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Abstract

Just like time-frequency and time-scale representations, time-order signal representations
constitute an alternative way of displaying the content of a signal, with the potential to reveal
features which may not be evident upon examination of its other representations and to lead to
novel processing techniques. We derive many of their properties and their relations to other time-
frequency representations. Their importance stems from the fact that the Radon transforms
(integral projections) and slices of the Wigner distribution and the ambiguity function can
be expressed in terms of products or convolutions of various scaled forms of the time-order
representation and its two-dimensional Fourier transform.

1 Introduction

In this paper we discuss time-order (or space-order) signal representations. Just like time-frequency
and time-scale (or space-frequency and space-scale) signal representations, these representations
constitute an alternative way of displaying the content of a signal, with the potential to reveal
features which may not be evident upon examination of its other representations. Similar to
time-frequency and time-scale representations, these are redundant representations in that the
information contained in a one-dimensional signal is displayed in two dimensions, with the potential
to lead to novel processing techniques. These representations were first introduced in [9]. Here we
will derive many of their properties and their relations to important time-frequency representations
such as the Wigner distribution and the ambiguity function, showing that they are closely related
to the projections and slices of these well-known time-frequency representations.

Time-order representations are based on the fractional Fourier transform (FRT), which in recent
years has attracted a considerable amount of attention, leading to many applications in the areas
of optics and signal processing. A comprehensive introduction to the FRT and historical references
may be found in [1]. The transform has become popular in the optics and signal processing
communities following the works of Ozaktas and Mendlovic [2, 3], Lohmann [4] and Almeida [5].
Some of the applications explored include optimal filtering in fractional Fourier domains [6], cost-
efficient linear system synthesis and filtering [7, 8] and time-frequency analysis [5, 1]. Further
references may be found in [1].

We will consider two variations of the time-order representation, the Cartesian time-order rep-
resentation and the polar time-order representation. The Cartesian time-order representation is
simply the fractional Fourier transform f,(u) of a function f(u) interpreted as a two-dimensional
function, with u the horizontal coordinate and a the vertical coordinate. The polar time-order rep-
resentation is simply foq/x (p) interpreted as a polar two-dimensional function where p is the radial
coordinate and « = aw/2 is the angular coordinate. Both representations are complex valued.

2 Definitions and Properties

The ath order fractional Fourier transform of f(u) is denoted by f,(u) and given by [1]

fa(u) — Aa‘/_ eiw(cotauZ—chca uu’+cot a u’2)f(ul) du', (1)
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Figure 1: (a) The Cartesian time-order representation, (b) the polar time-order representation.

for a # 27, and fqo(u) = f(u) for a = 45 and f,(u) = f(—u) for a = 45 + 2, where j is an integer,
a=ar/2, and A, = /1 —icota. The Oth transform of f(u) is simply fo(u) = f(u) itself and the
1st transform is simply fi(u) = F(u), the ordinary Fourier transform. The asth transform of the
ayth transform is equal to the (ag + a1)th transform, a property known as index additivity. The
ath fractional Fourier domain makes an angle o = anw/2 with the time (or space) domain in the
time-frequency (or space-frequency) plane. This is confirmed by the fact that the Radon transform
of the Wigner distribution of f(u) onto this domain equals | f,(u)|?.

The Cartesian time-order representation is simply f,(u) interpreted as a two-dimensional func-
tion, with u the horizontal coordinate and a the vertical coordinate. As such, it is a display of all
the fractional Fourier transforms of f(u) next to each other. In other words, the representations
of the signal f in all fractional domains are displayed simultaneously. Formally, we will denote the

Cartesian time-order representation of a signal f by Tt(u,a), so that we define

Tf(u,a) = fq(u). (2)

Figure 1(a) illustrates the definition of the Cartesian time-order representation.

Although we will not elaborate, it is evident that all of the properties of the fractional Fourier
transform can be interpreted as properties of the time-order representation. In particular, the
following simple identities are sometimes useful in dealing with the representations of the products
and convolutions of functions:

Th(u)f(u) (Ua a) = TH(u)*F(u) (ua a— 1)7 (3)
Th(u)*f(u) (’LL, Cl) = TH(u)F(u) (’LL, a— 1) (4)

Of course, the Cartesian representation is periodic in a with period 4.

Figure 2 illustrates the Cartesian time-order representations of the signal exp(—m2u?) and the
signal rect(u).

The polar time-order representation is simply foq/x(p) interpreted as a polar two-dimensional
function where p is the radial coordinate and « is the angular coordinate. As such, it is a display
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Figure 2: Magnitudes of the Cartesian time-order representations of exp(—mr2u?) (left) and rect(u)
(right).

of all the fractional Fourier transforms of f(u) such that f,(p) lies along the radial line making
angle o = am/2 with the horizontal u axis. As in the Cartesian representation, all transforms are
displayed simultaneously. Formally, we will denote the polar time-order representation of a signal
f by T¢(p, ), so that we define
Tf(p7 Oé) = f2a/7r(p)' (5)

Since fq(p) is periodic in a with period 4, T¢(p, o) is periodic in o with period 27, as all polar
functions must be. Tf(p, ) is defined for negative values of p as well. This does not pose any
inconsistency since fq+2(p) = fo(—p), from which it also follows that T¢(p,a) = Tf(—p,a £ ).
Figure 1(b) illustrates the definition of the polar time-order representation.

Figure 3 illustrates the polar time-order representations of the signal exp(—m2u?) and the signal
rect(u).

The slices of the polar representation are simply equal to the fractional Fourier transforms:

Sa[Tt(p, a)l(u) = fa(u),  a=am/2. (6)

The slice operator is defined as: Sy[Tt (1, v)](1') = T¢(1' cos ¢, 1’ sin ). In particular, the slice at
a = 0 is the time-domain representation f(u), and the slice at & = 7/2 is the frequency-domain
representation F'(u). Other slices correspond to fractional transforms of other orders. We also
know that the Radon transform of the Wigner distribution is given by [11, 1]

Ra[Wi(u,)](p) = | fas=(0)* = 1Ty (ps ), (7)

where The Radon transform is defined as: Ry[Wy(u,p)](v') = [Wy(u cos¢ — v'sing, v’ sinp +
v’ cos @) dv’. Thus, the Radon transform of the Wigner distribution, interpreted as a polar function,
corresponds to the absolute square of the time-order representation defined above. The relationship
of time-order representations to the Wigner distribution and ambiguity function will be further
discussed in section 3.
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Figure 3: Magnitudes of the polar time-order representations of exp(—m2u?) (left) and rect(u)
(right).

We now move on to discuss a number of properties of this representation. First, we note that
obtaining the original function from the distribution is trivial: f(u) = fo(u) = T¢(u,0). Obtaining
the Fourier transform of the function or indeed any other fractional transform is likewise a direct
consequence of the definition.

The time-order representation of the a/th fractional Fourier transform of a function is simply a
rotated version of the time-order representation of the original function:

Tfa/ (p7 a) = Tf ()0, o+ 04,), (8)

where o/ = a'w/2. In particular, the time-order representation of the Fourier transform of a
function is a 7/2-rotated version of the original. Since the time-order representation is linear, the
representation of any linear combination of functions is the same as the linear combination of their
representations.

Various properties of the polar time-order representation follow immediately from properties of
the fractional Fourier transform, and are presented in table 1.

3 Relationships with the Wigner distribution and the ambiguity
function
We now return to the discussion of the relationship of time-order representations with other time-

frequency representations, which we had postponed after equation 7. It is possible to show as a
consequence of the projection-slice theorem that

SQ[A(a7ﬂ)](p) = Tf(ﬂa a) * T}k(_pa a) = f2a/7r(p) * f;a/rr(_p) (9)

where Ay (@, i) = [ f(u' +@/2)f*(u' —@/2)e” ¥ dy' is the ambiguity function, and *+’ denotes
the convolution. We see that just as oblique projections of the Wigner distribution correspond to
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Table 1: Properties of the polar time-order representation. wg, o and s are real but s #
0,+0c0. o = arctan(s~?tanca) where o' is taken to be in the same quadrant as a. K =
V(1 —icota)/(1 —is?cota). Property 7 is not valid when « is an integer multiple of 7 and

property 8 is not valid when « is an odd integer multiple of /2.

the squared magnitudes of the fractional Fourier transforms of the function, the oblique slices of
the ambiguity function correspond to the convolutions of the fractional Fourier transforms of the
function.

Having discussed the Radon transform (projections) of the Wigner distribution and the slices
of the ambiguity function, we now turn our attention to the slices of the Wigner distribution and
the Radon transform of the ambiguity function. To proceed, we first write the Wigner distribution

Of fa(u):
Wy, () = [ Falut /2015w = ol 202 dd, (10)

whose slice at the angle 7/2 is easily obtained as
SepalW7, (s w))(p) = [ falad /2012 (ol 202 dud = Flfalw/2)f(~u/D)p) (1)
Now, we know that Wy, (u, ) = Wy(ucosa — psino, usina + pcos a) [3, 4], so that
Wi, (0, p) = Wy (—psina, pcos a) = Sepna[ Wy (u, 1) (0). (12)

Combining equations 11 and 12 finally leads us to the desired expression for the slices of the Wigner
distribution:

Sa[Wf(uv N)](p) =/fa—l(UI/Q)f:_l(_u’/2)e—i27rpu’ du’
= 4fa(2p) * £3(20) = 4T¢ (20, 0) * T} (20, ), (13)
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Ra[Wy(u, )](p) = falp)fa(p) = Tr(p, )T (p; )
RalAp(a,1)|(p) = fa(p/2)f5(=p/2) = T (p/2, )T} (—p/2, )
Sa[Wi(u, 1)](p) = 2fa (29>*2fa(29>—2Tf(297 a) * 2TF(2p, @)
SalAy(a, p)(p) = falp) * fa(=p) = Ty(p,a) * T (—p, a)

Table 2: Radon transforms and slices of the Wigner distribution and the ambiguity function. The
upper row can also be expressed as |foq/x(p N2 =T (p, @)|?.

where a = 2a/7 as before. The slice of the Wigner distribution at angle « is equal to the convolution
of 2T¢(2p, ) = 2foq/x(2p) With its conjugate. Since Tt(2p, @) is a function of polar coordinates, its

slice at an angle a is simply T (2p, o) itself. Thus the slice of the Wigner distribution at a certain
angle is equal to the convolution of the slice of the time-order representation with its conjugate.

Now, application of the projection-slice theorem allows us to arrive at the following result for
the Radon transform of the ambiguity function [12]:

RalAp(u, 1)](p) = foa/x(p/2) fra)=(=p/2) = Ti(p/2, )T} (—p/2, x). (14)

The special case of o = 0 yields Ro[Af(a, )](p) = [ Ar(p, t)
dii. = f(p/2)f*(—p/2), which could have also been derived directly from the definition of the
ambiguity function.

Table 2 summarizes the Radon transforms and slices of the Wigner distribution and ambiguity
function. We note that although not shown, the results of these operations can also be expressed
in terms of the fractional Fourier transform. For both the Wigner distribution and the ambiguity
function, the Radon transform is of product form and the slice is of convolution form. The essential
difference between the Wigner distribution and the ambiguity function lies in the scaling of p by 2
or 1/2 on the right hand side.

We already know the slice of T¢(p,a) to be simply given by foq/x(p), by definition. Now, we
embark on deriving the Radon transform of T¢(p, «). A polar-to-rectangular coordinate conversion
allows us to write T¢(p, ) in Cartesian coordinates as follows:

Tf7rect(u7ﬂ) = Tf(,O, ) p= \V u?+p?, o= arCtan(#/U)- (15)

The Radon transform of T (p, o) at an angle ¢ is
RolT(p,al(e) = [ Treer(ocosé = ' sin, osing -+ i cos 6) dy' (16)

. /
/Tf [\/ 0% + p'*  arctan <gs1n¢ tplc?SQS)] du'. (17)

0cos ¢ — ! sin ¢

Introducing the following change of integration variable from p’ to 6: p' = ptan@, we can write
the above integral as

w/2
Ro[Tt(p, a)](g):/ ) Tr(osect, ¢ + 0)osec®d df
—7/2



w/2
:/_ /2f2(¢+9)/,r(g sec 0) o sec?0 df, (18)

which will be our final expression for the Radon transform of T¢(p, «).
We will denote the two-dimensional ordinary Fourier transform of T'f vect (u, 1) as T rect (1, @) =

I [ Tf7rect(u,u)e_i2”(ﬂ“+““) dudp. The same Fourier transform relation can also be expressed in
polar coordinates p = \/a? + 1%, & = arctan(fi/a) as

- 2T oo L B
Ti(p.a) = [ [ Tylp, ) 2w dp da (19)

where Tf(ﬁ, @) denotes the two-dimensional Fourier transform Tﬁrect(ﬂ,ﬂ) in polar coordinates.
The slice of T¢(p, @) at an angle ¢ is simply

SolTy(p, @)](0) = Ty(0. 9). (20)

Now, application of the projection-slice theorem allows us to write

. - /2 o
Sull1(.@)(e) = Tyle.6) = FR(Ty(pra)l (0) = [ [ |, T sect.640) o sec? 0| 7o g
i /2 ,
= %/;W/Q f2(¢+9)/7r+1(g(:089) Secede, (21)

where f£(¢+a)/7r+1(z> denotes the derivative dfa(si9)/r+1(2)/dz.
Having obtained its slice, what remains is to write an expression for the Radon transform of

T¢(p, @), which follows without much difficulty from the projection-slice theorem:

Ro[Tr(p, @)])(0) = F ' Syix [Ty (p, )](0) = F ' o4 (0)
= foinsa(0) =Ti(0, ¢+ 7/2). (22)

Thus, we have now completed a set of four expressions for the Radon transforms and slices of
the polar time-order representation T (p, ) and its two-dimensional Fourier transform Tf(ﬁ, @).
The slice of Tf(p, o) at a certain angle is simply equal to the fractional Fourier transform f,(p) by
definition (with a = ar/2). The Radon transform of Ty (f, @) at an angle ¢, we have just seen to be
given by fy11(p) or T¢(p, ¢p+7/2), a ninety-degree rotated version of T¢(p, o) (with ¢ = br/2). (The
remaining two relations are more complicated and are given by equations 18 and 21.) We already
knew that the time-frequency representation whose projections are equal to |f,(u)|? is the Wigner
distribution. We now see that the time-frequency representation whose projections are equal to
fa(u) is the two-dimensional Fourier transform of the polar time-order representation (within a
rotation). Table 3 summarizes the Radon transforms and slices of the time-order representation
and its two-dimensional Fourier transform. We see that the results of these operations can be
expressed in terms of the fractional Fourier transform.

Looking back, we see that we have derived a total of eight expressions for the Radon transforms

and slices of the Wigner distribution and its two-dimensional Fourier transform (the ambiguity



Ro[Tr(p,)](0) = fﬂ% fa(¢+0)/x(03ect) osec’dh = ffﬂ% Tr(osecl,d + 6) psec? 0df

Ro[Ty(p, @)](0) = fosnj2(0) = Ty(o ¢ + 7/2)

Sy[T(p, a)](e) = f2¢>/7r( ) =T¢(0.9)

SylT1(p,a))(0) = o= _7T/2f2 10)/ny1(0C080) secfdf = o fﬁQT}(QCOSH,qﬁ—I-H—i-Tr/Z) sec 0 df

Table 3: Radon transforms and slices of the time-order representation and its two-dimensional
Fourier transform. T (p, a) denotes the derivative dT(p, @) /dp.

function), and the Radon transforms and slices of the polar time-order representation and its two-

dimensional Fourier transform.

The polar time-order representation is a linear time-frequency representation, unlike the Wigner
distribution which is a quadratic time-frequency representation. We note that the Wigner distri-
bution can be interpreted as giving the distribution of signal energy over time and frequency [10].
As such it is an example of an energetic time-frequency representation. In contrast, the ambiguity
function was seen to have qualities reminiscent of correlation, and it was an example of a correlative
time-frequency representation. We also know that the Wigner distribution and ambiguity function
constitute a two-dimensional Fourier transform pair. The polar time-order representation and its
two-dimensional Fourier transform fall into neither category and do not belong to Cohen’s class of
shift-invariant representations. Their importance stems from the fact that the Radon transforms
(integral projections) and slices of the Wigner distribution and the ambiguity function can be ex-
pressed in terms of products or convolutions of various scaled forms of the time-order representation
and its two-dimensional Fourier transform.
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