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ABSTRACT

HYPERGRAPH MODELS FOR SPARSE MATRIX
PARTITIONING AND REORDERING

�Umit V. C�ataly�urek

Ph.D. in Computer Engineering and Information Science

Supervisor: Assoc. Prof. Cevdet Aykanat

November, 1999

Graphs have been widely used to represent sparse matrices for various scienti�c

applications including one-dimensional (1D) decomposition of sparse matrices

for parallel sparse-matrix vector multiplication (SpMxV) and sparse matrix re-

ordering for low �ll factorization. The standard graph-partitioning based 1D de-

composition of sparse matrices does not re
ect the actual communication volume

requirement for parallel SpMxV.We propose two computational hypergraph mod-

els which avoid this crucial de�ciency of the graph model on 1D decomposition.

The proposed models reduce the 1D decomposition problem to the well-known

hypergraph partitioning problem. In the literature, there is a lack of 2D decom-

position heuristic which directly minimizes the communication requirements for

parallel SpMxV computations. Three novel hypergraph models are introduced

for 2D decomposition of sparse matrices for minimizing the communication vol-

ume requirement. The �rst hypergraph model is proposed for �ne-grain 2D de-

composition of the sparse matrices for parallel SpMxV. The second hypergraph

model for 2D decomposition is proposed to produce jagged-like decomposition of

the sparse matrix. The checkerboard decomposition based parallel matrix-vector

multiplication algorithms are widely encountered in the literature. However, only

the load balancing problem is addressed in those works. Here, we propose a new

hypergraph model which aims the minimization of communication volume while

maintaining the load balance among the processors for checkerboard decomposi-

tion, as the third model for 2D decomposition. The proposed model reduces the

decomposition problem to the multi-constraint hypergraph partitioning problem.

The notion of multi-constraint partitioning has recently become popular in graph

partitioning. We applied the multi-constraint partitioning to the hypergraph

partitioning problem for solving checkerboard partitioning. Graph partitioning

by vertex separator (GPVS) is widely used for nested dissection based low �ll

ordering of sparse matrices for direct solution of linear systems. In this work,
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we also show that the GPVS problem can formulated as hypergraph partition-

ing. We exploit this �nding to develop a novel hypergraph partitioning-based

nested dissection ordering. The recently proposed successful multilevel frame-

work is exploited to develop a multilevel hypergraph partitioning tool PaToH for

the experimental veri�cation of our proposed hypergraph models. Experimental

results on a wide range of realistic sparse test matrices con�rm the validity of

the proposed hypergraph models. In terms of communication volume, the pro-

posed hypergraph models produce 30% and 59% better decompositions than the

graph model in 1D and 2D decompositions of sparse matricies for parallel SpMxV

computations, respectively. The proposed hypergraph partitioning-based nested

dissection produces 25% to 45% better orderings than the widely used multiple

mimimum degree ordering in the ordering of various test matrices arising from

di�erent applications.

Keywords: Sparse matrices, parallel matrix-vector multiplication, parallel pro-

cessing, matrix decomposition, computational graph model, graph partitioning,

computational hypergraph model, hypergraph partitioning, �ll reducing ordering,

nested dissection.



�OZET

SEYREK MATR_IS B�OL�UMLEME VE
YEN_IDEN-D�UZENLEME _IC� _IN H_IPERC� _IZGE

MODELLER_I

�Umit V. C�ataly�urek

Bilgisayar ve Enformatik M�uhendisli�gi, Doktora

Tez Y�oneticisi: Do�c. Dr. Cevdet Aykanat

Kas�m, 1999

C� izgeler, ko�sut seyrek-matris vekt�or �carp�m�nda (SpMxV) seyrek matrislerin

ayr��st�r�lmas� ve az doluluk faktorizasyonu i�cin kullan�lan seyrek matrislerin

yeniden d�uzenlenmesini i�ceren �ce�sitli bilimsel uygulamalarda seyrek matris-

lerin g�osterimi i�cin yayg�n olarak kullan�lmaktad�r. Ancak seyrek matris-

lerin standart �cizge-b�ol�umlemeye dayal� tek-boyutlu ayr��st�r�lmas� ko�sut Sp-

MxV i�slemi i�cin gerekli ileti�sim hacmini yans�tamamaktad�r. C� izge modelinin

tek-boyutlu ayr��st�rmadaki bu �onemli eksikli�gine kar�s�l�k benzer bir eksi�gi ol-

mayan iki bili�simsel hiper�cizge modeli sunuyoruz. �Onerdi�gimiz modeller tek-

boyutlu ayr��st�rma problemini iyi bilinen hiper�cizge b�ol�umleme problemine in-

dirgemektedir. Literat�urde ko�sut SpMxV hesaplamalar� i�cin ileti�sim gereksin-

imini do�grudan azaltan iki-boyutlu ayr��st�rma y�ontemi yoktur. _Ileti�sim hacmi

gereksinimini azaltmak i�cin seyrek matrislerin iki-boyutlu ayr��st�rmas�n� sa�glayan

�u�c yeni hiper�cizge modeli tan�t�yoruz. Bunlardan ilki ko�sut SpMxV i�slemindeki

seyrek matrislerin �ne-grain iki-boyutlu ayr��st�rmas� i�cin �onerildi. _Iki-boyutlu

ayr��st�rmada kullan�lan ikinci hiper�cizge modeli seyrek matrislerin �centikli-benzeri

ayr��st�rmalar�n�n �uretilmesi i�cin �onerildi. Literat�urde dama tahtas� tabanl�

ayr��st�rmaya dayanan ko�sut matris vektor �carp�m� algoritmalar� yayg�nca bu-

lunmaktad�r. Bununla birlikte bu �cal��smalarda sadece y�uk dengeleme prob-

lemine i�saret edilmi�stir. Biz bu �cal��smada iki-boyutlu ayr��st�rman�n �u�c�unc�u

modeli olarak dama tahtas� tabanl� ayr��st�rmada i�slemciler aras� y�uk dengesini

korurken ileti�sim hacmini de azaltmay� hede
eyen yeni bir hiper�cizge mod-

eli �oneriyoruz. �Onerdi�gimiz model ayr��st�rma problemini �coklu-k�s�t hiper�cizge

b�ol�umleme problemine indirgemektedir. C�oklu-k�s�t b�ol�umleme �kri �cizge

b�ol�umleme alan�nda yak�n zamanda pop�uler olmu�stur. Biz de dama tahtas�

b�ol�umleme problemini �c�ozmek i�cin bu �coklu-k�s�t b�ol�umleme �krini hiper�cizge

par�calama y�ontemine uygulad�k. D�u�g�um ay�r�c�lar� ile �cizge b�ol�umleme y�ontemi
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do�grusal sistemlerin �c�oz�um�unde kullan�lan, seyrek matrislerin i�ci�ce ay�rma ta-

banl� az doluluklu d�uzenlenmesinde �cokca kullan�lmaktad�r. Bu �cal��smada,

d�u�g�um ay�r�c�lar ile �cizge b�ol�umleme probleminin de hiper�cizge b�ol�umleme

olarak form�ule edilebilece�gini g�osterdik. Bu bulu�sumuzu hiper�cizge b�ol�umlemeye

dayanan yeni bir i�ci�ce ay�rarak d�uzenleme y�ontemi geli�stirmek i�cin kulland�k.
�Onerdi�gimiz hiper�cizge modellerinin deneysel do�grulu�gunu s�namak i�cin yak�n

zamanda �onerilen ba�sar�l� �coklud�uzey �cat�y� kullanarak bir �coklud�uzey hiper�cizge

b�ol�umleme arac� olan PaToH'u geli�stirdik. Gerce�ge uygun, s�nama ama�cl�

seyrek matrisler �uzerindeki deneysel sonu�clar �onerilen hiper�cizge modellerinin

ge�cerlili�gini do�grulad�. _Ileti�sim hacmi anlam�nda, �onerdi�gimiz hiper�cizge mod-

elleri ko�sut SpMxV hesaplamalar�nda �cizge modeline g�ore yap�lan tek-boyutlu

ve iki-boyutlu ayr��st�rmalara k�yasla an�lan s�raya g�ore birinden y�uzde 30 ve di-

gerinden y�uzde 59 daha iyi ayr��st�rmalar �uretmektedir. �Onerilen hiper�cizge ta-

banl� i�ci�ce b�ol�umlere ay�rma y�ontemi de farkl� uygulamalarda ortaya �c�kan �ce�sitli

s�nama ama�cl� matrisleri d�uzenleme i�sleminde yayg�n olarak kullan�lan �coklu en

d�u�s�uk derece d�uzenlemesine k�yasla y�uzde 25'ten y�uzde 45'e kadar daha iyi olan

d�uzenlemeler �uretmektedir.

Anahtar s�ozc�ukler : Seyrek matrisler, ko�sut matris-vekt�or �carp�m�, ko�sut i�slem,

matris ayr��st�rma, bili�simsel �cizge modeli, �cizge b�ol�umleme, bili�simsel hiper�cizge

modeli, hiper�cizge b�ol�umleme, doluluk azaltan s�ralama, i�ci�ce ay�rma.
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Chapter 1

Introduction

Graphs have been widely used to represent sparse matrices for various scienti�c

applications including one-dimensional decomposition of sparse matrices for par-

allel sparse-matrix vector multiplication (SpMxV) and sparse matrix reordering

for low �ll factorization. In this work, we show the 
aws of the graph models in

these applications. We propose novel hypergraph models to avoid the 
aws of

the graph models.

In the subsequent sections of this chapter, the contributions are brie
y sum-

marized. Chapter 2 introduces the notation and background information for

graph and hypergraph partitioning, and matrix reordering problems. The thesis

work is mainly divided into four groups:

1. one-dimensional (1D) decomposition for parallel SpMxV,

2. two-dimensional (2D) decomposition for parallel SpMxV,

3. hypergraph partitioning-based sparse matrix ordering

4. development of a multilevel hypergraph partitioning tool for experimental

veri�cation of the proposed methods.

These works are described and discussed into detail in Chapters 3, 4, 5, and 6,

respectively.
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CHAPTER 1. INTRODUCTION 2

1.1 Sparse Matrix Decomposition for Parallel

Matrix-Vector Multiplication

Iterative solvers are widely used for the solution of large, sparse, linear system

of equations on multicomputers. Two basic types of operations are repeatedly

performed at each iteration. These are linear operations on dense vectors and

sparse-matrix vector product of the form y=Ax, where A is an M �M square

matrix with the same sparsity structure as the coe�cient matrix [10, 14, 17, 64],

and y and x are dense vectors. In order to avoid the communication of vector

components during the linear vector operations, a symmetric partitioning scheme

is adopted. That is, all vectors used in the solver are divided conformally with

each other. In particular, the x and y vectors are divided as [x1; : : : ;xK]t and

[y1; : : : ;yK]t , respectively. To compute the matrix vector product in parallel,

matrix A is distributed among processors of the underlying parallel architecture.

A can be written as A=
P

kA
k , where the Ak matrix is owned by processor Pk ,

and the structure of the Ak matrices are mutually disjoint. The matrix-vector

multiply is then computed as y =
P

k y
k , where yk = Akx. Depending on the

way in which A is partitioned among the processors, entries in x and/or entries

in yk may need to be communicated among the processors. Our goal here, is

to �nd a decomposition that minimizes the total communication volume among

the processors. Two kind of decompositions can be applied; 1D and 2D decom-

position. In 1D decomposition, each processor is enforced to own either entire

rows, (rowwise decomposition) or entire columns (columnwise decomposition).

In parallel SpMxV, the rowwise and columnwise decomposition schemes require

communication before or after the local SpMxV computations, thus they can also

be considered as pre and post communication schemes, respectively. In rowwise

decomposition, only the entries in x need to be communicated just before the

local SpMxV computations. In columnwise decomposition, only the entries in yk

need to be communicated after local SpMxV computations. In 2D decomposi-

tion, processors are not imposed to own entire rows or columns. Therefore, both

the entries in x and yk need to be communicated among the processors. That

is, both pre and post communication phases are needed in the 2D decomposition

schemes.



CHAPTER 1. INTRODUCTION 3

In SpMxV computation, each nonzero element in a row/column incurs a

multiply-add operation. Hence by assigning nonzero count to each row/column,

load balancing problem in 1D decomposition can be considered as the number

partitioning problem. Nastea et. al. [61] proposed a greedy heuristic to allocate

rows of the matrix to the processors, namely GALA. GALA is simply �rst-�t-

decreasing bin packing heuristic. They noticed that if the matrix has very dense

rows, the resulting load balance is not good. To elevate this problem, they split

the rows that have signi�cantly large number of nonzero elements into several

parts prior to allocation process. Thus �ner granularity of the allocation prob-

lem leads to better load balancing results. However, the decomposition heuris-

tics [61, 70] proposed for computational load balancing may result in an extensive

communication volume, since they do not consider the minimization of the com-

munication volume during the decomposition.

Heuristics proposed for load balancing problem [62, 56, 55] in 2D decomposi-

tion assumes that the underlying parallel algorithm for matrix-vector multiplica-

tion is based on 2D checkerboard partitioning running on a 2D mesh architecture.

In checkerboard partitioning, assignment of matrix elements to processors pre-

serves the integrity of the matrix by placing every row (column) of the matrix

into the processors lying in a single row (column) of the 2D mesh. Ogielski and

Aiello [62] proposed two heuristics which are based on the random permutation

of rows and columns. Hendrickson et.al. [37] noticed that most matrices used in

real applications have nonzero diagonal elements, and they state that it may be

advantageous to force an even distribution of these diagonal elements among pro-

cessors and to randomly distribute the remaining nonzeros. Lewis and Geijn [56]

and Lewis et.al. [55] proposed a new scattered distribution of the matrix which

totally avoids the transpose operation required in [37].

In a K -processor parallel architecture, load balancing heuristics for both 1D

and 2D decomposition schemes may introduce an extensive amount of commu-

nication since they do not consider the minimization of communication require-

ment explicitly. For an M �M sparse matrix A, the worst-case communication

requirement in 1D decomposition is K(K � 1) messages and (K � 1)M words,

and it occurs when each submatrix Ak has at least one nonzero in each column

(row) in rowwise (columnwise) decomposition. The matrix-vector multiplication
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algorithms based on 2D checkerboard partitioning [37, 56, 55] reduce the worst-

case communication to 2K(
p
K � 1) messages and 2(

p
K � 1)M words. In this

approach, the worst-case occurs when each row and column of each submatrix

has at least one nonzero.

The computational graph model is widely used in the representation of

computational structures of various scienti�c applications, including repeated

SpMxV computations, to decompose the computational domains for paralleliza-

tion [14, 15, 41, 46, 50, 51, 60, 68]. In this model, the problem of 1D sparse matrix

decomposition for minimizing the communication volume while maintaining the

load balance is formulated as the well-known K -way graph partitioning by edge

separator (GPES) problem. In this work, we show the de�ciencies of the graph

model for decomposing sparse matrices for parallel SpMxV. The �rst de�ciency

is that it can only be used for structurally symmetric square matrices. In order

to avoid this de�ciency, we propose a generalized graph model in Section 3.1.3

which enables the decomposition of structurally nonsymmetric square matrices

as well as symmetric matrices. The second de�ciency is the fact that none of the

graph models re
ects the actual communication requirement as will be described

in Section 3.2. These 
aws are also mentioned in a concurrent work [33].

In this work, we propose two computational hypergraph models which avoid

all de�ciencies of the graph model for 1D decomposition. The proposed models

enable the representation and hence the 1D decomposition of rectangular matri-

ces [63] as well as symmetric and nonsymmetric square matrices. Furthermore,

they introduce an exact representation for the communication volume require-

ment as described in Section 3.3. The proposed hypergraph models reduce the

decomposition problem to the well-known K-way hypergraph partitioning prob-

lem widely encountered in circuit partitioning in VLSI layout design. Hence,

the proposed models will be amenable to the advances in the circuit partitioning

heuristics in the VLSI community. The detailed discussion and presentation of

the proposed hypergraph models can be found in Chapter 3.

There is no work in the literature which directly aims at the minimization

of communication requirements in 2D decomposition for parallel SpMxV com-

putations. We propose three novel hypergraph models for 2D decomposition of

sparse matrices. A �ne-grain hypergraph model is proposed in Section 4.1. In



CHAPTER 1. INTRODUCTION 5

this �ne-grain model, the nonzeros of the matrix are considered as the atomic

tasks in the decomposition. Two coarse-grain hypergraph models are proposed

in Sections 4.2 and 4.3. The coarse-grain models have two objectives. The �rst

objective is to reduce the decomposition overhead. The second objective is an

implicit e�ort towards reducing the amount of communication which is a valuable

asset in parallel architectures with high start-up cost. The �rst coarse-grain hy-

pergraph model, produces jagged-like 2D decompositions of the sparse matrices.

The second hypergraph model is speci�cally designed for checkerboard partition-

ing which is commonly used in the literature by the matrix-vector multiplication

algorithms [62, 56, 55, 37]. Details of these models are presented and discussed

in Chapter 4.

1.2 Sparse Matrix Ordering for Low Fill Factor-

ization

For a symmetric matrix, the evolution of the nonzero structure during the

Cholesky factorization can easily be described in terms of its graph represen-

tation. In graph terms, the elimination of a vertex creates edges for every pair

of its adjacent vertices. In other words, elimination of a vertex makes its adja-

cent vertices clique of size its degree minus one. In this process, the added edges

directly correspond to the �ll in the matrix. The number of 
oating-point op-

erations, also known as operation count, required to perform the factorization is

equal to the sum of the squares of the nonzeros of each eliminated row/column.

Hence it is also equal to the sum of the squares of the degrees of corresponding

vertices during the elimination. Obviously, the amount of �ll and operation count

depends on the row/column elimination order. The aim of ordering is to reduce

these quantities, which yields both faster and less memory intensive factorization.

One of the most popular ordering methods is Minimum Degree (MD) heuris-

tic [74]. Success of the MD heuristic is followed by many variants of it, such as

Quotient Minimum Degree (QMD) [28], Multiple Minimum Degree (MMD) [57],

Approximate Minimum Degree (AMD) [3], and Approximate Minimum Fill

(AMF) [69]. An alternative method nested dissection (ND) was proposed by
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George [27]. The intuition behind this method is as follows. First a set of columns

S (separator), whose removal decouples the matrix into two parts, say X and Y,

is found. If we order S after X and Y, then no �ll can occur in the o�-diagonal

blocks. Elimination process in X and Y are independent tasks and they do not

incur any �ll to each other. Hence, ordering of X and Y can be computed by

applying the algorithm recursively, or using any other technique. It is clear that,

the quality of the ordering depends on the size of S. In ND, separator �nding

problem is usually formulated as graph partitioning by vertex separator (GPVS)

problem on the standard graph representation of the matrix.

In a recent work [11], we have shown that the hypergraph partitioning problem

can be formulated as a GPVS problem on its net intersection graph (NIG). In

matrix terms, this work shows that permuting a sparse matrix A into singly-

bordered block-diagonal form can also be formulated as permuting AAT into a

doubly-bordered block-diagonal (DB). Note that, nested dissection also requires

a DB form, in particular, borders in DB form correspond to separator S and

block-diagonals correspond to the X and Y parts. In this work, we exploit this

equivalence in the reverse direction. However, for a given hypergraph, although

its NIG representation is well-de�ned, there is no unique reverse construction. In

matrix terms, for a symmetric matrix Z there is no unique construction of Z =

AAT decomposition. Luckily, in linear programming (LP) applications, interior

point type solvers require the solution of Zx = b repeatedly, where Z = ADAT .

Here,D is a diagonal matrix whose numerical values are changed in each iteration.

However, since it is diagonal, it doesn't e�ect the sparsity pattern of the Z matrix.

In graph terms, if we representA by its row-net hypergraph model, its NIG is the

graph representation of Z. Therefore we can use the hypergraph representation

of A for a hypergraph partitioning-based nested dissection ordering of Z. For

generalization, if A is unknown, we also propose a 2-clique decomposition C of

any symmetric matrix Z into Z = CCT . Details of this decomposition and

hypergraph partitioning-based ordering is presented in Chapter 5.
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1.3 Multilevel Hypergraph Partitioning

Decomposition and reordering are preprocessings introduced for the sake of ef-

�cient parallelization and low �ll factorization, respectively. Hence, heuristics

should run in low order polynomial time. Recently, multilevel graph partition-

ing heuristics [13, 35, 46] have been proposed leading to fast and successful

graph partitioning tools Chaco [36], MeTiS [44], WGPP [31] and reordering tools

BEND [38], oMeTiS [44], and ordering code of WGPP [30]. We have exploited the

multilevel partitioning methods for the experimental veri�cation of the proposed

hypergraph models in both sparse matrix decomposition problems and sparse ma-

trix ordering. The lack of a multilevel hypergraph partitioning tool at the time

of this work was carried, led us to develop a multilevel hypergraph partitioning

tool PaToH. The main objective in the implementation of PaToH was a fair ex-

perimental comparison of the hypergraph models with the graph models both in

sparse matrix decomposition and in sparse matrix ordering. Another objective

in our PaToH implementation was to investigate the performance of multilevel

approach in hypergraph partitioning as described in Chapter 6.



Chapter 2

Preliminaries

In this chapter we will review de�nition of graph, hypergraph and partitioning

problems in Section 2.1 and 2.2, respectively. Attempts to solve hypergraph

partitioning problem as graph partitioning problem are presented in Section 2.3.

Various partitioning heuristics and tools are summarized in Section 2.4. Sparse

matrix ordering heuristics and tools are presented in Section 2.5. We will review

how the graph partitioning by vertex separator problem is solved using graph

partitioning by edge separator methods in Section 2.6, and �nally, we will discuss

the overlooked non-optimality of the this solution in Section 2.7.

2.1 Graph Partitioning

An undirected graph G=(V; E) is de�ned as a set of vertices V and a set of edges

E . Every edge eij 2E connects a pair of distinct vertices vi and vj . We use the

notation Adj(vi) to denote the set of vertices adjacent to vertex vi in graph G . We

extend this operator to include the adjacency set of a vertex subset V 0�V , i.e.,
Adj(V 0)=fvj 2 V�V 0 : vj 2Adj(vi) for some vi2V 0g. The degree di of a vertex

vi is equal to the number of edges incident to vi , i.e., di = jAdj(vi)j. Weights

and costs can be assigned to the vertices and edges of the graph, respectively.

Let wi and cij denote the weight of vertex vi 2V and the cost of edge eij 2 E ,
respectively. Two partitioning problems can be de�ned on the graph, these are

8
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graph partitioning by edge separator and graph partitioning by node separator.

In the following subsections we will brie
y describe these problems.

2.1.1 Graph Partitioning by Edge Separator (GPES)

An edge subset ES � E is a K -way edge separator if its removal disconnects

the graph into at least K connected components. �GPES=fV1;V2; : : : ;VKg is a
K-way partition of G by edge separator ES if the following conditions hold:

� each part Vk is a nonempty subset of V , i.e., Vk � V and Vk 6= ; for

1 � k � K ,

� parts are pairwise disjoint, i.e., Vk \ V` = ; for all 1 � k < ` � K

� union of K parts is equal to V , i.e., SK
k=1 Vk=V .

Note that all edges between the vertices of di�erent parts belong to ES . Edges in
ES are called cut (external) edges and all other edges are called uncut (internal)

edges. In a partition �GPES of G , a vertex is said to be a boundary vertex if it

is incident to a cut edge. A K -way partition is also called a multiway partition

if K > 2 and a bipartition if K = 2. A partition is said to be balanced if each

part Vk satis�es the balance criterion

Wk �Wavg(1 + "); for k = 1; 2; : : : ;K: (2.1)

In (2.1), weight Wk of a part Vk is de�ned as the sum of the weights of the

vertices in that part (i.e. Wk =
P

vi2Vk wi ), Wavg = (
P

vi2V wi)=K denotes the

weight of each part under the perfect load balance condition, and " represents

the predetermined maximum imbalance ratio allowed. The cutsize de�nition for

representing the cost �(�GPES) of a partition �GPES is

�(�GPES) =
X

eij2ES
cij : (2.2)
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In (2.2), each cut edge eij contributes its cost cij to the cutsize. Hence, the

GPES problem can be de�ned as the task of dividing a graph into two or more

parts such that the cutsize is minimized, while the balance criterion (2.1) on part

weights is maintained. The GPES problem is known to be NP-hard even for

bipartitioning unweighted graphs [26].

2.1.2 Graph Partitioning by Vertex Separator (GPVS)

A vertex subset VS is a K -way vertex separator if the subgraph induced

by the vertices in V �VS has at least K connected components. �GPV S =

fV1;V2; : : : ;VK;VSg is a K-way vertex partition of G by vertex separator VS�V
if the following conditions hold:

� each part Vk is a nonempty subset of V , i.e., Vk � V and Vk 6= ; for

1 � k � K ,

� parts are pairwise disjoint, i.e., Vk \ V` = ; for all 1 � k < ` � K

� parts and separator are disjoint, i.e., Vk\VS=; for 1�k<K

� union of K parts and separator is equal to V , i.e., SK
k=1 Vk [ VS=V ,

� the removal of VS gives K disconnected parts V1;V2; : : : ;VK , i.e.,

Adj(Vk)�VS for 1�k�K .

In a partition �GPV S of G , a vertex vi 2Vk is said to be a boundary vertex of

part Vk if it is adjacent to a vertex in VS . A vertex separator is said to be narrow

if no subset of it forms a separator, and wide otherwise. The cost of a partition

�GPV S is

cost(�GPV S) =
X
vi2VS

wi: (2.3)

In (2.3) each separator vertex contributes its weight to cost. Hence, the K -way

GPVS problem can be de�ned as the task of �nding a K -way vertex separator

of minimum cost, while the balance criterion (2.1) on part weights is maintained.

GPVS problem is also known to be NP-hard [12].
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2.2 Hypergraph Partitioning (HP)

A hypergraph H = (V;N ) is de�ned as a set of vertices V and a set of nets

(hyperedges) N among those vertices. Every net nj 2 N is a subset of vertices,

i.e., nj�V . The vertices in a net nj are called its pins and denoted as pins[nj].

The size of a net is equal to the number of its pins, i.e., sj= jpins[nj]j. The set
of nets connected to a vertex vi is denoted as nets[vi]. The degree of a vertex

is equal to the number of nets it is connected to, i.e., di= jnets[vi]j. Graph is a

special instance of hypergraph such that each net has exactly two pins. Similar

to graphs, let wi and cj denote the weight of vertex vi 2V and the cost of net

nj 2N , respectively.

De�nition of K -way partition of hypergraphs is identical to that of GPES.

In a partition � of H , a net that has at least one pin (vertex) in a part is said

to connect that part. Connectivity set �j of a net nj is de�ned as the set of

parts connected by nj . Connectivity �j = j�jj of a net nj denotes the number

of parts connected by nj . A net nj is said to be cut if it connects more than

one part (i.e. �j > 1), and uncut otherwise (i.e. �j = 1). The cut and uncut

nets are also referred to here as external and internal nets, respectively. The set

of external nets of a partition � is denoted as NE . There are various [75, 19]

cutsize de�nitions for representing the cost �(�) of a partition �. Two relevant

de�nitions are:

(a) �(�) =
X

nj2NE
cj and (b) �(�) =

X
nj2NE

cj(�j � 1): (2.4)

In (2.4.a), the cutsize is equal to the sum of the costs of the cut nets. In (2.4.b),

each cut net nj contributes cj(�j � 1) to the cutsize. Hence, the hypergraph

partitioning problem can be de�ned as the task of dividing a hypergraph into

two or more parts such that the cutsize is minimized, while a given balance

criterion (2.1) among the part weights is maintained. Here, part weight de�nition

is identical to that of the graph model. The hypergraph partitioning problem is

known to be NP-hard [54].
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2.3 Graph Representation of Hypergraphs

As indicated in the excellent survey by Alpert and Kahng [2], hypergraphs are

commonly used to represent circuit netlist connections in solving the circuit par-

titioning and placement problems in VLSI layout design. The circuit partitioning

problem is to divide a system speci�cation into clusters such that the number of

inter-cluster connections is minimized. Other circuit representation models were

also proposed and used in the VLSI literature including dual hypergraph, clique-

net graph and net-intersection graph (NIG) [2]. Hypergraphs represent circuits

in a natural way so that the circuit partitioning problem is directly described

as an HP problem. Hence, these alternative circuit representation models can

also be considered as alternative models for the HP problem so that the cutsize

in a partitioning of these models relate to the cutsize of a partitioning of the

hypergraph.

The dual of a given hypergraph H= (U ;N ) is de�ned as a hypergraph H0 ,
where the nodes and nets of H become, respectively, the nets and nodes of H0 .
That is, H0=(U 0;N 0) with nets[u0i] = pins[ni] for each u0i 2U 0 and ni 2N , and

pins[n0j]=nets[uj] for each n0j 2N 0 and uj2U .

In the clique-net transformation model, the vertex set of the target graph is

equal to the vertex set of the given hypergraph with the same vertex weights. Each

net of the given hypergraph is represented by a clique of vertices corresponding

to its pins. That is, each net induces an edge between every pair of its pins. The

multiple edges connecting each pair of vertices of the graph are contracted into a

single edge of which cost is equal to the sum of the costs of the edges it represents.

In the standard clique-net model [54], a uniform cost of 1=(si�1) is assigned to

every clique edge of net ni with size si . Various other edge weighting functions

are also proposed in the literature [2]. If an edge is in the cut set of a GPES then

all nets represented by this edge are in the cut set of hypergraph partitioning,

and vice versa. Ideally, no matter how vertices of a net are partitioned, the

contribution of a cut net to the cutsize should always be one in a bipartition.

However, the de�ciency of the clique-net model is that it is impossible to achieve

such a perfect clique-net model [40]. Furthermore, the transformation may result

in very large graphs since the number of clique edges induced by the nets increase
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quadratically with their sizes.

Recently, a randomized clique-net model implementation is proposed [1] which

yields very promising results when used together with graph partitioning tool

MeTiS. In this model, all nets of size larger than T are removed during the

transformation. Furthermore, for each net ni of size si , F�si random pairs of

its pins (vertices) are selected and an edge with cost one is added to the graph for

each selected pair of vertices. The multiple edges between each pair of vertices

of the resulting graph are contracted into a single edge as mentioned earlier. In

this scheme, the nets with size smaller than 2F +1 (small nets) induce larger

number of edges than the standard clique-net model, whereas the nets with size

larger than 2F+1 (large nets) induce smaller number of edges than the standard

clique-net model. Considering the fact that MeTiS accepts integer edge costs

for the input graph, this scheme has two nice features1. First, it simulates the

uniform edge-weighting scheme of the standard clique-net model for small nets

in a random manner since each clique edge (if induced) of a net ni with size

si < 2F+1 will be assigned an integer cost close to 2F=(si�1) on the average.

Second, it prevents the quadratic increase in the number of clique edges induced

by large nets in the standard model since the number of clique edges induced by

a net in this scheme is linear in the size of the net. In our implementation, we

use the parameters T =50 and F =5 in accordance with the recommendations

given in [1].

In the NIG representation G=(V; E) of a given hypergraph H=(U ;N ), each

vertex vi of G corresponds to net ni of H . Two vertices vi; vj 2 V of G are

adjacent if and only if respective nets ni; nj 2N of H share at least one pin, i.e.,

eij2E if and only if pins[ni] \ pins[nj] 6= ;. So,

Adj(vi) = fvj : nj 2 N 3 pins[ni] \ pins[nj] 6= ;g: (2.5)

The NIG representation G for a hypergraph H can also be obtained by apply-

ing the clique-net model to the dual hypergraph of H . Note that for a given

hypergraph H , NIG G is well-de�ned, however there is no unique reverse con-

struction [2].

1private communication with Alpert.
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Both dual hypergraph and NIG models view the HP problem in terms of par-

titioning nets instead of nodes. Kahng [42] and Cong, Hagen, and Kahng [20]

exploited this perspective of the NIG model to formulate the hypergraph biparti-

tioning problem as a two-stage process. In the �rst stage, nets of H are biparti-

tioned through 2-way GPES of its NIG G . The resulting net bipartition induces

a partial node bipartition on H , since the nodes (pins) that belong only to the

nets on one side of the bipartition can be unambigiuosly assigned to that side.

However, other nodes may belong to the nets on both sides of the bipartition.

Thus, the second stage involves �nding the best completion of the partial node bi-

partition; i.e., a part assignment for the shared nodes such that the cutsize (2.4.a)

is minimized. This problem is known as the module (node) contention problem

in the VLSI community. Kahng [42] used a winner-loser heuristic [32], whereas

Cong et al. [20] used a matching-based (IG-match) algorithm for solving the 2-

way module contention problem optimally. Cong, Labio, and Shivakumar [21]

extended this approach to K -way hypergraph partitioning through using the

dual hypergraph model. In the �rst stage, a K -way net partitioning is obtained

through partitioning the dual hypergraph. For the second stage, they formulated

the K -way module contention problem as a min-cost max-
ow problem through

de�ning binding factors between nodes and nets, and preference function between

parts and nodes.

2.4 Graph/Hypergraph Partitioning Heuristics

and Tools

Kernighan-Lin (KL) based heuristics are widely used for graph/hypergraph par-

titioning because of their short run-times and good quality results. The KL

algorithm is an iterative improvement heuristic originally proposed for graph

bipartitioning [48]. The KL algorithm, starting from an initial bipartition, per-

forms a number of passes until it �nds a locally minimum partition. Each pass

consists of a sequence of vertex swaps. The same swap strategy was applied to

the hypergraph bipartitioning problem by Schweikert-Kernighan [72]. Fiduccia-

Mattheyses (FM) [25] introduced a faster implementation of the KL algorithm
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for hypergraph partitioning. They proposed vertex move concept instead of ver-

tex swap. This modi�cation, as well as proper data structures, e.g., bucket lists,

reduced the time complexity of a single pass of the KL algorithm to linear in the

size of the graph and the hypergraph. Here, size refers to the number of edges

and pins in a graph and hypergraph, respectively.

The performance of the FM algorithm deteriorates for large and very sparse

graphs/hypergraphs. Here, sparsity of graphs and hypergraphs refer to their

average vertex degrees. Furthermore, the solution quality of FM is not stable

(predictable), i.e., average FM solution is signi�cantly worse than the best FM

solution, which is a common weakness of the move-based iterative improvement

approaches. Random multi-start approach is used in VLSI layout design to allevi-

ate this problem by running the FM algorithm many times starting from random

initial partitions to return the best solution found [2]. However, this approach is

not viable in parallel computing since decomposition is a preprocessing overhead

introduced to increase the e�ciency of the underlying parallel algorithm/program.

Most users will rely on one run of the decomposition heuristic, so the quality of

the decomposition tool depends equally on the worst and average decompositions

than on just the best decomposition.

These considerations have motivated the two{phase application of the move-

based algorithms in hypergraph partitioning [29]. In this approach, a clustering

is performed on the original hypergraph H0 to induce a coarser hypergraph H1 .

Clustering corresponds to coalescing highly interacting vertices to supernodes

as a preprocessing to FM. Then, FM is run on H1 to �nd a bipartition �1 ,

and this bipartition is projected back to a bipartition �0 of H0 . Finally, FM

is re-run on H0 using �0 as an initial solution. Cong-Smith [22] introduced a

clustering algorithm which works on the graphs. They convert the hypergraph to

a graph by representing an r -pin net as a r�clique. Then they use a heuristic

algorithm to construct the clusters. The clustered graph is given as input to the

Fiduccia-Mattheyses algorithm. Shin-Kin [73] proposed a clustering algorithm

which works on hypergraphs, then a KL based heuristic is used to partition the

clustered hypergraph.

Recently, the two{phase approach has been extended to multilevel ap-

proaches [13, 35, 46] leading to successful graph partitioning tools Chaco [36]
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and MeTiS [44]. These multilevel heuristics consist of 3 phases: coarsening, ini-

tial partitioning and uncoarsening. In the �rst phase, a multilevel clustering is

applied starting from the original graph by adopting various matching heuristics

until the number of vertices in the coarsened graph reduces below a predeter-

mined threshold value. In the second phase, the coarsest graph is partitioned

using various heuristics including FM. In the third phase, the partition found

in the second phase is successively projected back towards the original graph by

re�ning the projected partitions on the intermediate level uncoarser graphs using

various heuristics including FM.

The success of multilevel algorithms both in runtime and solution quality

makes them as a standard for the partitioning problem. The lack of a multi-

level hypergraph partitioning tool at the time of this work was carried led us to

develop a multilevel hypergraph partitioning tool PaToH for a fair experimen-

tal comparison of the hypergraph models with the graph models. The details of

PaToH will be described in Chapter 6. Since multilevel graph partitioning tool

MeTiS is accepted as the state-of-the-art partitioning tool, we have also used it

for hypergraph partitioning problem with a hybrid approach using randomized

clique-net.

2.5 Sparse Matrix Ordering Heuristics and

Tools

As we mentioned earlier, the most popular ordering method is Minimum Degree

(MD) heuristic [74]. The motivation of this method is simple. Since elimination

of a vertex causes its adjacent vertices to become adjacent, MD selects a vertex

of minimum degree to eliminate next. Success of the MD heuristic is followed

by many variants of it. Very �rst implementations, such as Quotient Minimum

Degree (QMD) [28] was too slow, although it is an in-place algorithm (that is

no extra storage is required for �ll-edges). A faster variant is Multiple Minimum

Degree (MMD) [57]. It reduces the runtime of the heuristic by eliminating a set

of vertex of minimum degree. By computing upper bound on a vertex's degree

rather than the true degree, runtime of the heuristic even further reduced by
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the recent variant Approximate Minimum Degree (AMD) [3]. Another recently

proposed variant is Approximate Minimum Fill (AMF) [69]. This method uses

the selection criteria that roughly approximate the amount of �ll that would be

generated by the elimination of a vertex instead of using the vertex degree.

As stated before, Nested Dissection (ND) is an alternative to MD algorithm.

However, although good theoretical results are presented in [27], nested dissection

has not been used until recently. Evolution of the graph partitioning tools have

changed the situation and better methods for �nding graph separators are avail-

able now, including Kernighan-Lin and Fiduccia-Mattheyses and their multilevel

variants [48, 25, 12, 43, 35], vertex-separator Fiduccia-Mattheyses variants [6, 39]

and spectral methods [66, 67].

The multilevel GPES approaches have been used in several multilevel nested

dissection implementations based on indirect 2-way GPVS, e.g., oemetis ordering

code of MeTiS [44]. Converting the solution of GPES to GPVS will be brie
y

described in the next section. Recently, direct 2-way GPVS approaches have been

embedded into various multilevel nested dissection implementations [31, 38, 44].

In these implementations, a 2-way GPVS obtained on the coarsest graph is re�ned

during the multilevel framework of the uncoarsening phase. Two distinct vertex-

separator re�nement schemes were proposed and used for the uncoarsening phase.

The �rst one is the extension of the FM edge-separator re�nement approach to

vertex-separator re�nement as proposed by Ashcraft and Liu [5]. This scheme

considers vertex moves from vertex separator VS to both V1 and V2 in �GPV S=

fV1;V2;VSg. This re�nement scheme is adopted in the onmetis ordering code

of MeTiS [44], ordering code of WGPP [31], and the ordering code BEND [38].

The second scheme is based on Liu's narrow separator re�nement algorithm [58],

which considers moving a set of vertices simultaneously from VS at a time, in

contrast to the FM-based re�nement scheme [5], which moves only one vertex at

a time. Liu's re�nement algorithm [58] can be considered as repeatedly running

the maximum-matching based vertex cover algorithm on the bipartite graphs

induced by the edges between V1 and VS , and V2 and VS . That is, the wide

vertex separator consisting of VS and the boundary vertices of V1 (V2 ) is re�ned
as in the GPES-based wide-to-narrow separator re�nement scheme. The network-


ow based minimum weighted vertex cover algorithms proposed by Ashcraft and
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Liu [8], and Hendrickson and Rothberg [38] enabled the use of Liu's re�nement

approach [58] on the coarse graphs within the multilevel framework.

2.6 Solving GPVS Through GPES

Until recently, instead of solving the GPVS problem directly, it is solved through

GPES. These indirect GPVS approaches �rst perform a GPES on the given graph

to minimize the number of cut edges (i.e., cij = 1 in (2.2)) and then take the

boundary vertices as the wide separator to be re�ned to a narrow separator.

The wide-to-narrow re�nement problem is described as a minimum vertex cover

problem on the subgraph induced by the cut edges [66]. A minimumvertex cover

is taken as a narrow separator for the whole graph, since each cut edge will be

adjacent to a vertex in the vertex cover. That is, let VBk � Vk denote the set

of boundary vertices of part Vk in a partition �GPES = fV1; : : : ;VKg of a given

graph G= (V; E) by edge separator ES � E . Then, K(ES) = (VB =[Kk=1VBk; ES)
denotes the K -partite subgraph of G induced by ES . A vertex cover VS=[Kk=1VSk
on K(ES) constitutes a K -way GPVS �GPV S = fV1�VS1; : : : ;VK�VSK;VSg of

G , where VSk � VBk denotes the subset of boundary vertices of part VK that

belong to the vertex cover of K(ES). A minimum vertex cover VS of K(ES)
corresponds to an optimal re�nement of the wide separator VB into a narrow

separator VS under the assumption that each boundary vertex is adjacent to at

least one non-boundary vertex in �GPES (see Section 2.7).

A minimum vertex cover of a bipartite graph can be computed optimally in

polynomial time by �nding a maximumcardinality matching, since these are dual

concepts [52, 65, 66]. So, the wide-to-narrow separator re�nement problem can

easily be solved using this scheme for 2-way indirect GPVS, because the edge

separator of a 2-way GPES induces a bipartite subgraph. This scheme has been

widely exploited in a recursive manner in the nested-dissection based K -way

indirect GPVS for ordering symmetric sparse matrices, because a 2-way GPES is

adopted at each dissection step. However, the minimum vertex cover problem is

known to be NP-hard on K -partite graphs at least for K�5 [26], thus we need to
resort to heuristics. Leiserson and Lewis [53] proposed two greedy heuristics for

this purpose, namely minimumrecovery (MR) and maximum inclusion (MI). The
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MR heuristic is based on iteratively removing the vertex with minimum degree

from the K -partite graph K(ES) and including all vertices adjacent to that vertex
to the vertex cover VS . The MI heuristic is based on iteratively including the

vertex with maximum degree into VS . In both heuristics, all edges incident to

the vertices included into VS are deleted from K(ES) so that the degrees of the

remaining vertices in K(ES) are updated accordingly. Both heuristics continue

the iterations until all edges are deleted from K(ES).

Here, we reveal the fact that the module contention problem encountered in

the second stage of the NIG-based hypergraph bipartitioning approaches [20, 42]

is similar to the wide-to-narrow separator re�nement problem encountered in the

second stage of the indirect GPVS approaches widely used in nested dissection

based ordering. The module contention and separator re�nement algorithms ef-

fectively work on the bipartite graph induced by the cut edges of a two-way GPES

of the NIG representation of hypergraphs and the standard graph representation

of sparse matrices, respectively. The winner-loser assignment heuristic [32, 42]

used by Kahng [42] is very similar to the minimum-recovery heuristic proposed

by Leiserson and Lewis [53] for separator re�nement. Similarly, the IG-match al-

gorithm proposed by Cong et al. [20] is similar to the maximum-matching based

minimum vertex-cover algorithm [52, 65] used by Pothen, Simon, and Liou [66]

for separator re�nement. Despite not being stated in the literature, these net-

bipartitioning based HP algorithms using the NIG model can be viewed as trying

to solve the HP problem through an indirect GPVS of the NIG representation.

2.7 Vertex-Cover Model: On the Optimality of

Separator Re�nement

For 2-way GPES based GPVS, it was stated [65] that the minimum vertex cover

VS of the bipartite graph K(ES) = (VB = VB1[VB2; ES) induced by an edge

separator ES of GPES of �GPES = fV1;V2g of G is a smallest vertex separator

of G corresponding to ES . Recall that VBk denotes the set of boundary vertices

of part Vk . Here, we would like to discuss that this correspondence does not

guarantee the optimality of the wide-to-narrow separator re�nement. That is,
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Figure 2.1: A sample 2-way GPES for wide-to-narrow separator re�nement.

the minimum vertex cover VS of K(ES) may not constitute a minimum vertex

separator that can be obtained from the wide separator VB . We can classify the

boundary vertices VBk of a part Vk as loosely-bound and tightly-bound vertices.

A loosely-bound vertex vi of VBk is not adjacent to any non-boundary vertex of

Vk , i.e., Adj(vi;Vk)=Adj(vi)\Vk�VBk�fvig, whereas a tightly-bound vertex vj

of VBk is adjacent to at least one non-boundary vertex of Vk , i.e., Adj(vj;Vk�
VBk) 6= ;. Each cut edge between two tightly-bound vertices should always be

covered by a vertex cover VS of K(ES) for VS to constitute a separator of G .
However, it is an unnecessarily severe measure to impose the same requirement

for a cut edge incident to at least one loosely-bound vertex. If all vertices in VBk
that are adjacent to a loosely-bound vertex vi 2 VBk are included into VS then

cut edges incident to vi need not to be covered. For example, Fig. 2.1 illustrates

a 2-way GPES, where v2 2 VB1 is a loosely-bound vertex and all other vertices

are tightly-bound vertices. Fig. 2.2 illustrates two optimal vertex covers VS =
fv1; v2; v3g and VS=fv1; v6; v7g, each of size 3, on bipartite graph K(ES). Vertices
v6 and v2 are included into VS in the former and latter solutions, respectively,

to cover cut edge (v2; v6). However, in both solutions, Adj(v2;V1) = fv1; v3g
remains in the optimal vertex cover so that there is no need to cover cut edge

(v2; v6). Hence, there exists a wide-to-narrow separator re�nement VS=fv1; v3g
of size 2 as shown in Fig. 2.3.

As mentioned in Section 2.5, Liu's narrow separator re�nement algorithm [58]

can also be considered as exploiting the vertex cover model on the bipartite graph

induced by the edges between V1 and VS (V2 and VS ) of a GPVS �GPV S =

fV1;V2;VSg. So, the discussion given here also applies to Liu's narrow separator

re�nement algorithm, where loosely-bound vertices can only exist in the V1 (V2 )
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Figure 2.2: Two wide-to-narrow separator re�nements induced by two optimal
vertex covers.
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Figure 2.3: Optimal wide-to-narrow separator re�nement.
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part of the bipartite graph.

The non-optimality of the minimum vertex{cover model has been overlooked

most probably because of the fact that loosely-bound vertices do not likely exist

in the GPVS of graphs arising in �nite di�erence and �nite element applications.



Chapter 3

Hypergraph Models for 1D

Decomposition

For parallel sparse-matrix vector product (SpMxV) using 1D decomposition, an

M �M square sparse matrix A can be decomposed in two ways; rowwise or

columnwise

A =

2
66666666664

Ar
1
...

Ar
k

...

Ar
K

3
77777777775

and A = [Ac
1 � � �Ac

k � � �Ac
K] ;

where processor Pk owns row stripe Ar
k or column stripe Ac

k , respectively, for a

parallel system with K processors. As discussed in the introduction chapter, in

order to avoid the communication of vector components during the linear vector

operations, a symmetric partitioning scheme is adopted. That is, all vectors used

in the solver are divided conformally with the row partitioning or the column

partitioning in rowwise or columnwise decomposition schemes, respectively. In

particular, the x and y vectors are divided as [x1; : : : ;xK]t and [y1; : : : ;yK]t ,

respectively. In rowwise decomposition, processor Pk is responsible for comput-

ing yk = Ar
kx and the linear operations on the k -th blocks of the vectors. In

columnwise decomposition, processor Pk is responsible for computing yk = Ac
kxk

23



CHAPTER 3. HYPERGRAPH MODELS FOR 1D DECOMPOSITION 24

(where y =
PK

k=1 y
k ) and the linear operations on the k -th blocks of the vectors.

With these decomposition schemes, the linear vector operations can be easily and

e�ciently parallelized [10, 64], such that only the inner-product computations in-

troduce global communication overhead of which its volume does not scale up

with increasing problem size. In parallel SpMxV, the rowwise and columnwise

decomposition schemes require communication before or after the local SpMxV

computations, thus they can also be considered as pre and post communication

schemes, respectively. Depending on the way in which the rows or columns of

A are partitioned among the processors, entries in x or entries in yk may need

to be communicated among the processors. Unfortunately, the communication

volume scales up with increasing problem size. Our goal is to �nd a rowwise

or columnwise partition of A that minimizes the total volume of communication

while maintaining the computational load balance.

The computational graph model is widely used in the representation of com-

putational structures of various scienti�c applications, including repeated Sp-

MxV computations, to decompose the computational domains for paralleliza-

tion [14, 15, 41, 46, 50, 51, 60, 68]. In this model, the problem of 1D sparse

matrix decomposition for minimizing the communication volume while maintain-

ing the load balance is formulated as the well-known K -way graph partitioning

problem. However, none of the graph models re
ects the actual communica-

tion requirement as will be described in Section 3.2. In this work, we propose

two computational hypergraph models which avoid all de�ciencies of the graph

model for 1D decomposition. The proposed hypergraph models reduce the de-

composition problem to the well-known K-way hypergraph partitioning problem

widely encountered in circuit partitioning in VLSI layout design.

Experimental results presented in Section 3.4 con�rm the validity of our pro-

posed hypergraph models. The hypergraph models using PaToH and hMeTiS

produce 30%{38% better decompositions than the graph models using MeTiS,

while the hypergraph models using PaToH are only 34%{130% slower than the

graph models using the most recent version (Version 3.0) of MeTiS, on the aver-

age.
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3.1 Graph Models for Sparse Matrix Decompo-

sition

3.1.1 Standard Graph Model for Structurally Symmetric

Matrices

A structurally symmetric sparse matrix A can be represented as an undirected

graph GA=(V; E), where the sparsity pattern of A corresponds to the adjacency

matrix representation of graph GA . That is, the vertices of GA correspond to the

rows/columns of matrix A, and there exist an edge eij 2E for i 6= j if and only

if o�-diagonal entries aij and aji of matrix A are nonzeros. In rowwise decom-

position, each vertex vi2V corresponds to atomic task i of computing the inner

product of row i with column vector x. In columnwise decomposition, each vertex

vi 2 V corresponds to atomic task i of computing the sparse SAXPY/DAXPY

operation y = y+xia�i , where a�i denotes column i of matrix A. Hence, each

nonzero entry in a row and column of A incurs a multiply-and-add operation dur-

ing the local SpMxV computations in the pre and post communication schemes,

respectively. Thus, computational load wi of row/column i is the number of

nonzero entries in row/column i. In graph theoretical notation, wi = di when

aii=0 and wi= di+1 when aii 6=0. Note that the number of nonzeros in row i

and column i are equal in a symmetric matrix.

This graph model displays a bidirectional computational interdependency

view for SpMxV. Each edge eij 2 E can be considered as incurring the com-

putations yi yi+aij�xj and yj yj+aji�xi . Hence, each edge represents the

bidirectional interaction between the respective pair of vertices in both inner and

outer product computation schemes for SpMxV. If rows (columns) i and j are

assigned to the same processor in a rowwise (columnwise) decomposition, then

edge eij does not incur any communication. However, in the pre-communication

scheme, if rows i and j are assigned to di�erent processors then cut edge eij

necessitates the communication of two 
oating{point words because of the need

of the exchange of updated xi and xj values between atomic tasks i and j just

before the local SpMxV computations. In the post-communication scheme, if
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columns i and j are assigned to di�erent processors then cut edge eij necessi-

tates the communication of two 
oating{point words because of the need of the

exchange of partial yi and yj values between atomic tasks i and j just after

the local SpMxV computations. Hence, by setting cij = 2 for each edge eij 2E ,
both rowwise and columnwise decompositions of matrix A reduce to the K -way

partitioning of its associated graph GA according to the cutsize de�nition given

in (2.2). Thus, minimizing the cutsize is an e�ort towards minimizing the total

volume of interprocessor communication. Maintaining the balance criterion (2.1)

corresponds to maintaining the computational load balance during local SpMxV

computations.

Each vertex vi 2 V e�ectively represents both row i and column i in GA
although its atomic task de�nition di�ers in rowwise and columnwise decomposi-

tions. Hence, a partition � of GA automatically achieves a symmetric partitioning

by inducing the same partition on the y-vector and x-vector components since a

vertex vi2Pk corresponds to assigning row i (column i), yi and xi to the same

part in rowwise (columnwise) decomposition.

In matrix theoretical view, the symmetric partitioning induced by a partition

� of GA can also be considered as inducing a partial symmetric permutation

on the rows and columns of A. Here, the partial permutation corresponds to

ordering the rows/columns assigned to part Pk before the rows/columns assigned

to part Pk+1 , for k = 1; : : : ;K � 1, where the rows/columns within a part are

ordered arbitrarily. Let A� denote the permuted version of A according to a

partial symmetric permutation induced by �. An internal edge eij of a part Pk
corresponds to locating both aij and aji in diagonal blockA�

kk . An external edge

eij of cost 2 between parts Pk and P` corresponds to locating nonzero entry aij

of A in o�-diagonal block A�
k` and aji of A in o�-diagonal block A�

`k , or vice

versa. Hence, minimizing the cutsize in the graph model can also be considered

as permuting the rows and columns of the matrix to minimize the total number

of nonzeros in the o�-diagonal blocks.

Figure 3.1 illustrates a sample 10�10 symmetric sparse matrix A and its as-

sociated graph GA . The numbers inside the circles indicate the computational

weights of the respective vertices (rows/columns). This �gure also illustrates a
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Figure 3.1: Two-way rowwise decomposition of a sample structurally symmetric
matrix A and the corresponding bipartitioning of its associated graph GA .

rowwise decomposition of the symmetric A matrix and the corresponding bipar-

titioning of GA for a two{processor system. As seen in Fig. 3.1, the cutsize in

the given graph bipartitioning is 8 which is also equal to the total number of

nonzero entries in the o�-diagonal blocks. The bipartition illustrated in Fig. 3.1

achieves perfect load balance by assigning 21 nonzero entries to each row stripe.

This number can also be obtained by adding the weights of the vertices in each

part.

3.1.2 Bipartite Graph Model for Rectangular Matrices

The standard graph model is not suitable for the partitioning of nonsymmetric

matrices. A recently proposed bipartite graph model [34, 49] enables the par-

titioning of rectangular as well as structurally symmetric/nonsymmetric square

matrices. In this model, each row and column is represented by a vertex, and

the sets of vertices representing the rows and columns form the bipartition, i.e.

V = VR [ VC . There exists an edge between a row vertex i 2 VR and a column

vertex j 2 VC if and only if the respective entry aij of matrix A is nonzero.

Partitions �R and �C on VR and VC , respectively, determine the overall parti-

tion �= fP1; : : : ;PKg, where Pk = VRk
[ VCk for k = 1; : : : ;K . For rowwise

(columnwise) decomposition, vertices in VR (VC ) are weighted with the number

of nonzeros in the respective row (column) so that the balance criterion (2.1) is

imposed only on the partitioning of VR (VC ). As in the standard graph model,

minimizing the number of cut edges corresponds to minimizing the total number

of nonzeros in the o�-diagonal blocks.
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This approach has the 
exibility of achieving nonsymmetric partitioning. In

the context of parallel SpMxV, the need for symmetric partitioning on square

matrices is achieved by enforcing �R � �C . Hendrickson and Kolda [34] pro-

pose several bipartite-graph partitioning algorithms that are adopted from the

techniques for the standard graph model and one partitioning algorithm that is

speci�c to bipartite graphs.

3.1.3 Proposed Generalized Graph Model for Structurally

Symmetric/Nonsymmetric Square Matrices

In this work, we propose a simple yet e�ective graph model for symmetric parti-

tioning of structurally nonsymmetric square matrices. The proposed model en-

ables the use of the standard graph partitioning tools without any modi�cation.

In the proposed model, an nonsymmetric square matrix A is represented as an

undirected graph GR=(VR; E) and GC=(VC; E) for rowwise and columnwise de-

composition schemes, respectively. Graphs GR and GC di�er only in their vertex

weight de�nitions. The vertex set and the corresponding atomic task de�nitions

are identical to those of the symmetric matrices. Hence, computational weight

wi of a vertex vi 2 VR of GR and a vertex vi 2 VC of GC are equal to the total

number of nonzeros in row i and column i in the pre and post communication

schemes, respectively.

Both edge set and edge weight de�nitions are di�erent than those of the

symmetric matrices. In the edge set E; eij 2E if and only if o�-diagonal entries

aij 6=0 or aji 6=0. That is, the vertices in the adjacency list of a vertex vi denote

the union of the column indices of the o�-diagonal nonzeros at row i and the row

indices of the o�-diagonal nonzeros at column i. The cost cij of an edge eij is set

to 1 if either aij 6=0 or aji 6=0, and it is set to 2 if both aij 6=0 and aji 6=0. Note

that each row and column of matrix A are e�ectively represented by the same

vertex as a simple means for enforcing symmetric permutation. The proposed

scheme is referred to here as a generalized model since it automatically produces

the existing graph representation for symmetric matrices by computing the same

cost of 2 for every edge.



CHAPTER 3. HYPERGRAPH MODELS FOR 1D DECOMPOSITION 29

2

5

7

8

9

1

3

4

6

10

2

5

7

8

9

1

3

4

6

10

2

5

7

8

9

1

3

4

6

10

1 2 3 4 5 6 7 8 9 10

y A x

P
2

P
1

=

P1 P2

v5

v3

1vv2 v6

v8 v9

v10v7

v4

3

5

3

3

2

3

3 3

34

1

1

2

1

1 2

1
1

2

2

2

1

1

1

2

1

Figure 3.2: Two-way rowwise decomposition of a sample structurally nonsym-
metric matrix A and the corresponding bipartitioning of its associated graph
GR .

In the proposed model, each edge with a cost of 2 represents the bidirectional

interaction between the respective pair of vertices in an identical manner to that

of the symmetric matrices. However, each edge with a cost of 1 represents an

unidirectional interaction between the respective pair of vertices. That is, each

edge eij 2 E with cij =1 incurs the computation of either yi  yi + aij � xj or

yj  yj + aji � xi , depending on whether aij 6=0 or aji 6=0, respectively. Hence,

in inner{product computation scheme for SpMxV, an edge eij 2 E with cij = 1

denotes the dependency relation of either atomic task i to xj or atomic task j to

xi . A dual discussion holds for outer{product multiplication scheme. However,

this ambiguity does not constitute any problem in the proposed model. If rows

(columns) i and j are assigned to di�erent processors in a rowwise (columnwise)

decomposition, then cut edge eij with cij =1 always necessitates the communi-

cation of a single 
oating{point word as follows. In rowwise decomposition, each

cut edge eij2E with cij=1 incurs the communication of either updated xi or xj

value just before the local SpMxV computations. In columnwise decomposition,

each cut edge eij 2 E with cij =1 incurs the communication of either partial yi

or yj result just after the local SpMxV computations.

Figure 3.2 illustrates a sample 10�10 nonsymmetric sparse matrix A and

its associated graph GR for rowwise decomposition. The numbers inside the

circles indicate the computational weights of the respective vertices (rows). This

�gure also illustrates rowwise decomposition of the matrix and the corresponding

bipartitioning of its associated graph for a two{processor system. As seen in

Fig. 3.2, the cutsize of the given graph bipartitioning is 7 which is also equal to the

total number of nonzero entries in the o�-diagonal blocks. Hence, similar to the
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symmetric matrix case, minimizing cutsize in the proposed graph model can also

be considered as permuting the rows and columns of the matrix to minimize the

total number of o�-block-diagonal nonzeros. As seen in Fig. 3.2, the bipartitioning

achieves perfect load balance by assigning 16 nonzero entries to each row part. As

mentioned earlier, GC model of sample matrix A for columnwise decomposition

di�ers from GR only in vertex weights. Hence, the graph bipartitioning illustrated

in Fig. 3.2 can also be considered as incurring a slightly imbalanced (15 versus

17 nonzeros) columnwise decomposition of sample matrix A (shown by vertical

dash line) with identical communication requirement.

The storage requirement of the standard and proposed graph models is as

follows. For an M �M square matrix with Z o�-diagonal nonzero entries, the

graph models contain jVj=M vertices for both symmetric and nonsymmetricma-

trices. The graph model contains exactly jEj=Z=2 edges for symmetric matrices.

However, the number of edges in the graph model for nonsymmetric matrices may

vary between Z=2 and Z (i.e., Z=2 < jEj � Z ), because every symmetric pair

o�-diagonal nonzeros aij 6= 0 and aji 6= 0 in an nonsymmetric matrix decrease

the number of edges by 1 from Z towards Z=2. In the graph models of both

symmetric and nonsymmetric matrices, M words are required to store vertex

weights, and M words are needed to store the starting indices of the adjacency

lists. There is no need to store the edge costs for symmetric matrices since all

edge costs are equal to 2, therefore Z words su�ces to store jEj = Z=2 edges

as each edge has to be stored twice in the adjacency list representation. How-

ever, edge costs have to be stored in the graph model for nonsymmetric matrices

because of di�erent edge costs of 2 and 1. Therefore, the storage requirement

of the graph models is SG = 2M+Z words for symmetric matrices, whereas it

may vary between 2M+2Z and 2M+4Z words for nonsymmetric matrices (i.e.,

2M+2Z < SG � 2M+4Z ).

3.2 Flaws of the Graph Models

Consider the symmetric matrix decomposition given in Fig. 3.1. Assume that

parts P1 and P2 are mapped to processors P1 and P2 , respectively. The cutsize
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of the bipartition shown in this �gure is equal to 2�4=8, thus estimating the com-

munication volume requirement as 8 words. In the pre-communication scheme,

o�-block-diagonal entries a4;7 and a5;7 assigned to processor P1 display the same

need for the nonlocal x-vector component x7 twice. However, it is clear that

processor P2 will send x7 only once to processor P1 . Similarly, processor P1 will

send x4 only once to processor P2 because of the o�-block-diagonal entries a7;4

and a8;4 assigned to processor P2 . In the post-communication scheme, the graph

model treats the o�-block-diagonal nonzeros a7;4 and a7;5 in P1 as if processor P1
will send two multiplication results a7;4x4 and a7;5x5 to processor P2 . However,

it is obvious that processor P1 will compute the partial result for the nonlocal

y-vector component y07=a7;4x4+a7;5x5 during the local SpMxV phase and send

this single value to processor P2 during the post-communication phase. Simi-

larly, processor P2 will only compute and send the single value y04=a4;7x7+a4;8x8

to processor P1 . Hence, the actual communication volume is in fact 6 words

instead of 8 in both pre and post communication schemes. A similar analysis of

the rowwise decomposition of the nonsymmetric matrix given in Fig. 3.2 reveals

the fact that the actual communication requirement is 5 words (x4 , x5 , x6 , x7

and x8 ) instead of 7 determined by the cutsize of the given bipartition of GR .

In matrix theoretical view, the nonzero entries in the same column of an

o�-diagonal block incur the communication of a single x value in the rowwise

decomposition (pre-communication) scheme. Similarly, the nonzero entries in

the same row of an o�-diagonal block incur the communication of a single y

value in the columnwise decomposition (post-communication) scheme. However,

as mentioned earlier, the graph models try to minimize the total number of o�-

block-diagonal nonzeros without considering the relative spatial locations of such

nonzeros. In other words, the graph models treat all o�-block-diagonal nonzeros

in an identical manner by assuming that each o�-block-diagonal nonzero will

incur a distinct communication of a single word.

In graph theoretical view, the graph models treat all cut edges of equal cost

in an identical manner while computing the cutsize. However, r cut edges, each

of cost 2, stemming from a vertex vi1 in part Pk to r vertices vi2; vi3; : : : ; vir+1 in

part P` incur only r+1 communications instead of 2r in both pre and post com-

munication schemes. In the pre-communication scheme, processor Pk sends xi1 to
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processor P` while P` sends xi2; xi3; : : : ; xir+1 to Pk . In the post-communication

scheme, processor P` sends y0i2; y
0
i3
; : : : ; y0ir+1 to processor Pk while Pk sends y0i1

to P` . Similarly, the amount of communication required by r cut edges, each of

cost 1, stemming from a vertex vi1 in part Pk to r vertices vi2; vi3; : : : ; vir+1 in

part P` may vary between 1 and r words instead of exactly r words determined

by the cutsize of the given graph partitioning.

3.3 Two Hypergraph Models for 1D Decompo-

sition

We propose two computational hypergraph models for the decomposition of

sparse matrices. These models are referred to here as the column-net and row-

net models proposed for the rowwise decomposition (pre-communication) and

columnwise decomposition (post-communication) schemes, respectively.

In the column-net model, matrix A is represented as a hypergraph

HR=(VR;NC) for rowwise decomposition. Vertex and net sets VR and NC cor-

respond to the rows and columns of matrix A, respectively. There exist one

vertex vi and one net nj for each row i and column j , respectively. Net nj�VR
contains the vertices corresponding to the rows which have a nonzero entry in

column j . That is, vi 2 nj if and only if aij 6= 0. Each vertex vi 2 VR corre-

sponds to atomic task i of computing the inner product of row i with column

vector x. Hence, computational weight wi of a vertex vi 2 VR is equal to the

total number of nonzeros in row i. The nets of HR represent the dependency

relations of the atomic tasks on the x-vector components in rowwise decomposi-

tion. Each net nj can be considered as incurring the computations yi yi+aij�xj
for each vertex (row) vi2nj . Hence, each net nj denotes the set of atomic tasks

(vertices) that need xj . Note that each pin vi of a net nj corresponds to a unique

nonzero aij thus enabling the representation and decomposition of structurally

nonsymmetric matrices as well as symmetric matrices without any extra e�ort.

Figure 3.3(a) illustrates the dependency relation view of the column-net model.

As seen in this �gure, net nj = fvh; vi; vkg represents the dependency of atomic

tasks h, i, k to xj because of the computations yh yh+ahj �xj , yi yi+aij �xj
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and yk yk+akj �xj . Figure 3.4(b) illustrates the column-net representation of

the sample 16� 16 nonsymmetric matrix given in Fig. 3.4(a). In Fig. 3.4(b), the

pins of net n7 = fv7; v10; v13g represent nonzeros a7;7 , a10;7, and a13;7 . Net n7

also represents the dependency of atomic tasks 7, 10 and 13 to x7 because of

the computations y7 y7+a7;7�x7 , y10 y10+a10;7�x7 and y13 y13+a13;7�x7 .

The row-net model can be considered as the dual of the column-net model. In

this model, matrix A is represented as a hypergraph HC=(VC;NR) for column-

wise decomposition. Vertex and net sets VC and NR correspond to the columns

and rows of matrix A, respectively. There exist one vertex vi and one net nj

for each column i and row j , respectively. Net nj � VC contains the vertices

corresponding to the columns which have a nonzero entry on row j . That is,

vi2nj if and only if aji 6= 0. Each vertex vi2VC corresponds to atomic task i of

computing the sparse SAXPY/DAXPY operation y=y+xia�i . Hence, compu-

tational weight wi of a vertex vi2 VC is equal to the total number of nonzeros in

column i. The nets of HC represent the dependency relations of the computa-

tions of the y-vector components to the atomic tasks represented by the vertices

of HC in columnwise decomposition. Each net nj can be considered as incurring

the computation yj yj+aji �xi for each vertex (column) vi 2 nj . Hence, each

net nj denotes the set of atomic task results needed to accumulate yj . Note

that each pin vi of a net nj corresponds to a unique nonzero aji thus enabling

the representation and decomposition of structurally nonsymmetric matrices as

well as symmetric matrices without any extra e�ort. Figure 3.3(b) illustrates

the dependency relation view of the row-net model. As seen in this �gure, net

nj=fvh; vi; vkg represents the dependency of accumulating yj=yhj+yij+y
k
j to the

partial yj results yhj =ajh �xh , yij=aji �xi and ykj =ajk �xk . Note that the row-net
and column-net models become identical in structurally symmetric matrices.

By assigning unit costs to the nets (i.e. cj=1 for each net nj ), the proposed

column-net and row-net models reduce the decomposition problem to the K -

way hypergraph partitioning problem according to the cutsize de�nition given in

(2.4.b) for the pre and post communication schemes, respectively. Consistency of

the proposed hypergraph models for accurate representation of communication

volume requirement while maintaining the symmetric partitioning restriction de-

pends on the condition that \vj 2 nj for each net nj ". We �rst assume that this
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Figure 3.3: Dependency relation views of (a) column-net and (b) row-net models.

condition holds in the discussion throughout the following four paragraphs and

then discuss the appropriateness of the assumption in the last paragraph of this

section.

The validity of the proposed hypergraph models is discussed only for the

column-net model. A dual discussion holds for the row-net model. Consider

a partition � of HR in the column-net model for rowwise decomposition of a

matrix A. Without loss of generality, we assume that part Pk is assigned to

processor Pk for k = 1; 2; : : : ;K: As � is de�ned as a partition on the vertex

set of HR , it induces a complete part (hence processor) assignment for the rows

of matrix A and hence for the components of the y vector. That is, a vertex

vi assigned to part Pk in � corresponds to assigning row i and yi to part Pk .
However, partition � does not induce any part assignment for the nets of HR .
Here, we consider partition � as inducing an assignment for the internal nets of

HR hence for the respective x-vector components. Consider an internal net nj of

part Pk (i.e. �j = fPkg) which corresponds to column j of A. As all pins of net

nj lie in Pk , all rows (including row j by the consistency condition) which need

xj for inner-product computations are already assigned to processor Pk . Hence,

internal net nj of Pk , which does not contribute to the cutsize (2.4.b) of partition
�, does not necessitate any communication if xj is assigned to processor Pk . The

assignment of xj to processor Pk can be considered as permuting column j to

part Pk , thus respecting the symmetric partitioning of A since row j is already

assigned to Pk . In the 4-way decomposition given in Fig. 3.4(b), internal nets

n1 , n10 , n13 of part P1 induce the assignment of x1 , x10 , x13 and columns 1, 10,

13 to part P1 . Note that part P1 already contains rows 1, 10, 13 thus respecting

the symmetric partitioning of A.



CHAPTER 3. HYPERGRAPH MODELS FOR 1D DECOMPOSITION 35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16

2

5

7

8

9

14

15

16

1

3

4

6

10

11

12
13

2

5

7

8

9

14

15

16

1

3

4

6

10

11

12
13

15

15

P1P 2

P3 P4

9n

v

v n

n
5

13

7n

v
n

n

v

v

v

14

n3

11

11n

4
vv

n n

v15
n

15

7

2
v2

v9

12

n5v
10

13

n10

v1
1 v

14

6

3

n6
n

v

v

16

12
4n

16

8

8

(a) (b)

P1

10 13 5 1 6 14 11 3 2 15 7 9 8 16 4

10 13 5 1 6 14 11 3 2 15 7 9 8 16 4

13

6

11

3

2

16

12

4

10

5

1

14

15

7

9
8

13

6

11

3

2

16

12

4

10

5

1

14

15

7

9
8

12

12

P4

P3

P2

(c)

Figure 3.4: (a) A 16� 16 structurally nonsymmetric matrix A. (b) Column-
net representationHR of matrix A and 4-way partitioning � of HR . (c) 4-way
rowwise decomposition of matrix A� obtained by permuting A according to the
symmetric partitioning induced by �.
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Consider an external net nj with connectivity set �j , where �j = j�jj and
�j > 1. As all pins of net nj lie in the parts in its connectivity set �j , all rows

(including row j by the consistency condition) which need xj for inner-product

computations are assigned to the parts (processors) in �j . Hence, contribution

�j�1 of external net nj to the cutsize according to (2.4.b) accurately models

the amount of communication volume to incur during the parallel SpMxV com-

putations because of xj if xj is assigned to any processor in �j . Let map[j]2�j

denote the part and hence processor assignment for xj corresponding to cut net

nj . In the column-net model together with the pre-communication scheme, cut

net nj indicates that processor map[j] should send its local xj to those proces-

sors in connectivity set �j of net nj except itself (i.e., to processors in the set

�j�fmap[j]g). Hence, processor map[j] should send its local xj to j�jj�1=�j�1
distinct processors. As the consistency condition \vj 2 nj " ensures that row j

is already assigned to a part in �j , symmetric partitioning of A can easily be

maintained by assigning xj hence permuting column j to the part which contains

row j . In the 4-way decomposition shown in Fig. 3.4(b), external net n5 (with

�5 = fP1;P2;P3g) incurs the assignment of x5 (hence permuting column 5) to

part P1 since row 5 (v5 2 n5 ) is already assigned to part P1 . The contribution
�5� 1 = 2 of net n5 to the cutsize accurately models the communication volume

to incur due to x5 , because processor P1 should send x5 to both processors P2

and P3 only once since �5 � fmap[5]g = �5 � fP1g = fP2; P3g.

In essence, in the column-net model, any partition � of HR with vi 2 Pk
can be safely decoded as assigning row i, yi and xi to processor Pk for rowwise

decomposition. Similarly, in the row-net model, any partition � of HC with

vi 2 Pk can be safely decoded as assigning column i, xi and yi to processor

Pk for columnwise decomposition. Thus, in the column-net and row-net models,

minimizing the cutsize according to (2.4.b) corresponds to minimizing the actual

volume of interprocessor communication during the pre and post communication

phases, respectively. Maintaining the balance criterion (2.1) corresponds to main-

taining the computational load balance during the local SpMxV computations.

Figure 3.4(c) displays a permutation of the sample matrix given in Fig. 3.4(a) ac-

cording to the symmetric partitioning induced by the 4-way decomposition shown

in Fig. 3.4(b). As seen in Fig. 3.4(c), the actual communication volume for the

given rowwise decomposition is 6 words since processor P1 should send x5 to
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both P2 and P3 , P2 should send x11 to P4 , P3 should send x7 to P1 , and P4

should send x12 to both P2 and P3 . As seen in Fig. 3.4(b), external nets n5 , n7 ,

n11 and n12 contribute 2, 1, 1 and 2 to the cutsize since �5 = 3, �7 = 2, �11 = 2

and �12 = 3, respectively. Hence, the cutsize of the 4-way decomposition given

in Fig. 3.4(b) is 6, thus leading to the accurate modeling of the communication

requirement. Note that the graph model will estimate the total communication

volume as 13 words for the 4-way decomposition given in Fig. 3.4(c) since the

total number of nonzeros in the o�-diagonal blocks is 13. As seen in Fig. 3.4(c),

each processor is assigned 12 nonzeros thus achieving perfect computational load

balance.

In matrix theoretical view, let A� denote a permuted version of matrix A

according to the symmetric partitioning induced by a partition � of HR in the

column-net model. Each cut-net nj with connectivity set �j and map[j] = P`
corresponds to column j of A containing nonzeros in �j distinct blocks (A�

k` ,

for Pk 2 �j ) of matrix A� . Since connectivity set �j of net nj is guaranteed to

contain part map[j], column j contains nonzeros in �j�1 distinct o�-diagonal

blocks ofA� . Note that multiplenonzeros of column j in a particular o�-diagonal

block contributes only one to connectivity �j of net nj by de�nition of �j . So,

the cutsize of a partition � of HR is equal to the number of nonzero column

segments in the o�-diagonal blocks of matrix A� . For example, external net n5

with �5 = fP1;P2;P3g and map[5] = P1 in Fig. 3.4(b) indicates that column 5

has nonzeros in two o�-diagonal blocks A�
2;1 and A�

3;1 as seen in Fig. 3.4(c).

As also seen in Fig. 3.4(c), the number of nonzero column segments in the o�-

diagonal blocks of matrix A� is 6 which is equal to the cutsize of partition �

shown in Fig. 3.4(b). Hence, the column-net model tries to achieve a symmetric

permutation which minimizes the total number of nonzero column segments in

the o�-diagonal blocks for the pre-communication scheme. Similarly, the row-net

model tries to achieve a symmetric permutation which minimizes the total number

of nonzero row segments in the o�-diagonal blocks for the post-communication

scheme.

Nonzero diagonal entries automatically satisfy the condition \vj 2 nj for

each net nj ", thus enabling both accurate representation of communication re-

quirement and symmetric partitioning of A. A nonzero diagonal entry ajj already
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implies that net nj contains vertex vj as its pin. If however some diagonal entries

of the given matrix are zeros then the consistency of the proposed column-net

model is easily maintained by simply adding rows, which do not contain diagonal

entries, to the pin lists of the respective column nets. That is, if ajj = 0 then

vertex vj (row j ) is added to the pin list pins[nj] of net nj and net nj is added

to the net list nets[vj] of vertex vj . These pin additions do not a�ect the com-

putational weight assignments of the vertices. That is, weight wj of vertex vj in

HR becomes equal to either dj or dj�1 depending on whether ajj 6=0 or ajj=0,

respectively. The consistency of the row-net model is preserved in a dual manner.

3.4 Experimental Results

We have tested the validity of the proposed hypergraph models by running MeTiS

on the graphs obtained by randomized clique-net transformation, and running Pa-

ToH and hMeTiS directly on the hypergraphs for the decompositions of various

realistic sparse test matrices arising in di�erent application domains. These de-

composition results are compared with the decompositions obtained by running

MeTiS using the standard and proposed graph models for the symmetric and

nonsymmetric test matrices, respectively. The most recent version (Version 3.0)

of MeTiS [44] was used in the experiments. As both hMeTiS and PaToH achieve

K -way partitioning through recursive bisection, recursive MeTiS (pMeTiS) was

used for the sake of a fair comparison. Another reason for using pMeTiS is that

direct K -way partitioning version of MeTiS (kMeTiS) produces 9% worse par-

titions than pMeTiS in the decomposition of the nonsymmetric test matrices,

although it is 2.5 times faster, on the average. pMeTiS was run with the default

parameters: sorted heavy-edge matching, region growing and early-exit bound-

ary FM re�nement for coarsening, initial partitioning and uncoarsening phases,

respectively. The current version (Version 1.0.2) of hMeTiS [47] was run with

the parameters: greedy �rst-choice scheme (GFC) and early-exit FM re�nement

(EE-FM) for coarsening and uncoarsening phases, respectively. The V-cycle re-

�nement scheme was not used, because in our experimentations it achieved at

most 1% (much less on the average) better decompositions at the expense of ap-

proximately 3 times slower execution time (on the average) in the decomposition
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of the test matrices. The GFC scheme was found to be 28% faster than the other

clustering schemes while producing slightly (1%{2%) better decompositions on

the average. The EE-FM scheme was observed to be 30% faster than the other

re�nement schemes without any di�erence in the decomposition quality on the

average.

Table 3.1 illustrates the properties of the test matrices listed in the order of

increasing number of nonzeros. In this table, the \description" column displays

both the nature and the source of each test matrix. The sparsity patterns of

the Linear Programming matrices used as symmetric test matrices are obtained

by multiplying the respective rectangular constraint matrices with their trans-

poses. In Table 3.1, the total number of nonzeros of a matrix also denotes the

total number of pins in both column-net and row-net models. The minimum

and maximum number of nonzeros per row (column) of a matrix correspond to

the minimum and maximum vertex degree (net size) in the column-net model,

respectively. Similarly, the standard deviation std and coe�cient of variation cov

values of nonzeros per row (column) of a matrix correspond to the std and cov

values of vertex degree (net size) in the column-net model, respectively. Dual

correspondences hold for the row-net model.

All experiments were carried out on a workstation equipped with a 133 MHz

PowerPC processor with 512-Kbyte external cache and 64 Mbytes of memory.

We have tested K = 8, 16, 32 and 64 way decompositions of every test ma-

trix. For a speci�c K value, K -way decomposition of a test matrix constitutes a

decomposition instance. pMeTiS, hMeTiS and PaToH were run 50 times start-

ing from di�erent random seeds for each decomposition instance. The average

performance results are displayed in Tables 3.2{3.4 and Figs. 3.5{3.7 for each de-

composition instance. The percent load imbalance values are below 3% for all

decomposition results displayed in these �gures, where percent imbalance ratio is

de�ned as 100 � (Wmax �Wavg)=Wavg .

Table 3.2 displays the decomposition performance of the proposed hypergraph



CHAPTER 3. HYPERGRAPH MODELS FOR 1D DECOMPOSITION 40

models together with the standard graph model in the rowwise/columnwise de-

composition of the symmetric test matrices. Note that the rowwise and colum-

nwise decomposition problems become equivalent for symmetric matrices. Ta-

bles 3.3 and 3.4 display the decomposition performance of the proposed column-

net and row-net hypergraph models together with the proposed graph models in

the rowwise and columnwise decompositions of the nonsymmetric test matrices,

respectively. Due to lack of space, the decomposition performance results for the

clique-net approach are not displayed in Tables 3.2{3.4, instead they are summa-

rized in Table 3.5. Although the main objective of this work is the minimization

of the total communication volume, the results for the other performance metrics

such as the maximumvolume, average number and maximumnumber of messages

handled by a single processor are also displayed in Tables 3.2{3.4. Note that the

maximum volume and maximum number of messages determine the concurrent

communication volume and concurrent number of messages, respectively, under

the assumption that no congestion occurs in the network.

As seen in Tables 3.2{3.4, the proposed hypergraph models produce substan-

tially better partitions than the graph model at each decomposition instance in

terms of total communication volume cost. In the symmetric test matrices, the

hypergraph model produces 7%{48% better partitions than the graph model (see

Table 3.2). In the nonsymmetric test matrices, the hypergraph models produce

12%{63% and 9%{56% better partitions than the graph models in the rowwise

(see Table 3.3) and columnwise (see Table 3.4) decompositions, respectively. As

seen in Tables 3.2{3.4, there is no clear winner between hMeTiS and PaToH

in terms of decomposition quality. In some matrices hMeTiS produces slightly

better partitions than PaToH, whereas the situation is the other way round in

some other matrices. As seen in Tables 3.2 and 3.3, there is also no clear win-

ner between matching-based clustering scheme HCM and agglomerative cluster-

ing scheme HCC in PaToH (see Section 6.1 for detailed discussion of clustering

schemes). However, as seen in Table 3.4, PaToH-HCC produces slightly better

partitions than PaToH-HCM in all columnwise decomposition instances for the

nonsymmetric test matrices.

Tables 3.2{3.4 show that the performance gap between the graph and hyper-

graph models in terms of the total communication volume costs is preserved by
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almost the same amounts in terms of the concurrent communication volume costs.

For example, in the decomposition of the symmetric test matrices, the hypergraph

model using PaToH-HCM incurs 30% less total communication volume than the

graph model while incurring 28% less concurrent communication volume, on the

overall average. In the columnwise decomposition of the nonsymmetric test ma-

trices, PaToH-HCM incurs 35% less total communication volume than the graph

model while incurring 37% less concurrent communication volume, on the overall

average.

Although the hypergraph models perform better than the graph models in

terms of number of messages, the performance gap is not as large as in the

communication volume metrics. However, the performance gap increases with

increasing K . As seen in Table 3.2, in the 64-way decomposition of the symmetric

test matrices, the hypergraph model using PaToH-HCC incurs 32% and 10% less

total and concurrent number of messages than the graph model, respectively.

As seen in Table 3.3, in the rowwise decomposition of the nonsymmetric test

matrices, PaToH-HCC incurs 32% and 26% less total and concurrent number of

messages than the graph model, respectively.

The performance comparison of the graph/hypergraph partitioning based

1D decomposition schemes with the conventional algorithms based on 1D and

2D [37, 56, 55] decomposition schemes is as follows. As mentioned earlier, in K -

way decompositions of M �M matrices, the conventional 1D and 2D schemes

incur the total communication volume of (K � 1)M and 2(
p
K�1)M words,

respectively. For example, in 64-way decompositions, the conventional 1D and

2D schemes incur the total communication volumes of 63M and 14M words,

respectively. As seen at the bottom of Tables 3.2 and 3.3, PaToH-HCC reduces

the total communication volume to 1:91M and 0:90M words in the 1D 64-way

decomposition of the symmetric and nonsymmetric test matrices, respectively,

on the overall average. In 64-way decompositions, the conventional 1D and 2D

schemes incur the concurrent communication volumes of approximately M and

0:22M words, respectively. As seen in Tables 3.2 and 3.3, PaToH-HCC reduces

the concurrent communication volume to 0:052M and 0:025M words in the 1D

64-way decomposition of the symmetric and nonsymmetric test matrices, respec-

tively, on the overall average.
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Figure 3.5 illustrates the relative run-time performance of the proposed hyper-

graph model compared to the standard graph model in the rowwise/columnwise

decomposition of the symmetric test matrices. Figures 3.6 and 3.7 display the

relative run-time performance of the column-net and row-net hypergraph models

compared to the proposed graph models in the rowwise and columnwise decom-

positions of the nonsymmetric test matrices, respectively. In Figs. 3.5{3.7, for

each decomposition instance, we plot the ratios of the average execution times

of the tools using the respective hypergraph model to that of pMeTiS using the

respective graph model. The results displayed in Figs. 3.5{3.7 are obtained by

assuming that the test matrix is given either in CSR or in CSC form which are

commonly used for SpMxV computations. The standard graph model does not

necessitate any preprocessing since CSR and CSC forms are equivalent in sym-

metric matrices and both of them correspond to the adjacency list representation

of the standard graph model. However, in nonsymmetric matrices, construc-

tion of the proposed graph model requires some amount of preprocessing time,

although we have implemented a very e�cient construction code which totally

avoids index search. Thus, the execution time averages of the graph models for

the nonsymmetric test matrices include this preprocessing time. The preprocess-

ing time constitutes approximately 3% of the total execution time on the overall

average. In the clique-net model, transforming the hypergraph representation of

the given matrices to graphs using the randomized clique-net model introduces

considerable amount of preprocessing time, despite the e�cient implementation

scheme we have adopted. Hence, the execution time averages of the clique-net

model include this transformation time. The transformation time constitutes ap-

proximately 23% of the total execution time on the overall average. As mentioned

earlier, the PaToH and hMeTiS tools use both CSR and CSC forms such that

the construction of the other form from the given one is performed within the

respective tool.

As seen in Figs. 3.5{3.7, the tools using the hypergraph models run slower

than pMeTiS using the the graph models in most of the instances. The compar-

ison of Fig. 3.5 with Figs. 3.6 and 3.7 shows that the gap between the run-time

performances of the graph and hypergraph models is much less in the decom-

position of the nonsymmetric test matrices than that of the symmetric test ma-

trices. These experimental �ndings were expected, because the execution times
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of graph partitioning tool pMeTiS, and hypergraph partitioning tools hMeTiS

and PaToH are proportional to the sizes of the graph and hypergraph, respec-

tively. In the representation of an M �M square matrix with Z o�-diagonal

nonzeros, the graph models contain jEj = Z=2 and Z=2 < jEj � Z edges for

symmetric and nonsymmetric matrices, respectively. However, the hypergraph

models contain p = M +Z pins for both symmetric and nonsymmetric matrices.

Hence, the size of the hypergraph representation of a matrix is always greater

than the size of its graph representation, and this gap in the sizes decreases in

favor of the hypergraph models in nonsymmetric matrices. Figure 3.7 displays

an interesting behavior that pMeTiS using the clique-net model runs faster than

pMeTiS using the graph model in the columnwise decomposition of 4 out of

9 nonsymmetric test matrices. In these 4 test matrices, the edge contractions

during the hypergraph-to-graph transformation through randomized clique-net

approach lead to less number of edges than the graph model.

As seen in Figs. 3.5{3.7, both PaToH-HCM and PaToH-HCC run considerably

faster than hMeTiS in each decomposition instance. This situation can be most

probably due to the design considerations of hMeTiS. hMeTiS mainly aims at par-

titioning VLSI circuits of which hypergraph representations are muchmore sparse

than the hypergraph representations of the test matrices. In the comparison of the

HCM and HCC clustering schemes of PaToH, PaToH-HCM runs slightly faster

than PaToH-HCC in the decomposition of almost all test matrices except in the

decomposition of symmetric matrices KEN-11 and KEN-13, and nonsymmetric

matrices ONETONE1 and ONETONE2. As seen in Fig. 3.5, PaToH-HCM us-

ing the hypergraph model runs 1.47{2.93 times slower than pMeTiS using the

graph model in the decomposition of the symmetric test matrices. As seen in

Figs. 3.6 and 3.7, PaToH-HCM runs 1.04{1.63 times and 0.83{1.79 times slower

than pMeTiS using the graph model in the rowwise and columnwise decompo-

sition of the nonsymmetric test matrices, respectively. Note that PaToH-HCM

runs 17%, 8% and 6% faster than pMeTiS using the graph model in the 8-way,

16-way and 32-way columnwise decompositions of nonsymmetric matrix LHR34,

respectively. PaToH-HCM achieves 64-way rowwise decomposition of the largest

test matrix BCSSTK32 containing 44.6K rows/columns and 1030K nonzeros in

only 25.6 seconds, which is equal to the sequential execution time of multiplying

matrix BCSSTK32 with a dense vector 73.5 times.
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The relative performance results of the hypergraph models with respect to

the graph models are summarized in Table 3.5 in terms of total communication

volume and execution time by averaging over di�erent K values. This table also

displays the averages of the best and worst performance results of the tools using

the hypergraph models. In Table 3.5, the performance results for the hypergraph

models are normalized with respect to those of pMeTiS using the graph models.

In the symmetric test matrices, direct approaches PaToH and hMeTiS produce

30%{32% better partitions than pMeTiS using the graph model, whereas the

clique-net approach produces 16% better partitions, on the overall average. In the

nonsymmetric test matrices, the direct approaches achieve 34%{38% better de-

composition quality than pMeTiS using the graph model, whereas the clique-net

approach achieves 21%{24% better decomposition quality. As seen in Table 3.5,

the clique-net approach is faster than the direct approaches in the decomposition

of the symmetric test matrices. However, PaToH-HCM achieves nearly equal

run-time performance as pMeTiS using the clique-net approach in the decom-

position of the nonsymmetric test matrices. It is interesting to note that the

execution time of the clique-net approach relative to the graph model decreases

with increasing number of processors K . This is because of the fact that the

percent preprocessing overhead due to the hypergraph-to-graph transformation

in the total execution time of pMeTiS using the clique-net approach decreases

with increasing K .

As seen in Table 3.5, hMeTiS produces slightly (2%) better partitions at the

expense of considerably larger execution time in the decomposition of the sym-

metric test matrices. However, PaToH-HCM achieves the same decomposition

quality as hMeTiS for the nonsymmetric test matrices, whereas PaToH-HCC

achieves slightly (2%{3%) better decomposition quality. In the decomposition of

the nonsymmetric test matrices, although PaToH-HCC performs slightly better

than PaToH-HCM in terms of decomposition quality, it is 13%{14% slower.

In the symmetric test matrices, the use of the proposed hypergraph model

instead of the graph model achieves 30% decrease in the communication volume

requirement of a single parallel SpMxV computation at the expense of 130%

increase in the decomposition time by using PaToH-HCM for hypergraph parti-

tioning. In the nonsymmetric test matrices, the use of the proposed hypergraph
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Table 3.1: Properties of test matrices.

number number of nonzeros
matrix name description of total avg. per per column per row

rows/cols row/col min max std cov min max std cov
Structurally Symmetric Matrices

SHERMAN3 [24] 3D �nite di�erence grid 5005 20033 4.00 1 7 2.66 0.67 1 7 2.66 0.67
KEN-11 [16] linear programming 14694 82454 5.61 2 243 14.54 2.59 2 243 14.54 2.59
NL [18] linear programming 7039 105089 14.93 1 361 28.48 1.91 1 361 28.48 1.91
KEN-13 [16] linear programming 28632 161804 5.65 2 339 16.84 2.98 2 339 16.84 2.98
CQ9 [18] linear programming 9278 221590 23.88 1 702 54.46 2.28 1 702 54.46 2.28
CO9 [18] linear programming 10789 249205 23.10 1 707 52.17 2.26 1 707 52.17 2.26
CRE-D [16] linear programming 8926 372266 41.71 1 845 76.46 1.83 1 845 76.46 1.83
CRE-B [16] linear programming 9648 398806 41.34 1 904 74.69 1.81 1 904 74.69 1.81
FINAN512 [23] stochastic programming 74752 615774 8.24 3 1449 20.00 2.43 3 1449 20.00 2.43

Structurally Nonsymmetric Matrices
GEMAT11 [24] optimal power 
ow 4929 38101 7.73 1 28 2.96 0.38 1 29 3.38 0.44
LHR07 [23] light hydrocarbon recovery 7337 163716 22.31 1 64 26.19 1.17 2 37 16.00 0.72
ONETONE2 [23] nonlinear analog circuit 36057 254595 7.06 2 34 5.13 0.73 2 66 6.67 0.94
LHR14 [23] light hydrocarbon recovery 14270 321988 22.56 1 64 26.26 1.16 2 37 15.98 0.71
ONETONE1 [23] nonlinear analog circuit 36057 368055 10.21 2 82 14.32 1.40 2 162 17.85 1.75
LHR17 [23] light hydrocarbon recovery 17576 399500 22.73 1 64 26.32 1.16 2 37 15.96 0.70
LHR34 [23] light hydrocarbon recovery 35152 799064 22.73 1 64 26.32 1.16 2 37 15.96 0.70
BCSSTK32 [24] 3D sti�ness matrix 44609 1029655 23.08 1 141 10.10 0.44 1 192 10.45 0.45
BCSSTK30 [24] 3D sti�ness matrix 28924 1036208 35.83 1 159 21.99 0.61 1 104 15.27 0.43

models instead of the graph model achieves 34%{35% decrease in the communica-

tion volume requirement of a single parallel SpMxV computation at the expense

of only 34%{39% increase in the decomposition time by using PaToH-HCM.
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Table 3.2: Average communication requirements for rowwise/columnwise decom-
position of structurally symmetric test matrices.

Graph Model Hypergraph Model: Column-net Model � Row-net Model
pMeTiS hMeTiS PaToH-HCM PaToH-HCC

name K # of mssgs comm. # of mssgs comm. # of mssgs comm. # of mssgs comm.
per proc. volume per proc. volume per proc. volume per proc. volume
avg max tot max avg max tot max avg max tot max avg max tot max

8 3.6 4.9 0.20 0.033 3.6 5.0 0.17 0.029 3.4 4.9 0.16 0.030 3.3 4.8 0.16 0.030
16 5.3 8.2 0.31 0.028 5.2 7.8 0.27 0.024 4.5 7.4 0.25 0.024 4.7 7.8 0.25 0.025

SHERMAN3 32 6.5 11.0 0.46 0.021 6.7 10.9 0.39 0.018 5.7 10.1 0.37 0.019 5.9 10.5 0.37 0.019
64 7.5 13.6 0.64 0.016 7.9 13.6 0.55 0.013 7.0 13.1 0.53 0.014 7.0 13.4 0.53 0.014
8 7.0 7.0 0.70 0.116 6.9 7.0 0.47 0.078 6.9 7.0 0.51 0.083 7.0 7.0 0.55 0.094
16 13.8 15.0 0.92 0.080 12.4 15.0 0.57 0.047 12.8 15.0 0.59 0.046 13.7 15.0 0.66 0.057

KEN-11 32 26.1 30.5 1.16 0.055 19.8 30.3 0.70 0.032 21.2 31.0 0.73 0.033 22.1 30.5 0.79 0.034
64 40.9 54.9 1.44 0.038 30.1 58.6 0.90 0.024 32.1 60.4 0.92 0.025 30.1 54.2 0.96 0.025
8 7.0 7.0 1.33 0.192 6.8 7.0 0.72 0.110 6.8 7.0 0.76 0.124 7.0 7.0 0.79 0.135
16 15.0 15.0 1.71 0.147 13.5 15.0 0.99 0.085 13.2 15.0 1.05 0.097 13.7 15.0 1.14 0.101

NL 32 28.1 31.0 2.26 0.101 19.5 26.5 1.40 0.060 20.0 27.6 1.52 0.068 20.3 27.5 1.57 0.070
64 38.2 59.1 3.06 0.073 24.4 39.3 2.08 0.045 26.4 40.5 2.20 0.048 26.0 42.9 2.23 0.050
8 7.0 7.0 0.75 0.120 7.0 7.0 0.47 0.070 7.0 7.0 0.48 0.075 6.9 7.0 0.48 0.076
16 14.8 15.0 0.94 0.078 13.2 15.0 0.54 0.043 14.0 15.0 0.55 0.041 13.4 15.0 0.55 0.042

KEN-13 32 29.2 31.0 1.16 0.051 22.7 31.0 0.64 0.029 22.8 31.0 0.63 0.025 21.8 31.0 0.63 0.027
64 51.0 62.2 1.41 0.034 35.9 62.8 0.80 0.022 35.8 63.0 0.79 0.020 34.7 63.0 0.78 0.019
8 7.0 7.0 1.11 0.173 7.0 7.0 0.65 0.104 7.0 7.0 0.71 0.154 6.9 7.0 0.71 0.166
16 14.9 15.0 1.69 0.172 12.7 15.0 0.88 0.097 12.9 15.0 0.99 0.120 12.7 14.9 0.96 0.112

CQ9 32 21.8 30.7 2.42 0.148 18.6 26.6 1.36 0.075 18.0 27.0 1.47 0.086 17.6 26.9 1.40 0.082
64 32.1 56.4 3.71 0.115 23.7 38.4 2.27 0.061 22.7 41.0 2.34 0.065 22.7 39.5 2.31 0.064
8 7.0 7.0 0.96 0.156 7.0 7.0 0.67 0.110 7.0 7.0 0.68 0.133 7.0 7.0 0.67 0.139
16 14.8 15.0 1.51 0.157 12.4 14.9 0.87 0.091 12.7 14.9 0.94 0.110 12.7 14.9 0.92 0.107

CO9 32 19.5 29.7 2.08 0.120 17.6 26.6 1.33 0.079 17.6 26.3 1.37 0.077 18.1 26.7 1.34 0.079
64 29.9 52.3 3.14 0.093 21.7 37.3 2.13 0.061 21.8 38.8 2.16 0.059 21.9 38.6 2.14 0.062
8 7.0 7.0 1.81 0.292 6.9 7.0 1.39 0.226 6.4 7.0 1.33 0.214 6.2 7.0 1.25 0.208
16 14.9 15.0 2.81 0.238 13.0 15.0 2.09 0.177 11.8 15.0 2.00 0.176 11.2 15.0 1.89 0.163

CRE-D 32 28.7 31.0 4.13 0.188 21.3 31.0 2.97 0.136 19.3 31.0 2.89 0.133 18.4 31.0 2.73 0.124
64 47.9 63.0 6.01 0.142 31.2 61.3 4.16 0.104 29.7 60.8 4.19 0.104 27.9 60.5 3.96 0.098
8 7.0 7.0 1.70 0.267 6.9 7.0 1.40 0.224 6.7 7.0 1.33 0.213 6.6 7.0 1.28 0.212
16 14.8 15.0 2.62 0.230 13.4 15.0 2.07 0.177 12.2 15.0 2.01 0.175 12.2 15.0 1.95 0.180

CRE-B 32 28.5 31.0 3.89 0.179 21.5 30.9 2.90 0.138 20.0 31.0 2.88 0.148 19.3 31.0 2.75 0.154
64 46.6 63.0 5.72 0.136 31.3 61.4 4.07 0.111 30.0 61.7 4.12 0.121 28.3 61.5 3.93 0.125
8 2.9 4.3 0.13 0.047 2.8 4.2 0.11 0.045 3.0 4.6 0.12 0.047 3.4 5.6 0.12 0.047
16 4.3 7.2 0.20 0.034 3.0 6.7 0.14 0.024 3.3 7.2 0.16 0.025 4.0 9.4 0.17 0.027

FINAN512 32 6.3 13.6 0.27 0.020 3.4 13.2 0.18 0.015 4.2 13.8 0.21 0.016 4.7 17.3 0.22 0.017
64 8.8 26.5 0.38 0.013 4.2 25.8 0.28 0.010 5.5 26.4 0.31 0.011 5.9 31.0 0.32 0.012

Averages over K

8 6.2 6.5 0.97 0.155 6.1 6.5 0.67 0.111 6.0 6.5 0.68 0.119 6.0 6.6 0.67 0.123
16 12.5 13.4 1.41 0.129 11.0 13.3 0.93 0.085 10.8 13.3 0.95 0.091 10.9 13.6 0.94 0.090
32 21.6 26.6 1.98 0.098 16.8 25.2 1.32 0.065 16.5 25.4 1.34 0.067 16.5 25.8 1.31 0.067
64 33.6 50.1 2.83 0.073 23.4 44.3 1.92 0.050 23.4 45.1 1.95 0.052 22.7 45.0 1.91 0.052

In the \# of mssgs" column, \avg" and \max" denote the average and maximum num-
ber of messages, respectively, handled by a single processor. In the \comm. volume"
column, \tot" denotes the total communication volume, whereas \max" denotes the
maximum communication volume handled by a single processor. Communication vol-
ume values (in terms of the number of words transmitted) are scaled by the number of
rows/columns of the respective test matrices.
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Table 3.3: Average communication requirement for rowwise decomposition of
structurally nonsymmetric test matrices.

Graph Model Hypergraph Model: Column-net Model
pMeTiS hMeTiS PaToH-HCM PaToH-HCC

name K # of mssgs comm. # of mssgs comm. # of mssgs comm. # of mssgs comm.
per proc. volume per proc. volume per proc. volume per proc. volume
avg max tot max avg max tot max avg max tot max avg max tot max

8 7.0 7.0 1.33 0.201 7.0 7.0 0.79 0.111 7.0 7.0 0.75 0.109 7.0 7.0 0.73 0.106
16 15.0 15.0 1.85 0.144 14.8 15.0 1.00 0.071 14.7 15.0 0.96 0.070 14.6 15.0 0.93 0.067

GEMAT11 32 29.8 31.0 2.31 0.092 26.6 30.8 1.18 0.044 25.8 30.6 1.15 0.043 25.1 30.4 1.10 0.042
64 47.7 58.8 2.71 0.056 34.3 46.7 1.33 0.026 33.5 46.2 1.32 0.026 31.9 44.2 1.27 0.025
8 6.8 7.0 1.09 0.179 6.2 7.0 0.64 0.111 6.0 7.0 0.65 0.106 5.8 7.0 0.66 0.116
16 13.0 15.0 1.52 0.130 10.3 13.9 0.93 0.089 9.7 13.8 0.91 0.081 9.2 13.1 0.90 0.083

LHR07 32 20.1 29.1 1.96 0.094 13.9 22.3 1.30 0.081 13.0 21.7 1.24 0.066 12.5 20.5 1.24 0.064
64 24.4 44.8 2.49 0.079 16.8 33.5 1.84 0.077 15.6 30.0 1.65 0.056 15.9 30.7 1.64 0.059
8 2.8 4.3 0.08 0.014 2.6 3.8 0.06 0.010 2.4 3.5 0.06 0.011 2.5 3.6 0.06 0.010
16 4.9 7.5 0.17 0.015 4.9 7.3 0.11 0.010 4.7 6.9 0.12 0.011 4.7 6.8 0.12 0.011

ONETONE2 32 7.0 11.9 0.28 0.014 7.5 13.3 0.20 0.009 8.0 11.9 0.22 0.009 7.1 10.9 0.21 0.009
64 9.4 18.6 0.39 0.011 10.1 20.1 0.29 0.007 10.7 17.2 0.31 0.008 9.4 15.8 0.31 0.008
8 7.0 7.0 0.99 0.157 6.6 7.0 0.61 0.100 6.4 7.0 0.59 0.095 6.2 7.0 0.59 0.097
16 14.0 15.0 1.33 0.116 11.4 14.6 0.84 0.074 10.3 13.5 0.81 0.071 10.0 13.6 0.82 0.072

LHR14 32 22.9 29.4 1.71 0.078 15.5 23.2 1.10 0.056 13.5 20.7 1.05 0.050 13.1 20.9 1.07 0.053
64 29.9 48.6 2.14 0.054 18.1 31.5 1.44 0.048 15.4 27.5 1.34 0.040 15.6 29.0 1.36 0.041
8 5.1 6.5 0.42 0.067 3.7 5.0 0.16 0.025 3.5 4.9 0.16 0.026 3.6 4.9 0.16 0.025
16 8.5 11.8 0.59 0.050 7.9 10.4 0.29 0.023 7.6 9.8 0.30 0.026 7.8 10.1 0.29 0.024

ONETONE1 32 13.6 19.1 0.78 0.035 14.2 19.7 0.42 0.017 13.8 19.1 0.45 0.020 14.2 18.9 0.42 0.019
64 18.7 28.9 0.97 0.025 22.0 33.0 0.57 0.013 19.3 29.2 0.61 0.016 19.8 29.7 0.56 0.015
8 7.0 7.0 0.94 0.143 6.9 7.0 0.62 0.094 6.7 7.0 0.57 0.090 6.5 7.0 0.60 0.095
16 14.3 15.0 1.28 0.110 12.4 14.8 0.82 0.068 11.0 13.8 0.77 0.066 10.8 13.7 0.80 0.068

LHR17 32 23.5 29.6 1.62 0.074 17.1 23.8 1.07 0.052 14.4 21.0 1.00 0.047 14.1 21.5 1.03 0.047
64 30.3 46.9 2.04 0.048 19.6 33.0 1.38 0.041 16.4 29.4 1.29 0.036 16.0 30.3 1.30 0.036
8 3.5 4.8 0.61 0.088 3.6 5.3 0.42 0.063 3.5 5.0 0.38 0.056 3.4 4.5 0.40 0.061
16 7.3 9.5 0.95 0.075 7.3 10.1 0.62 0.049 7.0 9.7 0.57 0.046 6.8 8.8 0.60 0.050

LHR34 32 14.5 17.5 1.28 0.055 12.6 16.8 0.84 0.037 11.1 15.3 0.77 0.034 10.9 14.6 0.80 0.035
64 23.7 30.6 1.63 0.038 17.2 24.9 1.08 0.027 14.6 22.7 1.00 0.025 14.3 22.5 1.03 0.025
8 3.5 5.4 0.07 0.015 3.7 5.7 0.05 0.012 3.5 5.4 0.05 0.013 3.6 5.5 0.05 0.012
16 4.4 7.6 0.12 0.013 4.2 8.3 0.09 0.011 4.0 7.3 0.09 0.011 4.0 7.3 0.09 0.011

BCSSTK32 32 5.1 9.4 0.20 0.011 4.7 10.6 0.14 0.008 4.7 9.6 0.15 0.009 4.6 9.7 0.14 0.008
64 5.7 11.3 0.30 0.008 4.8 11.6 0.22 0.006 4.9 11.0 0.24 0.007 4.7 10.8 0.22 0.006
8 2.3 3.9 0.10 0.018 2.3 3.6 0.09 0.018 2.2 3.4 0.09 0.017 2.2 3.4 0.08 0.017
16 3.7 6.3 0.21 0.022 3.3 5.4 0.18 0.018 3.3 5.6 0.18 0.018 3.3 5.6 0.16 0.017

BCSSTK30 32 4.9 8.7 0.36 0.019 4.4 7.9 0.29 0.015 4.6 8.0 0.31 0.016 4.4 7.8 0.28 0.014
64 5.8 11.3 0.57 0.016 5.3 10.6 0.45 0.013 5.6 10.3 0.48 0.013 5.3 10.0 0.45 0.012

Averages over K

8 5.0 5.9 0.63 0.098 4.7 5.7 0.38 0.060 4.6 5.6 0.37 0.058 4.5 5.5 0.37 0.060
16 9.5 11.4 0.89 0.075 8.5 11.1 0.54 0.046 8.0 10.6 0.53 0.045 7.9 10.4 0.52 0.045
32 15.7 20.6 1.17 0.052 12.9 18.7 0.73 0.036 12.1 17.5 0.70 0.033 11.8 17.3 0.70 0.032
64 21.7 33.3 1.47 0.037 16.5 27.2 0.96 0.029 15.1 24.8 0.92 0.025 14.8 24.8 0.90 0.025

In the \# of mssgs" column, \avg" and \max" denote the average and maximum num-
ber of messages, respectively, handled by a single processor. In the \comm. volume"
column, \tot" denotes the total communication volume, whereas \max" denotes the
maximum communication volume handled by a single processor. Communication vol-
ume values (in terms of the number of words transmitted) are scaled by the number of
rows/columns of the respective test matrices.
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Table 3.4: Average communication requirements for columnwise decomposition
of structurally nonsymmetric test matrices.

Graph Model Hypergraph Model: Row-net Model
pMeTiS hMeTiS PaToH-HCM PaToH-HCC

name K # of mssgs comm. # of mssgs comm. # of mssgs comm. # of mssgs comm.
per proc. volume per proc. volume per proc. volume per proc. volume
avg max tot max avg max tot max avg max tot max avg max tot max

8 7.0 7.0 1.44 0.213 7.0 7.0 0.75 0.108 7.0 7.0 0.76 0.110 7.0 7.0 0.72 0.108
16 15.0 15.0 1.98 0.145 14.7 15.0 0.95 0.071 14.7 15.0 0.97 0.072 14.6 15.0 0.93 0.069

GEMAT11 32 29.9 31.0 2.46 0.091 25.6 30.0 1.13 0.043 25.9 30.3 1.15 0.043 25.0 29.9 1.10 0.042
64 47.9 58.5 2.85 0.056 32.7 43.9 1.28 0.026 33.6 45.3 1.33 0.026 31.6 43.8 1.27 0.025
8 6.9 7.0 1.10 0.188 6.5 7.0 0.75 0.123 6.4 7.0 0.67 0.107 6.4 7.0 0.66 0.105
16 12.5 15.0 1.54 0.141 11.1 15.0 1.10 0.094 10.6 15.0 0.96 0.081 10.8 15.0 0.95 0.081

LHR07 32 19.3 30.3 2.05 0.112 16.4 28.7 1.52 0.068 15.1 29.5 1.32 0.059 15.6 29.0 1.31 0.059
64 23.5 56.7 2.60 0.088 22.0 39.2 2.03 0.050 19.7 40.5 1.76 0.042 19.8 41.2 1.74 0.042
8 2.6 3.8 0.09 0.017 2.4 3.2 0.07 0.012 2.2 3.1 0.08 0.013 3.1 4.5 0.08 0.013
16 4.8 7.4 0.20 0.019 4.7 6.6 0.13 0.012 4.6 6.2 0.16 0.014 5.4 8.7 0.15 0.014

ONETONE2 32 7.5 12.7 0.34 0.016 7.6 11.2 0.24 0.010 7.6 11.1 0.27 0.011 8.3 14.8 0.25 0.011
64 10.2 21.4 0.46 0.013 9.6 15.8 0.33 0.008 10.5 16.4 0.35 0.008 10.4 23.5 0.34 0.009
8 7.0 7.0 1.05 0.168 6.6 7.0 0.67 0.109 6.6 7.0 0.61 0.096 6.7 7.0 0.61 0.096
16 13.9 15.0 1.43 0.123 11.4 14.7 0.95 0.077 11.6 15.0 0.85 0.069 11.7 15.0 0.84 0.069

LHR14 32 22.9 30.4 1.85 0.087 16.8 27.9 1.26 0.054 16.4 29.6 1.11 0.047 16.5 30.5 1.11 0.049
64 29.3 55.3 2.32 0.069 21.3 45.7 1.65 0.038 19.8 54.2 1.45 0.035 20.3 56.2 1.44 0.036
8 5.1 6.5 0.44 0.067 3.7 5.0 0.19 0.031 3.5 4.7 0.21 0.033 3.5 4.9 0.20 0.034
16 8.7 11.6 0.62 0.051 7.8 10.2 0.34 0.026 7.6 9.6 0.38 0.032 7.8 10.1 0.36 0.029

ONETONE1 32 14.4 20.0 0.81 0.035 13.3 18.6 0.49 0.021 13.4 18.6 0.54 0.026 14.0 19.1 0.51 0.024
64 19.9 30.2 1.08 0.024 19.9 31.5 0.65 0.017 19.6 30.5 0.72 0.018 19.3 30.4 0.69 0.019
8 7.0 7.0 1.02 0.164 6.8 7.0 0.66 0.100 6.8 7.0 0.59 0.087 6.9 7.0 0.58 0.087
16 14.4 15.0 1.40 0.117 12.2 15.0 0.91 0.074 12.3 15.0 0.81 0.064 12.3 15.0 0.80 0.063

LHR17 32 24.2 30.6 1.78 0.080 18.0 30.0 1.22 0.052 17.1 30.6 1.06 0.044 17.2 30.8 1.05 0.044
64 31.4 53.3 2.21 0.062 22.9 51.9 1.58 0.037 20.7 55.0 1.37 0.031 20.8 55.8 1.36 0.032
8 3.4 4.5 0.67 0.103 3.4 4.1 0.43 0.065 3.4 4.1 0.39 0.056 3.4 4.1 0.39 0.055
16 7.3 8.6 1.02 0.086 7.1 8.4 0.66 0.053 7.2 8.3 0.59 0.046 7.1 8.3 0.59 0.046

LHR34 32 14.7 16.8 1.40 0.061 12.4 15.9 0.92 0.040 12.4 15.6 0.81 0.033 12.5 15.7 0.80 0.033
64 24.2 31.4 1.78 0.043 18.2 30.3 1.22 0.028 17.3 30.8 1.06 0.023 17.3 31.0 1.06 0.023
8 3.6 5.3 0.07 0.016 3.1 4.6 0.05 0.013 3.9 5.8 0.06 0.014 3.4 5.2 0.05 0.012
16 4.3 7.3 0.12 0.014 3.9 7.0 0.08 0.010 4.4 7.9 0.10 0.012 4.1 7.7 0.08 0.011

BCSSTK32 32 5.1 9.5 0.19 0.011 4.4 8.9 0.14 0.008 4.7 9.9 0.15 0.009 4.6 9.4 0.14 0.009
64 5.5 11.6 0.29 0.009 4.5 10.1 0.21 0.007 4.9 11.4 0.23 0.008 4.7 11.2 0.21 0.007
8 2.5 4.0 0.08 0.017 2.8 4.6 0.08 0.017 2.2 3.4 0.07 0.014 2.4 4.2 0.06 0.013
16 3.6 6.2 0.18 0.018 3.4 6.0 0.14 0.015 3.0 5.0 0.14 0.016 3.1 5.2 0.13 0.014

BCSSTK30 32 4.7 8.2 0.31 0.015 4.0 8.0 0.22 0.012 4.0 6.9 0.24 0.013 3.9 7.1 0.21 0.012
64 5.7 10.0 0.50 0.013 4.6 9.0 0.34 0.010 4.5 8.4 0.37 0.010 4.5 9.3 0.34 0.010

Averages over K

8 5.0 5.8 0.66 0.106 4.7 5.5 0.40 0.064 4.7 5.5 0.38 0.059 4.8 5.7 0.37 0.058
16 9.4 11.2 0.94 0.079 8.5 10.9 0.59 0.048 8.4 10.8 0.55 0.045 8.6 11.1 0.54 0.044
32 15.8 21.1 1.24 0.057 13.2 19.9 0.79 0.034 13.0 20.2 0.74 0.032 13.1 20.7 0.72 0.031
64 22.0 36.5 1.57 0.042 17.3 30.8 1.03 0.024 16.7 32.5 0.96 0.022 16.5 33.6 0.94 0.023

In the \# of mssgs" column, \avg" and \max" denote the average and maximum num-
ber of messages, respectively, handled by a single processor. In the \comm. volume"
column, \tot" denotes the total communication volume, whereas \max" denotes the
maximum communication volume handled by a single processor. Communication vol-
ume values (in terms of the number of words transmitted) are scaled by the number of
rows/columns of the respective test matrices.
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Figure 3.5: Relative run-time performance of the proposed column-net/row-net
hypergraph model (Clique-net, hMeTiS, PaToH-HCM and PaToH-HCC) to the
graph model (pMeTiS) in rowwise/columnwise decomposition of symmetric test
matrices. Bars above 1.0 indicate that the hypergraph model leads to slower
decomposition time than the graph model.
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Figure 3.6: Relative run-time performance of the proposed column-net hyper-
graph model (Clique-net, hMeTiS, PaToH-HCM and PaToH-HCC) to the graph
model (pMeTiS) in rowwise decomposition of symmetric test matrices. Bars
above 1.0 indicate that the hypergraph model leads to slower decomposition time
than the graph model.



CHAPTER 3. HYPERGRAPH MODELS FOR 1D DECOMPOSITION 51

5HODWLYH UXQ�WLPHV IRU ��ZD\ GHFRPSRVLWLRQV

���

���

���

���

���

���

���

���

���

���

*
(
0
$
7
�
�

/
+
5
�
�

2
1
(
7
2
1
(
�

/
+
5
�
�

2
1
(
7
2
1
(
�

/
+
5
�
�

/
+
5
�
�

%
&
6
6
7
.
�
�

%
&
6
6
7
.
�
�

&OLTXH�1HW K0H7L6 3D7R+�+&0 3D7R+�+&& S0H7L6

5HODWLYH UXQ�WLPHV IRU ���ZD\ GHFRPSRVLWLRQV

���

���

���

���

���

���

���

���

���

���

*
(
0
$
7
�
�

/
+
5
�
�

2
1
(
7
2
1
(
�

/
+
5
�
�

2
1
(
7
2
1
(
�

/
+
5
�
�

/
+
5
�
�

%
&
6
6
7
.
�
�

%
&
6
6
7
.
�
�

&OLTXH�1HW K0H7L6 3D7R+�+&0 3D7R+�+&& S0H7L6

5HODWLYH UXQ�WLPHV IRU ���ZD\ GHFRPSRVLWLRQV

���

���

���

���

���

���

���

���

���

���

*
(
0
$
7
�
�

/
+
5
�
�

2
1
(
7
2
1
(
�

/
+
5
�
�

2
1
(
7
2
1
(
�

/
+
5
�
�

/
+
5
�
�

%
&
6
6
7
.
�
�

%
&
6
6
7
.
�
�

&OLTXH�1HW K0H7L6 3D7R+�+&0 3D7R+�+&& S0H7L6

5HODWLYH UXQ�WLPHV IRU ���ZD\ GHFRPSRVLWLRQV

���

���

���

���

���

���

���

���

���

���

����

*
(
0
$
7
�
�

/
+
5
�
�

2
1
(
7
2
1
(
�

/
+
5
�
�

2
1
(
7
2
1
(
�

/
+
5
�
�

/
+
5
�
�

%
&
6
6
7
.
�
�

%
&
6
6
7
.
�
�

&OLTXH�1HW K0H7L6 3D7R+�+&0 3D7R+�+&& S0H7L6

Figure 3.7: Relative run-time performance of the proposed row-net hypergraph
model (Clique-net, hMeTiS, PaToH-HCM and PaToH-HCC) to the graph model
(pMeTiS) in columnwise decomposition of symmetric test matrices. Bars above
1.0 indicate that the hypergraph model leads to slower decomposition time than
the graph model.



CHAPTER 3. HYPERGRAPH MODELS FOR 1D DECOMPOSITION 52

Table 3.5: Overall performance averages of the proposed hypergraph models nor-
malized with respect to those of the graph models using pMeTiS.

pMeTiS (clique-net model) hMeTiS PaToH-HCM PaToH-HCC
K Tot. Comm. Volume Time Tot. Comm. Volume Time Tot. Comm. Volume Time Tot. Comm. Volume Time

best worst avg best worst avg best worst avg best worst avg
Symmetric Matrices: Column-net Model � Row-net Model

8 0.86 0.84 0.85 2.08 0.73 0.70 0.71 8.13 0.73 0.73 0.73 2.19 0.73 0.73 0.73 2.42
16 0.86 0.84 0.83 1.90 0.70 0.66 0.66 8.95 0.70 0.69 0.68 2.25 0.71 0.69 0.69 2.43
32 0.85 0.84 0.84 1.79 0.68 0.65 0.66 9.72 0.69 0.68 0.68 2.33 0.69 0.68 0.68 2.44
64 0.85 0.84 0.84 1.78 0.71 0.68 0.69 10.64 0.72 0.69 0.70 2.41 0.72 0.69 0.70 2.56
avg 0.86 0.84 0.84 1.89 0.70 0.67 0.68 9.36 0.71 0.70 0.70 2.30 0.71 0.70 0.70 2.46

Nonsymmetric Matrices: Column-net Model
8 0.78 0.78 0.78 1.48 0.68 0.63 0.64 5.31 0.67 0.64 0.64 1.32 0.66 0.62 0.63 1.50
16 0.80 0.78 0.78 1.44 0.66 0.63 0.64 5.53 0.67 0.64 0.65 1.37 0.65 0.62 0.63 1.56
32 0.79 0.78 0.78 1.34 0.66 0.64 0.66 5.88 0.67 0.65 0.66 1.44 0.65 0.63 0.64 1.61
64 0.80 0.79 0.79 1.34 0.69 0.68 0.68 6.17 0.69 0.68 0.68 1.45 0.67 0.66 0.66 1.62
avg 0.79 0.78 0.79 1.40 0.67 0.64 0.66 5.72 0.67 0.65 0.66 1.39 0.66 0.63 0.64 1.57

Nonsymmetric Matrices: Row-net Model
8 0.75 0.74 0.76 1.25 0.64 0.62 0.63 5.22 0.64 0.63 0.63 1.29 0.62 0.60 0.61 1.50
16 0.75 0.74 0.75 1.15 0.65 0.63 0.64 5.34 0.65 0.63 0.65 1.33 0.62 0.61 0.62 1.54
32 0.75 0.75 0.75 1.12 0.67 0.65 0.66 5.55 0.66 0.64 0.66 1.38 0.63 0.62 0.63 1.58
64 0.76 0.77 0.76 1.09 0.67 0.67 0.67 5.84 0.66 0.65 0.66 1.36 0.64 0.63 0.63 1.50
avg 0.75 0.75 0.76 1.15 0.66 0.64 0.65 5.49 0.65 0.64 0.65 1.34 0.63 0.61 0.62 1.53

In total communication volume, a ratio smaller than 1.00 indicates that the hypergraph
model produces better decompositions than the graph model. In execution time, a ratio
greater than 1.00 indicates that the hypergraph model leads to slower decomposition
time than the graph model.



Chapter 4

Hypergraph Models for 2D

Decomposition

The atomic task de�nition in the 1D decomposition ensures that either row stripes

or column stripes are distributed among the processors. That is computations for

a row and column are considered as indivisible tasks in rowwise and columnwise

decomposition, respectively. This atomic task de�nition can be unnecessarily

restricted. Consider the sparse matrices which have some dense rows/columns.

Load balancing problem becomes very hard for this kind of matrices. It is conjec-

tured that columnwise decomposition can be more appropriate for the matrices

with dense rows, and rowwise decomposition can be appropriate for the ones with

dense columns. However, this precaution can be valuable for only nonsymmet-

ric matrices. Furthermore, columnwise (rowwise) decomposition of matrices with

dense rows (columns) is likely to induce high volume of communication during the

post (pre) communication phase. The 2D decomposition approach is expected to

yield better decomposition in terms of both load balancing and communication

requirements since it has more degree of freedom.

Unfortunately, in the literature there is not too much work on 2D decom-

position of matrices, and existing heuristics address only the load balancing

problem [62, 56, 55, 37]. The matrix-vector multiplication algorithm proposed

by Hendrickson et. al. [37] is based on 2D block checkerboard partitioning and

minimizes the communication requirement implicitly. Lewis and Geijn [56] and

53
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Lewis et.al. [55] proposed di�erent parallel SpMxV computation approaches one

of which eliminates the transpose operation required in method proposed by Hen-

drickson et. al. [37].

There is no work on 2D decomposition which directly aims at minimizing

communication volume while maintaining the load balance. In this section, three

di�erent hypergraph models will be introduced for 2D decomposition of sparse

matrices. Here, we propose a �ne-grain hypergraph model which considers each

multiply operation in SpMxV as atomic tasks during the decomposition. Two

new coarse-grain hypergraph models are proposed for reducing the decomposi-

tion overhead. Another objective in the coarse-grain hypergraph models is an im-

plicit e�ort towards reducing the amount of communication. The �rst hypergraph

model produces jagged-like 2D decompositions of the sparse matrices. The second

coarse-grain hypergraph model is speci�cally designed for checkerboard partition-

ing which is commonly used in the literature by the matrix-vector multiplication

algorithms [62, 56, 55, 37]. Experimental results presented in Section 4.4 show

that the �ne-grain hypergraph model for 2D decomposition produces superior

results over 1D decomposition results produced by both graph and hypergraph

models, in terms of total communication volume. The coarse-grain models also

produce better decompositions then the graph model in terms of total commu-

nication volume. In terms of number of messages, checkerboard decomposition

displays its strength over all models.

As mentioned earlier, parallel SpMxV computations based on 2D decomposi-

tion schemes, necessitates both pre and post communication. That is, the entries

in x vector need to be communicated just before the local SpMxV computations,

and the result of partial y vector need to be communicated after local SpMxV

computations. Here and after, we will use the term expand to denote the per-

sonalized communication of the entries in x, and fold to denote the personalized

communication of entries in y.
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4.1 A Fine-grain Hypergraph Model

In this model, an M �M matrix A with Z nonzero elements is represented as

a hypergraph H= (V;N ) with jVj = Z vertices and jN j = 2 �M nets for 2D

decomposition which uses both pre and post communication. There exists one

vertex vij 2 V corresponding to each nonzero aij in matrix A. For each row

and for each column there exists a net in N . For simplicity in the presentation

let N = NR [ NC such that NR = fm1;m2; : : : ;mMg represents the set of

nets corresponding to the rows and NC = fn1; n2; : : : ; nMg represents the set

of nets corresponding to the columns of the matrix A. Net mj � V contains

the vertices corresponding to the nonzeros in row j , and net nj � V contains

the vertices corresponding to the nonzeros in column j . That is, vij 2mi and

vij 2 nj if and only if aij 6= 0. Note that each vertex vij is connected exactly

two nets. Each vertex vij 2 V corresponds to the atomic task of computing

the scalar multiplication operation yji = aijxj . Hence, each vertex vij 2 V has

unit computational weight wij = 1. The nets in NC represent the dependency

relations of the atomic tasks to the x-vector components, that is, they model the

expand operation in the pre communication phase. The nets in NR represent the

dependency relations of the atomic tasks on the y-vector components, in other

words, they model the fold operation in the post communication phase. Hence,

each column-net nj denotes the set of atomic tasks (vertices) that need xj during

pre communication, and each row-net mi denotes the set of atomic task results

needed to accumulate yi during the post communication. Figure 4.1 illustrates

the dependency relation view of 2D �ne-grain model. As seen in this �gure,

column-net nj=fvij; vjj; vljg of size 3 represents the dependency of atomic tasks

vij , vjj , vlj to xj because of the 3 multiplication operations yji =aij�xj , yjj=ajj�xj
and yjl =alj �xj . In this �gure, row-net mi=fvih; vii; vik; vijg of size 4 represents

the dependency of accumulating yi= yhi + yii+y
k
i +y

j
i to the 4 partial yi results

yhi =aih�xh , yii=aii�xi , yki =aik�xk and yji =aij�xj . Figure 4.3 displays the 2D �ne-

grain hypergraph representation of the sample 8 �8 nonsymmetric matrix with

21 nonzero elements displayed in Figure 4.2. In Figure 4.3 pins of the row net

m1 = fv1;1; v1;2; v1;6g corresponding to row 1, represent the nonzeros a1;1 , a1;2 ,

and a1;6 in that row. Net m1 also represents the dependency of accumulating

the y1 = y11 + y21 + y61 on the partial y1 results y11 = a1;1x1 , y21 = a1;2x2 , and
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vih

vii

vik

vij

vjj

vlj

mi (ri / yi)
nj (cj / xj)

Figure 4.1: Dependency relation of 2D �ne-grain hypergraph mode

y61 = a1;6x6 . Similarly, pins of the column net n7 = fv4;7; v5;7; v7;7g corresponding
to column 7, represents the nonzeros a4;7 , a5;7 , and a7;7 in that column. Net n7

is also represents the dependency of atomic tasks v4;7, v5;7 and v7;7 to x7 because

of the computation y74 = a4;7x7 , y75 = a5;7x7 and y77 = a7;7x7 .

By assigning unit costs to the nets (i.e. cj = 1 for each net nj 2 N ), the

proposed �ne-grain hypergraph model reduces the decomposition problem to the

K -way hypergraph partitioning problem according to the cutsize de�nition given

in (2.4.b) for 2D schemes which requires both the pre and post communication.

Nets corresponding to rows of matrix (i.e. nets in NR ) model the communica-

tion volume requirement of folds, and nets corresponding the columns of matrix

(i.e. nets in NC ) model the communication volume requirement of expands.

Consistency of the proposed hypergraph models for accurate representation of

communication volume requirement while maintaining the symmetric partition-

ing depends on the condition that \vii 2 mi and vii 2 ni for each row-net mi

and column-net ni". We �rst assume that this condition holds in the discussion

throughout the following paragraphs and then discuss the appropriateness of the

assumption in the last paragraph of this section.

Consider a partition � of H in the �ne-grain hypergraph model for 2D de-

composition of a matrix A. Without loss of generality, we assume that part Pk
is assigned to processor Pk for k = 1; 2; : : : ;K: Recall that, � is de�ned as a

partition on the vertex set of H , hence it does not induce any part assignment

for the nets. Since column and row nets of H denotes the expand and fold opera-

tions on x and y vectors, we need to decode � as inducing a partition on nets to

formulate communication volume requirements. Let �[nj] and �[mj] denote the
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Figure 4.2: A 8 �8 nonsymmetric matrix A
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Figure 4.3: 2D �ne-grain hypergraph representation H of the matrixA displayed
in Figure 4.2 and 2-way partitioning � of H .
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connectivity sets of column-net nj and row-net mj in �, and part[vjj] denotes

the part (hence processor) assignment for vertex vjj .

Consider an internal column-net nj of part Pk (i.e. �[nj] = fPkg). As

all pins of net nj lie in Pk , all nonzeros in column j (including ajj by the

consistency condition) which need xj for their multiplication are already assigned

to processor Pk . Hence, internal column-net nj of Pk , which does not contribute
to the cutsize (2.4.b) of partition �, does not necessitate any expand operation

if xj is assigned to processor Pk . Similarly, consider an internal row-net mj of

part Pk . As all pins of row-net mj lie in Pk , all nonzeros in row j which will

contribute in the accumulation of yj are already assigned to processor Pk . Hence,

internal row-net mj of Pk , which does not contribute to the cutsize (2.4.b) of

partition �, does not necessitate any fold operation if yj is assigned to processor

Pk .

Consider an external column-net nj (i.e., �[nj] > 1). As all pins of net

nj lie in the parts in its connectivity set �[nj], all nonzeros (including ajj by

the consistency condition) which need xj for multiplication are assigned to the

parts (processors) in �[nj]. Hence, contribution �[nj]�1 of external net nj to

the cutsize according to (2.4.b) accurately models the amount of communication

volume to incur during the expand of xj if xj is assigned to any processor in

�[nj]. Let map[nj]2�[nj] denote the part and hence processor assignment for xj

corresponding to cut net nj . Cut net nj indicates that processor map[nj] should

send its local xj to those processors in connectivity set �[nj] except itself (i.e., to

processors in the set �[nj]�fmap[nj]g). Hence, processor map[nj] should send its

local xj to j�[nj]j�1=�[nj]�1 distinct processors. Similarly, consider an external

row-net mj . As all pins of net mj lie in the parts in its connectivity set �[mj],

all nonzeros which will contribute in the accumulation of yj are already assigned

to the parts (processors) in �[mj]. Cut net mj indicates that the processors

in the connectivity set �[mj] except owner of mj (i.e., processors in the set

�[mj]�fmap[mj]g) should send their partial yj results to the processor map[mj].

Hence, contribution �[mj]�1 of external row-net mj to the cutsize according

to (2.4.b) accurately models the amount of communication volume to incur during

the fold of yj if yj is assigned to any processor in �[mj].

The connectivity sets �[nj] and �[mj] of column-net nj and row-net mj must
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have at least one common part, since they share exactly one common pin, which

is ajj by the consistency condition, i.e., fpart[vjj]g � (�[nj]\�[mj]). There are

four distinct cases to consider:

Case 1 Both row-net mj and column-net nj are internal to part part[vjj] (note

that they cannot be internal to di�erent parts, since both of them contains

vjj ),

Case 2 Both row-net mj and column-net nj are external (cut) nets connected

to part part[vjj],

Case 3 Row-net mj is internal to part part[vjj], and column-net nj is external

net connected to part part[vjj],

Case 4 Column-net nj is internal to part part[vjj], and row-net mj is external

net connected to part part[vjj]

For \Case 1", using the discussion in the previous paragraph, we can safely assign

internal nets mi and ni to part part[vjj]. We know that external nets exactly

model the communication requirement if their corresponding variable is also as-

signed to a part in connectivity set. Hence, for \Case 2", we can again safely

assign external nets to part part[vjj], since it is already in the connectivity sets

of both external nets. In cases 3 and 4 again since the part, which one of them is

internal to, (part[vjj]) is already in the connectivity set of the other one, we can

also assign both nets to part[vjj].

In essence, in the �ne-grain hypergraph model, any partition � of H with

part[vii] = Pk can be safely decoded as assigning row-net mi (hence yi ) and

column-net ni (hence xi ) to part Pk , i.e., map[ni] = map[mi] = part[vii]. With

this assignment, both symmetric partitioning (in other words conformal parti-

tioning) on x and y vectors is maintained and also total communication volume

is exactly modeled. Thus, in the �ne-grain model, minimizing the cutsize ac-

cording to (2.4.b) corresponds to minimizing the actual volume of interprocessor

communication during the pre and post communication phases.

Figure 4.3 displays a 3-way partition of the �ne-grain hypergraph. The cost

of this partition is 8. There are 6 cut nets with connectivity 2, hence their
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Figure 4.4: Decomposition result of the sample given in Figure 4.3

total contribution to the cost is 6 � (2 � 1) = 6. The connectivity set �[m7]

of cut net m7 is �[m7] = fP1;P2;P3g. Hence its contribution to the cost is

�[m7]� 1 = 3� 1 = 2. Figure 4.4 displays the 3-way partitioning result obtained

in Figure 4.3 in matrix view. Here we put the part number of each nonzero as its

value. In this �gure you can identify the row cutnets m1 , m3 , m4 , m7 and m8

as the rows containing di�erent numbers. With this partition, processors P3 and

P1 will send their partial y7 results y47 = a7;4 �x4 and y67 = a7;6 �x6 to processor P2 ,
which already contains a7;7 , during the fold operation of y7 . Thus contribution

�[m7]�1 = 2 of row-net m7 to the cost exactly models volume of communication

required in the fold of y7 .

Nonzero diagonal entries automatically satisfy the condition \vii 2 mi and

vii 2 ni for each row-net mi and column-net ni" thus enabling both accurate

representation of communication requirement and symmetric partitioning of x

and y vectors. A nonzero diagonal entry ajj already implies that both column-

net nj and row-net mj contains vertex vjj as their pin. If however some diagonal

entries of the given matrix are zeros then the consistency of the proposed model

is easily maintained by simply adding dummy vertex vjj for each ajj = 0 with

wjj = 0 to the vertex set V of H . Vertex vjj is also added to the both pin

list pins[nj] of column-net nj and pins[mj] of row-net mj . The net list of this

dummy vertex vjj is simply set to nets[vjj] = fnj ;mjg. These vertex additions

do not a�ect the weight computations, since we give zero as the weight of dummy

vertices.
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4.2 Hypergraph Model for Jagged-like Decom-

position

In this section, we propose coarse-grain hypergraph model for jagged-like 2D

decomposition of the sparse matrices for parallel SpMxV computations. As stated

earlier, SpMxV algorithms that are based on 2D decomposition must use both pre

and post communication schemes together. The proposed decomposition method

is a two-phase method, in which each phase models either the pre communication

cost or post communication cost. Therefore, we have two alternative schemes for

this decomposition method. For the sake of simplicity in the presentation we will

discuss only one scheme, the one which models the pre communication in the

�rst phase and the post communication in the second phase. The dual discussion

holds for the other scheme, that is the one which models the post communication

in the �rst phase and the pre communication in the second phase.

In the jagged-like decomposition model, K -way 2D decomposition of a sparse

matrix is achieved by �rst decomposing the matrix into
p
K parts using the

column-net model proposed in Section 3.3 (rowwise), then each part further de-

composed into
p
K parts using the row-net model (columnwise). Thus resulting

decomposition is a 2D decomposition. Figures 4.5{4.9 display each step of this

process on a sample 16�16 matrix. Let the input matrixA be an M �M matrix.

In the �rst phase, A is represented by the column-net hypergraph HR . For the
sake of simplicity in the presentation, we assume that underlying parallel archi-

tecture is a
p
K �pK 2D mesh. Consider a

p
K -way partition � of HR . If we

partially permute the matrix according to the row partitioning induced by the

partition �, we obtain a matrix A� which contains roughly Mp
K
�M submatri-

ces. In fact, since column-net model tries the work load balance on local SpMxV

computations, the resulting submatrices may not contain same number of rows

but they will contain roughly equal number of nonzeros. We can assign each

submatrix to a row group in 2D mesh. Clearly assignment of submatrices to row

groups does not change the total communication volume, so we can safely assume

that �rst submatrix is assigned to �rst row group and so on. For now, just assume

that we will not assign the nonzeros in a column of each submatrix to more than
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Figure 4.5: A 16 �16 nonsymmetric matrix A

one processor in each row processor group, i.e., columns of submatrices are indi-

visible. We will later explain the correctness of this assumption in our jagged-like

decomposition model. The expand operation on the x vector components will

require communication among the row processor groups, not between any pair of

processors in a processor row of 2D mesh. Thus this phase minimizes the total

volume of communication among the
p
K row processor groups required during

the pre communication step. Figure 4.6 illustrated the column-net representation

of the sample hypergraph given in Figure 4.5. We labeled the vertices and nets

of hypergraphs with letters \r" and \c" to denote row and column of matrix, for

simplicity in the presentation. For a 4-way decomposition of the sample matrix

we �rst decompose matrix into
p
4 = 2 parts, to assign each part to a row group,

namely to row groups fP1; P2g and fP3; P4g. The resulting permuted matrix is

displayed in Figure 4.7.

In the second phase, each submatrix of A� is independently decomposed intop
K column stripes using the row-net model described in Section 3.3. Since the

vertices in the row-net hypergraph model correspond to the columns of the matri-

ces, all nonzeros in a column of each submatrices will be assigned exactly to one

processor. Hence, this veri�es the assumption in the previous paragraph. That
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Figure 4.7: Jagged-like 4-way decomposition, Phase 1: 2-way rowwise decom-
position of matrix A� obtained by permuting A according to the partitioning
induced by �

is, applying the row-net model in the second phase does not disturb the commu-

nication requirements of expand operation which is modeled in the �rst phase.

Clearly, the columnwise decomposition in each row processor group, minimizes

the total communication volume required during the post communication step,

among the
p
K processors in respective row of 2D mesh . Since each group of

processors are assigned di�erent rows of matrix A� , only the processors in each

group must communicate to obtain full y vector. Therefore, sum of the volume

of communications of the each processor group exactly models the total volume

of communication among the K processors required during the post communica-

tion step. Figure 4.8 displays the two row-net hypergraphs corresponding to each

submatrix displayed in Figure 4.7. Each hypergraph is partitioned independently,

sample partitions of these hypergraphs are also presented in this �gure. The �nal

permutation hence processor assignments is displayed in Figure 4.9.

Note that, in the second phase, some vertices may need to exist in more than

one hypergraph. These vertices are the vertices corresponding to the columns

which have nonzero in more than one row group of A� . In other words, they are

the cutnets of the �rst phase. In the second phase, we simply create a copy of

each such column in the decomposition of each submatrix if there is at least one
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Figure 4.9: Jagged-like 4-way decomposition, Phase 2: Final permuted matrix.

nonzero in that column of submatrix. In other words, for each cutnet nj in the

�rst phase, we create exactly �[nj] copies of vertex vj in the second phase. For

example, as seen in Figure 4.6 the column-net c5 is a cutnet with �[c5] = 2, hence

as displayed in Figure 4.8 each hypergraph contains a vertex for column 5, namely

c5 . The computational weight of each vertex is just the number of nonzeros in

the corresponding column of each submatrix. Hence, maintaining the balance

criterion (2.1) corresponds to maintaining the computational load balance during

the local SpMxV computations.

In terms of number of messages, the jagged-like decomposition has some nice

features over 2D �ne-grain hypergraph model. Recall that there is no restriction

in the communication pattern of 2D �ne-grain model, hence in both pre and post

communication phases each processor can communicate with any processor. Thus

the bound of total number of message is 2K(K � 1). In jagged-like communi-

cation, in the pre communication phase, the maximum number of messages per

processor is K�pK . Since the processors in the same row group of 2D mesh do

not require communication of x vector components. In the post communication

phase, the maximum number of communication for each processor is
p
K � 1.

Hence the bound of total number of messages in jagged-like decomposition is

K(K � 1).
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4.3 Hypergraph Model for Checkerboard De-

composition

Most of the SpMxV kernels in the literature [62, 56, 55, 37] work on the 2D

checkerboard partitioning with the assumption that underlying interconnection

topology is 2D processor mesh. The nice property of 2D checkerboard decompo-

sition is that, all expand operations are only performed among the processors in

the same column, and all fold operations are only performed among the proces-

sors in the same row of 2D mesh. This nice property is the result of maintaining

both row and column integrity, that is, the nonzeros of each column (row) of

the matrix is assigned to same column (row) of 2D processor mesh. As you may

notice, the proposed jagged-like decomposition presented in the previous section

already has some part of this nice property. Using the jagged-like decomposi-

tion, all fold operations are only performed among the processors in the same

row of 2D mesh. However, for expand operations we should take care of extra

precautions. In this section, we propose a hypergraph model for 2D checkerboard

decomposition of sparse matrices for parallel SpMxV. In the second phase of

jagged-like decomposition each column segment assigned to processor groups are

represented by a vertex in the row-net model and decomposition in each processor

group is done independently. That is, there is no restriction in the assignment

of the column segments in the �nal decomposition. For example, as displayed

in Figure 4.8 although both two copies of the vertex c5 is assigned to �rst parts

of two hypergraphs, the copies of the vertex c2 are assigned to di�erent parts in

those hypergraphs. Hence as we can see in the matrix displayed in Figure 4.9,

although the column integrity of column 5 is maintained, the integrity of the

column 2 is not maintained. The simplest way to achieve column integrity, is to

force the partitioner to put the copied vertices into same part in decomposition

of the subsequent matrices. That is, the decomposition of the �rst submatrix can

be done without any restriction, however, in the decomposition of the subsequent

matrices the vertices corresponding to cutnet in the �rst phase are forced to be

assigned to same part with the all previous decompositions in the second phase.

As you may notice, this enforcement limits the search space of the decomposi-

tion of the subsequent submatrices. Furthermore, even the decomposition of �rst

submatrix may blindly cause extra fold operations in the next decompositions.
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Here we propose a new method which uses hypergraph model for 2D checker-

board decomposition of sparse matrices for parallel SpMxV computations. The

proposed method is again a two phase method where the �rst phase is identical

with the jagged-like decomposition. For the second phase we introduce new hy-

pergraph partitioning problem; Multi-Constraint Hypergraph Partitioning. The

notion of multi-constraint and multi-objective partitioning has recently become

popular in graph partitioning [45, 71] for the parallelization of multi-physics and

multi-phase applications. In these applications each constraint e�ectively corre-

sponds to the computational load of the vertex in di�erent phase of the target

parallel algorithm. Hence maintaining balance on each constraint corresponds to

maintaining load balance in each phase of the parallel algorithm. The intuition

behind the new model for checkerboard decomposition is as follows. Since, the

�rst decomposition in the second phase locks the vertices to the parts in the sub-

sequent decompositions, the locked vertices may cause communication and there

is no way to get rid of this communication in the subsequent decompositions.

We should �nd a way to compute these extra communication before locking the

vertices. Luckily, we can easily integrate the computation of this cost. That

is, we can safely add the nets of hypergraphs of subsequent submatrices to the

hypergraph of the �rst submatrix. Furthermore, we can add all the nets of all

submatrices and solve the second phase just in one step. Recall that, in jagged-

like decomposition the second phase contains
p
K steps such that each of them

is a
p
K -way decomposition.

The computational weight assignment is as follows. Since we have already

decided that \which rows of the matrix will be assigned to which row of the

2D processor mesh", we have also decided computational weight of each column

segment. In the new model, each vertex corresponding to columns of matrix will

have
p
K weights. Each weight of a vertex corresponds to the number of nonzeros

of the corresponding column in the corresponding row processor group. Hence,

maintaining the balance on each weight constraint corresponds to maintaining

computational load balance among the processors of each row of 2D mesh. For

our speci�c application, multiple weights of the vertices do not correspond to the

weight of di�erent phases. In fact they represent the load of computation that

will be executed concurrently.
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We can summarize the proposed checkerboard decomposition method as fol-

lows. First decompose matrix A rowwise into
p
K -way using column-net repre-

sentation HR . Let partition � = fP1; : : : ;PKg of HR be the partition obtained

in the �rst phase. In the second phase decompose the matrix A columnwise

into
p
K -way using row-net representation HC with multi-constraint on vertex

weights. Let wHC [i; j] denotes the j th weight of vertex vi in hypergraph HC ,
representing the number of nonzeros of the column i in the j th row group, i.e.,

wHC [i; j] = jpinsHR [vi] \ Pjj.

4.4 Experimental Results

We have tested the validity of the proposed hypergraph models for 2D decompo-

sition by running PaToH on the hypergraphs for the decompositions of various re-

alistic sparse test matrices arising in di�erent application domains [24, 16, 18, 23].

Table 4.1 illustrates the properties of the test matrices listed in the order of in-

creasing number of nonzeros. PaToH is modi�ed to handle multi-constraints to

present the checkerboard decomposition results. These 2D decomposition results

are compared with the 1D decompositions obtained by running MeTiS using the

standard graph models, and PaToH using the 1D column/row-net hypergraph

model presented in Section 3.3 (Recall that column-net and row-net models be-

come equivalent in symmetric matrices). As PaToH achieves K -way partitioning

through recursive bisection, recursive MeTiS (pMeTiS) was used for the sake of

a fair comparison. Another reason for using pMeTiS is that direct K -way parti-

tioning version of MeTiS (kMeTiS) produces 3% worse partitions than pMeTiS

in the decomposition of the test matrices, although it is approximately 2 times

faster, on the average.

All experiments were carried out on a workstation equipped with a 133 MHz

PowerPC processor with 512-Kbyte external cache and 64 Mbytes of memory.

We have tested K = 16, 32 and 64 way decompositions of every test matrix. For

a speci�c K value, K -way decomposition of a test matrix constitutes a decompo-

sition instance. For jagged-like and checkerboard decompositions we assume that

underlying architecture is 4� 4, 4�8 and 8�8 2D processor mesh. pMeTiS and
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Table 4.1: Properties of test matrices

number of nonzero
number of per row/col

name rows/cols total min max avg
sherman3 5005 20033 1 7 4.00
bcspwr10 5300 21842 2 14 4.12
ken-11 14694 82454 2 243 5.61
nl 7039 105089 1 361 14.93
ken-13 28632 161804 2 339 5.65
cq9 9278 221590 1 702 23.88
co9 10789 249205 1 707 23.10
pltexpA4-6 26894 269736 5 204 10.03
vibrobox 12328 342828 9 121 27.81
cre-d 8926 372266 1 845 41.71
cre-b 9648 398806 1 904 41.34
world 34506 582064 1 972 16.87
mod2 34774 604910 1 941 17.40
�nan512 74752 615774 3 1449 8.24

PaToH were run 50 times starting from di�erent random seeds for each decompo-

sition instance. The average performance results are displayed in Tables 4.2{4.4

for each decomposition instance. The percent load imbalance values are below 3%

for all decomposition results displayed in these �gures, where percent imbalance

ratio is de�ned as 100 � (Wmax �Wavg)=Wavg .

Table 4.2 displays the decomposition performance of the proposed hypergraph

models in 2D decomposition together with the standard graph model and 1D hy-

pergraph model. Communication volume values (in terms of the number of words

transmitted) are scaled by the number of rows/columns of the respective test ma-

trices. As you can see average percent imbalance values are also displayed in this

table. Since both MeTiS and PaToH use recursive bisection to achieve K -way

partitioning, it is very hard to impose exact load balance for all instances in both

of the tools. Although the main objective of this work is the minimization of the

total communication volume, the results for the other performance metrics such

as the maximum volume, average number and maximum number of messages

handled by a single processor are also displayed in Table 4.3. Recall that, by its

nature 2D checkerboard partitioning also minimizes these quantities implicitly.

Note that the maximum volume and maximum number of messages determine
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the concurrent communication volume and concurrent number of messages, re-

spectively, under the assumption that no congestion occurs in the network.

As seen in Table 4.2, the proposed hypergraph models produce substantially

better partitions than the graph model at each decomposition instance in terms of

total communication volume. 2D �ne-grain hypergraph model is clear winner in

the communication volume cost as expected, since it has more degree of freedoms.

On the overall average, 2D �ne-grain hypergraph model produces 59%, 43% and

34% better decompositions than the 1D graph model, 1D hypergraph model and

2D jagged-like decomposition, respectively. As expected, when the limitations

increase in the decomposition, the total volume of communication also increases.

However, even the most restricted decomposition method checkerboard decompo-

sition produces 26% better decompositions than the graph model, on the overall

average.

Table 4.3 displays the average communication requirements of the proposed

hypergraph models in terms of number of messages handled by a single proces-

sor. As seen in table, checkerboard decomposition result is shining. This result

was expected since the theoretical bound on the maximum number of messages

handled by a single processor is 2(
p
K � 1). For example, for K = 64, the

maximum number of messages is 2(
q
(64) � 1) = 2(8 � 1) = 14. Whereas, this

number is K � 1 = 63 for 1D graph and hypergraph models, 2(K � 1) = 126

for 2D �ne-grain hypergraph model, and K � 1 = 63 for jagged-like decompo-

sition. Although theoretical bound on the number of messages in 1D graph and

hypergraph models and 2D jagged-like decomposition are same, the hypergraph

models produce 27% less number of messages than the 1D graph model.

Table 4.4 displays the average execution times of the MeTiS and PaToH for the

standard graph and proposed hypergraph models. As seen in the table, 2D �ne-

grain model has the largest execution time. 2D �ne-grain hypergraph model is

approximately 2.4 times slower than the 1D hypergraph model. This was expected

since 2D �ne grain contains 2 times more pins and nets than the 1D hypergraph

model, and also number of vertices in the 2D �ne-grain model is equal to the

number of nonzeros in the matrix, whereas it is the number of rows/columns

in 1D hypergraph model. The execution time of jagged-like decomposition is

29% less than the 1D hypergraph decomposition, since it achieves the K -way
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decomposition by
p
K times

p
K -way decomposition. As also seen in Table 4.4,

both 1D hypergraph decomposition and 2D checkerboard decomposition using

PaToH is approximately 3 times slower than the standard graph model using

MeTiS. Here, we should note that we have used PaToH without any modi�cation

(except multi-constraint code added for checkerboard), that is, current version of

PaToH contains net weight variables, and is able to balance on nets, hence there

are some variables for each cell and net which are maintained during coarse of

partitioning. By modifying PaToH (i.e., removing the unnecessary code segments

and variables) we may expect substantial reduce in running time of hypergraph

models.
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Table 4.2: Average communication volume requirements of the proposed hyper-
graph models and standard graph model. \tot" denotes the total communication
volume, whereas \max" denotes the maximum communication volume handled
by a single processor. \bal" denotes the percent imbalance ratio found by the
respective tool for each instance.

Graph Model 1D Hypergraph 2D Fine-grain 2D Jagged-like 2D Checkerboard
comm. vol. comm. vol. comm. vol. comm. vol. comm. vol.

name K tot max bal tot max bal tot max bal tot max bal tot max bal

16 0.31 0.03 0.1 0.25 0.02 0.5 0.25 0.02 0.4 0.26 0.03 0.4 0.30 0.03 1.1
sherman3 32 0.46 0.02 0.3 0.37 0.02 1.0 0.36 0.02 0.6 0.38 0.02 1.0 0.45 0.02 4.0

64 0.64 0.02 2.3 0.53 0.01 2.2 0.50 0.01 1.0 0.51 0.01 2.0 0.72 0.02 9.0
16 0.09 0.01 0.2 0.08 0.01 1.0 0.07 0.01 0.9 0.08 0.01 1.6 0.10 0.01 1.1

bcspwr10 32 0.15 0.01 0.9 0.13 0.01 1.5 0.12 0.01 1.7 0.13 0.01 2.5 0.17 0.01 1.5
64 0.23 0.01 2.7 0.22 0.01 2.5 0.19 0.01 2.2 0.21 0.01 3.1 0.28 0.01 1.7
16 0.93 0.08 0.3 0.60 0.05 2.1 0.14 0.02 3.5 0.73 0.07 1.1 0.84 0.08 1.4

ken-11 32 1.17 0.06 4.8 0.74 0.03 2.6 0.29 0.02 3.6 0.88 0.05 2.1 0.98 0.06 2.7
64 1.45 0.04 13.5 0.93 0.02 3.9 0.48 0.02 3.7 1.03 0.03 2.8 1.17 0.04 3.4
16 1.70 0.15 0.5 1.06 0.10 0.3 0.74 0.08 0.1 1.00 0.09 0.5 1.15 0.10 0.1

nl 32 2.25 0.10 1.7 1.49 0.07 1.6 1.05 0.07 0.1 1.30 0.07 1.3 1.54 0.07 0.8
64 3.04 0.07 7.7 2.20 0.05 4.5 1.38 0.05 0.3 1.63 0.05 2.0 2.11 0.05 1.1
16 0.94 0.08 0.3 0.55 0.04 2.2 0.08 0.01 4.1 0.72 0.07 2.6 0.79 0.07 2.7

ken-13 32 1.17 0.05 1.9 0.63 0.03 3.1 0.17 0.02 5.2 0.81 0.05 3.7 0.89 0.06 3.9
64 1.40 0.03 8.3 0.79 0.02 4.0 0.39 0.02 5.3 0.92 0.03 4.0 1.03 0.03 5.0
16 1.70 0.17 0.3 0.99 0.12 1.0 0.50 0.08 1.1 0.91 0.12 2.0 1.15 0.13 0.8

cq9 32 2.43 0.15 1.2 1.45 0.08 1.8 0.79 0.09 1.6 1.27 0.08 2.4 1.62 0.10 1.5
64 3.73 0.12 6.0 2.33 0.06 8.3 1.22 0.07 1.8 1.72 0.06 3.0 2.42 0.08 2.1
16 1.50 0.16 0.3 0.94 0.11 0.9 0.47 0.07 0.9 0.88 0.11 1.3 1.12 0.12 0.4

co9 32 2.07 0.12 0.9 1.36 0.08 1.9 0.74 0.07 1.3 1.20 0.08 2.0 1.55 0.09 1.9
64 3.10 0.09 3.4 2.17 0.06 3.8 1.09 0.06 1.8 1.63 0.05 3.0 2.24 0.07 1.8
16 0.34 0.03 0.1 0.30 0.03 0.1 0.20 0.02 1.1 0.27 0.03 1.7 0.29 0.03 0.1

pltexpA4-6 32 0.55 0.03 0.3 0.51 0.02 0.2 0.29 0.01 1.3 0.47 0.02 3.1 0.53 0.02 0.6
64 0.98 0.03 0.6 0.86 0.02 1.0 0.51 0.01 1.4 0.74 0.02 2.9 0.85 0.02 1.3
16 1.24 0.11 0.3 1.06 0.08 0.1 0.79 0.07 0.0 0.95 0.07 0.1 1.07 0.08 0.1

vibrobox 32 1.73 0.08 0.8 1.53 0.06 0.4 1.06 0.06 0.0 1.31 0.05 1.1 1.49 0.06 0.2
64 2.28 0.05 2.0 2.08 0.05 1.1 1.43 0.05 0.3 1.64 0.03 1.6 2.01 0.04 0.4
16 2.82 0.24 0.9 2.00 0.17 1.3 1.15 0.12 0.0 1.63 0.19 1.3 1.81 0.20 1.4

cre-d 32 4.12 0.19 2.5 2.90 0.14 2.6 1.77 0.11 0.1 2.22 0.16 1.9 2.53 0.17 2.3
64 5.95 0.14 5.6 4.14 0.10 6.6 2.55 0.10 0.2 2.72 0.10 2.7 3.44 0.10 4.5
16 2.62 0.23 0.9 2.02 0.18 1.0 1.01 0.11 0.0 1.58 0.21 1.0 1.81 0.22 0.7

cre-b 32 3.90 0.18 2.2 2.88 0.15 1.5 1.55 0.11 0.0 2.15 0.18 1.8 2.55 0.20 1.9
64 5.73 0.14 5.6 4.08 0.12 5.8 2.26 0.10 0.0 2.73 0.11 2.3 3.49 0.12 3.2
16 0.59 0.05 0.1 0.54 0.06 0.6 0.23 0.05 1.5 0.63 0.08 1.5 0.70 0.09 1.5

world 32 0.84 0.04 0.3 0.76 0.05 1.1 0.41 0.04 1.8 0.86 0.06 2.1 0.96 0.07 1.7
64 1.19 0.03 0.7 1.06 0.04 1.7 0.62 0.04 1.9 1.07 0.04 2.9 1.30 0.04 2.1
16 0.57 0.05 0.1 0.52 0.06 0.8 0.24 0.05 1.8 0.60 0.08 1.7 0.67 0.09 1.5

mod2 32 0.79 0.04 0.3 0.72 0.04 1.2 0.41 0.05 2.1 0.82 0.06 2.1 0.91 0.07 1.6
64 1.14 0.03 0.8 1.02 0.04 1.8 0.62 0.04 1.8 1.03 0.04 3.1 1.27 0.04 2.3
16 0.20 0.03 0.0 0.16 0.03 2.8 0.07 0.02 3.5 0.20 0.06 5.2 0.21 0.07 4.5

�nan512 32 0.27 0.02 1.0 0.21 0.02 3.2 0.10 0.02 3.8 0.25 0.07 5.4 0.28 0.08 5.3
64 0.38 0.01 1.7 0.31 0.01 4.3 0.20 0.02 4.1 0.38 0.05 6.2 0.46 0.05 4.9

Averages over K

16 1.11 0.10 0.3 0.79 0.08 1.1 0.42 0.05 1.4 0.74 0.09 1.6 0.86 0.09 1.2
average 32 1.56 0.08 1.4 1.12 0.06 1.7 0.65 0.05 1.7 1.00 0.07 2.3 1.17 0.08 2.1

64 2.23 0.06 4.4 1.62 0.04 3.7 0.96 0.04 1.8 1.28 0.04 3.0 1.63 0.05 3.1

overall average 1.63 0.08 2.0 1.18 0.06 2.1 0.68 0.05 1.6 1.01 0.07 2.3 1.22 0.07 2.1
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Table 4.3: Average communication requirements of the proposed hypergraph
models and standard graph model. \avg" and \max" denote the average and
maximum number of messages handled by a single processor

Graph Model 1D Hypergraph 2D Fine-grain 2D Jagged-like 2D Checkerboard
name K avg max avg max avg max avg max avg max

16 5.30 8.10 4.46 7.22 8.38 13.90 5.16 8.36 4.09 5.34
sherman3 32 6.48 10.94 5.81 10.44 10.07 17.60 6.34 11.00 5.83 8.92

64 7.42 13.40 6.94 13.40 11.01 20.78 7.20 13.00 7.26 11.14
16 4.21 7.28 4.29 7.30 7.14 12.04 4.31 7.20 3.99 5.58

bcspwr10 32 4.79 9.30 4.65 8.80 7.49 13.86 4.70 9.18 4.94 8.04
64 5.20 10.24 4.93 9.56 7.32 13.80 4.94 9.70 5.52 9.50
16 13.99 15.00 12.91 15.00 10.79 21.16 13.69 15.00 5.98 6.00

ken-11 32 26.00 30.48 21.19 30.96 18.85 40.90 22.84 28.88 9.62 10.00
64 40.48 55.14 32.22 60.80 28.23 76.28 28.93 45.04 13.21 14.00
16 14.99 15.00 13.30 15.00 23.87 28.56 13.75 15.00 6.00 6.00

nl 32 27.88 31.00 20.39 27.58 35.98 50.48 21.61 27.80 9.95 10.00
64 38.35 58.98 26.13 41.32 42.43 75.94 25.67 40.68 13.39 14.00
16 14.77 15.00 13.87 15.00 9.39 19.28 12.52 15.00 6.00 6.00

ken-13 32 29.02 31.00 22.79 31.00 11.22 35.62 21.07 29.92 9.81 10.00
64 50.81 61.92 35.93 63.00 20.51 71.54 29.29 47.96 13.28 14.00
16 14.88 15.00 12.62 14.92 18.03 26.08 13.36 14.96 6.00 6.00

cq9 32 21.96 30.60 17.87 26.78 24.54 45.38 18.37 28.00 9.75 10.00
64 32.27 56.58 22.67 41.12 30.72 75.26 21.27 42.32 12.89 14.00
16 14.81 15.00 12.82 14.92 20.00 26.40 13.47 15.00 6.00 6.00

co9 32 19.62 29.46 17.55 26.20 26.84 45.57 17.93 27.68 9.66 10.00
64 29.99 53.04 21.85 39.52 31.13 73.50 20.37 40.04 12.77 14.00
16 10.05 13.62 10.11 13.62 14.78 22.80 7.53 10.84 5.47 6.00

pltexpA4-6 32 15.86 25.40 14.73 25.38 20.51 36.96 11.23 19.54 8.43 10.00
64 20.48 45.20 17.35 38.12 21.40 52.88 14.86 32.64 9.95 12.58
16 12.84 14.86 10.14 12.42 23.27 28.32 10.64 13.20 5.82 6.00

vibrobox 32 20.85 27.20 14.77 20.14 31.28 47.88 15.24 20.44 9.26 10.00
64 28.85 40.48 19.58 30.84 35.38 80.68 19.74 27.38 11.53 13.04
16 14.90 15.00 11.78 15.00 26.05 29.67 12.26 15.00 5.80 6.00

cre-d 32 28.59 31.00 19.49 31.00 41.37 54.87 18.84 28.44 9.19 10.00
64 47.36 63.00 29.73 61.28 55.76 92.27 24.86 51.48 11.78 14.00
16 14.78 15.00 12.13 15.00 25.91 29.60 12.87 15.00 5.91 6.00

cre-b 32 28.57 31.00 19.97 31.00 40.33 55.47 19.49 28.44 9.51 10.00
64 46.42 63.00 29.98 61.34 52.72 89.80 25.10 50.32 12.29 14.00
16 11.78 15.00 6.09 15.00 16.57 27.68 9.29 14.38 5.12 6.00

world 32 18.00 30.94 8.19 30.94 23.14 51.36 13.79 25.68 7.46 10.00
64 20.58 57.58 11.58 58.08 27.42 87.52 16.37 41.78 9.47 14.00
16 10.95 15.00 5.59 14.92 13.02 27.12 8.71 14.16 4.92 6.00

mod2 32 14.59 29.72 7.42 27.84 18.68 48.44 12.10 24.24 7.12 10.00
64 17.84 50.84 10.51 46.42 24.44 80.72 14.56 37.96 8.92 14.00
16 4.35 7.40 3.48 7.40 9.24 19.53 4.50 9.20 4.08 5.90

�nan512 32 6.39 13.64 4.15 13.58 10.75 34.47 5.33 14.04 5.12 9.46
64 8.80 26.40 5.37 26.40 14.90 62.33 5.82 20.36 6.12 11.80

Averages over K

16 11.61 13.30 9.54 13.05 16.17 23.72 10.15 13.02 5.37 5.92
average 32 19.19 25.83 14.21 24.40 22.93 41.35 14.92 23.09 8.26 9.74

64 28.20 46.84 19.63 42.23 28.81 68.09 18.50 35.76 10.60 13.15

overall average 19.67 28.66 14.46 26.56 22.64 44.39 14.52 23.96 8.08 9.60
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Table 4.4: Average execution times, in seconds, of the MeTiS and PaToH for
the standard graph model and proposed hypergraph models. Numbers in the
parentheses are the normalized execution times with respect to Graph Model
using MeTiS.

Graph Model 1D Hypergraph 2D Fine-grain 2D Jagged-like 2D Checkerboard
name K exec. time exec. time exec. time exec. time exec. time

16 0.53 (1.00) 0.94 (1.77) 1.60 (3.03) 0.60 (1.13) 0.85 (1.61)
sherman3 32 0.61 (1.00) 1.10 (1.79) 2.05 (3.34) 0.65 (1.06) 1.07 (1.75)

64 0.71 (1.00) 1.22 (1.71) 2.42 (3.39) 0.82 (1.15) 1.29 (1.80)
16 0.28 (1.00) 1.01 (3.62) 2.04 (7.28) 0.66 (2.35) 0.86 (3.06)

bcspwr10 32 0.34 (1.00) 1.24 (3.63) 2.47 (7.25) 0.70 (2.05) 1.02 (3.01)
64 0.42 (1.00) 1.39 (3.34) 2.86 (6.86) 0.85 (2.03) 1.30 (3.13)
16 1.77 (1.00) 3.86 (2.19) 6.47 (3.66) 2.51 (1.42) 3.21 (1.82)

ken-11 32 1.98 (1.00) 4.74 (2.39) 8.10 (4.09) 2.78 (1.40) 3.73 (1.88)
64 2.35 (1.00) 5.31 (2.26) 9.87 (4.20) 3.19 (1.36) 4.39 (1.87)
16 1.21 (1.00) 3.75 (3.09) 8.58 (7.07) 2.54 (2.09) 3.39 (2.79)

nl 32 1.43 (1.00) 4.46 (3.12) 10.56 (7.39) 2.59 (1.81) 3.84 (2.68)
64 1.54 (1.00) 5.13 (3.34) 12.33 (8.03) 3.13 (2.04) 4.48 (2.92)
16 3.84 (1.00) 8.33 (2.17) 12.81 (3.33) 5.20 (1.35) 6.69 (1.74)

ken-13 32 4.50 (1.00) 9.81 (2.18) 16.39 (3.64) 5.80 (1.29) 7.77 (1.73)
64 4.78 (1.00) 10.99 (2.30) 20.71 (4.33) 6.67 (1.40) 9.16 (1.92)
16 2.12 (1.00) 5.58 (2.64) 14.41 (6.81) 4.15 (1.96) 5.42 (2.56)

cq9 32 2.46 (1.00) 6.43 (2.61) 17.13 (6.96) 4.47 (1.82) 6.37 (2.59)
64 2.80 (1.00) 7.90 (2.82) 20.49 (7.31) 5.16 (1.84) 7.20 (2.57)
16 2.42 (1.00) 6.58 (2.72) 16.01 (6.63) 4.78 (1.98) 6.21 (2.57)

co9 32 2.84 (1.00) 7.89 (2.78) 20.29 (7.14) 5.10 (1.80) 7.52 (2.65)
64 3.07 (1.00) 9.15 (2.99) 24.54 (8.01) 6.17 (2.01) 8.72 (2.84)
16 3.22 (1.00) 12.26 (3.81) 28.69 (8.92) 8.78 (2.73) 11.27 (3.50)

pltexpA4-6 32 3.84 (1.00) 15.87 (4.13) 36.92 (9.61) 9.02 (2.35) 13.67 (3.56)
64 4.32 (1.00) 18.20 (4.21) 42.06 (9.73) 11.41 (2.64) 17.09 (3.95)
16 2.77 (1.00) 12.64 (4.56) 28.83 (10.40) 10.92 (3.94) 15.88 (5.73)

vibrobox 32 3.25 (1.00) 15.11 (4.65) 35.43 (10.90) 11.52 (3.54) 18.86 (5.80)
64 3.49 (1.00) 17.35 (4.97) 41.50 (11.88) 13.27 (3.80) 21.81 (6.24)
16 4.18 (1.00) 9.76 (2.34) 31.30 (7.49) 11.14 (2.67) 13.27 (3.18)

cre-d 32 4.80 (1.00) 11.71 (2.44) 38.77 (8.08) 12.88 (2.69) 14.92 (3.11)
64 5.03 (1.00) 13.66 (2.72) 45.50 (9.05) 14.10 (2.80) 17.48 (3.48)
16 4.41 (1.00) 10.47 (2.38) 32.05 (7.27) 11.04 (2.50) 14.06 (3.19)

cre-b 32 5.01 (1.00) 12.13 (2.42) 39.88 (7.96) 11.77 (2.35) 15.73 (3.14)
64 5.42 (1.00) 14.20 (2.62) 46.92 (8.66) 13.83 (2.55) 18.63 (3.44)
16 5.76 (1.00) 19.37 (3.36) 48.24 (8.37) 15.28 (2.65) 20.88 (3.62)

world 32 7.04 (1.00) 23.52 (3.34) 63.34 (9.00) 17.13 (2.43) 25.10 (3.57)
64 8.16 (1.00) 28.89 (3.54) 77.90 (9.54) 19.59 (2.40) 29.79 (3.65)
16 5.85 (1.00) 20.51 (3.51) 52.13 (8.92) 16.22 (2.77) 20.57 (3.52)

mod2 32 7.19 (1.00) 23.85 (3.32) 66.18 (9.20) 17.42 (2.42) 25.72 (3.58)
64 7.96 (1.00) 29.30 (3.68) 74.27 (9.33) 20.93 (2.63) 30.32 (3.81)
16 7.84 (1.00) 25.72 (3.28) 55.13 (7.03) 16.49 (2.10) 20.05 (2.56)

�nan512 32 9.56 (1.00) 31.49 (3.30) 67.26 (7.04) 17.01 (1.78) 25.62 (2.68)
64 11.17 (1.00) 37.29 (3.34) 79.71 (7.13) 21.69 (1.94) 31.12 (2.78)

Averages over K

16 - (1.00) - (2.96) - (6.87) - (2.26) - (2.96)
average 32 - (1.00) - (3.01) - (7.26) - (2.06) - (2.98)

64 - (1.00) - (3.13) - (7.68) - (2.18) - (3.17)

overall average - (1.00) - (3.03) - (7.27) - (2.17) - (3.04)



Chapter 5

Hypergraph Partitioning-Based

Sparse Matrix Ordering

The �rst step of a direct method to solve linear system Zx = b is a heuristic

reordering of the rows and columns of Z to reduce �ll in the factor matrices. The

�ll is the set of zero entries in Z that become nonzero in the factor matrices.

Reducing the �ll usually causes a faster and less memory intensive factorization.

Minimum degree [74] algorithm (MD) is the most commonly used heuristic for

reordering. An alternative for reordering is nested dissection [27]. Although

nested dissection has some nice theoretical results [27], it has not been used

widely until the development of recent multilevel graph partitioning tools. Here,

we will demonstrate the 
aw of the graph model for sparse matrix ordering in

multilevel framework. We will propose a novel hypergraph partitioning-based

nested dissection ordering for matrices arising in the solution of LP problems

using an interior point method. Furthermore, we will generalize the proposed

method to order any symmetric matrices.

76
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5.1 Flaws of the Graph Model in Multilevel

Framework

As discussed in Sections 2.4 and 2.5, most of the nested dissection tools [31, 38, 44]

are based on successful multilevel graph partitioning tools [31, 36, 44] with some

extra initial partitioning and re�nement strategies speci�c to the solution of the

GPVS problem. As also discussed in Section 2.4, a multilevel partitioning tool

basically contains three phases; coarsening, initial partitioning and uncoarsening.

During the coarsening phase, vertices are visited in some order and usually two

(or more) of them selected according to a some criteria to construct the vertices

of coarsened graph. Consider the two examples displayed in Figure 5.1 as partial

illustration of two di�erent GPVS partitioning results at some level m of multi-

level GPVS tool. In the �rst one, `+ 1 vertices fvi; vi+1; : : : ; vi+`g are coalesced
to construct vertex vi�` as a result of one or more levels of coarsening. This is

a valid and narrow separator for level m. GPVS tool computes the cost of this

separator as `+1 at this level. However, obviously this separator is not a narrow

separator in the original graph, it is a wide separator in the original graph. In

other words, there is a subset of those vertices which is a valid narrow separator

of the original graph. In fact anyone of the vertices is a valid separator of cost

1 in the original graph. Similarly, for the second example, GPVS tool computes

the cost of the separator as 3, however, there is a subset of constituent vertices

of vijk = fvi; vj; vkg which is a valid narrow separator of cost 1 in the original

graph (i.e., either fvig or fvkg).

In GPES, the multilevel framework does not have this kind of 
aw. That is,

for an edge separator ES at level m, there is no subset of ES which is a valid

edge separator of the original graph.
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Vi

Vi+1

Vi+2

Vi+l

VS

Vi--l
Vi

Vj Vk

VS

Vijk

Figure 5.1: Partial illustration of two sample GPVS result to demonstrate the

aw of the graph model in multilevel framework.

5.2 Describing GPVS Problem as a HP Prob-

lem

Consider a hypergraph H = (U ;N ) and its NIG representation G = (V; E) as

discussed in Section 2.3. A K -way vertex partition �HP = fU1;U2; : : : ;UKg of

H can be decoded as (K+1)-way net partitioning �HP = fN1;N2; : : : ;NK;NSg
of H as follows. Here, Nk corresponds to the internal nets of part Uk , i.e., for
1 � k � K , Nk = fnjjpins[nj]\Uk = pins[nj]g. NS corresponds to the external

nets. In particular, a 2-way vertex partition �HP = fU1;U2g of H can be decoded

as 3-way net partitioning �HP = fN1;N2;NSg of H . Here, we consider net-

partition �HP = fN1;N2;NSg of H as inducing a GPVS �GPV S = fV1;V2;VSg
on its NIG representation G , where V1 � N1 , V2 � N2 , VS � NS . Let AdjH(ni)

denote the set of nets that share pin(s) with net ni . Consider an internal net

ni of part U1 ,i.e., ni 2 U1 . It is clear that we have either AdjH(ni) � N1 or

AdjH(ni) � N1 [ NS . Recall that NIG G contains a vertex vi for each net ni

of H . So we have either AdjG(vi) � V1 or AdjG(vi) � V1 [ VS in NIG G . In

other words, AdjG(vi) \ V2 = ;. In the respective �GPV S , this corresponds to

AdjG(V1) \ V2 = AdjG(V2) \ V1 = ; which in turn corresponds to AdjG(V1) � VS
and AdjG(V2) � VS . Thus, VS of �GPV S constitutes a valid separator of size

jVSj = jNSj. Recall that in the GPVS problem, balancing is de�ned on the
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vertex counts of parts V1 and V2 . Hence, the GPVS problem on NIG G can be

described as an HP problem according to the net-cut metric ( Equation (2.4.a)

with cj = 1) with balancing on the internal nets of parts U1 and U2 .

From a matrix theoretical point of view, let A be a matrix and H be its

row-net hypergraph representation, the NIG G would be the standard graph rep-

resentation of matrix AAT . Hence, �nding a doubly-bordered form of matrix

AAT (�nding GPVS on G ) is equivalent to �nding a singly-bordered form of

matrix A (�nding a net partition on H). Although this �nding looks very im-

pressive, it is not very useful on itself. For a general GPVS problem on G , which
is equivalent to �nding a doubly-bordered form of associated matrix (say Z ) of

G , we should know the decomposition of matrix Z as Z = AAT .

5.3 Ordering for LP Problems

The interior point methods for solving linear programming (LP) problems require

the solution of Zx = b repeatedly, where Z = ADAT . Here, D is a diagonal ma-

trix whose numerical values change in each iteration, however constraint matrix

A remains unchanged. The linear systems are usually solved by factoring matrix

Z . As discussed earlier, factorization introduces �lls, and hence, the �ll-reducing

reordering heuristics are used just before the factorization.

Here, we propose a hypergraph-partitioning-based nested dissection ordering

for the ordering of matrix Z = ADAT . Nested dissection ordering requires �nding

a doubly-bordered (DB) form of the matrix. In DB form, borders correspond

to separator S , and block-diagonals correspond to X and Y parts of nested

dissection as mentioned earlier. Nested dissection simply orders rows/columns

of S after the rows/columns of X and Y . Together with the formulation of

GPVS problem as an HP problem, described in the previous section, we can

construct an ordering of Z by just recursively dissecting A. That is, in each

bisection of A cutnets in NS correspond to separator vertices in S in the nested

dissection. Figure 5.2 and 5.3 illustrate this �nding in a two level incomplete

nested dissection.
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Figure 5.2: 2 level recursive partitioning of A and its transpose AT
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Figure 5.3: Resulting DB form of AAT , for matrix A displayed in Figure 5.2
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initialize delete[ui] FALSE for ui 2 U
for node ui 2 U in non-increasing degree order

if delete[ui] = FALSE then
for each nj 2 nets[ui] do

if degG(vj) = degH(ui)� 1 then
for each uk 2 pins[nj ] do

if uk 6= ui and delete[uk] = FALSE then
delete[uk] TRUE

delete all nodes ui of H with delete[ui] = TRUE

Figure 5.4: Clique discarding algorithm for H = (U ;N ). Here, G = (V; E) is the
NIG representation of H

Since our main aim is to achieve a GPVS on NIG G through a partitioning

on H , we may simplify H without disturbing its NIG representation G . That is,
let H0 be the simpli�ed version of H such that the NIG representation of both

of them is exactly the same (i.e., G ), then we can safely use H0 instead of H to

�nd a GPVS partition on G . Here, we propose two simpli�cation methods.

5.3.1 Clique Discarding

Let H be the row-net hypergraph representation of matrix A, clearly its NIG

G is the graph representation of matrix AAT . As mentioned in Section 2.3, the

NIG representation G for a hypergraph H can also be obtained by applying the

clique-net model to the dual hypergraph of H . In other words, each node of H
(columns of A) induces a clique among the vertices of G that correspond to nets

incident on that node in H (rows with nonzero at that column). Hence, if the two

columns have exactly the same sparsity pattern (i.e., have nonzeros in the same

rows) they induce the same clique in G . Furthermore, if the sparsity pattern of a

vertex, say vi , is a subset of another vertex, say vj , then clique edges which are

induced by vi are a subset of clique edges which are induced by vj , so vi become

redundant in the partitioning of H to �nd a GPVS partition on NIG G .

Here we present a simple yet e�ective algorithm to �nd the redundant nodes
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Figure 5.5: A sample partial matrix and NIG representation of associated hyper-
graph to illustrate the clique discarding algorithm

of hypergraph in the solution of GPVS problem through hypergraph partitioning

methods. Figure 5.4 displays the proposed algorithm. The algorithm works as

follows; nodes of hypergraphs are visited in the non-increasing degree order. If

the currently visited node ui in H is not marked for deletion yet, we check the

degree of vertex vj corresponding to the incident net nj of ui . If the degree of

vertex vj in G is equal to the degree of ui minus one, this means that ui is the

node that induced the largest clique which includes vj . In other words, all other

nodes connected to nj in H will induce cliques whose edges are subset of the

clique edges induced by ui . So we can safely delete all other nodes connected to

nj in H . Consider the example sketched in Figure 5.5. Our algorithm works as

follows. The columns of the sample matrix are visited in the order a, c, b, d. For

the �rst column a with 4 nonzeros, we check the degree of vertices vj , vk , vl , vm .

Since degree of vj is 4 in G (not equal to degH(ua)� 1 = 4� 1 = 3) we just skip

it. The degree of vk is 3 in G , therefore all the nodes, except node ua , incident

to net nj will be marked for deletion. Hence, ub is marked for deletion. Since

the degree of vl is also 3 in G , this cause to mark uc for deletion. Although the

degree of vm is also 3 in G , since the only node uc incident to nm already marked

for deletion, no extra vertex is marked. In the outer-most loop, we will skip nodes

uc and ub since they are marked for deletion. For node ud , no other node will be

marked. Although degree of vi is 1 which is equal to degH(ud) � 1 = 2� 1 = 1,

there is no other node in the hypergraph (except ud ) which is connected to ni .

Since the degree of vj is not 1, it will be skipped. At the end of the execution

nodes vb and vc is marked for deletion, so we can safely discard those nodes in

the hypergraph.
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5.3.2 Sparsening

Here, we propose a second hypergraph simpli�cation algorithm for solving GPVS

problem through hypergraph partitioning. Recall from Section 2.3 that, two

vertices of NIG are adjacent if the respective nets share at least one pin in the

hypergraph. However, if they share more than one pin, only one of them su�ces

in our application, because our goal is to achieve a GPVS partitioning on NIG

through hypergraph partitioning. Here we present a simple yet e�ective algorithm

for pin deletion based sparsening. We need to �rst identify the pins that can be

deleted. Let W [i; j] denotes the number of common pins of nets ni and nj . We

have the following lemma for pin deletion:

Lemma 1 For each u 2 pins[ni], pin (ni; u) can be deleted if W [i; j] > 1 for all

nj 2 nets[u]� fnig.

Obviously, W [i; j] must be greater than or equal to 1, since u is common a pin of

both ni and nj . If W [i; j] = 1 for a net nj , this means that u is the only common

pin between ni and nj , so we cannot delete it, since we loose edge fvi; vjg in

NIG. If W [i; j] > 1 for all nj , this means that ni and nj share more than one

pin, including u, so we can safely delete pin (ni; u). Consider the example given

in Figure 5.6. In this �gure NIG edges are labeled both with W [i; j] values and

the set of common nodes for the sake of simplicity of presentation. Consider

the possible deletion of pins of net n1 . Pin (n1; u1) cannot be deleted since

W [1; 3] = 1, that is u1 is the only common node in the pin lists of nets n1 and

n3 . Pin (n1; u2) can be deleted since both W [1; 2] = 2 and W [1; 4] = 4. Pin

(n1; u3) can also be deleted since W [1; 4] = 2. However, pins (n1; u2) and (n1; u3)

cannot be deleted together, since deleting both of them makes W [1; 4] = 0.

The proposed pin deletion-based sparsening algorithm is displayed in Fig-

ure 5.7. The algorithm does not require the NIG G as input. Edge weight values

W [i; j] of G are recomputed for each net nj . When pin (ni; u) is identi�ed for

deletion, since pin (ni; u) stored both in the net list of node u and in the pin list

of net ni , we delete both ni from nets[u] and u from pins[ni] to e�ectively delete

(ni; u) in H . Note that when pin (ni; u) is deleted, weights of edges between ni
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Figure 5.6: A sample matrix, its associated row-net hypergraph and NIG repre-
sentation of the associated hypergraph

and nj are decremented by 1, for each nj 2 nets[u] to re
ect the pin deletion in

the edge weights of NIG.

5.4 Generalization

Until here, we have assumed that for ordering Z we have also given its decompo-

sition Z = AAT . However, in most of the applications this is not the case, that

is, A is usually unknown. Here, we propose a simple yet e�ective decomposition

of symmetric matrices for hypergraph partitioning-based nested dissection. Let

G be the standard graph model representation of matrix Z . Our aim is to �nd a

matrix A such that AAT = Z . In graph theoretical view, we are trying to �nd a

hypergraph H such that its NIG is G . Obviously net set of the target hypergraph
H is already identi�ed by the de�nition of NIG. That is, there must be a net ni

in hypergraph H corresponding to each vertex vi in G . The node set of H is

de�ned as follows. There is a node uij in H corresponding to edge eij 2 E with

the net list nets[uij] = fni; njg. As mentioned earlier, during the construction of

NIG G from a hypergraph H , each node of H induces a clique among the vertices

of G that correspond to nets incident to that node in H . It is clear that, with

the proposed decomposition, each node of H induces distinct 2-cliques, therefore

the proposed decomposition is referred to here as 2-clique decomposition.

In matrix theoretical view, matrix A is the edge-incidence matrix of NIG G .
That is, each row of matrix A corresponds to a vertex in G . Each column of

matrix A corresponds to an edge in G , such that there are exactly two nonzeros



CHAPTER 5. HP-BASED SPARSE MATRIX ORDERING 85

initialize W [j] 0 for i = 1; : : : ; jN j
for each net ni 2 N do

for each node u 2 pins[ni] do
for each nj 2 nets[u] do

W [j] W [j] + 1
for each node u 2 pins[ni] do


ag  TRUE
for each nj 2 nets[u] do

if nj 6= ni and W [j] = 1 then

ag  FALSE
break

if 
ag = TRUE then
nets[u] nets[u]� fnig
pins[nj] pins[nj]� fug
for each nj 2 nets[u] do

W [j] W [j]� 1
for each node u 2 pins[ni] do

for each nj 2 nets[u] do
W [j] 0

Figure 5.7: Hypergraph Sparsening Algorithm for H = (U ;N )
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in each column representing the two end points of the edge. Note that, the

hypergraph mentioned in the previous paragraph is the row-net representation of

the edge-incident matrix A.

5.5 Extending Supernode Concept

Supernode concept has been widely used in MD ordering [74, 57]. In matrix

theoretical view, supernodes correspond to the columns with identical sparsity

pattern. In graph theoretical view, a supernode corresponds to a clique of vertices

with identical adjacency structure. The nice property of a supernode is that all

nodes in the supernode can be eliminated in one step. In MD-based ordering

algorithms, supernodes are identi�ed and the ordering algorithm works on the

compressed graph obtained by merging vertices constituting the supernodes. The

supernode concept has also been exploited in a dynamic manner by identifying

supernodes formed during the elimination.

The supernode concept has also been exploited in nested dissection based

ordering algorithms as follows. If any constituent vertex of a supernode belongs to

vertex separator VS in �GPV S = fV1;V2;VSg, then all other constituent vertices

of the supernode belong to separator VS . In a similar manner, if any constituent

vertex of a supernode belongs to V1 (V2 ), then all other constituent vertices of the
supernode belong to V1 (V2). So nested bisection based algorithms can also work

on compressed graphs. In this work, we extend the supernode concept for nested

dissection based ordering. We claim that for nested dissection based ordering,

the constituent vertices of a supernode need not to be connected. That is, a set of

disconnected (non-adjacent) vertices with identical adjacency structure can also

be merged to form supernodes. The former and latter types of supernodes will

be referred to here as connected (conventional) and disconnected supernodes.

The algorithm [4] used for identifying connected supernodes computes a hash

value for each vertex vi as

hash(vi) = i+
X

vj2Adj(vi)
j: (5.1)
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These hash values are exploited to quickly identify connected supernodes. It is

obvious that, if two vertices have di�erent hash values, then they have di�erent

adjacency structure. The algorithm �rst sorts the vertices in G by hash value.

The sorted list is divided into subsets so that each subset contains the vertices

with identical hash value. Then only adjacency structures of the vertices in these

subsets are compared. We made some enhancements in the implementation of

this algorithm as follows. The degree of the vertices are used as a secondary key

in the sorting to reduce the number of vertices with identical key. The sorted

list is again divided into subsets so that each subset contains the vertices with

identical hash value and degree. For each vertex vi in this subset (if it is not

selected as a constituent of a supernode yet), adjacent vertices are marked with

i in a mark array (i.e., mark[vj] = i for vj 2 Adj(vi)). Then only the adjacency

structure of the vertices, in the same subset, adjacent to vi are compared with

the adjacency structure of vi . Note that we can skip the adjacency structure

comparison for a vertex vj if it is not adjacent to vi (i.e., mark[vj] 6= i). During

the adjacency structure comparison for a vertex vj , we check if all its adjacent

vertices are also marked with i.

The algorithm for identifying disconnected supernodes works as follows. The

hash values are computed as

hash(vi) =
X

vj2Adj(vi)
j: (5.2)

Vertices of graph G are sorted by hash value and degree. The sorted list is again

divided into subset containing identical key values. For each vertex vi in each

subset (if it is not selected as a constituent of a supernode yet), adjacent vertices

are markedwith i in a mark array (i.e., mark[vj] = i for vj 2 Adj(vi)). Then only
the adjacency structure of the vertices, in the same subset, non-adjacent to vi are

compared with the adjacency structure of vi . That is, in this algorithm, we can

skip the adjacency comparison of a vertex vj if it is adjacent to vi (i.e.,mark[vj] =

i).
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5.6 Experimental Results

We have tested the proposed hypergraph partitioning-based nested dissection

method on the ordering of various realistic sparse test matrices arising in di�er-

ent application domains [24, 16, 18, 23]. Table 5.1 illustrates the properties of the

test matrices. In this table, M denotes the number of rows/columns of matrix Z ,

and NZ denotes the total number of nonzeros. For the matrices arising from LP

problems, number of columns N and total number of nonzeros NZ are also listed

for matrix A, where Z = AAT . The number of rows of A is equal to the number

of rows/columns of Z . This table also displays the Multiple MinimumDegree [57]

(MMD) ordering results in terms of operation count (shown as \OPC") and total

number of nonzeros after factorization (shown as \NZF"). We have used MMD

implementation of SMOOTH [7] with the parameters: compressFlag=6 for com-

pression before elimination and after each elimination step, prioType=1 for exact

external degree for each vertex, stepType=1 for independent set elimination.

Table 5.2 displays the the number of connected and disconnected supernodes

identi�ed by the algorithms described in Section 5.5, as percent of M . For the

matrices arising from LP problems, the clique discarding and sparsening algo-

rithms presented in Section 5.3.1 and Section 5.3.2 are also applied. The number

of discarded/deleted columns and nonzeros of A are also display in this table

as percents of N and NZ , respectively. As seen in Table 5.2, general matri-

ces have considerable amount of connected supernodes (approximately 26% on

the average), however disconnected supernodes are very rare (less than 1% on

the average). In LP problems, percent of disconnected supernodes is 3.64 and

percent of connected supernodes is 5.48, on the average. Approximately 2% of

the columns and nonzeros of A is identi�ed as redundant by clique discarding

algorithm, on the average. As seen Table 5.2, considerable amount (20% on the

average) of nonzeros (pins) of A (H) are deleted by the sparsening algorithm.

The nested dissection based algorithms usually work in an incompletemanner.

That is, nested dissection is applied until the parts are fairly small, since the

MD algorithm is quite e�ective for modest-size graphs. The subgraphs induced

by the parts correspond to the standard graph representation of the decoupled

block-diagonal submatrices. There are various possible ordering schemes for the
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parts and separators after a K = 2` -way nested dissection. Let Z1; Z2; : : : ; ZK

be decoupled parts of symmetric matrix Z by separators S1; S2; : : : ; S` at each

level of recursion. Figure 5.8 illustrates a sample for this decoupling process for

K = 4. The di�erence of the ordering schemes lies in which ordering method is

used to order vertices in the decoupled parts, and how the vertices in separators

are ordered. Four possible ordering schemes as follows:

ND-MD all decoupled block-diagonal submatrices are ordered �rst by MD,

then all separators are ordered in depth-�rst order, i.e., S` is ordered just

after the orderings of Z1; Z2; : : : ; ZK , then S`�1 is ordered and so on, such

that S1 is ordered last.

ND-CMD all decoupled block-diagonal submatrices are ordered �rst by con-

straint minimum degree [59] (CMD), then all separators are ordered in

depth-�rst order.

multisection-MD all decoupled block-diagonal submatrices are ordered �rst

by MD, then all separators are ordered together.

multisection-CMD all decoupled block-diagonal submatrices are ordered �rst

by CMD, then all separators are ordered together.

With this classi�cation, ordering code of MeTiS [44] falls into the class ND-MD,

and BEND [38] falls into the class ND-CMD. In their recent work [9], Ashcraft

and Liu states that CMD [59] algorithm produces better orderings in nested dis-

section and multisection ordering. The results presented in their work also show

that multisection generates better orderings than nested dissection. Hence, their

ordering code, we call it SMOOTH as the name of whole package is SMOOTH [7],

falls into class multisection-CMD.

MSMD object in the SMOOTH software package [7], is a piece-of-art ordering

object. It contains both CMD and MMD features combined in a brilliant way.

The idea is as follows, MSMD orders the vertices by stages, i.e., vertices in stage

k will be ordered before vertices in stage k + 1. Inside the stages, it basically

does MMD ordering, however, selection criteria can also be changed, i.e., instead

of using actual degree, approximate degree can be used. With this code, devel-

opment of \ND-CMD" and \multisection-CMD" ordering codes are simple tasks.
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Figure 5.8: 4-way decoupled matrix Z using recursive dissection.

Therefore, we have used MSMD object of SMOOTH [7] in the development of

our hypergraph partitioning-based nested dissection ordering tool oPaToH. We

have incorporated, both ND-CMD and multisection-CMD schemes. In the cur-

rent implementation oPaToH-ND stands for ordering code of PaToH which uses

ND-CMD, and oPaToH-MS stands for multisection version.

The average ordering performance of the various tools are displayed in Ta-

bles 5.3-5.5 relative to MMD. The results of GP-based nested dissection ordering

tools onmetis and oemetis, graph partitioning-based multisection ordering tool

SMOOTH are displayed in these tables. The proposed HP-based multisection and

nested dissection ordering results using PaToH are also displayed in these tables.

In Tables 5.3-5.5, \2-Clique oPaToH" denotes the hypergraph partitioning-based

ordering of matrix Z using the 2-Clique decomposition described in Section 5.4,

whereas \oPaToH using A" denotes the hypergraph partitioning-based ordering

of matrix Z using the given constraint matrix A for LP problems. Hence, no

result is displayed in those columns for general matrices. For each problem, order-

ing tools were run 50 times starting from di�erent random seeds and the average

results are displayed in the tables.

Table 5.3 displays the average ordering performance of the tools in terms

of operation count. For general matrices, best ordering results are obtain by

SMOOTH, on the average, SMOOTH produces 27% better orderings than MMD.

The proposed HP-based multisection ordering (oPaToH-MS) produces the second
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best solutions, on the average. oPaToH-MS produces consistently better order-

ings than MMD for each problem, and produces 25% better orderings than MMD

on the average. In the ordering of matrices arising from LP problems, ND ver-

sion of PaToH produces better orderings than MS based version, achieving 45%

better orderings than MMD heuristic. For these matrices, oPaToH-ND using A

produces 17% and 43% better orderings than onmetis and SMOOTH. It is inter-

esting to note that indirect GPVS based nested dissection tool oemetis produces

very inconsistent results.

Average ordering performance of the tools in terms of nonzero counts in the

factor matrices are presented in Table 5.4. For general matrices, there is no clear

winner. All the nested dissection and multisection based tools perform equally

well by producing approximately 10% less nonzero than MMD. In LP problems,

again oPaToH-ND produces best results in terms of nonzero counts. oPaToH-

ND produces approximately 22% less nonzeros than MMD, and 9% less nonzeros

than onmetis. For these problems, SMOOTH produces nearly the same amount

of nonzeros with MMD.

Table 5.5 displays the average execution times of the tools relative to MMD

ordering. In this table, a ratio smaller than 1.0 indicates that the respective tool

is faster than the MMD ordering. The fastest tool is the direct GPVS based

ordering code onmetis of MeTiS. Although it is only 5% faster than MMD in

the ordering of general matrices, it runs approximately 3.6 times faster than

MMD in the ordering of matrices arising from LP problems. SMOOTH runs

4.7 and 1.8 times slower than MMD in the ordering of general matrices and

matrices arising from LP problems. 2-clique decomposition yields the slowest

ordering. This is an expected result, since the running time of the hypergraph

partitioning is proportional to the number of pins and nodes, and the 2-clique

model generates a hypergraph with NZ nodes and 2NZ pins. However, the

proposed HP-based ordering methods is only 21% slower than MMD ordering

while producing superior results than MMD.
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Table 5.1: Properties of test matrices and results of MMD orderings

matrix Z matrix A where Z = AAT MMD
name M NZ N NZ NZF OPC

General Matrices
BCSSTK23 3,134 45,178 - - 461,697 1.46E+08
BCSSTK21 3,600 26,600 - - 116,083 6.75E+06
BCSSTK15 3,948 117,816 - - 653,831 1.68E+08
3elt 4,720 32,164 - - 92,188 3.11E+06
BCSSTK16 4,884 290,378 - - 741,200 1.45E+08
BCSSTK17 10,974 428,650 - - 1,136,428 1.99E+08
BCSSTK18 11,948 149,090 - - 642,176 1.30E+08
BCSSTK25 15,439 252,241 - - 1,515,540 3.31E+08
BCSSTK32 44,609 2,014,701 - - 5,146,621 1.05E+09
brack2 62,631 795,749 - - 7,482,073 3.22E+09
598a 110,971 1,594,839 - - 45,116,662 5.87E+10
crystk01 4,875 315,891 - - 1,094,672 3.46E+08
lshp3025 3,025 20,833 - - 75,332 3.46E+06
lshp3466 3,466 23,896 - - 89,551 4.39E+06
mplate 5,962 142,190 - - 2,172,166 1.53E+09
nasa4704 4,704 104,756 - - 269,427 3.24E+07
pwt 36,519 326,107 - - 1,810,221 2.38E+08
s1rmq4m1 5,489 281,111 - - 658,508 1.15E+08
s2rmq4m1 5,489 281,111 - - 658,508 1.15E+08
s3rmq4m1 5,489 281,111 - - 658,508 1.15E+08
shuttle-eddy 10,429 103,599 - - 389,810 2.61E+07
skirt 12,598 196,520 - - 494,045 3.63E+07
vibrobox 12,328 342,828 - - 2,119,728 9.16E+08

LP Problems
NL 7,039 105,089 9,718 41,428 282,929 3.78E+07
CQ9 9,278 221,590 13,778 88,897 451,108 5.74E+07
GE 10,099 112,129 11,098 39,554 294,188 3.47E+07
CO9 10,789 249,205 14,851 101,578 499,511 6.40E+07
fome12 24,284 329,068 48,920 142,528 6,314,673 5.19E+09
pltexpA4-6 26,894 269,736 70,364 143,059 2,329,048 1.10E+09
world 34,506 582,064 32,734 164,470 1,789,127 2.77E+08
mod2 34,774 604,910 31,728 165,129 1,823,079 2.72E+08
lpl1 39,951 541,217 125,000 381,259 3,146,595 1.21E+09
fxm3-16 41,340 765,526 64,162 370,839 637,294 1.97E+07
cre-b 9,648 398,806 72,447 256,095 954,754 3.82E+08
cre-d 8,926 372,266 69,980 242,646 870,409 3.01E+08
delf036 3,170 33,508 5,459 14,202 50,025 1.78E+06
d
001 6,071 82,267 12,230 35,632 1,599,555 1.34E+09
ex3sta1 17,443 679,857 8,156 59,419 25,649,479 7.28E+10
ken-07 2,426 14,382 3,602 8,404 15,553 2.17E+05
ken-11 14,694 82,454 21,349 49,058 134,394 4.18E+06
ken-13 28,632 161,804 42,659 97,246 355,934 1.71E+07
large036 4,282 50,696 6,822 18,840 75,363 3.17E+06
model10 4,400 293,260 15,447 149,000 516,068 1.14E+08
pds-02 2,953 23,281 7,535 16,390 40,920 1.73E+06
pds-06 9,881 88,003 28,655 62,524 573,506 2.05E+08
pds-10 16,558 149,658 48,763 106,436 1,618,218 1.05E+09
pds-20 33,874 320,196 105,728 230,200 6,889,030 9.22E+09
rlfprim 58,866 9,119,596 8,052 265,927 301,830,670 2.56E+12
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Table 5.2: Compression and sparsening results

Supernodes
connected disconnected Clique Discarding Sparsening

name %M %M %N %NZ %N %NZ
General Matrices

BCSSTK23 6.51 0.00 - - - -
BCSSTK21 0.00 0.00 - - - -
BCSSTK15 0.00 0.13 - - - -
3elt 0.00 0.00 - - - -
BCSSTK16 63.60 1.86 - - - -
BCSSTK17 52.44 4.79 - - - -
BCSSTK18 8.55 6.65 - - - -
BCSSTK25 14.61 0.05 - - - -
BCSSTK32 66.78 0.07 - - - -
brack2 0.00 0.00 - - - -
598a 0.00 0.00 - - - -
crystk01 64.78 0.10 - - - -
lshp3025 0.00 0.00 - - - -
lshp3466 0.00 0.00 - - - -
mplate 5.67 0.00 - - - -
nasa4704 50.51 0.62 - - - -
pwt 0.01 0.16 - - - -
s1rmq4m1 82.49 0.00 - - - -
s2rmq4m1 82.49 0.00 - - - -
s3rmq4m1 82.49 0.00 - - - -
shuttle-eddy 0.63 0.00 - - - -
skirt 15.46 0.02 - - - -
vibrobox 0.10 0.00 - - - -

average 25.96 0.63 - - - -
LP Problems

NL 0.38 0.75 1.76 0.62 17.03 13.85
CQ9 4.67 1.46 5.12 0.82 12.91 31.40
GE 12.18 2.11 1.39 2.47 18.16 31.25
CO9 6.83 1.21 7.75 1.44 11.90 34.47
fome12 0.00 0.96 0.01 0.01 14.93 7.88
pltexpA4-6 0.00 5.78 0.00 0.00 56.24 43.96
world 8.67 1.28 0.62 0.26 7.76 11.43
mod2 9.61 1.29 0.60 0.24 6.45 12.27
lpl1 0.00 6.34 0.04 0.03 53.84 52.99
fxm3-16 14.51 9.95 9.59 24.49 37.41 65.01
cre-b 0.07 25.01 0.00 0.00 2.26 12.47
cre-d 0.10 27.48 0.00 0.00 2.47 12.81
delf036 11.29 0.00 7.07 5.08 26.93 37.90
d
001 0.00 0.96 0.01 0.01 14.93 7.88
ex3sta1 26.83 0.00 0.01 0.00 12.75 21.21
ken-07 0.00 0.00 0.00 0.00 2.05 1.46
ken-11 0.00 3.29 0.00 0.00 3.65 3.07
ken-13 0.59 1.77 0.00 0.00 2.15 1.81
large036 18.52 0.00 7.07 6.38 26.93 40.90
model10 21.34 1.09 1.30 0.16 7.30 55.18
pds-02 0.00 0.07 0.00 0.00 0.15 0.20
pds-06 0.00 0.04 0.00 0.00 0.08 0.11
pds-10 0.00 0.04 0.00 0.00 0.07 0.09
pds-20 0.00 0.25 0.00 0.00 0.05 0.07
rlfprim 1 34 0 00 0 00 0 00 0 00 0 30
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Table 5.3: Operation counts of various methods relative to MMD

2-Clique oPaToH oPaToH using A
name onmetis oemetis SMOOTH MS ND MS ND

General Matrices
BCSSTK23 0.65 0.69 0.65 0.73 0.71 - -
BCSSTK21 0.94 1.09 0.73 0.93 0.94 - -
BCSSTK15 0.53 0.53 0.61 0.71 0.70 - -
3elt 0.93 0.97 0.84 0.82 0.85 - -
BCSSTK16 1.02 1.02 0.84 0.92 1.11 - -
BCSSTK17 0.97 0.94 0.68 0.76 0.83 - -
BCSSTK18 0.68 0.70 0.71 0.72 0.77 - -
BCSSTK25 1.14 1.16 0.77 0.91 1.21 - -
BCSSTK32 1.27 1.51 0.83 0.84 0.90 - -
brack2 0.58 0.60 0.65 0.67 0.70 - -
598a 0.34 0.34 0.48 0.53 0.48 - -
crystk01 0.79 0.63 0.65 0.70 0.78 - -
lshp3025 0.92 0.92 0.77 0.78 0.81 - -
lshp3466 0.89 0.91 0.76 0.77 0.80 - -
mplate 0.39 0.35 0.47 0.49 0.45 - -
nasa4704 1.08 1.07 0.98 0.85 0.79 - -
pwt 0.46 0.46 0.52 0.54 0.53 - -
s1rmq4m1 0.94 0.76 0.82 0.80 0.82 - -
s2rmq4m1 0.95 0.76 0.82 0.82 0.89 - -
s3rmq4m1 0.95 0.76 0.82 0.82 0.84 - -
shuttle-eddy 0.84 0.86 0.63 0.68 0.83 - -
skirt 0.86 0.87 0.67 0.79 0.80 - -
vibrobox 1.06 1.06 1.88 0.95 0.84 - -

geomean 0.79 0.78 0.73 0.75 0.78 - -
LP Problems

NL 1.16 20.16 1.02 0.94 0.97 0.95 0.97
CQ9 0.79 28.35 0.74 0.71 0.71 0.65 0.67
GE 0.68 0.90 0.61 0.82 0.81 0.66 0.64
CO9 0.88 33.48 0.76 0.75 0.77 0.74 0.77
fome12 0.58 0.93 2.01 0.46 0.46 0.46 0.46
pltexpA4-6 0.16 0.24 0.38 0.13 0.13 0.09 0.10
world 1.48 2.78 1.66 0.92 0.92 0.82 0.81
mod2 1.56 2.93 1.57 0.91 0.90 0.80 0.81
lpl1 1.57 12.33 1.25 0.96 0.94 0.94 0.96
fxm3-16 1.41 1.59 1.29 0.99 0.99 0.97 0.97
cre-b 0.58 0.67 0.78 0.49 0.56 0.51 0.57
cre-d 0.56 0.63 1.17 0.56 0.56 0.57 0.60
delf036 1.02 1.26 0.92 0.79 0.95 0.79 0.92
d
001 0.59 0.91 1.89 0.45 0.40 0.44 0.39
ex3sta1 0.11 0.11 0.18 0.16 0.14 0.14 0.11
ken-07 1.06 18.16 1.00 0.95 0.95 0.95 0.95
ken-11 1.00 113.04 0.98 0.97 0.97 0.97 0.97
ken-13 1.07 307.63 1.09 0.99 0.98 0.99 0.99
large036 1.05 1.08 1.10 0.77 0.92 0.76 0.92
model10 0.55 0.50 0.73 0.54 0.49 0.70 0.51
pds-02 1.21 1.25 1.51 0.95 0.99 0.91 0.89
pds-06 0.33 0.48 0.94 0.54 0.44 0.49 0.37
pds-10 0.35 0.67 1.24 0.67 0.49 0.65 0.39
pds-20 0.41 0.71 0.89 0.79 0.70 0.72 0.48
rlfprim 0.14 0.14 0.65 - - 0.17 0.13

geomean 0 66 2 22 0 95 0 65 0 64 0 59 0 55
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Table 5.4: Nonzero counts of various methods relative to MMD

2-Clique oPaToH oPaToH using A
name onmetis oemetis SMOOTH MS ND MS ND

General Matrices
BCSSTK23 0.85 0.87 0.83 0.89 0.89 - -
BCSSTK21 0.96 1.04 0.88 0.99 0.99 - -
BCSSTK15 0.76 0.76 0.80 0.85 0.85 - -
3elt 1.00 1.02 0.95 0.94 0.95 - -
BCSSTK16 1.00 1.01 0.92 0.96 1.03 - -
BCSSTK17 1.00 0.99 0.87 0.91 0.93 - -
BCSSTK18 0.92 0.94 0.90 0.89 0.91 - -
BCSSTK25 1.06 1.08 0.89 0.95 1.04 - -
BCSSTK32 1.12 1.17 0.94 0.95 0.96 - -
brack2 0.81 0.82 0.84 0.84 0.85 - -
598a 0.60 0.60 0.69 0.72 0.69 - -
crystk01 0.92 0.82 0.83 0.86 0.90 - -
lshp3025 0.99 0.99 0.92 0.92 0.93 - -
lshp3466 0.98 0.98 0.91 0.92 0.92 - -
mplate 0.65 0.62 0.70 0.71 0.69 - -
nasa4704 1.09 1.08 1.01 0.94 0.92 - -
pwt 0.76 0.76 0.77 0.78 0.78 - -
s1rmq4m1 0.99 0.92 0.92 0.92 0.93 - -
s2rmq4m1 0.99 0.92 0.92 0.93 0.95 - -
s3rmq4m1 0.99 0.92 0.92 0.93 0.94 - -
shuttle-eddy 0.93 0.93 0.83 0.85 0.91 - -
skirt 0.98 0.98 0.86 0.92 0.93 - -
vibrobox 1.01 1.03 1.29 0.91 0.87 - -

geomean 0.92 0.91 0.88 0.89 0.90 - -

LP Problems
NL 1.09 3.83 1.03 0.98 0.99 0.98 0.99
CQ9 0.94 4.05 0.92 0.89 0.89 0.87 0.88
GE 0.94 1.02 0.88 0.94 0.94 0.89 0.88
CO9 0.99 4.51 0.92 0.91 0.92 0.90 0.91
fome12 0.81 1.04 1.50 0.71 0.71 0.70 0.71
pltexpA4-6 0.55 0.67 0.96 0.46 0.46 0.42 0.43
world 1.20 1.63 1.31 0.97 0.97 0.93 0.92
mod2 1.22 1.67 1.28 0.97 0.96 0.93 0.92
lpl1 1.24 3.73 1.11 0.98 0.97 0.97 0.97
fxm3-16 1.12 1.17 1.06 1.00 1.00 1.00 1.00
cre-b 0.83 0.87 0.93 0.76 0.79 0.77 0.80
cre-d 0.82 0.84 1.09 0.79 0.79 0.79 0.81
delf036 1.04 1.13 0.99 0.94 0.98 0.94 0.97
d
001 0.82 1.03 1.46 0.70 0.67 0.69 0.66
ex3sta1 0.31 0.32 0.38 0.36 0.34 0.33 0.31
ken-07 1.04 2.31 1.00 0.99 0.99 0.99 0.99
ken-11 1.02 5.38 1.02 0.99 0.99 0.99 0.99
ken-13 1.06 8.11 1.07 1.01 1.00 1.01 1.00
large036 1.06 1.08 1.05 0.94 0.98 0.93 0.97
model10 0.80 0.77 0.90 0.77 0.75 0.85 0.76
pds-02 1.09 1.10 1.14 0.98 1.00 0.97 0.97
pds-06 0.70 0.87 1.09 0.80 0.74 0.77 0.71
pds-10 0.72 0.97 1.24 0.83 0.74 0.82 0.70
pds-20 0.70 0.93 1.07 0.85 0.81 0.82 0.71
rlfprim 0.38 0.38 0.83 - - 0.40 0.36

geomean 0 86 1 40 1 02 0 83 0 83 0 80 0 78
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Table 5.5: Ordering runtimes of various methods relative to MMD

2-Clique oPaToH oPaToH using A
name onmetis oemetis SMOOTH MS ND MS ND

General Matrices
BCSSTK23 0.63 0.50 1.80 4.14 4.10 - -
BCSSTK21 0.77 0.65 1.73 4.90 4.84 - -
BCSSTK15 1.07 0.86 2.76 14.76 14.84 - -
3elt 1.01 0.98 3.03 6.60 6.64 - -
BCSSTK16 1.12 4.56 14.74 8.75 8.70 - -
BCSSTK17 1.67 3.70 9.18 11.13 11.13 - -
BCSSTK18 1.00 0.82 3.28 8.01 8.03 - -
BCSSTK25 1.16 0.96 2.82 7.53 7.53 - -
BCSSTK32 1.66 5.55 11.67 10.42 10.46 - -
brack2 0.91 0.84 2.49 8.72 8.67 - -
598a 0.74 0.69 2.39 8.43 8.45 - -
crystk01 1.04 4.63 16.16 7.91 7.92 - -
lshp3025 0.97 0.93 2.92 6.82 6.80 - -
lshp3466 1.00 0.89 2.82 6.61 6.66 - -
mplate 0.50 0.40 1.75 5.41 5.43 - -
nasa4704 0.98 2.54 5.89 5.64 5.87 - -
pwt 1.19 1.19 3.32 10.15 10.16 - -
s1rmq4m1 0.76 8.01 18.90 2.52 2.55 - -
s2rmq4m1 0.73 8.30 19.86 2.43 2.43 - -
s3rmq4m1 0.70 8.07 18.96 2.49 2.52 - -
shuttle-eddy 1.20 1.18 3.30 10.58 10.61 - -
skirt 1.31 1.42 2.97 14.30 14.34 - -
vibrobox 0.71 0.65 4.28 11.93 11.91 - -

geomean 0.95 1.57 4.71 7.00 7.02 - -
LP Problems

NL 0.17 0.16 2.13 2.90 2.84 0.99 0.82
CQ9 0.14 0.14 1.78 5.24 4.70 1.18 0.87
GE 1.06 0.86 2.82 5.12 5.08 2.04 1.96
CO9 0.12 0.12 1.37 3.97 3.86 0.98 0.78
fome12 0.10 0.08 0.92 2.42 2.58 1.74 1.61
pltexpA4-6 1.05 0.83 1.86 4.72 4.72 2.09 2.00
world 0.24 0.21 1.35 3.78 3.72 0.92 0.73
mod2 0.30 0.25 1.57 4.21 4.19 0.92 0.81
lpl1 0.23 0.21 1.56 2.21 2.21 0.99 0.93
fxm3-16 1.83 1.90 2.96 14.77 15.05 2.61 2.51
cre-b 0.21 0.18 3.66 14.02 14.51 3.17 3.06
cre-d 0.15 0.14 2.62 9.26 9.21 2.62 2.56
delf036 1.26 1.11 3.23 7.28 7.27 2.62 2.67
d
001 0.08 0.06 0.96 2.14 0.81 1.61 0.48
ex3sta1 0.36 0.45 11.09 4.43 4.47 0.75 0.71
ken-07 0.78 0.94 1.14 4.57 4.74 3.29 3.22
ken-11 0.72 0.84 1.89 6.49 6.12 3.20 3.20
ken-13 0.31 0.35 0.85 6.30 4.16 4.97 2.25
large036 1.13 1.26 3.72 7.67 7.70 2.52 2.55
model10 0.65 0.97 7.63 16.56 16.11 3.28 3.33
pds-02 0.80 0.62 2.73 3.56 3.59 3.29 3.37
pds-06 0.14 0.12 0.84 0.91 0.79 0.82 0.76
pds-10 0.05 0.04 0.38 0.47 0.32 0.42 0.30
pds-20 0.01 0.01 0.11 0.37 0.17 0.24 0.14
rlfprim 0.35 0.35 8.47 - - 0.12 0.12

geomean 0 29 0 28 1 82 3 96 3 53 1 43 1 19



Chapter 6

PaToH: A Multilevel Hypergraph

Partitioning Tool

We exploit the successful multilevel methodology [13, 35, 46] proposed and im-

plemented for graph partitioning [36, 44] to develop a new multilevel hypergraph

partitioning tool, called PaToH (PaToH: Partitioning Tools for Hypergraphs).

The data structures used to store hypergraphs in PaToH mainly consist of

the following arrays. The NETLST array stores the net lists of the vertices. The

PINLST array stores the pin lists of the nets. The size of both arrays is equal to

the total number of pins in the hypergraph. Two auxiliary index arrays VTXS

and NETS of sizes jVj+1 and jN j+1 hold the starting indices of the net lists and

pin lists of the vertices and nets in theNETLST and PINLST arrays, respectively.

In sparse matrix storage terminology, this scheme corresponds to storing the given

matrix both in Compressed Sparse Row (CSR) and Compressed Sparse Column

(CSC) formats [50] without storing the numerical data. In the column-net model

proposed for rowwise decomposition, the VTXS and NETLST arrays correspond

to the CSR storage scheme, and the NETS and PINLST arrays correspond to the

CSC storage scheme. This correspondence is dual in the row-net model proposed

for columnwise decomposition.

The storage requirement of the proposed hypergraph models is as follows. For

an M �M square matrix with Z o�-diagonal nonzero entries, the hypergraph

97
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Figure 6.1: Cut-net splitting during recursive bisection.

models contain jVj = M vertices, jN j = M nets and p = M + Z pins for both

symmetric and unsymmetric matrices. Note that M pins comes from maintain-

ing the diagonal entries of the matrix. Hence, the storage requirement of both

hypergraph models is SH = 5M + 2Z words, where 2M words come from index

arrays VTXS and NETS, M words are required to store vertex weights, and

2(M + Z) words come from NETLST and PINLST arrays.

The K -way graph/hypergraph partitioning problem is usually solved by re-

cursive bisection. In this scheme, �rst a 2-way partition of G/H is obtained, and

then this bipartition is further partitioned in a recursive manner. After lg2K

phases, graph G/H is partitioned into K parts. PaToH achieves K -way hyper-

graph partitioning by recursive bisection for any K value (i.e., K is not restricted

to be a power of 2).

The connectivity cutsize metric given in (2.4.b) needs special attention in K -

way hypergraph partitioning by recursive bisection. Note that the cutsize metrics

given in (2.4.a) and (2.4.b) become equivalent in hypergraph bisection. Consider

a bipartition VA and VB of V obtained after a bisection step. It is clear that VA
and VB and the internal nets of parts A and B will become the vertex and net

sets of HA and HB , respectively, for the following recursive bisection steps. Note
that each cut net of this bipartition already contributes 1 to the total cutsize of

the �nal K -way partition to be obtained by further recursive bisections. How-

ever, the further recursive bisections of VA and VB may increase the connectivity

of these cut nets. In parallel SpMxV view, while each cut net already incurs
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the communication of a single word, these nets may induce additional commu-

nication because of the following recursive bisection steps. Hence, after every

hypergraph bisection step, each cut net ni is split into two pin-wise disjoint nets

n0i = pins[ni]
TVA and n00i = pins[ni]

TVB , and then these two nets are added

to the net lists of HA and HB if jn0ij > 1 and jn00i j > 1, respectively. Note that

the single-pin nets are discarded during the split operation since such nets cannot

contribute to the cutsize in the following recursive bisection steps. Thus, the total

cutsize according to (2.4.b) will become equal to the sum of the number of cut

nets at every bisection step by using the above cut-net split method. Figure 6.1

illustrates two cut nets ni and nk in a bipartition, and their splits into nets n0i ,

n00i and n0k , n
00
k , respectively. Note that net n

00
k becomes a single-pin net and it is

discarded.

Similar to multilevel graph and hypergraph partitioning tools Chaco [36],

MeTiS [44] and hMeTiS [47], the multilevel hypergraph bisection algorithm used

in PaToH consists of 3 phases: coarsening, initial partitioning and uncoarsening.

The following sections brie
y summarize our multilevel bisection algorithm. Al-

though PaToH works on weighted nets, we will assume unit cost nets both for

the sake of simplicity of presentation and for the fact that all nets are assigned

unit cost in the hypergraph representation of sparse matrices.

6.1 Coarsening Phase

In this phase, the given hypergraph H =H0 = (V0;N0) is coarsened into a se-

quence of smaller hypergraphs H1=(V1;N1), H2=(V2;N2), : : :, Hm=(Vm;Nm)

satisfying jV0j> jV1j> jV2j> : : : > jVmj. This coarsening is achieved by coalesc-

ing disjoint subsets of vertices of hypergraph Hi into multinodes such that each

multinode in Hi forms a single vertex of Hi+1 . The weight of each vertex of Hi+1

becomes equal to the sum of its constituent vertices of the respective multinode

in Hi . The net set of each vertex of Hi+1 becomes equal to the union of the net

sets of the constituent vertices of the respective multinode in Hi . Here, multiple

pins of a net n2Ni in a multinode cluster of Hi are contracted to a single pin of

the respective net n02Ni+1 of Hi+1 . Furthermore, the single-pin nets obtained

during this contraction are discarded. Note that such single-pin nets correspond



CHAPTER 6. PATOH: MULTILEVEL HYPERGRAPH PART. TOOL 100

to the internal nets of the clustering performed on Hi . The coarsening phase ter-

minates when the number of vertices in the coarsened hypergraph reduces below

100 (i.e. jVmj�100).

Clustering approaches can be classi�ed as agglomerative and hierarchical. In

the agglomerative clustering, new clusters are formed one at a time, whereas in

the hierarchical clustering several new clusters may be formed simultaneously.

In PaToH, we have implemented both randomized matching{based hierarchical

clustering and randomized hierarchic{agglomerative clustering. The former and

latter approaches will be abbreviated as matching{based clustering and agglom-

erative clustering, respectively.

The matching-based clustering works as follows. Vertices of Hi are visited in

a random order. If a vertex u2Vi has not been matched yet, one of its unmatched

adjacent vertices is selected according to a criterion. If such a vertex v exists,

we merge the matched pair u and v into a cluster. If there is no unmatched

adjacent vertex of u, then vertex u remains unmatched, i.e., u remains as a

singleton cluster. Here, two vertices u and v are said to be adjacent if they share

at least one net, i.e., nets[u]\nets[v] 6= ;. The selection criterion used in PaToH

for matching chooses a vertex v with the highest connectivity value Nuv . Here,

connectivity Nuv= jnets[u]\nets[v]j refers to the number of shared nets between

u and v . This matching-based scheme is referred to here as Heavy Connectivity

Matching (HCM).

The matching-based clustering allows the clustering of only pairs of vertices in

a level. In order to enable the clustering of more than two vertices at each level,

we have implemented a randomized agglomerative clustering approach. In this

scheme, each vertex u is assumed to constitute a singleton cluster Cu=fug at the
beginning of each coarsening level. Then, vertices are visited in a random order. If

a vertex u has already been clustered (i.e. jCuj>1) it is not considered for being

the source of a new clustering. However, an unclustered vertex u can choose to

join a multinode cluster as well as a singleton cluster. That is, all adjacent vertices

of an unclustered vertex u are considered for selection according to a criterion.

The selection of a vertex v adjacent to u corresponds to including vertex u to

cluster Cv to grow a new multinode cluster Cu =Cv =Cv [ fug. Note that no

singleton cluster remains at the end of this process as far as there exists no isolated
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Figure 6.2: Matching-based clustering AHCM
1 and agglomerative clustering

AHCC
1 of the rows of matrix A0 .

vertex. The selection criterion used in PaToH for agglomerative clustering chooses

a singleton or multinode cluster Cv with the highest Nu;Cv=Wu;Cv value, where

Nu;Cv= jnets[u]\
S
x2Cv nets[x]j and Wu;Cv is the weight of the multinode cluster

candidate fug [Cv . The division of Nu;Cv by Wu;Cv is an e�ort for avoiding the

polarization towards very large clusters. This agglomerative clustering scheme is

referred to here as Heavy Connectivity Clustering (HCC).

The objective in both HCM and HCC is to �nd highly connected vertex clus-

ters. Connectivity values Nuv and Nu;Cv used for selection serve this objective.

Note that Nuv (Nu;Cv ) also denotes the lower bound in the amount of decrease

in the number of pins because of the pin contractions to be performed when

u joins v (Cv ). Recall that there might be additional decrease in the number

of pins because of single-pin nets that may occur after clustering. Hence, the

connectivity metric is also an e�ort towards minimizing the complexity of the fol-

lowing coarsening levels, partitioning phase and re�nement phase since the size

of a hypergraph is equal to the number of its pins.

In rowwise matrix decomposition context (i.e. column-net model), the con-

nectivity metric corresponds to the number of common column indices between

two rows or row groups. Hence, both HCM and HCC try to combine rows or

row groups with similar sparsity patterns. This in turn corresponds to combining

rows or row groups which need similar sets of x-vector components in the pre-

communication scheme. A dual discussion holds for the row-net model. Figure 6
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illustrates a single level coarsening of an 8� 8 sample matrix A0 in the column-

net model using HCM and HCC. The original decimal ordering of the rows is

assumed to be the random vertex visit order. As seen in Fig. 6, HCM matches

row pairs f1; 3g, f2; 6g and f4; 5g with the connectivity values of 3, 2 and 2,

respectively. Note that the total number of nonzeros of A0 reduces from 28 to

21 in AHCM
1 after clustering. This di�erence is equal to the sum 3+2+2=7 of

the connectivity values of the matched row-vertex pairs since pin contractions do

not lead to any single-pin nets. As seen in Fig. 6, HCC constructs three clusters

f1; 2; 3g, f4; 5g and f6; 7; 8g through the clustering sequence of f1; 3g, f1; 2; 3g,
f4; 5g, f6; 7g and f6; 7; 8g with the connectivity values of 3, 4, 2, 3 and 2, re-

spectively. Note that pin contractions lead to three single-pin nets n2 , n3 and

n7 , thus columns 2, 3 and 7 are removed. As also seen in Fig. 6, although rows 7

and 8 remain unmatched in HCM, every row is involved in at least one clustering

in HCC.

Both HCM and HCC necessitate scanning the pin lists of all nets in the net

list of the source vertex to �nd its adjacent vertices for matching and clustering.

In the column-net (row-net) model, the total cost of these scan operations can be

as expensive as the total number of multiply and add operations which lead to

nonzero entries in the computation of AAT (ATA). In HCM, the key point to

e�cient implementation is to move the matched vertices encountered during the

scan of the pin list of a net to the end of its pin list through a simple swap opera-

tion. This scheme avoids the re-visits of the matched vertices during the following

matching operations at that level. Although this scheme requires an additional

index array to maintain the temporary tail indices of the pin lists, it achieves

substantial decrease in the run-time of the coarsening phase. Unfortunately, this

simple yet e�ective scheme cannot be fully used in HCC. Since a singleton vertex

can select a multinode cluster, the re-visits of the clustered vertices are partially

avoided by maintaining only a single vertex to represent the multinode cluster

in the pin-list of each net connected to the cluster, through simple swap opera-

tions. Through the use of these e�cient implementation schemes the total cost

of the scan operations in the column-net (row-net) model can be as low as the

total number of nonzeros in AAT (ATA). In order to maintain this cost within

reasonable limits, all nets of size greater than 4savg are not considered in a bi-

partitioning step, where savg denotes the average net size of the hypergraph to
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be partitioned in that step. Note that such nets can be reconsidered during the

further levels of recursion because of net splitting.

The cluster growing operation in HCC requires disjoint-set operations for

maintaining the representatives of the clusters, where the union operations are

restricted to the union of a singleton source cluster with a singleton or a multinode

target cluster. This restriction is exploited by always choosing the representative

of the target cluster as the representative of the new cluster. Hence, it is su�cient

to update the representative pointer of only the singleton source cluster joining

to a multinode target cluster. Therefore, each disjoint-set operation required in

this scheme is performed in O(1) time.

6.2 Initial Partitioning Phase

The goal in this phase is to �nd a bipartition on the coarsest hypergraph Hm .

In PaToH, we use Greedy Hypergraph Growing (GHG) algorithm for bisecting

Hm . This algorithm can be considered as an extension of the GGGP algorithm

used in MeTiS to hypergraphs. In GHG, we grow a cluster around a randomly

selected vertex. During the coarse of the algorithm, the selected and unselected

vertices induce a bipartition on Hm . The unselected vertices connected to the

growing cluster are inserted into a priority queue according to their FM gains.

Here, the gain of an unselected vertex corresponds to the decrease in the cutsize

of the current bipartition if the vertex moves to the growing cluster. Then, a

vertex with the highest gain is selected from the priority queue. After a vertex

moves to the growing cluster, the gains of its unselected adjacent vertices which

are currently in the priority queue are updated and those not in the priority

queue are inserted. This cluster growing operation continues until a predeter-

mined bipartition balance criterion is reached. As also mentioned in MeTiS, the

quality of this algorithm is sensitive to the choice of the initial random vertex.

Since the coarsest hypergraph Hm is small, we run GHG 4 times starting from

di�erent random vertices and select the best bipartition for re�nement during the

uncoarsening phase.
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6.3 Uncoarsening Phase

At each level i (for i = m;m�1; : : : ; 1), bipartition �i found on Hi is projected

back to a bipartition �i�1 on Hi�1 . The constituent vertices of each multinode

in Hi�1 is assigned to the part of the respective vertex in Hi . Obviously, �i�1
of Hi�1 has the same cutsize with �i of Hi . Then, we re�ne this bipartition

by running a Boundary FM (BFM) hypergraph bipartitioning algorithm on Hi�1
starting from initial bipartition �i�1 . BFM moves only the boundary vertices

from the overloaded part to the under-loaded part, where a vertex is said to be a

boundary vertex if it is connected to an at least one cut net.

BFM requires maintaining the pin-connectivity of each net for both initial

gain computations and gain updates. The pin-connectivity �k[n] = jn \ Pkj of a
net n to a part Pk denotes the number of pins of net n that lie in part Pk , for
k = 1; 2. In order to avoid the scan of the pin lists of all nets, we adopt an e�cient

scheme to initialize the � values for the �rst BFM pass in a level. It is clear that

initial bipartition �i�1 of Hi�1 has the same cut-net set with �i of Hi . Hence,

we scan only the pin lists of the cut nets of �i�1 to initialize their � values. For

each other net n, �1[n] and �2[n] values are easily initialized as �1[n] = sn and

�2[n]=0 if net n is internal to part P1 , and �1[n]=0 and �2[n]= sn otherwise.

After initializing the gain value of each vertex v as g[v]=�dv , we exploit � values

as follows. We re-scan the pin list of each external net n and update the gain

value of each vertex v 2 pins[n] as g[v] = g[v] + 2 or g[v] = g[v] + 1 depending

on whether net n is critical to the part containing v or not, respectively. An

external net n is said to be critical to a part k if �k[n] = 1 so that moving

the single vertex of net n that lies in that part to the other part removes net n

from the cut. Note that two-pin cut nets are critical to both parts. The vertices

visited while scanning the pin-lists of the external nets are identi�ed as boundary

vertices and only these vertices are inserted into the priority queue according to

their computed gains.

In each pass of the BFM algorithm, a sequence of unmoved vertices with

the highest gains are selected to move to the other part. As in the original

FM algorithm, a vertex move necessitates gain updates of its adjacent vertices.

However, in the BFM algorithm, some of the adjacent vertices of the moved
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vertex may not be in the priority queue, because they may not be boundary

vertices before the move. Hence, such vertices which become boundary vertices

after the move are inserted into the priority queue according to their updated

gain values. The re�nement process within a pass terminates either no feasible

move remains or the sequence of last maxf50, 0:001jVijg moves does not yield a

decrease in the total cutsize. A move is said to be feasible if it does not disturb

the load balance criterion (2.1) with K=2. At the end of a BFM pass, we have a

sequence of tentative vertex moves and their respective gains. We then construct

from this sequence the maximumpre�x subsequence of moves with the maximum

pre�x sum which incurs the maximum decrease in the cutsize. The permanent

realization of the moves in this maximumpre�x subsequence is e�ciently achieved

by rolling back the remaining moves at the end of the overall sequence. The

initial gain computations for the following pass in a level is achieved through this

rollback. The overall re�nement process in a level terminates if the maximum

pre�x sum of a pass is not positive. In the current implementation of PaToH, at

most 2 BFM passes are allowed at each level of the uncoarsening phase.



Chapter 7

Conclusion

Two computational hypergraph models were proposed to decompose sparse ma-

trices in 1D for minimizing communication volume while maintaining load bal-

ance during repeated parallel matrix-vector product computations. The proposed

models enable the representation and hence the decomposition of structurally

nonsymmetric matrices as well as structurally symmetric matrices. Furthermore,

they introduce a much more accurate representation for the communication re-

quirement than the standard computational graph model widely used in the lit-

erature for the parallelization of various scienti�c applications. The proposed

models reduce the 1D decomposition problem to the well-known hypergraph par-

titioning problem thus enabling the use of circuit partitioning heuristics widely

used in VLSI design. Experimental results carried out on a wide range of sparse

test matrices arising in di�erent application domains con�rmed the validity of

the proposed hypergraph models. In the 1D decomposition of the test matrices,

the use of the proposed hypergraph models instead of the graph models achieved

30%-38% decrease in the communication volume requirement of a single parallel

matrix-vector multiplication at the expense of only 34%{130% increase in the

decomposition time by using PaToH, on the average.

In the literature, there was a lack of existence of 2D decomposition heuristics

for parallel SpMxV computations. This thesis provides three di�erent hyper-

graph models for 2D decomposition of sparse matrices, a �ne-grain hypergraph

model and hypergraph models for jagged-like and checkerboard decompositions.
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The proposed �ne-grain hypergraph model produced the best decompositions in

terms of communication volume. For the architecture with high start-up costs,

number of messages is also important. For those kind of architectures, checker-

board decomposition model is a good choice, since it restricts the communication

to be done only on the rows or columns of the 2D processor mesh, hence the

upper bound on the number of messages is very low. In the 2D decomposition

of the test matrices, all of the proposed hypergraph models produces 26%-59%

better decompositions, on the overall average, than the standard graph model

that enables 1D decompositions.

Graph and graph partitioning are also widely used in nested dissection based

low �ll ordering tools. Graph partitioning encountered in this domain is formu-

lated as graph partitioning by vertex separator (GPVS). In this thesis, we showed

that GPVS problem can be formulated as hypergraph partitioning problem. We

have exploited this �nding to develop a novel hypergraph partitioning based �ll

reducing ordering method, to order the AAT kind matrices encountered in the

solution of LP problems. For general symmetric matrices, the proposed method

extended by the notion of 2-clique decomposition of the matrix. In the order-

ing of matrices arising from LP problems, the proposed method produced 45%

better orderings than MMD ordering heuristic in terms of operation count, by

the expense of 20% larger execution time. In the ordering of general symmetric

test matrices, the proposed method produces 25% better orderings than MMD,

however it is approximately 7 times slower than MMD implementation we have

used.

In this work, a successful multilevel hypergraph partitioning tool PaToH was

also implemented. PaToH is found to be approximately 4 times faster than its

only competitor hMeTiS while producing the same quality results. 2D checker-

board decomposition requires multi-constraint hypergraph partitioning. Hence,

PaToH was extended to handle the multi-constraints. Hypergraph partitioning

based nested dissection also requires additional extensions, such as balance on

nets, embedded constrained minimum degree, etc. PaToH was also modi�ed to

handle balance on nets, and multi-stage ordering code of SMOOTH is embedded

to produce nested dissection and multisection ordering results based on hyper-

graph partitioning.
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This work was an e�ort towards showing that the computational hypergraph

model is more powerful than the standard computational graph model as it pro-

vides a more versatile representation for the interactions among the atomic tasks

of the computational domains. In the computational graph model for general

applications, each edge usually represents a two-way interaction between a pair

of atomic tasks implicitly. The net (hyperedge) concept in the computational hy-

pergraph model has the additional power of representing a multiway interaction

explicitly among a set of atomic tasks through a shared data item in data parallel

applications. Hence, the graph model su�ces when an edge represents a unique

data item of which intermediate result(s) should be communicated between ex-

actly two processors if the atomic tasks represented by the two end vertices of this

edge are assigned to di�erent processors. Unfortunately, this is not the case in all

scienti�c applications. There is usually a multiway interaction among the atomic

tasks and thus the hypergraph is a more promising model for the decomposition

of the computational domains.



Bibliography

[1] C. J. Alpert, L. W. Hagen, and A. B. Kahng. A hybrid multilevel/genetic

approach for circuit partitioning. Technical report, UCLA Computer Science

Department, 1996.

[2] C. J. Alpert and A. B. Kahng. Recent directions in netlist partitioning: A

survey. VLSI Journal, 19(1{2):1{81, 1995.

[3] P. Amestoy, T. Davis, and I. Du�. An approximate minimumdegree ordering

algorithm. Technical Report TR-94-039, University of Florida, Dec 1994.

[4] C. Ashcraft. Compressed graphs and the minimum degree algorithm. SIAM

J. Sci. Statist. Comput., 16:1404{1411, 1995.

[5] C. Ashcraft and J. W. H. Liu. A partition improvement algorithm for gener-

alized nested dissection. Technical Report BCSTECH-94-020, Boeing Com-

puter Services, Seattle, WA, 1994.

[6] C. Ashcraft and J. W. H. Liu. Using domain decomposition to �nd graph

bisectors. Technical Report ISSTECH-95-024, Boeing Information and Sup-

port Service, 1995.

[7] C. Ashcraft and J. W. H. Liu. SMOOTH: A software package for ordering

sparse matrices, 1996.

[8] C. Ashcraft and J. W. H. Liu. Applications of the dulmage-mendelsohn

decomposition and network 
ow to graph bisection improvement. SIAM

Journal on Matrix Analysis and Applications, 19(2):325{354, 1998.

109



BIBLIOGRAPHY 110

[9] C. Ashcraft and J. W. H. Liu. Robust ordering of sparse matrices using

multisection. SIAM Journal on Matrix Analysis and Applications, 19(3):816{

832, 1998.

[10] C. Aykanat, F. Ozguner, F. Ercal, and P. Sadayappan. Iterative algorithms

for solution of large sparse systems of linear equations on hypercubes. IEEE

Transactions on Computers, 37:1554{1567, Dec 1988.

[11] C. Aykanat, A. P�nar, and �U. V. C�ataly�urek. Permuting sparse rectangular

matrices into singly-bordered block-diagonal form for parallel solution of lp

problems. submitted for publication.

[12] T. N. Bui and C. Jones. Finding good approximate vertex and edge partitions

is NP-hard. Infomation Processing Letters, 42(3):153{159, May 1992.

[13] T. N. Bui and C. Jones. A heuristic for reducing �ll in sparse matrix factoriza-

tion. In Proc. 6th SIAM Conf. Parallel Processing for Scienti�c Computing,

pages 445{452, 1993.

[14] T. Bultan and C. Aykanat. A new mapping heuristic based on mean �eld

annealing. Journal of Parallel and Distributed Computing, 16:292{305, 1992.

[15] W. Camp, S. J. Plimpton, B.A Hendrickson, and R. W. Leland. Massively

parallel methods for engineering and science problems. Communication of

ACM, 37(4):31{41, April 1994.

[16] W. J. Carolan, J. E. Hill, J. L. Kennington, S. Niemi, and S. J. Wichmann.

An empirical evaluation of the korbx algorithms for military airlift applica-

tions. Operations Research, 38(2):240{248, 1990.

[17] �U. V. C�ataly�urek and C. Aykanat. Decomposing irregularly sparse matri-

ces for parallel matrix-vector multiplications. Lecture Notes in Computer

Science, 1117:75{86, 1996.

[18] IOWA Optimization Center. Linear programming problems.

ftp://col.biz.uiowa.edu:pub/testprob/lp/gondzio.

[19] C.-K. Cheng and Y.-C. Wei. An improved two-way partitioning algorithm

with stable performance. IEEE Transactions on Computer-Aided Design,

10(12):1502{1511, December 1991.



BIBLIOGRAPHY 111

[20] J. Cong, L. Hagen, and A. B. Kahng. Net partitions yield better module par-

titions. In Proceedings of 29th ACM/IEEE Design Automation Conference,

pages 47{52, 1992.

[21] J. Cong, W. Labio, and N. Shivakumar. Multi-way vlsi circuit partitioning

based on dual net representation. In Proceedings of IEEE International

Conference on Computer-Aided Design, pages 56{62, 1994.

[22] J. Cong and M'L. Smith. A parallel bottom-up clustering algorithm with

applications to circuit partitioning in vlsi design. In Proceedings of the 30th

ACM/IEEE Design Automation Conference, pages 755{760, 1993.

[23] T. Davis. University of 
orida sparse matrix collection:

http://www.cise.u
.edu/ davis/sparse/. NA Digest, 92/96/97(42/28/23),

1994/1996/1997.

[24] I. S. Du�, R. Grimes, and J. Lewis. Sparse matrix test problems. ACM

Transactions on Mathematical Software, 15(1):1{14, march 1989.

[25] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving

network partitions. In Proceedings of the 19th ACM/IEEE Design Automa-

tion Conference, pages 175{181, 1982.

[26] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simpli�ed NP-

complete graph problems. Theoretical Computer Science, 1:237{267, 1976.

[27] J. A. George. Nested dissection of a regular �nite element mesh. SIAM

Journal on Numerical Analysis, 10:345{363, 1973.

[28] J. A. George and J. W. H. Liu. Computer solution of large sparse positive

de�nite systems. Prentice-Hall, 1981.

[29] M. K. Goldberg and M. Burstein. Heuristic improvement techniques for

bisection of vlsi networks. In Proc. IEEE Intl. Conf. Computer Design,

pages 122{125, 1983.

[30] A. Gupta. Fast and e�ective algorithms for graph partitioning and sparse

matrix ordering. Technical Report RC 20453, IBM T. J. Watson Research

Center, Yorktown Heights, NY, 1996.



BIBLIOGRAPHY 112

[31] A. Gupta. Watson graph partitioning package. Technical Report RC 20453,

IBM T. J. Watson Research Center, Yorktown Heights, NY, 1996.

[32] G. Hachtel, A.R. Newton, and A. Sangiovanni-Vincentelli. An algorithm

for optimal pla folding. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 1(2):63{77, 1982.

[33] B. Hendrickson. Graph partitioning and parallel solvers: has the emperor

no clothes? Lecture Notes in Computer Science, 1457:218{225, 1998.

[34] B. Hendrickson and T. G. Kolda. Partitioning rectangular and structurally

nonsymmetric sparse matrices for parallel processing. submitted to SIAM

Journal on Scienti�c Computing.

[35] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning

graphs. Technical report, Sandia National Laboratories, 1993.

[36] B. Hendrickson and R. Leland. The Chaco user's guide, version 2.0. Sandia

National Laboratories, Alburquerque, NM, 87185, 1995.

[37] B. Hendrickson, R. Leland, and S. Plimpton. An e�cient parallel algorithm

for matrix-vector multiplication. Int. J. High Speed Computing, 7(1):73{88,

1995.

[38] B. Hendrickson and E. Rothberg. E�ective sparse matrix ordering: just

around the bend. In Proc. Eighth SIAM Conf. Parallel Processing for Sci-

enti�c Computing.

[39] B. Hendrickson and E. Rothberg. Improving the runtime and quality of

nested dissection ordering. Technical Report SAND96-0868J, Sandia Na-

tional Laboratories, Mar 1996.

[40] E. Ihler, D. Wagner, and F. Wagner. Modeling hypergraphs by graphs with

the same mincut properties. Information Processing Letters, 45(4):171{175,

March 1993.

[41] M. Kaddoura, C. W. Qu, and S. Ranka. Partitioning unstructured compu-

tational graphs for nonuniform and adaptive environments. IEEE Parallel

and Distributed Technology, 3(3):63{69, 1995.



BIBLIOGRAPHY 113

[42] A. B. Kahng. Fast hypergraph partition. In Proceedings of the 26th

ACM/IEEE Design Automation Conference, pages 762{766, 1989.

[43] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for

partitioning irregular graphs. Technical Report TR 95-035, Department of

Computer Science, University of Minnesota, 1995.

[44] G. Karypis and V. Kumar. MeTiS A Software Package for Partitioning Un-

structured Graphs, Partitioning Meshes, and Computing Fill-Reducing Or-

derings of Sparse Matrices Version 3.0. University of Minnesota, Department

of Comp. Sci. and Eng., Army HPC Research Center, Minneapolis, 1998.

[45] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph

partitioning. Technical Report 98-019, University of Minnesota, Department

of Computer Science/Army HPC Research Center, Minneapolis, MN 55455,

May 1998.

[46] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for

partitioning irregular graphs. SIAM Journal on Scienti�c Computing, to

appear.

[47] G. Karypis, V. Kumar, R. Aggarwal, and S. Shekhar. hMeTiS A Hypergraph

Partitioning Package Version 1.0.1. University of Minnesota, Department

of Comp. Sci. and Eng., Army HPC Research Center, Minneapolis, 1998.

[48] B. W. Kernighan and S. Lin. An e�cient heuristic procedure for partitioning

graphs. The Bell System Technical Journal, 49(2):291{307, February 1970.

[49] T. G. Kolda. Partitioning sparse rectangular matrices for parallel processing.

Lecture Notes in Computer Science, 1457:68{79, 1998.

[50] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Paral-

lel Computing: Design and Analysis of Algorithms. Benjamin/Cummings

Publishing Company, Redwood City, CA, 1994.

[51] V. Lakamsani, L. N. Bhuyan, and D. S. Linthicum. Mapping molecular

dynamics computations on to hypercubes. Parallel Computing, 21:993{1013,

1995.



BIBLIOGRAPHY 114

[52] E.L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt,

Rinehart, and Winston, 1976.

[53] C. E. Leiserson and J. G. Lewis. Orderings for parallel sparse symmetric

matrix factorization. In Third SIAM Conference on Parallel Processing for

Scienti�c Computing, pages 27{31, 1987.

[54] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout.

Willey{Teubner, Chichester, U.K., 199.

[55] J. G. Lewis, D. G. Payne, and R. A. van de Geijn. Matrix-vector multiplica-

tion and conjugate gradient algorithms on distributed memory computers. In

Proceedings of the Scalable High Performance Computing Conference, 1994.

[56] J. G. Lewis and R. A. van de Geijn. Distributed memory matrix-vector

multiplication and conjugate gradient algorithms. In Proceedings of Super-

computing'93, pages 15{19, Portland, OR, November 1993.

[57] J. W. H. Liu. Modi�cation of the minimumdegree algorith by multiple elim-

ination. ACM Transactions on Mathematical Software, 11:141{153, 1985.

[58] J. W. H. Liu. A graph partitioning algorithm by node seperator. ACM

Transactions on Mathematical Software, 15(3):198{219, Sep 1989.

[59] J. W. H. Liu. On the minimum degree ordering with constraints. SIAM J.

Sci. Statist. Comput., 10:1136{1145, 1989.

[60] O. C. Martin and S. W. Otto. Partitioning of unstructured meshes for load

balancing. Concurrency: Practice and Experience, 7(4):303{314, 1995.

[61] S. G. Nastea, O. Frieder, and T. El-Ghazawi. Load-balanced sparse matrix-

vector multiplication on parallel computers. Journal of Parallel and Dis-

tributed Computing, 46:439{458, 1997.

[62] A. T. Ogielski and W. Aielo. Sparse matrix computations on parallel pro-

cessor arrays. SIAM Journal on Numerical Analysis, 1993.

[63] A. P�nar, �U. V. C�ataly�urek, C. Aykanat, and M. P�nar. Decomposing linear

programs for parallel solution. Lecture Notes in Computer Science, 1041:473{

482, 1996.



BIBLIOGRAPHY 115

[64] C. Pommerell, M. Annaratone, and W. Fichtner. A set of new mapping and

colloring heuristics for distributed-memory parallel processors. SIAM Jour-

nal of Scienti�c and Statistical Computing, 13(1):194{226, January 1992.

[65] A. Pothen and C. J. Fan. Computing the block triangular form of a sparse

matrix. ACM Transactions on Mathematical Software, 16(4):303{324, 1990.

[66] A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with

eigenvectors of graphs. SIAM Journal of Matrix Analysis and Applications,

11(3):430{452, 1990.

[67] A. Pothen, H. D. Simon, L. Wang, and S. T. Bernhard. Towards a fast

implementation of spectral nested dissection. In Proceedings of Supercom-

puting'92, pages 42{51, 1992.

[68] C.-W. Qu and S. Ranka. Parallel incremental graph partitioning. IEEE

Transactions on Parallel and Distributed Systems, 8(8):884{896, 1997.

[69] E. Rothberg. Ordering sparse matrices using approximate minimum local

�ll. submitted for publication, 1996.

[70] Y. Saad, K. Wu, and S. Petiton. Sparse matrix computations on the cm-5.

In Proc. 6th SIAM Conf. on Parallel Processing for Scienti�cal Computing,

1993.

[71] K. Schloegel, G. Karypis, and V. Kumar. A new algorithm for multi-objective

graph partitioning. Technical Report 99-003, University of Minnesota, De-

partment of Computer Science/Army HPC Research Center, Minneapolis,

MN 55455, Sep 1999.

[72] D. G. Schweikert and B. W. Kernighan. A proper model for the partitioning

of electrical circuits. In Proceedings of the 9th ACM/IEEE Design Automa-

tion Conference, pages 57{62, 1972.

[73] H. Shin and C. Kim. A simple yet e�ective technique for partitioning. IEEE

Transactions on VLSI Systems, 1(3):380{386, Sep 1993.

[74] W. F. Tinney and J. W. Walker. Direct solution of sparse network equations

by optimally ordered triangular factorization. In Proc. IEEE, volume 55,

pages 1801{1809, 1967.



BIBLIOGRAPHY 116

[75] Y.-C. Wei and C.-K. Cheng. Ratio cut partitioning for hierarchical designs.

IEEE Transactions on Computer-Aided Design, 10(7):911{921, July 1991.


