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Abstract

This paper presents a semi-automatic technique for developing broad-coverage finite-state
morphological analyzers for use in natural language processing applications. It consists of
three components — elicitation of linguistic information from humans, a machine learning
bootstrapping scheme and a testing environment. The three components are applied itera-
tively until a threshold of output quality is attained. The initial application of this technique
is for morphology of low-density languages in the context of the Expedition project at NMSU
Computing Research Laboratory. This elicit-build-test technique compiles lexical and inflec-
tional information elicited from a human into a finite state transducer lexicon and combines
this with a sequence of morphographemic rewrite rules that is induced using transformation-
based learning from the elicited examples. The resulting morphological analyzer is then
tested against a test suite, and any corrections are fed back into the learning procedure that
builds an improved analyzer.

1 Introduction

The Expedition project at NMSU Computing Research Laboratory is devoted to fast “ramp-
up” of machine translation systems from less studied, so-called “low-density” languages into
English. One of the components that must be acquired and built during this process is a
morphological analyzer for the source low-density language. Since language informants are
not expected or required to be well-versed in computational linguistics in general, or in re-
cent approaches to building morphological analyzers (e.g., [Koskenniemi, 1983, Antworth, 1990,



Karttunen et al., 1992, Karttunen, 1994]) and the operation of state-of-the-art finite state tools
(e.g., [Karttunen, 1993, Karttunen and Beesley, 1992, Karttunen et al., 1996]) in particular, the
generation of the morphological analyzer component has to be accomplished almost semi-auto-
matically. The user will be guided through a knowledge elicitation procedure using the elicitation
component of Expedition, the Boas system. As this task is not easy, we expect that the develop-
ment of the morphological analyzer will be an iterative process, whereby the human informant
will revise and /or refine the information previously elicited based on the feedback from test runs
of the nascent analyzer.

The work reported in this paper describes the process of building and refining morphological
analyzers using data elicited from human informants and machine learning. The main use of
machine learning in our current approach is in the automatic learning of formal rewrite or replace
rules for morphographemic changes derived from the examples provided by the informant. The
subtask of accounting for morphographemic changes is perhaps one of the more complicated
aspects of building an analyzer; by automating it we expect to gain a certain improvement in
productivity.

This paper is organized as follows: After a review of related work, we very briefly describe
the Boas project of which this work is a part. Subsequent sections describe the details of
the approach, the morphological analyzer architecture, the elicited descriptive data and the
computational processes on this data, including segmentation and the the induction of mor-
phographemic rules. We then provide a very detailed example of applying this approach to
developing a morphological analyzer for Polish. Finally, we provide some conclusions and ideas
for future work.

2 Related Work

Machine learning techniques are widely employed in many aspects of language processing. The
availability of large annotated corpora has fuelled a significant amount of work in the application
of machine learning techniques to language processing problems, such as part-of-speech tagging,
grammar induction, sense disambiguation, etc., as witnessed by recent workshops and journal
issues dedicated to this topic.! The current work attempts to contribute to this literature by
describing the human-supervised machine learning approach to the induction of morphological
analyzers - a problem that, surprisingly, has received little attention.

There have been a number of studies on inducing morphographemic rules from a list of inflected
words and a root word list. Johnson [1984] presents a scheme for inducing phonological rules
from surface data, mainly in the context of studying certain aspects of language acquisition. The

'For instance, the CoNLL (Computational Natural Language Learning) Workshops, recent special issues of
Machine Learning Journal (Vol 34 Issue 1/3, Feb 1999.), Al Magazine (Vol. 18, No. 4, 1997).



premise is that languages have a finite number of alternations to be handled by morphographemic
rules and a fixed number of contexts in which they appear; so if there is enough data, phonological
rewrite rules can be generated to account for the data. Rules are ordered by some notion of
“surfaciness”, and at each stage the most surfacy rule — the rule with the most transparent
context — is selected. Golding and Thompson [1985] describe an approach for inducing rules of
English word formation from a corpus of root forms and the corresponding inflected forms. The
procedure described there generates a sequence of transformation rules,? each specifying how to
perform a particular inflection.

More recently, Theron and Cloete [1997] have presented a scheme for obtaining two-level mor-
phology rules from a set of aligned segmented and surface pairs. They use the notion of string
edit sequences, assuming that only insertions and deletions are applied to a root form to get
the inflected form. They determine the root form associated with an inflected form (and con-
sequently the suffixes and prefixes) by exhaustively matching the inflected form against all root
words. The motivation is that “real” suffixes will appear frequently in the corpus of inflected
forms. Once common suffixes and prefixes are identified, the segmentation for an inflected word
can be determined by choosing the segmentation with the most frequently occurring affix seg-
ments; the remainder is then considered the root. While this procedure seems to be reasonable
for a small root word list, the potential for “noisy” or incorrect alignments is quite high when the
corpus of inflected forms is large and the procedure is not given any prior knowledge of possible
segmentations. As a result, automatically selecting the “correct” segmentation becomes quite
nontrivial. An additional complication is that allomorphs show up as distinct affixes and their
counts in segmentations are not accumulated, which might lead to actual segmentations being
missed due to fragmentation. The rule induction is not via a learning scheme: aligned pairs
are compressed into a special data structure and traversals over this data structure generate
morphographemic rules. Theron and Cloete have experimented with pluralization in Afrikaans,
and the resulting system has shown about 94% accuracy on unseen words.

Goldsmith [1998] has used an unsupervised learning method based on the minimum description
length principle to learn the “morphology” of a number of languages. What is learned is a set
of “root” words and affixes, and common inflectional pattern classes. The system requires just
a corpus of words in a language. In the absence of any root word list to use as a scaffolding,
the shortest forms that appear frequently are assumed to be roots, and observed surface forms
are then either generated by the concatenative affixation of suffixes or by rewrite rules.® Since
the system has no notion of what the roots and their part of speech values really are, and what
morphological information is encoded by the affixes, these need to be retrofitted manually by
a human who has to weed through a large number of noisy rules. We feel that this approach,
while quite novel, can be used to build real-world morphological analyzers only after substantial

2Not in the sense it is used in transformation-based learning [Brill, 1995].
3Some of these rules may not make sense, but they are necessary to account for the data: for instance, a rule
like insert a word final y after the root “eas”,is used to generate easy.



modifications are made.

3 The BOAS Project

Boas [Nirenburg, 1998, Nirenburg and Raskin, 1998] is a semi-automatic knowledge elicitation
system that guides a team of two people (a language informant and a programmer) through
the process of developing the static knowledge sources required to produce a moderate-quality,
broad-coverage MT system from any “low-density” language into English. Boas contains knowl-
edge about human language and means of realization of its phenomena in a number of specific
languages as well as extensive pedagogical support, making the system a kind of “linguist in the
box”, intended to help non-professional acquirers with the task. In the spirit of the goal-driven,
“demand-side” approach to computational applications of language processing [Nirenburg, 1996],
the process of acquiring this knowledge has been split into two steps: (i) acquiring the descrip-
tive, declarative knowledge about a language and (ii) deriving operational knowledge (content
for the processing engines) from this descriptive knowledge.

An important goal that we strive to achieve regarding these descriptive and operational pieces
of information, be they elicited from human informants or acquired via machine learning, is that
they be transparent, human readable, and, where necessary, human maintainable and extendable,
contrary to opaque and uninterpretable representations acquired by various statistical learning
paradigms.

Before proceeding any further, we would also like to state the aims and limitations of our ap-
proach. Our main goal is to significantly expedite the development of a morphological analyzer.
It is clear that for inflectional languages where each root word can be associated with a finite
number of word forms, one can, with a lot of work, generate a list of word forms with associated
morphological features encoded and use this as a look-up table to analyze word forms in input
texts. This is, however, something we would like to avoid, as it is time consuming, expensive
and error-prone. We would prefer to capture general morphophonological and morphographemic
phenomena using sample paradigms that will be the basis of lexical abstractions. This will re-
duce the acquisition process to assigning citation forms* to one of the established paradigms;
the automatic generation process described below will do the rest of the work. This process will
still be imperfect, as we expect human informants to err in making their paradigm abstractions
and to overlook details and exceptions. So, the whole process will be an iterative one, with
convergence to a wide-coverage analyzer coming slowly at the beginning (where morphological
phenomena and lexicon abstractions are being defined and tested), but significantly speeding
up once wholesale root form acquisition starts. Since the generation of the operational content

*We use the term citation form to refer to the word form that is used to look up a given form in a dictionary.
[t may be the root or stem form that affixation is applied to, or it may have additional morphological markers to
indicate its citation-form status.



(data files to be used by the morphological analyzer engine) from the elicited descriptions is
expected to take only a few minutes, feedback on operational performance can be provided very
fast.

Human languages have many diverse morphological phenomena and it is not our intent at this
point to have a universal architecture that can accommodate any and all phenomena. Rather,
we propose an extensible approach that can accommodate additional functionality in future
incarnations of Boas. We also intend to limit the morphological processing to processing single
tokens and to deal with multi-token phenomena, such as partial or full word reduplications, with
additional machinery that we do not discuss here.

4 The Elicit-Build-Test Loop

In this paper we concentrate on operational content in the context of building a morphological
analyzer. To determine this content, we integrate the information provided by the informant
with automatically derived information. The whole process is an iterative one, as illustrated
in Figure 1: the elicited information is transformed into the operational data required by the
generic morphological analyzer engine;® the resulting analyzer is then tested on a test corpus.®
Any discrepancies between the output of the analyzer and the test corpus are then analyzed
and potential sources of errors are given as feedback to the elicitation process. Currently, this
feedback is limited to morphographemic processes.

The box in Figure 1 labeled Morphological Analyzer Generation is the main component, which
takes in the elicited information and generates a series of regular expressions for describing
the morphological lexicon and morphographemic rules. The morphographemic rules describing
changes in spelling as a result of affixation operations are induced from the examples provided
by using transformation-based learning [Brill, 1995, Satta and Henderson, 1997]. The result is
an ordered set of contextual replace or rewrite rules, much like those used in phonology.

4.1 Morphological Analyzer Architecture

We adopt the general approach advocated by Karttunen [1994] and build the morphological
analyzer as the combination of several finite state transducers, some of which are constructed
directly from the elicited information, and others of which are constructed from the output of
the machine learning stage. Since the combination of the transducers is computed at compile
time, there are no run time overheads. The basic architecture of the morphological analyzer is

5We currently use XRCE finite state tools as our target environment [Karttunen et al., 1996].
5The test corpus is either elicited from the human informant or compiled from on-line resources for the language
in question.



depicted in Figure 2. The components of this generic architecture are as follows. The analyzer
consists of the union of transducers, each of which implements the morphological analysis process
for one paradigm. Each such transducer is the composition of a number of components. These
components are (from bottom to top) described below:

1. The bottom component is an ordered sequence of morphographemic rules that are learned
via transformation-based learning from the sample inflectional paradigms provided by
the human informant. These rules are then composed into one finite state transducer
[Kaplan and Kay, 1994].

2. The root and affiz lexicon contains the citation forms and the affixes. We currently assume
that all affixation is concatenative and that the lexicon is described by a regular expression
of the sort [ Prefixes ]* [ Roots ] [ Suffixes ]*.7

3. The morpheme to surfacy feature mapping essentially maps morphemes to feature names
but retains some encoding of the surface morpheme. Thus, allomorphs that encode the
same feature would be mapped to different “surfacy” features.

4. The lexical and surfacy constraints specify any conditions to constrain the possibly over-
generating morphotactics of the root and morpheme lexicon. These constraints can be
encoded using the root morphemes and the surfacy features generated by the previous
mapping. The use of surfacy features enables reference to zero morphemes, which other-
wise could not have been used. For instance, if in some paradigm a certain prefix does
not co-occur with a certain suffix, or always occurs with some other suffix, or if a certain
root/lemma of that paradigm has exceptional behavior with respect to one or more of the
affixes, or if the affixal allomorph that goes with a certain root depends on the properties
of the root, these are encoded at this level as finite state constraints.

5. The surfacy feature to feature mapping module maps the surfacy representation of the
affixes to symbolic feature names; as a result, no surface information remains except for
the citation form. Thus, for instance, allomorphs that encode the same feature and map
to different surfacy features now map to the same feature symbol.

6. The feature constraints specify constraints among the symbolic features. They are a dif-
ferent means of constraining morphotactics than the one provided by lexical and surfacy
constraints. At this level, one refers to and constrains symbolic morphosyntactic features
as opposed to surfacy features. This may provide a more natural or convenient abstraction,
especially for languages with long-distance morphotactic constraints.

“"We currently assume that we have at most one prefix and at most one suffix, but this is not a fundamental
limitation. The elicitation of morphotactics for an agglutinating language like Turkish or Finnish requires a more
sophisticated elicitation machinery.



These six finite state transducers are composed to yield a transducer for the paradigm. The union
of the transducers for all paradigms produces one (possibly large) transducer for morphological
analysis, where surface strings applied at the lower end produce all possible analyses at the
upper end.

4.2 Information Elicited from Human Informants

The Boas environment guides the language informant through a series of questions leading up
to paradigm delineation. The informant indicates the parameters for which a given part-of-
speech inflects (e.g., Case, Number), the relevant values for those parameters (e.g., Nominative,
Accusative; Singular, Plural), and the licit combinations of parameter values (e.g., Nominative
Singular, Nominative Plural). Then he posits any number of paradigms, whose members are
expected to show similar patterns of inflection. It is assumed that all citation forms that belong
to the same paradigm take essentially the same set of inflectional affixes (perhaps subject to
morphophonological variations). It is expected that the roots and/or the affixes may undergo
systematic or idiosyncratic morphographemic changes. It is also assumed that certain lemmas
in a given paradigm may behave in some exceptional way (for instance, contrary to all other
lemmas, a given lemma may not have one of the inflected forms.) A paradigm description pro-
vides the full inflectional pattern for one characteristic or distinguished lemma and additional
examples for any other lemmas whose inflectional forms undergo nonstandard morphographemic
changes. If necessary, any lexical and feature constraints can be encoded. Currently the provi-
sions we have for such constraints are limited to writing regular expressions (albeit at a much
higher level than standard regular expressions); however, capturing such constraints using a
more natural language (e.g., [Ranta, 1998]) can be stipulated for future versions.

4.3 Elicited Descriptive Data

Figure 3 presents the encoding of the information elicited for one paradigm of a Polish morpho-
logical analyzer, which will be covered in detail later.®

The data elicited using the user interface component of Boas is converted into a description text
file with various components delineated by SGML-like tags. The components in the description
are as follows:

e The <LANGUAGE-DESCRIPTION. . .> component lists information about the language and a

80Qur actual system works using unicode character representation. But unicode input and output are not yet
supported, hence we employ an ASCII internal representation for the unicode characters used for offline testing
purposes. In the following examples, however, we have opted to represent the actual characters as they should
appear in text.
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specifies its vowels, consonants, and other orthographic symbols that do not fall into those
two groups.

A paradigm description starts with the tag <PARADIGM NAME=...> which lists the name
of the paradigm, its part of speech, and any additional morphosyntactic features that are
common to all citation forms in this paradigm. In the example in Figure 3, the paradigm
is for masculine nouns. Everything up to the </PARADIGM> tag is part of the descriptive
data for the paradigm. This descriptive data consists of a primary example, a series of
zero or more additional examples and the lexicon.

The primary example is given between the <PRIMARY-EXAMPLE> and </PRIMARY-EXAMPLE>
tags. The description is given as a sequence of one or more inflection groups between
<INF-GROUP> </INF-GROUP> tags. In some instances, a given lexical item can use different
stems (here called ”citation forms”) in different inflectional forms. For example, one stem
might be used in the present tense and another in the past tense; or one might be used with
multi-syllable affixes and another with single-syllable affixes. Thus, a given lexical item
can have multiple citation forms, each of which gets associated with a mutually exclusive
subset of inflectional forms. All the citation forms for a given lexical item plus all its
inflectional forms are represented in an “inflection group”. If the association of citation
forms with inflectional forms is predictable (as indicted by the language informant), the
subsets of inflectional forms are processed separately; if not, we assume that all citation
forms can be used in all inflectional forms and hence overgenerate. Manual constraints
can later be added, if necessary, to constrain this overgeneration.

Additional examples are provided within <EXAMPLE> and </EXAMPLE> tags. Examples
contain new citation forms plus any inflectional forms that are not predictable based on
the primary example. Each example is considered an inflectional group and is enclosed
within the corresponding tags.

The citation forms given in the primary example and any additional examples are consid-
ered to be a part of the root lexicon of the paradigm definition. Any additional citation
forms in this paradigm are listed between the <LEXICON> and </LEXICON> tags.

Generating the Morphological Analyzer

The morphological analyzer is a finite state transducer that is actually the union of the transduc-

ers for each paradigm definition in the description provided. Thus, the elicited data is processed

one paradigm at a time. For each paradigm we proceed as follows:



1. The elicited primary citation form and associated inflected forms are processed to find the
“best” segmentation of the forms into a stem and affixes. The stem is considered to be
that part of the citation form onto which affixes are attached and has no function except
for determining the affix strings. Although we allow for inflectional forms to have both a
prefix and a suffix (one of each), we expect only suffixation to be employed by the inflecting
languages with which we are dealing [Sproat, 1992].

2. Once the suffixes are determined, we segment the inflected forms for the primary example
and any additional examples provided, and pair them with the corresponding surface forms.
The segmented forms are now based on the citation form plus the affixes (not the stem).
The reason is that we expect the morphological analyzer to generate the citation form
as the lemma for further access to lexical databases to be used in the applications. The
resulting segmented form - surface form pairs make up the example base of the paradigm.

3. The citation forms given in the primary example, additional examples and explicitly in
the lexicon definition of the elicited data, and the mapping from suffix strings to the
corresponding morphosyntactic features are compiled (by our morphological analyzer gen-
erating system) into suitable regular expressions (expressed using the regular expression
language of the XRCE Finite State Tools [Karttunen et al., 1996]).

4. The example base of the paradigm generated in step 2 is then used by a learning algorithm
to generate a sequence of morphographemic rules [Kaplan and Kay, 1994] that handle the
morphographemic phenomena.

5. The regular expressions for the lexicon in step 3 and the regular expressions for the
morphographemic rules induced in step 4 are then compiled into finite state transduc-
ers and combined by composition to generate the finite state morphological analyzer for
the paradigm.

The resulting finite state transducers for each paradigm are then unioned to give the transducer
for the complete set of paradigms.

5.1 Determining Segmentation and Affixes

The suffixes and prefixes in a paradigm are determined by segmenting the inflected forms pro-
vided for the primary example. This process is complicated by the fact that the citation form
may not correspond to the stem — it may contain a morphological indication that it is the
citation form. Furthermore, since the language informant provides only a small number of ex-
amples, statistically motivated approaches like the one suggested by Theron and Cleoete [1997]
are not applicable. We have experimented with a number of approaches and have found that
the following approach works quite well.



Using the notion of description length [Rissanen, 1989], we try to find a stem and a set of affixes
that account for all the inflected forms of the primary example. Let C' =< ¢1,¢9,...,cc >
be the character string for the citation form in the primary example (¢; are symbols in the
alphabet of the language). Let Sy =< ¢1,¢2,...,cx >,1 < k < ¢ be a (string) prefix of C
length k. We assume that the stem onto which morphological affixes are attached is Si for some
k.2 The set of inflectional forms given in the primary example are {F}, Fy, ..., F¢}, with each
F; =< f{, fg, .. fljj > (ff are symbols in the alphabet of the language and [; is the length of the

4% form). The function ed(v,w) (ed for edit distance), where v and w are strings, measures the
minimum number of symbol insertions and deletions (but not substitutions) that can be applied
to v to obtain w [Damerau, 1964].1° We define

=f
d(Sk) =k+ Z ed(Sk, Fj)

J=1

as a measure of the information needed to account for all the inflected forms. The first term
above, k, is the length of the stem. The second term, the summation, measures how many
symbols must be inserted and deleted to obtain the inflected form. The S; with the minimum
d(Sk) is then chosen as the stem 5. Creating segmentations based on stem .S proceeds as follows:
To determine the affixes in each inflected form F; =< f{, f3, .. fljj >, we compute the projection

of the stem P; =< fg, .. fl >in F};, as that substring of F; whose alignment with .S provides
the minimum edit distance, that is,

P; = argmin ed(S, < fli ..., L >)
<fg,,...,fi,>,1§b'<e'§l]

Then we select the substring < f{, ce fg_l > of F; (if it exists), as the prefix, and < f§+1, e, fljj >
(if it exists) as the suffix. If there are multiple substrings of F; that give the same (minimum)
edit distance when aligned with S, we prefer the longer substring. We then create

(< Syeos i+ CH < flgrso s fl >0 F)

as an aligned segmented-surface pair and add it to the example base that we will use in the
learning stage. Note that we now use the citation form C, and not the stem S, as a part of the
segmented form.

Thus, at the end of the process we generate pairs of inflected forms and their corresponding
segmented forms to be used in the derivation of the morphographemic rules. These pairs come

°The stem can also be an arbitrary substring of C, not just some initial prefix. Our approach can certainly
extend to that.

10ed(...) assumes that vowels only align with other vowels or are elided, and consonants only align with
consonants or are elided.

10



from both the inflected forms given in the primary example and from any additional examples
given.

For example, suppose we have the following primary example

<PRIMARY-EXAMPLE>

<INF-GROUP>
<PRIMARY-CIT-FORM FORM = '"strona'>
<INF-FORM FORM = '"strona'" FEATURE = "Nom.Sg.">
<INF-FORM FORM = '"stroneg'" FEATURE = "Acc.Sg.">
<INF-FORM FORM = "strony" FEATURE "Gen.Sg.'">
<INF-FORM FORM = "stronie'" FEATURE = "Dat.Sg.">
<INF-FORM FORM = "stronie'" FEATURE = "Loc.Sg.">
<INF-FORM FORM = '"strong'" FEATURE = "Instr.Sg.'">
<INF-FORM FORM = "strony" FEATURE = "Nom.P1l.'>
<INF-FORM FORM = "strony" FEATURE = "Acc.Pl.'>
<INF-FORM FORM = "stron" FEATURE = "Gen.Pl.'">
<INF-FORM FORM = "stronom'" FEATURE = '"Dat.P1l.">
<INF-FORM FORM = "stronach" FEATURE = '"Loc.P1l.">
<INF-FORM FORM = "stronami" FEATURE = "Instr.P1l.'">

</INF-GROUP>

</PRIMARY-EXAMPLE>

For this example, stems Sg: s, st, str, stro, stron, strona, are considered. Table 1 tabulates
d(S) considering all the unique inflected forms above. It can be seen that the value of d(Ss) is
minimum for S5 = S = stron. We then determine suffixes based on this stem selection. The
suffixes are given in this table under k = 5, where the stem S = stron perfectly aligns with the
initial substring stron in each inflected form F}, with 0 edit distance.

The segmented - surface pairs in Table 2 are then generated from the alignment of the stem
with each surface form.

5.2 Learning Segmentation and Morphographemic Rules

The lemma and suffix information elicited and extracted by the process described above are used
to construct regular expressions for the lexicon component of each paradigm.!! The example
segmentations are fed into the learning module to induce morphographemic rules.

"The result of this process is a script for the XRCE finite state tool zfst. Large scale lexicons can be more
efficiently compiled by the XRCE tool lezc. We currently do not generate lexzc scripts, but it is trivial to do so.
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Table 1: Stems S; and the corresponding d(Sk)

Stems Considered, Sg
ed(Sk, F;)

k= k=2 |k=3|k=4 k=5 k=6
Form Fj S st str stro | stron | Suffix | strona
strona 5 4 3 2 1 -a 0
strone ) 4 3 2 1 -€ 2
strony 5 4 3 2 1 -y 2
stronie 6 5 4 3 2 -le 3
strona ) 4 3 2 1 -q 2
stron 4 3 2 1 0 1
stronom 6 5 4 3 2 -om 3
stronach 7 6 5 4 3 -ach 2
stronami 7 6 5 4 3 -ami 2
d(Sy) | 51 | 43 | 35 | 27 | 19 23

Table 2: The segmented and surface pair examples obtained

Segmented | Surface
strona-+ta strona
strona-¢ strone
strona+y strony
strona-ie stronie
strona43a strona
strona—+ stron
strona+om stronom
strona4-ach | stronach
strona4-ami | stronami

12




5.2.1 Generating Candidate Rules from Examples

The preprocessing stage yields a list of pairs of segmented lexical forms and surface forms.
The segmented forms contain the citation forms and affixes; the affix boundaries are marked
by the + symbol. This list is then processed by a transformation-based learning paradigm
[Brill, 1995, Satta and Henderson, 1997], as illustrated in Figure 4. The basic idea is that we
consider the list of segmented words as our input and find transformation rules (expressed
as contextual rewrite rules) to incrementally transform it into the list of surface forms. The
transformation we choose at every iteration is the one that makes the list of segmented forms
closest to the list of surface forms.

The first step in the learning process is an initial alignment of pairs using a standard dynamic
programming scheme. The only constraints in the alignment are (i) a + in the segmented lexical
form is always aligned with an empty string on the surface side, notated by 0; (ii) a consonant
on one side is always aligned with a consonant or O on the other side, and likewise for vowels;
(iii) the alignment must correspond to the minimum edit distance between the original lexical
and surface forms.'? From this point on, we will use a simple example from English to clarify
our points.

We assume that we have the pairs (un+happy+est, unhappiest) and (shop+ed, shopped) in
our example base. We align these and determine the total number of “errors” in the segmented
forms that we have to fix to make all segmented forms match the corresponding surface forms.
The initial alignment produces the aligned pairs:

unthappyt+est shopO+ed

unOhappilest shoppOed
with a total of 5 errors. From each segmented pair we generate rewrite rules of the sort!?

u -> 1 || LeftContext _ RightContext ;

where u(pper) is a symbol in the segmented form, 1(ower) is a symbol in the surface form.
Rules are generated only from those aligned symbol pairs that are different. LeftContext and
RightContext are simple regular expressions describing contexts in the segmented side (up to
some small length), taking into account also the word boundaries. For instance, from the first
aligned-pair example, this procedure would generate rules such as (depending on the amount of

12We arbitrarily choose one if there are multiple legitimate alignments.

13We use the XRCE Finite State Tools regular expression syntax [Karttunen et al., 1996]. For the sake of
readability, we will ignore the escape symbol (%) that should precede any special characters (e.g., +) used in these
rules.
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left and right context allowed)

y->1ill p_ y => i |l p_+e
y—>j_||p_+es y—>i|| p_+test
y=>ill p_+est# y=>1ill p p_+e

+ >0 || #un _ + >0l #un _ hap
+ ->0 || _ est

+ >0 || _ estt#

+ >0l ppy - est#

The # symbol denotes a word boundary and is intended capture any word-initial and word-final
phenomena. The segmentation rules (+ => 0) require at least some minimal left or right context
(usually longer than the minimal context for other rules in order to produce more accurate
segmentation decisions). We disallow contexts that consist only of a morpheme boundary, as
such contexts are usually not informative. It should be noted that these rules transform a
segmented form into a surface form (contrary to what may be expected for analysis). This lets
us capture situations where multiple segmented forms map to the same surface form, which
occurs when the language has morphological ambiguity. Thus, in a reverse look-up, a given
surface form may be interpreted in multiple ways, if applicable.

Since we have many examples of aligned pairs in our example base, it is likely that a given
rule will be generated from many pairs. For instance, if the pairs (stop+ed, stopped) and
(trip+ed, tripped) were also in the list, the gemination rule 0 => p || p _ + e d (along
with certain others) will also be generated from these examples. We count how many times a
rule is generated and associate this number with the rule as its promise, meaning that it promises
to fix this many “errors” if it is selected to apply to the current list of segmented forms.

5.2.2 Generalizing Rules

The candidate rules generated by the processes described above refer to specific strings of sym-
bols as left and right contexts. It is, however, possible to obtain more generalized rules by
classifying the symbols in the alphabet into phonologically relevant groups, like vowels and con-
sonants. The benefit of this approach is that the number of rules thus induced is typically
smaller, and more unseen cases can be covered.

For instance, in addition to a rule like 0 => p || p - + e, the rules

0->p Il CONSONANTS _ + e
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0->p |l p _ + VOWELS
0->p || CONSONANTS _ + VOWELS

can be generated, where symbols such as CONSONANTS and VOWELS stand for regular expressions
denoting the union of relevant symbols in the alphabet. The promise scores of the generalized
rules are found by adding the promise scores of the original rules generating them. Generalization
substantially increases the number of candidate rules to be considered during each iteration,
but this is not a very serious issue, as the number of examples per paradigm is expected to
be quite small. The rules thus learned would be the most general set of rules that do not
conflict with the evidence in the examples. It is possible to use a more refined set of classes
that correspond to subclasses of vowels (e.g., high-vowels) and consonants (e.g., fricatives) but
these will substantially increase the number of candidate rules at every iteration and will have
an impact on the iteration time.

5.2.3 Selecting Rules

At each iteration all the rules along with their promise scores are generated from the current state
of the example pairs. The rules generated are then ranked based on their promise scores, with
the top rule having the highest promise. Among rules with the same promise score, we rank more
general rules higher, with generality being based on context subsumption (i.e., preference goes
to rules using shorter contexts and/or referring to classes of symbols, like vowels or consonants).
All segmentation rules go to the bottom of the list, though within this group, rules are still
ranked based on decreasing promise and context generality. The reasoning for treating the
segmentation rules separately and later in the process is that affixation boundaries constitute
contexts for all morphographemic changes; therefore they should not be eliminated if there are
any (more) morphographemic phenomena to process.

Starting with the top ranked rule, we test each rule on the segmented component of the pairs. A
finite state engine emulates the replace rules to see how much the segmented forms are “fixed”.
The first rule that fixes as many “errors” as it promises to fix, and does not generate an interim
example base with generation ambiguity, is selected.!* The issue of generation ambiguity refers
to cases where the same segmented forms are paired up with distinct surface forms.'® In such
cases, finding a rule that fixes both pairs is not possible, so in choosing rules, we avoid any rules

' Note that a rule may actually introduce unintended errors in other pairs, since context checking is done only
on the segmented form side; therefore what a rule delivers may be different than what it promises, as promise
scores also depend on the surface side.

'5Consider a state of the example base where some segmented lexical form L is paired up with different surface
forms S1 and Sz, that is, we have pairs (L, S1) and (L, S2) in our example base. Any rule that will bring L closer
to S1 will also change L of the second pair and possibly make it impossible to bring it closer to S-.
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whose tentative application generates an interim example base with such ambiguities. In this
way we can account for all the discrepancies between the surface and segmented forms without
falling into a local minima. Although we do not have formal proof that this simple heuristic
avoids such local minima situations, in our experimentation with a large number cases we have
never seen such an instance.

The complete procedure for rule learning can now be given as follows:

- Align surface and segmented forms in the example base;
- Compute total Error;
- while(Error > 0) {

-Generate all possible rewrite rules subject to context size limits;

-Rank Rules;

-while (there are more rules and a rule has not yet been selected) {

Select the next rule;
- Tentatively apply rule to all the segmented forms;
- Re-align the resulting segmented forms with the
corresponding surface forms to see how many
‘‘errors’’ have been fixed;
- If the number of errors fixed is equal to what the rule promised

to fix AND the result does not have generation ambiguity,
select this rule;

-Commit the changes performed by the rule on the segmented forms
to the example base;

-Reduce Error by the promise score of the selected rule;
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This procedure eventually generates an ordered sequence of two ordered groups of rewrite rules.
The first group of rules is for any morphographemic phenomena in the given set of examples,
and the second group of rules handles segmentation. All these rules are composed in the order
in which they are generated to construct the Morphographemic Rules transducer at the bottom
of each paradigm (see Figure 2).

5.3 Identifying Errors and Providing Feedback

Once the Morphographemic Rules transducers are compiled and composed with the lexicon
transducer that is generated automatically from the elicited information, we obtain an analyzer
for the paradigm. The analyzer for the paradigm can be tested by using the zfst environment of
the XRCE finite state tools. This environment provides machinery for testing the output of the
analyzer by generating all forms involving a specific citation form, a specific morphosyntactic
feature, etc. This kind of testing has proved quite sufficient for our purposes.

When the full analyzer is generated by unioning all the analyzers for each paradigm, one can do
a more comprehensive test against a test corpus to see what surface forms in the test corpus are
not recognized by the generated analyzer. Apart from revealing obvious deficiencies in coverage
(e.g., missing citation forms in the lexicon), such testing provides feedback about minor human
errors — the failure to cover certain morphographemic phenomena, the incorrect assignment of
lemmas to paradigms, etc.

Our approach is as follows: we use the resulting morphological analyzer with an error-tolerant
finite state recognizer engine [Oflazer, 1996]. Using this engine, we try to find words recognized
by the analyzer that are (very) close to a rejected (correct) word in the test corpus, essentially
performing a reverse spelling correction. If the rejection is due to a small number (1 or 2) of
errors, the erroneous words recognized by the recognizer are aligned with the corresponding
correct words from the test corpus. These aligned pairs can then be analyzed to see what the
problems may be.

6 An Example: Bootstrapping a Polish Analyzer

This section presents a quite extensive example of bootstrapping a morphological analyzer for
Polish by iteratively providing examples and testing the morphological analyzer systematically.
The idea of this exercise was to have a relatively limited number of paradigms that bunched
words showing slight inflectional variations.'® For reasons of space, the exposition is limited
to developing six paradigms, of which two will be covered in detail. The paradigms here cover

Y Non-expert language informants using Boas will be encouraged to split, rather than bunch, paradigms, for
the sake of simplicity.
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only a subset of masculine nouns, and don’t treat feminine or neuter nouns at all; however, they
cover all the problems that would be found in words of those genders.

For purposes of testing to learner offline (i.e., outside the Boas environment), we tried to keep
to a minimum of the number of inflected forms given for each additional citation form. This was
a learner-oriented task and intended to determine how robust the learner could become with a
minimum of input. However, when the language informant is using the interface, he will have
the option of selectively giving inflected forms. The interface works as follows: the user gives
all forms of the primary example and lists other citation forms that he thinks belong to the
given paradigm. Having learned rules from the primary example, the learner generates all the
inflectional forms for each citation form provided. The user then corrects all mistakes and the
learner relearns is the rules. So, the user never has the opportunity to say “Well, I know the
learner can’t know the locative singular for this word, so, I will it overtly so I will supply it
overtly from the outset.” The user will just have to wait for the learner to get the given forms
wrong and then correct them. Any other approach would make for a complex interface and
would require a sophisticated language informant — not what we’re expecting.

Polish is a highly inflectional West Slavic language that is written using extended Latin charac-
ters (6 consonants and 3 vowels have diacritics). Certain phonemes are written using combina-
tions of letters: e.g., cz, sz and szcz all represent hushers.!” analysis). Polish nominals inflect for
seven cases: Nominative (Nom.), Accusative (Acc.), Genitive (Gen.), Dative (Dat.), Locative
(Loc.), Instrumental (Instr.), Vocative (Voc.), and two numbers: Singular (Sg.), Plural (P1.).1®
The complexity of Polish declension derives from four sources: (i) certain stem-final consonants
mutate during inflection; these are called ”alternating” consonants, and are contrasted with
so-called “non-alternating” consonants (“alternating”/”non-alternating” is a crucial diagnostic
for paradigm delineation in Polish); (ii) certain letters are spelled differently when they are
word-final versus when they are word-internal (e.g., word-final -§ is written -si when followed by
a vocalic ending); (iii) final-syllable vowels are added/deleted in some (not entirely predictable)
words and (iv) declension is not entirely phonologically driven — semantics and idiosyncrasy
affect inflectional endings.

The following practical simplifications have been made for testing purposes:

e Words that are normally capitalized (like names) are not capitalized here.

e Some inflectional form(s) that might not be semantically valid (e.g., plurals for collectives)
were disregarded. Thus a bit of overgeneration still remains but can certainly be removed
with some additional effort.

1"We actually treat these as single symbols during learning. Such symbols are indicated in the description file
in a special section that we have omiited in Figure 3.

18The vocative case was not included in these tests because it is not expected to occur widely in the journalistic
prose for which the system is being built.
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6.1 Paradigm 1

The process starts with the description of Paradigm 1, which describes alternating inanimate
masculine nouns with genitive singular in -u and no vowel shifts. The following primary example
for the citation form telefon is given in full:

Case

Nom.
Acc.
Gen.
Dat.
Loc.
Instr.

Number
Singular  Plural
telefon telefony
telefon telefony
telefonu telefonow
telefonowi telefonom
telefonie telefonach

telefonem  telefonami

All inflectional forms in this paradigm are trivial, except:

e The Loc.Sg. depends on the final consonant and induces alternations for alternating con-

sonants:
Final Consonant(s)

Loc.Sg. Ending ‘ Consonant Alternations

b, p, f, w, m, n, s, z -ie
t, d, st, zm -ie
Lor, st -e
g, k, ch -u

t—c, d—dz, st—éc, zm—2zm
=1, r—rz, st—4él

e Instr.Sg. and Nom.Pl. depend upon the final consonant; two velars have an idiosyncratic

ending:

Final Consonant(s) ‘ Instr.Sg. | Nom.PL
| Ending | Ending

b, p, f, w, m, n, s, z -em
t,d, st zm, 1, r, st, ch
g, k -iem

-y

The following examples were provided in addition to the inflectional forms of the primary ex-
ample in order to show Loc.Sg. endings and accompanying consonant alternations:

1. t—c: akcent (Nom.Sy.), akcencie (Loc.Sg.)

2. d — dz: wyklad (Nom.Sg.), wykladzie(Loc.Sy.)
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st —$c: most (Nom.Sg.), moscie(Loc.Sy.)
zm—Zm: komunizm (Nom.Sg.), komuniZmie (Loc.Sg.)
t—1: artykul (Nom.Sq.), artykule (Loc.Sg.)

r—rz: teatr (Nom.Sg.), teatrze (Loc.Sg.)

NS e s W

st—sl: pomyst (Nom.Sy.), pomysle (Loc.Sg.)

The following additional examples were provided to show velar pecularities:

8) g: pocigg (Nom.Sy.), pociggu (Loc.Sg.), pociggiem (Instr.Sg.), pociggi (Nom.PL.)
9) k: bank (Nom.Sg.), banku (Loc.Sg.), bankiem (Instr.Sg.), banki (Nom.Pl.)
10) ch: dach (Nom.Sy.), dachu (Loc.Sg.)

Table 3 summarizes the first 3 runs for this paradigm, which were sufficient to create a relatively
robust set of morphological rules that required only slight amendment and further testing in
2 additional runs. For this and subsequent such tables we use the following conventions. Key
0 shows the primary citation form and additional citation forms whose inflectional patterns
should be fully covered by the rules generated for the primary example. The other key numbers
correspond to the additional examples given above. Boldface citation forms under the lexicon
column are those for which some additional inflectional examples were given. Oblique cases refer
to the genitive, dative, locative and instrumental cases.

The original assumption for paradigm 1 was that it would be sufficient to provide one unmu-
tated form (the Nom.Sg.) plus the mutated form (the Loc.Sg.) for words ending in mutating
consonants. This lead to overgeneralization of the mutation; therefore, another unmutated form
had to be added as a “control”. Adding the Nom.PI. forms fixed most oblique forms for all the
words, but it left the Instr.Sg. mutated. This appears to be because the inflectional ending for
the Loc.Sg. (which mutates) and the Instr.Sg. (which doesn’t) both begin in -e for the words
in question. Adding the Instr.Sg. overtly solved the problem of overgeneralizing the mutation.
The source of the velar errors is not immediately evident.

Supplementary testing was carried out after the above-mentioned words were all correct. Correct
forms were produced for all new words showing consonant mutations and velar peculiarities:
samolot, przyklad, pretekst, podzial, kolor, dlug, lek, gmach. One error for a non-mutating word
(in Key 0) occurred. This word, herb, ends in a different consonant than the primary example
and produced the wrong Loc.Sg. form. This was later added overtly and more words with
other non-mutating consonants (postep, puf, gniew, film, opis, raz) were tested; all were covered
correctly.
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Table 3:

Summary of Runs for Paradigm 1

Citation Add’l Run 1 Add’l Run 2 Add’l Run 3
Key | Forms Examp. | Results Examp. Results | Examp. | Results
0 telefon, stron, Vv
paragraf, Spiew,
sklep, ttum,
adres, obraz
1 akcent, bilet Nom.Sg. | mutates all Nom.Pl. mutates Instr.Sg. | \/
Loc.Sg. obl. forms Instr.Sg.
2 wyklad, sad Nom.Sg. | mutates all Nom.Pl. mutates Instr.Sqg. | \/
Loc. Sg. obl. forms Instr.Sg.
3 most, list Nom.Sg. | mutates all Nom.Pl. mutates Instr.Sqg. | \/
Loc.Sg. obl. forms Instr.Sg.
4 komunizm, Nom.Sg. | mutates all Nom.Pl. mutates Instr.Sqg. | \/
socjalizm Loc.Sg. obl. forms Instr.Sq.
5 artykul, kawal | Nom.Sg. | mutates all Nom.Pl. mutates Instr.Sqg. | \/
Loc.Sg. obl. forms Instr.Sq.
6 teatr, numer Nom.Sg. | mutates all Nom.Pl. mutates Instr.Sqg. | \/
Loc.Sg. obl. forms Instr.Sq.
7 pomysl, zmyst | Nom.Sg. | mutates all Nom.Pl. mutates Instr.Sqg. | \/
Loc.Sg. obl. forms Instr.Sg.
8 pociag, brzeg Nom.Sg. | +/
Loc. Sg.
Instr.Sq.
Nom.Pl.
9 bank, krok Nom.Sg. | missed velar- Loc.Sg. of krok, | +/
Loc. Sg. specific Loc.Sg. | Add blysk to
Instr.Sg. | gave *krokie lexicon for
Nom.Pl. | not kroku testing
10 dach, wirch Nom.Sg. | missed velar- Loc.Sg. of wirch, | wrong add Vv
Loc.Sg. specific Loc.Sg. | Add $miech Instr.Sg. | Instr.Sg.
Nom.Pl. | gave *wirchie to lexicon for wirch, | of
not wirchu for testing Smiech wirch
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6.2 Paradigm 2

The second paradigm that we considered was Paradigm 2: alternating inanimate masculine
nouns with genitive singular in -a and no vowel shifts. The following primary example for the
citation form chleb was given in full:

Case | Singular Plural
Nom. | chleb chleby
Acc. | chleb chleby
Gen. | chleba chlebow

Dat. | chlebowil chlebom
Loc. chlebie chlebach
Instr. | chlebem  chlebami

This paradigm is just like Paradigm 1 except that: (i) the Gen.Sg. form ends in -a, not -u (an
unpredictable fact) and (ii) fewer words belong to this paradigm so not all consonants arise in
stem-final position.

Based on the experience of Paradigm 1, the following change in approach was made from the
outset: for all words with consonant alternations, the Nom.Sg., Loc.Sg., and Instr.Sg. forms
were provided explicitly during the first run (to counter overgeneration of the mutation).

The following examples were provided to show unpredictable Loc.Sg. endings and accompanying
consonant mutations:

1. t—c: funt (Nom.Sq.), funcie (Loc.Sy.), funtem (Instr.Sg.)
2. d—dz: listopad (Nom.Sy.), listopadzie (Loc.Sy.), listopadem (Instr.Sg.)

3. r—rz: sznur (Nom.Sg.), sznurze (Loc.Sg.), sznurem (Instr.Sg.)
The following examples were provided to show velar peculiarities:

4) g: plug (Nom.Sgq.) pltugu (Loc.Sg.), ptugiem (Instr.Sg.), ptugi (Nom.Pl.)
5) k: jezyk (Nom.Sq.), jezyku (Loc.Sy.), jezykiem (Instr.Sq.), jezyki (Nom.Pl.)
6) ch: brzuch (Nom.Sg.), brzuchu (Loc.Sg.)

The runs for Paradigm 2 proceeded as in Table 4. As mentioned earlier, the Instr.Sg. forms
were added as controls from the outset to counter overgeneralization of the mutation. This
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Table 4: Summary of Runs for Paradigm 2

Citation Add’l Run 1 Add’l Run 2
Key | Forms Examp. Results Examp. Results
0 chleb, czub, Incorrect Loc.Sg. | Loc.Sg. of | v/
chlew, ogon, for chub and chub and
nos, analiz, kaktus kaktus
kaktus
1 funt, kat Nom.Sg., Loc.Sqg. | v/
Instr.Sg.
2 listopad Nom.Sg., Loc.Sg. | v/
Instr.Sq.
3 sznur Nom.Sg., Loc.Sg. Incorrect Loc.Sg. | Loc.Sg. of | v/
buldozer Instr.Sg., of buldozer buldozer
4 plug Nom.Sg., Loc.Sg. Incorrect Loc.Sg. | Loc.Sg. of | v/
bumerang Instr.Sq., Nom.Pl. | of buldozer buldozer
5 Jezyk Nom.Sg., Loc.Sq. | v/
chodnik Instr.Sq., Nom.Pl.
6 brzuch Nom.Sg., Loc.Sq. | +/
kozuch Nom.Pl.

worked well. There were some problems with the rules for the Loc.Sg., which were subsequently
fixed by adding a few additional Loc.Sg. forms overtly. Supplementary testing after the above-
mentioned words were all correct showed that the analyzer worked correctly for this paradigm.
The supplementary words tested were: piorun, obrus, guz, but, akcelerator, batog, dziennik,
taricuch.

6.3 Paradigm 3

The paradigm implemented next was Paradigm 3: alternating inanimate masculine nouns with
genitive singular in -u and vowel shifts. The following primary example for the citation form
grob was given in full:

Number
Case | Singular Plural
Nom. | gréb groby
Acc. | gréb groby
Gen. | grobu grobow
Dat. | grobowi  grobom
Loc. | grobie grobach
Instr. | grobem  grobami
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This paradigm is just like Paradigm 1, except that there are vowel shifts that are not entirely
graphotactically predictable; therefore, words showing these shifts must be classed separately.
The vowel shifts occur in all inflectional forms except the Nom.Sg. and the Acc.Sg., which are
identical. The following vowel shifts occurred in the cases we considered (¢ indicates vowel
deletion).

Vowel in Vowel in
Nom.Sg./Acc.Sg. | Other Forms
0 0
e ¢
ie ¢
a e*

* This shift only occurs in Loc.Sg.

The following consonant shifts are also observed in this paradigm:

Cons. in Cons. in
Most forms | Loc.Sg.

1 1

d dz
dz zdz
b 1
r Iz

Based on the experience of paradigms 1 and 2, the Instr.Sg. forms for all shifting words were
provided as examples at the outset to avoid the overgeneralization of the consonant mutation.
The velar pecularities are still in effect and must be dealt with explicitly.

The following examples were given to exemplify vowel shifts with an unmutating consonant:
1) e — ¢ shift with n: sen (Nom.Sg.), snie (Loc.Sg.)

The following examples were employed to show vowel shifts in combination with various conso-
nant mutations in the Loc.Sg. forms:

2) 6 — o and d — dz samochéd (Nom.Sy.), samochodzie (Loc.Sy.), samochodem (Instr.Sg.)

3) a = eand zd — Zdz dojazd (Nom.Sy.), dojeZdzie (Loc.Sq.), dojazdem (Instr.Sg.)
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4) 6 — oand t — [ stét (Nom.Sg.), stole (Loc.Sg.), stotem (Instr.Sg.)
5) e = ¢ and r — rz puder (Nom.Sy.), pudrze (Loc.Sg.), pudrem (Instr.Sg.)
6) ie > ¢ and r — rz cukier (Nom.Sq.), cukrze (Loc.Sy.), cukrem (Instr.Sg.)

Finally, the following examples were given to show velar peculiarities:

7) e = ¢ with k: budynek (Nom.Sg.), budynku (Loc.Sg.), budynkiem (Instr.Sg.), budynki
(Nom.PlL)

8) ¢ — o with ¢g: rég (Nom.Sg.), rogu (Loc.Sy.), rogiem (Instr.Sq.), rogi (Nom.Pl.)

From now on we will summarize the results of the runs verbally instead of using detailed tables,
as we believe such detail will not serve any additional purpose.

At the end of first run for this paradigm only one of the the 8 groups above was covered com-
pletely. All vowel alternations for all groups came out right. However, the Nom.Pl. and Acc. Pl
endings were incorrectly generalized as -i instead of -y, probably because two “exceptional” velar
examples (in -i) were provided in contrast to one “regular ” non-velar example (in -y). Adding
the Nom.PI. forms of 3 non-velar words fixed this error. Velars were perfect except for the loss
of z for 10 of 12 forms of obowigzek. Adding the Nom.Pl. form obowigzki fixed this. For stot
and dol, the consonant mutation was incorrectly extended to Gen.Sg. Adding the Gen.Sg. form
of stotl fixed this error for both words. At the end of the second run all groups were correctly
learned.

Supplementary testing after the above-mentioned words were correct included the words nawoz,
dochod, pozor, rozbior, gréd, rozchéd, narod, wtorek, kieruneki; all forms were correct.

6.4 Paradigm 4

Paradigm 4 contains alternating man nouns. The following primary example for the citation
form pasierb was given in full:

Number
Case | Singular Plural
Nom. | pasierb pasierbowie

pasierbi

Acc. | pasierba pasierbow
Gen. | pasierba pasierbow
Dat. | pasierbowi pasierbom
Loc. | pasierbie pasierbach
Instr. | pasierbem  pasierbami
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In this paradigm all of the consonant alternations encountered above are still in effect and some
word-final consonants undergo additional mutations in the Nom.Pl. The velar peculiarities
remain in effect. One additional complication in this paradigm is that there may be multiple
Nom.Pl. forms for a given citation form (e.g., pasierbowie and pasierbi are both acceptable
Nom.Pl. forms for pasierb). Furthermore -i/-y are allomorphs in complementary distribution
(i.e., the second Nom.Pl. form in this paradigm can be realized with -y for certain word-final
consonants).

Stem-final Nom.Pl
Consonant Ending

b, f, w, m, n, z, t | -owie or -i or both
p, ch -1 only

d, I -owie only

r, k, g -owie or -y or both

Since the analyzer needs only to analyze (and not generate) forms, there is no need to split up
this paradigm into 5 different ones to account for each Nom.Pl. possibility: -owie, -owie/-i,
-i, -owie/-y, -y. We simply permit overgeneration, allowing each word to have two Nom.PI.
forms: the correct one of the -i/-y allomorphs and -owie. Further, since the analyzer has no
way to predict which of the -i/-y allomorphs is used with a given word-final consonant, explicit
examples of each word-final consonant must be provided.

These considerations lead to splitting the citation forms for this paradigm into 14 groups, which
represent the primary example plus 13 inflectional groups added as supplementary examples.
The Nom.Sy., Loc.Sg. and both (or applicable) Nom.Pl. forms were provided for all groups apart
from the primary example. After the first run, 13 out of 14 groups were correctly dealt with.
The remaining group was handled correctly in two additional runs runs: 2 more inflectional
forms of the example in word-final r had to be provided to counter overgeneralization of the
r — rz mutation.

Supplementary testing after the above-mentioned words were correct included the citation forms
drab, piastun, kasztelan, faraon, wojt, mnich, biedak, norweq, wltoch. The following errors were
encountered:

e norweg got the Acc.Sg./Gen.Sg. form *norweda instead of norwega. Adding the correct
Ace.Sg. form fixed this problem.

e wloch got the Nom.Pl. form *wloci instead of wlosi. This form was added overtly.

e mnich got the Nom.Pl. form *mnici instead of mnisi. This form was added overtly.
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After these final additions, wloch and mnich ended up with the Acc.Sg./Gen.Sg. forms *wlosa
and *mnisa instead of wlocha and mnicha (i.e., the mutation was overgeneralized again). Adding
the correct Acc.Sg. form wlocha overtly solved this problem for both words and all forms were
now correct.

6.5 Paradigm 5

Paradigm 5 covered non-alternating inanimate masculine nouns with genitive singular in -u and
no vowel shifts. The full declension for garaz was provided as the primary example.

Number
Case | Singular  Plural
Nom. | garaz garaze
Acc. | garaz garaze
Gen. | garazu garazy
Dat. | garazowi garazom
Loc. | garazu garazach

Instr. | garazem garazami

In this paradigm, the genitive plural endings are -éw and -i/-y (the latter are allomorphs in
complementary distribution). Although many words permit either of two Gen.Pl. endings (-y/-
ow or -i/-6w), this test employs only the most common ending for each word-final consonant.

In addition to the primary example group, five additional groups were exemplified (one for each
consonant above except Z). The Nom.Sg. and Gen.Pl. forms were provided for the words
representing each group. The lexicon contained an additional test example for four of the six
groups (no more Polish words representing the other two groups could be found)

After the first run, 2 of the 6 groups were handled fine. and For the other groups, all forms
were incorrect except for the Nom.Sg., Acc.Sg. and Gen.Pl. Adding the Instr.Pl. of the
words representing each of these 4 groups sufficed to fix all incorrect forms in the second run.
Supplementary testing for additional words in this paradigm (such as metal and plac) produced
correct results.

6.6 Paradigm 6

Paradigm 6 was for non-alternating inanimate masculine nouns with genitive singular in -a and
no vowel shifts. The following declension for bicz was provided as the primary example:
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Number
Case | Singular Plural

Nom. | bicz bicze
Acc. | bicz bicze
Gen. | bicza biczy
Dat. | biczowl biczom
Loc. biczu biczach

Instr. | biczem  biczami

A spelling rule of Polish comes into play in this paradigm: letters that take a diacritic word-
finally or when followed by a consonant are spelled with no diacritic plus an -i when followed
by a vowel. For instance: ni+u — niu, 11+owi — niowi, ¢+u — ciu, é+owi — ciowi. Some, but
not all, word-final letters in this paradigm have diacritics.

This paradigm is like paradigm 5 above except that the Gen.Sg. form unpredictably ends in -a,
and more word-final consonants are accounted for (namely cz, sz, rz, §¢, 1). Further, Gen.Sy.
endings depend on the final consonant: they can be -ow (for j, ch, szcz), -i (for {, $¢, 7)) or -y
(for ¢z, sz, rz, ). In many instances, more than one form is possible, but this test covers only
the most common form for each stem-final consonant.

The citation forms in this paradigm broke down into 10 groups based on the final consonant.
The Nom.Sg., Gen.Pl. and Instr.Pl. forms were provided for the 9 groups (the 10** is the
primary example, for which all forms were provided). 8 of the 10 groups were handled correctly
after the first run. Supplementary testing included the citation forms klawisz, bgbel, strumien,
tach, cyrkularz; all inflectional forms were produced correctly.

7 Performance Issues

Generating a morphological analyzer once the descriptive data is given can be carried out very
fast. Each paradigm can be processed within tens of seconds on a fast workstation, including
the few tens of iterations of rule learning from the examples. A new version of the analyzer can
be generated within minutes and tested rapidly on any test data. Thus, none of the processes
described in this paper constitutes a bottleneck in the elicitation process. Figure 5 provides
some relevant information from the runs of the first paradigm in Polish described above. The
top graph shows, for different runs, the number of distinct rules generated from the aligned
segmented and surface form pairs generated from the examples provided, using a rule format
with at most 5 symbols in each of the left and right contexts. The bottom graph shows, for
different runs, the total number of rules generated and generalized again with the same contexts
size above.
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There are a few interesting things about these graphs. As expected, when some more additional
examples are added, the number of rules and the number of iterations to converge usually
increases. All curves have a steeper initial segment and a steeper final segment. The initial
steep segments result from the initial selection of rules that fix the largest number of “errors”
between the segmented and the surface forms. Once those rules are found, the curves flatten as
a number of morphographemic rules are selected, each dealing with a very small number errors.
Finally, when all the morphographemic changes are accounted for, the segmentation rules kick
in and each such rule fixes a large number of segmentation “errors”, so that a few general rules
deal with all such cases.

8 Summary and Conclusions

We have presented the highlights of our approach for automatically generating finite state mor-
phological analyzers from information elicited from human informants. Our approach uses
transformation-based learning to induce morphographemic rules from examples and combines
these rules with the lexicon information elicited to compile the morphological analyzer. There
are other opportunities for using machine learning in this process. For instance, one of the im-
portant issues in wholesale acquisition of open class items is that of determining which paradigm
a given lemma or root word belongs to. From the examples given during the acquisition phase
it is possible to induce a classifier that can perform this selection to aid the language informant.

We believe that we have presented a viable approach to the automatic generation of a natu-
ral language processor. Since this approach involves a human informant working in an elicit-
generate-test loop, the noise and opaqueness of other induction schemes can be avoided. Our
current work involves using similar principles to induce (light) syntactic parsers in the Boas
framework.

We also feel that the task of analyzing a set of incorrectly generated forms and automatically
offering a diagnosis of what may have gone wrong and what additional examples can be supplied
as remedies—is, in itself, an important aspect of this work. Although we have only scratched the
surface of this topic here, we consider it a fruitful extension of the work described in this paper.
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<LANGUAGE-DESCRIPTION TYPE = "morphology"
NAME = "Polish"
ALPHABET = '"agbcédeefghijklimnriodpqrsstuvuxyzzz"
VOWELS = "agegioduy"
CONSONANTS= "bcédfghjklimniipqrsstvuxzzz"
OTHER = "">
<PARADIGM NAME="MascInUStart'" P0OS = "Noun" FEATURES="Masculine">
<PRIMARY-EXAMPLE>
<INF-GROUP>
<PRIMARY-CIT-FORM FORM = "telefon'>
<INF-FORM FORM = "telefon" FEATURE = "Nom.S3g.">
<INF-FORM FORM = "telefon" FEATURE = "Acc.S3g.">

<INF-FORM FORM = "telefonach" FEATURE = "Loc.P1.">
<INF-FORM FORM = "telefonami" FEATURE = "Instr.P1l.">
</INF-GROUP>
</PRIMARY-EXAMPLE >
<EXAMPLE>
<INF-GROUP>
<CIT-FORM FORM = "akcent">
<INF-FORM FORM = "akcent" FEATURE = "Nom.Sg.">
<INF-FORM FORM = "akcencie" FEATURE = "Loc.Sg.">
</INF-GROUP>

</EXAMPLE>

<LEXICON>
<CIT-FORM FORM = "stron">
<CIT-FORM FORM = "klub'">
<CIT-FORM FORM = "sklep">

</LEXICON>

</PARADIGM>

</LANGUAGE-DESCRIPTION>

Figure 3: Sample Paradigm Description Generated by Boas Elicitation
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Figure 5: Rule Statistics for Processing Paradigm 1
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