimlerdir. Her sozcik icin bu
ucli-fonlarin modellerinin yardimi ile sozcik modeli olugturulur. Oérenme
safhasinda, bu model bir butin olarak egitildikten sonra herbir tu¢li-fon mod-
eli ayri olarak saklanir. Tanima sathasinda ise bir sozcik igin gerekli olan
ugli-fon modelleri sirasiyla birbirlerine eklenerek o sozciik igin gerekli model
olugturulur. Boylece 6grenme sathasinda herhangi bir ti¢li-fon i¢in olusturulan
model tanmima safhasinda birden fazla sozcigin taninmasi i¢in kullanilabilir.
Diger bir deyisle, 6grenme sathasinda sisteme ogretilen sozctiklerden daha fa-

zla sozclik tanima safhasinda taninabilir.

Bu tezde ayrica Tirkge i¢in “trie” yapili sozlik modeli geligtirilmigtir. Sozlik
modelinde kullanilmak tizere “trie” yapisinin her diizeyinde konugma igaretinin
en uygun kisminmi kullanan bir arama stratejisi geligtirilmigtir. Ayni zamanda,
bu arama stratejisi sistemin tepki stiresini azaltmak i¢in arama uzayim azaltan

bir strateji ile birlegtirilmigtir.

Anahtar Sozciikler: Konugma tanima, tgli-fonlar, Sakli Markov Modeli,

“trie” yapih sozlik modeli, “trie” yapili arama stratejisi
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Chapter 1

Introduction

Speech is the most natural way of communication among human beings. There-
fore the use of speech in the communication with the computers are important
from the point of human beings. The production and the recognition of the
speech by computers have been an active research area for years [18]. The
widespread use of speech communication machines like telephone, radio, and
television has given further importance to speech processing. The advances in
digital signal processing technology lead the use of speech processing in many
different application areas like speech compression, enhancement, synthesis,
and recognition. In this thesis, the problem of speech recognition is considered

and a speech recognition system is developed for Turkish.

Considerable progress has been made in speech recognition in the past 15
years. Many successful systems have emerged (see [2] and [16]). The difficul-
ties in the speech recognition systems can be observed in four dimensions: (1)
speaker dependency (speaker dependent or independent), (2) the type of utter-
ance (continuous or isolated), (3) the size of the vocabulary (small, medium,

or large vocabulary), and (4) the noise present in the environment.

In a speaker dependent speech recognition system, single speaker is used
to train the system and the system should be used specifically for recognizing
trainer’s speech. Such systems can also recognize the speech of other speakers

with possibly very high error rate. A speaker independent system is trained
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with multiple speakers (including both males and females) and then they are
used to recognize the speech of many speakers including those who may not

have trained the system.

In a continuous speech recognition system, speakers utter the sentences in a
most natural manner like in the real life. In this case, the difficulty is to detect
the boundaries in the speech signal [7] and to model the coarticulatory effects
and sloppy articulation [17]. However, in an isolated word recognition system,
speakers must pause between the words. Therefore, finding the boundaries of

the words is relatively easy when compared to the continuous utterances.

Based on their vocabulary size, speech recognition systems can be divided
into three main categories: small, medium, or large vocabulary systems. Small
vocabulary systems typically have 2-99 words, medium vocabulary systems
have 100-999 words while large vocabulary systems have over 1000 words. As
the vocabulary size increases, the number of confusable words increases and

this leads to degraded performance [2].

In this thesis,

e a speaker dependent, large vocabulary, isolated word speech recognition

system for noise-free environments is developed for Turkish,

e a new dictionary model for Turkish speech recognition systems which

allows for fast and accurate search algorithm is presented, and

e a new search strategy for Turkish which improves both the system re-

sponse time and recognition rate is introduced.

Chapter 2 introduces the speech processing techniques used in this thesis
to (1) extract feature parameters characterizing the speech signal, and (2) find

the end points of a discrete utterance.

Chapter 3 reviews the Hidden Markov Models (HMM) used in the speech
recognition problem. The HMM approach is a statistical method of charac-
terizing the spectral properties of the frames of a pattern. The underlying

assumption of the HMM in speech recognition is that the speech signal can be
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well characterized as a parametric random process and the parameters can be

determined in a precise and well-defined manner.

Designs of the word model and the dictionary model are challenging prob-
lems in large vocabulary speech recognition systems. They must be designed
in a manner allowing fast and accurate search over the dictionary. Chapter 4
introduces the design details of the word and dictionary model. It also gives
a brief description of recognition problems that may occur in Turkish. The
word and dictionary models are designed according to the needs of the Turkish
relevant to the speech recognition problem. The triphone based HMM models
are used in modeling the words [10]. The dictionary model is based on the trie

structure in which each node contains a triphone.

Chapter 5 introduces the techniques and algorithms used in the training
and recognition stage. In the training stage, the HMM model of a word is
constructed and trained as a whole then the individual triphone models which
make up the word are saved individually. In the recognition stage, these tri-
phone models are used to construct the HMM models of the words in the
dictionary then the Viterbi algorithm is applied to these models with the fea-
ture sequence fed to the system. The details of the search strategy for a word

in the dictionary are also discussed in Chapter 5.

Chapter 6 gives the conclusions and the directions for future research.



Chapter 2

Speech Processing

Speech processing techniques are employed in several different application areas
such as compression, enhancement, synthesis and recognition [17]. In isolated
speech recognition, such techniques are used to process the speech signal to (1)
extract feature vectors characterizing the speech signal, and (2) determine the

endpoints of a discrete utterance.

This chapter introduces the feature extraction and end point detection al-

gorithms in Sections 2.1 and 2.2, respectively.

2.1 Feature Extraction

A key assumption made in the design of most speech recognition systems is
that the segment of a speech signal can be considered as stationary over an
interval of few milliseconds. Therefore the speech signal can be divided into
blocks which are usually called frames. The spacing between the beginning of
two consecutive frames is in the order of 10 m-secs, and the size of a frame is
about 25 m-secs. That is, the frames are overlapping to provide longer analysis
windows. Within each of these frames, some feature parameters characterizing
the speech signal are extracted. These feature parameters are then used in the

training and recognition stage.
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In the past, several parameters were used to model the speech signals. The
Linear Prediction (LP) coefficients are the earliest feature parameters [17].
Unfortunately, their performance were not good so other feature parameters
like Line Spectral Frequencies (LFS’s) were introduced [19]. Nowadays, Mel
Cepstral (MELCEP) coefficients [17] and sub-band cepstrum coefficients [17]

have become the most widely used parameters for modeling the speech signals.

In this thesis, a new set of feature parameters proposed in [12] is used. The
new set of feature parameters is obtained from the cepstral coefficients derived
from multirate sub-band analysis of the speech signals. In the computation of
the cepstral coefficients, the ordinary energy operator given in Equation 2.2 is
used while in the computation of the new feature parameters, a new energy
measure proposed in [12] based on Teager Energy Operator (TEQO) is employed
(Equation 2.1). This section gives a brief overview of the computation of the
TEO based cepstrum coefficients or TEOCEP’s. The details can be found
in [12].

The discrete TEO [22] is defined as

U [s(n)] = s*(n) — s(n +1)s(n — 1) (2.1)

where s(n) is the speech sample at time instant n. This operator makes suc-
cessive samples exchange information between each other whereas the ordinary

energy operator defined as

¢[s(n)] = s*(n) (2.2)

treats the samples individually. In this thesis, TEO is used in frequency sub-
bands. In other words, the Teager energies of sub-band signals corresponding
to the original signal are estimated and they are used in the computation
of feature parameters. TEQO based cepstrum coefficients are then computed
using the Teager energy values of the sub-band signals obtained via wavelet

(or multiresolution) analysis of the original speech signal.
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Figure 2.1. The sub-band frequency decomposition of the speech signal.

The decomposition of the speech signal into sub-band signals is described in
detail in [12]. In this thesis, the speech signal, s(n), is decomposed into L = 21
sub-signals, {s;(n)}l,, each of which is associated with one of the bands in
the frequency domain. The frequency content of the sub-signals are shown in
Figure 2.1. The sub-band decomposition is almost the same as mel-scale. In
other words, more emphasis is given to the low frequencies compared to the
high frequencies. For each sub-signal, the average W-energy e; is computed as

follows:

si(n)> —si(n—Dsi(n+ 1), 1=1,2,...,L (2.3)

where 7} is the number of samples in the [** sub-band.

Log compression and Discrete Cosine Transformation (DCT) are applied to

get TEO based cepstrum coefficients as follows:

TC(k) = g:log(el) cos (M) k=1,2,...,12 (2.4)

where TC(k) is the k" TEO based cepstrum coefficient. The first 12 TEOQ
based cepstrum coefficients form the first part of the feature parameters set.
From the application of first-order differentials another 12 coefficients are ob-
tained. As a result, a 24-element feature vector consisting of T'C(k) and dif-
ferentials is extracted from each frame of the speech signal. These vectors are

also called observation vectors in speech recognition terminology.
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2.2 End Point Detection

Locating the endpoints of a discrete utterance is an important problem in iso-
lated word speech recognition systems. A robust endpoint detection algorithm

significantly improves the recognition rate of the overall systems.

The problem of detecting endpoints would seem to be relatively trivial,
but in fact, it has been found to be very difficult in practice [2]. Usually the
failure in endpoint detection is caused by: weak fricatives (/f/, /h/) or voiced
fricatives that become unvoiced at the end of a word like in the Turkish word
“yoz”, weak plosives at either end (/p/, /t/, /k/), and nasals at the end like
in the Turkish word “dam”.

The wavelet analysis associated with a sub-band decomposition of the
speech signal is used in the endpoint detection algorithm [11]. Consider the
decomposition of speech into L sub-signals as discussed in Section 2.1. The

energy parameter Ef is defined for k%" speech frame and [** sub-band as follows:

Ef = =3 si(n), l=1,...,L (2.5)

where T} is the number of samples in the [** sub-band. T} is smaller than the
number of samples in the speech frame, if multirate processing is employed

during sub-band decomposition. The distance measure Dy is then defined as

Dy = 101og Hi Bt _’”) ] (2.6)

where y; and o; are the mean and variance of the background noise at the [t

sub-band, respectively. The speech free segments are used in the computation

of p; and oy as follows:

1,
-7 > B (2.7)
k=1
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1 T
oh= (B ) I=12. L (2.8)

k=1

Figure 2.2 shows the flowchart of the endpoint detection algorithm. In this
flowchart, Ty, , T}, and T}, represent the beginning threshold, the lower threshold,
and the higher threshold values, respectively. The lower and higher threshold

values are defined in terms of the beginning threshold value as follows:

3

T[ — ZTZM (29)
and
3
Ty, = §Tb. (2.10)

In Figure 2.2, Ny and N, are the indices of the beginning and ending frame
of a word in a discrete utterance, respectively, N is the maximum number of

frames that the distance measure Dy, stays below the beginning threshold Tj.

The algorithm scans the speech signal frame by frame and it marks the
frame as NV, at which the threshold value T} is first exceeded unless the distance
measure Dy falls below the threshold value T} before exceeding the threshold
value T},. After labeling a frame as N, the ending frame N, is determined
when the distance measure Dy falls below the threshold value T} for longer

than Ny frames.

The threshold value T}, can be predetermined by the help of the histogram
of the distance measure Dy, (Equation 2.6). The performance of this end-point
detection algorithm is significantly influenced by the choice of Ny value. If
Ny is large then the algorithm may (1) miss the silent region between two
consecutive words; these words are treated as one word, or (2) treat silent
regions at the end of the utterances as speech regions. On the other hand, if
Ny is small then the algorithm may treat the utterance of one word as multiple
words. To overcome these problems, another parameter, Vg4, is introduced and
Ny value is chosen as small as possible. After detecting end-points of a discrete
utterance, if the number of frames between the ending frame of a word and
the beginning frame of the consecutive word is smaller than N, then the end-

points are changed so that these consecutive words are treated as one word.
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Therefore, the distance between two consecutive words must be larger than Ny

frames.

The algorithm given in Figure 2.2 can be used to determine the end-points
of a discrete utterance both at the time of recording and at any time after the

recording is finished.
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ESTIMATE
MEAN and VARIANCE
(k=0)
k++
NO
DX) > T,
N.=k
YES |_°
k++
YES
Dk) < T,
NO
NO
Dk) > T,
k++, N =k
YES t
NO
Dk) < I,
N =
(&
YES YES k++
YES
Dk) < T, D) > T,
k++
NO
NO
NO
DK)>T, (N.-N <N
YES NO
YES

N_ = argmin{D(n)}
N e<n<k

Nb: argmin{D(n)}
n < Nb

Figure 2.2. Flow chart of the end point detection algorithm.
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Chapter 3

Hidden Markov Model (HMM)

for Speech Recognition

The speech recognition problem can be considered as mapping the sequence
of feature vectors to a word in the dictionary. Starting from the late 1960s,
researchers focused on developing stochastic models for speech signals. The
reason they used the probabilistic modeling was to address the problem of
variability. Today, Hidden Markov Model (HMM) and Artificial Neural Net-
works (ANN) are the two main approaches used in speech recognition research.
The HMM approach is adopted in this thesis. The use of HMM models for
speech recognition applications began in 1970s [21].

An HMM model is a finite state machine that changes state at every time
unit as shown in Figure 3.1. At each discrete time instant ¢, transition occurs
from state ¢ to j , and the observation vector o; is emitted with the probability
density b;(0;). Moreover the transition from state 7 to j is also random and it

occurs with the probability a;;.

The underlying assumption of an HMM model in speech recognition prob-
lem is that a speech signal can be well characterized as a parametric random
process, and the parameters of the stochastic process can be estimated in a
precise and well-defined manner. An HMM model is considered as a generator

of observation sequences (observation and feature sequences are used to refer

11
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’
/
’
/
s
7
’

b(0) . . . : :
) Y Y Y
Observation
Sequence

O = o 0, 0,

Figure 3.1. A three-state left to right HMM model with the observation vectors
each being generated by one state (state 1 represents the start state).

the same thing in the rest of this thesis). In practice, only the observation
sequence is known and the underlying state sequence is hidden. That is why

this structure is called a Hidden Markov Model. This chapter introduces the
theory of HMM models for speech recognition purpose.

3.1 Elements of an HMM

A complete specification of an HMM model requires specification of (1) two
model parameters, N and M, (2) observation symbols, and (3) three sets of

probability measures A, B, w. The definitions of these parameters are as

follows:

1. The parameter, IV, is the number of states in the HMM. The individual
states are labeled as {1,2,..., N}, and the state at time ¢ is denoted

as qi.
2. The parameter, M, is the number of distinct observation symbols per

state. The observation symbols represent the physical output of the sys-

tem being modeled. The individual observation symbols are denoted
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as V = {vy,va,...,vy}. Only in HMM models for discrete observa-
tion symbols the parameter M is defined. HMM models for continuous
observation sequences, as we have in this thesis, clearly do not have the
parameter M, but have an observation set whose elements are continuous

variables.

3. The matrix, A = {a;;}, is the state transition probability distribution

where a;; is the transition probability from the state : to j, i.e.,

ai; =Plgpr1=Jja=1), 1<i,j<N (3.1)

If a state j can not be reached by a state ¢ in a single transition, we have

a;; =0 for all ¢, .

4. Let O = (04,04,...,07) be the set of observation symbols. The matrix,

B = {b;(0:)}, is the observation symbol probability distribution in which

bj(o) = Plo¢| g =3), 1<t<T (3.2)

defines the symbol distribution in state 5, y = 1,2,..., N. In speech

recognition problem, observation symbols are feature parameter vectors.

5. The vector, 7 = {n;}, is the initial state distribution, in which

m=Plg=1i), 1<i<N. (3.3)

For convenience, we use the compact notation

A= (A,B,r) (3.4)

to indicate the complete parameter set of an HMM model. This parameter
set defines a probability measure for a given observation sequence O,
ie., P(O | A). We use HMM model to indicate the parameter set A and the

associated probability measure interchangeably without ambiguity.
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3.2 Probability Evaluation

One basic problem of HMM models is to calculate the probability of the ob-
servation sequence, O = (04, 04,...07), given the HMM model A = (A, B, 7).
The trivial way of solving this problem is through enumerating every possible
state sequence of length T' (number of observations). Clearly, there are at most

NT such state sequences. For one such fixed-state sequence

a=(q192---qr) (3.5)

where ¢; and ¢7 are the initial and the final states respectively, the probability

of the observation sequence O is

P(0 [ q,3) = I] P(o: | 4. M. (3.6)

t=1

In the equation above, the statistical independence of observations is assumed.

In other words we have

P(O | q, )‘) = bq1 (01)'bq2(02) cee qu(OT)' (37)

Moreover, the probability of the state sequence q can be given as follows:

P(q | )‘) = Tq1q192%g2q3 + - - gp_q197- (3-8)

Then the probability that O and q occur simultaneously is simply the product

of the two terms above, that is,

P(O,q|X) = P(O|q,A)P(q]| ). (3.9)
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The probability of the observation sequence O given the model is obtained

by summing the Equation 3.9 over all possible state sequences ¢, which is

POJN) = > PO[qN)P(ql|)

91,92,--,9T

= Z Tqq bq1 (Ol)afhfh bq2(02) s aqT—ququ(OT)' (310)

91,92,--,9T

The interpretation of the Equation 3.10 is the following: At time t = 1 we
are in state ¢; with probability 7,,, and generate the symbol o; with probability
by, (01). The clock changes from time ¢ to time ¢ + 1 and we make transition
from state ¢; to state gz with probability a,, and generate the symbol o,
with probability b,,(02). This computation continues until we make the last

transition, at time 7', from state ¢r_; to g7 and generate the output symbol or.

It is clear that the calculation of P(O | A) by using its direct definition
(Equation 3.10) involves on the order of 2I'NT calculations. This computa-
tional complexity is infeasible even for small values of N and T'. For instance,
for N = 5and T = 100, there are 2-100- 5% ~ 1072 computations. Therefore,

more efficient algorithms are needed.

The backward procedure and forward procedure are recursive methods of
performing this calculation [1]. The crucial point of these algorithms is that
each of them allows the calculation of the probability of a given state at a given

time.
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3.2.1 The Forward Procedure

Consider the forward variable a;(7) defined as

Oét(l) = P(0102 .. 04, qr = ? | )\) (311)

that is, as the probability of the partial observation sequence, 070, ...0;, and
state ¢ at time ¢, given the model A. We can solve Equation 3.11 for a(¢)

inductively as follows:

1. Initialization

ai(e) = mbi(01), 1<i< N (3.12)
2. Induction
N 1<t<T-1
Q@ ) = as(2)agi| bj(oeg1), - T 3.13
)= [ e o). ZLET 319
3. Termination v
PO | X)) = ZozT(i). (3.14)
=1

As can be seen from this iterative solution, the computation of P(O | A)
requires on the order of N2T' calculations, rather than 27'N7T as required by

the direct calculation in Equation 3.10.

3.2.2 The Backward Procedure

In a similar manner, the backward variable 3;(¢) can be defined as

ﬂt(l) = P(Ot-l—lot-l—? S 0T|Qt = i, )\) (315)

that is, as the probability of the partial observation sequence from ¢ + 1 to
the end, given state ¢ at time ¢ and the model A. Again we can solve for 3;(¢)

inductively, as follows:
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1. Initialization
Br(i)=1, 1<i<N. (3.16)

2. Induction

t=T—-1,T-2,...,1,

. (3.17)
1 << N.

N
Bi(e) = Z:aijbj(otﬂ)ﬁtﬂ(j),

Again the computation of §;(z) requires on the order of N?T' calculations

like the forward procedure.

Both the backward procedure and forward procedure are used in “optimal”
state sequence computation and parameter estimation algorithm in Section 3.3

and Section 3.4, respectively.

3.3 The “Optimal” State Sequence

An important problem in HMM model formulation is the estimation of the
optimal state sequences. There are several ways to find the optimal state
sequence associated with the given observation sequence. Various optimality

criteria can be defined.

Our optimality criterion is based on finding the state sequence which max-
imizes P(q | O, ). It is equivalent to maximizing P(q,O | A) due to Bayes’
rule [9].

The solution is given by the Viterbi algorithm which is essentially a dy-
namic programming method [23]. Consider the Viterbi variable é;(¢) defined

as Tollows:

6:(1) = max  P(qiqz-.-Gi—1,q: = 1,0102...04|\) (3.18)

91,92;-+9t—1

where q = (¢1¢2...q7) is the best state sequence for the given observation se-

quence O = (0103 ...07). In other words, 6,(¢) is the highest probability along
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a single path, at time ¢, which accounts for the first £ observations and ends in

state ¢. The recursive version of 6;(¢) can be written as

buia(i) = [max (o] by(orsa). (3.19)

The recursive procedure to find the single best state sequence is as follows:

1. Initialization

§,(1) = mbiloy), 1<i<N (3.20)

(1) = 0 (3.21)
where 1;(7) is used to keep track of the arguments that maximize the Equa-

tion 3.23 for each ¢ and j.

2. Recursion

6(7) = ) ) b 2stsT, 3.22
) = maglatede). 220 e2)
. . 2<t<T,
vi(g) = arglrgg[&—l(@)aij], L<i<N (3.23)
3. Termination
P = 1%2%%[5T(z)] (3.24)
gr = arg max [67(i)]. (3.25)

where P* and the ¢; are the maximum likelihood of observing O in the model
A and the state at time ¢ in the final state sequence which results in the prob-
ability P*, respectively.

4. Path (state sequence) backtracking

¢ = tua(gy), t=T—-1,T—2..,1. (3.26)

As can be seen from the procedure above, Viterbi algorithm is similar to

the forward procedure (Equations 3.12—3.14) except for the backtracking step.
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The difference is that, the summing step in the forward procedure (Equa-

tion 3.13) is changed with the maximization criterion (Equation 3.22) in the

Viterbi algorithm.

The model parameters in Equations 3.21—3.26 are very small values. The

multiplications in the algorithm result in further smaller values. After a few

iteration of the Viterbi algorithm, the result of these computations become 0

because of the limited representation (32-64 bit) for the floating numbers in

computers. The Viterbi algorithm can be implemented without the need for

any multiplication by taking the logarithms of the model parameters as follows:

0. Preprocessing

7y
z)i(ot)

1. Initialization

2. Recursion

@/)t(J) =

3. Termination

log(6:(7))
. 2<t<T,
max Ba@ +ag] +hle) 2L
ﬁ , Nﬂ 2<t<T,
arg max —1(2) + aij| , L<i<N

P* = maxi<i<n [5T(l)]

qr = arg maxi<i<n [5T(l)] .

(3.27)
(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)
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4. Path (state sequence) backtracking

This alternative implementation of the Viterbi algorithm requires on the or-
der of N*T additions. The cost of preprocessing is negligible as it is performed

once and saved.

3.4 Parameter Estimation

Parameter estimation is computationally the most difficult problem in HMM
models. The model parameters A, B, and A are estimated to satisfy an op-
timization criterion. Our optimization criterion is based on maximizing
P(O | X) where O represents the training observations. In order to do that, the
Baum-Welch method also known as expectation-maximization (EM) method

is used [14].

Before going any further, the form of the observation symbol probability
distribution, B = {b;(k)}, needs to be made explicit. One can characterize ob-
servations as discrete symbols chosen from a finite alphabet and use a discrete
probability density within each state of the model. On the other hand, fea-
ture parameters extracted from the speech signals can take continuous values.
Therefore continuous observation densities are used to model feature parame-

ters directly.

The output distributions are represented by Gaussian Mixture Densities.

That is,

M
bj(o) = > cixN(0n i, Ujp), 1<j<N (3.37)

k=1

where 0, is the observation vector being modeled, M is the number of mixture
values used for each state (in this thesis three mixture values (M = 3) are used
for each state), N represents a Gaussian probability density function (pdf),

and c;; is the mixture coefficient for the k' mixture in state j such that



CHAPTER 3. HIDDEN MARKOV MODEL (HMM) FOR SPEECH RECOGNITION 21

M
Zc]k: 1vcjk >0

(3.38)
Pt 1<k<M

The Gaussian pdf N has a mean vector ;i and covariance matrix U}y, for the

k" mixture component in state j, that is,

N(os, ik, Uji) = s (3.39)

(27)" [Ujx|
where n is the dimensionality of the observation vector o;. In our case n is 24,
as 24 feature parameters are extracted from each frame of the speech signal
as discussed in Section 2.1. Suppose that an HMM model contains just one
state 7 and one mixture value k is used for this state. Then the parameter
estimation would be easy. The maximum likelihood estimates of y;; and Uy

would be simple averages as follows:

1 T
[k = T > o (3.40)
t=1
and
— 1 L
Uik =75 > (o0 — pje) (00 — i)' (3.41)
t=1

where T' is the number of observations. In practice, HMM models contain
more than one state; each of which has more than one mixture component.
Moreover, for a given model and observation sequence, there are no direct
assignments of observation vectors to the individual states, as the underlying
state sequence is not known. However, Equations 3.40 and 3.41 can be used
if some approximate assignments of observation vectors to the states could be
done. Section 5.1.1 introduces the techniques used in the initial assignment of

the observation vectors to the states of an HMM model.

We now define the variable &(7,j) [14] to help us in the parameter estima-
tion algorithm. The variable & (¢,7) is the probability of being in state ¢ at
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time ¢, and state j at time ¢ + 1, given the model A and observation sequence

O, that is

ft(iaj) = P(Qt =0, qiy1 = j|07)‘)' (3-42)

The variable (7, j) can be re-written by using the definitions of the forward
and backward variables (Sections 3.2.1 and 3.2.2) as follows:

P(Qt:i7Qt+1 :]70 | )‘)
P(O | X)

a¢(1)ai;bj(0e41)Bea(7)
P(O | A)

(2)aijbj(0i+1)Ber1(7) ‘
fV:1 Z;\le (1) a;jbi(0:1) Bera(7)

ft(ivj) =

(3.43)

A posteriori variable ;(¢) [14] is defined for making the parameter estima-

tion algorithm tractable as follows:

1(i) = P(g: =i | O, A) (3.44)

that is, as the probability of being in state 2 at time ¢, given the observation

sequence O, and the model A\. Then we can express v;(¢) as

%) = Plg=1i]0,))

-~ PO]X

- ) 3.45
f\;1p(oaqtzl|)‘) ( )

The equation above can be re-written by the help of forward and backward

variables as follows:
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0u(i)ili)
Zﬁl (1) B(7)

Y:(2) = (3.46)

We can relate 7:(2) to &(¢,7) by summing over j, that is,

n(i) = ;&(i,j). (3.47)

The summation of ~;(¢) over the time index ¢ can be interpreted as the
expected number of times that state z is visited. Similarly, summation of
&:(1,7) over t can be interpreted as the expected number of transitions from

state ¢ to j. That is,

T-1
> (i) = expected number of transitions from state ¢ (3.48)
t=1
T-1
> &(i,5) = expected number of transitions from state 7 to j (3.49)
t=1

If the current model is defined as A = (A, B, 7) then a set of reasonable
re-estimation formulas for the parameters of the model can be defined as in

Equations 3.50—3.52.

7; = expected number of times in state ¢ at timet =1 (3.50)

expected number of transitions from state ¢ to j

% = expected number of transitions from state ¢
_ it &) (3.51)
S vld)
p— M —
b]‘(Ot) = ZEjkN(Otaﬁjkank)a 1 S] S N (352)
k=1

In Equation 3.52, the formulas for the re-estimation of the coefficients

Cik, B, and Uy are given as follows:
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Z?:l ’Yt(j7 k)

g , 3.53
ook ZtT:1 224:1 Y:(J, k) ( )
_ Zle ’}/t(jv k)ot

L = 3.54
’qu Z?:l ’}/t(jv k) ( )
T, - im1 75, k) (00 — pjk) (00 — pjn) (3.55)

Z?:l ¢ (]7 k)

where 7;(J, k) is the probability of being in state j at time ¢ with the & mixture

component accounting for o;. That is,

: a(4)B:) ] [ cirN (04, ks Ujr)
7100, k) = l v 3.56
%) Zé‘vzl a(7)B:(J) 2%21 ¢imN (04, trjms Ujim) ( )
At the end of these computations, a re-estimated model X = (A, B,7) is

obtained and either

e A=) thatis P(O| ) = P(O | )), or,

e model X is more likely than model A, that is P(O | ) > P(O | \) [1].

In this way, we can iteratively use X in place of A and repeat the re-
estimation calculations to improve the probability of O being observed from

the model until some limiting point is reached.

In this thesis, triphones (Section 4.2) are used as the smallest unit for speech
recognition. Fach triphone is represented by a three-state left to right HMM
model as illustrated in Figure 4.1. The algorithms described in this chapter are
used on the HMM models of the triphones both in the training and recognition

stage.



Chapter 4

The Language Model

Designing the word model and the dictionary model is a challenging problem
in speech recognition systems. They must be made in a way that allows for
fast and accurate search algorithms. Moreover, it is a good idea to construct

these models according to the needs of the language.

In this thesis, a Turkish corpus is used for gathering statistical information
such as the most frequently used words/triphones, minimum set of triphones
which covers most of the words in the corpus, etc. This corpus is constructed
by collecting newspaper text on different subjects from the Internet, and it

contains about 4.2 million words of which about 300000 are unique.

Section 4.1 gives a general overview of the Turkish language from the point
of view of speech recognition problem. Next, the word model is introduced in
Section 4.2. Finally, Section 4.3 introduces the dictionary model adopted in
this thesis.

4.1 Turkish Language

This section examines the Turkish language from the point of view of speech

recognition problem.

25
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Turkish is an agglutinative language. In agglutinative languages, bound
morphemes are concatenated to a free morpheme. Each morpheme usually
conveys one piece of morphological information such as tense, case, agreement,
etc. The morphological structure of Turkish words has adverse impact both

on recognition rate and system response time.

Let us examine the following two cases to understand the adverse impact

on the recognition rate.

case 1: same stem, different suffixes
ev + (i)m
ev + (i)n

In the first case, we have the same Turkish stem “ev” but different suffixes.
The inflectional suffixes m and n are frequently used suffixes in Turkish but,
unfortunately, their pronunciations are similar. Although the words “evim”

and “evin” are different their pronunciations are very similar.

case 2: different stems, same sequence of suffixes
ev + lerinizdekilerden

is + lerinizdekilerden

In this case, we have different Turkish stems namely “ev” and “ig” but the
same sequence of suffixes. The pronunciation of the suffix part are the same in
both words. Since the suffix part is about 90% of each word, the pronunciation
of the words “evlerinizdekilerden” and “iglerinizdekilerden” are very similar.

Our solution to this problem is discussed in Section 5.2.2.

In Turkish, one can generate a large number of words which have the same
stem but different suffixes. Therefore, even for a single stem the dictionary can
contain quite large number of words with different suffixes. Increases in the

size of the dictionary result in increases in the system response time.
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4.2 Word Model

Many HMM-based small vocabulary or even medium vocabulary speech recog-
nition systems assign fixed model topology to each of the words. That is, each
HMM model in the system has the same number of states. In such systems,
the smallest unit for recognition is the words themselves. It is impossible to
use any part of the trained model of a word for the training or the recognition
of different words. Such systems recognize only the words that are trained.
Fixed-topology word models are not reasonable for large vocabulary speech

recognition systems.

Many modern large vocabulary speech recognition systems use phonemes
as the smallest unit for speech recognition. Usually one-state HMM models are
used to model the phonemes of the language. In such strategies, the model of
a word is obtained by cascading the models of the phonemes which make up

the word.

Turkish phonemes sound differently according to the phonetic context in
which they appear. Neighboring phonemes affect the pronunciation of a phoneme
significantly. Therefore modeling a phoneme with its phonetic context should
give better results than modeling it individually. A good way of achieving
this is to model each phoneme in the context of its left and right neighboring
phoneme. This is known as the triphone model. The word “bir”, for instance,

is represented by the following triphones

/stl-b+i/ /b-i+r/ [i-r+sel/

where sil stands for silent regions. Each phoneme in the word “bir”, namely
/b/, i/, and /r/, is represented by a triphone. For example, the triphone
/b-i+r/ is used to model the phoneme /i/ which has the phoneme /b/ and
phoneme /r/ as the left and right neighboring phoneme, respectively. Using

triphone models lead to a good phonetic discrimination [10].

Each triphone is represented by an HMM model A = (A, B, 7). This model
has three emitting states and a simple left-right topology [1] as illustrated in
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Figure 4.1. Example HMM model for the triphone /b-i+r/.

Figure 4.1. As can be seen from the figure, the HMM model has the property
that, as time increases, the state index either increases by one or stays the

same. This fundamental property of the topology is expressed mathematically

as Tollows:

<1, 1, <N

a;j =0, where ] . J - (4.1)
e>9+1, 1,3 <N

The model states proceed from left to right. This topology is convenient to

model the speech signal whose properties change over time in a successive

manner. With this topology we have two special cases:

e Triphones which have /sil/ at the leftmost position. They represent
the beginning of words. The leftmost state in the HMM model of such
triphones is interpreted as the start state in the HMM model of the words

which begin with these triphones.

e Triphones which have /sil/ at the rightmost position. They represent the
ending of words. The last state in the HMM model of such a triphone
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has another state transition constraint, ayy = 1, in addition to the one

in Equation 4.1 as the state sequence must end in state V.

For each state, a three-mixture (M = 3) Gaussian density is used as de-
scribed in Section 3.4. The memory requirement of an HMM model for a
triphone is the sum of memory space needed for (1) mixture values:
N-(M-(n-S.D))=3-(3-(24-8)) = 1728 where N and M is the number
of mixture values used for a state and the number of states in the model, re-
spectively, n is the dimensionality of feature vectors, and S_D is the memory
space needed to store a double value in bytes, and (2) transition probabilities
N-(NT-S_.D)=3-(2-8) =48 where N_T' is the number of transitions from
a state. That is, 1776 bytes are needed to store an HMM model for a triphone.

The model of a word is obtained by cascading the models of the triphones
which make up the word. Figure 4.2 illustrates the process of constructing the

HMM model for the word “bir”.

580

/sil-b+1/ fi-r+sil/

1 i

|
NoReRoNoRoRcEo

1r

Figure 4.2. Example HMM model for the Turkish word “bir”.

We have a fixed model topology assigned to each triphone (Figure 4.1). On

the other hand, the size of the word model depends on the number of triphones
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in the word. Each word has its own HMM model which may have different

number of states.

In the training stage (Section 5.1), first, the HMM model for a training word
is constructed and trained. Next, the HMM models for the triphones which
make up the word are extracted and stored individually. In the recognition
stage (Section 5.2), we have the reverse operation, the HMM models for the

triphones of a word are concatenated to construct the HMM model A of the

word. This model is then used with the given observation sequence O to find

P(O | ).

Level 4: m | m X

Jr-ivksil/ = friemy . L
# 10 i

9

Level 5:

Figure 4.3. Example dictionary which contains the Turkish words “at”,
“at1”, “bir”, “biri”, and “birim”. Nodeboxes and nodes are represented by
dashed-rectangles and solid-rectangles, respectively.

4.3 The Dictionary Model

The dictionary of a speech recognition system contains the words that can be
recognized by the system. The design and implementation of the dictionary
for Turkish is one of the challenging problems that was faced. The design of

the dictionary must adhere to certain requirements:

e The dictionary must allow for fast and accurate search algorithms.
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e Turkish morphological structure must be taken into consideration in the

design of the dictionary.

e The memory requirements must be as small as possible.

To meet the requirements above the dictionary model employed in this
thesis is based on trie structure [24] as illustrated in Figure 4.3. A new ter-
minology, nodeboz, is introduced here to make the algorithms defined on the
trie tractable. A nodebox in the trie either contains nil corresponding to the
termination nodebox, or it contains a linked-list of nodes each of which con-
tains a triphone and a pointer to a subtrie. It should be noted that a subtrie
is, in fact, a nodebox with all the descendants. The trie is constructed with

standard algorithms [24].

Figure 4.3 gives an example dictionary which has the Turkish words “at”,
“at1”, “bir”, “biri”, and “birim”. For instance, if we follow the nodes 1 and 2,
we have the Turkish word “at”. It is understood that there is a valid Turkish
word because each word must have silent regions both at the beginning and at
the end. If we follow the nodes 1,3, and 4, we have the word “at1” which is the

accusative form of “at”.

Table 4.1. The number of nodes at each level of the trie.

Level | Number || Level | Number
of Nodes of Nodes

1 160 11 1901
2 422 12 1350
3 828 13 865
4 1459 14 507
) 2484 15 295
6 3023 16 138
7 3501 17 77
8 2917 18 24
9 2711 19 2

10 2371

All the triphones in the trie must be trained in the training stage. It is

not possible to recognize a word containing a triphone which is not trained.
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Though in the future this may be improved by allowing a self-correcting search

algorithm such as the error-tolerant finite state recognition algorithm [25].

The words which are covered by the trained triphone models are chosen
from the Turkish corpus and inserted into the dictionary. In this thesis, the
depth of the trie is 19. Table 4.1 shows the number of nodes at each level of
the trie. This table is included here in order to give a general idea about the

search space.

This dictionary structure saves space because of the characteristic of trie
data structure and Turkish morphological structure. Moreover it allows for

fast and accurate search algorithms as discussed in Section 5.2.2.



Chapter 5

The Training and Recognition
Stages

A spoken word can be represented by a sequence of observation vectors O,

tth observation vector and T

defined as O = o04,01,...,07 where o, is the
is the number of observation vectors for a single word utterance. Then the

problem of isolated word recognition can be defined as

w* = argmax P(w; | O) (5.1)

where w; is the ¢'* word in the dictionary and w* is the desired word. By using

Bayes’ rule, P(w; | O) can be expressed as follows:

P(O | wi) P(w;)
P(O)

P(w; | O) = (5.2)

Prior probabilities P(w;) are taken to be equal to each other for all w; in
this thesis. Therefore the most probable spoken word depends only on the
likelihood P(O | w;). It is not feasible, for a given observation sequence O, to
directly estimate the joint probability P(oy,04,...,0r | w;) for each word w;
as discussed in Section 3.4. HMM models introduced in Chapter 3 are used in

this thesis so that computing P(O | w;) is replaced by estimating the HMM

33
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model parameters of the word w;.

Triphones are used as the smallest unit for training and recognition of the
words. The training of these models and their usages in recognition stage will

be introduced in Section 5.1 and Section 5.2, respectively.

The general architecture of the speech recognition system developed in this
thesis is given in Figure 5.1. As can be seen from the figure, after feature
extraction step, the trained HMM models of the triphones are used to con-
struct the HMM model of a word w supplied by the dictionary. The Viterbi
algorithm is then applied to the HMM model with the feature vectors to get
the probability P(w | O). Later, in Section 5.2.2, this architecture is powered

with a search strategy for a word in the dictionary.

Speech

]End Point Detection ‘

4 Feature Extraction ‘

:

word (w)

HMM Model of the Word

HMM Models
Tril;fﬁf)nes Q O O ‘8 — Dictionary
ATIRI S

Feature Vectors
[ |

o 0 0

0p 0, 04 Or, Or Op

P(w | 0)

Figure 5.1. General architecture of the system.
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5.1 The Training Process

Several training algorithms for HMM models were introduced in [20], [3], [6],

and [8]. The training algorithm used in this thesis has 4 steps for a given word:

1. Construct the HMM model topology of the word.

2. Guess initial set of model parameters for the HMM model.

3. Improve the HMM model.

4. Save individual HMM models for each triphone in the word separately.

In this way, the words that are not trained, can be recognized. For instance,
once the word “okul” is trained, we have four HMM models for the triphones
/sil-o+k/, Jo-k+u/, /k-u+l/, and /[u-l+sil/. In the recognition stage, we
can use the models for the triphones /k-u+l/ and /u-l14sil/ to construct the
HMM model of the word “kul” (triphones for “kul” is /sil-k4+u/, /k-u+l/,
and /u-1+sil/) assuming that the triphone model for /sil-k+u/ is also trained.

Therefore, the word “kul” does not need to be trained.

In the algorithm above and throughout this section, it is assumed that an
HMM model is trained by using single utterance of a word. However, in order
to get good HMM models three utterances of a word are used. The use of
multiple observation sequences adds no additional complexity to the algorithm

above. Step 3 is simply repeated for each distinct training sequence.

The Turkish corpus is used to determine the words that will be trained.
One of the strategies to choose the words for training is to select the minimum
number of words whose triphones cover most of the words in the corpus. This
strategy favors the long words in the corpus. Simulation results show that
using triphone models obtained by training long words has negative effects on
recognition rate because it is usually difficult to pronounce too long words.
Therefore a constraint on the length of the words is also used in the selection
of the words. This strategy allows us to find about 1200 words (of maximum
ten letters long) whose triphones cover 90% percent of the words in the corpus.
That is, if we train about 1200 words, we can theoretically include 90% percent

of the words in the corpus.
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In order to increase the recognition rates of the most frequently used words
and have a manageable dictionary size, a second strategy is introduced to select
the words. This strategy simply chooses the most frequently used words in the

corpus for training.

For the rest of this section, assume that a training word has T' frames in
the speech signal, N_T'P triphones from which N_V of them contains a vowel
or semi vowel in the middle, N states, and the HMM model A\(A, B, 7).

5.1.1 Initial Guess of the HMM Model Parameters

Every training algorithm must start with an initial guess. This section in-
troduces the strategy to guess initial parameters for the HMM model
A = (A, B,x). The training word may have triphones which may already
have been trained. If that is the case, these trained models are used as the
initial guess, otherwise, the model parameter A, B, and 7 are initialy guessed

as Tollows:

Initial Guess of the state transition probability distribution, A:
The initial guess of the state transition probability distribution is given in

Figure 5.2.

0.8 0.8 0.8 1
7N\ 7N\ 7N\

Figure 5.2. Initial estimate of the state transition probability distribution, A.

The triphones which have /sil/ at the rightmost phoneme position have
only one state transition for the rightmost state. This transition goes from the
rightmost state to itself because there is no other state on the right. Since the
sum of the outgoing transition probabilities for a state must be 1, the proba-

bility of taking this transition is 1.
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Initial Guess of the observation symbol probability distribution, B:
As described in Section 3.4, in order to apply parameter estimation formulas
(Equations 3.50—3.56), some approximate assignments of observation vectors
to the individual states must be done. In this thesis, feature vectors extracted
from the speech signal are distributed on the states of an HMM uniformly. In
fact, more feature vectors are assigned to the states corresponding to the vow-
els or semi-vowels than those corresponding to the plosive consonants or the
weak fricatives. Triphones that have vowels or semi vowels in the middle get
2%

feature vectors whereas the others get feature vectors.

S S
NIP+N_V NIP+N_V

After assigning the feature vectors on triphones, we distribute feature vec-
tors for a triphone over its three states such that, first one fifth of the feature
vectors are assigned to the first state, next three fifths are assigned to the sec-
ond state, and the last one fifth are assigned to the third state. Although this
distribution is static, later in the improvement of HMM models (Section 5.1.2),
the Viterbi algorithm is used to modify this static distribution of the feature
vectors on the states . Figure 5.3 illustrates the distribution of feature vectors

on the states.

Speech Signal

Distribute Frames over Triphones

T

For Triphone #1 For Triphone #2 For Triphone #n
Distribute its frame over Distribute its frame over e Distribute its frame over
over its 3 states (HMM) over its 3 states (HMM) over its 3 states (HMM)

TR g

For state #1 For state #2 For state #3

Cluster its frames Cluster its frames| | Cluster its frames e e e

Figure 5.3. Distribution of feature vectors on to the states.

As discussed in Section 3.4, continuous observation densities with three
mixture values (M = 3) for each state are used in this thesis. K-means cluster-

ing algorithm [15] is used to cluster the feature vectors within each state j into
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a set of M clusters (using a Euclidean distance measure), where each cluster
represents one of the M mixtures of the b;(0;). These mixture values are used
with the given observation sequence O and the Equation 3.37 to compute the

observation symbol probability distribution, B, for each state.

Initial state distribution, =:
The HMM model for a word has only one starting state. Therefore, we have
71 =1 and 7; = 0 for all 2 where : =2,3,..., N.

At the end of these computations, we have the initial HMM model
A = (A, B, ) for the training word.

5.1.2 Improving the HMM Model

Improvement of the model A = (A, B,7) means that the parameters of the

model have to be re-estimated to get an improved model A = (4, B, 7).

As Figure 5.4 illustrates, there are three main steps in the improvement of

an HMM.

First, we find the optimum state sequence for the given model A = (A, B, )
and given observation sequence O by using Viterbi algorithm. Optimum state
sequence determines which state emits which frames. Therefore we can consider
the Viterbi algorithm as an another way of distributing feature vectors on the

states of an HMM model such that P(O | A) is maximized.

Second, for each state, K-means clustering algorithm are used to reestimate
the clusters of its feature vectors according to the number of mixture used. The
clusters may change since we change the distribution of the feature vectors on

the states in the first step.

Finally, the Equations 3.50—3.55 are used to reestimate the parameters of
the model A = (A, B,7) to get the new improved model A = (A, B, 7). Note
that the parameter = did not change because the new model should have also

one start state.
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HMM

)

Find optimum state sequence
for the given HMM and
feature sequence (Viterbi)

)

For each state apply
K-means clustering algorithm

on its feature vectors

|

Update both state transition probabilty
distribution matrix A, and observation
symbol probability distribution matrix B

New HMM

Figure 5.4. The improvement algorithm for an HMM model.

If we iteratively use X in place of A and repeat the procedure above, the
probability of O being observed from the HMM model is improved until some

limiting point is reached.

The Viterbi algorithm is used to get better distribution of feature vectors
on the states. After the better distribution, K-means clustering algorithm is
used to get better estimation of clusters for each state of the model. Better
clustering for each state means better estimation of the observation symbol
probability distribution, B, and better estimate of the state transition proba-
bility distribution, A.

5.2 The Recognition Process

The recognition algorithms for large vocabularies are complex when compared
to those for small or medium size vocabularies. The complexity is caused by the

search strategies employed on the vocabularies. In systems with small or even
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medium size vocabularies the HMM model of each word in the vocabulary can
be constructed and tested with the feature sequence fed to the system. On the
other hand, this strategy is not feasible for large vocabulary speech recognition
systems in terms of both system response time and recognition rate. Therefore
large vocabulary speech recognition systems should have more sophisticated
search strategies. This section will introduce the techniques and algorithms

used in the recognition stage.

5.2.1 Codebook Information

In order to apply the Viterbi algorithm (Section 3.3) in the recognition stage,
the observation symbol probability distribution B = {b;(k)} must be com-
puted. The computation of B is on the order of O(T - N - M) where T is the
number of observation sequence, N is the number of states in the HMM model,
and M is the number of mixture values used for each state. From the point
of system response time, the bottleneck is at the computation of the matrix
B. This section introduces the codebook concept which is used to improve the

speed of computing the matrix B.

In the training stage, after the creation of each triphone model, a space
of mixture values is created by using the three mixture values of each state
in every model. The space is 24-dimensional because we have 24-dimensional
feature vectors (Section 2.1). Later, this space is divided into C classes by
the help of the K-means clustering algorithm. In this clustering, the similarity
criterion is Euclidean distance in 24-dimensional space. These clusters are

usually refered to as codebook.

In the recognition stage, each observation vector is assigned to one of the
clusters in the codebook by the help of the K-means clustering algorithm.
w; (k) is the value of the probability density function of emitting an observation
vector at state j which is assigned to the cluster & (k' cluster in the codebook)

and it is defined as
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M
= = N7
w](/ik) = Z ijN(/fk,,Ujm7Ujm), C (53)
m=1

" mixture in state j. N represents

where ¢;,,, is the mixture coefficient for the m!
the Gaussian pdf with mean vector p;, and covariance matrix Uj,, given in
Equation 3.39. The computation of w;(ky) is performed at the training stage
and it is inserted into the model of each triphone. Suppose that, d(o;) stores the
cluster number in the codebook to which the observation vector o; is assigned,
that is 1 < d(o;) < C. Then, the computation of the observation symbol
probability distribution, B, is just a table look-up process as expressed in the

equation below,

bi(or) = wi(d(or)) (5.4)

Using codebook information improves the system response time. On the
other hand, it may decrease the recognition rate. Therefore, it should be used
with care. Section 5.2.2 illustrates the way of using codebook information in

this thesis.

5.2.2 The Search Strategy

A large vocabulary, isolated word, speech recognition system must put extra
effort into the designing of the search strategy for a word in the dictionary.
As Section 4.3 has introduced, the dictionary model employed in this thesis is
based on trie structure. There are two main approaches to search the dictionary

for a word: depth-first and breadth-first search.

5.2.2.1 The Depth-First Search Strategy

The depth-first traversal strategy is given in Figure 5.5. Depth first traversal
of the trie is analogous to the preorder traversal of an ordered tree. Sup-

pose that the traversal has just visited a node v in a nodebox V and let
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DFSearch(trie, speech)
begin
PushStack( AlINodesOf(trie))
while (StackIsNotEmpty())
node = PopStack()
hmm = ConstructHMM(node)
logprob = Viterbi(hmm, speech)
PruneSearchSpace DF(node, logprob)
end

Figure 5.5. Depth-first search algorithm for a word in the dictionary.

w1, Wa, ..., w; be the other nodes in the nodebox V. Then it visits w; next and
keeps wy, w3, . .., wi waiting. After visiting w,, we traverse the subtrie pointed
by w; in the same manner before returning to traverse wy, ws, ..., wy. At each
node, the HMM model is created by cascading the HMM models of each node
in the path from the level 1 of the trie to the current node. Then, the Viterbi
algorithm is applied on the current HMM model with the feature sequence.
The output (log-probability) of the Viterbi algorithm is used to decide at each
node whether to continue on the path or to prune the rest of the trie pointed
by the node and then start backtracking. If the end of a word is reached the
word is inserted to the estimation list according to the output of the Viterbi
algorithm. The estimation list contains the words that were possibly uttered.
The words in the estimation list are kept in descending order according to their

log-probabilities.

In Figure 5.5, the stack structure is used to keep truck of the nodes to be tra-
versed. The function AllNodesO f(trie) returns all the nodes in the linked-list
of the nodebox trie from the left to the right. The function PushStack(nodes/])
and PopStack() is used to push a list of nodes to the stack and pop a node
from the stack, respectively. The function Construct H M M (node) returns the
HMM model by cascading the HMM models of each node in the path from
the level 1 of the trie to the node node. The function Viterbi(hmm,speech) is
the implementation of the Viterbi algorithm as described in Section 3.3 and it

returns a log-probability value logprob.

The function PruneSearchSpaceDF (node,logprob) is used to prune the



CHAPTER 5. THE TRAINING AND RECOGNITION STAGES 43

search space at run time. Suppose, for the sake of simplicity, this function
is also responsible for adjusting the stack according to the decision made. It
decides to prune the subtrie pointed by the node node according to the log-
probability logprob. If this function does not perform any pruning then the
HMM model of each word in the dictionary is created and tested with the
feature sequence. This strategy was initialy used to test the system. The
experiments (Table 5.1) show that the system has the problems caused by the

morphological structure of the Turkish as explained in Section 4.1.

The pruning strategy used in the function PruneSearchSpace DF (node, log-
prob) is crucial in the algorithm above. The naive way of pruning the search
space is to use static threshold values. These threshold values should be in
terms of log-probabilities because the outputs of the Viterbi algorithm are log-
probabilities. Moreover, it is a good idea to use different threshold values for
each level of the trie. The threshold values for the top levels of the trie should
be relatively flexible when compared to those deeper in the trie because an
error in the pruning at the top levels can never be recovered and any potential

computational savings are lost.

Experiments show that using static threshold values which may change
according to the level of the trie does not give good results. Application of
the Viterbi algorithm on different utterances of the same word may result
in very different log-probabilities. When the Viterbi algorithm is applied to
different HMM models with the same feature sequence, the relative position
of the log-probabilities obtained from each HMM model among the others are
more important than their real values. Therefore, it is reasonable to choose the
promising paths at a level by examining the log-probabilities obtained from the
nodes at this level. Applying this strategy with the depth-first search algorithm
is difficult and costly. On the other hand, it can be easily integrated with the
breadth-first search strategy.

5.2.2.2 The Breadth-First Search Strategy

Breadth-first traversal of a trie is analogous to level-by-level traversal of an

ordered tree. If the traversal has just visited a nodebox V', then it next visits
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BFSearch(trie,speech, T)
begin
level = 1
Enqueue( AlINodesOf(trie))
while (QueuelsNotEmpty()
nodes[] = DequeLthLevelNodes(level)
for each node node in nodes/]
hmm = ConstructHMM(node)
logprob[node] = Viterbi(hmm, speech)
PruneSearchSpace BF(logprob[], T')
level = level + 1
end

Figure 5.6. Breadth-first search algorithm for a word in the dictionary.

all the nodeboxes at the same level with V. All the nodeboxes pointed by the
nodes at the current level are inserted to a waiting list to be traversed after
all the nodeboxes at the same level with V' have been visited. Then, as in the
depth-first search strategy in Figure 5.5, the HMM model is constructed at
each node. Next, the Viterbi algorithm is applied on the current HMM model
with the feature sequence. At this step, the log-probabilities of each node at
the same level are collected. After finishing all the nodes at the current level
the most promising nodes according to these log-probabilities are selected to
continue to search and the rest is pruned. If the end of a word is reached, the
word is inserted to the estimation list according to the output of the Viterbi

algorithm. Figure 5.6 gives the algorithm of breadth-first search strategy.

In Figure 5.6, queue structure is used instead of stack structure as in Fig-
ure 5.5. The function Enqueue(nodes[]) is used to insert a list of nodes to the
end of the queue whereas the function DequeuelLthLevel Nodes(level) returns
the nodes which are at level [evel in the queue and removes them from the

queue.

As can be seen from the algorithm above, the pruning of the search space
is performed at each level of the trie. After collecting all the log-probabilities
from each node at the same level, the function PruneSearchSpaceBF (logprob[])

chooses the most promising ones. It sorts these probabilities and selects the
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top 7 nodes (paths) to continue to search and the others are pruned. Suppose,
for the sake of simplicity, this function also adjusts the queue according to the
decision given. Different 7 values can be employed for each level of the trie,
that is, 71,7 5,...,7 4 can be used at the level 1,2, ..., d of the trie, respectively,
where d is the depth of the trie. As discussed above, the pruning at the top
levels should be flexible. In order to gain computational savings and yet have

a higher recognition rate, we may have
T12T9>---2T;>0.

That is, when the search goes deeper and deeper the number of paths to be
followed at each level are decreased or at least not changed. For the sake of
simplicity, in Figure 5.6 and in the rest of this thesis, the parameter 7 is used
to select the top 7 most likelihood choices at each level in the trie, that is,
T=T,1=Ty=---=T,.

Another advantage of this pruning strategy is that the system response
time for one word can be predicted because the maximum number of paths to

be followed is known at each level.

There is an assumption hidden in this search strategy. Considering the
recognition of a word, at each level of the trie the Viterbi algorithm is applied
to the partial HMM models. The HMM model which represents the first part
of the given word should give a better result than those of other HMM models.
At least, its result should be in the top portion of the list when the results of
other HMM models are sorted. For instance, suppose that the speech signal
for the Turkish word “bir” is given and our trie has a number of nodes at level
1 in which one of them contains the triphone /sil-b+i/. Then, when we apply
the feature vectors corresponding to the speech signal to the HMM models of
the nodes at level 1, the score of the HMM model for the triphone /sil-b+i/
should be in the top 7 when the results are sorted. Otherwise, the search
strategy in Figure 5.6 prunes the search space which contains the correct word.
This problem is valid at each level of the trie. The naive way of solving this
problem is to follow more paths at each level. Unfortunately, this solution has
a negative effect on the system response time because the number of words to

be tested is increased.
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The experiments show that applying the feature sequence for a word to
partial HMM models does not give the desired results as described above
(Table 5.2). Consequently, instead of using the entire feature sequence for a
word with partial HMM models, using partial feature sequence with partial
HMM models would be a better idea. That is, the appropriate region of the

speech signal should be used at each level.

5.2.2.3 The Breadth-First Search Strategy Using Appropriate Re-
gion of the Speech at Each Level

The levels of the trie have special importance to the system because the HMM
models created at the same level have the same number of triphones. Therefore,
for instance at level [, it is a good idea to use the region of the speech signal
which contains the pronunciation of [ triphones with the partial HMM models
at this level. The search strategy introduced in this section uses the appropriate
region of the speech signal at each level of the trie. The difficulty with this

approach is determining the appropriate region of the speech signal.

Dividing the speech signal into segments according to the phoneme bound-
eries is one of the main research areas in speech processing and it is called speech
segmentation. In fact, one can not only predict the length of the segments but
also predict the possible phonemes in the segments by using speech segmenta-

tion techniques in clean speech. Most of these techniques are computationaly

costly [13].

In order to predict the appropriate region of a speech signal for each level
in the trie a heuristic is adopted in this thesis. In this heuristic, the speech
signal is divided into equal length regions. Fach region has s frames and s is
basically the estimated number of frames for a triphone in Turkish. Then, for
instance at level [, the consecutive [ regions of the speech from the beginning

are used.

In the calculation of s, a signal database containing the utterances of 3000
Turkish words is used. For each utterance of a word, first, the average number

of frames for a triphone in the word is computed by taking the ratio of the
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BFSearchPartialSpeech(trie,speech, T)
begin
level = 1
Enqueue( AlINodesOf(trie))
while (QueuelsNotEmpty()
nodes[] = DequeLthLevelNodes(level)
for each node node in nodes/]
hmm = ConstructHMM(node)
partialspeech = AppropriateRegion(speech, level)
logprob[node] = Viterbi(hmm, partialspeech)
PruneSearchSpace BF(logprob[], T')

level = level + 1
end

Figure 5.7. Breadth-first search algorithm which uses an appropriate region of
the speech at each level of the trie.

number of triphones in the word to the number of frames in the speech signal.

Then, s is calculated as the average of these averages.

This new search strategy is illustrated in Figure 5.7 which is the same as to
Figure 5.6 except that the function Appropriate Region(speech,level) is used
to choose the appropriate region of the speech signal at each level. In choosing
the appropriate region of the speech, the following strategies are used in special

cases:

e If the end of a word is reached at some point in the search, the entire

feature sequence is used with the HMM model of the word.

o If, for instance, at level [, there are less number of regions in the speech

signal then [, the entire feature sequence is used with the partial /complete

HMM models.

o If the number of frames in the speech signal is not evenly divisible by s,

the last region of the speech signal contains also the remaining part.
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BFSearchPartialSpeechWithCBook(trie,speech, T, cbook, L)
begin
Enqueue( AlINodesOf(trie))
level = 1
while (QueuelsNotEmpty())
nodes[] = DequeLthLevelNodes(level)
for each node node in nodes/]
hmm = ConstructHMM()
partialspeech = AppropriateRegion(speech, level)
If (level > L)
logprob[node] = Viterbi(hmm, partialspeech, cbook)
else

logprob[node] = Viterbi(hmm, partialspeech)

PruneSearchSpace BF(logprob[], T')
level = level + 1
end

Figure 5.8. The search algorithm using codebook information after a user

defined level L.

5.2.2.4 Using Codebook Information

Sections 5.2.2.1—5.2.2.3 concentrate on the pruning of the search space for
a word. In this section, the codebook information [14] is used to improve
the search speed in the search space left after pruning. As described in Sec-
tion 5.2.1, using codebook information without care has negative effects on the
recognition rate. Therefore, in this thesis, the codebook information is used
after a user-defined level in the trie. It is a good idea not to use codebook
information at the top levels of the trie because an error at that level can not
be recovered. The search strategy which uses codebook information is given in
Figure 5.8. As a special case, if the end of a word is reached the score of the
HMM model for the word is computed without using the codebook information

in order to improve the recognition rate.

In Figure 5.8, cbook and L are the codebook information and the level
after which it is used, respectively. The function Viterbi(hmm, speech, cbook)
uses the codebook information in the computation of the observation symbol

probability distribution, B (Section 5.2.1).
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The pronunciation of words having different stems but same suffixes may
be very similar to each other as discussed in Section 4.1 in case 2. The search
strategy adopted in this thesis reduces the negative effects of this problem

resulting in the improvement of the recognition rate.

5.2.3 Experimental Results

The test of the system is performed with a dictionary containing about 10000
words. In the training stage, 500 words given in Appendix 6 are trained by the
author. This results in 1164 triphone models. The dictionary is constructed
from these 1164 triphones. The test is performed with 500 words given in
Appendix 6.

The Total Time and Average Time columns in Tables 5.1—5.4 are the total
time in seconds spent for recognizing the 500 test words and average time in
seconds spent per word, respectively, and the Recognition Rate column shows

the recognition rate of the system.

Table 5.1. The result of constructing HMM models of each word and then
testing it with the feature sequence fed to the system.

Recognition Total Average
Rate Time (sec) | Time (sec)
78.1% 48295.12 96.59

As discussed in the begining of this chapter, the naive solution to the search
problem for a word in a dictionary is to construct HMM models of every word
and then test them with the given feature sequence. The result of this search
strategy is given in Table 5.1. As can be seen from this table, the recognition

rate of the system is relatively low and the system response time is quite large.

Table 5.2 shows the results obtained by applying the search strategy intro-
duced in Section 5.2.2.2 with different 7 values. We include this table to show
the improvements obtained by using appropriate region of the speech signal at

each level in Table 5.3. As can be seen from the Table 5.2, for each value of 7

the system response time is better than the system response time in Table 5.1
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as the search space is pruned at each level in the trie. Increases in the value of
T results in increases in system response time. The increase in the recognition
rate with the increase in 7 shows that applying the entire feature sequence of
a word to partial HMM models does not give the required result as discussed

in Section 5.2.2.

Applying the search strategy introduced in Section 5.2.2.3 gives the results
in Table 5.3. In this table, when 7 increases the system response time increases
because the number of words to be tested with the feature sequence increases.
The increase in 7 improves the recognition rate until a limiting point. In
Table 5.3, this limiting point is reached for 7 = 20. For small values of T
(5,10, and 15), the recognition rate is lower when compared to the recognition
rate for 7 = 20 because for these values the pruning is not flexible for these
values and the error made at the top level of the trie can not be recovered in
the rest of the trie. After 7 exceeds 20, the recognition rate decreases as the

number of words searched increases so does the number of confusable words.

When the system response time and the recognition rates in Table 5.3
compared with the ones in Table 5.2, the positive effects of using appropriate
region of the speech at each level can be seen clearly. For instance, for the value
T = 20, we spend 3053.08 seconds to obtain the recognition rate of 92.2% in
Table 5.3 where as in Table 5.2, we spend 3669.32 seconds for the recognition
rate of 20.6%.

The effects of using codebook information as discussed in Section 5.2.2.4
can be examined in Table 5.4. In this figure, £ = -1 represents the case in

which codebook information is not used.

The Table 5.4 shows clearly that the codebook information must be used
with care. Using codebook information especially at the top level of trie results

in non-recoverable errors.

The speech recognition system developed in this thesis has been also trained
and tested by a male and a female. During the tests performed over the system,
the search strategy introduced in Section 5.2.2.4 is used with the parameters

T=20 and L= —1. As a result, recognition rates of 93.0% for the male and
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Table 5.2. The results obtained by the execution the function BFSearch(trie,
speech, T ) for T = 5, 10, 15, 20, 25, and 30.

T | Recognition Total Average
Rate Time (sec) | Time (sec)
5 9.0% 1685.00 3.37
10 15.0% 2323.73 4.65
15 18.2% 2984.77 5.97
20 20.6% 3669.32 7.34
25 23.2% 4369.12 8.74
30 25.0% 5100.43 10.20

Table 5.3. The results obtained by the execution of the function BFSearchPar-
tialSpeech (trie, speech, T ) for T =5, 10, 15, 20, 25, and 30.

T | Recognition Total Average
Rate Time (sec) | Time (sec)
5 73.2% 1000.76 2.0
10 87.2% 1689.39 3.38
15 91.0% 2384.84 4.77
20 92.2% 3053.08 6.11
25 91.2% 3750.94 7.50
30 90.8% 4451.70 8.90

Table 5.4. The results obtained by the execution of the function BFSearchPar-
tialSpeech WithCBook (trie, speech, T, cbook, L) for T = 20 and £ = -1, 2, 3,
4,5,6, 7, and 8 (I = -1 corresponds to the use in which codebook information
is not used).

L | Recognition Total Average
Rate Time (sec) | Time (sec)
2 28.4% 1539.52 3.08
3 45.4% 1616.18 3.23
4 71.4% 1774.69 3.55
5 79.8% 1918.85 3.84
6 88.0% 2105.44 4.21
7 90.6% 2287.08 4.57
8 91.0% 2461.27 4.92
-1 92.2% 3053.08 6.11
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90.0% for the female were obtained. These are comparable and acceptable

recognition rates.

5.2.4 Conclusions

Experiments show that both in the training stage and the recognition stage
the words should be uttered as clearly as possible. Especially, the utterances

of the suffixes are very important; they must be done with care.

The codebook information must be used with care and it is not reasonable
to use codebook information at the top levels of the trie as can be understood
from the Table 5.4. When Tables 5.3 and 5.4 compared, it seems to be more
reasonable to have the parameter L= —1 and play with the parameter 7 in
the final version of the search strategy (Figure 5.8) to fine tune the tradeoff

between the system response time and recognition rate.

With the naive search algorithm which constructs the HMM models of each
word in the dictionary and then tests them according to the feature sequence
fed to the system, 48295.12 seconds are spent to obtain the recognition rate
of 78.1%. With the new search strategy introduced in this thesis, 3053.08
seconds are spent for the recognition rate of 92.2% (with L= —1 and 7= 20
in the algorithm in Figure 5.8), and the reasons for the errors made in the

recognition stage are given below:

e 10% of the errors are caused by the wrong pruning of the search space,

e 70% of the errors are made because of the words whose pronunciations are
very similar like “gliniz” - “ginimiz”, “caligmayan” - “calisamayan”,
and “olan1” - “olanin” (to overcome this problem more training data

should be used especially for confusing words), and

e it seems that 20% of the errors are caused by the initial guess strategy for
the HMM models as described in Section 5.1.1. Experiments show that
with this strategy some words can have a bigger influence on the shared
triphones. The training order of the words may change the recognition

rate.
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Therefore, the new search strategy improves significantly both the system re-

sponse time and recognition rate.



Chapter 6

Conclusions

In this thesis, a speaker dependent, large vocabulary (about 10000 words),

isolated word speech recognition system is developed for Turkish language.

The TEOCEP feature parameters are used to characterize the speech sig-
nal. These parameters are based on multirate sub-band analysis of the speech
signal. The average Teager energy value is computed for each sub-signal. TEO-
CEP feature parameters are obtained by applying logarithmic compression and

cosine transformation to these energy values.

Triphones are used as the smallest unit for recognition. FEach word in
the dictionary is modeled with triphones which are modeled by a three-state
HMM model. The output distributions in the HMM models are represented by
Gaussian Mixture Densities with three mixture values. The topology of HMM
models for the triphones are fixed. On the other hand, the HMM models for
the words may have different number of states according to the number of
triphones in it. In the training stage, the word model is trained as a whole
and then each HMM model of the triphones are stored individually. In the
recognition stage, trained HMM models for triphones are used to construct the
HMM models of the words in the dictionary. In this way the words that are

not trained can be recognized.

Turkish is an agglutinative language and it uses purely concatenative mor-

phological combination with only suffixes attaching to a free morpheme. That

o4
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is, even for one stem, the dictionary must contain large number of entries with
the same stem but different suffixes. A new dictionary model for Turkish lan-
guage is introduced. This model is based on a trie structure and each node of
the trie contains a triphone. This dictionary model provides space efficiency
for large vocabularies. Moreover, this modeling of the dictionary allows for fast

and accurate search algorithms.

A new search strategy for Turkish is introduced on the dictionary for a
given word. This search strategy performs breadth-first traversal of the trie.
At each level [, the HMM models of the nodes in the level [ are constructed
by cascading the HMM models of the triphones stored in the nodes in the
path from the level 1 to the current node. Viterbi algorithm is applied to
these partial HMM models with the appropriate region of the speech signal for
the level [. The pruning algorithm then chooses the most promising nodes to
continue searching the others are pruned. In this thesis, the proposed search
strategy was described in detail and the experiments show that the recognition
rate of the system is more than 90% with an average response time 6.11 seconds

for a word.

The strategies and algorithms adopted in this thesis can be extended to be
used with Turkish language models which may use grammar rules to improve

both the system response time and recognition rate.
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Appendix A

The Training Word List

In the following list, the words are given in descending order according to the

usage frequencies in the Turkish corpus.

ve
bir
bu
icin
ile
olarak
cok
daha
en
olan
sonra
kadar
gibi
ise
buytk
her
genel
ama

O

iki

hig

yine
sekilde
ikinci
egitim
simdi
cunkt
dinya
nedeniyle
eski
alan
hi¢cbir
insan
nasil
siyasi
konugtu
artik

tam

hakkinda

bundan
verdigi
vardir

acik

farkh
yaklagik
bulundugu
igte
olmadiginm
ele
mustafa
degerli
halinde
biraz

aldi
cumhuriyet
miicadele
saglhk
gerektigini
yillik

39

bakan
erken

siz

halk

bize
icerisinde
edildi
caligsan
one

belki

elde
bunlar

su
aciklamada
ileri
kiginin
herkes
gindeme
ediyorum

olsa

vardi
barig
yapilmasi
seklinde
yatirnm
1zin
gercekten
tur

sirada
ona
surekli
bildirildi
kargisinda
hareket
tekrar

an

irtica
donemde
kota

say1si
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turkiye
ne
oldugunu
turk

var

yeni

son
bagkan
yuzde
gore
dedi
zaman
oldugu
yil

once

bin
icinde
sayin
bagkan
ilgili
tarafindan
diye
soyledi
arasinda
1yl

ki
milyon
tirkiyenin
bakani
onemli
yer

karg
ayni

bazi

kurulu
yerine
milli

lira
dogru
sey
ayrica
bizim
yuksek
ana
milletvekili
olmasi
karar
yilinda
ozellikle
uzun

kisgi

yani
yeniden
vergi
dolar

biri
olacak
ay

ali
guvenlik
cumhurbagkani
belirterek
yapan
verdi
ardindan
onun

neden

ulke

bildirdi
olur
sonunda
cikan
bagh
gorev
dig

ayri
ettigi
mesut
belediye
caikti
yapti
yonelik
bana
guzel
sendika
karari
cesitli
dinyanin
amaciyla
kurban
arasindaki
veren
lideri
onu
hatta
ortak
yandan
kanun
mudiru
bayram
adl

hava

yapmak
turlua
bagarili
haline
millet
cocuk
kalan
ayinda
anadolu
gelecek
yilmazin
madde
hangi
baykal
yili
nedenle
demokrasi
birkag
hale

bes
sunlari
geliyor
iddia
hukuk
bagina
merkez
ecevit
dile
toplantisinda
tegekkir
durumda
hep
efendim

aslinda

60

derece
yogun
begiktas
haklar:
herhangi
birligi
konu
rum
bulundu
genelkurmay
bugiine
istanbulda
aliyor

ote
olumlu
yaninda
mevcut
gece

olay
boyunca
aragtirma
ismail
belirtildi
olabilir
zorunda
dogu
olmadig:
dizenlenen
inci

size
almak
haber
hasan

¢cozum
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ankara
diger
oldu
nisan
gun
ozel
devam
yilmaz
ben
sadece
kendi
uzerine
etti
hem
eden
gelen
istanbul
bunun
yaptig
bugiin
konusunda
birlikte
su
boyle
uzere
tum
biz
ifade
tek
veya
ortaya
bile
milyar

uc

k-1

belirten
yol

sure
iligkin
giunu

az
kiguk
sosyal
digisleri
altinda
eger
ekonomik
benim
basin
ediyor
arada
hemen
teknik
konuda
kisa
edilen
sirasinda
yonetim
onceki
bakanlhgi
adina
kadin
bagladi
sayfa
uygun
anda
destek
diginda

etmek

el

agir
degildir
kaydetti
1¢
gercek
belli
demokratik
diyor
temel
gerekli
alinan
dort
ceza
uyesi
ulkenin
sonucu
anap

il

aldig
unli
zaten
gelir
deniz
oluyor
adi

sira
anayasa
devletin
zor
yabanci
yana

sabah
gerek

bunlarin
kultir
meydana
olmayan
irak
altina
baginda
savunma
zamanda
suren
isteyen
gerekiyor
uye
sahibi
yanlig
beni
resmi
gunlerde
savas
ciddi
boylece
dolayisiyla
cem

orta
aciklada
soru
istedi
ziyaret
film

ticaret

ontmiuzdeki

s1k
beri

stileyman

61

baglayan
kendini
yani

g0z

lazim
bankasi
soyleyen
kuzey
mutlaka
dinyada
sari

bizi

olup
bagta
sona
dolay1
tarihinde
turizm
alkiglar
kimse
kalda
siralarindan
sistemi
olusan

on

kemal
sanayi
komisyonu
galatasaray
gucli
insanlarin
gerekir
onlar

istiyorum
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kamu
soyle
turkiyede
bagka
bagbakan
fazla
gecen
uzerinde
bunu
secim
din

bulunan

mumkiin
geri

geldi
yakin
yardimecisi
bilgi
geng
calisma
bircok
konusu
yasa

askeri

bulunuyor
verilen
gereken
sayili
cgiller
ederek
acisindan
hizmet
birinci
takim
oyle

olsun

kendisine
yilda
oldukca
1zmir
merkezi
genig
hiktumeti
onunde
insanlar
edecek
hentiz

bolge

62

g1
carsamba
alman
erkek
futbol
altin
adam
turkiyeyi
yildir
dakika
yillarda

cal
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genelkurmaydaki

begiktagtaki
alanindakine
konugturmadan
ankaradakiler

alimanlardan

cumhurbagkanin

ben
verdiklerinden
bugtinlerinden
ikiyle

begik

barig

ayini

unli
sorumlunun
sonrasinin
konusundaki
bankasindaki
soyleyenlerdir
carsambasinda
dinyadaki

dinyalari

yapilmasiyla
yapanlara
nedenlerdendir
nedenlerini
nedenlerine
nedenlerden
ulkesindeki
ulkesinden
ulkesini
ulkerden
ulkesiz
yolunu
yoluna
yoldakilerin
yolundaki
stiresiyle
suresinin
suresince
suresini
suresine
iligkinizin
iligkinize

iliskimde

63

alkiglayanlarin
alkiglayanlara
alkiglayarak
anayasadaki
anayasadan
anayasanin
anayasayl
anayasaya
bagaramadig:
bagaramadigin
bagaramasa
bagaramayan
bagaramayanlar
basaramaz
basardi
bagardigim
bagardigina
basardim
baskanda
bagkandan
bagkanlig
bagkanligin

bagkanligim
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olusana
isindesiniz
almanlardan
onlarin
bizimdir
durumdakileri
ilgilinin
calmasindan
komisyonlarindaki
olani

nasil

kisik

agisi

alig1
sonrasindaki
kigi

g1

gibilikten
yenisinin

erdi
eskilerinden
seyl

ozellikle
buytkse
digiglerinden
konudaki
halindeler
soylenenlere
genelkurmayinin
gorevlendirdigi
icindekileri
sonrakilerde

kadardaki

herkesten

giuntunde
gunumuz
gunli

gunku

giunde
kiictikse
benim
benimdir
benimdi
benimse
kisarak
kisanin
kisadir

kisa

kisarken
kisaya
yonetimdir
yonetimden
oncekilerden
oncekilerde
oncekinde
oncekilerin
sayfadaki
sayfadan
uygunlarindan
uygunlar
uygundur
uygunun
uygunca
desteklediklerinin
destekleyince
destekleyerek
destekleriyle

gerisi

64

bagkanliginin
bagkanligina
bagkanliginda
bagkanligindaki
bagkanligindan
bagkanlikla
bagkanliklar:
bagkanliklarini
bagkanliklarinin
baskanliklarinda
bagkanliklarindan
bagkanliklara
baskanhkta
bagkanhiktaki
bagkanliktan
bagkanla
bagkanlar
bagkanlari
cumhuriyetinden
baskanlarini
cumhuriyetinize
cumhuriyetini
cumhuriyetinin
cumhuriyetiyle
bagkanlara
bagkanlardir
bagkanlardan
cumhuriyetin
cumhuriyetinde
cumhuriyetindeki
ozenim

ozenin

ozenle

bolgelerdeki
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hi¢cbirini
hi¢birisi
hicbirine
oldugunun
doldugunu
yatirmadan
yenisine
yatirilmasiyla
yatirilmasini
gorevlerde
zamanlama
zamanina
yilmayin
yilmadan
oncekini
oncekine
onceki

i¢ini

icine
soyledikleriniz
lyiniyeti
lyiniyetinizi
iyiniyetine
donemli
ankaradaki
dolduruldugunu
nisandaki
guninuz
gunleri
ginlere
ozelden
uzerinedir
soylettigi
birlikten

gerili
gerisindekiler
gerisindedir
yakinindaki
yakindakine
aciklayabiliyor
aciklamasindaki
aciklamalarinda
ettiklerinden
etmesindendir
ekonomisinden
ekonomilerini
ekonomilerinin
ekonomisinin
ekonomisinde
calmasi
basininda
basindaki
dakikada
dakikasi
dakikasini
dakikasina
yildiramazlar
adambasgi
adamaya
adanaya

altim

altinini
futbolu
erkekliklerinden
carsambaya
gerektigi
insanligini

galatasarayin

65

ulkem
ulkemde
ulkemdeki
ulkerde

ciddi

ceza

cezam

yati
donemlik
elde

kalin

ticaret
ticareti

zoru

cikarim
cikarin
bolgeler
bolgelerde
bolgelerden
bolgelerdir
bolgelere
bolgeleri
bolgelerin
bolgelerinde
bolgelerindeki
bolgelerinden
bolgelerine
bolgelerini
bolgelerinin
bolgelerinindir
bolgelerinize
bolgeleriyle
bolgeli
bolgeni
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milyari
milyara
soyledir
soylece
gecenlerden
gecenlerde
gecenlerin
bunuda
se¢cimdeki
yapilmasiyla
yapanlara
nedenlerdendir
nedenlerini
nedenlerine
nedenlerden
ulkesindeki
ulkesinden
ulkesini
ulkerden
ulkesiz
yolunu
yoluna
yoldakilerin
yolundaki
stiresiyle
suresinin
suresince
suresini
suresine
iligkinizin
iligkinize
iligkimde
giuntunde

gunumuz

galatasaraya
sanayinde
olugturma
sistemdeki
siralarken
kaldirilmasindaki
dakikasindan
dakikasinda
dakikaya
alkiglayanlarin
alkiglayanlara
alkiglayarak
anayasadaki
anayasadan
anayasanin
anayasayl
anayasaya
bagaramadig:
bagaramadigin
bagaramasa
bagaramayan
bagaramayanlar
basaramaz
basardi
bagardigim
bagardigina
basardim
baskanda
bagkandan
bagkanlig
bagkanligin
bagkanligim
bagkanliginin

bagkanligina

bolgenin
ciddiler
ciddilerinden
ciddiligine
ciddiye
ciddiyet
ciddiyeti
ciddiyetinde
ciddiyetine
ciddiyetini
ciddiyetinin
ciddiyetiyle
ticaretin
ticaretinde
ticaretindeki
ticaretinden
ticaretine
ticaretini
bagaramasa
ticaretiyle
ticaretti
zoruna
zorunda
zorundu
zorunu
cikarini
cikarinin
cikarina
cikarinadir
cikarinda
cikarindan
caligmasi
caligmaz

caligmayan

66
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gunli

gunku

giunde
kiictikse
benim
benimdir
benimdi
benimse
kisarak
kisanin
kisadir

kisa

kisarken
kisaya
yonetimdir
yonetimden
oncekilerden
oncekilerde
oncekinde
oncekilerin
sayfadaki
sayfadan
uygunlarindan
uygunlar
uygundur
uygunun
uygunca
desteklediklerinin
destekleyince
destekleyerek
destekleriyle
gerisi

gerili

gerisindekiler

bagkanliginda
bagkanligindaki
bagkanligindan
bagkanlikla
bagkanliklar:
bagkanliklarini
bagkanliklarinin
baskanliklarinda
bagkanliklarindan
bagkanliklara
baskanhkta
bagkanhiktaki
bagkanliktan
bagkanla
bagkanlar
bagkanlari
cumhuriyetinden
bagkanlarini
cumhuriyetinize
cumhuriyetini
cumhuriyetinin
cumhuriyetiyle
bagkanlara
bagkanlardir
bagkanlardan
cumhuriyetin
cumhuriyetinde
cumhuriyetindeki
ozenim

ozenin

ozenle
bolgelerdeki
ulkem

ulkemde

caliyor
caliyorum
calinan
calabilir
calacak
calacaklar
calamadim
calmaz
calam
calmayan
calana
calanlar
calanlar:
calanlarin
calanlara
calanlarda
calar

calari
calarim
calmaya
calard:
calmay
caldi
caldig
caldigim
caldigina
caldiginda
calmasa
caldiramaz
caldirmadi
caldirmayan
calma
calmadi

calmadaki

67
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gerisindedir
yakinindaki
yakindakine
aciklayabiliyor
aciklamasindaki
aciklamalarinda
ettiklerinden
bagaramasa

bagkanligina

ulkemdeki
ulkerde

ciddi

ceza

cezam

yati

donemlik
etmesindendir

ticaretinin

68

calmadan
calmak
calmakla
calmalik
calmalarim
calmalarindan

calmanin

elde



