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Abstract We show that the discrete fractional Fourier transform recovers the continuum
fractional Fourier transform via a limiting process whereby inner products are preserved.

1: Discussion

A generalization of the Fourier Transform (FT), the fractional FT of Namias [12] is widely
used in signal-processing, optics, and quantum mechanics; see (.jzaktangutanyendlovic [13]
for discussions of applications and history. The discrete FT, already a valuable tool in classi-
cal number theory during the 1930’s, acquired, with the advent of computers, a tremendous
range of applications throughout science and engineering; any calculation executed by a digital
machine is, by nature, discrete. Pei—Yeh [15] introduced the discrete fractional FT. Candan
[7] proved that the discrete fractional FT is uniquely determined by its defining properties;
see Candan-Kutay—Ozaktas [8]. The eigenvectors of the discrete fractional FT, which we call
the discrete Hermite-Gaussian functions, “converge” to the eigenvectors of the fractional FT,
which are the Hermite-Gaussian functions. As operators, the discrete fractional FT “con-
verges” to the fractional FT. Numerical evidence for these “convergences” was given in [15],
and a heuristic argument was given in [7] and [8].

As often happens when rigorous justification of a belief emerges, the principal benefit may
be not so much in the confirmation itself as in the precise formulation of the assertion. We
shall drop the vague term “convergence”, since we shall be concerned with sequences whose
terms all belong to different spaces. Rather, in Theorems 2.5 and 2.8, respectively, we say
that the Harper functions induce the Hermite—-Gaussians, and that the discrete fractional FT
induces the fractional FT; the meaning is still that, as the underlying period increases, the
discrete constructions, in some (particular) sense, approach the continuum constructions.

An important feature of both the discrete fractional FT and the continuum fractional FT
is that they are unitary transformations. This being so, we must recognise that the spaces
upon which they operate are inner product spaces. The notion of induction is intended to
describe discrete to continuum correspondences that preserve inner products. A systematic
examination of induction is given in [5]. Some applications of the induction property of the
fractional FT are discribed in [6]. The purpose of the the present paper is to give proofs of
Theorems 2.5 and 2.8, which are invoked in the other two papers. The first version (April



1999) of the present paper was composed before [5] and [6], and the discussions below are still
self-contained. Actually, the author considers this to be a disadvantage; the account could be
abbreviated by means of references to the two later papers. Furthermore, some of the technical
arguments below are more cumbersome than need be. A more streamlined presentation of the
work is in preparation.

Balian—Itzykson [4], Athanasiu-Floratos [1], Athanasiu-Floratos—Nicolis [2], Hakioglu [9]
have studied discrete quantum systems that admit a symmetry under the action of a suitable
cyclic subgroup of SLy(¢q), where ¢ is a prime-power. Any connection with symmetries from
S Ly(R) for continuum quantum systems remains, as yet, unclear; there is little reason to expect
any deep connection, since S Lz(R) does not seem to be realizable in any way as a continuum
limit of SLy(q). However, [17], [1], [2], [9] suggested to us that the FT be taken as a focus
for realizing continuum quantum systems as limits of discrete quantum systems: the relevant
representation of SLy(R) sends the matrix (0,—1;1,0) to the FT; the relevant representation
of §Ly(q) sends the matrix (0,—1;1,0) to the discrete FT.

Let us indicate the ways in which Harper’s Equation provides a rapport between the ma-
terial in this paper and a couple of topics in quantum mechanics. Consider an integer n > 1,
let 1) be a function Z — C with period dividing n, and let ¥ € R. Harper’s Equation is

Pz — 1)+ 2cos(2ra/n)P(z)+ Y(z + 1) = (4 — 20 E/n)p(x)

where ¢ € Z. Assume now that i) and F are solutions to Harper’s Equation. Then % is a
Hamiltonian eigenstate for a discrete analogue of a quantum harmonic oscillator. To see this
in a quick informal way, take n to be large, write £ = z4/27/n, and suppose that & < /n.
Put

$(&) = (n/2m) ¢ (a).
(The factor (n/27)'/4 is just for normalization, and can be ignored for the purpose of the
present discussion.) Then Harper’s Equation reduces to

n/2m(=¢(€ = /21 [n) +26(€) — ¢(€ + /27 /n)) + E(€) = ES(E) + O((€/n)?).
Thus we have obtained an approximation to a difference analogue of the Schrodinger equation

d? 9
(_W +r® - E)O(T) =0
of a harmonic oscillator. The Hamiltonian eigenstates of this harmonic oscillator are the
solutions § = h;, where h; is the j-th Hermite-Gaussian function R — C (but with real values)
given by 4 ,
hi(r) = == Y4273 2 ()T e H(r)

and H; is the Hermite polynomial of degree j given by

 p2 dj 2
Hj(r) = (~1)7e" —e /2,

Here, the index j runs over the set N = {0, 1,2, ...} of natural numbers. The energy eigenvalue
corresponding to the eigenstate h; is 25 + 1. In other words,
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In anticipation of a comment below, we recall that the above Schrédinger equation also has a
family of “physically uninteresting” solutions which behave as ¢"’/2. We also mention that the
time-evolution operator of the above harmonic oscilator is a (time-dependent) scalar multiple
of the fractional FT.

In Atakishiev—Suslov [3], two other discrete analogues of a harmonic oscillator are exam-
ined in connection with two other discrete analogues of the Hermite-Gaussians, namely, the
Kravchuk polynomials and the Hermite g-polynomials. It is an open question as to what
relationship, if any, exists between the discrete Hermite Gaussians and either the Kravchuk
polynomials or the Hermite g-polynomials.

For a Bloch electron confined to the lattice Z x Z = {(a,b) : a,b € Z} and subject to a
uniform transverse time-invariant magnetic field, let us impose the Landau gauge. Then the
Hamiltonian h acts on a wave function € such that

(h8)(a,b) = 0(a — 1,b) + 6(a + 1,b) + e~ 2™“%G(a, b — 1) + 2™*0(a, b + 1)

where w is a real constant proportional to the magnetic flux. To obtain periodic solutions, let
us assume that w is rational, and write w = m/n where m and n are coprime integers, and
n > 1. For the Schrodinger equation hé = H6, the n? solutions with period dividing n coincide
with the solutions to

0(@, b) — leikb/n¢(a)

where k is an integer, and
dla—1)+ ¢la+ 1)+ 2cos(2r(ma+ k)/n)p(a) = HP(a).

This form of Harper’s Equation is essentially no more general than before. Indeed, since m is
coprime to n, the change of variables a — ma+ k is invertible up to congruence modulo n, and
we can put ¥(ma+k) = ¢(a) and E = n(4 — H)/27. For a study of Bloch electrons subjected
to uniform magnetic fields see, for instance, Rammal-Bellissard [17].

Harper’s Equation (as an abstract system of linear equations) is the starting point for
the Pei—Yeh definition of the discrete fractional FT. The Harper functions are defined to be
precisely those solutions to Harper’s Equation which commute with the discrete FT; see Section
2. Theorem 2.5, below, may be interpreted as saying that, for fixed I € R, and as n increases,
the Harper functions with eigenvalues at least 4 — 27 F'/n induce the Hermite-Gaussians. This
conclusion was perhaps to be expected in view of the physics above, and we have already
indicated the numerical and heuristic evidence. Without Theorem 2.5, how could we be sure
that no Harper functions with high eigenvalues induce the “physically uninteresting” solutions
to the Schrédinger equation of the above harmonical oscillator? Admittedly, this particular
query can easily be resolved using Lemma 3.4. But how could we be sure that, for large n,
there are no Harper functions which have high eigenvalues, yet have nothing to do with the
Hermite—Gaussians?

For an integer n > 1, let L(Z(n)) denote the space of functions @ : Z — C such that
(x4 n) = (x) for all 2 € Z. Let Z(n) denote the set consisting of the integers z such that
—n/2 < z < n/2. We define addition on Z(n) so as to respect the usual addition in Z up to
congruence modulo n. Thus, given z,y,z € Z(n), then z + y = z provided n divides z + y — z.
We define an inner product on L(Z(n)) by

<ol >= ) ¢x)P(e).

z€Z(n)



We shall establish some connections between a continuum scenario based on the complex
Hilbert space L?(R) and discrete scenarios based on the finite-dimensional spaces L(Z(n)) in
the limit as n — 00. Some scaling factors will be involved, and it is convenient to define

v(n) = (n/27)"/4,

The period n will not be allowed to range over all of N. We shall confine n to an infinite subset
N C N satisfying a suitable hypothesis. Vectors in L%(R) are to be related to some sequences of
the form (¢, : n € '), where each ¢,, € L(Z(n)). Operators on L?(R) are to be related to some
sequences of the form (@, : n € N'), where each a,, is an operator on L(Z(n)). Some technical
care will be needed, and in order that the wood not be lost for the trees, let us indicate, in
a casual way, the rough idea. Consider a vector ¢ € L*(R), and for simplicity of discussion,
let us assume that ¢ is rapidly decreasing. Loosely speaking, a sequence (¢, : n € N') with
¥, € L(Z(n)) will be deemed to be related to the vector ¢ provided we have an approximate
equality
W(av(n)™?) = v(n)n(a)

for large n and for most of the elements € Z(n). The analgous relationship between operators
will be constructed in such a way as to respect the relationship between vectors. This idea,
in some form or another, has always been used in realizations of the FT as a continuum limit
of the discrete FT. In Section 2, we express this idea in an algebraic way that will suit our
purposes here and in subsequent work. We also review the Pei—Yeh definition of the discrete
fractional FT, and we state our main results, Theorems 2.5 and 2.8. The four Theorems stated
in Section 2 are proved in Section 3.

2: Results

Recall that a smooth function ¢ : R — C is said to be rapidly decreasing provided, for all
a,b € N, the function R — R given by 7 — |#(*)(r)rt| has an upper bound. A dense subspace
of L*(R), the Schwartz space S(R)is defined to be the space of rapidly-decreasing functions.
It is well-known that the set {h; : j € N} of Hermite-Gaussians is a complete set in S(R), and
is an orthonormal basis for the Hilbert space L*(R). Following Namias [12], we define, for each
t € R, an operator ]?[t] on L%(R) given by

fWh; = 2midth;,
Namias showed that, for 0 <t < 1/2 and ¢ € S(R), we have
(7)) = (2msin2rt) V2 [ Kifr,gpola)da
where the kernel is
Ki(r,q) = exp(in(t — 1/4) — i(cot 27t)(r? + ¢*)/2 + ir/ sin 27t).

As observed in McBride—Kerr [10], the action of f[t] on S(R) for arbitrary ¢ € R is determined
by the explicit integral formula together with the condition that Fl+tT = U] for all ¢, ¢ € R.
The Fourier Transform f on L?(R)is the special case

F=



so it makes sense to call f[t] the fractional Fourier Transform.
The operator on S(R) given by ¢(r) — (—d?*/dr? 4+ r?)¢(r) extends to an operator h on
L?(R) given by R
hh; = (2] + 1)h]‘

for j € N. Evidently, f1 = exp(iﬂt(ﬁ —1)).
Consider an integer n > 1. For the moment, let us take n to be fixed. Recall that the
discrete Fourier Transform f, is defined to be the operator on L(Z(n)) such that

~ 1 .
(Fat)(z) = —= >yl (y)
v yGZZ(:n) ’

where ¥ € L(Z(n)). and z € Z. For each integer z, we write 2* to denote the function Z — C
such that 2*(y) = 1 when y = ¢ mod n, and 2*(y) = 0 otherwise. The set {z* : € Z(n)} is
an orthonormal basis for L(Z(n)). It is easily shown that

ok _ 1 2mizy[n , *
fox™ = % Z eI My*,
yE€Z(n)

Another easy calculation yields ]/‘236* = (—x)*, whence fé = 1.
Let 4, and v,, be the unitary operators on L(Z(n)) such that uw,z* = (z + 1)* and v,z* =
e2mi@/ng* for ¢ € Z. The hermitian conjugates satisfy Ghz* = (z —1)* and Bpa* = e~ 27w/ ng>,

We define a hermitian operator
sn :_un—l—u —|—vn—|—v

on L(Z(n)). Given an eigenvector o of s, with corresponding eigenvalue 4 — 27 F /n, then o
and F satisfy Harper’s Equation

o(x — 1)+ 2cos(2ra/n)o(z)+o(z+ 1) = (4—27E/n)o(z).

REMARK 2.1: Let o be an eigenvector of s,,. Then there does not exist an integer x such
that o(z)=0=o(z +1).

Proof: This is immediate from the fact that o satisfies Harper’s Equation. 0O

THEOREM 2.2: (Candan [7]) Up to scalar multiplication, L(Z(n)) has a unique basis
consisting of common eigenvectors of 5, and f,.

Proof: We give a brief presentatlon of the argument in Candan— Kutay Ozaktas [8, Section
II1.B]. By direct calculation, fnunfn = 7, and fnvnfn = u:[b Hence fnsn = snfn In partic-
ular, L(Z(n)) has a basis consisting of common eigenvectors of s,, and Fn- Let L4(Z(n)) and
L_(Z(n)) be the eigenspaces of the involution 72 corresponding to the eigenvalues +1 and —1,
respectively. The action of 5, on L(Z(n)) must respect the decomposition

L(Z(n)) = Ly(Z(n)) ® L_(Z(n)).

The sets {z* + (—2)* : ¢ € ZN[0,n/2]} and {z* — (—2)* : @ € ZN(0,n/2)} are bases for
Ly (Z(n)) and L_(Z(n)), respectively. With respect to these two bases, the actions of 5, on
L4(Z(n)) and on L_(Z(n)) are both represented by tridiagonal matrices whose off-diagonal



entries are all non-zero. By Wilkinson [18, Section 5.38], these two actions of 5, are both
separable. Therefore, up to scalar multiplication, Ly(Z(n))UL_(Z(n)) contains a unique basis
of eigenvectors of s,,. The assertion follows because any eigenvector of fn must belong either
to Li(Z(n)) or else to L_(Z(n)). O

By Remark 2.1, Theorem 2.2, and the fact that s, is hermitian, there exists a unique
basis S, of L(Z(n)) consisting of real unit eigenvectors o such that either o(0) > 0 or else
o(0) = 0 < o(1). Since the action of 5,, on L;(Z(n)) is separable, we can enumerate the
elements of S, N Li(Z(n)) as 6,0,04,2,0n.4,... such that the corresponding eigenvalues are
in strictly decreasing order. Similarly, we can enumerate the elements of S, N L_(Z(n)) as
On,1,0n,3,0n,5, ... such that the corresponding eigenvalues are in strictly decreasing order. By
considering the identity n = |ZN[0,n/2]|+|ZN(0,n/2)|, we see that L (Z(n)) has dimension
either n/2+4 1 or (n + 1)/2 (whichever is an integer), likewise L_(Z(n)) has dimension either
n/2—1or (n—1)/2. Thus we have enumerated the elements o, ; of 5, such that, if n is even,
then the index k is an integer satisfying 0 < k < n — 2 or k = n, while if n is odd, then k is
an integer satisfying 0 < k < n — 1. After Candan [7], we define, for each t € R, the discrete

fractional Fourier Transform ﬁ[ﬂ to be the operator on L(Z(n)) such that

¢ . 2mikt
ﬂ%]amk = e ™o,k

’

for each index k as above. Evidently, :[f-l_t/] = ﬁ[f] :[f/] for all ¢, € R. Note that /\7[11] =
1. Furthermore, ﬁ?/‘” has order 4. Candan observed that, by McClellen—Parks [11], the
multiplicities of 1,2, —1, —¢ as eigenvalues of ﬁ?/“] coincide with the multiplicities of 1,2, —1, —1,
respectively, as eigenvalues of fn This, together with numerical evidence in Pei-Yeh [15] and
Candan—Kutay—Ozaktag [8] supports the following conjecture.

CONJECTURE 2.A: Gliven an integer n > 1, then ﬁ?/‘” = fn

Theorems 2.6 and 2.7, below, tell us that ﬁ[}/“] and fn both induce f
Consider a vector ¢ € S(R). Given a vector ¢,, € L(Z(n)), we say that ¢ restricts to ¢,
writing ¢, = res,(¢), provided, for all € Z(n), we have

$(av(n)™?) = v(n)du(z).

Let A be an infinite set of natural numbers such that, given m,n € NV with n < m, then
n divides m, and the integer m/n is a square. The set

R(N):={zv(n)? :n € N,z € Z(n)}

is dense in R. Given an element £ € R(N'), we define p(£) to be the minimal element of N
such that £v(p(€))? € Z(p(€)). Thus, for each n € N with n > p(£), we can write

¢ =&(n)(n)~

where {(n) € Z(n). Let L(Z(N')) denote the space of sequences of the form (4, : n € N') where
each v, € L(Z(n)). Since R(N) is dense in R, each vector ¢ € S(R) is uniquely determined
by the element (res, (1) :n € N') of L(Z(N')). Note that any infinite subset N of N satisfies
the hypothesis we imposed upon A, and furthermore, R(N’) = R(N).

The condition on A that each integer m/n be a square is not essential, and can be dispensed
with, but at the price of introducing some irritating complications that would obscure our



arguments. We do not know whether our results would still hold if A" were replaced with
any infinite subset of N. Anyway, the hypothesis we have imposed upon N covers all the
applications we have in mind. As an example, we can take N to consist of all the positive even
powers of some given integer d > 2, or we can take A/ to consist of all the positive odd powers
of d. The case where d is prime pertains to the references to discrete quantum mechanics cited

in Section 1.
Consider a vector ¢ € L?(R), and a sequence (¢, : n € N) € L(Z(N')). We say that
(¥, : n € N) induces 1, writing ¥ = ind,ear(¥n), provided, for all ¢ € S(R), we have

<¢|¢>:}Li€%<resn(¢)|¢n>.
By the Riesz Representation Theorem, each element of L(Z(N')) induces at most one vector
in L*(R).
LEMMA 2.3: Given uniformly continuous vectors ¢, € L*(R), then

<P >= %161% < resy (@) | res, () > .

Proof: Let ¢, := res,(¢) and 1, := res, (7). Since ¢ and 1 are Riemann-integrable,
q
- c€L(N):|z|<qv(n)?
for all real ¢ > 0. Via the Cauchy—Schwartz inequality, we easily obtain

(I > alrw@)< |

ne .
z€Z(n):|z|>qv(n)? rir[>g

s(Par. [ Jufar
rilri>q
The right-hand expression tends to zero as ¢ tends to infinity. O
LEMMA 2.4: Given a uniformly continuous vector ¢ € L*(R), then ¢ = indepn(res,(¢)).
Proof: This is immediate from Lemma 2.3. O
The four Theorems stated below will be proved in Section 3.

THEOREM 2.5: For each j € N, we have h; = ind,en(0,,;).

THEOREM 2.6: Given a vector ¢ € L*(R), then there exists an element (¢, : n € N) €
L(Z(N)) such that 1 = ind,epr((n)).

For n € NV, let End(L(Z(n)) denote the ring of operators on L(Z(n)). The ring
End(L(Z(N)) := X,enEnd(L(Z(n)))

consists of the sequences (@, : n € V) such that each @,, € End(L(Z(n))). We say that (@, : n €
N) induces @, writing @ = ind,en(@y,), provided, given any element (¢, : n € N') € L(Z(N))
inducing a vector ¢ € L%(R), then (@,v, : n € N) induces @i. The Reisz Representation
Theorem, together with Theorem 2.6, ensures that each element of End(L(Z(N))) induces at
most one operator on L?(R).



The condition that (@, : n € N) induces @ seems to be rather strong. Suppose, for instance,
that each a, is given by

pe™ = v(n)*((z — 1) = 22* + (z + 1)%).

In numerical calculation, @, is often used as a discrete approximation to the second differential
operator. Of course, differential operators do not have domain L?(R), but that is not an essen-
tial problem, because we could easily extend the definition of induction so as to be applicable
to operators on a domain dense in L*(R). Our point is that, putting ¥,(z) = (=1)*n? with
v € R, then @,1, = —4v(n)?¢,, and there clearly exist v for which (¢, : n € N) induces
the zero-vector while (@nthn : m € N) does not induce any vector. As another example, the
operator h,, on L(Z(n)) given by

hpa* = v(n)*(—(z = 1)* + (4 — 2cos(2mz/n)z* — (z 4+ 1)%)

may seem sensible as a discrete analogue of the operator h on S(R), but there does not exist
a vector ¢ € L*(R) such that (h,¢, : n € N) induces a vector for all (¢, : n € N') € L(Z(N))
inducing ¢.

THEOREM 2.7: We have f = indnen(fn).

The essence of Theorem 2.7 has been known since the 1930’s. We have been unable to
derive it from any results we have found in the literature, but we suspect that it would yield to
general principles of a Hilbert space approach to spectral methods as in, for instance, Picard
[16, Section 2.2].

THEOREM 2.8: For allt € R, we have f[t] = indneN(Et]).

3: Proofs
For each j € N and n/inN, let h, ; :=res,(h;) and A, ; :=4 —27(2j 4+ 1)/n.
LEMMA 3.1: Given j € N, and £ € R(N) and n € N with n > p(£), then

(80 = Ang)hn,i)(E(m))] = O(n="/*).
Proof: Let & := £(n). Taylor’s Theorem gives
h;(€+ 6) E §*h;"(€)/al .

Putting § = +v(n)~?, and using the fact that each function r |h;a)(7‘)| is bounded above,
we have

hn]‘(w - 1) - th]‘(w) + hm]‘(w + 1)
)RI(E) + E (1+( ()2 LRl (€) /ol = v(n)TSKI(E) + O(v(n) ™).
Similar manipulations give (=2 + 2 cos 27z /n)h, j(z) = —&*v(n)~°h;(€) + O(v(n)~?), whence

((8n = Anj)hn i) (@) + O(n™%) = v(n) P (R)(€) + (€% + 2 + Dhi(€)) =0. O



Given any vector v in an inner product space, we write the modulus of v as || v ||. In
particular, for ¢ € L*(R), we write || % ||:=]| ¢ |2

LEMMA 3.2: Given j € N and n € N, then || (3, — A j)hn; ||= o(n=3/?).
Proof: Let k,, :== (5,An ; )l ;. By Lemma 3.1,

> k()] = O(n~*log n).

z€Z(n):|z|<v(n)?logn

Choose B € R such that |h;(r)] < Brie=™"/2 for all r € R. For & € Z(n) and £ = zv(n)~2, we
have v(n)|k,(z)| < E%ije_g/2 because |A, ;| < 4 and S, is a sum of four unitary operators.

So
> |kn(2)]? < 6457 / r2ie=""dp.
z€Z(n):|z|>v(n)?logn ri|r|+1>logn
The right-hand expression diminishes faster than n~4 logn, so ||k,|| = 0(n‘2 logn). O

LEMMA 3.3: Given j € N, and sufficiently large n € N, then s, has an eigenvalue in the
open interval (4 — 4wj/n — 31 /n,4 —4nj/n—x/n).

Proof: Suppose, for a contradiction, that there exists an infinite subset N’ of A/ such that,
for each n € N, there is no eigenvalue of s, in the specified interval. Since the function
h; has precisely j zeroes, we cannot have || h,; ||[= 0 unless n < j. So we may define
Gn,j = hpj/ || By, || for all n € N' with n > j. Lemma 2.3 gives lim,en || hn; ||=] 2; ||= 1,
and then Lemma 3.2 tells us that

I (B = (4 = 4mj/n = 27 [n))gn j ||= o(n™*/?).

For each n € N with n > j, the hypothesis on N allows us to write g, ; = a,, + by, where a,,
is a linear combination of eigenvectors of 5, with associated eigenvalues at least 4 — 47j/n —
7/n, and b, is a linear combination of eigenvectors of s, with associated eigenvalues at most
4 —4rj/n — 37 /n. Using the fact that a,, and b, are orthogonal, we obtain the contradiction

| B — (4= dmj/n - 27 n))an + b2) |2 7/n(l| @ |2 + [ b, [2) = 7/n. O

The next five results concern the following scenario: let F' € R, and for each n € NV, let w,
be a real unit eigenvector of both s, and f, such that the eigenvalue of s,, associated with w,
has the form 4 — 27 F,,/n where E,, < F. Thus w, satisfies Harper’s Equation

wp(e — 1) +wp(z+1)=2(1-7FE,/n — cos2rz/n)w,(z)

for x € Z. Since s, = u, + ﬂ:[b + 70, + 5;2 as a sum of four unitary operators which do not
mutually commute, we have F,, > 0, and in particular, F' > 0.

LEMMA 3.4: Let n € N, and let ¢ € Z(n) such that cos2rz/n < 1—7E,/n. If 2 > 0,
then |wn ()| < Jwn(z — 1)]. If x <0, then |wy(2)| < |wn(z + 1)].

Proof: Since w, is an eigenvector of ]/‘2, we have |w,(2)| = |w,(—2)| for all z € Z. So, if
the assertion fails, then there must exist some # € Z such that cos2rz/n < 1 — 7F,/n and
lwp (2 — 1)| < |wp ()] > |wa(z + 1)|. But Harper’s Equation forces |wy,(z — 1) + wy(z + 1)| >
2wy(z)]. O



LEMMA 3.5: Given sufficiently large n € N, and x € Z(n), then v(n)|w,(z)| < (2F)Y/4.

Proof: For each n € N, let M,, be the maximum value of |w,(2)| with z € Z. Let us fix an
element n € NV, and assume that n is sufficiently large for our purposes. Write M := M,,, and
choose y € Z(n) such that w,(y) = M. Since |w,(y)| = |wn(—y)|, we may insist that y < 0.
We assume that w,(y) > 0; the argument when w,(y) < 0 is similar. Since n is sufficiently
large, Lemma 3.4 and the condition y < 0 ensure that

1>cos2n(y+a)/n>1—7E,/n>1—7F/n
for each integer z with 0 < z < y/n/mF. For each such z, let A(2) := wy(y+2) —wp(y+2—1).
We have |A(z + 1) — A(z)| < 2xFM/n, hence |A(z)| < 2nFMz/n and
wn(y+2)> M — EQWFMx/n =Ml —nF2(z+1)/n)> M(1 — 7F(z+ 1)*/n).
=0
Letting m be the largest integer such that m < \/n/7F, then

m—1

1=||w, |I*> Ewn(y—l—z MZE — 1 F2%/n)?
z=0
2tF m® m? m 5 oomt md m
- M- Pl o nm o m
(m—==(F+ 5+ )+ @/ (—+ o+ 5 = 35))

Now letting the element n € A/ vary, we have

1> M2(8y/n/nF[15+ o(v/n)) > M2(v(n)?/V2F + o(v(n)?)). O

We now construct a function wyr : R(N) — R. Let ng be the smallest element of M. Given
an element ¢ € R(N') with p({) < ng, then Lemma 3.5 guarentees that the set {v(n)w,({(n)):
n € N} has a cluster point wpr(¢). Since there are only finitely many ¢ € R(N) with p(¢) < no,
there exists an infinite subset A7 of A such that ng € N7 and

— i ;
wn(¢) = lim (v(n)wn(((n)))
for all ( € R(NV) with p(¢) < no.
Now let ¢ > 1, and assume, inductively, that we have defined A for all integers s with
1 < s < t. For each s, let n, be the smallest element of N,. We also assume that we have
defined wpr(¢) for all ¢ € R(N) with p({) < n¢_q1. As before, there exists an infinite subset
Niyq of Ny such that n; € NMiyq, and the real number
ox(©) = Jip ((hen(G())
is a cluster point of {v(n)w,({(n)) : n € N;} for all { € R(N) with p({) < ny. Letting
N :={n; :t € N}, then
(€)= Tim, (v()wn(C(n)))

for all ( € R(V).

LEMMA 3.6: Given n € R(N) with n? > 4F, then wa(n)* < 4F/|n}>.
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Proof: Givenreal r > 0,and n € N, let Q,(r) := Y wn(2)? and Q) (r) := Y o5 wn(2)?,
where Z := {z € Z(n) : |z| < rv(n)?*} and Z' := {z € Z(n): |z] > rv(n)?}. Then

Qu(r) + (1) =l wa [I>= 1.
Now s, = u, + ﬂ:[b + 2, + @TL as a sum of four unitary operators, so
4 -21F[n << w, |38, |wn >:<wn|ﬂn—|—@t|wn>—|—<wn|5n—|—ﬁ:[b|wn>
and both of the terms of the sum have absolute value at most 2. Therefore

1—7F/n<<wp |t + a5 |w, > /2= E wn(z)?cos 2wz /n
z€Z(n)
< Qu(r) + Q(r) cos2mrv(n)?/n = 1 — QL (r)xr?/n+ O(n™?).
We deduce that Q) (r) < F/r? + O(1/n). We may assume that n > 0. Let n € A such that
n > p(n). Writing y := n(n), then
costy/n+O0(n~?) < 1—7n*/dn <1 —nE,/n.

By Lemma 3.4, |w,(z)| is monotonically decreasing in the range z € Z N [y/2,y]. Recalling
that w,(z)? = wn( z)%, and summing w,(z)? over the integers = € [—y, —y/2] U [y/2, ], we
obtain w,(y)*(y + O(1)) < Q,(n/2). Lemma 3.5 implies that w,(y)? = O(n=1/2), so

wn(y)?nv(n)? + O(n_l/Z) < 4F[n*.
The assertion now follows from the construction of wy. O
We allow R(AN) to inherit the subspace topology from R.

LEMMA 3.7: The function wy : R(N) — R is continuous.

Proof: Let £,n € R(N) with £ > . We shall calculate an upper bound for war(€) — war(n).
Let n € NV, and assume that n is large; in particular, p(§) < n > p(n). Let z := {(n) and
y := n(n). The eigenvalue ¢, of f, associated with w, is a 4-th root of unity, and

in(@n(2) = 0n(1) = (Fawn)(@) = (Jawn)0) = = D wl2)(eT05/m — emivelm)

z€Z(n)

Si=

Therefore

v(n)?|wn () — wa(y)| < \/> Z lwn(2)sinm(z — y)z/n|.

z€Z(n

Let 7 € R(N) such that 7 > 2¢/F. Insisting that n > p(7), let ¢ := 7(n). Let Z := {z €
Z: |z| < t}, and Z' := Z(n) — Z. Bearing in mind that n is large, the proof of Lemma 3.6

shows that
lwn(2)] < A/BF/(3/v(n VAEFz3?

11



where z € Z' and ( := zv(n)~2. Therefore

E |lwn(2) sinm(z — y)z/n| < 2v(n)*V5F E 2732
z€Z! z=t+1
< 61/(71)2@/ r=32dr = 12v(n)2\/FJt = 12v(n)\/F/T.
¢

On the other hand, via Lemma 3.5,

1/4 1
Z |wn(2)sinm(z — y)z/n| < (2F) Z |T(z —y)z/n + O(n_3/2)|

2€Z l/(n) z=—1

< (2F)1/4(7r( Pt +1)/n+ O(n _1/2))/1/(n) < F1/4(($ _ y)t2/l/(n) + O(n_3/2))
= V() (¢ — )+ O(n2),
Therefore, v(n)|wn(2) — wa(y)| < /2/7 (FY47%(¢ - n) + 124/F/7) + O(1/n), hence

() = waln)| < FYA72(¢C =) +12¢/F/r. O

LEMMA 3.8: The function wy : R(N) — R eatends uniquely to a real-valued continuous
function w : R — C. Furthermore, w is a uniformly continuous function in L*(R), and
| w = 1.

Proof: The first part is immediate from Lemma 3.7. By Lemmas 3.5 and 3.6, the function
7+ |w(r)| is bounded by both (2F)/* and O(|r|~%/?). So w is uniformly continuous.

To prove the last part, we may assume that A" = A*. Let 7 € R(N) with 7 > V/4F.
Lemma 3.6 gives w(r)? < 4F/|r|*> whenever |r| > r. In particular,

lim w(r)*dr = 0.
T—00 |7’|>T

The proof of Lemma 3.6 shows that

. . 2
lim hrf\l/ E wp(z)* = 0.

T—00 nE
z€Z(n):|z|>71v(n)?

Let us now fix 7. Since each || w, ||= 1, it suffices to show that
dr = lim w
/_ ] lim > wn
TEZ

where Z := {z € Z(n): |z| < 7v(n)?}. Choose any real € > 0. The proof of Lemma 3.7 shows
that, given sufficiently large n € A, then for all £,£ € R(N) with |[€ — ¢'| < §, we have

|v(n)*(wn(£(n))? — w(&'(n))*)] < €/2.

For each ( € R(N)N [T, 7], we have

[v(n)?wn(((n))* = w(C)*| < €/2

12



for sufficiently large n. So, for each such (, there exists some neighbourhood U(() of { in
[—7, 7] such that, for all r € U((), we have

w(r)? —w(Q)?] < ¢

and furthermore, given sufficiently large n, then for all £ € R(N)N U(¢) withn p(€) < n, we
have

[v(n)?wn(€(n))* - w(C)*] <e.
Let {U((s) : @ € A(€)} be a finite subcover of [—7, 7], and write [—7,7] = UozEA(E) V(e,a), as a
disjoint union, where each V (¢, a) is a connected subset of U((,). We have a Lebesgue integral

e—0

a€A(e)

/_: w(T)er = lim Z “(V(G’a))w(fa)Q.

where g denotes the Borel measure. Since there are O(y/n) elements z of Z(n) satisfying
|z| < Tv(n)?, we have

Y wlV(ea)w(G) +0(1)= > wa(@)? | = D wale)?

a€A(e) a€A(e) \z€Z(n):zv(n)2€V (e,a) z€Z
for sufficiently large n. O

LEMMA 3.9: Given j € N, and sufficiently large n € N, then s, has a unique eigenvalue
in the closed interval [4 — 4w (j 4+ 1)/n,4 — 47wj/n].

Proof: Thanks to Lemma 3.3, it suffices to derive a contradiction from the assumption
that, for infinitely many n € N, there exist two orthogonal real unit eigenvectors v/, and ! of
S, whose associated eigenvalues lie in the specified interval. We replace N with the set of such
n. For each n € N, we put either w, = w/], or else w, = !, insisting that < w, | h,; >< 3/4
for sufficiently large n. By Lemma 3.2, limpen < wy, | by >2= 0 for all j' € N with j' # j.
Since {h; : j € N} is an orthonormal basis for L*(R), we have >, v < w | hx >*= 1. The
desired contradiction will be achieved when we have shown that

<w|hg>=lim <w, | hpr > .
neN

The argument is similar to the proof of Lemma 3.8; we shall outline the steps.
Using Lemma 3.6, and the fact that A; is rapidly decreasing, it is easy to reduce to the
task of proving that

/_: w(r)hg(r)dr = %E%;wn(x)hm](x)

where 7 and Z are as in the proof of Lemma 3.8. For each ( € R(N)N [—7,7], we choose a
neighbourhood U’(() of ¢ such that, for all » € U’(¢), we have

jw(r)hr(r) = w(Ohr(O)] < €

and furthermore, given sufficiently large n € N, then for all £ € R(NV)N U({) with p(¢) < n,
we have

[V(n)n (6(n)hai(€(n)) — w(Ohe(O)] <

13



Choosing a finite subcover {U’((;,) : a € A'(€)}, and writing [—7,7] = U, 1) V'(€, @) just as
before, we have

> V(€ a)w(C)hi(Ch) +€0(1) = wa(a

a€Al(e) z€Z

Again, the assertion follows by letting n — oo and then letting ¢ — 0. O

Proof of Theorem 2.5: For each n € N, let us enumerate the elements o/, 0 07’1 Lrees Oh g
of the basis 5, such that the associated eigenvalues A} 5, A}, 1,..., A7, ,_; arein decreasmg order

(perhaps not strictly). Lemmas 3.3 and 3.9 imply that, given any j € N, then for sufficiently
large n € N, we have

4—dmj/n—3m/n < N, ; <4—dnj/n—x/n.

Lemma 3.9 also implies that, for such given j and chosen n, we may write h,; = a,; +
anU?’w + B,,; where ¢, ; € C, and «,; is a linear combination of eigenvectors of 5, with
associated eigenvalues at least 4 — 47j/n, and 3, ; is a linear combination of eigenvectors of
s, with associated eigenvalues at most 4 — 47(j + 1)/n. We saw in the proof of Lemma 3.3
that || hy; ||— 1 as n increases, so Lemma 3.2 gives limpen || @y ; ||= limpen || Bny; ||= 0

and lim,epr |6, ;| = 1. But hy, ; and ol both have real coordinates with respect to the bases
{z* : 2 € Z(n)} of L(Z(n)), furthermore if j is even, then h,;(0) > 0, while if j is odd,
then h,;(0) = 0 < hyj(1). Therefore lim,eprc,; = 1. For fixed j € N and sufficiently
large n € N, we have shown that Ufm = 0y,;. It follows that, when n is sufficienly large,
0n; = (hnj — anj — Buj)/cnj. Given any uniformly continuous ¢ € L*(R), Lemma 2.3 now

%lerf\l/ <resy(@) | op; >= %lerf\l/ < resp (@) | hnj >=< ¢ |h; >. O

Proof of Theorem 2.6: The proof of Theorem 2.5 shows that

lm < by 0nr >= 0,1
neN Ok Jik

for all j,k € N. Write ¢ = . ¢;h; with each ¢; € C. Foreach n € NV, let ¢, := ?:_g CiOn ;-
Let 7(R) denote the subspace of S(R) consisting of the linear combinations 8 = >,y d;h;
with only finitely many of the d; non-zero. For each such 6, we have

<O >= Edc]_hm < res,(0) | ¥y, >

JEN

The assertion follows because F(R)is dense in the space of uniformly continuous functions in

L*(R). O
Proof of Theorem 2.7: This is similar to the proof, below, of Theorem 2.8. 0O

Proof of Theorem 2.8: Let ¢,v € L?(R) such that ¢ is uniformly continuous. Let (¢, : n €
N) € L(Z(N)) such that ¢ = ind,en(¢,). Let ¢ € R, and write § := fll. For each n € A,

write g, := ﬂt]. We are to prove that

<@g >= %ie% < resp(P) | Gnton >
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Since F(R) is dense in L*(R), we may assume that ¢ € F(R). In fact, we may assume that
¢ = h; for some j € N. Write ¢ = >, -y cxhy. For each n € N, write v, = >} ¢, £0n k, Where
the index k runs over the range specified in Section 2. Now

c; =< h; >= lim < h, ; >= lim ¢, ;.
J il e ng | ¥n o Cn.
Putting € := €™, then < hi | g >= ec; = limpepr €cp; = limpen < hpj | Guthp >. O
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