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Chapter 1

Signals, Systems, and
Transformations

1.1 Signals

1.1.1 Signals

Signals are information bearing entities which are usually represented by one or more
functions of one or more independent variables. We will mostly deal with signals repre-
sented by a scalar function of one or two real variables. For instance, a voltage signal ©
may be represented as a function of time ¢ by the function ©(t) = 2cos(2710t) V, with ¢
being measured in seconds. It is common to think of and to refer to this function as the
signal itself, as a consequence of the primacy we attach to time as an independent variable.
However, the same information can be equally well represented by other functions of other
variables. For instance, the same information can be represented as a function of temporal
frequency f (measured in Hertz) in the form V(f) = [6(f — 10) +6(f +10)] V, where V (f)
is the Fourier transform of ©(¢). Thus, it will be more useful to use the term signal to
refer to the signal ¥ as an information-bearing entity in the abstract, and to refer to the
function ©(t) as the time-domain representation of the signal. When there is possibility of
confusion, we will write @ (¢) instead of ©(t), v;(f) instead of V(f), and so on to identify
the different functional representations of the signal ©. This notion of a signal is similar
to the notion of a vector in classical mechanics and the notion of a ket vector in quantum
mechanics (Cohen-Tannoudji, Diu, and Laloé 1977). A vector r is a geometrical entity
independent of any coordinate system. One way of representing it is with respect to a
particular rectangular coordinate system in the form r = z, +ya, + 20, or r = (z,y, 2),
where 1i;, 0y, 0, are unit vectors along the coordinate axes. Many other representations
with respect to many other coordinate systems are possible. When the distinction is not

9

crucial, we will simply say “the signal f (t)” rather than “the time-domain representation

f(t) of the signal f.”
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1.1.2 Notation

Throughout this report, u, v, w will be used as generic dimensionless coordinate variables,
which may be referred to as time or space depending on the context. The associated
frequency-domain variables will be denoted by wuq,v1,w;. The same variables will also
be denoted by u = uy,v = vy,n = w; in simpler contexts. Dimensionless coordinate and
frequency vectors will be denoted by q and q; respectively, with ¢ = q in simpler contexts.
Functions which take dimensionless arguments will simply be denoted by lowercase letters,
such as f(u), g(u,v). Their Fourier transforms will be denoted by F(u), G(u,v).

The symbol ¢ will be used for the time coordinate, f = t; for temporal frequency,

ry = x,ry = Y,7, = z for the space coordinates, and o, = 71,04 = y1,0, = 21 for spatial
frequencies. (f will also commonly be used to represent a generic signal f(-) and the
focal length of a lens, but this will cause no confusion.) Spatial coordinate and frequency
vectors will be denoted by r and o respectively. Functions whose arguments have the
dimensions of time or distance will be denoted as f(t), §(z,y), F(f), G(0x,0,).

Integrals whose limits are not indicated will denote integrals from minus to plus infinity.
Likewise, summations whose limits are not indicated will denote summations over the
complete range of the indices, which is often either from minus to plus infinity or from
zero to plus infinity.

When we use the square root function and unless we indicate otherwise, \/z will mean
the square root of z whose argument lies in the interval (—m/2,7/2]. We denote the
imaginary unit by i = v/—1.

)

We will use “=” instead of simply “="

when it is important to emphasize that the left
hand side is defined as the expression on the right hand side.

1.1.3 Some commonly used functions

The rectangle function rect(u) is defined to be equal to 1 in the interval (—0.5,0.5), 0.5
at u = £0.5, and 0 elsewhere. The unit step function step(u) is defined to be equal to 1
when u > 0, 0.5 at u = 0, and 0 when u < 0 and the sign function sgn(u) is defined as
sgn(u) = 2step(u) — 1. The sinc (or interpolation) function sinc(u) is defined as sinc(u) =
sin(mu)/(mu). The Gaussian function gauss(u) is given by gauss(u) = exp(—mu?), the
harmonic function har(u) by har(u) = exp(i27wu), and the chirp function chirp(u) by

—im/4 exp(imu?).

chirp(u) = e
The Dirac delta function §(u) is a generalized function which is zero everywhere except
at u = 0, such that its integral over any interval including u = 0 is equal to unity. It may

be defined as the limit of parametric continuous functions:

o(u) = (l:iE)I%)c_lrect(u/c), (1.1)
d(u) = (131_1()1% ¢ tsinc(u/c), (1.2)

o(u) = 21_1)1(1) ¢ tgauss(u/c), (1.3)
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0(u) = 331_1)1(1) ¢ Lehirp(u/c), (1.4)

where ¢ > 0. The last two equations can be rewritten for all real values of ¢ as

N E —mu?/|c|
o(u ll_rf(l) T e , (1.5)
5(U) = lim e—iwsgn(c)/4 1 eiwu2/c = lim e—iw/4 leimﬁ/c‘ (1.6)
c—0 |c| c—0 cC

Alternatively, the delta function may be defined through its effect under the integral sign.
For every continuous function f(u),

flu) = [ b= u)p au (L.7)

which is known as the sifting property. Table 1.1 is a list of some of the common properties
of the delta function. Of particular importance is the following identity:

o(u) = / eF2mun g, (1.8)

The first and higher-order derivatives of the delta function are denoted as ¢'(u), ¢"(u),

and so on. The comb function is defined as comb(u) = Y02 d(u —n). The Kronecker

0(Mu) = 6(u)/|M]|

fu)d(u—&) = f(§)o(u —§)
Jo(u—&)f(u)du = f(§)
Jou—=8)0(u—¢')du=0(§ —¢')
f e:l:i?ﬂ(u—f)u’ du' = (S(U _ g)

[ 8'(u =) () d = df )/
JoZ 0(u — ') du' = step(u)

0(u) = d[step(u)]/du

S B A o

Table 1.1: Properties of the Dirac delta function. M, ¢, £ are real numbers.

delta &y is defined to be 0 when [ # I’ and 1 when [ = I’. A common identity valid for

arbitrary real du is
[e.e]

> 5(u+n5u):$ S il (1.9)

whose right hand side can be interpreted as the Fourier series of the comb function.
1.1.4 Analytic signals and the Hilbert transform

We will mostly deal with complex signals bearing the same information as the real physical
signal. A real physical signal f(u) and the associated complex signal fas(u), also known
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as the analytic signal, are related by

Jas(u) = fu) +ifu(u), (1.10)
f(u) = §R[fas(u)]a (1'11)

where R[] denotes the real part of a complex entity and

futw) = [~ s ja)yduf (1.12)

—oo T(u —u')

is the Hilbert transform of f(u). The Fourier transform of fy(u) is given by —isgn(u)F (1)
and f(u) is orthogonal to its Hilbert transform: [ f*(u)fm(u)du = 0. The Fourier trans-
form F[fas(u)](p) of fas(u) is obtained from F'(u) according to

Flfas(w)](p) = 2step(u) F(p). (1.13)

In the event that fas(u) is a narrowband signal whose spectrum is centered around some
center frequency uo, it is convenient to express it in the form

fas(u) = Ac(u)emHov, (1.14)

where A.(u) is known as the complex envelope, and is a lowpass (slowly varying) function.
In general, the analytic signal of A(u) cos[2mpou + ¢(u)] is not A(u) exp[i2mpou + id(u)],
where A(u) and ¢(u) are real functions. However, this is approximately true when A(u)
and ¢(u) are slowly varying functions (Cohen 1989).

A monochromatic signal is one which consists of only a single frequency: f(u) =
Ag cos(2mpou + ¢g) for some particular pg, Ag, and ¢g. The associated complex repre-
sentation (analytic signal) is given by Agexp(i2muou + i¢g) and the complex envelope is
simply A.(u) = Agexp(igp). In this case the complex envelope is also known as the phasor
of f(u). The real signal is recovered by multiplying the phasor by exp(i27uou) and taking
the real part. Since we will mostly deal with complex representations, we will often omit
the subscript “as” and simply write f(u) instead of fas(u).

1.1.5 Signal spaces

A vector space is a set of entities for which addition and scalar multiplication have been
defined such that certain axioms are satisfied (see the appendix to this chapter). A set of
signals which constitute a vector space is referred to as a signal space. Although we will not
rigorously specify what this means mathematically, we will restrict ourselves to the space
of signals whose members are “physically realizable,” which in particular implies that they
have finite energy, and that their representations are smooth, and negligible outside some
finite interval (Cohen-Tannoudji, Diu, and Laloé 1977, page 94). We will also use certain
physically unrealizable signals which have infinite energy, but which nevertheless serve as
useful intermediaries (such as the delta and harmonic functions), and occasionally deal
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with discontinuous functions. The fact that these signals are not “physically realizable”
will not overly concern us in this report.

For concreteness, we will concentrate on the space of functions consisting of the rep-
resentations of the members of a signal space in discrete and continuous domains (such
as the time domain). We will mostly use [,m,... to denote the independent variable(s)
in a discrete domain. Likewise, we will mostly use u,v,... to denote the independent
variable(s) in a continuous domain. The addition of two functions is defined as ordinary
arithmetic addition and scalar multiplication is defined as ordinary arithmetic multipli-
cation with a complex number. The inner product (f,g) of two signals f and g may be
defined in terms of their discrete or continuous functional representations in the [ or u
domain as

(f.9)=2_f (Wg(), (1.15)
l
(f.9) = [ £ wgtw) du. (1.16)

respectively. The energy ||f||> and norm || f|| of a signal f are defined by ||f||> = (f, f).
Two signals whose inner product is zero are called orthogonal to each other. The distance
between two signals f and g is defined to be the norm of their difference: ||f — g||. We
will later show that the definitions of the inner product, norm, and energy of a signal are
independent of the particular functional representation or domain in which we calculate
it (by using equation 1.15 or 1.16).

1.2 Systems

1.2.1 Systems

A system is a process, event, mechanism or the like that maps a given signal into another
signal. Mathematically, a system is a rule for assigning to any element f of some set of
signals, an element g of (another or the same) set of signals. The signal f is referred to
as the input, and the signal g is referred to as the output of the system. In other words,
a system is a mapping from the input set of signals to the output set of signals (Papoulis
1977).

The rule relating the output signal ¢ to the input signal f is denoted as

9= S[fl]. (1.17)

In this notation, f becomes the argument of the (possibly many-to-one) relation S[-] which
characterizes the system. Alternatively, by interpreting S as an operator that operates on
objects to its right, we may write the above in the form

g=SFf. (1.18)
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The same relationships can be written more explicitly in terms of the time-domain (or
space-domain) representations of the signals in the form

g(u) = {S[f (w)]}(u) (1.19)

or more simply as g(u) = {S[f]}(u), or even g(u) = S[f(u)] when there is no room for
confusion. In operator notation one may write

9(u) ={Sf}Hu), (1.20)

or more simply g(u) = Sf(u).

1.2.2 Linearity and superposition integrals

For a linear system £, the output corresponding to a linear superposition of a sequence of
inputs f;, is the same linear superposition of the corresponding sequence of outputs g;:

g5 = L[f;] forall j = Z%’gj =L {Z Oéjfj‘ , (1.21)
J J

where o are arbitrary complex coefficients. If we have continuously many inputs f,, the
summations above should be replaced with integrals over v.

gv = L[fy] forallv = /avgv dv =L [/ ay fo dv] , (1.22)

where «,, are arbitrary complex coefficients.
Let us express the input function f(u) as a linear superposition of shifted delta func-
tions as

f) = [ st - s, (1.23)

—00
and let h(u,u’) denote the output of a linear system when the input is é(u — u'):

h(u,u") = L[6(u — u)]. (1.24)

It follows that the output g(u) is related to the input f(u) by the relation

g(u) = /_O:O h(u,u') f (u) du'. (1.25)

Now, let the signal f be input to the linear system £; and the output be input to a
second linear system Lo:

Lo [La[f]], (1.26)

or simply LoL1[f] or Lo£1f. The kernel h(u,u’) corresponding to the composite system
L = L9L1 can be shown to be given by

h(u,u') = /hg(u,u”)hl(u",u/)du". (1.27)
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1.2.3 Some special linear systems

A number of systems that will be of special interest are tabulated in table 1.2 together

with their linear transform kernels h(u, ') and inverses. The inverse £~! of a system L,
if it exists, satisfies LL~1 = £L71£ = Z. The kernel of a system h(u,u’) and the kernel of
its inverse h~1(u,u’) satisfy the relation

/h(u,u”)h_l(u",u') du" = 6(u —u). (1.28)
Symbol Kernel Inverse Kernel
T O(u —u) d(u —u')
P d(u+u') d(u+u')
My V60— M) (1T )6(u — ! /M)
SHe u—u' +§) Su—u —§)
PHe exp(i2méu)d(u — u') exp(—i2méu)d(u — u')
Ay, h(u)d(u — u') [1/h(u)]d(u — u')
Q, exp(—iTqu?)d(u — u') exp(imqu®)é(u — u')
Ay h(u —u') h=Y(u —u')
R e /Tr explim(u — ') /r] e™H(1)\/r) expl—im(u —u)? /1]
U ud(u —u') u” 5 (u — u')
D (i27) 71 (u — u') (127)step(u — u')
F exp(—i2muu') exp(12muu’)

Table 1.2: Special linear systems and their kernels. Z: Identity, P: Parity, Mp;: Scal-
ing, SH¢: Shift or Translation, PH¢: Phase shift, Aj: Multiplicative filter, Q4: Chirp
multiplication, Ag: Convolutive filter, R,.: Chirp convolution, ¢/: Coordinate multipli-
cation, D: Differentiation, F: Fourier transform. M, &, ¢, r are real parameters and
8 (u—u') = d[6(u—u')]/du. h~*(u) is related to h(u) through [ h(u—u')h=1(u') du' = &(u).

Among the systems listed in the table we comment only on chirp convolution, also
known as the Fresnel transform or the Fresnel integral:

g(u) = \/gchirp(u/\/v_“) « f(u) = e_i”/4\/§ /_o; f(u')ei”(“_“,)z/r du'. (1.29)

The Fresnel transform satisfies many properties (Gori 1994) of which we will need to know

h_l(u,u';r) = h(u,u'; —r) = h*(u,u’,r), (1.30)
Ry Rey = Ry, (1.31)
lim R, = 7. (1.32)

r—0
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Here h(u,u';r) explicitly shows the dependence of the Fresnel transform kernel on the
parameter 7. We also note that as » — 0, the transform approaches the identity transform
characterized by the kernel 6(u — u').

Another important class of systems, which includes most of the above as special cases,
is the class of linear canonical transforms, which we will discuss at length in chapter 2.

1.2.4 Shift-invariance and convolution

Let the output of a system corresponding to the input d(u) be denoted by h(u). This

system is called shift-invariant (or time-invariant or space-invariant) if the output h(u,u’)

corresponding to the input 6(u — u') is equal to h(u — u') for all «'. In this case h(u) is

called the impulse response and the relation between the output and the input becomes
(o9

g(u) = f(u) * h(u) = / h(u —u')f(u') du'. (1.33)

—00

We say that g(u) is the convolution of the two functions f(u) and h(u). The correlation
of f(u) and h(u) is denoted by Rgj(u) or f(u)* h(u) and is defined as

Ryn(w) = £(u) e h(w) = F) 1) = [ flact ol )
_ /_o:of(u’—i—u/Q)h*(u' —w/2) dul. (1.34)

Some properties of the convolution and correlation operations are summarized in table 1.3.
We might also recall that the Fourier transform of f(u)*h(u) is F'(u)H (1) and the Fourier
transform of f(u)x h(u) is F(u)H*(1).

1. f(u)*h(u) = h(u) * f(u)

2. f(=u)* h(—u) = g(—u)

3. fu) x [ha(u) * ho(u)] = [f (u) * ha(u)] * ho(u)

4. flu) = [ha(u) + ho(u)] = f(u) x hi(u) + f(u) * ha(u)
5. flu=¢&) *h(u) =g(u—¢)

6.  Ryn(u) = f(u)* h(u) = h*(—u) * f*(—u) = Rp+ - (—u)
7. f(—u)*h(—u) = Rep(—u)

8. f(u)*[hy(u) * ha(u)] = [f * h1(u)] * ha(u)

9. fu)x[h1(u) + ha(u)] = f(u) * ha(u) + f(u) * ho(u)
10. flu—§&) xh(u) = Rp(u — &)

11. Rff(u) = R}f(—u)

12. max[Ry] = Ry (0) = [|f(u)]” du

Table 1.3: Properties of the convolution and correlation operations. g(u) = f(u) * h(u),
Ry, = f(u) * h(u), and £ is real.
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Let us now consider the eigenvalue equation for a linear shift-invariant system with
impulse response h(u):

{LIf ()]} () = Af(w), (1.35)

which we may simply write as £f (u) = h(u)*f(u) = Af(u) in operator notation. Rewriting
the right hand side of equation 1.33 as [ f(u—u')h(u’) du', it is easy to show that f(u) =
exp(i2mpu) is a solution for all real 1 with eigenvalue A\, given by

)\M:/ h(w)e™ 2T dy, (1.36)

Interpreted as a function of i, we see that X\, is nothing but H(u), the Fourier transform
of h(u). Thus we see that harmonic functions are eigenfunctions of linear shift-invariant
systems, with the eigenvalues being given by the Fourier transform of the impulse response.

1.3 Representations and transformations

1.3.1 Systems versus transformations

Signals can be represented in many different ways which are distinct in appearance but
nevertheless contain the same information. A common example is given by the time-
and frequency-domain representations of a signal. Another common example is given by
the two functional forms of an image with respect to two coordinate systems which are
rotated with respect to each other. In both cases the two representations both contain
the same information and either representation can be obtained from the other. The act
of obtaining one representation from the other is called a transformation.

Different representations of a signal correspond to different coordinate systems or basis
sets. Once an appropriate basis set is chosen, the signals may be expressed as a linear
superposition of the elements of the basis set. In other words, the signal may be expanded
in terms of the elements of the basis set. The coefficients appearing in this superposition
or expansion, which uniquely specify the signal, constitute the representation of the signal
with respect to this basis set.

It is important to distinguish clearly between systems and transformations, although
mathematically they can take similar forms. A system is a rule that maps an input signal
into an output signal. A system is usually a mathematical abstraction of a physical system
which alters a physical input in a certain way to produce a physical output. For instance,
a live television broadcasting system tries to reproduce the event in front of the camera as
faithfully as possible on the retinas of human observers watching their televisions at home.
A careful study of its physical components will enable characterization of this system and
how it departs from this ideal. Other systems will intentionally alter the input, such as a
pattern recognition system whose inputs are images and outputs are labels of recognized
images. A system can alter the information content of the input signal in producing the
output signal, so that systems need not always be invertible. A system, much like a signal,
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is an abstract entity whose existence is independent of which coordinate system or basis set
we choose to work with. The output may be represented in either the same representation
as the input, or a different one, without affecting the nature of the system.

A transform(ation), on the other hand, is merely a change of the coordinate system
or basis set used, with which we move from one representation of a signal to another.
The signal is not altered, but expressed in another form bearing the same information. As

such, transformations are usually invertible. Despite this clear distinction between systems

and transformations, they are often mathematically expressed in the same way, and both
are often represented by abstract operators (which we denote by calligraphic letters). As
an example, consider an image signal f. Let this image be input to a system £ which
rotates the input image by 7/4 in the clockwise direction to obtain the output image.
Notice that the definition of the system is not tied to any particular coordinate system or

representation. To relate the output image to the input image mathematically, we may
choose a particular rectangular coordinate system in which the image f is represented by
the function f(u,v). Then, the output image will be represented by the function g(u,v)
which is related to the input image by

g(u,v) = f (cos(m/4)u — sin(w/4)v, sin(m/4)u + cos(n/4)v) . (1.37)

Now, let us set the system £ aside and consider a transformation 7 which rotates the
coordinate axes by /4 in the counterclockwise direction. The new coordinate axes ', v’
are related to u,v as follows

u' =+ cos(m/4)u + sin(w/4)v,
v' = —sin(w/4)u + cos(w/4)v, (1.38)

and the representation of the signal with respect to the new coordinate axes, which we
denote by f'(u',v"), is given by

(W' 0" = f (cos(m/4)u' — sin(w/4)v', sin(m/4)u’ + cos(m/4)v") , (1.39)

which we see is identical in form to the output g(u,v) of system L.

One can always define a system based on a transformation (but not necessarily the
other way around). For instance, consider the Fourier transformation which relates the
frequency-domain representation F'(u) of a signal to its space-domain representation f(u)

as follows:

F(u) = /f(u)e_i%’“‘ du. (1.40)
Let us rewrite the same with a change in dummy variables as

gu) = / Flu)e 2T gy, (1.41)

This latter equation can be interpreted as the rule relating the output of a system g to its
input f, expressed in a particular coordinate system. Thus a transformation is employed
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as the rule that relates the output of the system to the input of the system in a particular
representation.

In other words, although we more often think of the Fourier transform as a trans-
formation, it can also be interpreted as a system. This is particularly useful in physical
contexts. For instance, the simple “2f” setup used to implement Fourier transforms op-
tically (chapter 3) is a physical system which alters an input distribution of light in a
particular way to produce an output distribution of light. This physical system can be
characterized by (a scaled version of) equation 1.41. However, the purpose for which this
system is most often employed is to compute the Fourier transformation of the input and
present it as the output; that is, to obtain the frequency-domain representation of a signal
from its space-domain representation.

In physics, the distinction between systems and transformations is often referred to as
the distinction between active and passive transformations (Wolf 1979). Active transfor-
mations are produced by operators which bodily move the vectors or signals, and corre-
spond to what we have called “systems.” Passive transformations arise from a change in
the basis used for the description of the space, and correspond to what we have simply

called “transformations.”

1.3.2 Basis sets and representations

A set of discretely (countably) many signals, denoted by {4}, is said to be orthonormal
if all of its members have unit norm and are orthogonal to each other:

(Y, ) = o (1.42)

A set of continuously (uncountably) many signals, denoted by {W,}, is likewise orthonor-
mal if
(U, Uy) =6(v—0). (1.43)

Using the inner product definition given in equation 1.16, these conditions may be written
in the time or space domain as

[ iy () du = b (144
/\IJZ(u)\IlU/(u) du = 6(v —'). (1.45)

The set {1y} (or {¥,}) is said to constitute a basis for a signal space if every member
of the signal space can be expanded in one and only one way in terms of the elements of
this set. In the discrete case, this expansion may be expressed as

=3 fu)ah, (1.46)
l

where fy(l) are the expansion coefficients of the signal f with respect to the basis {¢;}.
These expansion coefficients, interpreted as a function of the discrete variable I, constitute
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the representation of the signal f in the basis {1¢;}. Alternatively, we may say that they
represent the signal f in this basis, or with respect to this basis. Likewise, in the continuous
case,

f= /f\p(v) Uy dv, (1.47)

where fy(v) are the expansion coefficients of the signal f with respect to the basis {¥,}.
These coefficients constitute the representation of signal f in the basis {¥,}. The above
equations which are written in terms of abstract signals may be specialized to a particular

domain, such as the time domain:

=3 foDtn(w), (1.48)
!
_ / Fu ()T (u) do. (1.49)

If every function f(u) belonging to the function space of interest can be expanded in terms
of the elements of the set of functions {¢;(u)} this set of functions is said to constitute
a complete set of functions. Alternatively, it is sometimes said that the set of functions
spans the space of interest. A linearly independent set of functions which spans the space
of interest, such that the expansion not only exists but is unique, constitutes a basis for
that space. Similar statements can be made for the set of functions {¥,(u)}. The act of
going from the f(u) representation to the fy(l) or fy(v) representation is referred to as a
transformation.

In order to obtain the expansion coefficients for an orthonormal basis set, we take the
inner product of both sides of equations 1.46 or 1.47 with a particular member of the basis
set. For the discrete and continuous cases respectively,

(v, f Z Fe@ @ ,br) =7 fuDor = fu(l), (1.50)
l
o )= [ fol) @0, ) dv = [ fo@)d! —v)do = fule), (151)
so that
fol) = w1, ) = [ it (1.52)
folo) = (V0. ) = [ Wi f(u)du (1.53)

where the rightmost forms are expressed in the time domain using the inner product
definition given in equation 1.16. The orthonormality conditions given by equations 1.42
and 1.43 have been used in deriving these results.

Now, let us substitute equations 1.52 and 1.53 in equations 1.48 and 1.49 respectively
and use the orthonormality relations to obtain

Z% u) = 6(u —u'), (1.54)

/ U () Uy (1) do = 5(u— ), (1.55)
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for all u,u/. Treating u and v’ as parameters, the summation and integral can be inter-
preted as inner products so that we can formally write the above equations in the form of
inner products:

=6(u—u'), (1.56)
(Uy(u), Uy (u)) = 6(u — o), (1.57)

for all u,u’. These relations are known as closure or completeness conditions. It is worth
comparing and contrasting the closure conditions with the orthonormality conditions given

by equations 1.42 and 1.43. These conditions are indeed a statement of completeness of
the set of functions and their constituting an orthonormal basis set. (The braket notation
employed in quantum mechanics provides a very elegant means of expressing such relations,
see Cohen-Tannoudji, Diu, and Laloé 1977.)

Let us summarize by repeating the following two key relations for discrete bases:

fol) = [ i (@) du, (159
fa) = X Fontu). (1.59)
l

The first of these equations gives the coefficient fy(l) appearing in the expansion of f(u)
given in the second equation. If this second equation is a given; that is, if we know that
f(u) can be expanded in terms of the orthonormal set {1;(u)}, then the first equation for
fu(l) is derived simply by orthonormality. The second equation expresses the somewhat
more subtle fact that the projections fy(l)yy(u) for all I add up to f(u) itself. This is
what we mean when we say that the set {1;(u)} is a basis. (For example, in R?, any two
of the common unit vectors 1, G, @, do not constitute a basis but all three of them do.)

Let us now assume that we are given the representations fy (1) and gy (1) of two signals
f and g in the basis {¢;}, or the representations fy(v) and gy (v) in the basis {¥,}, and
that we wish to calculate the inner product (f,g) directly in terms of these representa-
tions. By substituting equations 1.46 and 1.47 in equations 1.15 and 1.16 and using the
orthonormality conditions we can easily show that

(f.9) = FiDgu ), (1.60)
l

(f.9) = [ Fatwlgu ) dv, (1.61)

which we see are identical in form to equations 1.15 and 1.16. Thus, the expression for the
inner product and hence the norm ||f|| = \/(f, f) is independent of the particular basis
set in which we represent the signal. In other words, no matter which representation of
the signal we use in equations 1.15 and 1.16, we will always obtain the same result. This
justifies our previous assertion that inner products and norms are properties of the signals
in the abstract, and not tied to any particular representation. When it comes to actually
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calculating them, we can calculate inner products and norms in any representation we find
convenient,.

We now turn our attention to the representation of systems with respect to particular
bases. Let a linear system £ mapping an input signal f to an output g = Lf be defined
with respect to the basis set {¢;} as

gu(0) = D Ly 1) fu ), (1.62)
-

where Ly, (1,1) is the representation of this linear system with respect to the basis set {¢/;}.
This equation is the most general linear relation between the representation of g and the
representation of f. To see how Ly(l,1') can be expressed in terms of the members of
the basis set {1y}, let us start from the system equation in abstract form ¢ = L£f and
substitute the expansions of g and f to obtain

g =L lZ fp (1) dflf] =" fu(l') Lapy. (1.63)
1 I I
Now, taking the inner product of both sides from the left with ; we obtain

gy (1) =D, Lopu) fu (), (1.64)

ll

from which we recognize
Ly(1,1") = (31, L), (1.65)

This expression shows how the representation of a system with respect to a particular
basis is related to the abstract system operator £ and the members of the basis set.
The trace of a system is a representation-invariant quantity defined by

Te[L] = Ly(l,1), (1.66)
l
Tr[L] = /Lq,(u,u) du, (1.67)

for discrete and continuous bases respectively. It is easy to show that the trace is the same
no matter which representation it is calculated in. That is, >, Ly(l,1) = >, Le(l,1) for
any two discrete basis sets {¢;} and {¢;}. It is also know that the trace is equal to the
summation of the eigenvalues. Corresponding results hold for continuous bases.

We finally note that if we have a set of signals spanning a certain space, it is possible
to obtain an orthonormal basis set by using a process known as Gram-Schmidt orthogo-
nalization (Naylor and Sell 1982).

1.3.3 Impulse and harmonic bases

We will now illustrate some of the above concepts with two familiar examples. First, we
consider the set of signals ¥,, = §,, which are defined through their representations in the
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time domain as 0, (u) = d(u — v). This set of signals constitutes an orthonormal basis set
as they obviously satisfy the orthonormality and closure conditions:

G /6u—v (u—v")du= (v -1, (1.68)

(0 (1), 0y (u")) = /6(u —v)d(u' —v)dv = 6(u—u'). (1.69)

This basis set will be referred to as the impulse basis. The expansion of a signal f in this
basis takes the form

fz/MW%w, (1.70)
fs(w) = (0v, f)- (1.71)

Expressed in the time domain, these expression take the form

/fs (u—v) (1.72)
= /(5(u—v)f(u) du, (1.73)

from which we see that fs(v) = f(v). The expansion coefficients of f corresponding to
the impulse basis set is simply f(v), the representation of the signal in the time domain.
Alternatively, we may say that what we conventionally call the time-domain representation
of the signal f and denote by f(u), is nothing but the representation of the signal in the
impulse basis. Equivalently, the impulse basis {0, } is the basis set associated with what is
conventionally called the time domain. Thus the time-domain representation is no different
from any other representation in terms of the status accorded to it in our framework. It
does not have a special place and is on an equal footing with other representations.

As a second example, we consider the set of signals W,, = har, which are defined to
correspond in the time domain to the set of eigenfunctions har,(u) = e®7™" of linear
shift-invariant systems. This set of signals constitutes an orthonormal basis set as they
satisfy the orthonormality and closure conditions:

(har,,, har,/) = /e_i%““ei%“,u du = d(v — '), (1.74)
(har, (u), har, (u')) = /e_i%““ei%““’ dv = 0(u —u'). (1.75)

These equations are simply two different instances of equation 1.8. This basis set will be
referred to as the harmonic basis. The expansion of a signal f in this basis takes the form

f= /fhar(v) har,, dv, (176)
fha.r(U) = (harv, f> (177)
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Expressed in the time domain, these expression take the form

flu) = / Fhar (0™ dv, (1.78)
fhar(v) = / e T f(u) du, (1.79)

from which we see that fp..(v) is equal to F(v), the Fourier transform of f(u). The
expansion coefficients of f corresponding to the harmonic basis set is simply F(v), the
representation of the signal in the frequency domain. Alternatively, we may say that what
we conventionally call the frequency-domain representation of the signal f and denote by
F(u), is nothing but the representation of the signal in the harmonic basis. Equivalently,
the harmonic basis {har,} is the basis set associated with what is conventionally called

the frequency domain.

Notice that members of both the impulse set and the harmonic set have infinite norms
and energies; they are not square integrable. They are not physically realizable signals, but
are mathematical idealizations which are found to be quite indispensable as intermediaries.
We cannot physically realize impulse or harmonics functions, but we can expand physically
realizable functions in terms of them. Both of them are examples of continuous bases; an
example of a discrete basis set will be given in section 1.5.2.

1.3.4 Transformations between representations

We have seen that the coefficients appearing in the expansion of a signal in terms of an
orthonormal basis set constitute the representation of the signal with respect to that basis
set. We will now examine more closely the relations between different representations and
transformations between them.

Let us assume that a new orthonormal basis {¢;} is defined in terms of the orthonormal
basis {1y} through the relation

Yr=T¢  foralll, (1.80)

where 7 is a linear system. To ensure that the set {¢;} as defined is indeed an orthonormal
basis, 7 must satisfy certain properties. A linear system 7 which maps any orthonormal
basis into another orthonormal basis, is called a unitary system. (Conversely, a unitary
system will always map an orthonormal basis into another orthonormal basis.) A unitary
system always has an inverse 7! so that we can write

G =T Y  foralll. (1.81)

In the continuous case, a new orthonormal basis {®,} may be defined in terms of the
orthonormal basis {¥,} through

v, =T, for all v. (1.82)
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Let us now consider two discrete orthonormal basis sets {¢;} and {¢;} and consider
the expansion of f in terms of both of these basis sets:

F=> foll )y, (1.83)
ll
F=>ts(Dor. (1.84)
l

We wish to find the relation between fy(I) and f(I). One way is to expand each member
of one of the sets in terms of members of the other:

Yr =Y (b, v ), (1.85)

l

and substitute this in equation 1.83 to recognize

Fo(D) = (i, v fu (1) (1.86)
7

from equation 1.84. This equation allowing us to compute f4(l) in terms of fy(l) is an
explicit expression of the transformation from the {¢;} basis to the {¢;} basis. The inner
products (¢, Yy) = (Yp, ¢;)* constitute a two-dimensional array of coefficients, which we
will define as the transformation coefficients T(l,1") of the transformation from the {v;}
representation to the {¢;} representation: T'(I,I') = (¢, ). Using equation 1.81, these
inner products can also be written as (7 14,9y ) = (¢, T ¢r). Equation 1.86 can now be
rewritten as

fol) =TI fu (). (1.87)
l/

The coefficients T71(1,1') of the inverse transformation (equation 1.81) from the {¢;}
representation to the {1/;} representation are likewise given by T=1(I,I') = (¢, ¢y) =
(¢, 1hy)* from which we conclude that

T =1,10). (1.88)

To obtain the array of transformation coefficients for the inverse transformation, we simply
take the conjugate transpose of the array of coefficients for the forward transformation.
Equation 1.88 also implies

ZT*(lall)T(]a ll) = 6lj7 (189)
l/

S TH1,IT(1,5") = 6v (1.90)
l

from which we see that the rows and columns of the array of coefficients are orthogonal
to each other.

We have showed that if 7 is unitary; that is, if 7 maps any orthonormal basis set into
another orthonormal basis set, it satisfies equation 1.88. Conversely, it is also possible to
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show that an array of coefficients satisfying this equation does indeed map any orthonormal
basis into another orthonormal basis. (This amounts to showing that if the basis {1}
satisfies orthonormality and closure relations, then so does the basis {¢;}, a task which
we leave to the reader.) For this reason, equation 1.88 is often taken to be the defining
property of a unitary system. Likewise, the transformation expressed by equation 1.87,
with T'(1,1") satisfying equation 1.88, is called a unitary transformation.

For continuous orthonormal basis sets we can analogously write

folw) = [[(@u, W) fule!) (1.91)

Defining the transformation coefficients T'(u,u') = (@, V) = (U, D, )*, we can write
= /T(u,u')fq/,(u')du', (1.92)

and so on. We note that again T~ (u,u') = T*(v/,u). Transformations between a discrete
set to a continuous set and the other way around are similarly handled.

A transformation is linear if the relation between the two representations is linear, as
it is in equations 1.92 and 1.87. This implies that if f; (1) = 3y T(1,1') f;,,(I') for some
sequence of signals f;, then

> Tl Zajfjw(l')] = a;jfy(D), (1.93)
v 7 7

where o are arbitrary complex coefficients.

We now turn our attention to the transformation of the representations of systems,
rather than signals, from one basis set to another. Let the output g of a linear system £
be related to the input f through the relation ¢ = L£f. This can be expressed as

=D Ly(L1)fu (1), (1.94)
l/

=D Ly, (1), (1.95)
ll

in the {1} and {¢;} representations respectively. Our aim is to find the relation between
L4(1,1") and Ly (1,1"). We can write two instances of equation 1.87 as

ZT (1, 1) f(1), (1.96)
:ZTZ,Z )gu (1), (1.97)

and use these in equation 1.94 to obtain

=3 D D T Ly T 1" fo (1), (1.98)

l/ l// l///



1.4. OPERATORS 19

from which we recognize the desired result as

Lo(L,1)y =T, 1" Ly, (1", "7~ (1", 1), (1.99)

l// l///

or since T1(1,1') = T*(I',1)

Lo Uy =SSO T Ly (07, 1T (1,1, (1.100)

l// l///

For the continuous case we can likewise derive

Lo(u,u’) = //T(u,u")L\p(u",u’")T*(u',u"')du” du'. (1.101)

An alternative derivation of the above result, which we leave to the reader, takes as a
starting point the closure relation and equation 1.7.

As a simple example, consider the kernel h(u,u’) = h(u — «') in the time domain
(9(u) = [h(u,u')f(u’")du’), which becomes the kernel H(u,p') = H(p)d(u — ') in the
frequency domain (G(p) = [ H(u,p")F (i) dp'), where F(u), G(u), H(u) are the Fourier
transforms of f(u), g(u), h(u). The reader may illustrate the above general results for this
special case where the Fourier transform plays the role of the unitary transformation.

1.4 Operators

1.4.1 Operators

Operators are mathematical objects that can be used to denote either systems or trans-
formations. They are denoted by calligraphic letters such as S or 7. For instance, the
clockwise rotation system or the counterclockwise coordinate transformation discussed on
page 10 may both be denoted by the calligraphic symbol ROT /4. In the case of systems,
they denote a system in the abstract, without reference to any particular representation
or basis set. In the case of transformations, they denote the underlying system through
which the new basis set is related to the old (equation 1.80).

A linear operator is an operator denoting a linear system or transformation. In the
case of systems, an operator relates an output signal g to an input signal f in the form
g = Lf. If we choose to represent signals with respect to a particular continuous basis set
{¥,} in the form f(u), g(u), and so forth, we may write this relation more explicitly in
one of several forms

g(u) = Lf(u) = (Lf)(u) = LIf)(u) = {L[FT}(w). (1.102)

We are writing simply f(u), g(u) instead of fy(u), gy (u) since only one representation is
involved in this context. Also note that u is a dummy variable; we could have written v or
some other symbol instead. The rightmost form in the above equation explicitly denotes
the W-representation of the abstract signal g = L[f]. The form preceding it is essentially
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the same but the brackets have been omitted. In the two forms preceding these, we have
employed the convention that L£f stands for £[f]. The form Lf(u) is interpreted as the
W-representation of the abstract signal £f. This form also allows another interpretation.
Let us define £ such that it acts on the function f(u), rather than the abstract signal f,
to result in another function g(u) = L[f(u)] in the obvious manner:

LIf (w)] = (£F)(w), (1.103)

Thus the action of a system, on a function which is the representation of a signal with

respect to some basis, will be defined to be, the representation (with respect to the same
basis) of the output of that system when the input is the underlying signal f. In other
words, since a signal is fully characterized by any of its representations, we may write one
of these representations in place of the signal and agree that this means that the result
is also expressed in the same representation. Sometimes it will be useful to denote the
output explicitly:

9(u) = Lf(u) = LIf (w)] = LIf (w)](u) = {L[f ()]} (u). (1.104)

The form £ f(u) is ambiguous in that it allows £ to be interpreted both as an operator that
acts on abstract signals and as an operator that acts on functions. Since both interpreta-
tions are consistent and useful, this expression will be used to denote the W-representation
of g = Lf, or equivalently, L[f(u)].

Likewise, an expression such as (f(u),g(u)) will simply be interpreted as the inner
product of f and g evaluated in the W-representation. (Of course, the inner product is
always the same no matter what representation it is evaluated in.)

The representation of the system £ with respect to this basis set will be denoted by
L(u,u’) and the output g(u) will be related to the input f(u) as in equation 1.25 or the
continuous version of equation 1.62:

g(u) = /L(u,u')f(u') du'. (1.105)

When there is possibility of confusion, we will employ explicit labels such as fg(u),
Ly(u,u’), and so on, as introduced earlier.

The interpretation of £ as a mapping from functions to functions (representations to
representations) is convenient also in the case of transformations. Let us repeat the above
forms for the transformation 7:

fo(v) =T fu(u) = Tlfe(w)] = Tlfe(@)l(v) = {T[fe(w)]}(v). (1.106)

We have used distinct variables u and v for the two representations since this reminds
us that the functions inhabit distinct spaces, but this is not of any deeper significance
since both u and v are dummy variables. For a transformation between a basis set {U,, }
to another basis set {®,}, the representation of the transformation 7T'(v,u) with respect
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to these basis sets will be denoted by T'(v,u) and fg(v) will be related to fy(u) as in
equation 1.92:

fo(v) = T fu(u) = / T(v,u) fo (u) du. (1.107)

When there is possibility of confusion, we will employ explicit labels such as Ty ¢ (v, u),
and so on. Analogous expressions may be written for discrete representations.

To summarize, we have now defined the effect of operators (whether they represent
systems or transformations) on signals and on functions in a consistent manner. The
expression Lf(u) can be interpreted as the W-representation of the abstract signal Lf, or
the action of the operator £ on the function f(u). The expression 7 fy(u) denotes the

®-representation of f.

The formal similarity between systems and transformations is sometimes useful, al-
though their physical interpretations are distinct. It is sometimes useful to think of trans-
formations as if they were systems in mathematical manipulations. fg(u) is interpreted
as the input, and fg(v) as the output. For instance, the system which rotates the input
by 7/4 in the clockwise direction is associated with the transformation which corresponds
to rotation of the rectangular coordinate system by 7/4 in the counterclockwise direction.
The operator notation embodies the formal similarity between systems and transforma-
tions and allows them to be treated in a unified manner, so that in the course of symbolic
manipulations we do not need to distinguish between systems and transformations.

The Hermitian conjugate (or Hermitian transpose or conjugate transpose or adjoint)
LT of a linear operator £ with representation L(u,u') (or L(l,1')) is defined as the op-
erator whose representation is L¥(u,u') = L*(v/,u) (or LY (1,1") = L*(',1)). Hermitian
conjugation satisfies the following properties:

(chHt = £, (1.108)

(LiLy--- L) =l it (1.109)
(f,L9) = (L"],9), (1.110)

(Lf.9) = (f, L"), (1.111)

where f and ¢ are any two signals. It can be shown, for instance by using equations 1.100
or 1.101, that this definition is independent of the representation in which the conjugate
transpose is taken. In fact, it is also possible to take the representation-independent equa-
tion 1.110 or equation 1.111 as the definition of Hermitian conjugation, which can be
readily shown to be equivalent to the definition we have given above. (Choosing a particu-
lar basis {’QZJI} and using equation 1.65, LH(l,ll) = <¢l,£H¢ll> = <£¢la¢l’> = <¢ll,£¢l>* =
L*(I',1), and similar for the continuous case.)

An operator H is called Hermitian if it is equal to its Hermitian conjugate: H" = H.
Thus the representation of such an operator satisfies the relation H(u,u’) = H*(u',u).
For an operator denoting a system, being Hermitian is a property of the system in the
abstract, and is not tied to a particular representation H(u,u'). It is easy to see from
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equation 1.110 or equation 1.111 that Hermitian operators satisfy (f, Hg) = (Hf,g). In
fact, this equality can be taken as a representation-independent definition of Hermitian
operators. (H(l,I") = (¢, Hy) = (Hip,bp) = (yp, Hap)* = H*(I',1), and similar for
the continuous case.) If two operators are Hermitian so is their sum and difference. The
quantity (f, Hf) for arbitrary f is always real as can be seen easily by writing (Hf, f)* =
(f,Hf)=(HS, [)-

An operator 7 is called unitary if its inverse equals its Hermitian conjugate: 7H =
T1, or equivalently 777 = THT = T where T is the identity operator. Thus the
representation of such an operator satisfies the relation T*(u,u’) = T~ '(u',u). Opera-

tors denoting linear transformations (in the sense of expressing a signal with respect to a
new orthonormal basis set) are always unitary, as we have seen in association with equa-
tions 1.87 and 1.92. If two operators are unitary so is their product. It is easy to verify that
if H is Hermitian and 7 is unitary, then 7 'HT is also Hermitian, (T f,g) = (f,T 'g),
(TF,Tg) = {f, T *Tg) = (f,g), and | Tf||*> = || f||?, for arbitrary f and g. The latter
properties mean that inner products and norms are conserved when the signals in ques-

tion are acted upon by unitary operators. This property is what underlies their being
interpretable as transformations from one basis to another, as we have already seen. A
kernel T'(1,1") whose columns (or rows) constitute an orthonormal set is unitary since it
can be directly shown that TH7T =7 = TTH = 7. Conversely, the columns (or rows) of
a unitary kernel constitute an orthonormal set.

Particularly important properties of Hermitian and unitary operators (whether they
denote systems or transformations) are those regarding their eigenfunctions, which will be
discussed separately further below.

Another correspondence between systems and transformations is that between equa-
tion 1.65, which we repeat for convenience:

L’l/)(l7l/) = <wl7£¢l'>7 (1112)

and the corresponding
Ty (1,1) = T() = (bu, Thv) = (4o, Tohr), (1.113)
Ty (L) = THL) = (o, T o) = (o, T~ ) (1.114)

which can be derived from the definition of the transformation matrix T'(I,1") = (¢, ¢y)
and 1y = T¢. Let us now write f = >, fo(I) ¢ and apply the unitary operator 7 on
both sides to obtain

Tr=Yfsl)th, (1.115)
l
implying (1, Tf) = fo(0) o
[T flw(@) = f5(D). (1.116)

How is this last equation to be interpreted? It says that the i-representation of the signal
T f is functionally identical in appearance to the ¢-representation of the signal f. Looking
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at the same equation from the other way around, the ¢-representation of the signal f may
be found by finding the -representation of the signal 7 f. The operator T interpreted as
a system, is related to the operator 7 interpreted as a transformation, in the same way
that the rotational system and rotational transformation discussed on page 10 are related.
T f is that signal whose t-representation looks exactly like the ¢-representation of the
signal f. Thus, if we wish to find the ¢-representation of the signal f, we might obtain
the v representation of the signal 7 f instead.

To show the utility of this formalism, let us rederive two previous results. We have
already shown that the inner products and norms of signals are independent of which rep-
resentation they are calculated in. This is particularly easy to see by using the properties of

unitary operators. Let 7 denote the unitary transformation between two representations
of the signals f and g as fo(u) =T fu(u) and go(u) = T gw(u). Then

(fu(w), gu(w) = (T fo(u), T 'go(w)) = (fo(u), TT 'ga(u)) = (fo(u), gs(u)),
(1.117)
proving the desired result. Now, let us consider the transformation of the representation of
a linear system from one basis to another, which is also particularly transparent in operator
notation. With fe(u) = T fu(u), go(u) = Tgw(u), and gy(u) = [ Ly(u,u’)fy(u") du’ we
obtain
Lo(u,u') = T Ly (u,u/)T 1, (1.118)

whose explicit form was derived earlier (equation 1.101).

1.4.2 Eigenvalue equations

Let us consider the eigenvalue equation for the linear operator L:
Lf=M\f. (1.119)

f is called the eigenvector or eigensignal, and A the eigenvalue. The representation of an
eigensignal with respect to a particular basis is referred to as an eigenfunction. To solve
this abstract equation, we must first write it in a particular representation. For instance,
in the discrete -representation we have

Lfy(l) = Afy(l), (1.120)

or more explicitly

Ly 1) ful) = Afu(D), (1.121)
ll
and in the continuous P-representation we have
Lfu(u) = Afw(u), (1.122)

or more explicitly

/ Lo (u, ') fo () du' = M fy(w). (1.123)
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Let us consider the discrete case and let 7 represent the (unitary) transformation from
the t-representation to the ¢-representation so that fs(u) = T fy(u) and Ly(u,u') =
T Ly(u,u')T 1. With these equation 1.121 becomes

ST Ly (1) TT  fo(l) = NT 2 f4(0), (1.124)
l/
ST L) £5(1) = NT £y (1), (1.125)
ll
S Lo 1) fol') = Mu(D), (1.126)
ll

which is of the same form as equation 1.121. We have simply rewritten the eigenvalue
equation in another representation. Clearly, if we have a solution fy () of equation 1.121
with eigenvalue A, then f, (1) will be a solution of equation 1.126 with the same eigenvalue.
Thus the eigenvalues and eigensignals of a system are properties of the system in the
abstract, and are not tied to the particular representation in which we solve the eigenvalue
equation.

From now on we restrict our attention to Hermitian or unitary operators. The eigen-
values of Hermitian operators are always real and the eigenvalues of unitary operators are
always of unit magnitude, as can be easily verified. In general there will be several values
of A for which a solution to the eigenvalue equation can be found. For such operators, the
eigensignals corresponding to distinct eigenvalues are always orthogonal to each other, but
this cannot be said for two eigensignals which share the same eigenvalue. However, it is
possible to show that within the subspace spanned by all eigensignals which share the same
m-degenerate eigenvalue, it is always possible to find m linearly independent eigensignals.
These m linearly independent eigensignals can be orthogonalized among themselves so that
for such operators, it is always possible to find an orthogonal set of eigensignals. When
speaking of the eigensignals of Hermitian or unitary operators, we will always assume that
the eigensignals have been chosen so that they constitute an orthonormal set. In general,
it may not always be the case that this orthonormal set constitutes a basis for the space
of signals we are interested in (Cohen-Tannoudji, Diu, and Laloé 1977, page 137). We will
however assume that this is the case for the operators we are dealing with.

1.4.3 Diagonalization and spectral expansion

We will now assume that {¢;} is an orthonormal set of eigensignals of the operator L,
constituting a basis for the signal space we are interested in. Eigensignal decompositions
are often a convenient way of finding the output of a linear system in response to an
arbitrary input. If we expand the input signal in terms of the eigensignals of the system
in the form

f=fol)w, (1.127)
l
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we can easily obtain the output g corresponding to this input by applying the linear system
operator £ to both sides of the above equation to obtain

g=Lf=Y" fu(l) L, (1.128)
)

and since v; is an eigensignal of £ with eigenvalue A;, we have

g=Lf=> fu()) A, (1.129)
1

which we can compare with g = 3>, g, (1) ¥ to recognize

gu () = fy () A (1.130)

We see that the output g of the system is simply a signal whose expansion coefficient
is fy (1) \i. The effect of a linear system on an input signal turns out to be particularly
simple if we know the representation of the signal in the eigensignal basis. Let us also
find the representation of £ with respect to the eigensignal basis. We earlier showed that
Ly(1,1") = (3fy, L1pp). But since ¢y is an eigensignal of £ we have

Ly (1,1") = N (1.131)
Likewise, for a continuous set of eigensignals,
Ly (u,u’) = M\o(u —u'). (1.132)

We see that the representation of £ is diagonal in the eigensignal basis. The representation
of £ in another basis will not be diagonal; the act of transforming to the eigensignal basis
is thus referred to as diagonalization and takes the form given in equation 1.100. The
transformation kernel Ty_,,(1,1") from an arbitrary basis {¢;} to the eigensignal basis {1}
is given by (Y1, o) = (Y1, To—ytr). Interpreted as a function of | with I’ a parameter,
we recognize this kernel as the representation of ¢p in the {¢;} basis. Interpreted as a
transformation matrix (with infinite dimensions), we see that Ty, (l,1") consists of the
orthonormal eigensignals of £ as its columns. The orthonormality of the 1); is consistent
with the unitarity of Ty, (l,I'). If £ is Hermitian, a set of orthonormal eigensignals
always exists, so that £ can always be diagonalized by a unitary transformation whose
columns consist of the orthonormal set of eigensignals of the Hermitian matrix.

If the eigensignals of £ constitute an orthonormal basis for the signal space of interest,
then knowing the eigensignals and eigenvalues of £ is sufficient to completely characterize
the system. Let us start by expanding the input f in terms of the eigensignal basis {i;}

in the form f =37, fy, ()Y where fy (1) = (Y1, f) and write

g=Lf = feD)Lpr =Y (W, YLY =D (i, )N (1.133)
B

l l
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Now, let us represent this abstract equation in any representation we find convenient to
work with. For instance, in the time domain,

g(u) = ;<wlaf>)‘l¢l(u) = / {; A (w)pf (U/)| flu)dd, (1.134)
from which we can recognize the time-domain kernel L(u,u’) as
L(u,u') =Y~ Mthi(u)pf (). (1.135)
!
Likewise, with respect to a continuous set of eigensignals we can show that

Lu, o) = / Ath (W) (') do. (1.136)

Such expansions of a kernel are known as spectral ezpansions (or spectral decompositions
or singular value decompositions).

Another way of interpreting the spectral expansion is as follows. Note that the effect of
y (u)k (u') under the integral [ du’ is precisely to find the projection of f(u) along ¢, (u).
Letting PR, denote the projection operators whose kernels are PR, = 1, (u) (u'), we
can write the spectral expansion as

- /AUPRU dv, (1.137)

where we have assumed that all eigenvalues are distinct. (If there are multiple eigenvalues,
then we employ projection operators onto the distinct eigenspaces.) Thus each term in
equation 1.134 is the projection of the signal onto one of the eigensignals, multiplied with
the corresponding eigenvalue. These are added back together to obtain g(u). (Also note
that the projection operators satisfy PR,PR, = PR, if v = v/ and PR,PR, = 0 if
v#)

As an example, let us apply the above procedure to a linear shift-invariant system £
whose eigenfunctions we saw were exp(i2wpuu). An arbitrary input f(u) may be expanded
in terms of these eigenfunctions as

Fw) = [ Flpe dy, (1.138)

Fu) = / e~ 2T f (4 du. (1.139)

The eigenfunction representation of £ is diagonal; its kernel has the particularly simple
form Ly, (p, ') = H(p)6(pu—p') where H (1) is the eigenvalue given by equation 1.36. The
effect of £ in this representation is simply expressed as G(p) = [ Lyar(p, /) F (1) dp/ =
H(p)F(p). This final relation is nothing but the so-called convolution property of the
Fourier transform. An interesting exercise is to start from equation 1.136 and specialize it
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to obtain the spectral expansion of a linear shift-invariant system with impulse response
h(u). With ¢pap(u) = exp(i2mrpu) and A\par = H () we obtain

h(u) = /H(u)ei%’“‘du, (1.140)

which is nothing but the inverse of equation 1.36. Note that the expansion coefficient
H (1), which is nothing but the frequency-domain representation of h(u), is also equal to
the eigenvalue associated with the eigenfunction exp(i2wuu) (page 9). If we expand the
impulse response of a particular system in terms of the eigenfunctions of that system, the
expansion coefficients will correspond to the eigenvalues.

As another example, let us consider a system with time-domain representation L(u,u')
and whose eigenfunctions constitute a discrete set {1;}. (We will later see systems whose
eigensignals constitute such a discrete set, most notably a system defined by the fractional
Fourier transform.) The eigenfunction representation of the system will be of the form
Ly(1,l") = Ndw, as we now show. The unitary transformation from the time-domain
representation to the eigenfunction representation is given by T'(I,u) = (¢;(u'), (v’ —u)) =
J o (W)d(u' —u) du' = 9 (u) and exhibits one continuous and one discrete variable. The
eigenfunction representation of the system is found as

Ly(L 1) = / / 07 ()L, o Yooy (') du (1.141)
which can be shown without difficulty to be simply equal to

Ly(1,1') = Ny (1.142)

1.4.4 Functions of operators

Integer powers of operators are simply defined as their repeated application. Thus £? =
LL, £3 = L£L? and so on. £ is defined as the inverse of £, so that this definition can be
easily generalized to negative integers. If £ is Hermitian or unitary, £" is also so.

Now, Let Y(z) denote a function of a complex variable whose polynomial series is
defined everywhere:

T(z) = Tpz™ (1.143)
n=0
Then, we can take
T(L)=> Y.L (1.144)
n=0

as the definition of Y(£). It can be shown that if )\; is an eigenvalue of £ and ; the
corresponding eigensignal, then £ has the same eigensignal with the eigenvalue A\'. This
property can also be made the basis of an alternative definition. We have earlier seen that,
provided they constitute a basis set for the set of signals under consideration, specifying
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the eigenvalues and eigensignals of an operator are sufficient to fully characterize it. Thus
we may define Y (L) by specifying its eigensignals and eigenvalues:

Y(L)yy=T(N)y  foralll. (1.145)

In order to calculate Y (L) f, we first decompose f in terms of the eigensignals of £ and
use the preceding equation:

f= wa ) Y, (1.146)
L)f= wa Y (Ao) - (1.147)

Equation 1.52 allows us to write this in the time domain as

/T u,u') f(u') dud, (1.148)
with Y (u,u’ =Zr )y (w)e l(u'). (1.149)
l

Alternatively, we may start from the diagonalized Ly (1,1") given in equation 1.142, replace
the eigenvalues A; with Y(};), and then transform back to the time domain:

= 3 S G, (1.150)

Wlth T(l,l ) = ()\1)511/, (1.151)

which can be shown to yield equation 1.149.

If the operator H is Hermitian, the operator exp(ia™) with real a, is unitary. (In
different applications a may represent time, the axis of propagation, or the order of a
parametric transform such as the fractional Fourier transform).

The derivative of an operator L is the operator whose representation is the common
derivative of the representation of £. Thus if the time-domain representation of L is
L(u,u'), the time-domain representation of d£/da, where a is some real parameter implicit
in £, is dL(u,u’)/da. Manipulations involving derivatives of operators and functions of
operators are easily carried out by considering series expansion of the functions. One can
show, for instance, that some common rules of differentiation apply to operators and their
functions:

d
%e“““ = Ae??, (1.152)

where A is assumed not to depend on a.
The commutator of two operators A and B is another operator denoted by [A, B] and
defined as

[A,B] = AB — BA. (1.153)
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Two operators whose commutator is the zero operator are said to commute: AB = BA.
It is always the case that [A, T(A)] = 0, operators commute with functions of themselves.
If two operators A and B commute, then [B, T(A)] =0 and

GAB — A

e = B4 = BeA, (1.154)

If [A, B] = £4Z, then we have
[A,B"] = +inB""t,  [A,Y(B)] = £iY'(B), (1.155)

where Y'(-) is the derivative of the function Y(-). The latter equality can be shown by
expanding Y(+) into a power series. An example of two operators satisfying equation 1.155

is the coordinate multiplication and differentiation operators &/ and D.

We conclude with some additional results applying to two operators A and B which
commute ([A, B] = 0). It is possible to show that if f is an eigensignal of A with eigenvalue
A, then Bf is also an eigensignal of A with the same eigenvalue, since A(Bf) = A(Bf). Fur-
thermore, if X is a non-degenerate eigenvalue, then Bf o f so that f is also an eigensignal
of B. For any two commuting operators which are Hermitian or unitary, it is always pos-
sible to find a common set of orthonormal eigensignals. Thus in this case, one can find
a representation in which both of these operators are diagonal. (Cohen-Tannoudji, Diu,
and Laloé 1977)

1.5 The Fourier transform

1.5.1 Definition and properties

The Fourier transform(ation) F'(u) of the function f(u) is defined as (Bracewell 1986)
F(p) = / fu)e™2mHe gy, (1.156)
The function f(u) can be recovered from its Fourier transform by

flu) = /_O:o F(p)e2m™e dy. (1.157)

To see this, substitute either of these equations in the other and use equation 1.8. These
relations are valid for the set of finite-energy functions mentioned on page 4, as well as
a more general set of functions which include pure harmonic functions, delta functions,
chirp functions, and so on, whose exact nature we will not precisely define (see Dym and
McKean 1972).

The Fourier transform can be interpreted either as a system or a transformation. As
a system, the Fourier transform of a signal f will be denoted by F' = Ff = F[f]. This
relation may be expressed in the time domain as

Fu) = Ff(u) = (Ff)(u) = F[fl(u) = {FIfT}Hw). (1.158)
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As a transformation from the time domain to the frequency domain we write
Fp) = Ff(u) = Ff(w)] = FIf (w)l(p) = {FIf @)} ) ={FHw) ={F 1),
(1.159)

where F[f] = Ff simply stand for F.
The inverse Fourier transform operator will be denoted by F~! and satisfies F~'F =
FF~! = T. Integer powers of the Fourier transform are defined through repeated appli-

cation: FY = T and F7 = FF/~! for integer j. Properties of the Fourier transform are
summarized in table 1.4 and 1.5.

f(u) F(p)
L f(=u) F(—p)
2. | M|~ f (u/M) F(Mp)
3. flu=¢) exp(—i2mpl) F'(p)
4. exp(i2méu) f (u) F(p—¢)
5. u” f(u) (—i2m)~"d"F(p)/dp”
6. (i2m)7"d" f(u)/du" p"F (1)
7. fr(w) F*(—p)
8. fr(—u) F*(p)
9. [f(u) + f(=u)]/2 [F(p) + F(=p)]/2
10 [f(u) = f(=u)]/2 [F(p) = F(=p)]/2
11. fu) * h(u) F(p)H (1)
12. f(u)h(u) F(p) * H(p)

13 f(u)*h(u) P(u)H* ()
14, Ryp(u) = f(u) » f(u) |

Table 1.4: Properties of the Fourier transform I. The expressions on the right are Fourier
transforms of the expressions on the left. M, ¢ are real but M # 0, 00, and n is a positive
integer.

Properties 1-6 in table 1.4 can be expressed in operator notation as well (see table 1.2):

FP =PF, (1.160)

FMur = My F, (1.161)
F SHe = PHF, (1.162)
FPHe = SH_F, (1.163)
FU" = (—D)"F, (1.164)
FD" =U"F. (1.165)

Examination of the kernel exp(—i27puu) of the Fourier transform and the kernel exp(i27mpu)

of the inverse Fourier transform reveal that the Fourier transform operator is unitary. Par-
seval’s relation (table 1.5.5) is a direct consequence of this fact.
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Lo FIXjoifil=20;Ff FIXjaifiw)] =3, a;F; (1)

2. Fi=7p F2f(u) = FF(u) = f(—u)

3. F3=PF=FP F3f(u) = Ff(—u) = F?F(u) = F(—u)
4. Fr=F'=1 Frf(u) = f(u)

5. (f,9) =(F,G) S (w)g(u) du = [ F*(u)G(p) dp

6. En[f] = En[F] J1f(w)?du = [|F(u)]* du

Table 1.5: Properties of the Fourier transform II. The same properties are expressed in
abstract signal and operator form on the left and explicitly on the right, where the Fourier
transform has been interpreted as a system. «; are arbitrary complex constants.

Further properties may be derived from those given. For instance, if f(u) is an analytic
signal expressed in the form A(u)exp[i¢(u)] where A(u) and ¢(u) are real functions, then
(Cohen 1989)

[ e dn = o [ p2 (1.166)

whose proof we leave to the reader. d¢(u)/du can be interpreted as the instantaneous
frequency of f(u), if f(u) is a narrowband signal. Two other properties concern the
magnitudes of the function and its derivatives (Bracewell 1986):

il < [ 1Rl dn, (1.167)

% < 27T/|MF(M)|dM- (1.168)

The derivatives of a function provide information on its rate of change. So does the
frequency spectrum. For instance, if the Fourier transform of f(u) is zero for |u| > pimax,
and the function is bounded by fiax such that |f(u)| < fimax for all u, then |df (u)/du| <
Mmax fmax for all u (Papoulis 1968, page 131). This result shows the relationship between
the frequency spectrum and derivatives of the function.

Common Fourier transform pairs are given in table 1.6. Pair number 6 in table 1.6 is
intimately related to equation 1.6, as can be seen by writing it as

F e—in-/4ﬁeivr(U/S)2 :e—iF(SHV’ (1.169)
S

where s is real and considering s — 0. The finite delta train appearing in pair 10 is
equal to rect[u/(2N + 1)du] ou comb(u/du), whose Fourier transform is given by (2N +
1)éusinc[(2N + 1)éu p] * comb(du ). Thus the right hand side of pair 10 can also be
written as

SIfrN £ DOUAL S~ (o 4 1)gusine (2N + Dou(u —nfou)],  (1170)

n=—oo

sin[mou p]
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fu) F(p)
L S(u—=¢) har(—¢§u) = exp(—i2mu)
2. har(éu) = exp(i2wu) o —¢&)
3. rect(u) sinc(pu)
4. sinc(u) rect(u)
5. gauss(u) = exp(—mu?) gauss(u) = exp(—mu?)
6. T/t exp(Linu?) exp(Fimu?)
7. explim(xu? + 26u)] (/1] /X) expl—in(u — £2/x]
8.  comb(u) =302 0(u—mn) comb(u)=>3c"_ 0(up—mn)
9. i/mu sgn(u)
10. Z’{’LVZ—N 0(u — ndu) %W

Table 1.6: Some common Fourier pairs. &, x, du are real, N is a positive integer.

showing that it consists of periodically replicated sinc functions. This function is illustrated
in figure 1.1.

We might also mention that the Fourier transform of P,(u)exp(—nu?) where P,(u)
is a polynomial of degree n is always of the same form R, (1) exp(—mu?) where R, (1) is
another polynomial of nth degree. To prove this, one first writes the polynomial as a series
and then takes the Fourier transform term by term noting that the Fourier transform of
u" f(u) corresponds to the nth derivative of F(u). Of course, the nth order derivative of
exp(—mu?) is simply a polynomial of that order times exp(—mu?), which upon collecting
terms results in the form R, (u)exp(—nu?). The Hermite polynomials to be introduced
below are special in that they reproduce themselves: Ry, (u) o< P, (u).

Equation 1.157 is a linear superposition of functions of the form exp(i2wuu). Thus
the Fourier transform F'(u) is essentially the expansion coefficient when we expand the
function f(u) in terms of these functions. Equation 1.156 which shows us how to calculate
the expansion coefficients is essentially an inner product between the function f(u) and
the basis functions exp(i2wpu). Thus equations 1.156 and 1.157 are a special case of
equations 1.49 and 1.53.

This expansion is of special interest when we are dealing with linear shift-invariant
systems. Since complex exponential functions are the eigenfunctions of such systems,
application of such a system with impulse response h(u) on both sides of equation 1.157
gives

L) = [ H)F (e du (1.171)

The right hand side is simply the function whose Fourier transform is H(u)F(u), which
we know is f(u) x h(u). This is nothing but a derivation of the convolution property given
in table 1.4.11. The process of calculating the convolution f(u) * h(u) by multiplying its
Fourier transform with a Fourier domain filter function H (u) is referred to as multiplicative
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Figure 1.1: The function given in equation 1.170 with N = 8 and du = 1.

filtering in the Fourier domain.
An interesting consequence of equation 1.9 is

Z flu+ndu) = 1 Z F(n/bu)e?™mu/ou, (1.172)

n——oo n——oo

This equation, as well as equation 1.9, are referred to as Poisson’s sum(mation) formulas.
The discrete Fourier transform (DFT) is a mapping from RY to RY. If we let f(I)
denote the Ith component of a vector in R, then its discrete Fourier transform is defined

by
1 N1

\/N =0

W (j ),  j=0,1,....,N—1, (1.173)
W,1) = Wi, W = e_i%/N,

where F(j) denotes the jth component of the discrete Fourier transform of f(1). The
DFT can be computed in O(N log N) time on a serial computer, and O(log N) time on a
parallel computer by using the fast Fourier transform (FFT) algorithm (Bracewell 1986,
Tizuka 1987, Oppenheim and Shafer 1989). We will discuss the relationship between the
continuous and discrete Fourier transforms in chapter 2.

1.5.2 Eigenfunctions of the Fourier transform

In this section we will examine the eigenfunctions of the Fourier transform, interpreted
either as a system or a transformation. That is, we are looking for solutions of equa-
tion 1.119 for the Fourier transform operator. The solutions are denoted by 1, (u) for
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n=20,1, 2, ... and are known as the Hermite-Gaussian functions:

Fipu(u) = e~ 24, (u). (1.174)
These functions may be written explicitly as

1/4
Yn(u) = Ay Hy (V27 u) €—7ru2’ An = ﬁ’

where H,(u) denotes the nth order Hermite polynomial. H,(u) is an nth degree poly-
nomial and is an odd function when n is odd and is an even function when n is even.
H, (u) has n real zeroes between which are interposed the n — 1 zeroes of H,,_1(u). Prop-
erties of the Hermite polynomials are given in table 1.7. Using property 8, we can see
that the Hermite-Gaussian functions 1, (u) constitute an orthonormal set. An excellent
introduction to Hermite polynomials and Hermite-Gaussian functions may be found in
Cohen-Tannoudji, Diu, and Laloé 1977 and Wolf 1979, the former being of a more elemen-
tary nature.

(1.175)

1.  Hy(u) =1, H(u) = 2u, Ho(u) = 4u? — 2, Hz(u) = 8u® — 12u, ...
2. Hy(u) = (—1)"e*’ d‘fjne w?

3. e &H2u — 20_0 %Hn(u) H,(u) = [%6_£2+25u] o
4. Ul _ 1 (u)

5. Hpti(u )=2 n(u) = 2nHy 1 (u)

6. Hp(u)=(2u— L)H, 1 (u)

7. (L —2ul + 20)H,(u) =0

8. e_“2Hn(u)Hn/ (u) du = 2"n!N/Tt Sy

9.  [e WUV H (W) du = 207t Py

10.  limy,—eo %Hgn (u/2y/n) = % cos(u)

11, limy oo (AL_n%HQn+1(U/2\/_) = % sin(u)

12, 5% Lo () H (VI W) Ha (VW) = Hylu+ o)

13. " Hj(w)Hj(w) _ Hn+1( )H (u') = Hn (u) Hn 1 (u)

Jj=0 22JJ' ) 2nFInl(u—u’)
14w 2em (2 0 ol B (w) He () = 6(u — )
15 0% o Ho(u) Hy (') = (1 — ¢2) 712 excp [2 e o Tl ]

16, 005 ooy Hoy () Hi (o) = (1= 22) "2 exp [ — L=

1—22

Table 1.7: Properties of Hermite polynomials. &, « are real, z is complex.

The Hermite-Gaussian functions are often recognized as the solutions of the following
differential equation

d2di(;i) 4 4n? <2”2;T" 1 u2> Flu) =0, (1.176)
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associated with the quantum-mechanical harmonic oscillator or propagation in quadratic
graded-index media. For the moment, we treat (2n + 1)/27 as a single constant. By
taking the Fourier transform of this equation, and using elementary identities regarding
the transforms of d?f(u)/du® and (—i2mwu)?f(u), we can show
d?F(u) 2n +1
dp? <

Since this equation is identical to the previous one in form, it is easy to accept the well

+ 47 — ;ﬂ) F(u) =0. (1.177)

known fact that solutions of this equation, the Hermite-Gaussian functions, are eigenfunc-
tions of the Fourier transform operation (Wiener 1933, Dym and McKean 1972). It is also

possible to show directly that the Hermite-Gaussian functions are indeed eigenfunctions

of the Fourier transform by directly substituting them in the definition of the Fourier
transform.

It is also not difficult to see that the Hermite-Gaussian functions v, (u) o< H, (V27 u) exp(—mu?)
are indeed solutions of the above equation. When we substitute them, we obtain

d?>H,(u) dH,, (u)
du? (=2u) du

+ (2n)H,(u) = 0, (1.178)

which is nothing but item 7 in table 1.7. (This equation is sometimes taken as the defining
equation of the Hermite polynomials.)

The Hermite-Gaussian functions constitute an orthonormal basis for the set of finite-
energy functions:

(s ) = [ ()b () s = b, (1.179)
Zz/;n Un(u) = 6(u —u'). (1.180)

Thus any finite-energy signal can be expanded in the form

f= wa ) thn, (1.181)

fp(n) = Wn, f) /z/Jn (1.182)

The transformation from f(u) to fy(n) is unitary. In the t)-representation, the Fourier
transform has a particularly simple form. The representation of the Fourier transform
of fy(n) is simply exp(—inm/2)fy(n); that is, the kernel for Fourier transformation is
diagonal in this representation.

The coefficients fy(n) constitute the representation of the signal f in the Hermite-
Gaussian basis set. The act of obtaining these coefficients from the time-domain represen-
tation of the signal f(u) is an example of a transformation from a continuous to a discrete
representation. Clearly, as with any orthonormal basis expansion,

> Ifuo)f = [ 1) du (1.183)
n=0
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Other properties of the Hermite-Gaussian functions are given in table 1.8.

L. ¢p(u) = —L( 12:‘4”" e dd:n g 2mu’

2. () = An [38_7; R M)]fzo

3. (\/ﬁ %di)%( ) = 2”,4An Yn— 1( )

L () = VATl () ~ 2 1)l o)
5. nlu) = <%Eu—7=wwnm>

6. [fz + dr (Qnil u?))ipn (u) =

7. Yalon(u)n(u') = 6(u—u')

8.

9.

oooe—mﬂ'/Qw ( ) ( ) —zQﬂ'uu'

oooe—maw ( )w ( ) meW(Cotau2—2056auu’+cotau'2)
n n

Table 1.8: Properties of Hermite-Gaussian functions. £, « are real.

Another interesting property is that “most” of the energy of the nth order Hermite-

Gaussian function is concentrated between the bounds —/(n + 1/2) /7 and \/(n + 1/2) /7.

It is within these bounds that the function shows oscillatory behavior. Outside of these
bounds, the exponential factor dominates and its value decays quickly. (See Ozaktas and
Mendlovic 1993b for a physical justification.) The first 4 Hermite-Gaussian functions are
shown in figure 1.2.

1.5 1.5

SZATTITITETRAN

osp Y VVUVUVUYY

Figure 1.2: Hermite-Gaussian functions of order (left panel) n = 0 (solid), n = 1 (dashed),
n = 2 (dotted), n = 3 (dot-dashed), and (right panel) n = 20.

As a final comment on the Hermite-Gaussian functions, we note that if one starts
with the set of functions u" exp(—mu?), for n = 0, 1, 2, ... and uses the Gram-Schmidt
orthonormalization process to construct an orthonormal set of functions @, (u), what one
obtains is precisely the Hermite-Gaussian functions; that is Q,(u) = ¥, (u) (Wiener 1933,
page 54).

The Fourier transform of any function can be obtained by first expanding it in terms
of the Hermite-Gaussian functions. Upon application of the eigenvalue equation, and
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substituting for fy(n) we can show that

e~ AT = Z 6_inﬂ/2¢n(ﬂ)¢n(u)- (1.184)
n=0
This is called the spectral expansion of the kernel of the Fourier transformation.

The eigenfunctions of the Fourier transform have received special interest under the
name “self-Fourier functions” or “self-reciprocal Fourier functions” (Caola 1991; Cincotti,
Gori, and Santarsiero 1992; Lohmann and Mendlovic 1992a, b, 1994a; Lakhtakia 1993;
Lipson 1993; Coffey 1994; Choudhury, Puntambekar, and Chakraborty 1995).

1.6 Some important operators

1.6.1 Coordinate multiplication and differentiation operators

We will now investigate the operators & and D which may be defined by specifying their
effect in the time domain (Cohen-Tannoudji, Diu, and Laloé 1977, page 149):

o) = WUF) ) = uf (), (1.185)
o(w) = (DF)(w) = (izm) " LY, (1.136)
corresponding to the kernels
hg () = ud(u — o), (1.187)
hp(u,u') = (i127) 716 (u — o). (1.188)

These operators are duals in the sense that their effects in the frequency domain are

dF (1)

G(p) = Uf)(n) = (—2'277)_1W, (1.189)
G(u) = (Df)(p) = pF(p), (1.190)
corresponding to the kernels
Hy(p, ') = (—i2m) 18 (= 1), (1.191)
Hp(p, ') = pd(p — ). (1.192)

If we had defined a frequency multiplication operator in the frequency domain, this would
be identical to the derivative operator defined in the time domain. Likewise if we had
defined a derivative operator in the frequency domain, this would be identical to the
coordinate multiplication operator defined in the time domain.

The kernels in the frequency domain are related to the kernels in the time domain
through

H(p,p') = // eI (1! ) e 2T du dud (1.193)
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which is a special case of equation 1.101.
The impulse signals d,, defined earlier are the eigensignals of ¢/. This is most easily

seen 1n the time domain:
(Uy)(u) = ud(u —v) = Ad(u — v). (1.194)

with the eigenvalue A = v. The set of eigensignals of U, namely the impulse set, was earlier

shown to constitute an orthonormal basis. It is also instructive to write the eigensignal

equation in the frequency domain:

1 d :
U, (1) = s e 2TV — \eT2TVH, (1.195)

with A = v.
Likewise, the harmonic signals har, are the eigensignals of D. This is most easily seen
in the frequency domain:

(Dhar,) (1) = pd(p —v) = Ad(p — v). (1.196)

with the eigenvalue A = v. The set of eigensignals of D, namely the harmonic set, was
earlier shown to constitute an orthonormal basis. In the time domain:
1 d

(Dhary)(u) = or T

pl2muu _ Ay gi2mou (1.197)

with A = v.

Since we know that the time-domain representation and the frequency-domain repre-
sentation are associated with the impulse set and the harmonic set respectively, we are
not surprised by the fact that the ¢/ and D operators have such simple expressions in these
domains.

It is easy to show that the ¢/ and D operators are Hermitian by examining their kernels.
Their commutator is given by

U, D] = %I. (1.198)

Some properties of Hermitian operators satisfying this relation can be found in Cohen-
Tannoudji, Diu, and Laloé 1977 (also see equation 1.155 and the following paragraphs).

We will now consider functions of ¢ and D. The effect of a function Y (/) on a signal
f can be found easily by considering the power series of Y(-). Thus

g="YU)f= Y Y, U"f. (1.199)
n=0
For instance, in the time domain,

glu) = [i Tnu"] £ () = T(u) f(u) (1.200)
n=0
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where we have used (U"f)(u) = u™f(u), which can be easily derived by considering re-
peated application of equation 1.185. The kernel corresponding to Y (/) in the time
domain is likewise easily shown to be given by

Py (u,u') = T(w)d(u — o). (1.201)

Let us also consider the effect of Y(U/) in the frequency domain.
mn

Gp) = > Tn(—i2ﬂ)‘”iﬁ] F(p)="T7 [(—7:2%)—1%] F(p). (1.202)
n=0

The corresponding kernel is difficult to derive from this result, but can be obtained from a
common property of the Fourier transform. Since we know that G(u) = (F Y)(u) * F(u),
we have

(s t) = (F ) — ). (1.203)

The effect of Y(D) can be found similarly. In the frequency domain,

mm=[§rwﬂFw=rmwm» (1.204)

with the corresponding kernel

Hoypy(ps 1) = ()3 (p — 1) (1.205)
In the time domain
© ol d
g(u) = L;)T"(m) Wl Fu) =T [(m) 1@] Fu), (1.206)

where we have used (D"f)(u) = (i27) "d"f(u)/du™, which can be easily derived by
considering repeated application of equation 1.186. The corresponding kernel is difficult
to derive from this result, but can be obtained from a common property of the Fourier
transform. Since we know that g(u) = (F~'YT)(u) * f(u), we have

hy(py(u, u') = (F7I) (u — o). (1.207)

It is not difficult to show that Y (i) and YT (D) have the same eigensignals as & and D
respectively:

Y (U)o, = T (v) 0y, (1.208)
Y(D)har, = Y(v) har,,. (1.209)
The various kernels are summarized in table 1.9.

In this context it is also worth discussing the so-called moment theorem, which is
closely related to the above considerations (Papoulis 1977). It can be stated in various
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u h(U) D H(D)
u domain | ud(u — u') h(u)d(u —u')  (i2m) 716" (u — ') h(u—u')
p domain | (=i2m) 10" (u — ) H(p—p') po(p —p') H(p)o(p — ')

Table 1.9: Kernels associated with the ¢/ and D operators and their functions.

forms and derived directly from the properties of the Fourier transform without resorting
to operator concepts. Consider the expansion of F( )

d”F
Z - . (1.210)
n=0
Using
1 )
mi= [ u"f(u)du=-— , 1.211
p= fuiwd= oo SRR (L2
where m’; denotes the nth moment of f(u), we obtain the moment theorem:
= (—i2mp)™
Fp)=Y umf. (1.212)

This result can also be derived by starting from

:/f(u)e—i%w du, (1.213)

and replacing exp(—i2mpu) with its series expansion Y > o(—i2mpu)™/n!. The dual of the

moment theorem is
oo

Z m“ (1.214)

=0

where m', denotes the nth moment of F(u)
As an additional exercise, consider the shift-invariant system characterized in the time
and frequency domains respectively as

g(u) = h(u /h u—u')f(u')du', (1.215)
G(u) = H(u)F(u)- (1.216)
Let us consider the series expansion of H(u)
> 2
ng ! 7”‘) (1.217)
n=0
so that
> 2
Zm ! 7”‘) T P, (1.218)
n=0 !
= 1 § d”f( )
1.21
-y Bt (1.219)

n=0
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an expression which, though not obvious from its appearance, is equivalent to the convo-
lution g(u) = h(u) * f(u).

An alternative approach will be instructive. In table 1.9, the kernel associated with
the operator H(D) is denoted by h(u — ') in the v domain. But we can also expand the
series of H(D) to obtain

(H(D)) (u,u') = Y Kn(i27) "™ (u — ') (1.220)

n=0

where K, is the series coefficient given by

[ &"H
n = E TEZM) o = E(—ZQTF) mp, (1221)
so that
(HD) () = b~ ) = 3 E ) ), (1.222)
n=0 :
() = 3 = s ), (1.223
n=0 :

the latter which, when convolved with f(u), results in equation 1.219.

1.6.2 Phase shift, translation, chirp multiplication and convolution op-
erators

We now consider the phase shift operator PH¢ = exp(i2m&ld) and translation operator
SHe = exp(i2mED) (Cohen-Tannoudji, Diu, and Laloé 1977, page 187). Their effect in
the time domain can be shown to be

(PHef)(u) = ™" f(u), (1.224)
(SHef)(u) = exp [i2me(i2m) " d/du] f(u) = f(u+£). (1.225)

The last equality can be shown by expanding exp({d/du) in a series, applying it to f(u),
and comparing it to the series of f(u + £) with respect to the variable . Since this is
important, it is worth going through carefully:

JEd/du — §"d" f(u 1.996
where the last equality follows from the fact that the summation is simply the series
expansion of f(u + £) around u. Another method is to consider exp({d/du)f(u) as a
function k(u,&) of two variables. Now, differentiate k(u,&) with respect to £. Since
dexp(&d/du)/0¢ = (d/du)exp(£d/du), we have

Ok(u,§) _ Ok(u,§)
o du

(1.227)
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Noting that k(u,0) = f(u), we find the solution of this equation as k(u,&) = f(u + £),
which is again the desired result. However, perhaps the most direct way of seeing this
result is to note that the effect of the exp(i2w¢D) operator in the frequency domain is to
multiply with exp(i27&u), which we know corresponds to a shift by £ in the time domain:

flu+8).

The associated kernels are

hpae (u,u') = e2mEUS (1 — u), (1.228)
hsue(u,u') = 6(u+ €& —u'). (1.229)

That these two operators are also duals is easily seen by examining their effect in the
frequency domain:

(PHF) (1) = exp [i2mg (~i2m) ™" d/ dpr] F () = F(u— ), (1.230)
(SHF) (1) = " F(u), (1.231)

with associated kernels

Hpy(p,p') = 6(p = &€= 1), (1.232)
Hspe(py ') = ™6 (0 — ). (1.233)

The kernels in the time and frequency domains are related by equation 1.193. Since U
and D are Hermitian, PH; and SH¢ are unitary. The commutator of PH¢ and SHer is

[PHe, SHer] = [1 — €21 PHSHr. (1.234)

Obviously these operations do not commute.
Now we consider the chirp multiplication operator Q, = exp(—imql{?) and the chirp
convolution (Fresnel) operator R, = exp(—imrD?). Their effect in the time-domain is

(Quf)(u) = e ™™ f(u),  (1.235)
(R, f)(u) = exp [~imr{(i2m)2d? Jdu?]| f(u) = /41 &™) s f(u).  (1.236)

The last equality is a special case of equation 1.207. The associated kernels are

ho, (u,u’) = e_i”q“25(u —u'), (1.237)
hr, (u,u') = e ™4 /1)r eimu—u)?/r, (1.238)

That these two operators are also duals is easily seen by examining their effect in the
frequency domain:

(R, F)(p) = e ™ F(u), (1.239)
(QuF) () = exp [—imql(=i2m) 2 dyi?)] () = =7/ [1/q &/ F(), (1.240)
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with associated kernels

Hr, (1) = €™ 5 — i), (1.241)
Ho, (1) = e~/ [1/q e/, (1.242)

The kernels in the time and frequency domains are once again related by equation 1.193.

Since ¢ and D are Hermitian, R, and Q, are unitary. The time-domain kernel of their
commutator is given by

. 1 . 2 2 —
N _ —ir/4 |- iw(u—u')?/r [ —imqu’® _ —imqu
hir, 0, (u,u’) =e ~e (e e ) . (1.243)
It is important to note that since these two operators do not commute, an expression such

as
i (rD?+qU?) _ in(qU?+rD?) (1.244)

cannot be written as exp(inrD?) exp(imqid?) or exp(imqld?) exp(imrD?). However, several
relations can be used to manipulate such expressions, of which one important example is

_; 24 p2 i 2 i 2
e 0m(U?+D?) _ e in tan O U e im In(cos 6) (LI”D—|—”DU)€ imtan D= (1245)

Such relationships are in general known as Baker-Campbell-Hausdorff formulas (Wilcox
1967, Gilmore 1974, Wolf 1979, Stoler 1981). Similar considerations apply to and simi-
lar relations exist for the phase shift and translation operators discussed previously. In
general, such a formula exists to correspond with each one of the decompositions we will
come across in section 2.4.4, from which they can be derived. Another celebrated ex-
ample is Glauber’s formula (Cohen-Tannoudji, Diu, and Laloé 1977, page 174). If A
and B both commute with their commutator ([A,[A, B]] = 0 and [B,[A, B]] = 0), then
[A, T (B)] = [A, B]Y'(B) and

eeB = AtBlABI2, (1.246)

At this point the reader may wish to look back at tables 1.2 and 1.4. Most properties
of the Fourier transform are examples of finding the effect of a linear system on the
Fourier transform. On the left hand column of table 1.4, there is a linear alteration of the
function f(u). The right hand column shows how the same alteration looks like in the
Fourier domain. It is in particular interesting to examine the effects of the six operations
of coordinate multiplication, differentiation, phase shift, translation, chirp multiplication,
and chirp convolution. The latter four of these operators are sometimes referred to as
hyperdifferential operators. A useful source is Wolf 1979. For a self-consistent operational
calculus based on such operators, see Yosida 1984. Such operators have been made the
basis of a study of optical systems in a series of papers by Nazarathy and Shamir (1980,
1982a, b).

We end by mentioning the eigenvalues and eigenfunctions of these operators. The
eigenfunctions of the Q, operator in the space domain are of course d(u — v) (as for all
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functions of the U operator) with eigenvalue exp(—imqu?). Likewise, the eigenfunctions
of the R, operator in the frequency domain are é(u — v) (as for all functions of the
D operator) with eigenvalue exp(—imrv?). Notice that these latter eigenfunctions are
harmonic functions in the space domain.

1.6.3 Annihilation and creation operators

Properties 3 and 5 of table 1.8 can be rewritten as

At (u) = Vnpn_1(u), (1.247)
AN (u) = Vi (u), (1.248)
or AN, (u) = Vi + 1¢ny(u),
where

B U +iD
A=V2r 75 (1.249)

- U —iD
A = Vor &5 (1.250)

These operators are respectively referred to as the annihilation and creation operators,
because of their effect on ¢, (u). Their commutator can be easily shown to be [A, A%] =T
by using [, D] = (i/27)L.

Now, let us form the products

A4 = 7 + D) — ¢, (1.251)
1

AAR = (U2 + D?) + 5 (1.252)

by using the definitions given in equations 1.249 and 1.250. Alternately, using equa-
tions 1.247 and 1.248, we can obtain

(AT A (u) = ey, (u), (1.253)
(AAN Yy (1) = (0 + 1)ty (u), (1.254)

from which we see that v, (u) is an eigenfunction of (A".A) with eigenvalue n. Comparing
the first of these with the first of the preceding pair of equations, we obtain

[W(Lﬂ + D) - %] (1) = 1y (1), (1.255)
[ + D) gulu) = (n+1/2)tbn(w), (1.256)

from which we note that 1, (u) is also an eigenfunction of 7(U? + D?) with eigenvalue
(n+1/2). The reader may also wish to note that the final eigenvalue equation is the same
as equation 1.176.
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It is also possible to show [(ATA), A] = —A and [(A"A), A"] = AH. Using (A" A)y, (u) =

n,(u), these commutation relations can be shown to imply

(ATA) Ay (u) = (n — 1) Aty (u), (1.257)
(AT A) ATy, (1) = (n + 1) AT, (u), (1.258)

which state that A, (u) and AM, (u) are also eigenfunctions of (ATA) with the eigenval-
ues (n — 1) and (n + 1) respectively (consistent with equations 1.247 and 1.248). Finally,
we note that use of equation 1.248 in the form t,(u) = n=/2A%,_ (u) leads to the
expression ), (u) = (n!)~1/2(A")™)g(u) which allows the calculation of Hermite-Gaussian
functions of arbitrary order.

These operators are commonly used in quantum mechanics texts to solve the equation
of the quantum-mechanical harmonic oscillator (Cohen-Tannoudji, Diu, and Laloé 1977).

1.7 Uncertainty relations

In the context of deterministic signals, uncertainty relations are bounds on the concentra-
tion or spread of the energy of a signal in two domains, commonly the time and frequency
domains. In this section we will present a rather general result and then discuss some of
its special cases. First, however, we introduce some definitions which may already be fa-
miliar to readers who have studied quantum mechanics (Cohen-Tannoudji, Diu, and Laloé
1977). Means 74, mean squares mi, and squared standard deviations (variances) 0?4 of
an operator A are defined as the weighted averages of A, A% and (A — 14)?, normalized
by the energy En[f] = ||f]|> = [|f(u)|? du of the signal f under consideration:

na= | [ F@Af@ ] 1517 (1.259)
wi= | [ @A ) da] 111, (1.260)
o= | [ £ @A = na? ) du 171 = - 2 (1.261)

For example, if A = U, the coordinate multiplication operator, ny is simply [ u|f(u)|? du/| f||?,
the center of gravity of |f(u)|?, and oy is a measure of the spread of |f(u)|?. Likewise, if

A = D, the derivative operator, Parseval’s relation allows us to write [ f*(u)[Df(u)] du =

[ F*(u)[uF ()] du, so that np will give us the center of gravity of |F(u)|? and similarly

op is a measure of the spread of |F(u)|%.

Now, let us denote the commutator of two operators A and B as [A, B] = iC. Then,

the standard deviations o4 and o of A and B satisfy

2
oYon > —— .
Aok > =, (1.262)
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where n¢ is the mean of C (Dym and McKean 1972, page 119). As an example we again
consider the coordinate multiplication and differentiation operators &/ and D whose com-
mutator was given before as [U,D] = (i/2xw)Z, so that C = (1/2m)Z. These lead to an
uncertainty relation of the form oy op > 1/4m or more explicitly

[ (w = )1 () du] ' [ (1 = 1)L (1) dpr] 2
LS 1 ()2 du] 2 [ |F () dpa)*

which means that the spread of |f(u)|? and the spread of |F(u)|? cannot simultaneously

> (1.263)

1
ouop = il
uoeD Ar’
be very small.
If we define a measure of spread Au and Ay as v4n times the standard deviations of
|f(u)]? and |F(1)|? respectively, then the uncertainty relation expressed in terms of these

measures of spread takes the form
AulAp > 1. (1.264)

The absolute square of the unit-energy Gaussian function 2/ Au=%5 exp(—mu? /Au?), has
standard deviation Au/v/47. In the case of Gaussian functions, the above inequality is
satisfied with equality: AuAp = 1. (At u = Au/2, the Gaussian function drops to 0.46
of its value at u = 0 and 92.5% of the energy of the Gaussian is contained in the interval
[—Au/2, Au/2].)

We can further manipulate the numerator of the central term in equation 1.263 by first
letting f1(u) = f(u + my), and noting that Fiy(u) has the same magnitude as F'(u):

1/2 1/2
[/U2|fl(u)|2du] [/(N_UD)2|F1(N)|2dN] : (1.265)
Now, with Fy(u) = Fi(pu + np), the above becomes
1/2 1/2
[/ uglfz(U)IQdU] [/ 12 Py () du] , (1.266)
which, by eliminating the subscripts, leads to
[P ad] | [ ipP du) > aor) s (1.267)

with equality for f(u) a constant multiple of exp(—yu?) where x > 0 (Dym and McKean
1972, pages 117-118). This is an alternate form of the uncertainty relation given in
equation 1.263.

We will now take a slightly different approach to arrive at yet a third form. Let us
first note that

mp||fII* = /f*(U)DQf(U) du = (f,D*f) = (D"'f,Df). (1.268)

In the time domain we know that Df (u) = (i27) " df (u)/du and DU f (u) = (—i27) "' df (u)/du,
so that

m | f|2 = /DHf*(u)Df(u) du :/|(z'27r)_1df(u)/du|2du. (1.269)
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Likewise, it is not difficult to show that mZ||f[|* = [|uf(u)|? du. Noting that |nz|?/4 =
1/4, we can write
1\?1
2 2(2 2
— — >|—) - 1.270
(i~ ) =) = (5-) 5 (1.270)
Now, noting that m?, — %, < m}, and m% — n% < m%, and using the above we ultimately
obtain

lwf (@)l ldf (w) /dul] > |1f ()] /2, (1.271)

again with equality when f (u) is proportional to exp(—xu?) (Born and Wolf 1980, page 773).

Intuitively, the uncertainty relation states that both a function and its Fourier trans-
form cannot be simultaneously concentrated. Generally speaking, the narrower one is, the
broader must be the other. A function f(u) of approximate duration Au will necessarily
exhibit non-negligible frequency components around 1/Au so that its Fourier transform
will exhibit a spread of Ay ~ 1/Au, implying AuAp > 1.

There are other kinds of uncertainty relations which embody the same basic concepts.
For instance, assume ||f|| = 1 and define

Au/2
o? = / 1 ()2 du, (1.272)
—Au/2
2 Anuf2 2
= [ G dn. (1.273)
—Ap/2

Let us fix Au, Ap > 0. Now, a = § = 1 is clearly not possible. But how close to unity
can they simultaneously be? Such bounds on «a and 3 for given Au and Ap are discussed
by Slepian and Pollak (1961, 1962), Landau and Pollak (1961), Slepian (1964, 1978), and
more briefly by Dym and McKean (1972, page 122).

A simpler, but related result states that a function and its Fourier transform cannot
be both compact (unless they are identically zero). A compact function is one which
is zero outside a finite interval around the origin. Such a function can be expressed as
itself multiplied by a sufficiently wide rectangle function. Upon Fourier transforming the
product, we see that the Fourier transform of the function is equal to itself convolved with
a sinc function, which cannot be compact.

An instructive treatment of uncertainty relations may be found in Vakman 1968.

1.8 Random processes

1.8.1 Fundamental definitions

A random process can be considered as a parametric random variable (Papoulis 1991).
That is, if f(u) is a random process, then f(ug) for a particular value of ug, is a random
variable with a probability density function Py(,q)[f(uo)]. Thus, the probability that f(uo)
will lie in [f (uo), f(uo)+Af (uo)] is given by Ppy,) [f (uo)]Af (uo) and [ Ppeye)[f (uo)] df (uo) =
1. (In this section ug, u1,us will denote particular instances of u.)
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The mean of a random process f(u) is defined through the ensemble average

n(w) = (F@) = [ £(u) Py F )] df () (1274
where w is interpreted as a parameter. The autocorrelation is defined as
Ryp(ur,uz) = (f(ur) f*(u2)), (1.275)

where the calculation of the expectation value will this time involve the joint probability
density of f(u1) and f(ug). Since the instantaneous power of a deterministic signal is given
by |f(u)[?, we interpret Rys(u,u) = (|f(u)[?) = m?(u) as the expected power of f(u).
The autocorrelation is a non-negative definite function. It is Hermitian: Ryp(ui,us) =
R?f(ug,ul). It also satisfies Ryf(u1,u2) < Ryf(ur,ur). The cross correlation of f and h
is defined as

Ry (uy, ug) = (f(ur)h*(u2)). (1.276)
f(u) and h(u) are orthogonal if Rp,(uy,us) = 0 for all uy, us.

A process f(u) is said to be wide-sense stationary if and only if (i) ms(u) is finite,
(ii) nf(u) is a constant independent of w, (iii) the autocorrelation is a function of u; — usg
only and not a function of u; and ug separately: Ryf(ui,uz) = Ryp(ui — ug). It follows
from the properties of the autocorrelation that Ryy(u) = R} ;(—u), Ryr(u) < Ryf(0), and
Ry 7(0) = m3(0).

The time-averaged mean and autocorrelation of a wide-sense stationary process are
denoted by f(u) and f(u+ v/2)f*(u —v/2) and defined as

flu) ) = Jim T/ f(u (1.277)

flu+v/2)f*(u—v/2) = lim — f u+v/2)f (u—v/2)du (1.278)

T—o0 2T
The wide-sense stationary process f(u) will be called ergodic in the mean if (f(u)) = f(u)
and equals a constant. Likewise, the wide-sense stationary process f(u) will be called
ergodic in the autocorrelation if (f(u + v/2)f*(u —v/2)) = f(u+v/2)f*(u —v/2) and
is a function of v only. Thus, ergodicity is a concept involving interchangeability of time

and ensemble averages. The present discussion of ergodicity is not rigorous or completely
accurate; the reader should consult standard texts on random processes for further details.
1.8.2 Power spectral density

Let f(u) be a wide-sense stationary random process with mean 7y and autocorrelation
Ry¢(u). The power spectral density Syf(u) is defined as the Fourier transform of the
autocorrelation:

Spr(p /Rff —i2mpu du, (1.279)

Ryp(u /Sff emHu dp. (1.280)
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It can be shown from the properties of the autocorrelation that Syf(u) is real, always
> 0, and that

(£ W) = Ry (0) = [ Sp5(n) dn, (1.281)

which suggests that Sy¢(u) deserves its name in that it can indeed be interpreted as
the spectral density of power. Further confirmation to this end comes from the relation
between Syr(p) and the expectation value of |F(u)|?, discussed in many standard texts.

1.8.3 Linear systems with random inputs

Let the random process f(u) be input to the linear system £ whose output g(u) is given
by

g(u) = /h(u,u')f(u')du'. (1.282)

It is possible to show that the mean of the output 7, is given by n, = 1y [ h(u,u') du’. As
for the autocorrelation of the output process Rgyq(u1,u2), it is given by

Rgg(ur,us) =/ Ryp(ul, uhy)h(uy, uy)h* (ug, uh) dul dus,. (1.283)
In the event that the processes are wide-sense stationary, then this simplifies to
Rg4(v) = Rys(v) * h(v) * h*(—v), (1.284)
which implies the following relation between input and output power spectral densities:

Sgq(1) = [H(1)[*Sys (). (1.285)

1.9 Generalization to two dimensions

Most of the definitions and results given in this and other chapters can be generalized
easily to two and higher dimensions in a trivial manner. Expressions involving abstract
signals are of course not affected in any way. An expression of the form ¢ = Lf does
not imply any dimensionality. As for expressions involving functional representations of
signals, it is often possible to write two-dimensional versions of them by simply replacing
the variables u and p with the pairs of variables u,v and u, v, and by replacing integrals
and summations with double integrals and summations. For instance, equations 1.15
and 1.16 become

<fvg> =ZZf*(lam)g(l7m)v (1'286)
l m
(f,9) =// [ (u,v)g(u,v) dudv. (1.287)

The output g(u,v) of a linear system is related to its input by a relation of the form

g(u,v) = //h(u,v;u’,v’)f(u',v')du’ dv'. (1.288)
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Most of the commonly used functions introduced at the beginning of this chapter are
generalized such that they are separable. For instance, rect(u,v) = rect(u)rect(v) and so
on for sinc(u, v), gauss(u,v), har(u,v), chirp(u,v), and §(u,v) = d(u)d(v). However, some
new functions which are not separable can also be defined. Introducing polar coordinates
¢®> = u? + v? and tan ¢ = u/v, it is possible to define the function rect(q) which is unity
inside the circle of radius 1/2 centered at the origin and zero outside. It is also convenient
to define the jinc function as jinc(q) = Ji(wq)/2q, where Ji(-) is the first order Bessel

function of the first kind. Furthermore, non-separable versions of the chirp and Gaussian

functions also exist which have terms in the exponent not only in u? and v? but also in
uv.

Likewise, some of the systems defined in table 1.2 may be generalized in a separable
manner. For instance, the kernel of Z and P become d(u £ u',v £0') = d(u £ u')o(v £0').
The multiplicative filter now has the more general kernel h(u,v)d(u — u',v — v'). The
kernels of the shift, phase shift, chirp multiplication, and chirp convolution operators may
be generalized as

Su—u' +&,v—0v" +&), (1.289)
expli27m(Euu + )]0 (u — u' v — ), (1.290)
exp[—im(quu? + ¢vH)]6(u — ', v — '), (1.291)

e—i"/2\/g\/g explim((u — u')?/ry + (v —v')% /1)) (1.292)

The coordinate multiplication and differentiation operators, as already defined, will act
along one dimension only. It is possible to define a complementary V operator with kernel
vd(v — ') which acts along the v axis and distinguish differentiation operators in the two
dimensions as D, and D,,.

The two-dimensional Fourier transform is defined as

F(u,v) = //f(u,v)e_iQW(““'F””) du dv. (1.293)

The two-dimensional Fourier transforms of common separable functions of the form f(u,v) =
fu(u) fu(v) are obtained easily from their one-dimensional counterparts by using the result

F(u,v) = Fu(w)E, (v), (1.294)

where F,(p) and F,(v) are the one-dimensional Fourier transforms of f,(u) and f,(v)
respectively. (Some common Fourier pairs are not separable and cannot be obtained this
way; for instance, the two-dimensional Fourier transform of rect(q) is jinc(s), where ¢ is
the polar coordinate variable in the frequency plane.) Since the Fourier transform kernel is
separable, its eigenfunctions are also so. Denoting the two-dimensional Hermite-Gaussian
functions by ¥y, (u,v), we have

Yim (U, v) = Py (w)hm (v). (1.295)
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Most properties of the two-dimensional Fourier transform are straightforward generaliza-
tions of the one-dimensional property. A notable exception is the following. If f(u,v) has
a two-dimensional Fourier transform F'(u,v), then f(au + bv + e,cu + dv + f) has the
two-dimensional Fourier transform

1 i2w[(de —bf)p + (af — ec)v] dpy —cv —bpu + av
AT P A | (#551).

(1.296)

where A = ac — bd.

As far as this report is concerned, the reader who has grasped the one-dimensional
version of a result or concept should have no difficulty generalizing it to two dimensions.
Special discussion of two-dimensional signals and systems may be found in Bracewell 1995
and Dudgeon and Mersereau 1984.

One often encounters rotationally symmetric two-dimensional functions and systems,
especially in optics. These depend only on ¢ = (u? + v2)1/ 2 but not ¢ when expressed in
polar coordinates. Referring the reader once again to Bracewell 1995 for a more extensive
treatment, we will satisfy ourselves by noting that the two-dimensional Fourier transform

F () of a rotationally symmetric function f(q) is also rotationally symmetric and is given
by

F()=2n [~ flo)h(emaada (1.207)

flg) =2m /OOO F(s)Jo(2msq)s ds, (1.298)

where Jy(q) is the zeroth order Bessel function of the first kind. The relationship between
f(q) and F(s) is known as a Hankel transform.

1.10 Some additional definitions and results

1.10.1 The Radon transform and projection-slice theorem

The Radon transform RDN y[f (u,v)](u’) of a two-dimensional function f(u,v) is defined
as the integral projection of the function onto an axis making angle ¢ with the v axis:

RDN g[f (u,v))(u') = /f(u' cos ¢ — v’ sin ¢, u’ sin ¢ + v’ cos @) dv'. (1.299)

(If h(u,v) is the two-dimensional impulse response of a two-dimensional system, then the
Radon transform RDN g[h(u,v)](u') can be interpreted as the line response to the input
0(ucos ¢ + vsing). For example, the integral projection at angle ¢ = 0 is the response
to the input d(u), and is given by [ h(u,v)dv.) Sometimes, RDN 4[f](u’) is interpreted
as a function of plane polar coordinates, with ¢ being the common polar angle and u’
corresponding to the radial variable.
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Let us also define the slice SLCy[F(p,v)](1') of a two-dimensional function F(u,v)
through the relation

SLCHF(p,v)](u") = F(u' cos ¢, i’ sin ). (1.300)

The slice of a two-dimensional function F'(u,r) at angle ¢ is a one-dimensional function
which takes the values of F(u,v) along the radial line making angle ¢ with the p axis.
This radial line has the parametric form p = p’ cos ¢, v = p' sin ¢.

Of particular interest is the projection-slice theorem, which states how a function

f(u,v) can be recovered from its Radon transform. According to this theorem, the one-
dimensional Fourier transform of the integral projection at angle ¢ is equal to the slice of
the two-dimensional Fourier transform at angle ¢:

FARDN (1} (1) = SLEG[F (n, v)](1"), (1.301)

where F'(u,v) is the two-dimensional Fourier transform of f(u,v). If we think of ¢ as
a parameter, both sides of the last equation are functions of the single variable u’. The
above relation can be written more explicitly as

/ [RDN 4 [f (u, 0)](u)] e~ du = / / F(u, v)e 2 cosdutu singv) gy, gy (1.302)

The left hand side is the one-dimensional Fourier transform of the integral projection
at angle ¢. The right hand side is the two-dimensional Fourier transform of f(u,v) ex-
pressed in polar coordinates (i, ¢). The proof of the theorem follows immediately upon
substitution of equation 1.299 in the above relation.

More on the Radon transform and projection-slice theorem can be found, for instance,
in Bracewell 1995 or Barrett 1984, among many other references.

1.10.2 Complex exponential integrals

Here we list a number of complex Gaussian integrals that will be needed in later chapters:

/ et gy, _ VT et /40 (1.303)
p

/ue—p2u2+2qu du = \/f 9 /v, (1.304)
pp

The square roots are taken so that the arguments lie in the interval (—7/2,7/2]. These
results are, of course, not valid when the integrals do not converge.

With the above, care must be exercised if p? or p is complex or pure imaginary. Thus it
will be more convenient to write a number of special forms. Let us start with the Fourier
pair exp(imu?) and exp(in/4) exp(—impu?), write the Fourier transform relations between
these and employ variable substitutions to obtain (McBride and Kerr 1987)

, 1 . g2
MO’ £2%u) gy — _—_gin/4g—int?/x & real, x > 0, (1.305)
/ VX
. 1 : g2
eminlxw?+26u) g, = —im/4,imE?/x & real, x > 0. (1.306)
/ N
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Both formulas are consistent with equation 1.303 if we use vi = exp(in/4) and /—i =
exp(—in/4) when extracting p from p?. The first of the above is also valid for Y < 0,
provided we employ the same square root convention. (This can be shown by writing

X = —|x| and using v—1 =i = exp(in/2).)
1.10.3 Stationary-phase integral

If f(u) is continuous, and the derivative of x(u) vanishes at only a single point u = £ in
(—00,00) such that £'(¢) = 0 and &"(§) # 0, then for sufficiently large u,

.

/f(u)eﬂ’”“‘(“) du =~ ePTHEE) £ (€) (1.307)

k(&)

Further discussion may be found in Papoulis 1968. The applications of the stationary
phase integral in optics is particularly well discussed in Lohmann 1986.

1.10.4 Schwarz’s inequality

The general form of this inequality is given in the appendix to this chapter. A commonly
used form for two functions f(u) and h(u) is

‘/f*(u)h(u) a < [/lf(u)leu] [/lh(u)|2du]. (1.308)

1.11 Further reading

Relatively elementary texts which may be useful for background reading include Bracewell
1995, 1999, Cohen-Tannoudji, Diu, and Laloé 1977, Papoulis 1968, 1977, and Strang 1988.
Texts which may be useful for further study include Dym and McKean 1972, Naylor and
Sell 1982, and Wolf 1979.

1.12 Appendix: Vector spaces and function spaces

Here we provide a basic review of vector and function spaces, assuming familiarity only
with elementary linear algebra and vectors in RY (Strang 1988). Our main purpose is
to enable the reader to grasp the various parts of our presentation in a deeper and more
unified way. More extensive discussions and greater rigor is to be found in, for instance,
Wolf 1979, Naylor and Sell 1982, Debnath and Mikusinski 1990, and Roman 1992. Wolf
1979 will particularly suit those with a mathematical physics bent and covers in greater
detail many of the other topics discussed in this chapter as well. An excellent exposition
to most of the basic concepts used here for the simpler case of finite dimensional vectors
and matrices may be found in Strang 1988.
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1.12.1 Vector spaces

The most familiar example of a vector space is the common three-dimensional space con-
sisting of the set of position vectors denoted as r = z0, + yi, + 20, or (z,y, z), where
U, Gy, G, are unit vectors along the coordinate axes, and addition and multiplication with
a scalar number are defined in the obvious way.

A vector space is a set of objects for which addition and scalar multiplication operations
have been defined such that, for any vectors f, g, and h which are members of this vector
space, and for any scalars a and b:

1. the sum f + ¢ is also a member of the vector space,
2. ftg=9+/
3. f+g+h)=(f+g) +h,
4. there exists a zero vector denoted by 0 such that f +0 = f,
5. there exists the negative of f denoted by —f such that f + (—f) =0,
6. the product af is also a member of the vector space,
7. (ab)f = a(bf),
8. a(f +9) =af +ayg,
9. (a+b)f =af +bf,
10. there exists a scalar unity denoted by 1 such that 1f = f.

The following properties of a vector space can be derived directly from the above defining
axioms:

1. for any set of vectors f; and any set of scalars a;, labeled by the integer index j, the
vector 3~ ajf; is also a member of the vector space,

2. for any set of vectors f, and any set of scalars a,, labeled by the real index v, the
vector [, a,f, is also a member of the vector space,

4. fl=1f=f, -1f =—f.

It is easy to see that the three-dimensional space of position vectors satisfies the axioms
and hence the properties listed above. There are many other vector spaces whose elements
or structure may be less familiar, but which still satisfy all of the above axioms and
properties. These include vector spaces with infinite but still countably (discretely) many
dimensions. The simplest example is the extension of the three-dimensional vector space
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considered above to infinite dimensions. Members of such spaces will be represented by
functions f(l), g(I), and so on, where each value of the integer variable [ corresponds to
one of the discretely many dimensions. Of greater interest to us will be spaces which have
not only infinite, but also uncountably (continuously) many dimensions. Members of such
spaces will be represented by functions f(u), g(u), and so on, where each value of the real
variable u corresponds to one of the continuously many dimensions. Such vector spaces

are also referred to as function spaces.
In this report we will usually deal with complex vector spaces whose members are
complex-valued functions and in which the scalars are complex numbers.

1.12.2 Inner products and norms

An inner product associates a scalar (f,g) with any two elements f and g of a vector
space, such that, for any vectors f, g, and h, and scalar a:

1. (f, f) is real and > 0, with equality if and only if f =0,
2. (f,9)=(9,/)",

3. (frg+h) = (f.9) + (f,h),

4. (f,ag) = a{f,g).

A vector space for which an inner product is defined is called an inner product space. Two
vectors whose inner product is zero are called orthogonal to each other. We will mostly
employ the inner product definitions

(f.9) =D f(1)g0), (1.309)
l

(f.9) = /f*(U)g(U) du, (1.310)

for the discrete and continuous cases respectively. These can be shown to satisfy the listed
axioms.

A norm associates a scalar real number ||f|| with every element f of a vector space,
such that, for any vectors f and g, and any scalar a:

L. ||f|l = 0, with equality if and only if f = 0,
2. \lafll = lalI£1];
3. f +gll < ILfIF+ llgll (triangle inequality).

A vector space for which a norm is defined is known as a normed vector space. If an inner
product has already been defined, a norm can be defined as

£ =/ (F, 1) (1.311)
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which, in the event that the inner product is defined through equations 1.310 or 1.309,
is known as the Lo norm. It is possible to show that this definition satisfies the axioms
listed above. The energy of f is defined as (f, f) = ||f||> so that with the definitions in
equations 1.309 and 1.310 we have

(f, ) =IfII* = Zlf (1.312)

o) =112 = [ 1) do (1.313)

for the discrete and continuous cases respectively.
An inner product satisfying the axioms given above satisfies the following properties:

(£,0) = (0,/) = 0,
2 {af,g) = a*([.g),

(F +9.1) = (. 1) + (g, ),
4 (£, ) < (£, £){g. 9) (Canchy-Schwarz inequality),

1.

3.

and with the norm as defined by equation 1.311 the further properties:
L [{(f,o)] < Ifllllgll (Cauchy-Schwarz inequality),

2. |1+l = 1717 + lgll* + 2R[(f, 9)],

3.1+ gl < IFIZ + gl + 217, 90 < ILFIP + Nlgll® + 2111 gl

where R[-] denotes the real part of a complex entity.
The distance d(f, g) between two vectors f and g can be defined as

d(f,9) =If =gl (1.314)

which is always nonzero if f # g. This relation associating a real number with every pair
of vectors f and ¢ in the vector space defines a metric for the inner product space. A
space with a defined metric is known as a meiric space. A definition of distance is often
expected to satisfy the following axioms:

1. d(f,g) > 0, with equality if and only if f = g,
2. d(f,9) =d(yg, f),
3. d(f,9) +d(g,h) = d(f,h),

as the definition given by equation 1.314 indeed does.

We will mostly, but not exclusively, deal with vectors whose energies and norms are
finite. This is because, in most physical applications, the energy as defined here corre-
sponds to actual physical energy. However, this will not exclude us from employing certain
idealized unphysical functions with infinite energy as intermediaries in our calculations.
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An inner product space (with norm given by equation 1.311 and all of whose members
have finite energy), which satisfies an additional condition known as completeness which
we do not discuss here, is known as a Hilbert space (Naylor and Sell 1982). The Hilbert
space of complex-valued functions f(u), u real, for which the inner product is defined by
equation 1.310, is known as Lo, whereas the Hilbert space of complex-valued functions f (1),
[ integer, for which the inner product is defined by equation 1.309, is known as 5. Both
of these spaces have discretely (countably) many dimensions (or degrees of freedom). Self-

evident in the case of /5, this is also true for Ly whose members can always be represented
by discretely (countably) many coefficients, for instance as when expanded in terms of a
discrete basis such as the Hermite-Gaussian functions. The space of “physically realizable”

signals introduced on page 4 is somewhat more restricted than these spaces.
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Chapter 2

Wigner Distributions and Linear
Canonical Transforms

2.1 Time-frequency and space-frequency representations

The Fourier transform of a signal gives the relative weights of the various frequency com-
ponents that make up the signal. It tells us which frequencies exist in the signal and
their strengths. However, since the Fourier transform F'(u) involves integration of the
time-domain representation of the signal f(u) from minus to plus infinity, it is difficult to
tell by just looking at F'(u) where these frequencies are located in f(u). The value of F(u)
at each frequency u depends on the value of f(u) at all values of u. This character of the
Fourier transform is sometimes found to be at odds with common physical intuition and
experience. For instance, music scores tell the musician which frequencies to generate at
particular time intervals, embodying the notion of particular frequencies being localized
around particular instances. When we change the frequency setting of a sinusoidal signal
generator from 1 MHz to 2 MHz, we would be reluctant to say that the output waveform
continues to contain a frequency component at 1 MHz; we would rather say that it used
to contain this frequency, but that it no longer does. As another example, let us consider
a linear FM (frequency modulation) signal of the form exp(iru?), whose instantaneous
frequency (27)~'d(wu?)/du = u is linearly increasing with time u. The most pronounced
frequency in this signal increases with passing time. Looking at a picture of a dressed
person, we may say that the checkered jacket exhibits high spatial frequencies, whereas
the white shirt exhibits low spatial frequencies, and the striped tie exhibits equally spaced
discrete frequency components.

Clearly, we are well accustomed to the concept of time- or space-dependent frequency
content; we often speak about the frequency content of signals at different times or loca-
tions. Time- or space-frequency distributions are functions of time (or space) and temporal
(or spatial) frequency which display the frequency content of signals for different times (or
locations).

59
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2.1.1 Short-time or windowed Fourier transform

One way of obtaining the time-dependent frequency content of a signal is to take the
Fourier transform of f(u’) over an interval around a point u, where u is a variable param-
(w)

eter. This is called the short-time or windowed Fourier transform WFf (u, ) and may
be defined as (Hlawatsch and Boudreaux-Bartels 1992)

WE ) = [y — )l at (2.1)

where w(u') is a suitably chosen lowpass unit-energy window function centered around the
origin, which suppresses f(u’) outside an interval centered around w. A common choice
is the unit-energy Gaussian function 2/4A; 05 exp(—mu2/A2), for which WF}w)(u, W) is
essentially the Fourier transform of the function over the interval [u — A,/2,u + A, /2],
and thus gives us the distribution of frequencies in f(u) in this interval. (At u = A, /2,
the Gaussian function drops to 0.46 of its value at u = 0, and 92.5% of the energy of the
Gaussian is contained in this interval.) Thus, the short-time Fourier transform allows us
to be specific about the location of certain frequencies with a time resolution of ~ A,. If
we want to be able to specify the distribution of frequencies as a function of time with
greater temporal accuracy, we must choose shorter (narrower) windows (smaller A,,).

(w)(

It is possible to show that one can express WF; " (u, p) in terms of F(u) as well:

WS () = e 20 [ (P GOW* ! = )7 dy

= [ + W e e, (22)

where W () is the Fourier transform of w(u). For the Gaussian function above, W (u) =
24N 05 exp(—mp?/A2Z), where A, = 1/A,. Multiplying F(i/) with the bandpass filter
W*(u' — p) essentially suppresses all frequencies other than those in the interval [ —
Au/2, 0+ A,/2), resulting in a bandpass signal with center frequency p. Multiplying
with exp(—i27pu) in the time-domain, amounts to a frequency shift which converts this

(w)(

bandpass signal into a lowpass signal. Thus WF; "/ (u, ), interpreted as a function of
time u with frequency p as a parameter, is a lowpass signal whose frequency distribution
is given by F(u" + p)W*(u""), which is simply the frequency distribution of f(u) in an
interval of width ~ A, around p, shifted down to zero frequency. If we want to be able
to specify 1 with greater accuracy, the width ~ A, of W () must be made smaller. Since
AyA, = 1 for a Gaussian window, we conclude that choosing a shorter window w(u)
increases temporal resolution while decreasing frequency resolution, whereas choosing a
longer window decreases temporal resolution while increasing frequency resolution. More
generally, the product of the temporal extent A, and spectral extent A, of an arbitrary
window must always be greater or equal than (approximately) unity. Thus, this tradeoff
between temporal and frequency resolution always exists. The extreme cases of w(u) =
d(u) and w(u) = 1 correspond to perfect time resolution and perfect frequency resolution
respectively. (Hlawatsch and Boudreaux-Bartels 1992)
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It is possible to recover f(u) from WF ;w)(u,,u) by using the easily derived result
(Hlawatsch and Boudreaux-Bartels 1992)

/ WF(w) Jw(u — u) e N du! dy (2.3)
which may be expressed as

f(u) = // WF]Sw)(u',u')wugul(u) du' dy’ (2.4)

Wyt (1) = wlu — ')

where w, s (u) is interpreted as a basis signal centered at the time-frequency point (v, u'),
since w(u) is a lowpass signal centered around the origin. If w(u) is taken as the Gaussian

function used above, the time-frequency extent of this basis signal is ~ A, x A,. Thus,

(w)(

we see that we can interpret WFf

u',p') as the weighting coefficient of the basis signal
concentrated around the time-frequency point (v, '), indicating the relative strength in
f(u) of certain frequencies p' at certain times u’.

The absolute square of the windowed or short-time Fourier transform is known as the
spectrogram SP}w)(u, u) = |WF}w)(u, ©)|%. Tt can be interpreted as an indicator of the en-

ergy of the signal at the time and frequency point (u, 1) in the sense that SP}w) (u, ) dudp
gives the energy of the signal in the time-frequency region [u — du/2,u + du/2] X [p —
dp/2, 1 + dp/2). We also note that equations 2.1 and 2.2 can be made symmetrical by
redefining the windowed Fourier transform as (Almeida 1994)

WF}w)(u u) = = ¢imHu / flu (v —u)e —i2mp’ du’, (2.5)
WS (u, ) = / FOW (= ) ! (26)
We will mostly remain with the standard definitions however.

2.1.2 Gabor expansion

The short-time Fourier transform is closely related to the Gabor expansion, which is an
expansion of f(u) in term of discretely many basis functions which are localized in time
and frequency (Hlawatsch and Boudreaux-Bartels 1992):

EZG (lym)wim (u), (2.7)

Wi (1) = w(u — [ du)e2mmomu,

where w(u) is a suitably chosen lowpass unit-energy window function centered around
the origin, so that wy,,(u) is a function localized in time and frequency around the time-
frequency point (I du, m du). The time and frequency spacings du and du define a lattice in
the time-frequency plane. The coefficients Gsfw) (I,m) are referred to as Gabor coefficients,
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and the wy,(u) are known as Gabor logons. Note that this expansion is in terms of
basis signals which are discretely spaced in the time-frequency plane, as opposed to the
expansion in equation 2.4, which is in terms of basis signals which are continuously spaced
in the time-frequency plane. A necessary condition for the discretely many logons to be
sufficient to expand an arbitrary finite-energy signal f(u) is 0udu < 1 (Daubechies 1990,
1992). This condition indicates the minimum density of the logons that is needed for them
to constitute a basis set for finite-energy signals. If the temporal extent of the signal is

~ Au and its bandwidth is ~ Ay, then we would expect the number of Gabor coefficients
which are non-negligible to be given by ~ (Au/du)(Ap/ép). If 6udp > 1, the number of
these coefficients would be less than Au Ay, the time-bandwidth product of the signal.
Clearly, we cannot expect the signal to be characterized by fewer coefficients than its time-
bandwidth product. On the other hand, if du du < 1, the number of Gabor coefficients will
be larger than the time-bandwidth product of the signal, indicating that in this case the

logons are not linearly independent, and that the representation is redundant: it has more
coefficients than needed. When dudp = 1 the logons are linearly independent and the
coefficients contain no redundancy; the number of coefficients equals the time-bandwidth
product of the signal (Hlawatsch and Boudreaux-Bartels 1992). We will later return to
these concepts and see that each coefficient corresponds to one degree of freedom of the
signal, and thus that the number of non-negligible Gabor coefficients corresponds to the
number of degrees of freedom of the signal.

We now assume du dp = 1 and also that w(u) is chosen so that the wy, (u) constitute
a basis set for all finite-energy signals (completeness). In general, the wy,,(u) will not be
orthogonal to each other, so that we cannot find the coefficient chw)(l ,m) by taking the
inner product of f(u) with wy,,(u). However, the coefficients can be found by taking the
inner product of f(u) with a new set of signals vy, (u) as follows:

G (1,m) = (vpa(u), f(u)) = / F(u)vf, (w) du, (2.8)

Vi () = v(u — 1 u)e2m(mome.

where the vy, (u) and wy,, (u) satisfy the biorthonormality condition

(Wt (1), i (1)) = / 0 ()i (1) it = Sy (2.9)

Determination of an appropriate function v(u) such that the biorthonormality condition
is satisfied is discussed in Bastiaans 1994, where it is shown how v(u) may be easily
determined by employing the Zak transform.

The biorthonormality condition above ensures that if we start with the coefficients
Gsfw) (I,m) and construct the signal f(u) using equation 2.7, then we can obtain the original
coefficients from this f(u) by using equation 2.8. It is also possible to show that the above
biorthonormality condition implies the dual biorthonormality condition (Bastiaans 1994)

S5 v () (') = S — ). (2.10)
l m
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This condition ensures that if we start from a signal f(u) and find its Gabor coefficients
by using equation 2.8, then we can reconstruct the signal by using equation 2.7.

;From equation 2.8 we conclude that the Gabor coefficients are in fact samples of the
windowed Fourier transform with window v(u):

G;w)(l, m) = WF}U) (I du,mou). (2.11)

Thus Gabor’s expansion can also be viewed as a way of recovering a signal from the
samples of its windowed Fourier transform (rather than the continuous windowed Fourier
transform, as in equation 2.3).

Choosing w(u) = 2Y/*A70% exp(—mu?/A2) ensures the greatest possible simultaneous
concentration in time and frequency of the logons. (Actually the choice of a Gaussian
function is not compatible with dudu = 1 but requires that dudu be smaller than unity,
even if only slightly so; see Daubechies 1992, page 107.) A natural choice for the parameters
A, and A, = 1/A, characterizing the time and frequency extent of this Gaussian is
A, =10u and A, = 1p. (The factor 1 is somewhat arbitrarily chosen; slightly different
values may also be used.) In this case each wy,(u) snugly occupies the time-frequency
cell on which it is centered, with only little overlap with adjacent cells. In this case the
interpretation of the Gabor coefficients as an indicator of the time-frequency content of a
signal around given time-frequency points becomes especially transparent. The function
v(u) corresponding to a Gaussian w(u) is determined in Bastiaans 1994.

Gabor’s expansion is a special case of what are more generally referred to as phase-
space expansions (Landau 1993). What makes such expansions of interest is the fact that
when appropriately defined, the coefficients chw)(l ,m) indicate how the energy of f(u) is
distributed over time and frequency; the larger this coefficient, the larger the contribution
of that frequency at that time. If f(u) is limited approximately to some time-frequency
region such that its energy outside this region is small, then f(u) can be reconstructed
to the same degree of approximation from only those components wy,,(u) which lie inside
that region (Landau 1993). With Gabor’s expansion, we have seen that we must have
oudp < 1; that is, at least one sampling point per unit time-frequency area is required.
Similar conditions exist for more general classes of expansions (Daubechies 1990, 1992,
Landau 1993). In general, at least one coefficient is required per unit time-frequency
area. This is consistent with an argument based on the Nyquist sampling theorem, which
requires sampling at a rate of du = 1/Ap over the extent Au of f(u), implying a total
of Au Ay samples, one sample per unit time-frequency area. Taken together, these facts
support interpreting the minimum number of (non-redundant) expansion coefficients (or
the time-bandwidth product) as the number of degrees of freedom of a signal. These
concepts will be further discussed in section 2.3.

Original work underlying the Gabor expansion is scattered through many references.
The reader may refer to the references found in the above cited works or to the useful
papers by Bastiaans (1980, 1981a, 1982a, b, 1985, 1991, 1994). The 1994 paper containing
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many references may constitute a useful starting point. A useful exposition of the Zak
transform is Janssen 1988.

2.1.3 Wavelet transforms

Until now we exclusively took the width of the window function A, and thus its dimen-
sions in time-frequency A, X A, to be the same for all values of u and p. Thus the
absolute resolution obtained for all frequency components, high or low, was the same.

However, since relative resolution is sometimes considered to be more relevant than ab-
solute resolution (10 Hz resolution for 10 MHz is as good as 1Hz resolution for 1 MHz),
time-frequency representations involving windows of variable width have been invented.

These so-called wavelet transforms are based on a complete set of orthogonal child wavelets
Wy, (u') which are generated from a parent wavelet w(u') through scaling and shift oper-
ations, where w(u') is a unit-energy bandpass function with center frequency po centered
around the origin (Hlawatsch and Boudreaux-Bartels 1992):

w UI = /U) ﬂ I—U . .
) = /ol (Ll ) .12

We note that w, ,(u') is centered around u and has center frequency p. The bandwidth
of wy ,(u') is p/po times the bandwidth of w(u'). Thus we see that the bandwidth of
Wy, u(u') is proportional to its center frequency. This directly translates into frequency-
proportionate frequency resolution in the wavelet transform defined as

W () = [ () () du, (213)

which may be compared to equation 2.1. A more detailed comparison of the wavelet
transform to the short-time Fourier transform may be found in Hlawatsch and Boudreaux-
Bartels 1992. Wavelet transforms are often expressed as time-scale representations, rather
than time-frequency representations. Defining & = pg/p, we can rewrite the above defini-
tion as

TS (u, ) = / F s () dud, (2.14)

wesl) = e ()

Introductory sources on wavelet transforms and time-scale representations include Mallat
1989, Daubechies 1990, 1992, Rioul and Vetterli 1991, Akansu and Haddad 1992, Chui
1992, Wavelets: Mathematics and Applications 1993, Walter 1994, Vetterli and Kovacevic
1995, Strang and Nguyen 1996, Suter 1997, and Mallat 1998.

We will be particularly interested in wavelet transforms generated from the parent

wavelet w(u) = exp(imu?), resulting in the wavelet transform

TS (u, €) = |§|11'/‘2 / Flulyem W =€ gy (2.15)
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which we recognize to be essentially the Fresnel transform. This class of wavelet transforms
has been discussed in Onural 1993 and Onural and Kocatepe 1995.

2.1.4 Remarks

A very large number of different time-frequency representations have been suggested for
their particular properties and suitability for different applications (Cohen 1989, 1995,
Hlawatsch and Boudreaux-Bartels 1992). We will mostly concentrate on the Wigner dis-
tribution and a number of other closely related representations which are discussed in

detail in the following sections.

It is tempting to view time-frequency representations as alternative representations of
a signal, just as the time-domain representation, frequency-domain representation, and so
on, as we discussed in chapter 1. This is justified by the fact that they often contain the
same (or almost the same) information as these other representations. However, there are a
number of differences: (i) Time-frequency representations are not always linearly related to
other representations, such as the time-domain representation. (ii) It is not always possible
to interpret a time-frequency representation as the coefficient of expansion in terms of a
basis set, and even when this is the case, the basis may not be orthonormal. (iii) Time-
frequency representations of functions of one variable are functions of two variables (time
and frequency).

We end by noting that the discussion of this section is not totally precise and far
from rigorous. Readers desiring greater rigor and more precise versions of the various
statements we have made should consult the references cited.

2.2 The Wigner distribution and the ambiguity function

2.2.1 The Wigner distribution

The Wigner distribution Wy (u, 1) of a signal f can be defined in terms of the time-domain
representation f(u) of the signal as (Claasen and Mecklenbrauker 1980a, b, c)

We(u,p) = /f(u + ' [2) f (u — ! J2)e 2T du (2.16)

Roughly speaking, W(u, i) is a function which gives the distribution of signal energy over
time and frequency, a fact which is not immediately evident from the above definition.
However, it is possible to show directly from the above definition that

Wt du = 1) (2.17)
[ Wit ) du = 1P (2.18)

/ Wi (u, 1) dudp = ||f||* = En[f] = signal energy. (2.19)
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Note that since the signal energy is given by the integral of either |f(u)|? over time or
the integral of |F(u)|? over frequency, the first two equations are consistent and imply

the third. These properties are consistent with, but do not imply, the interpretation of

Wi(u, p) as the energy density at time-frequency point (u, ). Indeed, there are intrinsic
difficulties associated with the notion of the energy density of a signal at a specific time
and frequency point, stemming from the uncertainty relation (section 1.7). However, we

will later justify the interpretation of local averages of Wy (u, ;1) approximately as the time-

frequency energy density of a signal. As a consequence, the energy of the signal in any
extended time-frequency region can be found by integrating W(u, i) over that region.

A number of characteristics makes the Wigner distribution a very attractive time-
frequency representation. The Wigner distribution is completely symmetric with respect to
the time and frequency domains, as evidenced by its expression in terms of the frequency-
domain representation F'(u) of the signal:

Wi (u, p) = /F(u + ! [2)F* (= p [2) e dy (220)

which can also be derived from equation 2.16. This symmetry is preserved also with
respect to a continuum of domains we will refer to as fractional Fourier domains. Then,
it will become particularly apparent that the geometric shape of the Wigner distribution
has a reality and significance independent of the particular coordinate system in the time-
frequency plane in which it is expressed. The Wigner distribution should be considered as
an abstract geometric entity associated with the signal f in the abstract, not being tied
to a particular representation of f in a particular domain.

The Wigner distribution of some common signals are given in table 2.1. The Wigner

f(u) Wi (u, p)
1. exp(i2wéu) o(p—¢)
2. 6(u—¢) 6(u—§)
3. explim(xu? 4 2&u + ()] o —xu—¢§)
4. (20" exp(—mxu?) 2 exp[—2m(xu® + /X))
5. rect(u) 2(1 — |2u|) rect(u) sinc [2(1 — |2u|)u]

Table 2.1: Wigner distribution of some common signals. &, x, ( are real.

distribution of the impulse and harmonic functions are easily interpreted in terms of the
expected distribution of signal energy of these functions. The Wigner distribution of the
chirp function, which includes these two as special cases, is found to be concentrated along
the line giving the instantaneous frequency of the chirp: (27)~td[r(xu? + 26u + ()]/du =
xu + &. The Wigner distribution of a Gaussian signal is a Gaussian in v and g whose
time and frequency profiles match the time and frequency representations of the Gaussian
signal. We observe that the Wigner distribution of the rectangle function is negative for
certain values of u and u. In fact, it is more the norm than the exception for the Wigner
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distribution of a signal to exhibit negative values for some values of v and p, a fact which
complicates its interpretation as an energy density. We also give the Wigner distribution
of the scaled Hermite-Gaussian function v, (u/M):

W (uyan) (us 1) = 2(=1)" exp [—27r(u2/M2 + MQ,uQ)] L, [4L71'(u2/.M2 + MQMQ)] , (2.21)

where L, (-) denotes the Laguerre polynomials (Bastiaans 1997). We finally note the
Wigner distribution of the delta train or comb function defined as f(u) = Y72 6(u—n),

which is given by

Wi =5 3 3 (~1™(u—n/2)a(: —n'/2). (2.22)

n=—oon'=—oo

A pictorial discussion of this Wigner distribution may be found in Testorf and Ojeda-
Castaneda 1996.

To recover f(u) from its Wigner distribution Wy (u, 1), we note that equation 2.16 is
a Fourier transform relation which can be inverted as

flut+d'/2)f*(u—u'/2) = /Wf(u, )e2™H dy. (2.23)

If and only if upon evaluation of the right hand side of this equation we arrive at a func-
tion expressible in the form indicated by the left hand side, is the given two-dimensional
function Wy (u, p) a legitimate Wigner distribution of some function f(u). Otherwise, the
given two-dimensional function does not correspond to the Wigner distribution of any
function, as is the case for most two-dimensional functions. Assuming that Wy (u, p) is
indeed a legitimate Wigner distribution, we can show

£ = g7 [ Wrle/2 e iy, (2.24)

We see that the original function can be recovered only up to a complex constant of unit
magnitude. In other words, any function of the form f(u)exp(iw() where ¢ is a real
constant has the same Wigner distribution as f(u).

Important properties of the Wigner distribution are listed in table 2.2. We briefly

height

Table 2.2: Properties of the Wigner distribution (Hlawatsch and Boudreaux-Bartels 1992,
table III). &, &1, &2, M are real and n is a positive integer.

comment on these properties: (1) The Wigner distribution is everywhere real but not
always positive, an issue we will further discuss below. (2,3) It is time and frequency shift-
invariant in the sense that shifting the time- and/or frequency-domain representations of
a signal results in corresponding shifts in the Wigner distribution. (4,5) Integrating out
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time or frequency returns the energy distribution with respect to frequency or time. (6,7)
The time and frequency moments can be calculated as weighted averages in the time-
frequency plane directly. Here these follow directly from properties 4 and 5, but there
are other time-frequency distributions which satisfy 6 and 7 without satisfying 4 and 5.
(8) Time and frequency scale inversely. (9,10) The weighted average of frequency for a
given time is equal to the instantaneous frequency at that time, and the weighted average
of time for a given frequency is equal to the group delay for that frequency. (However,

instantaneous frequency and group delay can be meaningfully interpreted for only certain
classes of signals.) (11,12) If the time- or frequency-domain representation of a signal
is identically zero outside a certain interval, so is its Wigner distribution. However, if
the time- or frequency-domain representation is zero inside a finite interval with nonzero

values outside this interval, the Wigner distribution will not in general be zero inside
that interval (Cohen 1989). (13) This property, known as Moyal’s formula, is some kind
of Parseval’s relation between the time- (or frequency-) domain representation and the
Wigner distribution. It basically states that the overlap integral or inner product of two
Wigner distributions, is equal to the absolute square of the inner product of the two original
signals. (14,15) Convolving f(u) with another function h(u) corresponds to convolving
Wi (u, p) with Wy(u, ) in the time coordinate. Multiplying f(u) with another function
h(u) corresponds to convolving F'(u) with H(u), which further corresponds to convolving
W (u, p) with Wy (u, i) in the frequency coordinate. (16) The Wigner distribution of the
Fourier transform of a function is the Wigner distribution of the original function rotated
clockwise by a right angle.

Certain properties of the Wigner distribution are sometimes considered undesirable.
Since it is not linear but quadratic in the signal, the Wigner distribution of the sum
of two signals will not be equal to the sum of their Wigner distributions, resulting in
often undesired cross terms. This has motivated dealing with projections of the Wigner
distribution, which we will see correspond to linear representations of the signal in different
fractional Fourier domains. From a fundamental viewpoint, since the Wigner distribution
is meant to have an energetic interpretation, and since energy is quadratic in the signal,
the existence of cross terms should not be considered a defect. However, it does lead to
difficulty when visually interpreting signals with multiple components, which we might
want to be able to separately identify in a time-frequency plot. Experience with and
recognition of the nature of the interference terms (discussed in Hlawatsch and Boudreaux-
Bartels 1992), is of great benefit in interpreting such signals. Certain smoothed Wigner
distributions, such as the Choi-Williams distribution (Choi and Williams 1989, Cohen
1989), allow the suppression of the interference terms at the expense of time-frequency
concentration in a controlled manner by including an adjustable parameter.

The fact that the Wigner distribution can be negative for certain time-frequency values
is often considered undesirable because it conflicts with the interpretation of the Wigner
distribution as the distribution of signal energy. Such negative values will also tend to
disappear with smoothing. We will return to this issue further below.
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It is instructive to write the Wigner distribution in terms of the Hermite-Gaussian
expansion of a function. The Wigner distribution of a function f(u) = Y725 Cpibn(u)
becomes

7 (u, p) /ZCnipnu—i—u/Z Z b (u —u'[2)e —izmpd g

—ZZCC /wnu—i-u/Q)z/Jn (u— ' /2)e” 2" dy/!

n=0n'=0

oo o0
=3 > CuCrWy, u., (u, ), (2.25)

n=0mn'=0
where Wy, ,(u,p) is the cross Wigner distribution of 1, (u) and 1, (u) (Claasen and
Mecklenbrauker 1980a). If the final equation is considered as the expansion of a two-
dimensional function in terms of the cross Wigner distributions Wy, 4 , (u, 1), we see that
arbitrary expansion coefficients of the form C,,s are not possible, but that only outer
products of the form C,,C}, can appear. This is consistent with the fact that the Wigner
distribution contains the information of a one-dimensional signal; very few two-dimensional
functions are Wigner distributions of some signal.

A useful edited collection on the Wigner distribution and its applications in signal
processing is Wigner distribution: Theory and Applications in Signal processing 1997. An
extension of the Wigner distribution to signal spaces, rather than a single signal is given
in Hlawatsch and Kozek 1993. The original work of Wigner is Wigner 1932.

2.2.2 The ambiguity function

Another time-frequency distribution which is closely related to the Wigner distribution is
known as the ambiguity function A(a, i) defined as

A¢(a,p) = /f(u' +a/2)f (u — a)2)e Y qu!
= [ FG 4 2P~ ) (226)

where the second equality is a consequence of the definition given in the first line. This
definition should be carefully compared to that of the Wigner distribution given in equa-
tion 2.16. Whereas the Wigner distribution is the prime example of an energetic time-
frequency representation, the ambiguity function is the prime example of a correlative
time-frequency representation (Hlawatsch and Boudreaux-Bartels 1992). (The term time-
frequency distribution is sometimes used interchangeably with the term time-frequency
representation. However, it is more appropriate to reserve the term distribution for those
representations which have an energetic interpretation.) The ambiguity function deserves
this by virtue of the properties

Ay (a@,0) = Rys(a /fu—i—u du—/lF )22 gy (2.27)
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0 Ay (@, )

1. exp(i2w&u) exp(i27&u)d (1)

2. 5(u—¢) exp(i2m&ji)é(a)

3. explim(xu? + 26u + ()] exp(i2w€u)d(p — xa)

4. (20 exp(—mxu?) exp[—m(xu? + i*/x)/2]

5. rect(u) (1 — |a|) rect(2a) sinc [a(1 — |al])]

Table 2.3: Ambiguity functions of some common signals. &, x, ¢ are real.

ApO.p) = Rep(n) = [ PG+ pF @i = [ 150 Pe > ad, (2:29)
Af<u,u>3Af<o,o ) = |fI2 = En[f] = signal energy,  (229)

which say that the on-axis profiles of the ambiguity function are equal to the autocorrela-
tion of the signal in the time and frequency domains respectively.
The ambiguity functions of some common signals are given in table 2.3.

Figure 2.1: Relationships between ~(u, @), I'(u, ), Af(a, ), and Wy (u, ). The arrows
indicate a Fourier transform with respect to the variables shown. (Bamler and Gliinder
1983, figure 1, Hlawatsch and Boudreaux-Bartels 1992, figure 13)

The Wigner distribution and ambiguity function are Fourier transforms of two auxiliary
functions defined as (Claasen and Mecklenbrauker 1980c¢)

Y(u,u) = flu+a/2)f*(u—1/2), 2.30
L(u,p) = F(p+a/2)F*(p— /2), (2.31)
such that
Witusn) = [ ua)e > di = [T, @)™ di, (2.32)
Aj(a, i) = / oy, @) e 27 gy — / T, 1) e277 du. (2.33)

Combining these relationships, we find that the ambiguity function is related to the Wigner
distribution by what is essentially a two-dimensional Fourier transform:

A¢(a, p) = / Wi(u,p)e —2m(Au=Th) gy, dy,, (2.34)

consistent with the energetic nature of the Wigner distribution and the correlative nature
of the ambiguity function. It is also possible to show that I'(u, z) is the two-dimensional
Fourier transform of v(u,u). These relationships are summarized in figure 2.1. It is
also instructive to see the relationship between the (approximate) supports of these four
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functions. By the support of a function we mean the region where the value of the function
is non-negligible. Let us assume that the signal f has negligible energy outside the time
interval [—Au/2, Au/2] and the frequency interval [Ap/2,Ap/2]. Clearly, the Wigner
distribution will (approximately) have a rectangular support defined by these intervals.
The supports of the remaining three functions are shown in figure 2.2.

Figure 2.2: Supports of (a) vy(u,a), (b) I'(u, i), (c) Af(a, i), and (d) We(u,p) for an
approximately time- and band-limited signal f (Bamler and Gliinder 1983, figure 2).

The properties of the ambiguity function are summarized in table 2.4 which has been
prepared parallel to table 2.2. The properties of the ambiguity function are easily inter-
preted by virtue of the fact that the ambiguity function is the Fourier transform of the
Wigner distribution.

height

Table 2.4: Properties of the ambiguity function (Hlawatsch and Boudreaux-Bartels 1992,
table III). &, &1, &9, M are real and n is a positive integer.

The special cases of properties 13 in tables 2.2 and 2.4 when g = f are worth noting:

171 = Enlf)? = [ [0Vpt 0 dudp = [ [ 14y 0P dada. (235

The consistency of these two properties follows from the fact that Parseval’s relation
implies that the square integrals of the Wigner distribution and ambiguity function, which
are essentially a two-dimensional Fourier transform pair, must be equal.

A rather different and useful exposition of the ambiguity function and further discus-
sion of its relation to the second-order moments of a signal may be found in Papoulis 1977,
pages 284-295.

2.2.3 Cohen’s class of shift-invariant distributions

A relatively broad class of energetic time-frequency distributions which includes the Wigner
distribution and spectrogram as special cases is known as Cohen’s class of shift-invariant
time-frequency distributions (Cohen 1966, 1976, 1989, 1995, Hlawatsch and Boudreaux-
Bartels 1992). These distributions may be defined in terms of the Wigner distribution
through the two-dimensional convolution relation

TFEg(u,p) = rpp(u, n)««Wy(u, p) = // brrp(u—u', p—p" )Wy (u', 1) du' dy'. (2.36)

YrrE(u, 1) is a kernel uniquely corresponding to the distribution TFEf(u, ). A distri-
bution is a member of this class if and only if the distribution corresponding to f(u —
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€u) exp(i2mg,u) is equal to TFE¢(u — &y, it — &) (as in properties 2 and 3 in table 2.2), as
can be shown from equation 2.36. This is what is meant by shift-invariance. The fact that
we have defined this class in terms of the Wigner distribution does not by itself confer a
privileged status to the Wigner distribution among other members of the class. It is also
possible to define the Cohen class in terms of members other than the Wigner distribution
(Cohen 1989).

In analogy with equation 2.34, we can define the correlative dual time-frequency

representation TFCy(u, i) of the energetic time-frequency distribution TFE(u, ) as
(Hlawatsch and Boudreaux-Bartels 1992)

TFCy(a, i) = / / TFE(u, p)e” 2" Bu=) gy dp, (2.37)
from which it follows that equation 2.36 can also be written as

TFCy(u,p) = Yrpp(a, i) As(a, i), (2.38)

where U pp(a, i) is the two-dimensional Fourier transform of ¢orpp(u, ). In this case the
representation corresponding to f(u—&,) exp(i2n§,u) is equal to TFCy(u, pu) expli2m(§,u—
&ui1)] (as in properties 2 and 3 in table 2.4). Table 2.5 lists the names of a number of time-
frequency distributions together with their defining kernels Wrpg (@, i). The correlative
duals of these distributions can also be deduced from these kernels.

Distribution Kernel Uppg(a, i)

Table 2.5: Selected shift-invariant time-frequency distributions and their defining kernels.
¢, x are real parameters and 7(:),w(:) are suitably selected functions. (Hlawatsch and
Boudreaux-Bartels 1992, table IV)

Since the kernels ¢rpg(u, u) or Yrpp(i, i) fully characterize a distribution which is a
member of the Cohen class, the properties of the distribution can often be determined by
examining these kernels. Table 2.6 has been prepared in parallel with table 2.2 and states
the constraints that these kernels must satisfy in order for the distribution to exhibit
a given property. The kernel Yrpp(u,pu) = 0(u,pu) or Uprpp(a,i) = 1 of the Wigner
distribution satisfies all of these constraints so that the Wigner distribution exhibits all of
these properties.

2.2.4 Smoothing of the Wigner distribution

We have already mentioned that the existence of interference terms is usually consid-
ered an undesirable property of the Wigner distribution which often makes its visual
interpretation difficult. Since such terms are often of oscillatory nature (Hlawatsch and
Boudreaux-Bartels 1992), it is possible to attenuate them considerably by smoothing the
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Property Kernel Constraint

Table 2.6: Kernel constraints corresponding to various properties of shift-invariant time-
frequency distributions. The numbered list of properties correspond to those in table 2.2.
The constraints are given in terms of the kernel Yrpp. M, u,u, i, i’ are arbitrary real
numbers. (Hlawatsch and Boudreaux-Bartels 1992, table V)

Wigner distribution. This can be achieved by convolving the Wigner distribution with a
smooth function. Looking back to equation 2.36, we conclude that such smoothed Wigner
distributions are time-frequency distributions belonging to the Cohen class. (However,

not all distributions belonging to the Cohen class are smoothed Wigner distributions; this
requires that the kernel vy pg(u, 1) be a smooth function). Naturally, such smoothing will
result in some loss of time-frequency resolution, and also in a loss of some of the desirable
properties of the Wigner distribution (as can be determined from table 2.6).

As we have mentioned before, another undesirable property of the Wigner distribution
is that it can be negative for certain time-frequency values, which is troubling because it
conflicts with the interpretation of the Wigner distribution as the distribution of signal
energy. We will now argue that this is not a fundamental flaw, but rather only an incon-
venience. We must first recognize that the value of the Wigner distribution of a signal at
a certain time-frequency point, mathematically defined through equation 2.16, does not
correspond to a physically measurable quantity. (This is in contrast to the spectrogram
which corresponds to a physically measurable quantity, as one can physically window a
function and then observe its spectrum.) This has to do with the fact that it is not possible
to resolve or isolate a part of a signal which is concentrated at a single time-frequency
point. By applying a narrowband filter to the signal in the frequency domain, we can
isolate as narrow a band of frequencies as we wish, but application of this filter will also
inevitably result in a broadening of the signal in the time domain (since the signal will be
convolved with a broad function in the time domain). Alternatively, by multiplying the
signal with a narrow window in the time domain, we can isolate as short an interval of the
signal as we wish, but this process will also inevitably result in a broadening of the signal
in the frequency domain (since the signal will be convolved with a broad function in the
frequency domain). According to the uncertainty relation, the product of the duration of
the impulse response of a filter and its bandwidth must be greater than (approximately)
unity. Thus, the smallest part of the signal we can isolate and subject to an energy mea-
surement has time-frequency area which must also be greater than (approximately) unity.
The energy of such an isolated part of the signal is given by an (appropriately weighted)
integral of the Wigner distribution over the relevant time-frequency region and it is this
quantity that we would expect to be positive.

Measuring the energy of a signal over a unit time-frequency area is closely related to
the concept of smoothing the Wigner distribution with a kernel of unit time-frequency
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area. If it does not make sense to speak about the energy of the signal in time-frequency
areas smaller than unity, then it also does not make sense to specify time-frequency points
with joint accuracy exceeding that suggested by the uncertainty relation.

From table 2.5 we see that by smoothing the Wigner distribution of a signal with
the coordinate-inverted Wigner distribution of a window function w(u), we obtain the
spectrogram of the signal based on the same window function (Hlawatsch and Boudreaux-
Bartels 1992):

SP{) (u, ) = [WEF (u, )| / bsp(u—u',p—p YWy, p') du dy', — (2.39)
Psp(u,p) = Wy (—u, —p),

where W, (u, ) is the Wigner distribution of the window function w(u). From this result
we can conclude that if the smoothing kernel ¢rpp(u,p) is the Wigner distribution of
some unit-energy function, the resulting distribution will be a spectrogram and hence
non-negative (and also a measurable quantity). In particular, let us consider a Gaussian
window 21/4 A0 exp(—mu?/A2) whose Wigner distribution is

2
Waalu, ) = 2exp l (AQ p2A3>] . (2.40)

The Wigner distribution of any function extends over a time-frequency region whose area
is at least unity. The Wigner distribution of the Gaussian function satisfies this condition
with approximate equality, extending roughly over a region of unity area in the time-
frequency plane. More generally, it is known that choosing a Gaussian smoothing function
Ga(u, p) of the form

2 2
et ) = ﬁ exp [—% (% " %)] (2.41)

will result in a positive distribution TFE(u, ) if AyA, > 1 (Cohen 1989). Notice that
the Gaussian here is not necessarily the Wigner distribution of anything. The same result
generalizes to oblique kernels of the form (Cohen 1989)

2 2
daatu) wesp | -2e (B 4 5+ ). 242

provided AZA% > AZH /(14 A%m). The quantities A, and A, appearing in equation 2.41
are approximate measures of the spread of 1)ga(u, ) in time and frequency respectively.
The factor A, appearing in the cross term is related to the obliqueness of the ellipsoidal
contours of Yqga(u, p). These examples suggest that smoothing the Wigner distribution
with a kernel ¢7pg(u, u) whose time-frequency area is equal to or greater than unity will
result in a positive distribution. Since convolution with this kernel effectively corresponds
to a weighted average of the Wigner distribution, one is tempted to state that averages or
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integrals of the Wigner distribution over regions of at least unit time-frequency area are
always positive. However, despite being common wisdom, these statements are not true
in general (Cohen 1989).

While not being true in general, this common wisdom indeed holds for a broad range of
interesting cases, particularly when the kernel itself is a smooth localized function. Thus,
allowing ourselves to be imprecise, we will take it to be an approximate truth that localized
averages of Wigner distributions over time-frequency regions of area greater or equal than

unity are always positive.
We emphasize that the above considerations are of theoretical interest, having to do
with the interpretation of the negative values of the Wigner distribution. As far as visual

interpretation of plots of Wigner distributions are of concern, smoothing with functions
which are not the Wigner distribution of anything and/or which have time-frequency

area less than unity, may be just as much or more effective if chosen properly. These
may result in a display which still exhibits some negative values, but may nevertheless
offer an attractive and meaningful visual result. For practical purposes, the choice of a
smoothing kernel is often governed by the need to find a compromise between the two goals
of maximum interference suppression and maximum time-frequency resolution. Kernels
with an adjustable parameter, such as the Choi-Williams distribution already mentioned,
are particularly suited to this purpose because of the tuning they allow through their free
parameter (Cohen 1989).

2.2.5 Effect of linear systems on the Wigner distribution

If g(u) is related to f(u) through the linear relation

g(u) = /h(u,u’)f(u’)du’, (2.43)

then Wy(u, ) is related to W (u, ) through the relation (Bastiaans 1978, 1979a)

Wo(u, p) = / Ky (u, py ', " YWy (', p') du’ dyd!, (2.44)
K (u, ;0 1) = // h(u+u" /24" +u" [2)h* (u —u" /2,u" —u" /2)

Xe—i?ﬂ(u”p—u”’p/) du" du"".

It is possible to show that the kernel Kj(u,u;u’, pu') is always real. If two systems with
kernels Kp, (u, p; o, p') and Ky, (u, p;u', u') are cascaded, the kernel Kp, (u,p;u’,p') of
the resulting system is given by

Ky (u, s’ p') = / Ky (u, s v, p") Ky (g5 0!, ") du” dp”. (2.45)

We recall that unitary systems conserve norm and energy; that is, the energy of the
output g is equal to the energy of the input f. It is also possible to show that a linear
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system which conserves energy is necessarily unitary. (Systems which conserve energy are
also referred to as lossless and gainless systems.) We know that the kernel of a unitary
system satisfies h~!(u,u') = h*(u/,u). The same condition can be expressed in terms of
the kernel Ky, (u, p;u’, ') as follows (Bastiaans 1978):

//Kh(u,,u;u/,,u/)dudu =1. (2.46)

This can be derived either from the condition A~!(u,u') = h*(u/,u) or more instructively
as

Enlg] = // Wy (u, p) dudp = ////Kh(%MUIN/)Wf(U/aN/)dU/ dp’ du dps

=// W', 1) U Kp(u, ps o', p') dudp| du' dp'

(2.47)

Clearly, if equation 2.46 is satisfied, then En[g] = En[f]. The converse is also true; the
only way for En[g] = En[f] for all f is for equation 2.46 to be satisfied for all ', u'.

We will now focus our attention to the special linear systems given earlier in table 1.2.
In table 2.7 we have summarized the associated kernels Kj(u,p;u'p') and the Wigner
distribution of the output Wy(u, ) for these systems.

Most of the items in the table correspond to items appearing in table 2.2; the reader
will have no difficulty matching these up. Convolution of f(u) with h(u) corresponds to
convolution of their Wigner distributions in u. This is denoted as

Wg(ua M) = Wh(ua M) :é Wf(u7 //’) = /Wh(u - ula M)Wf(ula M) du'. (248)

Likewise, multiplication of f(u) with h(u), which corresponds to convolution of F'(u) with
H (), corresponds to convolution of their Wigner distributions in u. This is denoted as

W (u, 1) = Wi (u, 1) % W(u,p) = /Wh(u, o= "YW (u, ') dy (2.49)

It is worth examining the geometric distortions in the u-p plane to which some of the
systems appearing in table 2.7 correspond to. The region bounded by the rectangle shown
in figure 2.3a represents the Wigner distribution of f(u), within which a large fraction
of the energy of f(u) is assumed to be contained. The effect of the scaling operation, of
which the identity and parity operations are a special case, is shown in figure 2.3b, which
should be interpreted in the light of the fact that the Fourier transform of f(u/M) is
|M|F(Mpu) and the fact that the projections of the Wigner distribution of f(u) on the u
and 1 axes correspond to |f(u)|? and |F(u)|? respectively. The effects of the coordinate
shift and phase shift operations, shown in parts ¢ and d of the figure, are simply to shift the

Wigner distribution in the u and p directions respectively, in line with the corresponding
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Symbol  h(u,u’) Ky (u,pyu’,p')
g(u) W (u, 1)

T O(u —u') O(u—u")o(pu— ')
7w Wy (w0

P d(u+u) O(u+uNo(u + p)
f(—u) Wi(—u, —p)

My VIM[§(u — Mu') d(u — Mu')o(p — p' /M)
(1/y/THD) (/M) Wy /M, M)

SHe  d(uté—1) 6(u+&—u)o(u—u)
flu+§) Wyu+& p)

PHe exp(i2m€u)d(u — u') du—u)o(p—&—p)
explizngu) f(u) Wy €)

Ap h(u)d(u — u') Wi (u, = p')o(u — o)
h(u) f(u) S Wiu, p— "YWy (u, p') dp’

Q, exp(—imqu?)d(u —u') S(p + qu — p)o(u — o)
exp(—inqu®) f (u) Wi (u, 1+ qu)

Ap h(u —u') Wi (u —u', p)d(p — ')
[ b — o) () dd [ Wit — o )Wy )

R e~ /1] explim(u —u')2 /1] 6(u —rp—u')o(p — ')
e/ 7 explimifr)  f(w) Wyl — i, 1)

U ud(u —u') u?d(p — p') + (1672) 16" (1 — p')
uf (u) WWy(u, p) + (167%) " d* Wy (u, p) /dps®

D (i2m) 16 (u — u') pro(u —u') + (1672) = 16" (u — u')
(i2m) " () W2 g, 1) + (165) W (1)l

F exp(—i2muu') O +u)o(u — ')
F(u) W ()

Table 2.7: The effect of some special linear systems on the Wigner distribution. Z: Identity,
P: Parity, My Scaling, SH¢: Translation, PH¢: Phase shift, Ay: Multiplicative filter,
Q,: Chirp multiplication, Ag: Convolutive filter, R,: Chirp convolution, ¢/: Coordinate

multiplication, D: Differentiation, F: Fourier transform. M, &, q,r are real parameters,

0 (u—u')=d[6(u—u)]/du and §" (u

u') = d?[6(u

u')]/du®.
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Figure 2.3: (a) Original signal. (b) Scaling with M = 2. (c¢) Translation with £ = —2. (d)
Phase shift with £ = 2. (e) Chirp multiplication with ¢ = 1. (f) Chirp convolution with
r=1.



2.2. THE WIGNER DISTRIBUTION AND THE AMBIGUITY FUNCTION 79

properties of the Fourier transform (table 1.4.3-4). The effect of the Fourier transform, not
shown in the figure, is to rotate the Wigner distribution by a right angle in the clockwise
direction, essentially resulting in an interchange of the v and p axes. Chirp convolution
results in shearing of the Wigner distribution in the u direction and chirp multiplication
results in shearing of the Wigner distribution in the p direction. Notice that all of the
above geometric transformations, including the shearing operations, are area preserving.

When we represent the Wigner distribution of a signal by such a closed curve or
rectangle, we assume that a certain large fraction, say 95%, of the signal energy is contained
inside the region bounded by that curve. Thus the geometric transformations illustrated
in the figure show how the signal energy is redistributed in the u-p plane. The fact that
the area of the region containing 95% of the signal energy does not change, means that
while energy is redistributed and mapped to different time- or space-frequency points, the

concentration of energy in the u-u plane does not change under the action of these systems.
We may also finally note that any system composed by concatenating any number of the
above systems will also result in an area preserving geometric transformation in the u-p
plane.

2.2.6 Time-frequency filtering

Here we briefly mention the concept of filtering in the time-frequency plane. In analogy
with conventional time-invariant filtering where we modify the Fourier transform of a
function with a multiplicative filter to alter its frequency content in the desired manner,
time-frequency filtering is based on the idea of modifying the Wigner distribution (or
other time-frequency representation) to alter the time-frequency content of the signal in
the desired manner, or to construct signals with desired time-frequency content. The
procedure is complicated by the fact that even the most reasonable modifications on the
Wigner distribution of a signal, such as requiring it to be zero over a certain interval, may
result in two-dimensional functions which are not the Wigner distributions of anything.
This problem can be remedied in a number of ways. For instance, we may seek the signal
which has the distribution closest to the one at hand, where closeness may be defined in
the mean-square sense. See Saleh and Subotic 1985 and Cohen 1989 for further discussion.

2.2.7 Wigner distribution of random signals

The Wigner distribution of a random signal f(u) is defined as the expectation value of the
Wigner distribution defined in equation 2.16:

Wilu,p) = < / Flu+u'/2) f* (u— o' [2)e” 2 du/>
= [l 25 = 2y e

= /Rff(u + ' [2,u — ' [2)e” 2 (2.50)
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where Ry¢(u,u’) = (f(u)f*(«')) is the ensemble-averaged autocorrelation of f(u). We
see that the Wigner distribution of a random signal is essentially the Fourier transform
of its autocorrelation with respect to the delay variable. Indeed, a similar interpretation
is possible for the deterministic case. If we interpret y(u,u') = f(u + u'/2)f*(u — u'/2)
as some kind of time-dependent autocorrelation function (Cohen 1989), then the Wigner
distribution is simply the Fourier transform of this function:

Wi (u, p) = /v(u,u')e_i%’“‘/ du, (2.51)
which can be considered to be a time-dependent generalization of the common result
P = [ Rysu)e e du (2.52)

where Ryr(u) = [ f(u+u')f*(u') du' here is the deterministic autocorrelation function.

If the signal is wide-sense stationary, then the ensemble-averaged autocorrelation Ry (u,u') =
Rsf(u—u') so that Ryp(u+u'/2,u—u'/2) = Ryp(u') and the Wigner distribution becomes
independent of u and reduces to the conventional power spectral density Sys(p). Thus,
in the general case where the signal is not necessarily stationary, the Wigner distribution
is readily interpreted as a time-varying power spectral density. For finite-energy signals,
most of the original properties hold:

[ W) du = (IF)2). (2.53)
[ Wy de = (1 wP). (254

Readers wishing to learn more may consult the references in, for instance, Hlawatsch and
Boudreaux-Bartels 1992 and Cohen 1995.

2.2.8 Wigner distribution of analytic signals

All of the results presented so far are valid for complex as well as real signals f(u). In most
physical applications, it is more common practice to work with the Wigner distribution of
the real signal. However, some authors have argued that it is more meaningful to work with
the Wigner distribution of the analytic signal (Boashash 1988, Zhu, Peyrin, and Goutte
1989). The Wigner distribution of the analytic signal of a real signal f(u) is not simply
the upper (1 > 0) part of the Wigner distribution Wy (u, ) of the real signal (Cohen
1989, page 969). For instance, the Wigner distribution of the signal exp(iru?), given by
d(p—u), is concentrated along the line y = u, with a simple interpretation in terms of the
instantaneous frequency. However, the real signal cos(mu?) will exhibit interference terms
in addition to the line deltas d(u — w) and 0(u + u).
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The relationship between the Wigner distribution of a signal f(u) and the Wigner
distribution of its analytic signal f,s(u) is given by

Wy, (u, ) = 16/Wf(u —/, p) psinc(dpu’) du’, (2.56)

if 4 >0, and 0 if y < 0 (Claasen and Mecklenbrauker 1980a).

2.2.9 Other properties

There are many other interesting properties of the Wigner distribution and ambiguity
function that we do not discuss here. Of particular interest are properties relating the
moments of a signal to the moments of its Wigner distribution and properties involving
instantaneous frequencies and group delays (Claasen and Mecklenbrdauker 1980a, b, c;
Cohen 1989; Bastiaans 1989, 1991b). An inspiring treatment of the ambiguity function is
Vakman 1968.

2.3 Sampling and the number of degrees of freedom

The support of a function is the subset of the real axis in which the function is not equal
to zero. This subset is said to be compact if and only if its members are confined to a
finite interval around the origin. A function will be referred to as compact if its support
is so. In other words, a function is compact if and only if its nonzero values are confined
to a finite interval around the origin. A signal is said to be compact in the u domain
if it is zero outside a finite interval around the origin in that domain. For instance, the
function rect(u) is compact, but the function exp(—mu?) is not (although the latter may
be considered to be approximately compact because its values are very small for larger
u). If the Fourier transform of a function is compact, being zero outside the interval
(—Ap/2,Ap/2), it is said to be bandlimited with bandwidth Au. Such a signal can be
recovered from its samples taken at intervals du < 1/Ap, a result known as Nyquist’s
sampling theorem. Taking the fewest possible samples (du = 1/Ap), the sampled function
fsamp(u) becomes

Jsamp(u) = f(u)comb(u/du) = Z f(lou)d(u/ou —1)

l=—0
= Jdu i flou)d(u —1dou) = du i fU/Ap)6(u—1/Ap). (2.57)
l=—00 l=—00

Taking the Fourier transform of both sides

Flfsamp(@)](1) = F(u) % ucomb(6up) = F(u) *ou Y 6(dup —1)

l=—0c0

= F(u)x* i M —1Ap) = Z F(u—1Ap). (2.58)

l=—00 l=—00
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The last expression tells us that sampling in the time domain results in periodic repli-
cation in the frequency domain. The original signal can be recovered by multiplying
Flfsamp(u)](1r) with a rectangular window rect(p/Ap) which will single out the original
spectrum F'(u). The same operation can be written in the time domain as a convolution
of the form

e}

feamp () * Apsinc(uAp) = Y f(I/Ap)sinc(Apu —1)
I=—o

o0 o0
— 3 f(6u)sinc(u/du—1)= 3 f(lsu)sinc (“ — ”“) , (2.59)
= P ou

which is the formula allowing us to reconstruct f(u) from its samples and is known as
the interpolation formula. Analogous results hold for sampling of the frequency-domain
representation F'(u). Further discussion on the fundamentals of sampling may be found in
Bracewell 1986, Marks 1991, and the edited book Advanced Topics in Shannon Sampling
and Interpolation Theory 1993.

We already know that a function and its Fourier transform cannot both be compact
(unless they are identically zero). That is, Au and Ay as defined above, cannot both be
finite. In practice however, it seems that we are always working with both a finite time (or
space) interval and a finite bandwidth. Thus we will find it useful to abandon the above
definitions of Au and Ay in favor of less well defined yet more meaningful ones. A large
percentage of the energy of most finite-energy signals arising in physical applications will
be concentrated in a finite interval both in the time domain and in the frequency domain,
although neither f(u) nor F(u) may be identically zero outside of these intervals. For
instance, the Gaussian function gauss(u) is clearly well concentrated around the origin in
both the time and frequency domains, although it is not identically zero anywhere and its
tails extend to infinity. Strictly speaking, both the temporal extent and the bandwidth of
this signal are infinite. Since this is clearly counterintuitive, other measures of spread are
often employed. One of these is to take the temporal extent or bandwidth of the signal
as the standard deviation (or a certain number of standard deviations) of the time- and
frequency-domain representations of the signal respectively. Another measure of spread,
appropriate for certain functions which tend to diminish as we move away from their
center of gravity, is the distance between the points at which the function has dropped to
a certain fraction of its peak value, say 1/e or 0.05. A somewhat more generally applicable
measure of spread is the length of the interval which contains a certain fraction, say 0.95,
of the total energy of the signal. (All three of these measures are appropriate for the
particularly well-behaved Gaussian function.). When we speak of the temporal extent Au
and bandwidth (spectral extent) Ap of a signal, we will usually be speaking of the length of
an interval containing a sufficiently large fraction of the total energy of the signal. Having
ensured that the signal energy outside this interval is negligible, we may thus assume that
the signal is (approximately) confined to that interval. The Nyquist sampling theorem
and interpolation formula will hold approximately in this case. This definition of spread
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works well especially when we are dealing with signals of large time-bandwidth product,
a notion which is defined further below.

We recall that we take u and p to be dimensionless variables. Let us assume that
the time-domain representations of the signals we are dealing with are approximately
confined to the interval [—At¢/2,At/2] and that their frequency-domain representations
are approximately confined to the interval [—Af/2, Af/2] in real physical units. With
this statement we mean that a sufficiently large percentage of the energies of the signals

are confined to these intervals in the respective domains. This can be ensured by choosing
At and Af sufficiently large. (If the time or frequency representations of the signals are
confined to intervals which are not centered around the origin, we may simply shift the
origin of time and frequency so that this becomes the case.)

Let us now introduce the scaling parameter s with the dimension of time and introduce
dimensionless coordinates v = t/s and pu = fs. With these new coordinates, the time

and frequency domain representations will be confined to intervals of length At/s and
sAf. If we choose s = /At/Af, the lengths of both intervals will now be equal to the
dimensionless quantity VAfAt which we may denote by Au. It is often convenient to
assume that such a dimensional normalization has been performed on the signals we work
with so that the spread of the signal in the time and frequency domains are comparable
in dimensionless coordinates.

We now define the time-bandwidth product N for a set of signals, whose members we
assume are approximately confined to an interval of length Awu in the time domain and
to an interval of length Ay in the frequency domain. The time-bandwidth product (or
space-bandwidth product) is defined as

N = Aulp. (2.60)

N is always greater or equal to unity by virtue of the uncertainty relation. The time-
bandwidth product is the minimum number of samples needed to characterize or identify a
signal out of all possible signals whose energies are confined to time and frequency intervals
of length Au and Ap. If we sample the time-domain representation of a signal at the
Nyquist rate of du = 1/Ap, the total number of samples lying in the interval Aw is given by
Au/(1/Ap) = AuAp, which is simply the time-bandwidth product N. Alternatively, if we
sample the frequency-domain representation of a signal at the Nyquist rate of du = 1/Au,
the total number of samples lying in the interval Ay is given by Au/(1/Au) = Aulp,
which is again the time-bandwidth product N. (With the dimensional normalization above
which results in Au = Ap, the number of samples is N = Au? with the samples being
spaced Au=t = N=1/2 apart in both domains.)

The time-bandwidth product of the set of signals we are dealing with can often be in-
terpreted as the number of degrees of freedom or dimensionality of the set of signals. Since
signals whose energies are (approximately) confined to intervals of length Au and Ay in
the time and frequency domains can be fully characterized by N numbers, there is a one-to-

one correspondence between these signals and N-dimensional vectors r = [ry 7o ... TN]T.
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We saw above that the number of samples needed to fully characterize a signal is the
same in both the time and the frequency domain, and is given by the time-bandwidth
product N. The time-bandwidth product will remain invariant under transformations to
other representations as well, as the information content of the signal is not altered under
invertible unitary transformations of the type we discussed in chapter 1. Thus if a signal
can be uniquely characterized in a particular representation by N complex numbers, this
will also be the case in any other representation. Much like the norm and energy, the

number of degrees of freedom is a property of the signals in the abstract, and not tied to

their representations in a particular domain.

We can summarize by saying that the set of time- and band-limited signals in question
has approximately AuAp degrees of freedom. (Of course, strictly speaking, f(u) = 0
is the only such signal, so that we are continuing to talk about approximate time- and
band-limitedness). Our argument has been based on sampling theory. We sample every
1/Ap over Au so that the total number of samples is Au/(1/Ap) = AuAp, which we
interpret as the number of degrees of freedom. For a more rigorous account, see Dym and
McKean 1972, pages 129-131.

Great insight into the concept of the number of degrees of freedom can be gained
through time-frequency representations. For instance, let us consider Gabor’s expansion
whose definition we repeat (equation 2.7)

F) =33 G 1 m)wim (w), (2.61)
I m

where wy,,(u) are basis signals centered at the time-frequency point (I du,m dou), with
dudp = 1. Here we will assume that the wy,,(u) are well concentrated in their respective
time-frequency cells (of dimensions du x du) centered around (I du, m dp). (For instance,
this will be the case if we choose w(u) = 2V/4A; 05 exp(—mu?/A2) with A, = du, as
on page 63.) The number of degrees of freedom of a set of signals can be defined as
the number of Gabor coefficients chw)(l, m) which are not negligibly small for all of the
signals in this set, since these non-negligible coefficients are sufficient—to a good degree of
approximation—to completely characterize and distinguish a particular signal in this set
from the others. The region in the time-frequency plane in which the Gabor coefficients
are not negligible may be referred to as the time-frequency support of the set of signals.
The coefficients corresponding to points lying in this region are, roughly speaking, the
time-frequency samples of the signal. The number of these samples corresponds to the
number of degrees of freedom of the set of signals.

Notice that since a time-frequency area of unity is associated with each coefficient, the
number of degrees of freedom thus defined is also equal to the area of the time-frequency
support. If we assume that these non-negligible coefficients lie neatly in a rectangular
region of dimensions Au X Au, we see that the number of these coefficients is simply
(Au/déu)(Ap/du) = AulAp, which is equal to the time-bandwidth product. Thus, when
the time-frequency content of a signal is confined to a rectangular region, the number of
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degrees of freedom is equal to the time-bandwidth product. However, when the time-
frequency content of the signal is not confined to a rectangular region, the actual number
of degrees of freedom is less than the time-bandwidth product. In such cases, the two
concepts must be clearly distinguished, as will be further discussed below.

Although the above argument has been based on the Gabor expansion, similar argu-
ments are possible with any reasonably well-localized energetic time-frequency distribu-
tion. The picture is somewhat more complicated for time-frequency distributions exhibit-
ing interference terms (such as the Wigner distribution); nevertheless similar concepts
and arguments are found useful in these cases as well. As above, we may define the time-
frequency support of the set of signals we are dealing with, as the time-frequency region
outside of which the values of the Wigner distributions are negligible. Alternatively, we
may define this region by requiring that the integral of the Wigner distributions over this
region should be equal to a certain significant fraction (say 0.95) of the energies of the
signals. (Remember that the integral of the Wigner distribution over the whole plane is
equal to the energy of the signal.) Throughout this book, when we say that we assume
the Wigner distribution of a signal or a set of signals to be confined to a certain region,
we will be referring to the time-frequency support and implying that such a significant
fraction of the energy or energies are confined to that region (as we already did in fig-
ure 2.3). A recent paper dealing in a more rigorous manner with the number of degrees
of freedom concept in the context of time-frequency representations is Landau 1993. An
older reference dealing with related concepts is Vakman 1968.

Thus in the general case, we define the number of degrees of freedom as the time-
frequency support. In general, this will be smaller than the the time-bandwidth product,
unless the time-frequency support is a rectangle perpendicular to the time-frequency axes
(figure 2.4) (Lohmann and others 1996a). Quite commonly the time-bandwidth product
is simply taken to be equal to the number of degrees of freedom of a set of signals,
without regard to the shape of the time-frequency support. As we have seen, this may
overstate the number of degrees of freedom of the set of signals in question. A simple
analogy may be useful. Consider the set of points in three-dimensional space which are
confined to some particular plane. The elements of the coordinate vector r = (z,y, z) will
each assume values over the complete interval [—oco,00], but not independently so; the
number of degrees of freedom is 2 and not 3. A particularly striking example is the set of
chirp signals A chirp(u) whose single degree of freedom is represented by the number A.
However, both the temporal extent and the spectral extent of these signals are infinite.

It is important to note that the number of degrees of freedom is an approximate
concept in the sense that the number of degrees of freedom will depend on the amplitude
accuracy we are working with, since this is what determines what is negligible and what
is non-negligible. If we are working with greater accuracy, then a larger region in the u-u
plane will have Gabor coefficients which are non-negligible and the signal and its Fourier
transform will have non-negligible values over larger intervals. In the case of signals with
approximately rectangular time-frequency content, the values of Au and Ay outside of
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(@) 4 (b) 4

Figure 2.4: (a) Rectangular time-frequency support. The time-frequency area is equal
to the time-bandwidth product AuAp = 8. (b) Irregular time-frequency support. The
time-frequency area is 10, which is smaller than the time-bandwidth product AuAu = 16.

which these signals are negligible in the time and frequency domains respectively, again
depend on the accuracy we are working with. The important point is to choose the smallest
intervals outside of which the signals are truly negligible with that accuracy. Of course,
if the values of the signals are negligible outside an interval of length Awu, they will also
be negligible outside a larger interval. However, unless we choose the smallest possible
values of Au and Apu, we will be overstating the number of degrees of freedom of the set
of signals.

Until now, we spoke of the temporal and spectral extent and time-bandwidth product
of signals without discussing the origin of these finite extents. In the real world a signal
is always represented in some physical form in some physical system. These systems
which carry or process the signals always limit their temporal duration (or spatial extent)
and bandwidths to certain finite values. A physical system cannot allow the existence of
frequencies outside a certain band because there is always some limit to the resolution that
can be supported. Likewise, since all physical events of interest have a beginning and an
end, or because all physical events or systems have a finite extent, the temporal duration
or spatial extent of the signal will also be finite. For instance, a computer display with a
certain number of pixels cannot represent an image of greater space-bandwidth product.
In an optical system the size of the lenses will limit both the spatial extent of the images
that can be dealt with and their spatial bandwidths. It is these physical limitations that
determine the temporal (or spatial) and spectral extent of the signals and thus their time-
bandwidth product. Just as these may be undesirable physical limitations which limit
the performance of the system, they may also be deliberate limitations with the purpose
of limiting the set of signals we are dealing with. When a signal previously represented
by a system with greater time-bandwidth product is input into a system with smaller
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time-bandwidth product, an uninvertible process in which information is lost takes place.
(It is important to understand that signals have no physical existence outside of a system.
Even the “wire” connecting two “systems,” is a system itself. Thus signals always move
from one system to another.)

The fact that all physical systems support only a finite time-bandwidth product, means
that their effect on signals can be simulated with discrete-time systems with the same
degree of accuracy that is inherent in the continuous systems or measurement devices from
which the signals originate. Further insight on these matters may be obtained by discussing
how the discrete Fourier transform provides an approximation to the continuous Fourier
transform. The discrete Fourier transform F(j) of f(I) had been defined in equation 1.173
and is repeated here:

N—

L
\/_ =0

|_|

F(1)e=2milN j=0,1,...,N —1. (2.62)

We shall now see that provided N is chosen to be at least equal to the time-bandwidth
product of the set of signals we are dealing with, the discrete Fourier transform, which can
be efficiently computed on a digital computer using the fast Fourier transform (FFT) al-
gorithm, can be used to obtain a good approximation to the continuous Fourier transform.
The approximation improves with increasing N.

Let us consider a function f(u) and its Fourier transform F'(u) and define the period-
ically replicated functions

fpr(u) = _z: flu—nAu), (2.63)
For(p) = i F(p—nAp), (2.64)

where Au and Ay are arbitrary. It is possible to show that samples of these functions
constitute a discrete Fourier transform pair as follows (Papoulis 1977, page 74):

AuAp—1

Fpr(j/Au)=AiM > for(l/Ap) exp(—i2mjl/ Aulp). (2.65)
=0

Now, let us assume that a significant fraction of the energy of the signal is confined
to the intervals [—Au/2, Au/2] and [—Ap/2, Ap/2] in the time and frequency domains
respectively. In this case, f(u) = fpr(u) and F(p) = Fp(p) in the respective intervals.
Thus, fpr(l/Ap) = f(I/Ap) and Fp(j/Au) =~ F(j/Au). As before, AulAp = N will
denote the time-bandwidth product. To further simplify we may assume scaling such that
Au = Ap so that Au = Ay = 1/v/N. Under these circumstances, we see that the DFT
of the samples of a function are the samples of the Fourier transform of the function; or,
in other words, the DF'T maps the samples of f(u) to the samples of F(u). The sampling
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interval in the time domain is 1/Ap and the sampling interval in the frequency domain is
1/Aw and the total number of samples in both domains are N.

In the interest of easier interpretation with respect to the continuous case, the discrete
Fourier transform is sometimes expressed as

ST fe N j=N/2-1,N/2,...,N/2, (2.66)

where N is assumed to be even. This is easily seen to be identical to equation 2.62 if we
think of f(I) and F(j) as periodic functions.

2.4 Linear canonical transforms

The class of linear canonical transforms is a three-parameter class of linear integral trans-
forms which includes Fresnel transforms, fractional Fourier transforms, and simple scaling
and chirp multiplication operations, as well as certain other transforms among its mem-
bers.

Linear canonical transforms have been reinvented or reconsidered by many authors un-
der many different names at different times in different contexts, a fact which we consider
a tribute to their ubiquity. They have been referred to as quadratic-phase systems (Basti-
aans 1979a), generalized Huygens integrals (Siegman 1986), generalized Fresnel transforms
(James and Agarwal 1996, Palma and Bagini 1997), special affine Fourier transforms (Abe
and Sheridan 1994a, b), extended fractional Fourier transforms (Hua, Liu, and Li 1997c¢),
and Moshinsky-Quesne transforms (Wolf 1979), among other things.

An excellent and alternative exposition to linear canonical transforms may be found in
Wolf 1979 (chapter 9: Construction and properties of canonical transforms). This chapter
also contains an account of the history of these transforms. Among the important works in
this area we may mention Moshinsky and Quesne 1971; Quesne and Moshinsky 1971; Wolf
1974a, b, 1976; Garcia-Calderén and Moshinsky 1980; and Basu and Wolf 1982. Further
references may be found in Wolf 1979 (chapter 9).

2.4.1 Definition and properties

The linear canonical transform fan(u) = (Cvif)(u) of f(u) with parameter M is most
conveniently defined as

Cuf)(w) = [ Canlus ) () (2.6)
Cm(u,u') = Angexp [iTr(ozu2 — 2fuu’ + ’yu'Q)] ,
Am = \/_e_iﬂ/47

where «, (3, and v are real parameters independent of v and u/. Cpp is the linear canonical
transform operator. The label M represents the three parameters «, 3, and «v which com-
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pletely specify the transform. As with the Fourier transform, a linear canonical transform
can be interpreted both as a system and as a transformation to another representation.
In the former case, f(u) is the input and (Cmf)(u), or simply Cym f(u), is the output. In
the latter case, the transform gives us the representation of the signal f in another “do-

7

main.” Linear canonical transforms are unitary; that is, the inverse transform kernel is

the Hermitian conjugate of the original transform kernel: CK/Il(u, u') = C§4 (v, u), or more
explicitly

) = [ O wu)f (') da (2.65)
Cyf (u,u') = Apqexp [—m(fyzﬂ — 20Buu’ + au'2)] ,
A = (1\1/8)e/ = =B/,

1/4/1/3 is equal to the complex conjugate of /3 (see the square root convention on
page 2). That the transform given in equation 2.68 is indeed the inverse transform can be
verified by confirming the identity

/Cl\_/[l(u,u”)CM(u”, u')du" = §(u —u'), (2.69)

with the help of equation 1.8. The inverse of a linear canonical transform is also a linear
canonical transform so that we can write (Cyq f)(u) = (Crvi—1f)(u), where M~ denotes
the set of parameters of the inverse transform o,y = —7, Ginv = —0, Yiny = —Q.

We will now examine the consecutive application (also referred to as composition or
concatenation) of two linear canonical transforms with arbitrary parameters. We will start
with a signal f(u), apply a transform with the parameters aq, (1, 71 and then apply to
the result a second transform with the parameters ao, Oz, 72 to obtain finally a signal

g(u):
o) = [ x| [ Cnay ) ) ]
_ / [ / O, (1, ") O, (" ) du"] F(ul) dud, (2.70)
so that the kernel h(u,u’) of the composite operation relating g(u) to f(u) is given by
g(u) = /h(u,u')f(u')du', (2.71)
h(u,u') = /CM2 (u, u™") O, (W) du”.

Upon evaluating the final integral we find that h(u,u’) can be expressed in the form (Wolf
1979, page 387)

h(u,u') = sgn(B1B2/B3) v/ Bs e ™* exp [Z'TF(C%?,U2 — 2f3uu + 73’1/2)] , (2.72)
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where

33

ar+ 7’
152
ar+ 7’
i
ar+72

a3 = a2 —

B3 =

= (2.73)

If the factor sgn (/1 42/03) did not appear in the result, we could conclude simply that the
composition of any two linear canonical transforms is another linear canonical transform.
This is not strictly true because of this sign factor. However, we will refer to transforms
which differ from equation 2.67 by a minus sign also as linear canonical transforms, so
that we can speak of the composition of two linear canonical transforms as being another
linear canonical transform. While a more precise formulation is possible, diverting into
this technicality would not serve our purpose so that we remain with our present definition
to maintain simplicity. (The %1 is related to the fact that the class of linear canonical

transforms involves a so-called double or twofold cover of the circle, as will be briefly
discussed later.)

The composition we have just examined is not in general commutative; that is, in
general Cni, Cwv, 7 Cm,Cwm, - However, such compositions are associative; that is

(CMchQ)CM3 = CMI (CMszs)' (2'74)

Until now, we let the symbol M denote the three parameters «, &, v characterizing
a linear canonical transform. Now, we will more specifically define M as a matrix of the
form

1

ME[A B]E (2.75)

¢ D

/8 1/ﬁ]:l o/ —1/8 ]
—B+ay/B /B B—an/B /6]

with determinant AD—BC = 1. (Such matrices are called unit-determinant or unimodular
matrices.) The matrix elements are fully equivalent to the three independent parameters
«, 3, and -, which can be recovered in terms of the matrix elements as follows

D 1 /1
«Q <——|—C>,

~ B 4\B
1
ﬁ_Ea
A 1/1
=55 (5+C) e

The reason why we define M in this manner, rather than simply as a parameter vector
[ B 7], is because of a number of attractive properties of this matrix as defined. The
primary rationale behind the definition of this matrix is that the matrix corresponding



2.4. LINEAR CANONICAL TRANSFORMS 91

to the composition of two systems is the matrix product of the matrices corresponding to
the individual systems. That is,
M3 = MoM;, (2.77)

a result which can be proved by using equations 2.73. (This result is oblivious to the +1
that might appear in front of the kernel.) Furthermore, it is easy to show that the matrix
corresponding to the inverse of a transform is the inverse of the matrix corresponding to
the original transform, as we have already built into our notation:

Caf = Cm-1, (2.78)
Opt (u,u') = Opg1 (u, 1) = Ciq(u!, ). (2.79)

If desired, the defining equation 2.67 can be rewritten in terms of the matrix parameters
as follows:

m(u) = (Cmf)(u) = /CM u,u') f(u') du, (2.80)

D A
Cm(u,u') = Anp exp [iﬂ' (EUQ — ZBuu + = B '2>] )

Am = l/Be_m/él.

The set of linear canonical transforms satisfy all the axioms of a noncommutative
group (closure, associativity, existence of identity, inverse of each element), just like the
set of all unit-determinant 2 x 2 matrices. (Again, this is true to the extent that we are
willing to be flexible with signs in front of the transform integrals.) Certain subsets (or
subclasses) of the set (class) of linear canonical transforms are groups in themselves and
thus are subgroups. Several of them will be discussed further below. For example, we will
see that the fractional Fourier transform is a subgroup with one real parameter. Integer
powers of the Fourier transform are a subgroup with one integer parameter.

A rather trivial extension of linear canonical transforms are transforms which include
not only quadratic terms such as u?, u/?, uu/, but also linear terms such as u, u' in
the exponent. Any second-order expression including such terms can be expressed as a
quadratic form of (u—¢) and (u' —¢’), where € and ¢ are constants. Thus such transforms
can be obtained by shifting the input and output of linear canonical transforms as defined
above. We will not develop this extension with the understanding that it can be readily
introduced when necessary. A more involved extension is to allow elements of the matrix
M to be complex.

Some of the operational properties of linear canonical transforms are listed in table 2.8.
Of course, one must add to these all properties associated with unitarity, such as Parseval’s
relation: || fa(u)l = |lf (w)ll

We also note here the linear canonical transforms of the eigenfunctions of the Fourier
transform (Wolf 1979):

A+iB —1/2

(Carthn) (1) = [(zA i Z,B)nnml/?(A +iB)
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f(u) Sv(u)
L 25 i fi(u) > o fin ()
2. f(=u) fa(—u)
3. | M|~ f(u/M) S ()
4. flu—=¢) explim(2uéC — 2 AC)] fm(u — A€)
5. exp(i2mu) f (u) explin{D(2u — {B)] fm(u — BE)
6. explim(xu® +2¢u)lf (u)  explinéD(2u — €B)] fmr (u — BE)
7. u™f (u) [Du — B(i27) " d/du]"™ fa ()
8. (i27)~"d™ f (u) /du™ [—Cu + A(i27) " td/du]™ fa ()
9. fH(u) fan-1(w)
10. [f(u) + f(—w)]/2 [fm(u) + fm(=u)]/2
1. [f(u) = f(=u)]/2 [fv(u) — fm(=u)]/2

Table 2.8: Properties of linear canonical transforms. The expressions on the right are linear
canonical transforms of the expressions on the left. «; are arbitrary complex constants,
M, &, x are real, and n is a positive integer. M’ is the matrix that corresponds to the
parameters o/ = o, 3 = Mf, v = M?y and M” is the matrix that corresponds to the
parameters o' =, " =3, 9" =~v+ x.

D —iC
A+iB "

X exp (— 2) H, [(A2 + BQ)_l/Q\/%u] . (2.81)

2.4.2 Effect on Wigner distributions

We now discuss the effect of a linear canonical transform on the Wigner distribution or
ambiguity function of a signal. We let f denote a signal and fyg its linear canonical trans-
form, where M is the unit-determinant matrix of coefficients characterizing the transform.
Then,

Wi (Au+ B, Cu+ Dp) = Wy(u, ), (2.82)
Wi (u, ) = We(Du — Bu, —Cu + Ap). (2.83)

That is, the Wigner distributions of the transformed signal is simply a linearly distorted
form of the Wigner distribution of the original signal. This result can be demonstrated
directly from the definition of linear canonical transforms and the definition of the Wigner
distribution, although the algebra is somewhat involved. This distortion can also be
interpreted as a coordinate transformation to the new axes Upew, tnew defined in terms of
the old w, u as

Unew = Au + B,
tinew = Cu + Dp. (2.84)
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In this interpretation, we see that the Wigner distribution of the transformed signal is of
the same functional form W(:,-) with respect to the newly defined axes: W (unew, tinew)-
The Jacobian of the above two-dimensional coordinate transformation is simply the de-
terminant of M, which is by definition equal to unity. Thus this transformation is area
preserving. It distorts, but does not concentrate or deconcentrate the Wigner distribution.
For instance, consider the time-frequency support of a signal, defined as the time-frequency
region which contains a certain significant percentage of the signal energy. Then, the

similarly defined region corresponding to the transformed signal, containing the same per-
centage of the signal energy, will have the same support area. That is, the time-frequency
area in which this percentage of the signal energy is contained remains invariant under a
linear canonical transform. Figure 2.5 illustrates these concepts for a Wigner distribution
with approximately rectangular time-frequency support.

(a) 4l H (b) u a1 Hnew

-4 \ 4u -4 4 Upew

Figure 2.5: (a) Rectangular time-frequency support of the Wigner distribution of f(u) and
the time-frequency support of the Wigner distribution of its linear canonical transform
fm(u). (b) Time-frequency support of the Wigner distribution of fa(u) with respect to
the axes Upew and pinew, which is seen to be of the same rectangular form as the support
of the original Wigner distribution with respect to the axes u and pu.

Remembering that the Wigner distribution gives us the distribution of signal energy
over time and frequency, the time-frequency area preserving nature of linear canonical
transforms means that such transforms do not concentrate or deconcentrate energy in
the time-frequency plane. (Since linear canonical transforms are unitary, the total signal
energy is conserved to begin with.) This property has many interpretations in physics,
some of which we will discuss in chapter 4. For the time being, we note that since the
area of the time-frequency support for a set of signals can be interpreted as the number
of degrees of freedom, conservation of this area also implies conservation of the number
of degrees of freedom and thus information, which is consistent with the fact that linear
canonical transforms are invertible.

The results just mentioned are of sufficient importance to warrant an alternative treat-
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ment (Bastiaans 1979a). Earlier, we had presented the general form of the kernel trans-
forming the Wigner distribution for any given linear transform (equation 2.44). Special-
izing this to linear canonical transforms we find that

Ky (u, ps ', 1) = B6[pu — (ou — u)]o[p’ — (Bu —~yu')]. (2.85)

The value of the Wigner distribution Wy (u, u) at a certain time-frequency point is mapped
to another point which is determined by setting the arguments of the delta functions equal

-5 2113)

This equation can be algebraically rewritten as
-1
! A B
Yl = “, (2.87)
Iz ¢ D 17

A=~/8, B=1/8, C=-B+ay/8, D=a/B, (2.88)

just as defined previously in equation 2.75. In the light of these equations, the kernel can

to zero:

where

be rewritten as
Kam(u, v’ p') = 6(u' — Du+ Bp) §(p' + Cu — Ap). (2.89)

This can also be derived directly by substituting equation 2.67 in equation 2.44. This form
of the kernel clearly indicates the pointwise mapping involved. The value of the Wigner
distribution at time-frequency point (u, ) is mapped into the new time-frequency point
(Unew, fnew) = (Au + Bu, Cu + Du) so that

Wiy (u, 1) = Wy(Du — Bu, —Cu + Ap), (2.90)
Wiy (Au+ B, Cu+ Dp) = Wy(u, ). (2.91)

These equations are the same as equations 2.82 through 2.84.

To summarize, when a function undergoes a linear canonical transform, its Wigner
distribution undergoes a pointwise geometrical distortion or deformation: the value of the
Wigner distribution at each time-frequency point is mapped to another time-frequency
point. (We will see in chapter 4 that these points can be interpreted as optical rays.) It is
often easier to visualize this by concentrating on the boundary of the region to which the
Wigner distribution is approximately confined; the region in which most of the energy of
the signal lies. However, the area preserving nature of the distortion is more general. For
instance, let us concentrate on any particular closed contour of the Wigner distribution,
which does not necessarily contain a large percentage of the signal energy. The region
defined by such a contour will be distorted and deformed but its area will remain the
same regardless of the parameters of the linear canonical transform. Even more generally,
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if we take any region R in (u, ) space, and find the image of this region under a linear
canonical transform, their areas will always be the same. (If R is a given region in (u, yt)
space, then its image is simply the set of points (Au+ Bu, Cu+ Du) such that (u,u) € R.)

Until now we limited our attention to the Wigner distribution. The ambiguity function
is affected in a similar way. We remember that the ambiguity function is essentially the
two-dimensional Fourier transform of the Wigner distribution (equation 2.34). Thus, the

two-dimensional Fourier transform property given in equation 1.296 allows us to show that
the ambiguity function of the linear canonical transform of a function is related to that of
the original function through the relation

Ap,a, ) = Ap(Du — B, —Cu + Afi). (2.92)

More generally, time-frequency distributions of the Cohen class will exhibit a similar dis-
tortion property if the kernel satisfies Yrpg(u, ) = Yrpp(Du — Bu, —Cu + Ap) for all
u, v and all A, B, C, D satisfying AD — BC =1 (Ozaktas, Erkaya, and Kutay 1996).

2.4.3 Special linear canonical transforms

We now consider a number of important special cases of linear canonical transforms. We
will see that most of these are operations that we have already defined in table 1.2. We
will present the forward kernel Cyp(u,u’), the inverse kernel Oy (u,u') = Cyp-1(u,u’),
the result of the transform fyg(u), the matrix M, and the Wigner distribution of the
transformed signal Wy, (u, 11).

First, we consider simple scaling which is characterized by

My (u,u') = VM §(u — Mu'), (2.93)
My (u,u') = My gy (u,u') = /1/M 6(u — ' /M), (2.94)
Oy f (1) = Mg f(u) = \/1/M f(u/M), (2.95)

M o] [ym o]
MM_[Ol/M]_[ OM] ’ (2.96)
WMMf(“? w) = Wf(u/M7 M), (2.97)

where M > 0. Here M), is the transform matrix corresponding to the scaling operation
My with kernel My (u,u'). (It is unfortunate that we use M also to denote a generic
transform matrix, and that we use M to denote both the functional form of the kernel
and its parameter.) The effect on the Wigner distribution is illustrated in figure 2.6b. To
see that this is indeed a special case of equation 2.67 requires some care. First notice that
A=M=1/D and B =0 = C implies Ma = f = v/M — oo from equations 2.76. Now,
the desired results can be obtained by virtue of equation 1.4. The identity operation is a
further special case of the scaling operation with M = 1.
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We now turn to chirp multiplication for which

Qq(u,u') = e_i”q”26(u — '), (2.98)
Q,  (uyt) = Qqlu,u') = ™ §(u — u'), (2.99)
Cq, /(1) = Quf (u) = ™% f(u), (2.100)
-1
1 0 1 0
Qq:l_qJ:lq 1] , (2.101)
Wo, r(u, ) = Wiu, p+ qu). (2.102)

Here Q, is the transform matrix corresponding to the chirp multiplication operation Q,
with kernel Qq(u,u’). Chirp multiplication is characterized by a lower triangular ma-
trix. The effect on the Wigner distribution is a special case of property 15 in table 2.2
(figure 2.6¢). It is also of some interest to note that the matrix Qg can be written as
Q, = exp(—qlower) where lower is a 2 x 2 matrix [0 0;1 0].

The dual of chirp multiplication is chirp convolution for which

R, (u,u) = e_i”/4\/m explin(u — u')?/r], (2.103)

R u,u') = Ry (u, ') = €™/*(1//7 ) exp|—im(u — u')? /7], (2.104)
Cr, f(u) =R, f(u) = f(u) * e_”/d‘\/ﬂ exp(imu®/r), (2.105)
-1
1 r 1 —r
RT:[O 1]:[ 1] , (2.106)
Wr, g (u; ) = Wylu = rp, p). (2.107)

Here R, is the transform matrix corresponding to the chirp convolution operation R, with
kernel R,.(u,u’). The effect on the Wigner distribution is a special case of property 14 in
table 2.2 (figure 2.6d). Chirp convolution is characterized by an upper triangular matrix.
It is also of some interest to note that the matrix R, can be written as R, = exp(r upper)
where upper is a 2 x 2 matrix [0 1;0 0].

The geometrical effect of chirp multiplication and chirp convolution on the Wigner
distribution, or more precisely the support of the Wigner distribution, is referred to as
“shearing.” This geometrical distortion is a special case of that described by equation 2.82,
and like all distortions described by this equation, is area preserving. This is easily seen to
be the case by considering the effect of shearing on a rectangle. Shearing may be viewed
as cutting this rectangle into narrow strips and sliding these with respect to each other
(figure 2.7).

We will see later that a general area-preserving distortion, characterized by a unit-
determinant matrix, can be decomposed in terms of these two kinds of area-preserving
vertical and horizontal shearing operations. Also note that shearing the Wigner distribu-
tion in a certain direction will not change the projection of the Wigner distribution (its
Radon transform) along that direction, a fact which is also evident from figure 2.7. (As
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Figure 2.6: (a) Region representing the support of a signal. Effect of (b) My, (¢) Qy, (d)

Ri, (e) F, (f) FO°.
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Figure 2.7: Horizontal (a) and vertical (b) shearing as sliding of narrow strips.

an additional exercise, the reader may want to show that such general area-preserving
distortions always map a bundle of parallel lines to another bundle of parallel lines, and

ellipses to ellipses.)
The Fourier transform is also a special case with

Fo(u,u') = e "7/t e=2mu’ (2.108)

Fo (u,)) = Fi(u,ul) = e/t (2.109)

Cr, f(u) = Ficf(u) = e/t / Flu)e= 2 gy (2.110)
Flc=[_2 (1)]=“ _(1)] 1, (2.111)

W p(u, p) = Wi(—p,u). (2.112)

The effect on the Wigner distribution is seen to be property 16 in table 2.2 (figure 2.6¢).
The factor exp(—im/4) is not normally a part of the definition of the Fourier transform.
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However, it is this form which is the special case of linear canonical transforms (Wolf
1979). This usually does not cause any trouble since it differs from the standard definition
only by a unit-magnitude constant. The reader may also have noticed that Fj. as defined
above satisfies 71 = —Z rather than F* = T satisfied by the standard definition. This
fact is related to the sign factor discussed on page 90. (Similar comments also apply to
the fractional Fourier transform introduced below.)

Note that all of these special cases, with the exception of the Fourier transform, are

one-parameter subgroups of the group of linear canonical transforms. Another further
such group is the fractional Fourier transform, characterized by the matrix

. cos(am/2) sin(ar/2) cos(ar/2) —sin(ar/2) |
e = : =] . (2.113)
—sin(an/2) cos(arn/2) sin(an/2)  cos(am/2)
and the rotational time-frequency distortion (figure 2.6f)
Wxe f(u, p) = W [cos(am/2) u — sin(am/2) p, sin(am/2) u + cos(am/2) p] . (2.114)

This one-parameter subgroup is also referred to as the elliptic subgroup (Wolf 1979). It is
also of some interest to note that the matrix F{. can be written as Ff. = exp[(an/2)F]
where Fj. is the 2 x 2 matrix [0 1; —1 0]. We emphasize that here F and F® denote the
2 x 2 linear canonical transform matrices associated with the continuous Fourier and frac-
tional Fourier transforms; they do not denote the discrete Fourier and fractional Fourier
transform matrices for which these symbols are used elsewhere in this book.

Another one-parameter subgroup which we will not further discuss has the matrix

HYP, — l cosh(am/2) sinh(am/2) ] _ l cosh(arw/2) —sinh(ar/2)

-1
sinh(ar/2) cosh(am/2) — sinh(ar/2) Cosh(aw/Q)] (2.115)

and is referred to as the hyperbolic subgroup. We might also add for completeness that
the one-parameter subgroup corresponding to the scaling operation is sometimes written
with M = exp(an/2) and referred to as the parabolic subgroup (Wolf 1979).

We will briefly mention a number of additional special cases. First we consider the
transform characterized by an arbitrary unit-determinant lower triangular matrix

M 0 1tol[Mm o
[—qM 1/M]:l—q 1“ 0 1/M]’ (2.116)

which we have written as the composition of a scaling operation followed by a chirp
multiplication, so that the effect of the linear canonical transform corresponding to this
matrix is to take f(u) to

e J1/M f(u/M). (2.117)

Also, we may consider the transform characterized by an arbitrary unit-determinant upper

M r/M | |17 M 0
l01/M]_l0 1“01/Ml’ (2.118)

triangular matrix
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which we have written as the composition of a scaling operation followed by a chirp
convolution, so that the effect of the linear canonical transform corresponding to this
matrix is to take f(u) to

e—iw/‘*\ﬁ ™/ J1/M f(u/M). (2.119)
r
Matrices of the remaining two triangular forms can be decomposed as follows:
—r/M M _ |t M 0 0 1 , (2.120)
—-1/M 0 0 1 0 1/M -1 0
0 M _ 10 M 0 0 1 . (2.121)
—1/M —gM —q 1 0 1/M -1 0

The second of these corresponds to a scaled Fourier transform with a residual phase factor.

Lastly we mention that other simple operations, such as coordinate shifting or mul-
tiplication by a phase factor, also become special cases of linear canonical transforms if
linear terms are allowed in the exponent of the kernel (as discussed on page 91).

2.4.4 Decompositions

We have already given above a number of decompositions for triangular matrices. Here
we list a number of further decompositions for the general case:

aa)- e[ o] e
= _(D—l)/; ?H(l) li]l(A—l)/]; (1)] (2.123)
N _c/fll ?] [ﬁ 1/,2] lé B/ﬂ (2.124)
N (1) B/li_ _1/1()) DO] lc/; (1)] (2.125)
= _g 1/1_2_ _—? (1)HA/; (1)] (2.126)
_ _D/; (1)--3;)1/2][‘?‘1)HA/; (1)] (2.127)
SRRl s] e
e e e

Care must be exercised when a term appearing in the denominator of any of the matrix
elements is zero. The decompositions will remain valid if the limits are evaluated carefully.
Some of these decompositions are from Nazarathy and Shamir 1982a.
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These decompositions are very easy to demonstrate when stated as matrix products
in the above manner. The reader should nevertheless see how these decompositions work
out in terms of integral transforms to gain familiarity with them. Remember that lower
triangular matrices correspond to chirp multiplication, upper triangular matrices to chirp
convolution, diagonal matrices to scaling, and skew diagonal matrices to Fourier transform-
ing. Thus, these decompositions show the many ways in which a general linear canonical

transform can be decomposed in terms of these more elementary operations. The decom-

positions given in equations 2.122 and 2.123 are referred to as canonical decompositions
type I and type II, respectively (Papoulis 1974, 1977). (These can be obtained from each
other by taking the transpose of both sides of these decompositions.) It is also useful to
interpret these decompositions in terms of “shear diagrams,” which show how the overall
distortion of the Wigner distribution can be broken down into simpler shearing operations.
We illustrate this concept with equation 2.122 in figure 2.8.

Equations 2.122 and 2.123 show how any unit-determinant matrix can be written as
the product of lower and upper triangular matrices. We have already seen that these lower
and upper triangular matrices (which correspond to chirp multiplication and convolution)
geometrically correspond to vertical and horizontal shears. Since it is easy to see that
these shears preserve area, and since the distortion associated with any unit determinant
matrix can be decomposed into such shears, it follows that such distortions are also area
preserving. As previously stated, this result also follows more directly from the facts
that the determinant of the matrix is the Jacobian of the geometric distortion and that
distortions with unity Jacobian are area preserving.

It is also possible to write equations 2.122 through 2.129 in operator form as follows:

Ra-1)/c Q-c¢ R(p-1)/C> ( )
Qu-py/B RB Qu-a)/B> ( )
Q_cja MaRpya, ( )
Rp/p Mi/p Q_c/p> (2.133)
(Q—p/B MB) F Q_a/B, ( )
Q p/pMpF Q a/p; ( )
(Rajc M_1/¢) F Rpjcs ( )
Rajc M_1yc F Rpjc- ( )
The last two pairs have been repeated so as to maintain parallelism with the list of matrix
decompositions. These formulas are analogous to what are known as Baker-Campbell-
Hausdorff formulas (see the discussion surrounding equation 1.245).

At this point, the reader should be able to interpret any decomposition in all of the
following ways and understand the relationships between these interpretations:

e Decomposition into matrices.

e Decomposition into consecutive integral transforms.
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Figure 2.8: (a) Time-frequency support of the Wigner distribution of a signal. (b) Result
of first horizontal shear. (c) Result of vertical shear. (d) Result of second horizontal
shear, which is the time-frequency support of the linear canonical transform of the signal.
A=05 B=-05C=05 D=15.

e Decomposition into abstract operators.

e Decomposition into chirp multiplications and chirp convolutions, and scaling opera-
tions and Fourier transforms.

e Decomposition of the overall geometric distortion of the time-frequency support
of the Wigner distribution into horizontal and vertical shears, and scalings and
rotations.

Decomposition into hyperdifferential operators will be added to this list later in this chap-
ter. Further interpretations will be possible in an optical context: decomposition into
lenses, sections of free space, imaging systems, and Fourier transforming systems. Any of
these interpretations can be used to verify a particular decomposition, but matrix mul-
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tiplication is often the simplest. Of course, we remember that these correspondences are
valid within a factor of £1.

Any linear canonical transform can be obtained from another by properly scaling it
and appending chirp multiplications to both ends:

A B| 1 0| B/B 0
C D| | (DB-DB)/B* 1 0 B'/B

XlA' B 10

¢ D ] l (AB' — A'B)/BB' 1 ] (2.138)

This result can be specialized by replacing either or both linear canonical transforms by
special transforms such as Fourier, scaling, fractional Fourier, chirp multiplication, chirp
convolution, and so forth. Thus, for example, a Fourier transform can be expressed as
a chirp multiplication followed by a scaling operation followed by another chirp multipli-
cation. A dual of this result based on appending chirp convolutions rather than chirp
multiplications to both ends also exists. Further variations may be obtained by changing
the position of the scaling matrix in the above equation.

It is worth explicitly writing some of the special cases of the above equation for future
reference:

Cm = QM F*Qy,, (2.139)
CMm = Qg M, F Qyys (2.140)

which hold for suitable choices of the parameters.

We will most commonly use the canonical decompositions given by equations 2.122
and 2.123. However, if both B and C are zero, it may be more convenient to employ the
alternative decomposition (Papoulis 1977):

M 0] 1 o][1 —xMm
0 1/M | | (M *=M32)/X 1|0 1

1ot x
><l(M—1—1)/X 1“0 1]’ (2.141)

where X is a parameter of our choosing.

We finally note that the operators Q, and R, can be referred to as being duals of each
other when ¢ = r, since they correspond to each other under Fourier transformation (chirp
multiplication corresponds to chirp convolution in the Fourier domain and vice versa):

Q, =F 'R, F, (2.142)
R, = FQ,F L. (2.143)

These equations are nothing but the convolution and product theorems for the Fourier
transform.
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2.4.5 Transformation of moments

The matrix M also allows one to write simple expressions for the transformation of the

first- and second-order moments of a signal, relating the moments of the linear canonical

transform to the moments of the original signal. Let w and @ denote the first-order
moments of the Wigner distribution of f(u):

S uWy(u, p) dudp
~ Wy, p) dudp” (2.144)
S pWy(u, ) dudp

=T () dudpe”

and define the first-order time-frequency moment vector U = [u
to show that this vector transforms as (Bastiaans 1989, 1991b)

S|

(2.145)

=

7i)T. Then, it is possible

ﬁfM = Mﬁf. (2.146)

That is, the first-order moment vector of the transformed signal is obtained simply by mul-
tiplying the moment vector of the original signal by M. Now, let us define the nonnegative-
definite centralized second-order moment matrix (moment of inertia tensor)

—_77)2 77 — 1
(u—1)(p — 1) (1 — 1)
where the various second-order moments are defined in a manner similar to the first-order
moments. It is possible to show that these are transformed as (Bastiaans 1989, 1991b)

P, = MP;M", (2.148)

a result which preserves the nonnegative-definiteness of the moment matrix.

Since Gaussian signals are completely characterized by their first- and second-order
moments, these results are particularly useful when dealing with such signals. We note
that the determinant of Py, is the same as that of Py. On the other hand, the trace of
Py, will be the same as that of Py if and only if M is a rotation matrix. (The square
root of the determinant is a measure of the support area whereas the trace corresponds
to the moment of inertia of the Wigner distribution.) Further details and discussion with
applications in optics may be found in Bastiaans 1989, 1991b.

2.4.6 Linear fractional transformations

Let us consider the linear canonical transform fyg(u) of a unit-energy complex Gaussian
function f(u) with complex radius r.:

flu) = @S[1/r )V e e Q1 r] > 0, (2.149)

— TellW 2
(n %3?1[% c]]) } (2.150)

fai(u) = (2S[1/ri]) V4 eimel /e (2.151)

Wy(u, ) = 2exp {—27r l%[l/rc]qu +
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whnere

, (2.152)

is the complex radius of fy(u) and R[1/r.] and 3[1/r.] are the real and imaginary parts

of 1/r.. (The term complex radius comes from optics, where r. is interpreted as the ra-

dius of a wavefront.) We see that the linear canonical transform of a complex Gaussian
function with given complex radius r. is always another complex Gaussian function with
complex radius .. The relationship between the complex radius of the transformed func-
tion and that of the original function can be cast in a simpler form if we use the A, B, C, D
parameters instead of a, 3,7. Using equation 2.76 we obtain (Bastiaans 1989, 1991b)

,  Arc+B

e ™= Cr.+ D’

(2.153)
Such functional relationships are referred to as linear fractional transformations. (When
3[1/r.] = 0, we expect to recover the simple chirp function oc exp(imu?/r) with R[1/r.] =
1/r. = 1/r. However, since the chirp function does not have unit energy, this does not
follow as a special case of equation 2.149 by letting [1/r.] — 0. Nevertheless, the result
r" = (Ar + B)/(Cr + D) still holds for such chirp functions.)

Linear fractional transformations constitute an alternative to the matrix formulation of
linear canonical transforms. Equation 2.153 can be generalized to arbitrary finite-energy
functions (Bastiaans 1989, 1991b). Let us define the complex quantities Z and Y =1/7
as

I _ W_Q_U—Q
z7=2 14 ol (2.154)
" ’
un u? p? — up?
y— Ve (2.155)
u? u?

where the moments are those of the Wigner distribution of the arbitrary function (see
page 104). (If desired, Z and Y can also be expressed in terms of moments defined in the
time and frequency domains.) Now, let Z denote the complex parameter associated with a
function f(u). The complex parameter Z' associated with the linear canonical transform
of f(u) is given by

AZ+ B
= 2.156
CZ+D ( )
Likewise, the complex parameters Y and Y’ are related through
DY +C
Y = — . 2.157
BY + A ( )

We see that the Z parameter transforms in the same way as the complex radius and is
thus a generalization of this concept for arbitrary signals. Let us consider some special
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cases. First, consider chirp convolution. In this case A =D =1, B =1, and C' = 0. Then

7'=7+ T, (2.158)
1 1
VoV +r. (2.159)

Second, consider chirp multiplication for which A =D =1, C = —q, and B = 0. Then

Y =Y —gq, (2.160)
11

— == _y 2.161
i =5 4 ( )

We will see in chapter 3 that chirp convolution corresponds to free-space propagation
and that r represents the distance of propagation. Thus, the effect of propagation on
the Z parameter is simply to increase it by the distance of propagation. We will also
see that chirp multiplication corresponds to passage through a thin lens and that 1/¢
corresponds to the focal length of the lens. This leads to the well-recognized lens formula
1/Z" = 1/Z — 1/(focal length). If we make an analogy with electrical circuits, the Z
parameter is like an impedance and propagation through free space is like the addition of
a series element; the Y parameter is like an admittance and passage through a lens is like
the addition of a parallel element.

We finally add that it is also possible to generalize these results to non-centered Gaus-
sian or quadratic-phase signals passing through systems which distort the Wigner distri-
bution in an affine manner (that is, including time/space and frequency shifts).

2.4.7 Coordinate multiplication and differentiation operators

The coordinate multiplication operator I/ and the differentiation operator D were seen
to switch roles when we transform to the Fourier domain. Functions related to each
other through linear canonical transforms may be considered representations of the same
abstract signal in different linear canonical transform domains. We now seek the relation-
ship between the coordinate multiplication and differentiation operators associated with
these different domains. Uy will denote the operator which multiplies by the coordinate
variable and Dy will denote the operator which differentiates with respect to the coordi-
nate variable, both in the domain represented by the matrix M. Since the effect of Un
(or Dy) amounts to first taking the linear canonical transform, then coordinate multi-
plying (or differentiating), and then going back to the original domain, we can write the
relationship between these operators as

Um = CK/IIUCM,
Dy = Cyf DO (2.162)

By using properties 7 and 8 in table 2.8, it is possible to show that

[;’x]=[é§][%] (2.163)
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An alternative development of linear canonical transforms may be found in Wolf 1979,
where these equations are taken as the defining characteristics of linear canonical trans-
forms and the integral form is subsequently derived. (It should be noted that Wolf poses
the same idea in a different form by concentrating on the transformation between the
different representations of the same operator U, rather than the relationship between the
different operators Uy and U which both coordinate multiply in their respective domains.)

2.4.8 Uncertainty relation

The standard deviations of f(u) and fyp(u), denoted by Au and Aung respectively, satisfy

(Wolf 1979)
AuAupy > |B| /4, (2.164)

which reduces to the ordinary Fourier uncertainty relation when the linear canonical trans-
form in question is the ordinary Fourier transform.

2.4.9 Invariants and hyperdifferential forms

A number of Hermitian operators are invariant under some of the special canonical trans-
forms we have discussed. An operator H is invariant under Cyp if and only if Cl\_/IIHCM =*H,
so that ¢ = Hf implies (Cmg) = H(Cmf). These invariant operators are (Wolf 1979,
page 391):

Har = 2%%(1/{ D+DU) = 27, under scaling or parabolic,

Hr = 2riD? under chirp convolution,

Ho = QW%I/{Q, under chirp multiplication,

Huyp = 2%%(7)2 —U?) = 27, under hyperbolic,

Hir = 2%%(@2 +U? = 279, under fractional Fourier transform.

The invariance of these operators can be demonstrated directly by using equations 2.162
and equation 2.163. Invariance can equivalently be stated as a commutation relation
since CK,Il”HCM = H implies HCp = CmH. For instance, we can write Q;llﬂ Qy = U?
which means that 42 commutes with Q,. Thus, eigenfunctions of these operators are
also eigenfunctions of the indicated special linear canonical transforms. We also note that
Hep = ATA+1/2 = AAM — 1/2, where A was defined in equation 1.249.

We have already discussed several one-parameter subgroups of the group of linear
canonical transforms. Noting that most of these have the property that when their pa-
rameter is zero, they reduce to the identity transform, we will now seek hyperdifferential
forms for these operators of the form exp(—ipH), where p is the relevant parameter. We
know that exp(—ipH) is unitary if and only if H is Hermitian. The hyperdifferential forms
of the various special linear canonical transform operators we have discussed can be given
in terms of the above defined Hermitian operators as follows (Wolf 1979, page 408):

My = exp(—i In M Hyp) = exp[—i27 In M(UD + DU) /2] = MITmUPFTPUL (9 165)
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R, = exp(—irHp) = exp(—imrD?), (2.166)

Q, = exp(—iqHg) = exp(—imq?), (2.167)

HYP, =exp|—ilar/2)Huyp], (2.168)

Fi = exp[—i(am/2)H r] = exp[—i(an?/2)(U* + D?)]. (2.169)

The unitary operators given above are sufficient to construct any linear canonical trans-
form operator by concatenation. This follows from the matrix decompositions given in
section 2.4.4. By using the hyperdifferential forms given above, we can also obtain a
Baker-Campbell-Hausdorff formula corresponding to each matrix decomposition appear-
ing in section 2.4.4. These abstract operator formulas, can then be specialized to any
domain or representation. For example, using equation 2.124 for the matrix given in
equation 2.113, we obtain

C(?SO[ sin «v _ 10 CoS & 0 1 tanca . (2.170)
—sina  cosa —tana 1 0 1/cosa 0 1

Now, we recognize this decomposition as a chirp convolution followed by scaling followed

by chirp multiplication (see page 95 onwards). Identifying r = ¢ = tana and M = cos «

and using the hyperdifferential forms given above, one immediately obtains equation 1.245.

We should perhaps also note that if Cnp = exp(—ipH) is the hyperdifferential form of

a particular linear canonical transform Cug, it is necessarily the case that H is invariant
under that transform. That is,

ePHY e~ P = 3, (2.171)

which is true since e* and H commute.

Thus, to the list of alternative interpretations of decompositions given on page 101, we
may add decomposition into hyperdifferential operators. Each interpretation is associated
with a different set of objects. These sets of objects are: matrices; integral transforms;
abstract operators; chirp multiplication, convolution and other operations; geometric dis-
tortion operations; and hyperdifferential operators. In later chapters, we will add optical
components to this list.

2.4.10 Differential equations

We now consider differential equations of the form

;9w

Hfp(u) = op (2.172)

where H is a quadratic Hermitian operator in ¢/ and D. Since the Hermitian conjugate of
DU is UD and vice versa, such an operator may only contain terms proportional to /2,
D?, and UD + DU. The solution of this equation is

folw) = e fo(u), (2.173)
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where fo(u) serves as the initial or boundary condition. (To prove that this satisfies
equation 2.172, it is sufficient to expand the exponential into a series.) Alternatively, the
solution can be expressed as a one-parameter canonical transform (Wolf 1979, page 410):

Cp,=e PH, (2.174)
£o(u) = (Cylfolu /c w, ') folu!) du (2.175)

The operator C, may be referred to as the time-evolution or Green’s operator for the system
governed by the differential equation in question. The associated kernel is known as the
Green’s function Cp(u, ), which is simply the response of the system to fo(u) = 6(u—u').
(Wolf 1979)

Certain functions will preserve their forms under the one-parameter linear canonical
transform described above. Let 1) (u) be an eigenfunction of H with eigenvalue A. Then

Clia(() = [ Cylusu)oa(u) du = ™7 (u) = €= () (2.176)

We see that the dependence of Cp[1x(u)](u) on u and p is separable. The eigenfunctions
corresponding to some of the operators we have discussed are

YRy (u) = eT2mVA/Tu A>0 chirp conv.,
Yo, (u) = 0(ux/A/7) A>0 chirp mult.,
Yrry(u) = Pr_i/2(u) A=n+1/2, n=0,1,... frac. Four. trans.,

where 95 _1/5(u) is the (A — 1/2)th order Hermite-Gaussian function (also see page 44).
Further discussion of the eigenfunctions of linear canonical transforms may be found in
Wolf 1977.

2.4.11 Symplectic systems

We will begin by mentioning the concept of a form. The most common example of a form
is the scalar inner product of two signals or vectors. It is often of interest to inquire into
the nature of the set of systems under which such a form is preserved (is invariant). We
know that the inner product of two signals remains the same under passage through a
unitary system. We also know that physically this corresponds to a system conserving
power or energy (since the norm is a special case of the inner product and signal energy
is the square of the norm, and since signal energy usually corresponds to physical energy
or power). The inner product is an example of a symmetric form.

An example of an antisymmetric form is the symplectic form. Here we will consider the
symplectic form < [uy, p1]7, [ua, u2]T > of two space-frequency (or time-frequency) vectors
[ui, 1] and [ug, po]™, which we define as (Folland 1989)

01 U
<[ur, m]", [ug, po] " = [un, ] l 10 ] l MZ ] = Uiz — ugfi. (2.177)
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The antisymmetric 2 X 2 matrix appearing in the definition will be denoted by the symbol
J and satisfies JT = —J = J~!. We see that the symplectic form of two space-frequency
vectors gives the (signed) area of the parallelogram defined by those two vectors. (To see
this, recall that the signed area of a parallelogram is given by the vector cross product of
the vectors defining it, and that wuipue —uguy is nothing but the value of this cross product.
The “sign” here refers to the direction of the resultant cross product vector.) We also

note that the symplectic form can be interpreted as the space-frequency hypervolume

for higher-dimensional spaces as well. Thus physically, preservation of the symplectic
form corresponds to invariance of space-frequency area or volume, a fact that will become

important in chapter 4.
Now, let us consider a matrix M = [A B; C' D] mapping the space-frequency vectors
[u1, p1])T and [ug, po]T into M [ug, u1]T and M [ug, po]T. Equating the symplectic form of

these new vectors to the original symplectic form as

<Mlur, p1]", Mlug, o] === [ur, 1] ", [ug, p2) " =, (2.178)

T
(MIWD JM[““’]:[UI,M]J lwl (2.179)
231 M2 M2

leads us to the condition
MTIM =J, (2.180)

for the preservation of the symplectic form under the mapping represented by M. Matrices
M satisfying this relation are called symplectic matrices; they preserve the symplectic
form. In the one-dimensional case we are considering, it is easy to show that this condition
is fully equivalent to the unit-determinant condition AD — BC' = 1. Thus, the matrices
characterizing linear canonical transforms introduced in equation 2.75 are symplectic.
Although trivial in the one-dimensional case, similar results hold for higher dimensions
as well (Folland 1989). In general, matrices are called symplectic if they preserve the
symplectic form (which corresponds to preservation of space-frequency area or volume),
and the condition for this turns out to be of the same form as equation 2.180, which is
not simply equivalent to a unit-determinant condition in higher dimensions. The matrices
characterizing multi-dimensional linear canonical transforms are always symplectic.

Moving further in this direction is beyond what we can achieve in this book. The
interested reader is referred to Folland 1989 (particularly chapter 1: The Heisenberg group
and its representations, and chapter 4: The metaplectic representation) and Guillemin and
Sternberg 1984 (chapter 1: Introduction). Another interesting work is Turski 1998. We
will revisit these issues in an optical context in section 4.8.

We finally note that the symplecticity of matrices characterizing linear canonical trans-
forms can be alternatively shown as follows: First, we can easily show that the matrices
for chirp multiplication and chirp convolution satisfy the symplecticity definition given
above. Then, we can show that if two matrices satisfy this definition, all their products
and inverses also do. Since any linear canonical transform can be expressed as the prod-
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uct of chirp multiplications and chirp convolutions, we can then conclude that the matrix
associated with any linear canonical transform is symplectic.

2.4.12 Connections to group theory

By now we have talked about quite a number of different sets of objects in association
with linear canonical transforms. These sets of objects are: matrices; integral transforms;
abstract operators; chirp multiplication, convolution and other operations; geometric dis-
tortion operations; hyperdifferential operators; and optical operators (to be introduced
later).

Each of these sets of objects together with a rule of composition satisfy the axioms of
a group: (i) The composition of any two elements of the set is also an element of the set
(closure). (ii) There exists an identity element such that the composition of any element
with that identity is again the same element. (iii) Each element has an inverse such that
the composition of any element with its inverse is the identity element. (iv) Composition
is associative.

It is not difficult to show that any of the sets of objects we considered and their com-
position rules constitute a group. Furthermore, for every element in one of these groups,
there are corresponding elements in each of the other groups, and these correspondences
are preserved under composition (save for a possible sign) (Wolf 1979). If we ignore dif-
ferences caused by =+ signs, these correspondences become one-to-one. Such groups are
called isomorphic to each other.

Some groups are given special names. In particular, the group of real 2 x 2 matrices of
determinant +1 is referred to as the SL(2,R) group (Dym and McKean 1972, page 273).
All of our groups are isomorphic to this group. The notation and definition offered in
Folland 1989, page 171 is slightly different but equivalent: The symplectic group Sp(2,R)
is the group of 2 x 2 real matrices which preserve the symplectic form. (A matrix “pre-
serves the symplectic form” if and only if it is symplectic.) Dym and McKean (1972,
page 275) also define the one parameter subgroup SO(2) of matrices of the form given by
equation 2.113. Thus fractional Fourier transforms as a group are isomorphic to the group
denoted as SO(2).

As we have noted on several occasions, the above correspondences are true only to the
extent that we are willing to be flexible with + signs. While it is beyond the scope of this
book to present a more precise formulation (see Guillemin and Sternberg 1984, Folland
1989), we mention that linear canonical transforms more precisely constitute a metaplectic
group Mp(2,R), rather than a symplectic group. The group Mp(2,R) is what is known
as a double cover (or twofold cover) of the group Sp(2,R). Linear canonical transforms
are not strictly isomorphic to the symplectic group, but are rather locally isomorphic.

An example of the application of linear canonical transforms and group theoretical
methods to optical imaging and image processing may be found in Seger and Lenz 1992
and Seger 1993.
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2.5 Generalization to two and higher dimensions

Most of the concepts presented in this chapter can be generalized to two and higher
dimensions in a straightforward manner. Here we will present generalizations of only

some of the more important concepts. The Wigner distribution of f(u,v) is defined as
Wi(u, vy p,v) = //f(u-l—u’/?,v+v’/2)f*(u—u//2,v—v’/?)e‘i%(“u/+”vl) du dv', (2.181)

in two dimensions and similarly in higher dimensions. The separable two-dimensional
linear canonical transform of f(u,v) is defined as

fvi(u,v) =/ Cm (u, v, v") f(u',0") du’ do’, (2.182)
Cm (u,v;u',v") = Om, (u, v/ )Cpm, (v,0).

Here M is a four-dimensional parameter matrix given by

M = v (2.183)

0
0 A
Cy, O
0 C
Thus defined, we may multiply matrices associated with two transforms and find the
matrix associated with their concatenation. The Wigner distribution of fag(u,v) is related
to that of f(u,v) according to

Wi (w05, v) = Wi(Dyu — By, Dyv — Byv; —Cyu + Ay, —Cyv + Ayv). (2.184)

It is also possible to define non-separable linear canonical transforms in which the cross
terms are not zero (Folland 1989).

Just as Hankel transforms correspond to two-dimensional Fourier transforms under
circular symmetry, it is possible to derive transforms which corresponds to two-dimensional
linear canonical transforms under circular symmetry. Such transforms are discussed in
Moshinsky, Seligman, and Wolf 1972 and Zalevsky, Mendlovic, and Lohmann 1998.

2.6 Further reading

General tutorial references on time-frequency representations with a large number of ad-
ditional references include Hlawatsch and Boudreaux-Bartels 1992, Cohen 1989, 1995,
Flandrin 1993, and Qian and Chen 1996. A classic exposition of the Wigner distribution
is Claasen and Mecklenbrauker 1980a, b, ¢. A general reference which also includes time-
frequency transformations is Transforms and Applications Handbook 2000. Time- and
space-frequency representations are widely used in physics, and in fact have their origin
in physics. For such a perspective, see Hillery and others 1984.
Chapter 9 of Wolf 1979 is an excellent discussion of linear canonical transforms.



Chapter 3

Optical Signals and Systems

3.1 Introduction

In this book we will restrict our attention to the familiar class of centered optical systems.
A typical example of such a system is shown in figure 3.1. It is composed of a number of
spherical lenses and spatial filters, separated by sections of free space and centered about
the optical axis (customarily chosen as the z axis). Other optical components and fea-
tures that may appear in such systems include cylindrical and anamorphic lenses, mirrors,
prisms, gratings, diffractive optical elements, sections of graded-index media, sections of
homogeneous media with arbitrary refractive indices, and planar or spherical interfaces
between such media. Axially or rotationally symmetric systems are those whose axially

input output

Figure 3.1: Centered optical system consisting of four convex lenses, two spatial filters
(shown as thin slabs), and seven sections of free space.

rotated versions are indistinguishable from themselves. A spherical lens is a rotation-
ally symmetric component, whereas a cylindrical lens or prism is not. Centered systems
consisting only of spherical lenses and sections of free space are axially symmetric.

The optical components of which optical systems are composed, can be viewed as
elementary optical systems themselves (figure 3.2). Each optical component has its own

113
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input and output planes, and alters the distribution of light incident on its input plane in
a certain way to produce the distribution of light at its output plane. If the effect of each
optical component is known, the overall effect of the optical system can be found.

inputs
system iM \ system output

Pa—

outputs

Figure 3.2: An optical system as a sequence of tandem optical components or subsystems.
The output of each subsystem is the input of the next subsystem. The input (output) of
the first (last) subsystem is the input (output) of the overall system.

3.2 Notation and conventions

Dimensionless variables and parameters were employed in the previous chapters for sim-
plicity and purity (see subsection 1.1.2). In this and later chapters dealing with optical
signals and systems, we will employ variables with real physical dimensions. We will ex-
ercise great care to ensure that the correspondence between the equations, results, and
properties presented in both sets of chapters is self-evident, and that translating dimen-
sionless and dimensional equations into each other is straightforward. This will allow the
results of dimensionless chapters to be easily employed in dimensional chapters.

The space- and frequency-domain representations of a signal f have their dimensional
and dimensionless forms related as follows:

F _L /s :L u
f(x)Z\/gf(/)—\/gf( ); (3.1)
F(aaﬁ) = \/EF(SOQ:) = \/EF(///% (3.2)

where u = x/s, 4 = so,. The scale parameter s > 0 has the same dimension as z and
1/0,, usually meters. The circumflex ~ designates functions taking dimensional space or
frequency arguments such as z,y, z, 04, 0y, 0, regardless of domain or representation. As
usual, lower case denotes the space-domain representation, and upper case denotes the
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frequency-domain representation of a signal. Although f(u) = f(z/s) has a dimensionless
argument, nothing prevents it from having a dimension itself (such as V, V /m, or V/mQ/2,
the latter whose square is W/m?).

F(p) = [ f(u) exp(—i2mpu) du is the Fourier transform of f(u) as defined in chapter 1.
With the above conventions, the reader may verify that F(o,) is the Fourier transform of

f(x) defined as
Flon) = [ f)e o da, (3.3)
flz) = / F(o,)e™7" do, (3.4)

and that

Jli@Pde = [If@Edu= [1F@PEdu= [|Fe.) dow. (33)

so that the signal energy is the same regardless of whether it is evaluated in dimensional or
dimensionless coordinates. Since the defining relations for the Fourier transform look the
same in dimensional and dimensionless coordinates, all properties of the Fourier transform
will also look the same. We also note that the dimension of F(c,) is the dimension of
f(z) multiplied by the dimension of z.

Now, let us consider the dimensionless and dimensional forms of linear system or
transformation integrals where the input and output variables 2’ and z are of the same
dimension:

g(u) = / h(u, o) f (o) dd, (3.6)
g(z) = h(:z:,a:')f(:v')d:z:', (3.7)

where h(z,2') = s~ h(z/s,2'/s) = s~ h(u,u’). Our conventions ensure that these equa-
tions are consistent and that if h(u,u’) is unitary, h(z,z') will also be unitary. (To see
this, the reader may show that the orthonormality relation between the rows/columns of
h(u,u'), given by [ h(u,u)h*(u",u')du" = §(u — '), implies [ h(x,z")h* (2", z') dz' =
d(x — 2').) Thus we can translate a dimensionless linear relation into a dimensional one
simply by replacing both the input and output functions and the kernel with their dimen-
sional counterparts. f(x) and §(z) usually have the same dimension so that h(z,z’) has
the inverse of the dimension of z.

The dimensionless and dimensional forms of the Wigner distribution can likewise be
consistently written in a similar form:

Wi (u, p) = /f(u ! [2) £ (u — ' /2)e 2 dul (3.8)
Wf(zc, Oz) = /f(x +2'/2) f* (x — w’/?)e‘ﬂm’”l da’. (3.9)

These have the dimension of |f(z)|? times the dimension of z, which is the same as the
dimension of signal energy.
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Delta functions require slight care. Remember that 6(z — ') = d(su—su’) = s~ 16(u—
u'). Thus the sifting property also looks the same whether dimensionless or dimensional:

flw) = [ o= () du, (3.10)
fz) = /6(a: — 2 f(2') do'. (3.11)
Now, let us consider a discrete basis expansion:
_ _ o) f(u) du
= ;Clwl(u)7 CYl - f |l¢l U |2 du ' (312)
; 9 (@) f(x)
= C C)=— .
z) zz: (), L= )|2 o (3.13)

where 1y (z) = s~'/?¢y(x/s). The dimension of f(z) and ¢;(z) (or f(u) and ¢(u) for that
matter) need not be the same; it is only necessary that the dimension of z/vjl(x) multiplied
by that of C; be equal to that of f(z). If the basis is normalized, the denominators
in the above expressions would normally not be written, leaving what seems to be a
dimensionally inconsistent expression. In such cases, the reader should remember that
there is an implicit value of unity in the denominator which carries a dimension. Such
implicit unity values which actually carry a dimension appear in other contexts as well,
a possibility the reader should remain aware of. For instance, a quadratic-phase optical
signal expressed as exp[iro (2% +y?)/z] might not seem to have a dimension, but it actually
has the dimension of the scalar amplitude of light hidden in the value of unity in front of
the exponential function.
In two dimensions, the corresponding conventions are

Flaw) = (/s u/s) = ~f ) (314)
F(og,0,) = sF(s04,50,) = sF(u,v), (3.15)
h(z,y; 2, y)=s h(m/s,y/s;x'/s,y'/s) = s 2h(u,v;u',0"), (3.16)

where u = /s, v = y/s, u = s04, V = s0y.

In general, all of the results and equations in dimensionless chapters will remain to hold
true, for the simple reason that the derivations leading to them cannot “know” whether a
dimension is attributed to a variable or not. We simply replace u,v and p, v with x,y and
04, 0y, functions such as f(u,v) and F(u,v) by f(x,y) and F(o.,0,), and kernels such as
h(u,v;u’,v') by h(z,y;2', '), as shown in the above basic relations. (The circumflex is not
used for physical parameter distributions which never appear in dimensionless contexts,
such as the refractive index, which we simply write as n(z,y, z) rather than n(z,y, 2).)

We will also replace certain dimensionless parameters with parameters of appropriate
physical dimension. For instance, chirp multiplication takes a function f(u) to exp(—imqu?) f(u).
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Physically, we will see that this models the action of a thin lens, and that the correspond-
ing dimensional relation takes f(z) to exp(—imz?/Af)f(z), from which we see that the
parameter g has been replaced with the physical parameter 1/\f whose dimension is equal
to the inverse square of the dimension of x. Two sets of parameters are important enough
that we will use a special convention to stress that they are the dimensional counterparts of

the corresponding dimensionless parameters: A, B, C, D or &, (3, % will denote the dimen-
sional counterparts of the dimensionless parameters A, B, C', D or «, 3, v characterizing
linear canonical transforms.

Finally, we mention some additional notation that will appear transiently at the be-
ginning of the next section and then disappear. We use f(z,t) to denote functions of
both space and time and f(z, f,) to denote functions of space and temporal frequency
fo (f(z, fo) is the temporal Fourier transform of f(z,t)). The spatial Fourier transform
of f(z, f,) is denoted by F (o, f,). Finally, when we concentrate on monochromatic sig-
nals and the frequency dependence is dropped, we write f(z) or F(o,), which are then
employed throughout the rest of the book.

The conventions we adopt are not new or unusual; they are implicitly employed in
many texts without any special discussion and usually go unnoticed by readers, until they
stumble upon a dimensionally inconsistent equation or obtain some dimensional paradox.
We believe a conscious awareness of dimensions is important enough to warrant an explicit
discussion.

3.3 Wave optics

Optical signals are most commonly represented by the complex amplitude or intensity
of light as a function of space and/or time. We will usually deal with systems in which
signals are represented by the amplitude of light as a function of the transverse spatial
coordinates x and y over a given plane z = constant. The distribution of light representing
the signal propagates from left to right in the positive z direction, being operated on or
transformed in the process. The distributions of light on the input and output planes in
figure 3.1 represent the input and output of the optical system.

In this book we will mostly restrict our attention to optical systems consisting of linear
and time-invariant components, and assume that the behavior of light can be adequately
described by a scalar theory. Sections of free space or other homogeneous or inhomoge-
neous media will also be treated as components; in any event we will assume these to be
linear, isotropic, and nondispersive. We will also assume that we are dealing with systems
and light sources for which we can assume that the light is quasi-monochromatic (effec-
tively temporally coherent). We will however discuss both spatially coherent and spatially
incoherent systems.

The output of such a system is related to its input by a relation of the form

g(r,t) = /r/tfl(r,r',t — (', ) dt' dr’, (3.17)
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where §(r,t) and f(r,t) represent the amplitude of light as functions of space and time
over the output and input planes.

The wavelength (or center wavelength) of the light used will be denoted by A, in the
medium of propagation. The speed of light in vacuum will be denoted by ¢ so that the
frequency foc of a monochromatic optical wave of wavelength A satisfies ¢ = focna A, where
na is the refractive index of some medium A. The wavenumber is defined as 0 = 1/A
and is equal to the magnitude of the wavevector o. For a plane wave, o points in the
direction of propagation of the wave. r denotes the vector (x,y) or (z,y, z) and o denotes
the vector (o4, 0y) or (04,0y,0,), depending on the context.

We will further restrict our attention to first-order centered systems. These are systems
which have the general appearance of the system shown in figure 3.1 and for which a
number of simplifying approximations can be employed. For the time being we satisfy
ourselves by noting that these are precisely the same approximations employed in the
theory of optical systems referred to as Fourier optics (Goodman 1996).

The intensity of a wave at a certain point is defined as the power per unit area at that
point. Poynting’s theorem (Ramo, Whinnery, and Van Duzer 1994) gives the intensity
in terms of the electric field vector E as |E|?/n where 7 is the intrinsic impedance of
free space. We will assume that the scalar amplitudes we are working with have been
normalized so that the intensity is given by (Saleh and Teich 1991, page 44)

I(r,t) = 2[f(r,1)]%, (3.18)

where the time average denoted by the overbar is taken over an interval much longer than
the optical period but sufficiently shorter than the time over which the envelope of f(r,t)
changes appreciably. In the monochromatic case, the real field f(r,¢) can be written as

f(r,t) = A(r) cos[2 foct + @(r)], (3.19)

where A(r) and $(r) are real-valued functions. The corresponding analytic signal fas(r,t)
is A(r) exp[—i27 foct — ip(r)], and the complex amplitude which we will denote by f(r) is

A(r) expl—i(v)]

3.3.1 The wave equation

The function f(r,t) describing the scalar amplitude distribution of light as a function of
the position vector r = (z,y, z) and time ¢ in a linear isotropic nondispersive medium with
time-invariant refractive index distribution n(r) satisfies the wave equation

0*f *f 0*f ni(r) &*f
ox?  Oy? 022 2 ot?

=0. (3.20)

We will assume that the variation of n(r) is small over distances comparable to the wave-
lengths of light we deal with. Since the wave equation is linear, any linear superposition
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of solutions is also a solution. The wave equation can be solved uniquely if the distri-
bution of f over some surface is specified at some time. Furthermore, if new boundary
conditions are specified as the linear superposition of some set of boundary conditions for
which the solution is already known, the new solution can be written as the same linear
superposition.

We take the temporal Fourier transform of both sides of the above equation, with the
temporal Fourier transform of f(r,t) defined as

flrgo) = [ Flrpeiot ar (3.21)

The temporal Fourier transform is defined with a positive sign in the exponent, in contrast
to the spatial Fourier transform which is defined in the conventional manner with a nega-
tive sign in the exponent. This is consistent with the interpretation of the spatio-temporal
Fourier transform as the coefficient of expansion in terms of planes waves of the form
expli2n(o - r — fot)] (Saleh and Teich 1991, page 925). The temporal Fourier transform
of the wave equation is

an an an 4772n2f2 §
=f=0. 22
ox?  Oy? 022 + c? f=0 (3:22)

This equation is known as the Helmholtz equation. If we solve this equation for f(r, f,)
for all f,, a temporal inverse Fourier transform operation will give us f (r,t). The analytic
signal fas(r,t) corresponding to f(r,t) is defined as the inverse Fourier transform of [1 +
sgn(fo)]f(r, fo) and also satisfies the wave equation 3.20. In the event that we are dealing
with monochromatic waves of specified frequency foc, we have f(r, f,) = 0.5 f(r)d(fo —
foc)+0.5 f*(r)8(fo+foc). In this case, the Fourier transform of the analytic signal is simply
f(r)8(fo— foc) and the signal can be represented by the complex amplitude or phasor f(r).
That f (r) also satisfies the Helmholtz equation can be shown most directly by substituting
a monochromatic component of the form f(r)exp(—i27 foct) in equation 3.20 to obtain
Pf [ Pf [ Pf | axtnPfl
a£+8£+a£ @ﬂvza (3.23)

In the monochromatic case, the intensity is simply related to f (r) as follows:

Ii(r) = [F0)P, (3.24)

and does not depend on time (Saleh and Teich 1991, page 46).

Two complete sets of solutions of equation 3.23 for a homogeneous medium n(r) =
n = constant, are the set of plane waves and the set of spherical waves respectively given
by (Saleh and Teich 1991, pages 47-48):

f(x,y, z) — ei27r0' T _ ei?w(aw:c-l-ayy-l-azz), oc R3, (3.25)

ezQﬂ'a’r

ixr

fla,y,2) =

oc€R, (3.26)
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where r = |r| and 0® = |o]? = 0} 4 0, 4 02. For each value of o, there is a corresponding
optical frequency fo. = oc/n. Other solutions can be expressed as linear superpositions
of the members of either of these or yet other sets of solutions, as will be elaborated later.

Although the above solutions may be verified by direct substitution, it is instruc-
tive to note how they can be directly obtained. First take the three-dimensional spatial
Fourier transform of equation 3.22, replacing the derivatives 9%/0x2, 92 /9y?, 9%/92? with

(i2w04)?, (i270y)?, (i2m0,)?. This results in an equation for the four-dimensional spatio-
temporal Fourier transform of f:

[03 + 02 + 0%~ (nfo/c)2] F(oy,04,04 fo) =0, (3.27)

where the spatial Fourier transform F (o, 0,0, f,) of f(z,y,2, fo) is defined as

F(04,0y,02, fo) = /// F(x,y, 2, fo)e 2 Oeztouyto:2) qo gy dz. (3.28)

It immediately follows from equation 3.27 that F(o,, 0y, 02, fo) can be nonzero only where
U?E—i-ag +02—(nf,/c)? = 0. This implies delta-function-type solutions which can be inverse
transformed to obtain the plane and spherical wave solutions presented, a task we leave to
the reader. If the light is monochromatic with frequency foc, then o, 0y, 0, must satisfy
0% =024 02+ 02 = (nfoc/c)?.

If we know the spatial variation of a plane wave at some plane z = z;, we can easily
determine its spatial variation at any other plane z = 25 = z; + d. For instance, if the
spatial variation of a wave with o = 10 at the plane z = 0 is given by K exp[i2w(4x +
6y)] where K is some complex constant, we can deduce the complete three-dimensional

distribution of the wave as
Kei?ﬁ(4a:+6y+v 102 —42—-62 Z) (329)

and thus determine the complex amplitude distribution at any other plane. For instance, at
z = 5.2, we have K exp[i2r(4x + 6y +6.92)] = K exp[i2n(4z + 6y + 36)] = K exp|i27(4x +
6y)] exp[i2m(36)]. We see that the form of the distribution remains unchanged, but is
affected by a phase factor of exp[i27(36)]. (In this and similar numerical discussions we
assume the dimensions of the numerical factors are implied. For instance, o = 10 has the
dimensions of inverse length.)

Figure 3.3 shows the wavefronts of a plane wave making angle 6, with the y-z plane
(0, is the complement to 7/2 of the angle made with the x axis). We wish to examine
the variation of this wave as a function of x on the z = 0 plane. The period of the optical
wave is A. Along the z axis this translates into a period of A/ sin @,, which corresponds to
the spatial frequency o, of the wave along the x direction. Similar considerations apply
for the y direction. Thus the following hold:

sinf, = Aoy, (3.30)
sin @y, = Aoy (3.31)
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The z = 0 profile of a plane wave exp[i27 (o2 + oyy + 0.2)] is a two-dimensional spatial
harmonic whose spatial frequencies are related to the direction of propagation of the plane
wave as given by equations 3.30 and 3.31.

I/k

A8, z

>
-
=

sin ©

Figure 3.3: Wavefronts of a plane wave making angle 6, with the z axis.

The spherical wave solution given in equation 3.26 is the solution corresponding to
a point source 0(x,y, z) centered at the origin; that is, it is the Green’s function of the
wave equation. For future reference, we also note the common Fresnel approzimation of
a spherical wave. With r? = 22 + 32 + 22 and under the assumption that z? > 22 + y2,

we obtain
. ei27rar eiQﬂ'a’z .’E2 + yQ
T,Y,2) = — N — exp |i2wo
f@y,2) AT IAZ P [ ( 2z

, (3.32)

where we replaced r &~ z in the denominator but r ~ z + (22 + y?)/2z in the exponent
because of the greater sensitivity of the imaginary exponent to small changes (Saleh and
Teich 1991, page 49). Equation 3.32 is also referred to as a parabolic wave.

Each of the following three subsections will address from a different perspective the
problem of obtaining the distribution of light on a plane z = 20 = 21 + d, given the
distribution of light on a plane z = z;. Readers willing to take the results for granted may
skip to section 3.4.

3.3.2 Plane wave decomposition

First, let us assume that the distribution of light at z = 2, which we refer to as the input

f(x,y), is of the form
fla,y) = Ke2rloewtow), (3.33)

where K is a complex constant and o, and o, are the spatial frequencies of this two-
dimensional harmonic function. We recognize this as the profile of a plane wave with
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— 2 2 2.
wavevector components o, oy, and o, = \/ 0% — o0y — 0y

Ke2m(oeztoyy) exp [i27r\/02 — 02— 0’5 (z — 21)] . (3.34)

The output §(z,y) observed at the plane z = 2o = 21 + d is then given by

g(w,y) = Ke2 =t exp (ior [0? — 02 — 02d) = H(0,0,) f(2,1), (3.35)

where
H(oy,0,) = exp (2’277\/02 — 02— 02 d) . (3.36)

We see that harmonic functions are eigenfunctions of propagation over a section of free

space, with eigenvalue H (o, oy). Since harmonics are profiles of plane waves, it is some-
times also said that plane waves are eigenfunctions of propagation in free space. (It is
also possible to pose the same in terms of temporal evolution by showing that if at any
instant in time we observe a plane wave in space, we will observe a plane wave at all
consecutive times, which more directly justifies referring to plane waves as eigenfunctions
of propagation in free space.)

Now, let us return to the problem of relating the output to the input when the input
is an arbitrary distribution of light, and not necessarily a two-dimensional harmonic. An
arbitrary distribution of light at the plane z;, denoted by f (z,y), can be written as a
linear superposition of harmonics as follows:

flz,y) = / / F(o,,0,) 2023599 45 do,, (3.37)

where F'(0,,0,) is the Fourier transform of f(x,y). Since we know that a linear superpo-
sition of inputs will produce the same linear superposition of outputs, the distribution of
light at the plane zo can be obtained easily as

g(z,y) = // F(0y,0,) e2Vo —0imoyd gi2nlozitony) 4o do,. (3.38)

We see that the effect of free-space propagation in the Fourier domain is

G(04,0,) = €2V =274 (o, 0,) = H(04,0,)F(04,0,), (3.39)

where H(0,,0,) is given by equation 3.36. This result can be written in the space domain
as a two-dimensional convolution

§(z,y) = h(z,y) = +f(z,y), (3.40)

where h(x,y) is the inverse Fourier transform of H(o,,0,). A simple analytical expression
for h(z,y) is not known. However, the exponent of H(o,,0,) is commonly approximated

as ) )
oy +o

y

N ———

2 — (3.41)
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under the assumption that o ~ 02 > (02 + 0,). Then we approximately obtain

H(oy,0,) = ™% exp[—inAd(o2 + 02)]. (3.42)

For a discussion of the validity of this approximation, known as the Fresnel approxima-
tion, see Goodman 1996 or Saleh and Teich 1991. With this approximation, the inverse
transform h(z,%) becomes

h(x,y) = ho explin(z® +y?)/Ad], (3.43)
ez'271'0'd
ho= =g

which is nothing but the parabolic approximation of the spherical wave given earlier as

equation 3.32. The relation between J and § takes the form
3(o,y) = hla,y) f (o) = ho [ [ Sl 0 fa yyatay, (3.44)

an expression known as the Fresnel integral or Fresnel transform (see equation 1.29). It
gives the amplitude distribution of light at the plane z = z9 = z; + d in terms of that at
the plane z = z;. It is the solution of the paraxial Helmholtz equation to be discussed
in the next subsection, as can be shown by direct substitution. On the other hand, the
exact form with the square root in the exponent is the solution of the exact Helmholtz
equation 3.23. The fact that the system represented by the Fresnel integral is space-
invariant, is consistent with the fact that the eigenfunctions of this system are harmonic
functions (page 9).

Here we have not included the classic derivations through which the Fresnel integral
is traditionally arrived at (for instance, see Goodman 1996, ITizuka 1987, Yu 1983, Born
and Wolf 1980). We only note that the kernel appearing in equation 3.44 is nothing but
the Fresnel approximation of a spherical wave (see equation 3.32). Thus equation 3.44
is essentially an approximation of a weighted superposition of spherical waves. This in-
terpretation is known as the Huygens-Fresnel principle. Each point in the input plane is
considered to be a secondary source with amplitude f(z,), which gives rise to a spherical
wave. Superposing all of these spherical waves gives us the amplitude distribution g(z,y)
at the output plane. The mathematical expression of the Huygens-Fresnel principle is
known as the Rayleigh-Sommerfeld diffraction formula (Goodman 1996):

i) = = [[ 76

where r = \/d? + (x — 2')?2 + (y — ¥/)? and 0 is the angle between the line joining the input
point (2',y') to the output point (z,y), and the z axis (so that cos § = d/r). This integral

ei?ﬂ'r/x\

cos 0 dz’ dy', (3.45)

is interpreted as a superposition of diverging spherical waves originating from “secondary
sources” located at the input plane. cos@ is an “obliquity factor.” For an excellent
discussion of the developments leading to this equation, see Goodman 1996. It is possible
to arrive at equation 3.44 from equation 3.45 by employing the Fresnel approximation of
the spherical wave given in equation 3.32.
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3.3.3 The paraxial wave equation

Here we present a number of approaches closely related to those of the previous subsection,
but which nevertheless provide different perspectives. We take the Fourier transform of
equation 3.23 with respect to z and y (or equivalently, we consider solutions of the form

f(z,y,2) = F(og,0y, 2) expli2n(ozx + 0yy)]) to obtain

O*F
57 = —47%(0% — 02 — 2)F. (3.46)

A solution of this equation corresponding to propagation in the positive z direction is
F(og,0y,2) = 2™V 70052 Poy, 0y,0). (3.47)

We use the two-dimensional functions f(z,y) and §(z,y) to denote two-dimensional fields
on the z = z; and z = 2 planes respectively, and the three-dimensional function f (z,y,2)

to denote three-dimensional fields. Thus we will write F(og,0y,21) = F(04,0,) and
F‘(ow,ay,zg) = G(ow,ay). Now, writing equation 3.47 once for z; and once for zo and
eliminating F(o,, 0y, 0), we obtain

G0y, 0y) = 2TV 7*=0i=05d P(o,, Ty)s (3.48)

which is the same as equation 3.39, from which the same argument leads us to equation 3.44
(d= 29— 21).

Another approach is as follows. Restricting ourselves to waves traveling in the positive
z direction, the “square root” of equation 3.46 may be written as

OF §
e +i2m\/0% — 02 — 02 F. (3.49)

(Although we are being far from rigorous here, our final result will nevertheless be correct.)
Introducing what is essentially the Fresnel approximation at this point we obtain
OF

s 2 2 »
5 +i2n(0 — 03/20 — 0, /20)F. (3.50)

The solution to equation 3.50 is

F(04,0,,2) = ei2n(0=03 /20 -7 /20) F(04,0,,0), (3.51)
from which one can deduce equation 3.42.

It is also possible to work in the space domain. Starting directly with equation 3.23
and again formally taking the “square root” of the operators yields

of _ . 92 97
= = Am202 4+ — + — f. .52
92 -H\/wa +8w2+8y2f (3.52)
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Introducing what is essentially the Fresnel approximation at this point we obtain

of 1[92  9%)\] .
— =+i|2 — | =+ = . 3.53
0z e [ o+ Ao ((91’2 + oy? / (3:53)
The Fresnel integral given in equation 3.44 is an exact solution of this differential equation.
These discussions were inspired by Bastiaans 1979c.
A parazial wave is one whose wavevector(s) make small angles with the optical axis.

In other words, the wavefront normals are paraxial rays (Saleh and Teich 1991). Just as
a temporally narrowband signal has harmonic components concentrated around a certain

center frequency, a paraxial wave has plane-wave components whose wavevectors are con-
centrated around the optical axis. The major spatial variation is along the z axis, so that
we can write f(r) in the form f(r) = A(r) exp(i270z), where A(r) is a complex envelope.

Paraxial waves can be interpreted as spatially narrowband modulated plane waves, just as
temporally narrowband signals can be interpreted as temporally narrowband modulated

harmonics. Now, substituting this form for f(r) in equation 3.53 we obtain

2 1 2 i

% + % + i47ra% = 0. (3.54)
Equations such as equation 3.53 or 3.54 are known as paraxial wave equations or paraxial
Helmholtz equations. A more conventional derivation of equation 3.54 is as follows (Saleh
and Teich 1991): We substitute f(r) = A(r)exp(i2moz) in equation 3.23, and employ
DA)9z < 2mo A and 8?A/92° < 4m?0?A, which are mathematical statements of parax-
iality, and are also referred to as the slowly varying envelope approximation (since A(r)
varies slowly with r). This derivation again results in equation 3.54.

The parabolic wave is an exact solution of equation 3.54 (Saleh and Teich 1991):

. 1 .
A(r) = weﬁ”"(““ﬂ)/%. (3.55)

In preparation for the next subsection, we also write the following more general solution
of equation 3.54 (Saleh and Teich 1991):

A(I‘) = _ ei2ﬁa(ac2+y2)/2q(z)’ (356)

where §(z) = 2z — iz, Z = constant. § is not a dimensional version of the parameter ¢ ap-
pearing in chapter 1, but we nevertheless choose this notation to conform with convention.

3.3.4 Hermite-Gaussian beams

As already mentioned, a more general solution of equation 3.54 is

A(r) ] expliro(z? + y*)/§(2)], (3.57)

1
iNG(z
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where §(z) = z —i2. Here Z is a constant which is referred to as the Rayleigh range. (z)
is referred to as the complex radius of curvature or simply as the ¢-parameter. If we define
the beam size W(z) and the wavefront radius of curvature R(z) through

11 A
i) - RE W 555
it is possible to show that
Lo 22 m(x? +y?) o (P +yH
Ar) = W exp l_WQ—(z)] exp lz27mT(z) —i((z)], (3.59)
where
W(z) = Wo [1+ (2/2)?] vz (3.60)
R(z) = 2 [1+(2/2)*], (3.61)
((z) = arctan(z/%), (3.62)

and W¢ = W?2(0) = A%. We have normalized A(r) so that it has unit energy. We are
choosing to employ the parameter W (z) which we refer to as the beam size, rather than the
more commonly used w(z) known as the beam radius. These two parameters are simply
related by W?2(z) = mw?(z) so that W& = mw2. The interpretation of these parameters are
discussed in many texts such as Saleh and Teich 1991. The distribution of light represented
by equation 3.59 is known as a Gaussian beam.

The paraxial approximation of a spherical wave originating at © = y = z = 0 can be
written in the form (iAR)™!explim(z? + y?)/AR] where R = z is the radius of curvature
of the wavefronts at z. Comparing this with equation 3.57, we see that the Gaussian
beam can be interpreted as a spherical wave with complex “radius” ¢§. When Wy = oo,
the beam has infinite transverse extent and the complex radius ¢ reduces to a real radius
(equation 3.58). When ¢ is complex, the imaginary part manifests itself as the beam size:

(@2 +y?)/Aq _ im(2®+y?) AR =7 (2P +y?) /W2 (3.63)

An even more general set of solutions of equation 3.54 are the Hermite-Gaussian beams.
Unlike the set of plane waves, this is a discrete set with countably many members, enu-
merated by (I,m):

i) = 2y (=) o (2 exp 200 T i 1)
i = 55 v (775 wm(W(z))eplz SR i m )| (364

where 1, 1, are the Hermite-Gaussian functions defined in section 1.5.2. The [ = 0,m =
0 beam is simply the Gaussian beam given in equation 3.59. The Hermite-Gaussian
beams share the parabolic wavefronts of the Gaussian beam, but exhibit different intensity
distributions. Further discussion of their physical characteristics can be found in texts such
as Saleh and Teich 1991.
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Hermite-Gaussian beams are a complete orthonormal set of solutions of the paraxial
wave equation. Just like the set of plane waves, they can be used to construct arbitrary
solutions. Let us assume that the amplitude distribution of light at the plane z = 0 is given
by f(x,y). At z = 0, the Hermite-Gaussian beams are equal to WO_1 Vi(z/Wo) m (y/Wo).
We first expand f(z,y) as

f(2,,0) = f(w,y) = i i Olm (Wi()) Y <Wi0> : (3.65)

=0 m=0

— //WLO Wy (Wi()) P <Wl0> f(z,y) dz dy. (3.66)

Now, it is possible to find the amplitude distribution at any z as

fla,y.z) =g Z Z O €77 Wl(z) i (Wl@) o <%)

=0 m=0
(z* +¢*)
2R(z)

where

X exp [z’?wa —i(l+m+ 1)((z)] . (3.67)
This result relating the distribution of light at an arbitrary plane to that at z = 0 is
equivalent to Fresnel’s integral, although it is not straightforward to show so analytically.

There exists many complete sets of solutions of the wave equation. Which set is
preferred depends on the situation. Usually, it is best to work with the set that constitutes
the eigenfunctions of the system through which light will pass. In free space, plane waves
are the natural choice. Hermite-Gaussian functions, on the other hand, are eigenfunctions
of spherical mirror resonators and periodic lens waveguides, and are thus useful for such
systems. While Hermite-Gaussian functions are not strictly eigenfunctions of free space,
they nevertheless retain their general form upon propagation through free space so that
they can also be used with relative ease in this case as well. Gaussian beam propagation
can also be formulated in cylindrical coordinates, in which case one obtain the so-called
Laguerre-Gaussian beams instead of the Hermite-Gaussian beams.

Finally, we discuss how the parameters of Hermite-Gaussian beams change as a result
of propagating through an optical system characterized by a linear canonical transform
with matrix parameters A, B,C, D (such optical systems will be discussed in detail in
chapter 4). The ¢-parameter of the output beam can be simply related to the §-parameter
of the input beam as follows:

. A(\gim) + B
Oout) = i) + B (3.68)
C(AGn) + D

a result whose similarity to equation 2.156 is worth pointing out. The relationship between
the dimensional parameters A, B, C, D and the dimensionless A, B, C, D will be discussed
on page 162. The most straightforward way of deriving equation 3.68 is to take the linear

canonical transform of a Gaussian beam.
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Before proceeding any further, we must define a new parameter called the accumulated
Gouy phase shift (Erden and Ozaktas 1997). The conventional Gouy phase shift ((z)
defined in equation 3.62 is the on-axis phase of a Gaussian beam with respect to the beam
waist in excess of the phase of a plane wave exp(i2woz). It is not independent from the
beam size W and the wavefront radius of curvature R. Of greater interest from an input-
output perspective is the phase shift accumulated by the beam as it passes through several
lenses and sections of free space, with respect to a single reference point in the system.
Thus, we define the accumulated Gouy phase shift QN of a Gaussian beam passing through
an optical system as the on-axis phase accumulated by the beam in excess of the factor
exp(i2moz). (This latter factor is the on-axis phase that would be accumulated by a plane

wave). Mathematically,

—C = /[A(0,0, zout)] — L[A(0,0, 2in)], (3.69)

where A(0,0, zoyt) and A(0, 0, z;, ) denote the on-axis values of the output and input Gaus-
sian beams, and /[-] denotes the phase.

Let us now consider a Gaussian beam with parameters W;, and R;, input to an optical
system characterized by the parameters A, B, C, D. Also, let the accumulated Gouy phase
with respect to some reference point be given as (in. Denoting the corresponding output
parameters by Wy, Rout, and fout, it is possible to show that (Erden and Ozaktas 1997)

. 2 .
. B B?
2 2
=(A : — .
Wout ( + >\Rin> VVln + I/VI%’ (3 70)
s D iy B BD
r (C + )\Rin) (A + ,\R;n) + wi (3.71)
)\Rou B A B 2 B2 ’ )
t At i)+
- B
Cout = Cin + arctan | -——— |- (3.72)
(A + ARin) V[/in

The first two of these equations are a consequence of equation 3.68, whereas the last one
is demonstrated in Erden and Ozaktas 1997. The narrowest part of the beam, known as
the waist, is observed where the beam size is minimum. When the beam is incident to the
system at its waist so that Ry, = oo and W;, = Wy, and if we assume én = 0, the above
relations reduce to

1 B/A C
= = = + B 373
>\Rout A2WO4 + B2 A ( )
W2, = A°W¢ + B?/W§, (3.74)
. B
out = t ~ 9 |- 3.75
Cout = arctan (AVV%) (3.75)

The accumulated Gouy phase shift is an independent parameter which complements
the beam size and wavefront radius of curvature to constitute three parameters which
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uniquely characterize the beam with respect to a reference point in the system. This
means that knowledge of these three parameters at any single plane in the system allows
them to be calculated at any other plane in the system. Furthermore, measurement of
these parameters allows one to uniquely recover the parameters characterizing the first-
order system through which the beam propagates (Erden and Ozaktas 1997).

3.4 Wave optical characterization of optical components

3.4.1 Sections of free space

Despite the fact that they often consist of no more than the stretch of space between two
other components, it is common to look upon sections of free space as optical components
in their own right. The input and output of this component are the light distributions on
the planes z = z1 and z = z9 = 21 + d bounding the section of free space from the left and
the right. d denotes the length of the section of free space. We have already determined
the relation between the input and output in several ways in the preceding section. Here
we consolidate the main results.

The output §(z,y) is related to the input f(z,y) through the Fresnel integral which
is essentially a chirp convolution in the space domain and a chirp multiplication in the
frequency domain:

9(,y) = h(z,y) * =f(z,y), (3.76)
- iomod 1 im(2? + y?
h(z,y) = e dm exp l% )
G(0$70y) = ﬁ(axa Uy)F(0$70y)7 (377)

H(oy,0,) = ™% exp [—iTrAd(og + 05)] .

Recall that H(o,,0,) is the two-dimensional Fourier transform of A(z,y) and the eigen-
value associated with the harmonic whose transverse spatial frequencies are (o, 0y).
We also write for reference the one-dimensional versions of these results:

g(x) = h(x) * f (), (3.78)
1 2rod  —im 1 Z'ﬂ-xQ
G(Om) = ﬁ(ax)F(Om)v (3'79)

H(oy) = €™ exp [—iﬂ)\dai] :

3.4.2 Thin lenses

A thin lens is a special kind of spatial filter that plays an important role in realizing
optical systems. Ideally, thin lenses are phase-only multiplicative filters with transmittance
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function

. [_iﬂ'(l’Q + y?) , (3.80)

h(z,y) = exp i

such that the amplitude distribution §(z,y) immediately after the lens is related to the

distribution f(z,y) immediately before the lens through

g(z,y) = h(z,y) f(z,y). (3.81)

Thin lenses are assumed to have no thickness. The parameter f is referred to as the focal
length of the lens. Lenses are referred to as positive or negative according to the sign of
their focal length. The last equation can be written in the frequency domain as

G(og,0y) = H(oy,0,) * ¥F(04,0,), (3.82)
H(oy,0y4) = —i\f exp [iw)\f(ag + 05)] .

The one-dimensional versions of the above expressions are

g(z) = h(z) f (=), (3.83)
—ima?
ﬁ(fv)zexp[ 5 ]
G(Ux) = H(Ux) * F(Ux)7 (3'84)

H(oy) = e /% /Xf exp [iﬂ)\fag] .

Lenses can be realized by grinding convex or concave spherical surfaces on both sides
of a thin slab of glass with refractive index ng. The focal length is related to the radii of
curvature of the surfaces by the formula (Saleh and Teich 1991)

1 (g ) 1 1
—=—=-1 — . 3.85
f ( n (Rright Rleft) (3.85)

Ryef; is the radius of the left surface and Ryigy; is the radius of the right surface. The sign

convention is such that surfaces which are convex towards the +z direction are positive.
Here n is the refractive index of the medium in which the lens is situated, which in most
cases is air so that n = 1. We also note that X is the wavelength in the same medium, and
not in the glass.

Attenuation inside the lens and reflection from its surfaces are usually neglected, but
sometimes it is desired to account for the finite size of the lens by defining a pupil function
p(x,y), which is unity within the lens aperture and zero outside:

h(z,y) = pla,y)e T@HIAL, (3.86)

The effects of attenuations, reflections, and aberrations are sometimes handled by absorb-
ing them into the pupil function.
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The above results are for spherical lenses which are rotationally symmetric around the
z axis. More generally, the transmittance function may take the form

2 2

h(:v,y) = exp [—Tm (% + % + }J_yyﬂ , (3.87)

where fiz, foy, fyy are the three parameters characterizing the focal characteristics of
the lens. Such lenses are often referred to as anamorphic lenses. If we express the above
transmittance in terms of the rotated coordinates (z,3y’) (where the x’' axis makes a

positive angle (1/2)arccot|fzy(1/ fyy — 1/ fzz)/2] with respect to the x axis), the cross term

. 12 2
h(z',y') = exp l_m (55 + J )], 3.88
@.v) N \Fow  Tow (3.88)

where fu,r and fy,, can be expressed in terms of frz, fay, fyy. When 1/fp = 0 (or

disappears:

1/ fyy = 0) we obtain a cylindrical lens with focal length fyr,s (or fu,/). Any anamorphic
lens with given fuz, fzy, fyy can be simulated by two orthogonally positioned cylindrical
lenses with focal lengths f,,» and fy/,r.

3.4.3 Quadratic graded-index media

A quadratic graded-index medium is a medium characterized by a refractive index distri-
bution of the form (Yariv 1989)

n?(z,y) = ng[l — (x/x2)* — (¥/xy)’]; (3.89)

where Xz, Xy, and ng are the medium parameters. More generally these parameters may
be functions of z, but we will not treat this case. We will further restrict ourselves to the
special case Xz = Xy = X. The one-dimensional version of this index distribution is taken
as

n*(z) = ng[l — (/%)% (3.90)

We start by substituting equation 3.89 in equation 3.23:

82 3 82 3 82 3 .
3;; 3y‘£ + 32‘5 +aro?[1 = (2 + ) /X*]f = 0, (3.91)

where ¢ = ngfoc/c. We seek positive-z traveling eigensolutions of the form f(z,y,z) =
A(z,y) exp(i2m0,2). Now, it is possible to show that if the function A, (x) satisfies

o2

0?A, n 4202 [ o2x? B
On2 2

a:2> A, =0, (3.92)

and if the function A, (y) satisfies an identical equation in y, then A(x,y) = A, (x)A,(y)

is a solution of equation 3.91, provided o2 + 02 + 0% = o
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Introducing the dimensionless variable v = x/s where s > 0 is a scaling parameter
here taken equal to s2 = x/o, the above equation reduces to

%A,
Ou?

+ 4n?(s%02 —u?)A, = 0, (3.93)

where s7/2A4,(x/s) = Ay(x). Equation 3.93 is precisely the same as equation 1.176 and
thus has the following discrete set of solutions for [ =0,1,...:

Ag(z) = sV (a)s), s202 = (21 + 1) /2. (3.94)

A similar discussion for y leads to the following discrete set of solutions for m =0,1,...:

A,() = 5 Phnly/s), S22 = (2m + 1)/2m. (3.95)

o, and o, can only assume the discrete values dictated by the above equations. For a
given [, m, the value of o, is given by

l 1
—0%—05=\/02—u. (3.96)

ms2

This can be expanded to first order as

l+m+1 l+m+1
- —.

3.97
2rs2o 2wy (3.97)

0, =0
Thus, each eigensolution (or eigenmode) s~ 4y (2/5)t, (y/s) propagates through the graded-
index medium with a propagation constant o — (I +m + 1)/27x. In the one-dimensional
case, the corresponding result is

1+1/2 l+1/2
02202—+/~0 +/.

Ts2 21 (3.98)
The reader may also wish to note the similarity of the eigenmodes of quadratic graded-
index media with Hermite-Gaussian beams in free space, with the identification of the
beam size W (z) with the scale parameter s appearing here.

Now, let us assume that an arbitrary distribution of light f (z,y) is incident on such a
medium at z = 0. This distribution can be expanded in terms of the Hermite-Gaussian

functions as

Fwy,0) = flay) = ggjﬂ Com s 1 (%) ¥m (1), (399)

Con= [[ 5 00(%) ¥ () Fom i dy.

and the amplitude distribution at any z can be written as

fla,y,2) = g(zy) =Y Y Cpe?mozemittmiz/x % W (%) m (g) . (3.100)

1=0 m=0 §



3.4. WAVE OPTICAL CHARACTERIZATION OF OPTICAL COMPONENTS 133

When z = (7/2)x it is possible to show, using equation 1.184 and substituting for C,y,,
that

) —im/2 B ) , ,
Gla,y) = 2™z S = //f(:tc'yyl)e_ﬁ’r(m )/ gyl dy (3.101)

which we recognize as being essentially a Fourier transform relation. Thus, propagation

over a distance z = (7/2)x in such a medium results in Fourier transformation. It also
follows from the properties of repeated Fourier transformation that propagation over a

distance z = my results in an inverted image, and that propagation over a distance z = 2wy
results in an erect image. Now, letting the parameter a denote the fractional order, it is
possible to show that when z = a(7/2)x we obtain

) —tam/2 _
dlory) = 27 S | [ Katafsa! [5)Kal/sy' 9y ) do! dyf (3102

where K, (u,u) is the kernel of the fractional Fourier transform. We see that for arbitrary
values of z, the effect of propagation in quadratic graded-index media can be interpreted
as a fractional Fourier transform. An explicit integral transform relating §(z,y) to f(z,)
does appear in some treatments of graded-index media (Ghatak and Thyagarajan 1980,
equation 3.25), although it has not been recognized as the fractional Fourier transform
until Ozaktas and Mendlovic 1993a, b and Mendlovic and Ozaktas 1993a.

In the one-dimensional case, the corresponding input-output relation is

> , , 1 x
glz) = Ceroze—iUH1/22/x _—_ <—) . 3.103
w=3c T (3.103
When z = (7/2)x,
) —im /4 B ) ,
g(x) — li2moz € - /f(xl)e—z%r:m /2 dZI]", (3‘104)

and for arbitrary z = a(m/2)x

§(x) = 7% # /Ka(a:/s,:z:'/s)f(a:') da'. (3.105)

We now turn our attention to equations 3.70 and 3.71 which we specialize for graded-
index media. Assuming the waist of the beam coincides with the input plane (1/R;, = 0)
and borrowing the A, B, C, D parameters from chapter 4 (equation 4.42) we obtain

4 .
1 — <1 - ﬁ) ;’}sm(?d/x)
7= , (3.106)
out (1 — V%-) cos(2d/x) + (1 + %})
w2, 1 st 1 st

We see that in general, the wavefront radius and beam size oscillate periodically with d.
When the input beam size Wi, “matches” the natural scale parameter s = \/x /o of the
medium (W, = s), we obtain 1/Ryy = 0 and W, = Wi, for all d.
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In the remainder of this subsection, which can be omitted without loss of continuity, we
will discuss the number of degrees of freedom a graded-index medium of finite transverse
extent Ax can support (Ozaktas and Mendlovic 1993b). Our analysis implicitly assumed
that the medium is of infinite transverse extent and that equation 3.89 holds for all z,y.
Of course, this is physically not possible and would result in negative values for the re-
fractive index in equation 3.89. We note that apart from this abstraction, our analysis is
fairly exact and does not even employ the slowly varying envelope approximation leading
to the paraxial Helmholtz equation, but rather employs the more general Helmholtz equa-
tion 3.91. The major assumption behind equation 3.91 (apart from ignoring the vector
nature of light) is that the refractive index changes little over distances of the order of a

wavelength. This is valid provided x > A, which, as we will see below, must always be
satisfied anyway.

The fact that all physical systems are of finite extent has several implications. First,
since the amplitude distribution of light and its Fourier transform are both (approximately)
confined to finite intervals, a finite number of samples (degrees of freedom) are sufficient
to represent both. Second, Hermite-Gaussian functions beyond a certain order will not
be relevant because their energy content will mostly lie outside the finite extent of the
medium.

Since it is difficult to manufacture large index variations, and more fundamentally since
it is necessary that n(z,y) > 1, we must ensure that (22 + y?) < x? if such a system is
to be realizable. Thus the extent of the medium must satisfy Az < y. We will now show
that if this condition is satisfied, the following consequences hold (Ozaktas and Mendlovic
1993b):

1. The one-dimensional space-bandwidth product, or the number of degrees of freedom
the medium can support, is ~ Ax?/s2.

2. The number of Hermite-Gaussian modes whose energies lie predominantly within
the medium is ~ Az?/s%.

3. The first-order approximation for o, (equation 3.97) is valid for these modes.

To show the first of the above, we note that both the original amplitude distribution
of light and its Fourier transform will be confined to an extent of Az. This spatial extent
corresponds to an interval of length Ax/s? in units of spatial frequency (equation 3.101).
Since Az/s? represents the double-sided spatial bandwidth of the amplitude distribution,
it follows that the Nyquist sampling interval is s2/Az. Therefore, Az/(s%/Ax) = Ax?/s?
samples are sufficient to fully represent the amplitude distribution of light propagating
through the medium. This quantity is the space-bandwidth product of the medium or
the number of degrees of freedom the medium can support. The two-dimensional space-
bandwidth product is (Ax?/s2)2.

To show the second claim, we refer back to page 36 where we had stated that most of the
energy of the I[th Hermite-Gaussian function is concentrated in the interval [—/(I + 1/2) /7 , /(I + 1/2)/7].
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Examination of higher-order Hermite-Gaussian functions further reveals that most of the
energy within this interval tends to be concentrated close to the end points of the interval,
rather than around the origin. Thus, Hermite-Gaussian functions ;(x/s) whose ener-
gies mostly lie within the interval [—Axz/2, Az /2] are those which satisfy /(I +1/2)/7 <
Az /2s, or whose orders [ are (approximately) less than Ax?/s2. In other words, only these
first Ax?/s? modes are relevant and the summations can be truncated after this mode. In
two dimensions the total number of relevant modes are (Ax?/s%)2.

It is satisfying that the number of relevant modes is equal to the number of spatial
degrees of freedom. Thus regardless of whether we prefer to represent the amplitude
distribution of light in terms of its samples or in terms of the coefficients Cj,, of its
Hermite-Gaussian expansion, we need the same number of samples or coefficients.

Since the relevant modes have orders [, < Ax?/s?, it follows that the first-order

approximation of o, given by equation 3.97 is always accurate. The first-order expansion
holds when (I + m + 1)/(ms?0?) < 1. For the relevant modes (I + m + 1)/(rs?0?) <
(Az?/s?)/(ms?0?) = Axz?/mx?. Since we had assumed Ax < x for a realizable medium,
it is ensured that this quantity is always < 1.

That the number of relevant modes should be equal to the space-bandwidth product
can also be seen as follows: If the space-bandwidth product is IV, we can sample both sides
of the expansion given in equation 3.99 at N points without loss of information. This gives
us N linear equations in the unknown expansion coefficients Cj,,,. If the number of modes
included in the expansion is less than N, the set of equations will be overdetermined,
meaning that this number of modes is not sufficient to match the original function at
the sample points. If the number of modes is more than NV, the set of equations will be
underdetermined, meaning that there are redundant modes. When the number of modes
is equal to IV, the expansion coefficients can be uniquely solved for to match the original
function at the sample points.

An interesting and important interpretation of a quadratic graded-index medium is
as the limit of a large number of positive lenses interspersed between short sections of
free space. As the number of lenses becomes larger and the sections of free space become
shorter, such a lens system approaches a quadratic graded-index medium.

A brief overview of graded-index media in a Fourier optics context with useful refer-
ences is Gémez-Reino, Bao, and Pérez 1996.

3.4.4 Extensions

It is not difficult to also allow for homogeneous regions with refractive indices other than
unity, spherical refracting surfaces between such homogeneous regions, and spherical mir-
rors (Saleh and Teich 1991). We will not explicitly discuss such components, since they
can be handled by simple tricks. Homogeneous regions with refractive index n # 1 can
be handled by working with normalized angles, spherical refractive surfaces are treated
like lenses by inserting an infinitesimal section of free space on both sides, and spherical



136 CHAPTER 3. OPTICAL SIGNALS AND SYSTEMS

mirrors can be handled by folding the optical axis.

Sections of free space, thin lenses, and quadratic graded-index media belong to the
class of quadratic-phase systems, which will be further discussed in chapter 4. An example
of a common component which is not in this category is a prism (Saleh and Teich 1991).
The effect of a prism is similar to the effect of tilting the optical axis and can be analyzed
in the same manner. In certain instances, one may also want to be able to deal with
transverse displacements of the optical axis. Prisms, as well as tilts and displacements of

the optical axis will not be considered in this book.

3.4.5 Spatial filters

Spatial filters are optical components whose output §(z,y) is equal to their input f(z,y)

multiplied by a complex transmittance function ﬁ(x, Y):

9(z,y) = h(z,y)f(z,y). (3.108)

If h is real and positive, the filter is referred to as a magnitude-only filter. If || = 1,
the filter is referred to as a phase-only filter. Unless the material exhibits gain the filter
function satisfies |A| < 1.

Such filters can be realized by thin transmissive elements whose refractive index, at-
tenuation coefficient, or thickness is a function of (z,y):

Thin plate with variable thickness: A thin plate of homogeneous refractive index npy
and variable thickness d(x,y) in a medium with refractive index n will exhibit complex
transmittance (Saleh and Teich 1991)

h(z,y) = €778 explizno(np /n — 1)d(z,y)), (3.109)

where 0 = nf,./c. This transmittance is defined between two planes separated by a
distance dy between which the variable thickness plate is completely contained. This
formula is valid in the paraxial approximation and when the thickness dy is sufficiently
small (Saleh and Teich 1991). The constant factor exp(i2wody) is often dropped. The
transmittance function for a thin lens is a special case of the above formula.

Thin plate with graded index: Now, let us consider a thin slab of uniform thickness dg
but variable refractive index ng[l + ppi(z,y)]. In this case the transmittance functions is
(Saleh and Teich 1991)

h(z,y) = ™% expli2napp (, y)do], (3.110)

where 0 = ngfoc/c. When pyi(z,y) = — (22 + y?)/2x?, the plate behaves like a thin lens.
In this case, the plate can also be interpreted as a thin section of quadratic graded-index
media (since ng[1 + ppi(x,y)] is an approximation to equation 3.89).

Amplitude filters can be realized by using thin plates with variable attenuation co-
efficients. It is also possible to have spatial filters which simultaneously have variable
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attenuation, thickness, and refractive index, resulting in more general complex spatial fil-
ters. In this book, we will assume that the complex transmittance function is specified
and not involve ourselves with its physical realization.

Apertures are spatial filters whose transmittance function h(z, %) takes only two values:
1 or 0. They can be physically realized simply by cutting out the desired shape in an opaque
(non-transparent) material. It is assumed that the distribution of light behind the opaque
regions is zero, and that the distribution of light behind the transparent (cut out) regions
is equal to the incident distribution of light. Although not strictly true, this is usually
a sufficiently accurate approximation, known as the Kirchhoff approximation (Goodman
1996, Lohmann 1986).

3.4.6 Fourier-domain spatial filters

Fourier-domain filters are optical subsystems whose output g(z,y) is equal to its input
f(z,y) convolved by h(z,y):

g(z,y) = iL(SL‘,y) * *f(x,y), (3.111)
G(og,04) = H(0y,0,)F(04,0,). (3.112)

If H is real and positive, the filter is referred to as a magnitude-only filter. If |H| = 1,
the filter is referred to as a phase-only filter. Unless the material exhibits gain the filter
function satisfies |H| < 1. Such a filter can be realized by sandwiching a thin spatial filter
between a forward and inverse Fourier transform stage (figure 3.4).

input spatial filter output

Inverse z

Fourier T .
Fourier

Figure 3.4: A Fourier-domain filtering system consists of a Fourier transform followed by
a spatial filter followed by an inverse Fourier transform.

Fourier transform stages: Although the Fourier transform can be realized optically
in many different ways, the most common configurations are (i) a lens of focal length f
sandwiched between two sections of free space of length d = f, (ii) a section of free space
of length d sandwiched between two lenses of focal length f = d, and (iii) a section of
quadratic graded-index media of length (7/2)x. Ignoring uninteresting constant phase
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factors which do not depend on (z,y), all of these transform an input f(z,y) into the

Fourier transform F(o,,0,) with o, = 2/s%, 0, = y/s%

F(x/s?y/s%) o // f@ y e 2r@e' s qul gy (3.113)

where s is given by vV Ad = /Af for (i) and (ii), and s = y/x/o for (iii). The first two cases
can be easily demonstrated by using Fresnel’s integral and the transmittance function of
a thin lens (Goodman 1996). The third case is demonstrated by equation 3.101. It will
be very easy to verify these results using matrix algebra after the matrix representation
of such systems are introduced in chapter 4. It is also possible to rewrite equation 3.113
in the purer form

e o (zat yy'\] do dy
F(z/s,y/s) « //f(ac /8,y'/s) exp [—2277 (g; + g;)] ~ (3.114)
where s F(s0,,50,) = F(04,0,) and s~' f(2'/s,y'/s) = f(',4'). This form can be directly
translated to the dimensionless Fourier transform relation F'(u,v) = [ [ f(u,v) exp[—i27(pu+
vv)]dudv with u = 2'/s, u = z/s and similarly for v and v.

Inverse Fourier transforms can be easily obtained by noting that the inverse Fourier
transform is simply the forward Fourier transform followed by flipping the coordinate
axes. Thus if we choose the output coordinates to be opposite in direction to the input
coordinates, the same configuration will give us the inverse transform.

Using the Fourier and inverse Fourier transform as building blocks, it is possible to
realize the desired Fourier-domain filtering system by employing a spatial filter of the form

H(z/s%,y/s?) (3.115)

between the Fourier and inverse Fourier blocks in figure 3.4. When this system is realized
by using type (i) Fourier transform stages, it is commonly known as a “4f” system. In

dimensionless notation H(so,, soy) = H(0g,0y), the filter is given by H(z/s,y/s).

3.4.7 General linear systems

It is also possible to optically realize arbitrary linear systems of the form

i) = [ [ Ry )Py o'y (3.116)

by using systems such as matrix-vector product architectures (Goodman 1996) or a class
of systems which may be collectively referred to as multi-facet architectures (Mendlovic
and Ozaktas 1993¢, Ozaktas, Brenner, and Lohmann 1993, Ozaktas and Mendlovic 1993c).
However, the realization of such systems are usually considered inefficient or costly since
optical components with space-bandwidth product O(N?) are needed to realize systems
for signals with space-bandwidth product N.
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3.4.8 Spherical reference surfaces

Although not a component in a physical sense, here we also discuss spherical reference

surfaces for future reference. Usually we specify the amplitude distribution of light on a

planar reference surface. Sometimes however, it is more convenient to specify the ampli-

tude distribution on a spherical reference surface of radius R. Referring to figure 3.5, the

A

AN \ p N
Jonerd® s YN | T ndX > V)

sphere plane

3 >

spherical surface planar surface

Figure 3.5: Spherical and planar reference surfaces. R > 0 as drawn.

relation between the distributions with respect to the planar and spherical surfaces is

fplane(a:, y) = fsphere(x, Y) exp[iTr(ac2 + y2)/)\R]. (3.117)

In the spherical case, the coordinates z,y are those perpendicularly dropping from the
sphere onto the plane. The above relation is valid for small curvatures, so that the surface
is “thin” in the same sense that a thin lens is thin. The reader can verify this relation
easily by considering the expressions for plane waves and diverging/converging spherical
waves.

3.4.9 Remarks

We have ignored attenuations and reflections from the components discussed, concentrat-
ing mostly on how they modify the phase of the incident optical wave. Furthermore,
we have focused our attention to quadratic-phase systems for which higher-order depen-
dences of the phase on x,y can be neglected. (Linear terms—corresponding to shifts and
tilts—are also not included for simplicity, though most results can be easily generalized to
include them as well.) We will see in chapter 4 that quadratic-phase systems mathemat-
ically correspond to linear canonical transforms, and play a central role in the first-order
study of optical systems.

3.5 Geometrical optics

In geometrical optics, light is represented by light rays, which are in general curvilinear
paths along which light energy travels. A distribution of light can be represented by a
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bundle of rays whose trajectories (and sometimes intensities) are specified. Since we are
considering centered optical systems, we will usually represent the distribution of light
over a given plane z = constant, by specifying the points (z,y) and angles (6,0,) at
which the rays intersect this plane. 6, is the angle the ray makes with the y-z plane, and

8, is the angle the ray makes with the z-z plane. In other words, 0, is the complement

to /2 of the angle the ray makes with the z axis, and 6, is the complement to 7/2 of
the angle the ray makes with the y axis. The signs of the angles are the same as the signs

of the slopes of the rays. In order to make the correspondence with wave optics more
transparent, we will often choose to work with ¢, = sinf,/X and o, = sinf, /X instead of
the angles themselves, where X is the wavelength of light in the medium of propagation.
(From a purely geometrical optical perspective, o, and o, may be interpreted merely as
normalized angles. However, it is worth keeping in mind that o, o, can also be interpreted
as the transverse spatial frequencies of a plane wave propagating in the direction of the
ray (figure 3.3 and equations 3.30 and 3.31).

Optical components are characterized by how they map a ray incident on their input
plane to a ray exiting from their output plane. We will again restrict our attention to
first-order centered systems for which (i) the paraxial (small-angle) approximation can
be employed (6,60, < 1), and (ii) in which any lenses are thin lenses. In the paraxial
approximation, angles are taken equal to their sines/tangents and the slopes of the rays
so that o, ~ 0,/\, 0y = 0,/X. In a first-order system, the parameters (z,y) and (6,,6,)
characterizing a ray at the output of a system are related to the corresponding parameters
characterizing the ray at the input through a linear relation; higher-order dependences
are neglected. These approximations are in direct correspondence with those made in
section 3.3, which essentially amounted to neglecting terms beyond the quadratic in the
phase of integral kernels.

The sections on geometrical optics proceed more or less in parallel with the sections
on wave optics.

3.5.1 The ray equation

The ray equation governs the trajectory of rays r(s) = (z(s),y(s),2(s)) traveling in an
inhomogeneous medium (Saleh and Teich 1991):

d < dr) = Vn, (3.118)

ds \"'ds

where Vn is the gradient of the refractive index distribution n(r). Each value of the
parameter s corresponds to a point along the ray. Solution of the above equation subject
to specified boundary conditions gives a set of trajectories representing a bundle of rays.
The boundary conditions may take the form of the positions and directions of a bundle of
rays crossing a given plane. (The parameter s used here in accordance with widespread
convention should not be confused with the scale parameter introduced in section 3.2.)
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In a homogeneous medium, it is easy to show that solutions of the ray equation take the
form of linear trajectories; the paths of light are straight lines. Two commonly encountered
bundles are those that correspond to a plane wave and a spherical wave. In the former,
the bundle consists of a set of rays which are all parallel to each other. In the latter, the
rays emanate from a common origin and diverge outwards in all directions. More general
bundles of rays correspond to more general waves.

If we know the angles (6,,6,) that the bundle of rays corresponding to a plane wave
makes with a particular plane z = z;, then we know that the ray crossing this plane at
(x,y) will cross a second plane z = z3 = 21 +d at the point (z + 0,d, y + 0,d), still making
the same angles. We have assumed small angles so that tan f, ~ sinf, = 0,, and likewise

Turning our attention to the bundle of rays corresponding to a spherical wave originat-
ing from the origin (0, 0, 0), it is possible to show that the ray crossing a plane z = constant,
at the point (x,y), will be making an angle of (6,,0,) = (z/z,y/z) with that plane (again
in the paraxial approximation).

Now, let us consider two homogeneous half spaces which meet at a plane z = constant,
such that the medium to the left has a refractive index njf and the medium to the right
has an index nygn;. Then, the following relations hold for the angles characterizing the
ray coming from the left and the ray leaving towards the right:

Niefs SIN Olery = Mright SIN Oaright

Neft SIN Oy ¢, = Nright Sin 6 (3.119)

Yright*
These relationships, known as Snell’s law, cover both the condition that the incoming and
outgoing rays and the normal to the surface all lie in the same plane, and the condition
relating the angles made with the normal. Snell’s law takes a particularly simple form
when stated in terms of the normalized angles o, 0y:

Ozxleft = Ozright»

Oyleft = ayright’ (3120)

which simply states that (o, 0,) is conserved at the boundary. In the paraxial approxi-
mation we obtain

NiettOzlers = Nright Oz ri ght >

MeftOyje, = MrightOysign;- (3.121)

Although the law of refraction at refractive index discontinuities is strongly associated
with the name of Snell (and sometimes Descartes), the law appeared in the work of Ibn
Sahl some 650 years before Snell. For this reason, it has been suggested that it be referred
to as the Ibn Sahl law (Wolf and Krotzsch 1995).
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3.5.2 Fermat’s principle and the eikonal equation

An important concept in geometrical optics is the optical path length along a ray. The
optical path length from point A to point B is defined as the line integral

/B n(r) ds, (3.122)
A

where ds is the differential element along the path of integration (Saleh and Teich 1991).
Fermat’s principle is a statement of the laws of geometrical optics. According to this
principle, among all the possible paths connecting the points A and B, only the paths
whose optical path length variations with respect to small deviations are zero, correspond
to actual light rays. With “small deviations” we mean perturbations of the path in question
such that the perturbed path still lies in a narrow tubular neighborhood of the path. The
“optical path length variation” is simply the difference between the optical path length of
the perturbed path and the original path. Such paths whose variations are zero are known
to be either paths with minimum or maximum optical path length, or paths for which
the optical path length exhibits an “inflection.” Since a minimum is the most commonly
encountered case and since the optical path length is proportional to the time it takes light
to travel along the path, this principle is also known as the principle of least time (Saleh
and Teich 1991). Sometimes there are several paths for which the variations are zero. An
important special case is that of point imaging when a whole bundle of rays emanating
from point A all arrive at point B, in which case all the paths have the same optical path
length.

The ray equation can be derived from Fermat’s principle by using the calculus of
variations (Marcuse 1982, Born and Wolf 1980). (The ray equation is the so-called Euler
equation of the variational problem.) This variational principle can also be interpreted in
terms of wave optical concepts, providing significant insight on the relationship between
rays and waves. The path which is the actual optical ray corresponds to the path along
which the wave contributions constructively add up, whereas along other paths which
are not actual rays the contributions destructively interfere. Constructive interference
occurs where the phase varies slowly, particularly where the variation of the phase is zero.
Since the optical path length is associated with the phase, this directly corresponds to
the variation of the optical path length being zero. These notions find their mathematical
expression in the stationary-phase integral (subsection 1.10.3). An excellent discussion
of these issues may be found in Lohmann 1986. Further discussion of these relationships
and Fermat’s principle is beyond the scope of this book. For this we refer the reader to
Lohmann 1986, Marcuse 1982, and Born and Wolf 1980.

Another important concept is the eikonal. The eikonal S(r) is a function of position
such that (i) its equilevel surfaces are everywhere orthogonal to the optical rays, and
(ii) the optical path lengths along all rays from one equilevel surface to another are equal.
The rays lie along the gradient of S(r). An alternative statement of the laws of geometrical



3.5. GEOMETRICAL OPTICS 143

optics is the eikonal equation (Saleh and Teich 1991):

|VS(r)|? = n?(r). (3.123)

The optical path length along a ray between points A and B is simply equal to the difference
between the value of the eikonal at these points (Saleh and Teich 1991):

B B B B B
/ n(r) ds = / IV5(r)|ds = S(B) — S(A). (3.124)
A A

The eikonal equation is equivalent to Fermat’s principle and the ray equation can be
derived from the eikonal equation as well (Marcuse 1982, Born and Wolf 1980).

The equilevel surfaces of the eikonal are sometimes referred to as geometrical wave-
fronts. They are often close approximations to the physical wavefronts, but deviate to a
greater extent in those regions where geometrical optics does not provide a satisfactory
description of the behavior of light (such as in those regions where light is tightly focused).

It is possible to substitute an expression of the form f(r) = A(r) exp[i27(foc/c)S(r)] in
the Helmholtz equation 3.23 and show that in the limit f,. — oo one obtains the eikonal
equation. This supports the association between the phase and the optical path length.
This classic derivation, which the reader may find in many texts such as Saleh and Teich
1991 and Marcuse 1982, is often used to motivate the fact that geometrical optics is a
limiting case of wave optics, which holds when the wavelength is small.

3.5.3 Hamilton’s equations

We now briefly discuss the Hamiltonian formulation of geometrical optics (Marcuse 1982).
We first define the Hamiltonian H of a system with refractive index distribution n(z, y, 2)
as

H(z,y,05,04;2) = —\/nQ(x,y, 2)fe.[c? — o2 —o2. (3.125)

As before, 0, = sinf, /) and o, = sinf, /A, where A = ¢/n(x,y, 2) foc. We can now write
the celebrated Hamilton’s equations:

de OH dy O0H
= = < =" 12
dz  9doy’ dz 9oy’ (3-126)
doy OH doy OH
_ __oH 12
dz ox’ dz oy (3.127)

It is possible to show that Hamilton’s equations are equivalent to the ray equation (Marcuse
1982, Goldstein 1980), so that they also constitute an alternative statement of the laws of
geometrical optics. Here z,y, 0,0y are treated as functions of z and give us the position
and angles of a ray propagating through the system in the positive z direction. Noting
that dz/ds = sinf, and dy/ds = sinf,, where ds = \/dz? 4+ dy? 4+ dz? is the differential
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element along the ray, it is possible to write o, and oy in terms of the derivatives of  and
y with respect to z as follows:

i ew ocC ocC bl
Ux:sm _ f—n(x y. 2 )Sln{%—f n(z,y,z) dv

A c ds
& n(x,y, z)dx/dz

¢ 1+ (dr/dz)? + (dy/dz)?

sinGy foc focn(x Y,z )dy

oy=— = —n(w Yy, z)sin b, = p 7
¢ 1+ (de/dz)? + (dy/dz)?’ '

These equations allow us to express the Hamiltonian in terms of x,y and their derivatives
rather than z,y and oy, 0y, a form which is sometimes preferred.
The total derivative of the Hamiltonian with respect to z can be written as

dH  0H dx L oH OH dy N OH do, L oH OH doy, L oH oH
dz  drdz Oy dz  Bo, dz doy dz 9z

(3.129)

By using Hamilton’s equations, it immediately follows that the total derivative dH /dz is
equal to OH /0z since the other terms cancel out. If n(x,y, z) does not depend on z, then
dH Jdz = oH /0z = 0 which means that the Hamiltonian remains the same along a ray
(@(2),y(2), 02(2), 0y (2))-

The results obtained by solving Hamilton’s equations will be the same as those obtained
by solving the ray equation. As instructive as it is, the analogy between the Hamiltonian
formulation in optics and the Hamiltonian formulation in mechanics will not be pursued
in this book. We refer interested readers to Goldstein 1980, Sekiguchi and Wolf 1987,
and the other advanced books on mathematical optics that are referred to at the end of
chapter 4. However, we note that point particles are to the wavefunctions of quantum
mechanics, precisely what rays are to optical waves. Also, the important Hamilton-Jacobi
partial differential equation associated with the Hamiltonian given in equation 3.125 is
nothing but the eikonal equation 3.123 (Marcuse 1982).

In the paraxial approximation, we take sin, = 6, sinf, = 6, and dz/ds = dz/dz,
dy/ds = dy/dz so that

_ 0z foc Joc dx
Oz = N ¢ n(z,y, z )9 ’I’L(ZIZ’ Y, )dzv
_ Oy _ Joc o dy
Oy = Y - c n(x Y,z )Qy c n(x Y, )dz (3130)

In this case the Hamiltonian simplifies to

(02 + 02) (02 + 02)

Bnfoc]c —nfocfe 55 N + Anfoc/c —ngfoc/c,  (3.131)

H(l’,y, Ox,0y; z) =
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where we let n = ng — An with the assumption that An < ng and replaced n = ng in the
denominator (Marcuse 1982). The constant term —ng foc/c may be dropped since it will
disappear in Hamilton’s equations anyway.

Although we have not provided a derivation of Hamilton’s equations from the ray
equation, we mention a crude but simple and instructive derivation which allows us to
see their consistency in the paraxial case. Referring ahead to equation 3.136 and using
equation 3.130, we can obtain do,/dz & (foc/c)On/0z, which in turn is equal to —0H /dx
evaluated from equation 3.131. The other equation dH /o, = dx/dz is also easily seen to
carry the same information as equation 3.130. (The equations for y are of course identical.)

Finally, we show that in their paraxial form, Hamilton’s equations have a particularly
simple interpretation in terms of Snell’s law. (The rest of this subsection can be omitted
if desired.) First, consider the equation dz/dz = OH /do,. The right hand side is readily
evaluated from the paraxial Hamiltonian as o,/(nfoc/c) = oA = 6, so that we are left

with dz/dz = 6,: the rate of change of z is simply given by 6, which in the paraxial
approximation also equals the slope of the ray. Second, let us consider the equation
do,/dz = —0H dz. We will show that this equation corresponds to Snell’s law. The right
hand side evaluates to (foc/c)On/0x = —(foc/c)0An/Ox. Thus the incremental change in
o, can be written as

on(z, z)

oz

Using 0, = 0,/ = ngb,(foc/c) to change to angles, and noting that the axial and trans-

0x(z+dz) = 0.(2) + (foc/C) dz. (3.132)

verse increments in the ray position dz and dx are related by dx = 0,dz, we get an angular
deflection given by
1 dn

dfy = 0y(z + dx) — 0,(z) = I
x 70

(3.133)

where dn = (On/0x)dz. Now, let us write Snell’s law for an interface parallel to the optical
axis such that the refractive index on one side is n and that on the other side is n + dn:

sin[¢,(x + dx)] (n + dn) = sin[¢,(z)] n, (3.134)

where the angle ¢, () complements the angle 6, to m/2 and is thus a large angle (fig-
ure 3.6). Writing ¢, (x + dx) = ¢.(x) + d¢, and expanding the sine of a sum, it follows
that equation 3.134 implies an angular deflection of

dpy = ¢z(x + dz) — ¢ (x) = — tan[o,(z)] d;” ~ — tan[¢p. ()] Z—Z. (3.135)

Since the angular deflections df, and —d¢, are equal, and since tan¢, = cotf, =
1/tané, ~ 1/6,, it follows that the second Hamilton’s equation corresponds to Snell’s
law. We also note that the derivative of the refractive index with respect to z does not
come into play since for paraxial angles, the deflective force of changes with respect to x
is dominant.

Chapter 3 of Marcuse 1982 is particularly recommended for a very accessible discussion
of these and related topics. Further references are given at the end of chapter 4.
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O+ do,
0,+do, n+dn

0, n

Ox

Figure 3.6: Deflection of a ray by an infinitesimal refractive index change.

3.6 Geometrical optical characterization of optical compo-
nents

3.6.1 Sections of free space

If we restrict ourselves to paraxial rays which make small angles with the z axis, then
ds =~ dz and we can write the ray equation as (Saleh and Teich 1991)
d dx on d dy on
—(n—) ~ — —n—=) ~ —. 3.136
az (ndz) or’  dz <ndz) dy (3150
In a homogeneous medium where n is constant we have
d’x d%y
— = — = 3.137
dz? ’ dz? ’ ( )

which imply that z(z) and y(z) both increase linearly with z, corresponding to the fact
that the rays are straight lines. If a ray intercepts the plane z = z; at (z1,y;) making
angles (0;1,6,,) with the y-z and z-z planes respectively, then this ray will intercept the
plane z = 29 = 21 + d at (22, y2) making angles (0.9, 60y,), where

To = 1 + 031d, Yo = Y1 + Gyld, (3.138)
Oy = Oa1,  Oyy =0y, (3.139)

These equations can also be easily derived from the paraxial form of Hamilton’s equations.

3.6.2 Thin lenses

Thin spherical lenses are characterized by their focal length f (equation 3.85), which is the
distance from the lens along the optical axis at which an incident bundle of parallel rays
intersect at a point (figure 3.7). The thickness of a thin lens is assumed to be sufficiently
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small so that the point (x9,ys) from which a ray leaves the lens is equal to the point
(1,y1) at which the ray is incident on the lens. Employing Snell’s law twice, it is possible
to show—under the paraxial approximation—that for a thin lens the angles (6.2,0,,)
of a ray leaving the lens are related to the angles (6,1,6,,) of the ray incident on the
lens through relations which depend only on the focal length of the lens (and not on the
separate surface curvatures). Taken together, these results provide the geometrical optical

focal plane

-

lre.

Figure 3.7: In the paraxial approximation, parallel rays incident on a thin lens intersect
at a single point lying on the focal plane.

characterization of a thin lens in the paraxial approximation:

To = T1, Y2 = Y1, (3.140)
Tl Y1
9:32 == Hrl _ 7, 9y2 = le — 7 (3141)

3.6.3 Quadratic graded-index media

The refractive index distribution of a quadratic graded-index medium was given in equa-
tion 3.89. Assuming X, = Xy = X, substituting in equation 3.136, and noting that the
refractive index does not depend on z we obtain

d?z 1 —and Py i—yn%

dz2 T n2 2 d2  n? 2

(3.142)

Usually x is large so that the refractive index distribution n(z,y) appearing in the denom-
inators can be replaced by ng within the extent of the medium (Saleh and Teich 1991),
leading to

d*x T d%y Y

e g _ 2 3.143

dz2 Y2 dz2 2 ( )
These equations can also be derived from the paraxial form of Hamilton’s equations with
the Hamiltonian given in equation 3.131. For instance, we can use dz/dz = 0H /do, =
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cop /N0 foc and dog/dz = —OH |0z = (foc/c)On/Ox, leading to ngd?z/dz? = On/dx. Now,
using equation 3.89 we again obtain equation 3.143.

Equation 3.143 has oscillatory harmonic solutions x(z) and y(z). The angles of the ray
are given by the derivatives of the position of the ray: 8,(z) = dx(2)/dz, 0,(2) = dy(z)/dz.
Making use of this fact, it is possible to show that if a ray is incident onto a quadratic

graded-index medium at the plane z = 21 at (x1,y;) making angles (0,,60.2), then at

the plane z = z3 = 21 + d, the position (22,y2) = (2(22),y(22)) and angles (0.9,0,,) =
(02(22),0y(22)) will be given by

x9 = x1 cos(d/x) + 0,1 x sin(d/x), (3.144)
yo = y1 cos(d/x) + 0y, xsin(d/x), (3.145)
0,9 = —%sin(d/x) + 0, cos(d/x), (3.146)
0y, = —@;—1 sin(d/x) + 0y, cos(d/). (3.147)

The period of oscillation is 2my.

3.6.4 Extensions

Homogeneous regions with refractive indices other than unity, spherical refracting surfaces
between such homogeneous regions, and spherical mirrors are easily handled with Snell’s
law and the law of reflection (Saleh and Teich 1991). Again we will not explicitly discuss
such components, since they can be handled by simple tricks. Homogeneous regions with
refractive index n # 1 can be handled by working with o, = 6,/\ and o, = 6, /X instead of
the angles themselves, where X is the wavelength in the homogeneous medium. Spherical
refractive surfaces can be treated like lenses by inserting an infinitesimal section of free
space on both sides, and spherical mirrors can be handled by folding the optical axis.

All of the components we have treated so far were characterized by linear relations
between the output position and angles and input position and angles:

ewl

Tr9 = fiwivl + BxT, Yo = flyy1 + ByT, (3148)
9x2 A = ewl 9’!/2 A > eyl

where the parameters A, B,C, D with subscripts z,y are constants. An example of a
common component which cannot be characterized by these relations is a prism (Saleh
and Teich 1991), which would require the addition of constant terms to the right hand
sides of the above equations. The effect of a prism is similar to the effect of tilting the
optical axis and can be analyzed in the same manner. In certain instances, one might
also want to be able to deal with transverse displacements of the optical axis, which also
require the addition of constant terms on the right hand sides of the above equations.
Prisms, as well as tilts and displacements of the optical axis will not be considered in this
book.
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3.6.5 Spatial filters

The most common type of spatial filter discussed in geometrical optical terms are opaque

apertures. Rays are completely blocked when they intercept the non-transparent parts of
an aperture but pass unhindered through the transparent parts.

Systems involving more general spatial filters are usually analyzed with wave optics;
we will exclusively do so in this book. Nevertheless, it is possible to assign an amplitude
or intensity to each ray in a bundle and thus represent quite general distributions of light.

Attenuating or amplifying filters will then modify this amplitude or intensity. Phase filters
(including thin plates with variable thickness or graded index) have the effect of bending
the rays by an angle determined by the local partial derivatives of the phase function.
However, such approaches are less frequently employed.

3.6.6 Fourier-domain spatial filters

Similar comments apply to Fourier-domain spatial filters, which are likewise usually ana-
lyzed with wave optics. However, it is instructive to examine the behavior of rays in the
three Fourier transform stages discussed on page 138 (figure 3.8). It is seen in all parts
of the figure that parallel rays converge to a point on the Fourier plane, corresponding
to the fact that the Fourier transform of a harmonic function is a delta function. Rays
emanating from a point on the input plane appear in the Fourier plane as a bundle of
parallel rays, whose angle with respect to the optical axis is determined by the position
of the point. The position zp and angle 8, of a ray at the Fourier plane are related to
those at the input plane through the relations:

TP = $204i,, (3.150)
OgF = —%7 (3.151)
where o, = 6,/\. This equation is the geometrical-optical analog of equation 3.113.

It is an instructive exercise to verify the above relations using simple geometry or the
input-output relations for each component. The intuition gained by carefully examining
figure 3.8 from both wave optical and geometrical optical perspectives goes a long way
towards understanding the relationship between these two descriptions of light.

3.6.7 General linear systems

Once again such systems will be exclusively dealt with in wave optical terms.

3.6.8 Spherical reference surfaces

In certain cases, it may be desirable to specify the intercepts and angles of rays with
respect to spherical reference surfaces. It is possible to write relations between the ray
parameters with respect to the planar and spherical reference surfaces shown in figure 3.5.
However, these are not presented since we will not be making use of such results.
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®

input plane Fourier plane

f f
(i1)
(iii)
input plane Fourier plane
ny/2
T z
Xin e - Xp

Figure 3.8: Fourier transform stages introduced on page 138. The lenses have focal length

f. (i) and (ii) s = VS, (iii) s = /x/o .
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3.6.9 Remarks

We have ignored attenuations and reflections from the components discussed, concentrat-
ing only on how they bend the rays (which corresponds to modification of the phase of
the wavefield). Furthermore, we are focusing our attention to systems for which the ray
position and angles at the output are linearly related to those at the input, assuming

that higher-order dependences can be neglected. This corresponds to neglecting higher
than quadratic terms in the phase in wave optics. (Constant terms—corresponding to
shifts and tilts—are also not included for simplicity, though most results can be easily
generalized to include them as well.) We will see in chapter 4 that systems represented by
equations 3.148 and 3.149 play a central role in the first-order study of optical systems.

3.7 Partially coherent light

In sections 3.3 and 3.4 we assumed that the distribution of light at any given plane could be
represented by deterministic functions f(z,y). In some cases, either due to the intrinsic
random nature of light sources or the random nature of the media which they travel
through, it is more appropriate to represent light as random processes.

In this book, we generally assume that the light is temporally stationary and ergodic,
and also quasi-monochromatic, which means it can effectively be assumed to be temporally
coherent. The temporal power spectral density of such light at any given point in space,
is confined to a narrow band of temporal frequencies. (This assumption requires that the
path length differences in the optical system are much smaller than the coherence length
of the light.) For definitions and further discussion of these concepts, we refer the reader
to Goodman 1985 and Saleh and Teich 1991.

Light which is quasi-monochromatic may nevertheless exhibit different degrees of spa-
tial coherence. Light with partial spatial coherence is characterized by its autocorrelation

Rjj, better known in optics as its mutual intensity, defined by

Rjj(a1,y1522,y2) = (fw1,y1) f* (22, 92)), (3.152)

where the angular brackets denote an ensemble average. When x; = o = z and y; =
yo =y, we obtain the average intensity

Ry, ys2,y) = (f(@,9)]?) = I7(z,y). (3.153)

When the light is spatially coherent, the average is redundant and Rff(xl,yl;xQ,yQ) =
f(x1,y1)f*(x2,y2). This corresponds to the deterministic case, where we usually simply
work with the amplitude f (z,y) rather than the mutual intensity. Light may be treated as
spatially coherent if the function R i f(:cl, Y1; T2, y2) does not become small for the range of
values x1,y1, T2, ys can take within the aperture of the optical system. When the light is
spatially incoherent, Rff(xl, Y1; T2, y2) behaves like the delta function 6(x; — z2,y1 — y2).

This corresponds to the case where distinct spatial points, even very close ones, do not
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exhibit any correlation with each other. Light may be treated as spatially incoherent if
the spatial extent over which the value of R ff(xl, Y13 X2,Y2) is substantially greater than
zero is smaller than the resolution of the optical system.

The definitions and results presented in section 1.8 on random processes directly apply
and can be used, for instance, to determine the mutual intensity Rg; at the output of an
optical system characterized by the kernel 71(1:, y;x',y"), in terms of the mutual intensity

RJ;J; at its input:

Rgg(xlvyl;x%y?) :/// Rfva(m'llayll’m,%yé)

xh(z1,y1; 21, Y1) (22, yo; 25, y5) d'y dyy day dys. (3.154)

If the system is a thin spatial filter with h(z,y;2',vy") = h(z,y)d(z — 2,y — v/'), then
Rgg(x1,y1522,y2) = h(z1,y1)h* (22, y2) R (w1, y1; 2, y2), and I(z,y) = |h(z,y) "I f(z,y).
When the light is spatially coherent, equation 3.154 simply reduces to a duplicated form
of the coherent relation

i) = [ [ Mol ) f ) o (3.155)

On the other hand, when the light is spatially incoherent, equation 3.154 leads to the
following relation in terms of the intensities:

Ty(e,9) = [ [ e,y ) P! ') oty (3.156)

where k is a constant (see Goodman 1985, page 206 or Saleh and Teich 1991, page 368).

3.8 Fourier optical systems

The purpose of this chapter has been to present the basic tools needed to analyze Fourier
optical systems. In this book, this term refers to centered optical systems consisting of ar-
bitrary concatenations of sections of free space in the Fresnel approximation, thin spherical
lenses, sections of quadratic graded-index media, and thin spatial filters. Although more
general systems can also be analyzed in terms of Fourier transforms and linear systems
theory, such systems will not be dealt with in this book. We will see in chapter 4 that cen-
tered systems consisting of arbitrary concatenations of sections of free space, thin lenses,
and sections of graded-index media constitute the class of first-order optical systems or
quadratic-phase systems (Bastiaans 1979a). Thus Fourier optical systems consist of thin
spatial filters sandwiched between any number of first-order optical systems.

The key results that will be most frequently used are that describing the effect of
a section of free space (equation 3.76), that describing the effect of a thin lens (equa-
tion 3.80), that describing the effect of quadratic graded-index media (equation 3.100),
and that describing the effect of a thin spatial filter (equation 3.108). Using these results
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consecutively, it is possible to analyze any first-order or Fourier optical system and obtain
either the overall input-output relation or the distribution of light at any desired plane.

Although we will not present the explicit derivations, here we will list the overall
input-output relations for a number of important elementary systems. (The derivations
are much simplified by the matrix formalism to be discussed in chapter 4.)

First, we assume that a spatial filter with amplitude transmittance f (z,y) is situated
at z = 0 and illuminated with a unit-amplitude plane wave. Then it is possible to show
that the amplitude distribution §(x,y) at the plane z = d when d — oo is given by (Saleh
and Teich 1991)
ei?wad

tAd

where F represents the Fourier transform of f.

e (L ), (3.157)

g(z,y) = ' N

Another important system is the so-called “2f” system which consists of a lens of focal
length f sandwiched between two sections of free space of length f each. This system was
discussed in subsection 3.4.6, where it was shown that it acts as a Fourier transformer.
Yet another important system is the “4f” system also discussed in the same subsection.
This system can be used to convolve an input light distribution with a desired function,
or in other words to implement a desired Fourier-domain filter. The necessary filters can
be realized holographically, by using computer-aided and/or lithographic techniques, or
by using a spatial light modulator. Discussion of these are beyond the scope of this book.

The possibility of realizing desired convolutions and spatial filters has led to a vast
and diverse array of applications often referred to as analog optical information processing
(or signal processing). Very broadly speaking, these applications can be roughly classified
into two categories: those which are applications of convolution, and those which are
applications of correlation. Mathematically, correlation is closely related to convolution;
however their interpretations are very different. The former category includes applications
such as beam shaping, image enhancement, and Wiener filtering for image restoration
and noise removal. The latter category includes matched filtering and more advanced
approaches in pattern recognition.

The single-lens imaging system is a very important system in optics which consists
of an “object” situated a distance d, to the left of a lens with focal length f, with the
“image” observed a distance d; to the right, such that

= 4

Tt (3.158)

an equation known as the imaging condition. If the object (input) complex amplitude
distribution is f(z,y), the image (output) complex amplitude distribution is

oc eI HYAME F Ny /M, (3.159)

where M = —d;/d, is the magnification of the imaging system. This result is valid for an
infinite lens whose transmittance function is given by equation 3.80. In reality, the lens
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will have a finite aperture. If the aperture is characterized by an aperture function p(x,y)
which is 1 where the aperture is transparent and 0 where it is opaque, such a lens can
be modeled by the transmittance function p(z,y) exp[—im(x? + y?)/Af]. Using this new
transmittance it is possible to re-analyze the single-lens coherent imaging system (as well
as the 2f or 4f systems discussed above) to find the correct input-output relation. It is
commonly stated in many sources that the overall effect of a finite lens aperture is to result
in a space-invariant system whose transfer function is o< p(—Adijo,, —Adijoy). However, this
widely stated result is not correct and the overall coherent imaging system is not space-
invariant (Rhodes 1998). The lens aperture cannot be a Fourier-domain filter since the
Fourier transform is in general not observed at the lens but elsewhere in the system.
Greater insight into this system can be gained by using fractional Fourier transforms. We

also note that when incoherent light is used, the same system does become space-invariant
and can be modeled by a point-spread function or a Fourier-domain transfer function.

Real imaging systems may consist of several lenses with different aperture sizes. An
approximate but useful way of analyzing such systems is to determine the limiting aperture
of the system (known as the aperture stop) and find its image with respect to the output
plane (known as the exit pupil), using geometrical optics techniques (see subsection 4.4.3).
Then, for purposes of determining the resolution of the system, we can instead analyze
the problem of a converging spherical wave incident on the exit pupil. If the exit pupil
was infinite in extent, this converging spherical wave would be focused to a point at the
image plane, corresponding to perfect imaging with no blur. The finiteness of the exit
pupil leads to a finite spot size instead, determining the resolution of the system. If the
exit pupil is a distance d to the left of the image plane and is represented by the function
p(z,y), then at the image plane the distribution of light is proportional to

oim(@®+y?)/Ad p (%7 l) _ (3.160)

Thus instead of a point, we observe a distribution of light given by the Fourier transform
of the exit pupil function. If one considers a simple circular or rectangular aperture of
diameter D, then it is easy to show that this distribution has a width of about Ad/D.
This quantity is a measure of the resolution of the imaging system. Image features closer
than Ad/D cannot be distinctly resolved from each other. In certain cases, the distance d
corresponds to the focal length f of the overall imaging system or compound lens, so that
the size of the smallest resolvable feature is written as fu A, where fu = f/D is referred
to as the “f-number.” Smaller f-numbers mean better resolution. The fact that the size
of the smallest resolvable feature is inversely proportional to the size of the aperture is, of
course, a consequence of the uncertainty relation discussed in section 1.7.



3.9. FURTHER READING 155

3.9 Further reading

Our coverage of elementary optics in this chapter has been brief and skewed towards the
needs of later chapters. Classic introductory books on general optics include Saleh and
Teich 1991, Moller 1988, Klein and Furtak 1986, Hecht, Zajac, and Guardino 1997, and
Jenkins and White 1976. More advanced books include Born and Wolf 1980, Stavroudis
1972, Solimeno, Crosignani, and Di Porto 1986, and Mandel and Wolf 1995.

Classic introductory texts on Fourier optics and optical information processing include
Goodman 1996, Lohmann 1986, Papoulis 1968, lizuka 1987, Reynolds and others 1989,
Yu 1983, Gaskill 1978, and Cathey 1974. More advanced treatments include VanderLugt
1992, Yu and Jutamulia 1992, Javidi and Horner 1994, Boone 1997, and Yu and Jutamulia
1998. For a discussion of sampling theory in the context of optics, see Gori 1993.

Although this book does not deal with quantum optics, the fact that the mathematical
techniques discussed have found many applications in these areas warrants inclusion of a
few references: Walls and Milburn 1994, Mandel and Wolf 1995, and Yamamoto and
imamoé;lu 1999.
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Chapter 4

Phase-Space Optics

4.1 Wave-optical and geometrical-optical phase spaces

In chapter 1 we discussed the basic concepts used in the study of signals and systems, and
in chapter 3 we discussed optical signals and systems. In chapter 2 we discussed time-
or space-frequency representations and linear canonical transforms, and in this chapter
we discuss the use of these concepts in optics. Our main interest will be in the spatial
distribution of light so that we will usually deal with space-frequency representations
rather than time-frequency representations. Despite the fact that optical signals are most
commonly two dimensional, leading to four-dimensional space-frequency representations,
in this chapter we will mostly discuss one-dimensional optical signals leading to two-
dimensional space-frequency representations, since the latter are much easier to visualize.
Phase space is the space in which space-frequency representations exist, and is also referred
to as the space-frequency plane for one-dimensional signals and systems. One of the two
dimensions of phase space is usually a spatial coordinate, whereas the other dimension
may be either spatial frequency, the angle or sine of the angle or slope of a ray, or a
quantity corresponding to momentum.

We will discuss both wave optical and geometrical optical phase-space representations.
Let us consider an optical signal corresponding to the amplitude distribution of light at
a given plane. Although other alternatives are also possible, we will employ the Wigner
distribution Wf(:c,aw) of the optical signal f(z) as its phase-space representation (equa-
tion 2.16):

sz(a:, Oz) = /f(:c + 2 )2) f (x — 2! /2)e ™20 dy!, (4.1)
The properties given in equations 2.17, 2.18, and 2.19 remain valid, with the appropriate

replacement of dimensional variables. When we integrate the Wigner distribution over all
spatial frequencies, we obtain the intensity distribution

Ii(@) = (@) = / Wiz, 00) do. (4.2)
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When we integrate the Wigner distribution over space, we obtain the spectral distribution
of power

Flon) = [ Wiz, 0,) do. (4.3)

When we integrate over both x and o,, we obtain the total power of the optical signal:

// Wf(zc, o) dx do, = signal power. (4.4)

Notice that the optical signal power (which might be expressed in Watts) is the quantity
corresponding to the mathematical concept of “energy” defined in chapter 1. This is
because our main interest is in the distribution of this total power in space and spatial
frequency. Temporally, the light is assumed to be quasi-monochromatic, so that it is
appropriate to consider the energy in a unit time interval (which is the power), rather
than the total energy (the energy from ¢t = —o0o to +o0o would be infinite). If we had been
dealing with signals of finite duration rather than quasi-monochromatic signals, then one
could consider the spatio-temporal Wigner distribution whose integral over all variables
could be interpreted as the actual energy in Joules (Mendlovic and Zalevsky 1997).

Roughly speaking, the Wigner distribution of an optical signal gives us the distribu-
tion of optical power over space and spatial frequency. In other words, it provides us
information about the local frequency content of the optical wave at a certain location.

The Wigner distributions of several elementary signals were given in table 2.1. We
see that the Wigner distribution of a plane wave exp(i2mo.qz) (which makes an angle
arcsin(Ao,o) with the z axis), is given by 0(0, — 049). A point source d(z — xp) has a
Wigner distribution given by §(x —z). Likewise, the remaining entries of the table can be
respectively interpreted as a parabolic wave, a Gaussian beam, and light coming through
a simple aperture.

We will not further repeat the content of chapter 2, but the reader should bear in
mind that the results and discussions presented there are directly applicable to optical
signals and systems. We will also not discuss space-frequency representations other than
the Wigner distribution in an optical context. Use of the ambiguity function in optics is
discussed in Papoulis 1974. A discussion of wavelets from an optics perspective is given
in Li and Sheng 1998. We also recall that the Fresnel integral can be cast in the form of
a wavelet transform (see page 64 and Onural 1993).

Whereas the coordinates of wave-optical phase space are space and spatial frequency,
the coordinates of geometrical-optical phase space will be chosen as the position and angle
of the rays. In some contexts the sine of the angle or the slope of the ray is considered
instead; however, in the paraxial approximation where all angles are assumed to be small,
all of these are equivalent. The reader should just bear in mind that the angle can also
be interpreted as the slope of the ray or the derivative of the function x(z) describing the
trajectory of the ray.

As usual, the position will be denoted by z. As for the angle, we will choose to work
with the normalized angle o, = sinf,/\ ~ 6, /X introduced on page 140. Although we
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will interpret o, primarily as an angle in geometrical-optical contexts, we are using the
same notation we use for spatial frequency, since o, directly corresponds to the spatial
frequency of the spatial harmonic at z = 0 associated with a plane wave whose wave vector
is parallel to the ray with angle 8,. This association allows us to look at wave-optical and
geometrical-optical phase spaces in a unified manner. It is also possible to interpret 6, /A
as a quantity corresponding to momentum, which allows an analogy with the phase space

of mechanics whose coordinates consist of spatial variables and momenta associated with
these spatial variables.

We recall from chapter 3 that in geometrical optics a distribution of light is represented
by a bundle of rays. In general, there will be a continuum of rays crossing a given plane
at different points x making different normalized angles o, = 60, /A. Each such ray will
be represented in phase space by the point (z,0,). It is also possible to assign weights to
each ray and thus to each point in phase space. These weights might be represented as
a function of (z,0,) defined over the whole z-0, plane. If there is no ray at position x
making angle o,, the value of this function is zero at that point (z,0,.). We will further
discuss the relationship between the two phase spaces throughout this chapter.

Figure 4.1 shows how several different ray bundles look in phase space, where we
have assumed all rays to have the same weight. More general ray bundles will cover more
general regions. The usual case is for these regions to consist of one or more well-connected
regions, rather than a scattering of isolated points. As these bundles of rays pass through
optical systems, the region and its boundary will be distorted such that any ray on the
boundary will continue to remain on the boundary. The closest wave-optical analog of
such a boundary is a contour of the Wigner distribution which contains “most” of the
signal energy (say 99%).

Here we also briefly point out the relationship of the phase-space quantities discussed
above to radiometric or photometric quantities (Born and Wolf 1980). Consider an ex-
tended light source illuminating a certain region of space. The power (energy per unit
time) coming from an element of area JA centered at a point P on this source, and
falling within an element of solid angle §§2 centered around the direction of ©, is given
by B(P,©)cosf §A 6. Here 6 is the angle between the surface normal at P and the
direction of ©, and B(P,©) is referred to as the photometric brightness. Here the term
photometric implies that we are referring to physical quantities measured in Watts and
so on, rather than measures of visual sensation. The cos€ term is an obliquity factor
corresponding to the fact that the projection of the area element in the direction © is
given by cosf dA. We observe that as a function of position and angle, the brightness
is also a kind of phase-space density, analogous to the Wigner distribution. When we
integrate the brightness over the area of the source as [ B(P,©)cosfdA, we obtain the
photometric intensity as a function of the direction of ©. Integration of this quantity over
all relevant angles yields the total power. When we integrate the brightness throughout
the solid angle as [ B(P, ©) cos § dS), we obtain the photometric illumination as a function
of the point P. Integration of this quantity over the source area yields the total power.
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(a) (b)

(c) A0 (d) A0

©)]

Figure 4.1: Representation of various ray bundles in phase space. (a) A single ray, (b) a
bundle of parallel rays, (c¢) a bundle of rays emanating from the same point, (d) a bundle
of rays uniformly distributed over different positions and angles, (e) a bundle of rays
corresponding to a spherical wave emanating from a point to the left.
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The integrals of B(P,®) over one of the variables are analogous to the projections of the
Wigner distribution. Integration over both variables gives us the total power. Further
discussion of these quantities may be found in Born and Wolf 1980, pages 181-183. It
must be noted that the field of radiometry and photometry displays a wealth of terminol-
ogy which might be potentially confusing. The terminology used above (Born and Wolf
1980) is not consistent with that used in some other sources and elsewhere in this book.
When reference is made to visual sensation, as opposed to true physical magnitude, pho-
tometric power, brightness, intensity, and illumination are replaced by luminous energy,
luminance, luminous intensity (candle power), and illumination, respectively. Yet another
set of terms—in the same respective order—is power, radiance, intensity, and irradiance.
A brief introduction to the relationship of radiometric quantities to the Wigner distribu-
tion may be found in Bastiaans 1997. What is important for our purpose is to realize

that conventional radiometric and photometric quantities are essentially analogous to the
Wigner distribution and its integrals (projections or marginals).

Two-dimensional phase space is defined by the variables (z,y, 04, 0y). Since working
with these four variables makes the notation more cumbersome and requires dealing with
four-dimensional functions, we will mostly restrict ourselves to the one-dimensional case.

4.2 Quadratic-phase systems and linear canonical transforms

Sections of free space in the Fresnel approximation, thin lenses, and sections of quadratic-
graded index media, as well as arbitrary combinations of these belong to the class of
quadratic-phase systems (Bastiaans 1979a), which are mathematically the same as the
class of linear canonical transforms we discussed in chapter 2. The output of a one-
dimensional quadratic-phase system is related to its input through

g@) = [ i) fla) da, (4.5)
h(z,z") = \/Ee_i”/4 exp [iw(de — 2Bz’ + ’yzc'Q)] )

where &, 3, 7 are the three independent parameters of the system (equation 2.67). We
have chosen the normalization such that the system is unitary. In two dimensions

glz,y) = //ﬁ(a:,y;x’,y')f(m',y') dr'dy',  (4.6)
W,y 2!y y) = =i exp |im (a(a® +4?) — 28(2a’ + yy') + (2" + )]

It is also possible to consider the case where the parameters are different for the two
dimensions (Bastiaans 1979a, Sahin, Ozaktas, and Mendlovic 1998).

Again, s denotes the implicit scale parameter relating the dimensionless variables u, v
to the variables z,y with dimensions of length: x = su and y = sv. As in chapter 3,

sf(x,y) = f(x/s,y/s) = f(u,v) and s~ F(04,0,) = F(s04,50,) = F(u,v). We are
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also introducing the definitions & = «a/s?, 3 = (/s?, ¥ = v/s*> and A = A, B = s*B,
c=cC /52, D = D. These relate the dimensionless parameters of chapters 1 and 2 to the
dimensional parameters employed in this chapter and chapter 3. These sets of parameters
are again related to each other through the relation (equation 2.75)

_ a/f —1/p

&3] | |
¢ pl” R/

with AD — BC' = 1. Once again, it is the case that the matrix associated with the system

(4.7)

b 1/?]
~B+an/f afp

obtained by concatenating two systems, is given by the product of the matrices of the two

systems. The kernel in equation 4.5 can be rewritten in terms of A, B, C, D as

. 1 . ) . <
h(z,2') = ”E e exp [% (D:U2 — 22z’ + Aw’Q)] . (4.8)

This formula is found in the literature in a variety of contexts and has been referred
to by various names (for instance, “quadratic-phase systems” in Bastiaans 1979a, “lin-
ear canonical transforms” in Wolf 1979, “generalized Huygens integral” in Siegman 1986,
“generalized Fresnel transform” in James and Agarwal 1996, “special affine Fourier trans-
forms” in Abe and Sheridan 1994a, b).

The effect of a quadratic-phase system on the Wigner distribution of an optical signal
follows from the discussion of subsection 2.4.2. The Wigner distribution of the output
signal Wg is related to that of the input signal by

Wy(z,04) = Wf(Dx — Boy,—Cz + Ao,). (4.9)

The kernel relating these Wigner distributions is given by

Wy(z,0.) = // Kj(z,00;2",03,) Wi(a', 0%,) da' do, (4.10)
K (z,04;2",0%) = §(x' — Dz + Boy) §(o), + Ca — Aoy,).

The kernel K i (x, 0452, 0l) associated with optical components which are not linear canon-
ical transforms (such as a spatial filter) can be determined from equation 2.44.

As in chapter 2, we are restricting ourselves to systems with real A, B, C, D. Allowing
complex parameters makes it possible to deal with attenuating apertures of Gaussian
profile, and propagation in certain media exhibiting attenuation (or gain). Most of the
results presented here are also valid for such systems with complex parameters (Siegman
1986).

When dealing with two-dimensional systems, the above matrices become four-dimensional
matrices. The most compact approach is usually to define a two-dimensional space vector
and a two-dimensional spatial frequency vector. In terms of these, the four-dimensional
matrices become two-by-two block matrices of two-by-two matrices, and most results bear
a direct formal similarity to the one-dimensional results. Two-dimensional linear canonical
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transforms and their matrices were briefly discussed in section 2.5. The reader is referred
to Bastiaans 1979a for a discussion of two-dimensional systems in an optical context. We
also note that when dealing with axially symmetric systems, one-dimensional analysis is
sufficient for most purposes.

4.3 Optical components

We now individually discuss the optical components introduced in section 3.4. Our dis-
cussion will be uniform and comprehensive, running in parallel to the wave-optical and

geometrical-optical discussion of the same components in chapter 3. The results presented
are one-dimensional versions of the results presented in that chapter, so that they are not
rederived.

For each optical component, we will first state which mathematical operation the

optical component corresponds to. These operations were already studied in detail in
chapters 1 and 2 (for instance, see tables 1.2 and 2.7). We will then state the forward
and inverse kernels h(z,z') and h~!(x,2') of the component, and show how the output
amplitude distribution §(x) is related to the input distribution f(z). We recall that these
quantities are related by

g(x) = /h(a:,a:')f(a:')d:c'. (4.11)

We will also state how the Fourier transform of the output G(o,) is related to the Fourier
transform F'(o,) of the input. Comparing the kernels with the general form of the kernel
for quadratic-phase systems

. . 1 ) . .
h(z,z") = e_”/41 / 5 &P [% (D:U2 —2zz’ + Aw’Q)] , (4.12)

will reveal that most of the components under consideration are quadratic-phase systems
with different matrix parameters, and enable us to identify their A, B, C, D parameters.

We will then state the kernel Kj (v, 0,;2',0%) relating the Wigner distribution of the
output Wy(z,0,) to the Wigner distribution of the input Wf(x, Ogz):

Wy(z,0,) = // Kj(z,05;2,0h) Wf(a:’,a;)dx' do’,, (4.13)

as well as an expression directly relating Wj(z, o) to Wf(x, 0z). When the system in
question is a quadratic-phase system, these relations take the form

Kj(v,04;2",0%) = §(2' — Dx + Boy) §(ol, + Cx — Aoy), (4.14)
Wy(z,0,) = Wf(Dx — Bog,—Cx + Aoy). (4.15)

The parameters A, B, C, D of a component deduced by comparison with equation 4.12,
are also always consistent with the above two equations.
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In sections 3.5 and 3.6, we had characterized rays by noting their position x and angle
0, (or normalized angle o, = 0,/)\) at a given plane. We had derived linear relations
between the output position and normalized angle (x2,0,5) and the input position and
normalized angle (z1,0,1) for each component. We now observe that all of these linear
relations can be written as a simple matrix equation of the form

IRtV
Oz2 C D Oz
with the same parameters A, B, C, D deduced from wave optical considerations.

We emphasize that the A, B, C, D parameters of quadratic-phase components can be
determined in two ways. We can obtain the kernel A(z,z') characterizing the component
based on wave optics, and compare it with equation 4.12 to identify A, B, C, D. Alter-

natively, we can write the relation between the input and output ray vectors in matrix
form based on geometrical optics, and identify these four parameters from this relation.

The fact that both approaches yield the same result reflects an underlying correspon-
dence between the approximations employed in the wave-optical and geometrical-optical
approaches. Wave optics and geometrical optics become operationally equivalent under
these conditions, despite the fact that they are quite different descriptions of the behavior
of light.

We will also provide a figure for each component, illustrating how a rectangle repre-
senting either the support of the Wigner distribution or a bundle of rays, is changed by
this component. These figures illustrate the effect of the component in phase space. (The
reader should compare these with figures 2.3 and 2.6.)

We will then note the eigenfunctions of the component, and also present the associated
hyperdifferential form, as well as a differential-equation description of the component.
However, we will not discuss these in great detail in this chapter, referring the reader to
subsection 2.4.9 for further elaboration of the mathematical relationships between these
concepts.

Bastiaans has been a major contributor to the use of Wigner distributions and quadratic-
phase systems in optics (1978, 1979a, b, ¢, d, 1989, 1997).

4.3.1 Sections of free space

The physical process of propagation through a section of free space of length d in the Fres-
nel approximation, mathematically corresponds to chirp convolution. Positive values
of d correspond to forward propagation and negative values of d correspond to backward
propagation. The associated kernel and its inverse are given by

. . 1 . "2
/ —im /4 in(z—a')?/Ad
h(z,z') =e 1/ Ve , (4.17)

h—l(x,wl) _ ez’ﬂ'/4ﬁe—iﬂ'(w—x')2/)\d’ (418)
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where the trivial phase factors exp(+i2mod) have been dropped. The output can be
expressed in terms of the input as

- _ —in/4 i / im(z—a)2/Nd F( 0 I | —in/4 i irz?/Ad
glz)=e \/ g /¢ fla")dx [e \/ g ¢ * f(x). (4.19)

In the Fourier domain,

G(og) = e ™% F(o,). (4.20)

The kernel relating the Wigner distribution of the output to that of the input, and the
Wigner distribution of the output are given by

K;(z,04;2",00) = 6(x — Aoy — 2') 6(0, — 0}), (4.21)
Wy(z,0,) = Wf(x — Aoy, 04). (4.22)

Upon comparison with equations 4.12 and 4.15, equations 4.17 and 4.22 imply

i B 1 A 1 —xd ]!
F R R O

The system inverse of a section of free space of length d is a section of free space of
length —d, which can be interpreted as backward propagation. The equations relating the
position and normalized angle of the output ray to those of the input ray can be written

PR B 11 P A

Figure 4.2 shows how a rectangle representing either the support of the Wigner distribution

in the form

or a bundle of rays, is transformed through this operation.

Gy Gy

Figure 4.2: The effect of free-space propagation in phase space is horizontal shearing (in
the space dimension).
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The eigenfunctions of propagation through free space are of the form f(z) = exp(i27wo,(z),
where 0, is any real number. Physically, this corresponds to a spatial harmonic in the
transverse plane, and a plane wave throughout space. The effect of chirp convolution on
such functions is simply to multiply them with a unit-magnitude complex constant (a
phase factor).

The hyperdifferential form of the free-space propagation operator is given by

M\ d?
—— . 4.25
<P (Z 47 d:c2> (4.25)
Since the operator corresponding to free-space propagation is a function of d/dx only, all

operators of d/dz will remain invariant under free-space propagation. In other words, they
commute with free-space propagation. For instance, if we propagate the derivative of an

input field f(z), we will obtain the derivative of the original output §(x).
Let us now denote the amplitude distribution of light as a function of both z and z by

f(x, z). Then, if we solve the differential equation

L #f(x,2) _ 0f(x,2)
“ar a2 d(A\z)

(4.26)

subject to the boundary condition f(x,0) = f(z), the solution f(z,z) will be related to

f(x) through the Fresnel integral, with z replacing the distance of propagation d.

4.3.2 Thin lenses

The physical process of passing through a thin lens of focal length f in the paraxial
approximation, mathematically corresponds to chirp multiplication. Positive values of
f correspond to positive lenses and negative values of f correspond to negative lenses.
The associated kernel and its inverse are given by

h(z,z') = eima’ /A d(x —a'), (4.27)
h=Y(z,2') = eim@? /A Sz —a'). (4.28)

The output can be expressed in terms of the input as
g(z) = e N f(a), (4.29)

In the Fourier domain,

Glog) = e ™/ /Nf /ei”f(am_ag)zF(a;) do’, = [e_”/4\/ Af ei’”‘f"z] x F(og). (4.30)

The kernel relating the Wigner distribution of the output to that of the input, and the
Wigner distribution of the output are given by

Iv(ﬁ(x,am;x',ag) =6(oy +x/Nf — 0l)d(x — ), (4.31)

Wi(z,02) = Wiz, 00 + 2/Af). (4.32)
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Upon comparison with equations 4.12 and 4.15, equations 4.27 and 4.32 imply

A B 10 1 o]
[C‘ D]:[—l/kf 1]:l1/>\f 1] ' (4.33)

The system inverse of a thin lens of focal length f is a thin Iens of focal length —f: the

inverse of a positive lens is a negative lens and vice versa. The equations relating the
position and normalized angle of the output ray to those of the input ray can be written

x 10 Ty A B 1
lalezl—l/v 11[0“]:l0 D]laxll. (4.34)

Figure 4.3 shows how a rectangle representing either the support of the Wigner distribution

in the form

or a bundles of rays, is transformed through this operation.

o, o,

N
NN
<

Figure 4.3: The effect of a thin lens in phase space is vertical shearing (in the frequency
dimension).

The eigenfunctions of passing through a thin lens are of the form f(z) = d(z — xg),
where zq is any real number. Physically, this corresponds to a point source. The effect of
chirp multiplication on such functions is simply to multiply them with a unit-magnitude
complex constant (a phase factor).

The hyperdifferential form of the thin lens operator is given by

exp <—’L>\l 2) . (4.35)

Since the operator corresponding to a thin lens is a function of x only, all operators of x
will remain invariant under passage through a thin lens. In other words, they commute
with the thin lens. For instance, if zf (z) is incident on the lens, at the output we will
obtain zg(z).

The associated differential equation does not have a meaningful physical interpretation
and is thus not presented here.
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4.3.3 Quadratic graded-index media

The physical process of propagation through a section of quadratic graded-index medium

with parameter xy and of length d mathematically corresponds to fractional Fourier

transformation. Positive values of d correspond to forward propagation and negative

values of d correspond to backward propagation. The associated kernel and its inverse are

given by

, Zid/ im 2 / 12 .
. , e ,\;XAaeAX(COtO‘x 2esca aa'+cot a a'?) d # jmx
h($7«77 ) = —id/2x 5(.1/‘ _ J/‘,) d =257y (4.36)
o412 g 4 21 d = (2) + 1)y
( eid/2x AZ e_;_Z(COt az?—2csca zaz'+cot « x/?) d 7& JTrX
L VX
Wl (z,a') = eid/2x (g — o) d=2jmx 3
cid/2x 8z + ') d=(2j £ 1)

where j is an integer, & = d/x, and A, = /1 —icot a. (The fractional Fourier order a is
related to a by a = anw/2.) In the above equations, the trivial phase factors exp(+i2mwod)
have been dropped. This kernel can be derived from equation 3.103 by employing the last
property in table 1.8.

The output can be expressed in terms of the input as

(@) = e X)) fulw/ VAX) = e fo () (4.38)

for d # jmy. Here f,(u) denotes the ath order fractional Fourier transform of f(u), where
(M) Y4f(z//2x) = f(x). In the Fourier domain,

Nt

Gloy) = e “UXA)VAE, (VA 02) = e "X E, (0,). (4.39)

Here F,(u) denotes the ath order fractional Fourier transform of F(u), where (Ax)/*F (/A 05) =
F(0,). The kernel relating the Wigner distribution of the output to that of the input, and
the Wigner distribution of the output are given by

K (2,042 00) = 6(zcosa — o ysina — 2') §(zsin /Ay + oy cosa — ol),  (4.40)

Wy(x,0,) = Wf(:c cos o — oAy sina, rsina/ Ay + oy cosa).  (4.41)

Upon comparison with equations 4.12 and 4.15, equations 4.36 and 4.41 imply

A B B cosa Axsina | cosa —Aysina - (4.42)
C D | | —sina/iy cosa | | sina/Ay cos ' '

The equations relating the position and normalized angle of the output ray to those of the

B X
2] e

input ray can be written in the form

T2 | cosa Axsina Ty |
ozo | | —sina/Xy CoS oe1 |

Qe b
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Gy Gy

Figure 4.4: The effect of propagation through graded-index media in phase space is rota-
tion.

Figure 4.4 shows how a rectangle representing either the support of the Wigner distribution
or a bundles of rays, is transformed through this operation.

The eigenfunctions of propagation through graded-index media are of the form f(z) =
(Ax) Y44y (x//Xx ), where 4;(-) is the Ith order Hermite-Gaussian function. The effect
of fractional Fourier transformation on such functions is simply to multiply them with a
unit-magnitude complex constant (a phase factor).

The hyperdifferential form of the quadratic graded-index media propagation operator

. Ay d? x?
exp l—za (—Ew + FE)] . (4.44)

Since the operator corresponding to propagation in this medium is a function of Ay (i27)~2d?/dxz?+

is given by

22 /Ay only, all operators of \x(i27)~2d?/dx? + 2% /\x will remain invariant under prop-
agation in this medium. In other words, they will commute with propagation in this
medium.

Let us now denote the amplitude distribution of light as a function of both x and z by

f(x,z). Then, if we solve the differential equation

2 7 2 F
—2—:—8 J(;(;’ ) + ﬂi—xf(x, z) = ix—afgﬁz’ ?) (4.45)
subject to the boundary condition f(z,0) = f(z), the solution f(z,z) will be related
to f(z) through a fractional Fourier transformation, with z replacing the distance of
propagation d.
Quadratic graded-index media also exhibiting a quadratically varying attenuation co-
efficient are discussed in Siegman 1986. We only note that propagation in such media can
be related to complex-ordered fractional Fourier transforms.
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4.3.4 Extensions

Although the components discussed in subsection 3.4.4 will not be of direct interest to

us in this book, we briefly mention that they also have simple effects in phase space.

As mentioned in subsection 3.4.4, homogeneous regions with refractive index n # 1 are

transparently handled by normalizing spatial frequencies and angles by n, and spherical
refractive surfaces are handled in the same manner as lenses. Prisms as well as tilts and
displacements of the optical axis simply correspond to shifts in phase space. A prism or
a tilt of the optical axis corresponds to a shift in the o, dimension of phase space, and a
displacement of the optical axis corresponds to a shift in the x dimension.

4.3.5 Spatial filters

The physical process of spatial filtering with a spatial filter A(z) mathematically corre-
sponds to multiplicative filtering. The associated kernel and its inverse are given by

h(z,z'") = h(z)é(xz — '), (4.46)
h=t(z, o) = [1/h(2)]6(x — 2'). (4.47)

The output can be expressed in terms of the input as
g(x) = h(z) f(2). (4.48)

In the Fourier domain,
o) = / H(0y — 0')F (o)) o, = H(oy) % F(0y). (4.49)

The kernel relating the Wigner distribution of the output to that of the input, and the
Wigner distribution of the output are given by
Kj(w,00;2,0%) = Wi (z,0, — 0b) §(z — 2'), (4.50)
Wy(x,0,) = /Wﬁ(:c,aw — o) Wf(a:, ol)dol,. (4.51)
The effect of a spatial filter in phase space is to convolve the Wigner distribution along
the frequency dimension with the Wigner distribution of the filter function.
The eigenfunctions of spatial filters are of the form f(z) = §(z — x¢), where xg is any

real number. Physically, this corresponds to a point source. The effect of spatial filters on
such functions is simply to multiply them with a complex constant.

4.3.6 Fourier-domain spatial filters

The physical process of Fourier-domain spatial filtering mathematically corresponds to
convolutive filtering. The associated kernel and its inverse are given by

h(z,z'") = h(z — '), (4.52)
h Yz, 2') = h~Hz —a'). (4.53)
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The output can be expressed in terms of the input as

i) = [ (o — ) f(a)da' = h@) + fo). (4.54)

In the Fourier domain,
G(0y) = H(0,)F(0p). (4.55)

The kernel relating the Wigner distribution of the output to that of the input, and the

Wigner distribution of the output are given by
Kh(x o2 o) = Wi (x — o', 0,) 8(0, — o), (4.56)
(x,04) /Wh —x ,ax)Wf(w/,ax)dx'. (4.57)

The effect of a Fourier-domain spatial filter in phase space is to convolve the Wigner
distribution along the space dimension with the Wigner distribution of the filter function.

The eigenfunctions of Fourier-domain spatial filters are of the form f(z) = exp(i27o4(z),
where 0, is any real number. Physically, this corresponds to a spatial harmonic in the
transverse plane, and a plane wave throughout space. The effect of a Fourier-domain
spatial filter on such functions is simply to multiply them with a complex constant.

Fourier transform stages: We also discuss the effect in phase space of the Fourier trans-
form stages presented on page 137. The following applies to all three systems, provided
the appropriate value for the parameter s is inserted.

The associated kernel and its inverse are given by

h(z,z') eizmze![s? (4.58)
1

ht(z,2") o ei2mae![s? (4.59)
The output can be expressed in terms of the input as
x) /e_i%ml/szf(x') dx' = F(z/s%). (4.60)
In the Fourier domain,
G(0s) /e_ﬂ”?”””/wF(a;)da; = f(—s%0,). (4.61)

The kernel relating the Wigner distribution of the output to that of the input, and the
Wigner distribution of the output are given by

K (z,00;2',00) = 6(s%0, +2') 6(x/s? — ob), (4.62)
Wy(z,0,) = Wf<—820'w,l’/32). (4.63)

Upon comparison with equations 4.12 and 4.15, equations 4.58 and 4.63 imply

B 0 s2 0 —s2 -
l D]:l—l/:s? 0]:l1/52 0] ' (4.64)

Qe b=
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The equations relating the position and normalized angle of the output ray to those of the
input ray can be written in the form

0 s A B
2 = , S e (4.65)
o —1/s* 0 Ozl C D Ol
Figure 4.5 shows how a rectangle representing either the support of the Wigner distribution

or a bundles of rays, is transformed through this operation.

Gy Gy

Figure 4.5: The effect of Fourier transform stages in phase space.

The eigenfunctions of propagation through these Fourier transform stages are of the
form f(z) = s~ Y/2¢y(x/s), where 4y(-) is the Ith order Hermite-Gaussian function. The
effect of Fourier transformation on such functions is simply to multiply them with a unit-
magnitude complex constant (a phase factor).

The hyperdifferential form of the Fourier transform operator is given by

s? d? x?
X exp l—i(ﬂ'/2) <_EW + 7T8—2>‘| . (4.66)

Since the operator corresponding to Fourier transformation is a function of s?(i27) ~2d?/dx?+
22 /s? only, all operators of s2(i2m)~2d?/dx? + 2?/s? will remain invariant under Fourier
transformation. In other words, they will commute with the Fourier transform.

4.3.7 General linear systems

The effect of an arbitrary linear system
i@) = [ w2 (") do (4.67)

can be described in phase space by the kernel K i (@, 0032, 0l) as follows:

Wy(x,0,) = //K;Z(w,ax;x',a;)Wf(zc/,a;)dw/ do’,, (4.68)
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Kj (2, 0030, 03,) = // Wz + 2" /2,2 + 2" [2) h* (z — 2" /2,2" — 2" /2)

s 7 . "_r I "
% e 2nx’ oy +12nx’ o), dx" dr ,

which is simply the dimensional form of equation 2.44.

4.3.8 Spherical reference surfaces

Since we have seen in our discussion of spherical reference surfaces in subsection 3.4.8 that
the effect of employing such reference surfaces is mathematically equivalent to passage
through a lens, their effect in phase space also corresponds to vertical shearing (along the
frequency dimension).

4.3.9 Discussion

At this point we have completed a rather comprehensive and unified description of so-called
first-order optical systems. This is simply another name for quadratic-phase systems, which
are mathematically equivalent to the linear canonical transforms discussed in chapter 2.
Free-space propagation in the Fresnel approximation, transmission through thin lenses,
and propagation through quadratic graded-index media, and their arbitrary combinations
fall into this class. The wealth of properties and results derived in chapter 2 for linear
canonical transforms can be directly applied to these optical components and systems
composed of them. For instance, we can readily translate the uncertainty relation given
in equation 2.164 to an optical context:

Az’ Az > |B|/4nr, (4.69)

where 2/ denotes the coordinate of the input plane and = denotes the coordinate of the
output plane. For instance, specializing to free-space propagation over a distance d, we
have B = Ad so that the product of the spreads of the input and output light distributions
cannot be less than Ad/4.

When we combine first-order optical components and systems with arbitrary spatial
filters (which are not first-order components), we obtain a class of systems which we will
refer to as Fourier-optical systems.

We have discussed common optical components that will be of interest to us from both
wave optics and geometrical optics perspectives, and also discussed the effects of these
components in phase space, be it the wave-optical phase space of Wigner distributions,
or the geometrical-optical phase space of ray bundles. We saw that the relationship of
the wave and geometrical optical perspectives is particularly transparent in phase space:
the support of the Wigner distribution and the region representing the ray bundle are
transformed in the same manner.

At this point we have a rather broad array of tools for characterizing and analyzing
first-order optical systems: their forward and inverse kernels, their input-output relations
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in the space and Fourier domains, their effect on the Wigner distribution, the ray matrices
(which are nothing but the matrices characterizing these systems as linear canonical trans-
forms), the parallelogram-type geometric distortions which they effect in phase space, and
their eigenfunct