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Abstract

The fractional Fourier domain multi-channel and multi-stage filtering configurations that
have been recently proposed enable us to obtain either exact realizations or useful approxima-
tions of linear systems or matrix-vector products in many different applications. We discuss the
solution and cost analysis for these configurations. It is shown that the problem can be reduced
to a least squares problem which can be solved with fast iterative techniques.

1 Introduction

In many applications of digital and optical signal processing, it is desired to implement linear
systems of the form g(u) = [ H(u,u’)f(u')du’. Such systems take the form of a matrix-vector
product when discretized: gx = 27]1\7:1 Hy, fn, or g = Hf. This may either represent a system which

is inherently discrete or may constitute an approximation of a continuous system.

Linear shift-invariant systems are characterized by kernels of the special form H(u,u’) =
h(u —u') or Hy, = hg_,. These systems correspond to convolution in the time or space domain
and multiplication with a filter function in the Fourier domain. Although the use of shift-invariant
(convolution-type) systems are convenient in many applications, sometimes their use is inappropri-
ate or at best a crude approximation.

In a variety of applications, greater flexibility and performance can be achieved at no additional
cost, by filtering in fractional rather than ordinary Fourier domains (Fig. 1a) [3, 4, 5, 6, 7]. The ath
order fractional Fourier transform F¢ is the generalization of the ordinary Fourier transform, such
that @ = 1 corresponds to the ordinary Fourier transform and ¢ = 0 corresponds to the identity
operation [1, 3, 8]. Thus, when a = 1, the filtering scheme in Fig. 1a corresponds to ordinary Fourier
domain filtering (shift-invariant or convolution-type systems). When a = 0, it corresponds to direct
multiplication by h(u) in the time domain. The costs of both digital and optical implementations of
fractional Fourier domain filtering are the same as that of ordinary Fourier domain filtering [4, 9].

Further generalizations of the concept of fractional Fourier domain filtering have been suggested.
These have been referred to as multi-stage (or repeated or serial) filtering in fractional Fourier
domains, and multi-channel (or parallel) filtering in fractional Fourier domains, In the multi-stage
system (Fig.1b) [3, 6, 10], the input is first transformed into the ajth domain where it is multiplied
by a filter hy(u). The result is then transformed back into the original domain. This process is
repeated M times. In the more recently suggested multi-channel filter structure (Fig.1c) [11, 12],
the inputs of all channels are identical and their outputs are added together. For each channel k&,
the input is first transformed to the axth domain where it is multiplied with a filter hy(u). The
result is then transformed back to the original (time) domain.

In previous works ([3, 6, 10, 11, 12]), the matrices involved in each configuration were assumed
to be square matrices of full rank. In this work a generalization of the formulation is carried out
for arbitrary rectangular matrices of arbitrary dimensions and rank.
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Figure 1: (a) ath order fractional Fourier domain filtering. (b) Multi-stage (serial) filtering. (c)
Multi-channel (parallel) filtering.

2 Multi-stage and Multi-channel Filtering

In discrete-time notation, the outputs g, and g, of the serial and parallel configurations of Fig.1b
and Fig.1c are related to the input f by the relations:

gs = [F_QMAM...F‘”_‘“AlFal] f, (1)
M
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where F% represents the a;th order fractional Fourier transform matrix [13, 14], and A; denote
the diagonal matrix corresponding to multiplication by the filter function hg[j]. The above may
also be expressed as ¢ = T f where T is the matrix representing the overall filtering configuration.
In previous work ([3, 6, 10, 11]), T was assumed to be a square matrix of full rank. In this work we
provide a generalization of both the formulation and cost analysis to arbitrary rectangular matrices
T of dimension Nyt X Vi, of arbitrary rank R. In the multi-channel configuration, the dimensions



of F~%  Ag, and F% become Noyt X Nout, Nout X Nin, Nin X Nin. To avoid confusion, in the

rest of the paper we will use F3§ to denote the ayth order fractional Fourier transform matrix

with dimensions N x N. In the multi-stage case there exists a greater flexibility in choosing the
dimensions of the intermediate filter matrices Aj. A natural choice is to taper the dimensions of
Ay gradually from Nj, to Noyt as k goes from 1 to M.

In a typical application we are given a linear system matrix H which we desire to implement
(which may, for instance, be the optimal recovery operator of a signal restoration problem). Then,
we seek the transform orders aj and filters hg[j] such that the resulting matrix T (as given by
Eqns. 1 and 2) is as close as possible to H according to some specified criteria, such as Froebenius
norm: ||T —H]||g. Alternatively, it is possible to take Eqn 1 or 2 as a constraint on the form of the
linear matrix H to be employed in a specific application such as restoration, recovery, denoising,
etc. Given a specific optimization criteria, such as minimum mean-square estimation error, we seek
the optimal values of aj and hi[j] such that the given criteria is optimized.

Before embarking on our analysis, we first note that each channel in multi-channel configuration
may be more generally of the form F%A,F% where aj and a}, are arbitrary and do not necessarily
satisfy aj = —ay. In fact, there is no reason not to consider other parametric transforms with fast
algorithms. This configuration can also be interpreted as a decomposition into operations which
are shift-invariant in different fractional domains.

In the multi-channel case, regardless of which of these approaches we take, the problem of
determining the optimal filter coefficients can be exactly solved since the overall kernel T depends
linearly on the filter coefficients hy[j] as follows:

M N R
T=> > hl] T, (3)

k=17=1

where N = min(Ni,, Nout). The dimensions of the matrices Tkj, indexed by kj, are the same as
the dimensions of T (Nyyut X Nin). These matrices play the role of a family of “basis matrices”
which are used to construct the matrix 7. It can be shown that their elements ﬁj [m, n] are given
by

ol _ —ay . ay, .
77()] [m7 TL] - fNout [ma.]]f]\fin [.77 TL], (4)
where f&iﬁ and }"]‘i,’;n are fractional Fourier transform matrices of dimension Ny, and Nj, respec-

tively.

The objective is to choose the N M filter coefficients hg[j] (N coefficients in each of M filters)
so that the resulting linear system T is optimal according to some criteria. For instance, if we
wish to minimize ||T — H||p, where H is a specified matrix, the problem can be exactly posed as a
least-squares optimization problem leading to an associated set of normal equations or which can
be solved with other standard techniques. To see this, it is necessary to first “vectorize” the above
equations. Let T denote the Ny Nin X 1 vector obtained by stacking the columns of T on top of
each other, and let ikj denote the Ny NVin X 1 vector obtained by stacking the columns of Tkj
on top of each other. Finally, let h denote the M N x 1 matrix obtained by stacking the M filters



hi[j], halj], - .., ha[j] on top of each other. With these conventions, we obtain

MN

I[p] = iq[p]h[q] p=1,2,..., NoutNin, (5)
q=1

where the indice ¢ also follows a column ordering over the two indices kj. This equation can also
be written in matrix form as A
T= [1112 - iMN] h=Th, (6)

where the new NyuiNin X M N matrix i has been defined.
Now, we are finally able to state our problem in standard form as follows: Minimize the mean-

square difference | T — H||? between the desired H and T = Th. This is a standard least squares

problem and can be solved in a number of ways. The filter vector h which minimizes |H — Th||?
is known to satisfy the so-called normal equations associated with the least squares problem:

! 2 H 2
T H=T Th, (7)

where iH is the Hermitian transpose of i

In the multi-stage case, the overall kernel T depends nonlinearly on the filter coefficients h[j],
so that solution of the optimization problem arising in this case is much more difficult. (Nevertheless
an iterative approach has been successfully applied to this problem [6, 10].)

The M-channel or M-stage filtering configuration has about M N degrees of freedom, as opposed
to general linear systems which have NyuViy degrees of freedom and shift-invariant systems which
have about N degrees of freedom. These configurations interpolate between general linear systems
and shift-invariant systems both in terms of cost and flexibility. If we choose M to be small, cost
and flexibility are both low; M = 1 corresponds to single-stage filtering. If we choose M larger, cost
and flexibility are both higher; as M approaches N, the number of degrees of freedom approaches
that of a general linear system. We show that exactly M = N filters are necessary and sufficient to
implement an arbitrary general linear system matrix exactly (with zero error) in the multi-channel
case. Likewise, M = N + 1 filters are necessary and sufficient in the multi-stage case. In practice,
most matrices are not wholly arbitrary and exhibit some kind of internal structure, although that
structure may not be easy to identify or characterize. As will be illustrated by the examples, there
are many applications in which acceptable or useful approximations to given linear systems are
possible with small or moderate values of M <« N, which as discussed next result in considerable
cost savings.

Let the input of some general linear system be represented by Ny, samples and the output by
Nout samples. Digital implementation of general linear systems takes O(Nqyut Niy) time (the time to
multiply the system matrix with the input vector). Direct optical implementations of general linear
systems using matrix-vector product or multi-facet architectures require an optical system whose
space-bandwidth product is O(Noy Nin) [2]. On the other hand, the digital implementation of shift-
invariant systems takes O(Ni, log Ny, + N 4+ Nyt log Noyt) ~ O(N log N) time by using the fast
Fourier transform, where N = max(Noyt, Nin) and N’ = min(Noyt, Nin). Optical implementation



of shift-invariant systems requires a pair of optical Fourier transformers whose space-bandwidth

products are O(Ny,) and O(Nyyt). The cost of filtering in a single fractional Fourier domain is the

same as that of implementing shift-invariant systems (which correspond to filtering in the ordinary

Fourier domain).

In the above paragraph, we implicitly assumed that all rows of the matrix representing the
general linear system are linearly independent. Since the rank R of a matrix always satisfies
R < N' = min(Nyyt, Nin), this is possible only when R = Nyt < Niy. In the general case, the rank
R corresponds to the number of linearly independent rows. Multiplying these linearly independent
rows with the input takes O(RNj,) time. Multiplication of other rows can be accomplished more
easily since it is known that remaining (Nyyt — R) rows are known to be linear combinations of the
other R rows. Since R coefficients are sufficient to characterize these rows, multiplying them with
the input takes O((Nouy — R)R) time. The total amount of time is thus

O(RNj, + (Nows — R)R) = O(R(Niy, + Now) — R?). (8)

We are not able to propose a simple scheme for exploiting rank information in optical implemen-
tation, so that we again take the cost of optical implementation as before.
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Figure 2: Cost of directly implementing a linear system compared with the cost of implementing
multi-stage, multi-channel, and single-domain filtering configurations (Noyt = Nin = N, M = 10).

We now turn our attention to multi-stage and multi-channel filtering configurations. These
configurations consist of M single-domain filters. Thus the multi-channel configuration can be
digitally implemented in

O (M (Nip log Niy + N’ 4+ Nout log Nout)) ~ O(MN log N) (9)

time. Likewise, the multi-stage configuration can be digitally implemented in

M
o (Nin log Nin + Y _[min(Ny,_1, Ni) + Ni log Nk])
k=1
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M
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time. Normally, the dimensions N, of the intermediate stages would lie between Ny = Nj, and
Ny = Noug. It seems natural that Ny, = Ng < Ny < Ny < ... Ny—-1 < Ny = Nout or
Nin =Ny >Ny >Ny >... Nyy—1 > Ny = Nout depending on whether Ny, < Noyt or Nip > Noyug-

Therefore, the last expression is also ~ O(MN log N). We now consider the costs of optical im-
plementation. The multi-channel configuration requires M pairs of fractional Fourier transformers
whose space-bandwidth products are O(Nj,) and O(Noyt). The multi-stage configuration requires
M + 1 fractional Fourier transformers whose space-bandwidth products are O(N).

Figure 2 compares the time cost of directly implementing a linear system with that of imple-
menting multi-stage or multi-channel configurations with a moderate number of filters.
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