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ABSTRACT

INSTANCE-BASED REGRESSION BY PARTITIONING
FEATURE PROJECTIONS

Ilhan Uysal
M.5. in Computer Engineering
Supervisor: Assoc. Prof. Halil Altay Guvenir
January, 2000

A new instance-based learning method is presented for regression problems
with high-dimensional data. As an instance-based approach, the conventional
K-Nearest Neighbor (KNN) method has been applied to both classification and
regression problems. Although KNN performs well for classification tasks, it
does not perform similarly for regression problems. We have developed a new
instance-based method, called Regression by Partitioning Feature Projections
(RPFP), to fill the gap in the literature for a lazy method that achieves a higher
accuracy for regression problems. We also present some additional properties
and even better performance when compared to famous eager approaches of
machine learning and statistics literature such as MARS, rule-based regression,
and regression tree induction systems. The most important property of RPFP
is that it performs much better than all other eager or lazy approaches on
many domains that have missing values. If we consider databases today, where
there are generally large number of attributes, such sparse domains are very
frequent. RPFP handles such missing values in a very natural way, since it

does not require all the attribute values to be present in the data set.

Keywords: Machine learning, instance-based learning, regression.
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OZET

OZNITELIK IZDUSUMLERININ PARCALANMASI ILE
ORNEKLERE DAYALI REGRESYON

Ilhan Uysal
Bilgisayar Mihendisligi, Yiksek Lisans
Tez Yoneticisi: Dog¢. Dr. Halil Altay Guvenir
Ocak, 2000

Yiiksek oznitelik sayilarina sahip verilerin regresyon c¢oztumleri icin orneklere
dayali yeni bir 6grenme metodu sunulmustur. Orneklere dayali bir yaklagim
olarak geleneksel K-Yakin Komgu (KNN) yontemi hem siniflandirma hem de
regresyon problemleri i¢in uygulanmigtir. KNN simiflandirma iglemleri i¢in iyi
bir performans sergilerken, regresyon i¢in benzer bir performansa sahip degildir.
Biz literatirdeki bu bosglugu doldurmak tizere, tembel 6grenme yaparak yiiksek
bagari saglayan orneklere dayali yeni bir regresyon yontemi olan, Oznitelik
[zdiigiimlerinin Parcalanmas: ile Regresyon (RPFP) isimli yontemi gelistirdik.
RPFP makina 6grenmasi ve istatistik literattirinde yer alan MARS, kurallara
dayali regresyon ve regresyon agaci ogrenen sistemler gibi 6nemli caligkan al-
goritmalarda dahi bulunmayan bazi ozelliklere ve hatta daha iyi performansa
sahiptir. RPFPnin bu 6zelliklerinden en 6nemli olan1 verilerde eksik degerler
oldugu durumlarda pek ¢ok uygulama icin diger tim caliskan veya tembel
yontemlerden daha ¢ok bagari saglamasidir. Gunimiizde, ¢ok sayida alanlar:
bulunan veri tabanlarini dikkate aldigimiz zaman, boyle ortamlara siklikla rast-
lanir. RPFP veri seti icindeki tiim o6znitelik degerlerinin doldurulmus olmasini

gerektirmedigi icin eksik olan degerleri dogal bir gekilde ¢coztiimler.

Anahtar Sozciikler: Makina 6grenmesi, 6rneklere dayalh 6grenme, regresyon.
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Chapter 1

Introduction

Predicting values of numeric or continuous attributes is called regression in
the statistical literature, and it has been an active research area in this field.
Predicting real values is also an important topic for machine learning. Most of
the problems that humans learn to solve in real life such as sporting abilities
are continuous. Dynamic control is a research area in machine learning. For
example, learning to catch a ball moving in a three dimensional space, is an
example of this problem, studied in robotics. In such applications machine
learning algorithms are used to control robot motions, where the response to
be predicted by the algorithm is a numeric or real-valued distance measure
and direction. As an example of such problem, Salzberg and Aha proposed an
instance-based learning algorithm for robot control task in order to improve a

robot’s physical abilities [4].

In machine learning, much research has been performed on classification,
where the predicted feature is nominal or discrete. Regression differs from
classification, in that the output or predicted feature in regression problems
is continuous. Even though, much research is concentrated on classification
in machine learning, recently the focus of the machine learning community
has moved strongly towards regression, since a large number of real-life prob-
lems can be modeled as regression problems. Various names are used for this
problem in the literature, such as functional prediction, real value prediction,

function approximation and continuous class learning. We prefer its historical
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name, regressiton, henceforth, for simplicity.

In designing expert systems, induction techniques developed in machine
learning and statistics have become important especially for cases where do-
main expert is not available or the knowledge of experts is tacit or implicit [1,
42]. These techniques are also important to discover knowledge in cases where
domain experts or formal domain knowledge is available but difficult to elicit [39].
Probably, the most important advantage of induction techniques is that they

enable us to extract knowledge automatically.

By the term “knowledge”, we mean two types of information. One is the
information used for prediction of a new case, given example cases; the other
is the information used for extracting new rules about the domain which have
not yet been discovered, by interpreting induced models. The techniques re-
viewed and developed in this thesis can be employed in such systems, when
the underlying problem is formalized as a prediction of a continuous target

attribute.

The idea behind using induction techniques, investigated particularly in
machine learning literature, is widely accepted by a newly emerged discipline,
Knowledge Discovery in Databases (KDD), which incorporates researchers
from various disciplines [17, 18, 60]. The main source of information in this field
is large databases. Since databases can store large amounts of data belonging
to many different domains, the use of automatic methods such as induction for
knowledge discovery is viable, because it is usually difficult to find an expert for
each different domain or relation in databases. Today, database management
systems enable only deductive querying. Incorporating an inductive compo-
nent into such databases to discover knowledge from different domains auto-
matically is a long-term expectation from this new field [32]. This particularly
requires the cooperation of knowledge engineers and database experts. Such
expectations make regression an important tool for the stand-alone or domain-
specific KDD systems today and Knowledge and Data Discovery Management
Systems [17, 60] in the future.
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1.1 Parametric versus Non-Parametric Regres-

sion

The most common approach in regression is to fit the data to a global para-
metric function. Classical linear regression in statistical analysis is an example
of parametric learning. This model involves a dependent variable y and pre-
dictor (independent) variables (x’s), and assumes that the value of y changes
at a constant rate as the value of any independent variable changes. Thus the

functional relationship between y and 2’s is a straight line.

Yi = Bo+ Brxa + feviz + - + Bpwip + & (1.1)

The subscript ¢ denotes the observations or instances, the second subscript
designates p independent variables. There are p41 parameters, 3,,7 =0,...,p,
to be estimated. In the parametric model, the structure of the function is
given, and the procedure estimates the values of the parameters, 3;, according
to a fitting criterion. This criterion is generally a minimization of an error
function for all data points in a training set. Very often this is a least squares
criterion, which minimizes the sum of the squares of the prediction errors of
the estimated linear function for all instances. The error term, &; , denotes
the error of estimation for each instance 7, and it is assumed to be normally

distributed.

Parametric methods have been very successful when the assumed structure
of the function is sufficiently close to the function which generated the data to
be modeled. However, the aim in machine learning is to find a general structure
rich enough to model a large portion of all possible functions. This idea leads
us to non-parametric regression methods, where no assumption is made about

the structure of the function or about the distribution of the error.
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1.2 Eager versus Lazy Learning

We categorize regression algorithms with two classes, eager and lazy approaches.
The term eager is used for learning systems that construct rigorous models. By
constructing models, two types of knowledge, prediction and concept descrip-
tions that enable interpretation can be addressed. By using induced models of
many eager methods, interpretation of the underlying data can be obtained.
Decision trees and decision rules are such models, that are reviewed. On the
other hand, lazy approaches [3] do not construct models and delay processing
to the prediction phase. In fact the model is the data itself. Because of these
properties, some disadvantages of the lazy approach immediately become ap-
parent. The most important of all is that the lazy approaches are not suitable
for the first type of knowledge, interpretation, since the data itself is not a
compact description when compared other models such as trees or rules. So,
the major task of these methods is prediction. A second limitation is that they
generally have to store the whole data in the memory, it may be impossible if

the data is too big.

However, lazy approaches are very popular in the literature, due to some
of their important properties. One of them is that they make predictions
according to the local position of query instances. They can form complex
decision boundaries in the instance space even when relatively little information
is available, since they do not generalize the data by constructing global models.
Another one is that learning in lazy approaches is very simple and fast, since
it only involves storing the instances. Finally, they do not have to construct a

new model, when a new instance is added to the data.

Besides these common characteristics of lazy approaches, however, the most
significant problem with them is the one posed by irrelevant features. Some
feature selection and feature weighting algorithms have been developed in the
literature for this purpose. A review of many such algorithms can be found in
literature [61]. However, these algorithms have also a common characteristic
that they ignore the fact that some features may be relevant only in context.
That is, some features may be important or relevant only in some regions of the

instance space. This characteristic is known as context-sensitive or adaptive in
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the literature. Even most eager approaches have this property, most of lazy
approaches are not adaptive. Such important properties of surveyed important

regression techniques are also discussed in Chapter 2.

1.3 Regression by Partitioning Feature Pro-

jections

This thesis describes a new instance-based regression method based-on fea-
ture projections called Regression by Partitioning Feature Projections (RPFP).
Previous feature projection-based learning algorithms are developed for classi-
fication tasks. The RPFP method works similar to those methods, by making
predictions on the projections of data to all features separately. A complete

survey of literature for feature projection-based learning is given in [13],

The RPFP method described in thesis is adaptive. This property is also
called as context sensitive in the literature. For different query locations in
the instance space RPFP forms a different model and a different region, and
makes a different approximation. This is one of the major properties that
makes RPFP a flexible regression method. This brings in another advantage:
Robustness to irrelevant features, as well as, eager algorithms that partition the
instance space, such as, decision tree induction methods. The regions formed
for the queries will be long on the dimensions of irrelevant features and short on
relevant dimensions as the case in eager partitioning methods. Besides those
properties, RPFP is robust to the curse of dimensionality, in that it is suitable
for high-dimensional data. This is due to the elimination of irrelevant features,
and by making approximations on feature projections for each feature dimen-
sion separately. Making predictions on each feature separately enables another
important property of RPFP. It handles missing feature values naturally, with-
out filling them with estimated values. The experimental results shows that,
RPFP achieves the highest accuracy when there are many missing values in
the data set. These important properties of RPFP and a detailed comparison
of it with other famous approaches are described in detail after the description

of RPFP in Chapter 3.
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From the point of view of these characteristics, we can define RPFP as lazy,
non-parametric, non-linear, and adaptive regression method based on feature

projections in implementation.

1.4 Notation

In the rest of the thesis, training set D is represented by the instance matrix
X, where rows represent instances and columns represent predictors, and a
response vector y represents the continuous or numeric response to be predicted
for all instances. Estimated values of y are shown with a column vector y,
where y; is a scalar of the vector. Coefficients in Equation 1.1 are represented
by a column vector B. Any instance or any row in the instance matrix is
represented by x;, where ¢+ = 1,...,n and n is the number of instances in the
training set. Any column of X is represented by x;, where j = 1,...,p, and
p is number of predictor features. z;;,y; and 3; represent scalars of X,y and
3, respectively. For the operations where 3 is included, a column consisting
only of constant 1 values is inserted into the instance matrix as the first row
so as to enforce the first term in Equation 1.1 (j = 0,...,p). The notations
x; and y are used as variables to represent predictor features and response
feature respectively. To denote instance vectors (x;) with a variable, x is used.
To represent residuals, a column vector r is used, where r;, : = 1,...,n, is a

scalar. To denote a query instance, a row vector q or x, is used.

1.5 Organization

In next chapter, we make an overview of existing important regression tech-
niques in the literature. In Chapter 3 we describe RPFP and a robust version
of it to noise RPFP-N. The detailed description of characteristic properties of
RPFP and theoretical comparison of it with the existing important approaches
in the literature is also given in this chapter. Empirical evaluations of RPFP

are shown in Chapter 4, and we conclude the thesis with Chapter 5.



Chapter 2

Overview of Regression

Techniques

In this chapter, we review important regression techniques developed in ma-
chine learning and statistics. We first review lazy approaches for regression,
instance-based regression, and locally weighted regression, in the first two sec-
tions and then we review eager approaches rule-based regression, projection
pursuit regression, tree-based regression and multivariate adaptive regression
splines, respectively in Section 2.3 through Section 2.6. We present a compar-

ison of these techniques in Section 2.7 for their important properties.

2.1 Instance-Based Regression

Instance-based learning (IBL) algorithms are very popular since they are com-
putationally simple during the training phase [2, 11]. In most applications,
training is done simply by storing the instances in the memory. This section

describes the application of this technique to regression problems [36].

In instance-based regression, each instance is usually represented as a set of
attribute value pairs, where the values are either nominal or continuous, and the
value to be predicted is continuous. Given query instance, the task is to predict

the target value as a function of other similar instances whose target values are

7
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known. The nearest netghbor is the most popular instance-based algorithm.
The target values of the most similar neighbors are used in this task. Here
the similarity is the complement of the Euclidean distance between instances.
Formally, if we let real numbers, R be a numeric (continuous) domain, and X
be an instance space with p attributes, we can then describe the approximation

function, F, for predicting numeric values as follows:

Floy,...,xp) =y where y; € R. (2.1)
Training:
[1] Vx; € Training Set
2] normalize(x;)
Testing:
[1] Vx; € Test Set
2] normalize(X;)
3] Vxi{x; # x:}: Calculate Similarity(x:, x;)
[4] Let Similars be set of N most similar instances to x; in Training Set
[5] Let Sum = Y x.csimitars Stmilarity(Xe, X;)
[6]

Similarity(Xe ,X; )

6 Then gt = ZXiESimilaTS Sum (XZ)

Figure 2.1. The Proximity Algorithm

There is a variety of instance-based algorithms in the literature. Here,
the simplest one, the prorimaity algorithm is described in Figure 2.1. The
proximity algorithm simply saves all training instances in the training set. The
normalization algorithm maps each attribute value into the continuous range
(0 — 1). The estimate y; for test instance x; is defined in terms of a weighted
similarity function of x,;’s nearest neighbors in the training set. The similarity

of two normalized instances is defined by Equation 2.2.

P
Similarity(xg, x;) = Z Sim(x, 4j) (2.2)

7=1
where Stm(x,y) = 1.0 — |& — y| where 0 < 2,y < 1, and j is the feature

dimension.
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The assumption in this approach is that the function is locally linear. For
sufficiently large sample sizes this technique yields a good approximation for
continuous functions. Another important property of instance-based regression
is its incremental learning behavior. By default, the instance-based regression
assumes that all the features are equivalently relevant. However, the predic-
tion accuracy of this technique can be improved by attaching weights to the
attributes. To reduce the storage requirements for large training sets, aver-
aging techniques for the instances can be employed [2]. The most important
drawback of instance-based algorithms is that they do not yield abstractions

or models that enable the interpretation of the training sets [40].

2.2 Locally Weighted Regression

Locally weighted regression (LWR) is similar to the nearest neighbor approach
described in the previous section, especially for three main properties. First,
the training phases of both algorithms include just storing the training data,
and the main work is done during prediction. Such methods are also known
as lazy learning methods. Secondly, they predict query instances with strong
influence of the nearby or similar training instances. Thirdly, they represent
instances as real-valued points in p-dimensional FEuclidean space. The main
difference between IBL and LWR is that, while the former predicts instances
by averaging the nearby instances, the latter makes predictions by forming
an averaging model at the location of query instance. This local model is
generally a linear or nonlinear parametric function. After a prediction for
query instance is done, this model is deleted, and for every new query a new
local model is formed according to the location of the query instance. In such
local models, nearby instances of the query have large weights on the model,
whereas distant instances have fewer or no weights. For a detailed overview of
the locally weighted methods see [7], from where the following subsections are

summarized.
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2.2.1 Nonlinear Local Models

Nonlinear local models can be constructed by modifying global parametric
models. A general global model can be trained to minimize the following

training criterion:

C=> L{f(xi8).v) (2.3)

where y; is the response value corresponding to the input vectors x;, and 3 is
the parameter vector for the nonlinear model y; = f(x;, ) and L is the general
loss function in predicting y;. If this model is a neural net, then the 8 will be a
vector of the synaptic weights. If we use the least squares for the loss function

L, the training criterion will be

=) (f(xi.B) —y)* (2.4)
In order to ensure points nearby to the query have more influence in the

regression, a weighting factor can be added to the criterion.

Clg) = Y _[L(f(xi B) y:)) K (d(x, q))] (2.5)

where K is the weighting or kernel function and d(x;, q) is the distance between
the data point x; and the query q. Using this training criterion, f becomes a

local model, and can have a different set of parameters for each query point.

2.2.2 Linear Local Models

The well-known linear global model for regression is simple regression (1.1),
where least squares approximation is used as the training criterion. Such linear

models can be expressed as

X8 =y (2.6)
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where 3 is the parameter vector. Whole training data can be defined with the

following matrix equation.

XB=y (2.7)

where X is the training matrix whose ¢th row is x; and y is a vector whose :th
element is y;. Estimating the parameters B using the least squares criterion

minimizes the following criterion:

=) (xiB—yi) (2.8)

K3

We can use this global linear parametric model, where all the training in-
stances have equal weight; for locally weighted regression, by giving nearby
instances to the query point higher weights. This can be done using the fol-

lowing weighted training criterion:

¢ = Y0 f(x0.8) — ) K (d(xi, )] (2.9)

7

Various distance (d) and weighting (K') functions for local models are de-
scribed in [7]. Different linear and nonlinear locally weighted regression models

can be estimated using those functions.

2.2.3 Implementation

In LWR, as stated above, the computational cost of training is of a minimum
since training includes only storing new data points into the memory. However
the lookup procedure for prediction is more expensive than other instance-
based learning methods, since a new model is constructed for each query. Here,

the usage of a kd-tree data structure to speedup this process is described

briefly [7].

The difficulty in the table lookup procedure is to find the nearest neighbors,

if only nearby instances are included in LWR. If there are n instances in the
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O

Figure 2.2. 2d-tree data structure. The black dot is the query point, and the
shaded dot is the nearest neighbor. Outside the black box does not need to be
searched to find the nearest neighbor.

database, for a naive implementation we need n distance computations. For

an efficient implementation, a kd-tree can be employed.

A kd-tree is a binary data structure that recursively splits a k-dimensional
space into smaller subregions, and those subregions are the branches or leaves
of the tree data structure. The search for the nearest neighbors starts from the
nearby branches in the tree. For a given distance threshold there is no need
to search further branches by implementing this data structure. Figure 2.2

illustrates a two-dimensional region.

2.3 Regression by Rule Induction

Inducing rules from a given training set is a well-studied topic in machine
learning. Weiss and Indurkhya employed rule induction for a regression prob-
lem and reported significant results [58, 59]. In this section, we will first review
the rule-based classification algorithm [57], Swap-1, that learns decision rules
in Disjunctive Normal Form (DNF), and later on describe its adaptation for

regression.



CHAPTER 2. OVERVIEW OF REGRESSION TECHNIQUES 13

[1] Input: D, a set of training cases
[2] Initialize Ry « empty set, k «— 1, and C7 «— D

[3] repeat

[4] create a rule B with a randomly chosen attribute as its left-hand side

[5] while (B is not 100-percent predictive) do

[6] make single best swap for any component of B, including
deletion of the component, using cases in Cj,

[7] If no swap is found, add the single best component to B

8] endwhile

[9] Py, « rule B that is now 100-percent predictive

[10 K}« cases in (' that satisfy the single-best-rule P

[11 Ry HRkU{Pk}

[12 Cry1 — Cr — {Ex}

[

[

[

]
]
]
13] k—k+1
]
]

on cases in training set D

[16] while (r can be found)
[17] Rk-|—1 — Rk - {T}
[18] ke—Fk+1

[19] endwhile

[20]

Figure 2.3. Swap-1 Algorithm

The main advantage of inducing rules in DNF is their explanatory capa-
bility. It is comparable to decision trees since they can also be converted into
DNF models. The most important difference between them is that the rules
are not mutually exclusive, as in decision trees. In decision trees, for each
instance, there is exactly one rule encoding, a path from a root to a leaf, that
is satisfied. Because of this restriction, decision tree models may not produce
compact models. However, because of this property of rule-based models, the
problem emerges that, for a single instance, two or more classes may be sat-
isfied. The solution found for this problem is to assign priorities or ordering
to the rules according to their extraction order. The first rule, according to
this ordering that satisfies the query instance, determines the class of a query.
The Swap-1 rule induction algorithm [57] and its sample output are shown in

Figure 2.3 and Figure 2.4, respectively.
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CA>05And CP >35 « C(Class=2
THAL > 6.5 — (Class =2
[True] — Class=1

Figure 2.4. A solution induced from a hart-disease data

While constructing a rule, the Swap-1 algorithm searches all the conjunctive
components it has already formed, and swaps them with all possible compo-
nents it will build. This search also includes the deletion of some components
from the rule. If no improvement is established from these swaps and deletions,
then the best component is added to the rule. To find the best component to
be added, the predictive value of a component, as the percentage of correct
decisions, is evaluated. If the predictive values of them are equal, maximum
instance coverage is used as the second criterion. These swappings and addi-

tions end when the rule reaches 100% prediction accuracy.

STEP | PREDICTIVE RULE
VALUE (%)
1 31 3
3 36 D6
3 48 p6 & pl
4 49 pd & pl
5 69 pd & pl & p2
6 80 pd & pl & p2 & p)
7 100 p3 & pl & p2 & p)

Table 2.1. Example of swapping rule components.

Table 2.1 illustrates a sample rule induction. After forming a new rule for
the model, all instances that the rule covers are removed from the instance
set, and the remaining instances are considered for the following steps. When
a class is covered, the remaining classes are considered, in turn. This process

iterates until the instance set becomes empty, that is, all instances are covered.

After formation of the rule set, if the removal of any rule does not change
the performance on training set, such rules are removed from the model. Fur-

thermore, to reach an optimum rule set, an optimization procedure is used [57].

The rule induction algorithms for classification, such as Swap-1, can also

be applied to regression problems. Since these algorithms are designed for the
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prediction of nominal attributes, using a preprocessing procedure, the numeric

attribute in regression to be predicted is transformed to a nominal one.

[1]Input: {y} a set of output values
[2] Initialize n = number of cases, k& = number of classes

[3] repeat for each Class;
[4] Class; = next n/k cases from list of sorted y values

[5] end

[6] repeat for each Class; (until no change for any class)

[7] repeat for each case 7 in Class;

3] 1. Move Case;; to Class;_y , compute Err,c,
[9] If Errpe, > Erryg return Case;jtoC;

[10] 2. Move Case;j to Class;yy , compute Err,e,
[11] If Errpew > Errgg return Case;j to C;

[12] next C'ase; in Class;

[13] Next Class;

14] repeat for each Class; (until no change for any class)

[14]

[15] If Mean(Class;) = Mean(Class;) then
[16] Combine Classi and Class;j

[17] end

Figure 2.5. Composing Pseudo-Classes (P-Class)

For this transformation, the P-class algorithm, shown in Figure 2.5, is used
in [59]. This transformation is in fact a one-dimensional clustering of training
instances on response variable y, in order to form classes. The purpose is
to make y values within one class similar, and across classes dissimilar. The
assignment of these values to classes is done in such a way that the distance

between each y; and its class mean must be minimum.

The P-Class algorithm does the following. First it sorts the y values, then
assigns an approximately equal number of contiguous sorted y; to each class.
Finally, it moves a y; to a contiguous class if it reduces the distance of it to the

mean of that class.

This procedure is a variation of the KMEANS clustering algorithm [16,

35]. Given the number of initial clusters, on randomly decomposed clusters, the
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1. Generate a set of Pseudo-classes using the P-Class algorithm.
2. Generate a covering rule-set for the transformed classification
problem using a rule induction method such as Swap-1.
3. Initialize the current rule set to be the covering rule set and save it.
4. If the current rule set can be pruned, iteratively do the following:
a) Prune the current rule set.
b) Optimize the pruned rule set and save it.
¢) Make this pruned rule set the new current rule set.
5. Use test instances or cross-validation to pick the best of the rule sets.

Figure 2.6. Overview of Method for Learning Regression Rules

KMEANS algorithm swaps the instances between the clusters if it increases a
clustering measure or criterion that employs inter and intra-cluster distances.
Given the number of classes, P-Class is a quick and precise procedure. However,
no idea is stated in the literature about an efficient way to determine the

number of classes.

After the formation of classes (pseudo-classes) and the application of a rule
induction algorithm to these classes, such as Swap-1, in order to produce an
optimum set of regression rules, a pruning and optimization procedure can be
applied to these rules, as described in [57, 59]. An overview of the procedure

for the induction of regression rules is shown in Figure 2.6.

The naive way to predict the response for a query instance is to assign the
average of responses. The average may be a median or mean of that class.
However, different approaches also can be considered by applying a paramet-
ric or non-parametric model for that specific class. For example, the nearest
neighbor approach is used for this purpose, and significant improvements of

this combination against the naive approach are reported in [59].

2.4 Projection Pursuit Regression

One problem with most local averaging techniques, such as the nearest-neighbor,

is the curse of dimensionality. If a given amount of data is distributed in a
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high-dimensional space, then the distance between adjacent data points in-
creases with increasing number of dimensions [29]. Friedman and Stuetzle
give a numeric example about this problem [20]. Projection pursuit regression
(PPR) forms the estimation model by reflecting the training set onto lower

dimensional projections as a solution for high dimensional data sets.

Another important characteristic of PPR is its successive refinement prop-
erty. At each step of model construction, the best approximation of the data
is selected and added to the model, while removing the well described portion
of the instance space. The search on the data set continues for the remain-
ing part and this process iterates by increasing the complexity of the model
at each step. The successive refinement concept is applied to regression in a
different way here, by subtracting the smooth from residuals. A smooth is a
function formed by averaging responses (y). An example of smooth is shown

in Section 2.4.2.

The model approximated by the PPR algorithm is the sum of the smooth

functions S of the linear projections, determined in each iteration:

M

P) = 2 SnlnX) (2.10)

where [, is the parameter vector (projection), X is the training set against
predictor variables, Sg,, is the smooth function and M is the number of terms

or smoothes in the model.

2.4.1 Projection Pursuit Regression Algorithm

At each iteration of the PPR algorithm, a new term, m in Equation 2.10, is
added to the regression surface ¢. The critical part of the algorithm is the
search for the coefficient vector  or projection of the next term. After finding
a coefficient vector at each iteration, the smooth of the estimated response
values resulting from the inner product (fm.X) is added to the model as a
new term, where the term is a function of all features. The linear sum of these

functions (2.10) forms the model, which is employed for the prediction task.
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M ri—y ,M—0,i=1,..,n
[2] Search for the coefficient vector s, that maximize fitting criterion (/)
by using Equation 2.11

[3] If I(/3) is greater than the given threshold
[4] rp— o — SBM+1(6M+1'Xi)7 i1=1,....,n
[5] M M+1

6] go to Step 2

[7]

7] Otherwise stop, by excluding last term M.

Figure 2.7. Projection Pursuit Regression Algorithm

The search for the coefficient vector for each term is done according to
a fitting criterion (figure of merit) such that, the average sum of the squared
differences between residuals and the smooth is the minimum. For this purpose,
1(3), the fraction of unexplained variance that is explained by smooth Sg, is

used as an optimality criterion or figure of merit. I(/3) is computed as

n

I(B)=1=> (ri — Ss(B.x:)) /Zr (2.11)

=1
where r; is a residual which takes the value of y; in the first step of the algo-

rithm. The coefficient vector 3 that maximizes I(3) is the optimal solution.

In the first line of the algorithm current residuals and the term counter are
initialized. In the second step, the coefficient vector that results in the best
smooth close to the residuals according to the fitting criterion [ is found. A
smooth is found for each 3 vector, in ascending order of the linear combination
(3.X). If the criterion value found is below a given threshold, the iteration of
the algorithm is continued by the new residual vector, which is found by sub-
tracting the smooth from the current residuals at Step 4. With this subtraction

operation, the algorithm gains the successive refinement characteristic.

For search of the coefficient vector that maximizes the fitting criterion, a
modification of the Rosenbrock method [50] is chosen in [20], and as a smooth-

ing procedure, a method is described in the next subsection.

Some models approximate the regression as a sum of the functions of in-

dividual predictors (standard additive models), and because of that, they can
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not deal with interactions between predictors. In such models, the projections
are done onto individual predictors rather than onto a projection vector, which
is the linear sum of the predictors, as in PPR. These projection vectors, instead
of individual predictors, allow PPR to deal with interactions, which is the third
main property of PPR.

2.4.2 Smoothing Algorithm

Traditional smoothing procedures assume that the observed variation, response
Yy;, 1s generated by a function which has a normally distributed error compo-
nent. The smooth constitutes an estimation for that function. As an example,
in simple linear regression, this function is a linear combination of predictors.
As stated above, PPR tries to explain this variation with not just one smooth,

but with a sum of smoothes over linear combinations of predictors.

Generally, the smooth functions employed here are not expressions, rather,
they are a local averaging of the responses or residuals. Taking the averages of
responses in neighborhood regions forms this smooth function. The boundaries
of the neighborhood region where the averages are taken are called bandwzdth.
For example, in the k-nearest neighbor algorithm, k is used for the constant
bandwidth. In [20], a variable bandwidth algorithm is employed, where larger
bandwidths are used in regions of high local variability of response. To clar-
ify the concept of smoothing, we describe the constant bandwidth smoothing

algorithm of Tukey [52] called “running Medians”.

Running medians is a simple procedure that averages the response by tak-
ing the median of the neighbor region. Running medians of three algorithms,
described in [52], are shown with a simple example in Figure 2.8. The smooth
of each response is found by the median of three values in the sequence. One

of them is the response itself, and other two are neighbors.

11 12 1304 10 15 12 13 17

Given : 4 7 9 3 4
777 4 4 11 12 12 15 12 13 13 7

Smooth

Figure 2.8. Running Medians of Three
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Friedman and Stuetzle [20], employ running medians of three in their vari-

able bandwidth smoothing algorithm, as is shown in Figure 2.9.

[1] Running medians of three;

[2] Estimating the response variability at each point by the average squared
residual of a locally linear fit with constant bandwidth;

[3] Smoothing this variance estimates by a fixed bandwidth moving average;

[4] Smoothing the sequence obtained by pass (1) by locally linear fits with
bandwidths determined by the smoothed local variance estimates
obtained in pass (3).

Figure 2.9. Variable Bandwidth Smoothing Algorithm

In Step 1, a smooth for the response is formed. In Step 2, for each smoothed
response value, we find the variance of the neighbors in the interval determined
by a given constant bandwidth. In Step 3, these variances are smoothed by
a given constant bandwidth. Finally, by employing these smoothed variance
values as a bandwidth for each smoothed response determined in Step 1, a

variable bandwidth smooth is obtained.

2.5 Regression by Tree Induction

Tree induction algorithms construct the model by recursively partitioning the
data set. The task of constructing a tree is accomplished by employing a
search for an attribute to be used for partitioning the data at each node of the
tree. The explanation capability of regression trees and their use to determine
key features from a large feature set are their major advantages. In terms of
performance and accuracy, regression tree applications are comparable to other
models. Regression trees are also shown to be strong when there are higher

order dependencies among the predictors.

One characteristic common to all regression tree methods is that, they par-
tition the training set into disjoint regions recursively, where the final partition
is determined by the leaf nodes of the regression tree. To avoid overfitting
and form simpler models, pruning strategies are employed in all regression tree

methods.



CHAPTER 2. OVERVIEW OF REGRESSION TECHNIQUES 21

In the following subsections, three different regression tree methods are de-
scribed: CART, RETIS and M5. They share the common properties described
above, but show significant differences in some of measures and traits they

demonstrate.

2.5.1 CART

Using trees as regression models was first applied in the CART (Classification
and Regression Trees) program, developed by the statistical research commu-

nity [9]. This program induces both regression and classification trees.

In the first step, we start with the whole training set represented by the
root node to construct the tree. A search is done on the features to construct
the remaining part of the tree recursively. We find the best feature and feature
value of any instance at which to split the training set represented by the root
node. This splitting forms two leaf nodes that represent two disjoint regions in
the training set. In the second step, one of these regions is selected for further
splitting. This splitting is again done according to a selected feature value of
an instance. At each step of partitioning, one of the regions, which are not
selected before are taken and partitioned to two regions in the same manner

along a feature dimension.

After forming regions, which are represented by the leaf nodes of a tree,
a constant response value is used for estimation of a query. When a test
instance is queried, the leaf node that covers the query location is determined.
A constant average value of response values of the instances of the region is
assigned as the prediction for the test instance. Each disjoint region has its own

estimated value that is assigned to any query instance located in this region.

To construct optimum disjoint regions, an error criterion is used. The op-
timum value of this criterion produces a decomposition at any step of the tree
induction process described above so that the correct region, feature, feature
value (splitting surface) and estimates for each region are selected. To deter-
mine the predicted target values in these regions, averaging methods such as

mean and median are used. As a fitting criterion, the variances of the regions
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are used (2.13).

n

Error(Variance) = (y; — y)° (2.12)

=1

where n is the number of instances in the region.

. 1 _ _
Splitting Error = - { Z (y; — yleft)2 + Z (y; — ?Jm’ght)Q} (2.13)

Xiexleft Xy eXright

After computing the splitting error for all possible splits of a particular

predictor, the splitting that maximizes the following criterion is selected.

C' = Variance — Splitting Error (2.14)

The node and predictor that reach the maximum criterion ', are selected
for splitting. An example regression tree is shown in Figure 2.10. The con-

struction process is illustrated in Figure 2.11.

Figure 2.10. Example of Regression Tree

Formally, the resulting model can be defined in the following form [9, 19]:

If x€R,, then f(x)=gn(x{aq}}). (2.15)
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R1
a
X1 R1 R2
b a
Xz R1 R2 R3
b a c
Xy R1 R2 R3 R4

Figure 2.11. An example of the tree construction of process. Four regions are
determined by predictors x; and x5.

where {R,,}!" are disjoint subregions representing p partitions of the training
set. The functions ¢ are generally in simple parametric form. The most com-
mon parametric form is a constant function (2.16), which is illustrated with

the example given in Figure 2.10.

gm(X|am) = ap. (2.16)

The constant values of leaves or partitions are generally determined by

averaging. More formally, the model can be denoted by using basis functions:

fx) =3 anBn(x) (2.17)

The basis functions B,,(x) take the form

Bu(x) = I(x € Ry) (2.18)

where [ is an indicator function having the value one if its argument is true and
zero otherwise. Let H[n] be a step function, indicating a positive argument

Hnl = (2.19)

0 otherwise

{1 if g >0

and let LOF(g) be a procedure that computes the lack of fit of an estima-
tion function ¢ to the data. The recursive partitioning algorithm is given in

Figure 2.12.
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1B1(X)%1
2] For M =2 to M4, do : lof* «— oc

]
]
3] Form=1toM—14do:
4] Forv=1ton do:
5] For t € {J?U]‘|Bm(X]‘) > 0}
6] 9 Yz @i Bi(X) + a0 By (X) H[ (2 — )] + aps By (x) H[— (2, — 1)]
7] lof — ming,. .,,LOF(g)
8] if lof <lof* ., then lof* « lof; m* «— m; v* «— v; t* «— t end if
9] end for

10] end for

11] end for

12]  Bar(x) e Boe (x)H[—(20r — )]
5’3 Bm*(x) — Bm*(X) [—I—(xv* — t*)]

Figure 2.12. Recursive Partitioning Algorithm

The first line of the algorithm assigns the whole training set as the initial
region. The first loop iterates the splitting until reaching a maximum num-
ber of regions. The next three loops selects the optimum basis function B,,»
(intuitively the optimum region), predictor x,«, and split point #*. At lines 12
and 13, the selected region for splitting, B,,, is replaced with its two parti-
tions. This is done by adding a factor to its product; with H[—(z,« — t*)] for
the negative portion of the region at line 12 by creating a new basis function,
and with H[+(x,» — t*)] for the positive portion of the region at line 13, by
modifying or removing the previous basis function. Finally the basis functions

formed by the algorithm will take the following form:

Km

B (x) = kl:[ H s (Ty(km) — Lem)] (2.20)

where the quantity K, is the number of splits that gave rise to B,,, and the
arguments of the step functions contain the parameters associated with each
of these splits. The quantity sy, takes (+/—)1 values indicating the right/left
portions, v(k,m) label the predictor variables, and g, represent values on
the corresponding variables. A possible output of the algorithm is shown in

Figure 2.13.
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. Q
V.
2 3
By = H[—(zya — ta)[H [~ (20 — 13)]
By = H[—(xya — ta) [ H[+ (20 — t) | H[—(20e — 1.)]
By = H[—(2ya — ta)[H[+ (20 — t)|H[+(20e — 1.)]
By = H[+(2pq — t4)]

Figure 2.13. A binary tree representing a recursive partitioning regression
model with the associated basis functions

The partition may lead to very small regions with a large tree. This sit-
uation may cause overfitting with unreliable estimates. Stopping the process
early may also not produce good results. The solution to this problem is to

employ a pruning strategy.

Pruning the regression tree by removing leaves will leave holes, which is
an important problem, since we will not be able to give an answer to queries
that fall into these regions or holes. That is why the removal of regions is done
pairwise, with siblings, by merging them into a single (parent) region. This

pruning strategy is described in [9].

Recursive partitioning regression is an adaptive method, one that dynam-
ically adjusts its strategy to take into account the behavior of a particular
problem to be solved [19]. For example, recursive partitioning has the ability
to exploit low local dimensionality of functions. In local regions, the depen-
dence of the response may be strong on a few of the predictors, and these few
variables may be different in different regions. Another property of recursive

partitioning regression is that they allow interpretations, especially when a
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constant estimation is done on the leaves.

On the other hand, it has some drawbacks and limitations, the most im-
portant is the fact that the estimation is discontinuous. The model cannot
approximate even simple continuous functions such as linear functions, which
limits the accuracy of the model. As a consequence of this limitation, one can-
not extract from the representation of the model the structure of the function
(e.g. linear or additive), or whether it involves a complex interaction among

the variables.

2.5.2 RETIS

In the basic CART algorithm described above, the estimated response value,
y on the leaves of the regression tree was a constant function(2.16). On the
other hand, RETIS (Regression Tree Induction System) [33, 34], a different
approach used to construct regression trees, developed by the machine learning
community, is an extension of CART that employs a function on the leaves.
This is a linear function of continuous predictors. The use of linear regression
at the leaves of a regression tree is called local linear regression [33]. RETIS

can also be categorized as a LWR system (Section 2.2).

y O

Xy

Figure 2.14. An example region, with large variance, which is inappropriate
for splitting

RETIS is not just a modification of CART at the leat nodes. The em-
ployment of linear regression enforces modifications in the construction of the
regression tree. In the process of tree construction, the CART system forms

subtrees to minimize the expected variance (2.13). However, when applying
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local linear regression to a regression tree, the variance is not an appropriate
measure as an optimality criterion. If the relationship between the predictors
and response is linear, this region may not be appropriate for splitting even
if the variance is very large. This situation is illustrated with an example in
[33]. Suppose we have a region with four instances described with only one
predictor as shown in Figure 2.14. Even the error is large in terms of variance,
it is almost zero according to a linear approximation on these four points. Such
regions are not appropriate for further splitting. That is why an alternative
splitting criterion is employed in RETIS as given in Equation 2.22. Let us first

define impurity measure, 1:

n

I[(X) =D (4 — g(x:))? (2.21)

=1
where n is the number of instances, ¢ is the linear function that best fits
the instances of the region. Consequently, the figure of merit (the splitting

criterion) is defined as in Equation 2.22.

1
¢ = g[nleft]left + nyightdright] (2.22)

The use of Equation 2.21 instead of Equation 2.13 in computing figure of
merit is the main difference between CART and RETIS. When estimating a
response value for a query, the value that results from the linear function on

which the leaf node the query falls is used.

After construction of a regression tree, a pruning strategy is employed, as
in most other tree induction models. See [41] for an in-depth explanation of
pruning. The strategy used in RETIS computes two different error measures:
static error and the backed-up error. The static error is computed at a node,
supposing it is a leaf, and backed-up error is computed at the same node for
the case, in which the subtree is not pruned. If the static error is less than or
equal to the backed-up error, then the subtree is pruned at that node, and the

tree node is converted into a leaf node.
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2.5.3 M5

M5 is another system [45] that builds tree-based models for the regression
task, similar to CART and RETIS. Although the tree construction in M5 is
similar to CART, the advantage of M5 over CART is that the trees generated
M5 are generally much smaller than regression trees. Standard deviation is
employed as the error criterion in M5, instead of variance as used in CART.
The reduction on the error (2.23) on subregions after splitting a region is the

measure used to decide on splitting:

error = o(X) — Z ||}§£||U(XZ) (2.23)

7

where o is standard deviation and ¢ is the number of subregions of a region
whose instances are denoted by X. After examining all possible splits, M5

chooses the one that maximizes the expected error reduction (2.23).

M5 is also similar to RETIS in that it employs a linear regression model
on the nodes to estimate responses by using standard linear regression tech-
niques [43]. These linear models are constructed on all the nodes, starting from
the root down to the leaves. However, instead of using all the attributes or
predictors, a model at a node is restricted to the attributes referenced by linear

models in the subtree of that node.

After constructing the tree and forming linear models at the nodes as de-
scribed above, each model is simplified by eliminating parameters to maximize
its accuracy. The elimination of parameters generally causes an increase in the
average residual. To obtain linear models with fewer of parameters, the value
is multiplied by (n + p)(n — p), where n is the number of instances and p is
the number of parameters in the model. The effect is to increase the estimated
error of models with many parameters and with a small number of instances
or training cases. M) uses a greedy search to remove variables that contribute
little to the model. In some cases, M5 removes all of the variables, leaving only

a constant [33].

The pruning process in M5 is the same as RETIS. To prune the constructed

tree, each non-leaf node is examined, starting near the bottom. If the estimated
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error at a node is smaller than its subtree, then that node is pruned.

A smoothing process is employed in M5 for estimation of the response

variable. The smoothing process described in [33] is as follows:

1. The predicted value at the leaf is the value computed by the
model at that leaf.

2. If the instance follows branch S; of subtree S5, let n; be the
number of training cases at S;, PV/(95;) the predicted value at 9;,
and M(S) the value given by the model at S. The predicted value

at S is given by recursive Equation 2.24

ni PV (S;) + kM(S)

PV(S) = (2.24)

where k is the smoothing constant.

The accuracy of the model is enhanced by the smoothing process. Improve-
ments in accuracy and model simplification are obtained by M5 over CART,

some applications with different training sets are reported in [45]

2.6 Multivariate Adaptive Regression Splines

As stated in the previous section, a fundamental drawback of recursive parti-
tioning regression (CART) is the lack of continuity, which affects the accuracy.
Another problem with that method is its inability to provide good approxi-
mations to some functions, even to the most simple linear ones. Multivariate
adaptive regression splines (MARS) addresses these two problems of recursive

partitioning regression, in order to achieve higher accuracy [19].
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2.6.1 Piecewise Parametric Fitting and Splines

There are different paradigms for global parametric modeling to generalize low
dimensional data. One of them is piecewise parametric fitting. The basic idea
is to approximate a function by several simple parametric functions (usually
low order polynomials) each defined over different subregions of the training
set. The constraint for the formation of polynomial fitting is that it must be

continuous at every point.

The most popular piecewise polynomial fitting procedures are based on
splines, where the parametric functions are polynomials of degree g. The pro-
cedure is implemented by constructing a set of globally defined basis functions.
These functions span the space of the gth order spline approximations, and
fit the coefficients of the basis function to the data using the least squares

technique. The spline basis functions are denoted by,
{(z —tx)4 37 (2.25)

where {t;}8 is the set of split (knot) locations. The subscript + indicates a
value of zero for negative values of the argument. This is known as a truncated

power basis in the mathematical literature. A general review of splines is given

in [12].

2.6.2 MARS Algorithm

The MARS algorithm is a modified recursive partitioning algorithm, given in
the previous section, which addresses the problems stated above. The reason
that recursive partitioning algorithms are discontinuous, the first problem, is
the use of the step function. If the step function were replaced everywhere
by a continuous function where it appears in that algorithm (lines 6, 12 and
13), it could produce a continuous model. The step function employed in that
algorithm can be considered as a special case of a spline basis function, where

qg=0.

The one-sided truncated power basis functions for representing ¢th order
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splines are

bz — 1) = (z — t)L (2.26)

where t is the knot location, ¢ is the order of the spline, and the subscript
indicates the positive part of the argument. For ¢ > 0, the spline approximation

is continuous. A two-sided truncated power basis is of the form

bE(x — 1) = [£(x — )]} (2.27)

The step functions that appear in recursive partitioning algorithms are seen
to be two-sided truncated power basis functions for ¢ = 0 splines. The solution
for discontinuity is solved by employing spline functions, of the order of ¢ > 0,

instead of step functions in the algorithm.

The second modification is related to the second problem, the inability
of the algorithm to provide good approximations to certain functions. Af-
ter the first modification, the algorithm tends to involve functions with more
than a few variables (higher order interactions). At each split, one such func-
tion is removed, and two new functions are produced with one more variable.
This causes a one level increase in the interaction order. With such complex
functions, having high level orders, it becomes difficult to approximate simple

functions like linear ones.

The solution for this problem is not to delete the lower order parent after
splitting. With this modification, all basis functions now become eligible for
further splitting. The new model involves either high or low order interactions,

or both.

A third problem emerges after the employment of splines in the algorithm.
Since the algorithm allows multiple splits on the same predictor, along a sin-
gle path of the binary tree, final basis functions may include several factors,
involving the same variable in their product. For ¢ > 0, higher orders than ¢

may be produced on a single predictor.

After the second modification, not deleting the parents after splits, a re-
striction on the basis function can be applied to involve distinct predictors.

Since we do not remove the parent after splitting, many such splits can be
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done on the same parent. By employing another split to that parent instead
of splitting a child, MARS does not increase the depth or add a new factor to
the product.

One remaining problem, which is not solved with MARS, is the value of g.

The general idea is to use ¢ = 1. A discussion of this problem is given in [19].

In summary, the following modifications are done to the recursive parti-
tioning algorithm: (a) Replacing the step function H[+(x —t)] by a truncated
power basis function [+(x — ¢)]%; (b) not removing the parent basis function
B« after its split, thereby making it and both its daughters eligible for fur-
ther splitting; (c) restricting the product associated with each basis function

to factors involving distinct predictor variables.

After using two-sided truncated power basis functions, instead of a step
function, the MARS algorithm (shown in Figure 2.15), now produces multi-

variate spline basis functions of the following form:

Km

BO(x) = T Hlstm-(zo(im) — tem)]4 (2.28)
k=1

For pruning of the resulting model after the MARS algorithm, it is now
no longer necessary to employ the two-at-a-time deletion strategy used in the
previous algorithm. Because the parents are not deleted thus, there will be no
holes left after any deletion. Any pruning algorithm can be employed for the
MARS procedure.

In the algorithm above, truncated power basis functions (¢ = 1) are sub-
stituted for step functions in lines 6, 12 and 13. The parent basis function is
included in the modified model in line 6 and remains in the model through
lines 12-14. Basis function products are constrained to contain factors involv-
ing distinct variables by the control loop in line 4. Figure 2.16 illustrates the
regions after constructing the model. Note that the split regions are not deleted
from the model, as in CART, and another splitting for the same region can be

applied with the same or a different predictor.
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[1] Bi(x) « 1; M =2

[2] Loop until M > M,,., : lof* + oo
3] Form=1toM—1do:

[4] Forv ¢ {v(k,m)|l <k < K,}
[5]

[6]

5 For t € {x,;|Bn(x;) > 0}
6 9 = X aiBi(X) + an B (x)H[+ (2, — 1))+
B (<) H[~(2, — D)
7] lof — ming,. a,,_LOF(g)
8] if lof <lof* . then lof* « lof; m* «— m; v* «— v; t* «— t end if
9] end for

10] end for

11] end for

12] Bup(x) = By (%) H[+ (20 — 1%)] -
13] Barpi(X) B (X)H|[—(z — t¥)]-
14] M — M +2

15] end loop

16] end algorithm

Figure 2.15. MARS Algorithm

2.7 Discussion

We have reviewed six different regression techniques, each having different
characteristics when compared to others. Three of them (instance-based re-
gression, locally weighted regression and rule-based regression) have been de-
veloped mainly by the machine learning community, and others (projection
pursuit regression, regression tree induction, and multivariate adaptive regres-

sion splines) mainly by the statistics community. The common property of all

R1
a
Xy R2 R3
b a
Xz R4 R5 R3
b a c
Xy R4 R5 R6 R7
d
Xz R8 R9

Figure 2.16. An example for the regions of MARS algorithm
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these methods is that all of them are non-parametric, and they are the most

popular among current regression methods.

In instance-based learning, a lazy approach is employed, where no model
is constructed in the training phase. The model is the training set itself. The
whole computational complexity of this method is in its prediction, especially
the determination of neighbor instances. The prediction is based on the loca-
tion of the query, and it is computed according to the target values of neighbor
instances. The criterion used to detect neighbor instances is the similarity

measure based on distance.

Locally weighted regression is another lazy (or memory-based) approach,
where the instances are simply stored in memory during the training phase.
The difference between locally weighted regression and instance-based methods
is in the prediction phase, where a local parametric model is constructed for
each query instance by using the neighbor instances. Since, at each query
instance, a new local model is constructed, it is more complex than the previous

approach.

The projection pursuit regression method has the ability to reduce dimen-
sionality by projecting instances to lower dimensional (one or two) vectors or
surfaces. The idea of projection is also used in exploratory data analysis to
determine clusters on projections [21]. The same idea is adapted to regres-
sion. Successive refinement technique is also applied in the projection pursuit

regression, which shows significant improvements for most applications.

All the remaining methods estimate models by partitioning the training set
into regions. Rule-based regression techniques accomplish this by partitioning
the data using the rule induction techniques of machine learning. On the other
hand, in the other partitioning methods (CART, RETIS, M5 and MARS), this
is done by splicing the features recursively into two regions, by constructing
a binary regression tree. The main difference between these methods and
MARS is that MARS is continuous at the borders of the partitioned regions,
while others are discrete. CART simply uses the averages of the regions for
prediction; RETIS and M5 make prediction by constructing linear models. On

the other hand, since MARS produces a large number of overlapping regions,
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its computational complexity is larger than other partitioning methods.

Instance | Locally Proj. Rule Tree Adaptive
Based | Weighted | Pursuit | Based Based Reg.
Reg. Reg. Reg. Reg. Reg. Splines

Properties (KNN) | (LOESS) | (PPR) | (Rule) | (CART) | (MARS)
Memory-based V4 V4
Partitioning Vv Vv Vv
Interpretable V4 V4 V4 V4
Adaptive Vv Vv Vv Vv Vv
Incremental V4 V4

Table 2.2. Properties of Regression Algorithms (the names of programs devel-
oped with those methods are shown in parentheses).

The properties of regression methods are summarized in Table 2.2. Five
different properties are used to compare the algorithms. The main character-
istic of memory-based models is storing the instances and delaying processing
to the prediction phase. The model constructed is in fact the training set it-
self. Recursive partitioning algorithms construct the models by partitioning
the data into regions. [Interpretability is one of the main concerns for most
knowledge acquisition and knowledge engineering applications, in order to ex-
tract information that can be verified by experts. The algorithms covered in
this chapter that induce models have this property. If the locations of the test
or query instances affect the model, prediction and contribution of variables
in the regression task, such algorithms are called adaptive. Another important
property given in the table is incremental property of the algorithm. This is
the inverse of batch processing. For large training sets, or databases, particu-
larly processing can be done without loading all of the data set into memory if
this property is satisfied. The order of the training instances is ignored when

constructing any such model.



Chapter 3

Regression by Partitioning

Feature Projections

In this chapter we describe the new regression method called Regression by
Partitioning Feature Projections (RPFP). RPFP is an instance-based method
where most properties are similar to other instance-based methods such that
it is a local, memory-based, lazy and distance-based approach. All such prop-

erties of RPFP will be described and discussed in detail in the chapter.

In developing this technique, we have incorporated also some advantages
of eager approaches, while eliminating most limitations of both eager and lazy

methods.

In Chapter 2, previous approaches for regression were described. If the
parametric form of the function to be approximated is known, the best solution
is to approximate the parameters of the function. For example if function
is linear, linear least squares regression can produce accurate results in the

following form.

f(Xq) = Zﬂj-xqj + fo (3.1)

here, p is the number of features, x, is the query point, x,; is the jth feature

value of the query, f; is the jth parameter of the function and f(xq) is the

36
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estimated value of the function for the query point x,;.

However, the assumption that the approximated function is linear is a very
strong one and causes large bias error, especially for many real domains. Many
modern techniques have been developed, where no assumption is made about
the form of the approximated function in order to achieve much better results.
Tree and rule induction algorithms of machine learning are such non-parametric

approaches.

Additive regression models [30] and feature projection based classification
methods of machine learning such as CFP [24] improves the linear paramet-
ric form of the (3.1) by replacing the parameters in this equation with non-

parametric functions of the following form.

A P
fix) =3 4i(xy5) (3.2)

7=1

where g, is the estimation for feature ;.

With this form, the assumption that the approximated function is para-
metric is removed. However, it is assumed that the input features or variables
additively form the approximated function. It is shown that for classification
tasks of many real world domains, for example that of the data sets used for
classification in UCI repository, additive forms achieves high accuracy [31, 24].
Even though regression and classification are similar problems, one predicts a
continuous and the other predicts a categorical target, their characteristics are
different, and they are investigated independently in the literature. In order to
achieve high accuracies in regression problems, interaction effects of features,
additional to main (additive) effects, must be handled properly. This is also
shown empirically in Chapter 4 by comparing the additive form of RPFP with
its original form by using many real world domains obtained from different

sources.

There are many approximation techniques that can cope with interac-
tion effects. KNN [40] and partitioning approaches such as rule-based regres-
sion [59, 60] tree-based regression [9, 23] and MARS [19] are such techniques.

Among projection-based methods, only projection pursuit regression, PPR [20],
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handles interactions with the following model.

p

fix) = Z_:l G (D BrnjXg;) (3.3)

where M is the number of projections, f3,,; is the jth parameter of the mth pro-
jection axis and f,, is the smooth or approximation function for mth projection

axis.

Here the instances are not projected to feature dimensions. Instead, they
are projected to projection axes, found through complex computations [20].
The whole model is constructed with successive M steps, and at each step of
the model construction process, a new projection is found which is a linear
equation. We think that if there are both interactions and additive (main)
effects in a domain, most models that handle interactions, including PPR,
may loose some information by not evaluating main effects by using individual

features.

RPFP is a projection-based approach that can handle interactions. How-
ever, if main effects are higher than interaction effects in a domain, or some
features have only main effects, which is probably the case for most real world
regression problems, the functional form of RPFP, given below (3.4) enables

those effects to be incorporated in the solution properly.

)= Y Y a6 R) (3.0

R'e{R.X}J=1
where R’ is either the whole instance space X or the region obtained after s
partitioning steps, Rs; and I(j) is an indicator function whose value is either

0 or 1, according to the feature j.

RPFP incorporates interactions as partitioning techniques do, by partition-
ing the instance space. However, this partitioning does not produce disjoint
regions, such as in C4.5 for classification and CART for regression. Instead,
these are overlapping regions similar to MARS, DART and KNN. Query in-
stances are always close to the center of these regions, which is the way nearly

all lazy approaches work. If some features do not have interactions with others,
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which is the situation for most cases, RPFP incorporate main effects of these
features as much as possible by using the whole instance space, with much
crowded instances as additive methods. It decreases the effects of curse of di-
mensionality, a problem for almost all other approximation techniques except
projection-based approaches. On the other hand, if a feature has interactions

with others, the region after partitioning, R, is used instead.

3.1 RPFP Algorithm

The main property of RPFP is that, a different approximation is done for
each feature by using the projections of the training instances on each feature
dimension separately. These approximations may be different for each feature
and for each query point. A partitioning strategy is employed in the algorithm
and some portion of the data is removed from the instance space at each step.
The same approximations are repeated for a sequence of partitioning steps,

where it continues until reaching a small number of instances.

For all query instances the procedure described above is applied. This
produces different regions and different contribution of features for each query

in the instance space, which enables the context-sensitive solutions.

3.1.1 Training

Training involves simply storing the training set as their projections to the
features. This is done by associating a copy of target value with each feature
dimension, then sorting the instances for each feature dimension according to
their feature values. If there are missing feature values, they are placed at
the farthest end of the feature dimensions. These instances, having missing
values for the feature dimension, do not effect the results for those features.
An example training set with 2 features and 10 training examples projected to

these features is shown in Figure 3.1.
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fi 2 4 6 8 9 11 14 16 17 18
TARGET : 14 145 16 2 3 35 4 8 9 85

f2 o1 3 4 6 20 24 28 32 36
TARGET : 14 9 3 85 2 4 16 8 145 3.5

oo

Figure 3.1. An example training set projected to two features: f; and f;.

3.1.2 Approximation using Feature Projections

In this section, we describe how the individual predictions of features are com-

puted for continuous and categorical features.

3.1.2.1 Continuous Features

Approximation at feature projections is the first stage in the prediction phase
of RPFP algorithm. Since the location of the query instance is known, the
approximation is done according to this location. At each feature dimension,
a separate approximation is obtained by using the value of the query instance

for that feature.

Taylor’s theorem states that if a region is local enough, any continuous
function can be well approximated by a low order polynomial within this re-
gion [23]. By determining a different linear equation for each different query
value at feature dimensions, we can form the function ¢g(x,) in Equation 3.4,

even it is complex.

Given the linear equation to be approximated in the following form, Equa-
tion 3.5, the classical approach is to approximate coefficients of this equation

using the least squares error criterion in Equation 3.6.

Ups = Bos + Brses (3.5)
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n

Ey = Z(?Jz — gif)Q (3.6)

=1
where n is the number of training instances, g, is the approximation for query

at feature f, and y; is the actual target value.

We employ the weighted linear least squares approximation for the feature
predictions. Similar to the standard linear least squares approach, we find
the parameters of (3.5), fos and 1 for each feature by employing a weight
function to the least squares error, in order to determine weighted linear least

squares approximation.

Ly = szf — i)’ (3.7)

and

1

(zif — 745)° (38)

wif =

By taking the derivatives of (3.9) to minimize the error Fy, we find the

parameters By and 1y for weighted linear least squares approximation.

Ey = szf — Bog — Brsis)® (3.9)

From aaﬁff =0
Bog (D wig) + Bryp(D_ wigwig) =D yiwig (3.10)
=1 =1 i=1
From aaﬁi =0

Bos(D_ wigwis) 4 Bip (D xipwig) = D wisyiwig (3.11)
=1 =1 =1

By solving the above equations, Bys and 31 are found as follows.

Doy Yiwip — Brp o0y wipwiy
Doiq Wig

Pos = (3.12)

(3.13)
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where .
i=1 Yooy Wiy
and ( )2
- 2iq LifWig
SSJ}f = 1}22 Wiy — Z_n (315)
ZZ:; g it Wif

To illustrate the feature averaging phase, we can compute a prediction
for an example query for the training set given in Figure 3.1. Suppose f; =
12 and f; = 5 are feature values of a query instance. Coefficients of the
approximated weighted linear least squares equations for these features and

the feature predictions are shown in Figure 3.2.

Bor, = D.037T | Pos, : 6.779
Bif, + —0.034 | By, : —0.091
yp, o 4630 |y, - 6.320

Figure 3.2. Approximations for Feature Projections

3.1.2.2 Categorical Features

The weighted linear least squares approximation is not appropriate for some
cases encountered in real life applications. One of them is categorical fea-
ture values. Since there is not an ordering between most categorical features
extracting a linear relation at any region the query instance fall, is not mean-
ingful. On the other hand, if a categorical feature has an ordering between
categorical values (e.g. days of a week), then it can be evaluated by defining

it as linear.

Another situation is possible for linear features. If all the instances have
same linear value for a particular feature dimension, the slope of the equation
will be infinity. This situation can be determined by looking at the value of
SSz in Equation 3.15. If SSz = 0, we can not employ the weighted linear least
squares approximation. This refinement is done to determine such situations

together with categorical features.
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Those situations can be handled easily by employing an averaging procedure
instead of linear approximation. For the RPFP algorithm, mean values of the
target values are used as an approximation on such feature dimensions, as
shown in Equation 3.16. If none of the values of a categorical feature matches
the feature value of the query instance, the contribution of that feature in the

final prediction is excluded.

oy = ==L (3.16)

3.1.3 Local Weight

Some regions on a feature dimension may produce better approximations when
compared to others. In order to obtain a degree of prediction ability of a region
on feature dimension, we employ a measure in the prediction algorithm. If the
region that query point falls in is smooth, we give a high weight to that feature
in the final prediction. By this way we reduce the effect of irrelevant features,
as well as the irrelevant regions of a feature dimension. This establishes an
adaptive or context sensitive nature, where at different locations in the instance

space, the contribution of features on the final approximation differs.

3.1.3.1 Continuous Features

In order to measure the degree of smoothness for continuous features we com-
pute the distance weighted mean squared residuals. Residuals are differences
between target values of the instances and their predicted values found by
weighted linear least squares approximation for the feature value of each in-
stance. We denote this measure with V; as given in (3.18). By subtracting it
from the variance of the target values of all instances, V,;;, we find the explained
variance according to the region the query instance falls in. By normalizing it
with the variance of training set we obtain a measure, called prediction index
(PI) (3.20). We use the squared PI as the local weight (LW) for each feature
(3.21).
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Z?:l (yl - g)2

Vau = (3.17)
n
where y is the mean of target values of training set.
mowi(ys — By — Brais)?
Vf — Zz:l wz(yl 60 61x2f) (318)

Yy w;
where w; is defined in Equation (3.19). For an overview of weight functions for

regression problems see [7].

) 1
L+ (i — @)
Prediction index of feature f:
Vo — Vj
PI; = % (3.20)

Local weight of feature f:

PI? if PI; >0
LWf:{ T (3.21)

0 otherwise

For the example query on the training data in Figure 3.1 the local weight
for fi 1s 0.405, local weight for f; is 0.297.

3.1.3.2 Categorical Features

For the computation of local weight for categorical features, a refinement is
required. By replacing (3.18) with (3.22), in such a case, we can use the same
procedure used for continuous features for the computation of local weight.

Note that w;f in (3.19) will be 1 for all the same categorical values.

Ne o 10 5 32
Py wzj(vyz s) (3.22)
Dim W

where N. is the number of instances having the same categorical value, and

y,; 1s the average of their target values.
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3.1.4 Partitioning Algorithm

Partitioning enables us to deal with interactions among features. If there is no
interaction among some features, we use the results we obtained and recorded
for these features before the partitioning of the instance space. We try to figure

out interactions by looking at local weights before and after partitioning.

Partitioning is an iterative procedure applied to each query instance, where
the remaining final region may differ for each query instance. It improves
the context-sensitive nature of RPFP such that, the edges of the final region,
a hyper-rectangle, are not equal in length for each query, according to the
relevancy of features for the prediction of the query. This causes longer edges
for less relevant features, and much shorter edges for relevant ones. The region
is formed by the partitioning algorithm that will be described in this section, by
using an iterative procedure that continues until a small number of instances,

say k, are left. This is taken by default 10 in the experiments.

In the first step of partitioning, the predictions and local weights of the
features are found and recorded. The feature with the highest local weight
for the partitioning of the data is used. Partitioning is done on this feature
dimension. The farthest instances to the query value on this feature dimension
are marked. The number of these instances are determined by using local
weight of that feature, then they are removed on all feature dimensions. If
the feature selected for partitioning is nominal, simply all the instances having
different nominal values on that feature are also removed. After shrinking the
marked instances on all feature projections, partitioning continues by selecting

a new feature at each step.

The partitioning algorithm applies a strategy in order to select the right
feature for partitioning. For example, if the feature selected in the first step
again has the highest local weight for the query in the second step, then the
feature having the second highest local weight is selected. By this way, we can
pass possible ridges in the data set, so that, selecting a feature with small local
weight or that of some others, may increase their local weights in forthcoming
steps significantly. However, at a particular step the features with zero local

weights are not used for partitioning for that step, unless all local weights
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Figure 3.3. Example data set and its partitioning.

in a particular step are zero. This strategy decreases the effect of irrelevant
features, especially in high-dimensional domains. Since all the features may
have been selected in previous steps, a counter is associated with each feature
in order to give chance to different features each time. An example training set
and it partitioning on feature f; is illustrated in Figure 3.3. In this example,

we suppose that local weight of f; is 0.5 and & is small enough.

A different strategy is applied for nominal features. If a nominal feature
is selected for partitioning once, it is never used again for partitioning. The
partitioning algorithm of RPFP is shown in Figure 3.4. The partitioning is
repeated for all query instances by using a copy of the feature projections of

the data obtained in the training phase.

At line 30, in Figure 3.4, number of steps for the partitioning is recorded to
be used in the final prediction phase. At line 27, a partitioning of the remaining
training set, D', is employed along the feature dimension, Maxz F, selected for

partitioning.

Suppose, at any particular step of partitioning, the best feature along with
the partitioning will occur has been found according to the partitioning strat-
egy. We must determine the number of instances that will remain after parti-

tioning, n’, according to the local weight of the feature in that step. However,
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1] n' «—n; Spae —logn; s —0; D' — D
2] For f=1top

(3] preority(f) «— Smar

[4] end for

5] Whilen' >k and s < Spun

6 s«—s5+1

]
]
7] For f=1top
]
]

[

[

[

[8 if x5 is known then

[9 compute and record LW;(s) and #,7(s) on D’
[10] end if

[11] end for

[12] MaxF « any f where x, is known and LW;(s) > 0
[13] For f=1top

[14] it LWy(s) > 0 and x5 is known then

[15] if priority(f) > priority(Max f) then MaxF «— f end if
[16] if priority(f) = priority(Max f) then

[17] it LWs(s) > LWagazr(s) then MaxF «— f end if
[18] end if

[19] end if

[20] end for

[21] if MaxF' is continuous then

[22] preority(Max F) «— priority(Maxz F) — 1

[23] end if

[24] if MazF' is nominal then

[25] priority(MaxF) «— 0

[26] end if

[27] D"« partition(D', Max F)

[28] n' « size of D'

[29] end while

[30] S « s

Figure 3.4. Partitioning Algorithm
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if we use local weight as a ratio of removing instances, since it takes values
between 0 and 1, all the instances will remain or all of them will be removed
for extreme values. The solution to this problem is brought by windowing
the local weight to a narrower interval. Its size is determined by a window-
ing constant, ¢,, that takes values between 0 and 0.5, leading a local weight
interval, [0.5 F ¢,]. Local weights are transformed to this interval. Thus for
¢y = 0.3, the value we have used in experiments, the largest local weight
becomes LW,,,,, = 0.8 and smallest one becomes LW,,;, = 0.3 after this trans-

formation. The equation used for transformation is given below (3.23).

Ng = (nb - mf)(LWmax - (LWm(w - LWmm)LWf) —|— me (323)

where n, and n; are number of instances after and before partitioning respec-

tively, and my is the number of missing values at dimension f.

After determining the number of instances that will remain after partition-
ing according to the local weight of the selected feature, the farthest instances
according to the query value, in the selected feature dimensions are marked
until reaching that number of instances are left. The instances having miss-
ing values for that feature are excluded from this marking process, and they
remain at the end of the feature dimension. If other feature values of such
missing valued instances are close to their query values in those dimensions,
this enables better accuracy for their predictions, however we always exclude
them from the computations in the dimension where their values are missing.
Finally feature values of all marked instances are removed from all dimensions.
For the example data set, the instances after first step of partitioning according
to fi, which has higher local weight, is shown in Figure 3.5; and new results

are shown in Figure 3.6.

3.1.5 Prediction

The partitioning process results in a region with the query instance in its center.
Then we compare local weights obtained for a feature for this region and for

the whole region before partitioning. This comparison is performed for each
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fi 8 9 11 14 16
TARGET : 2 3 35 4 8
f2 4 8 20 28 36
TARGET : 3 2 4 8 35

Figure 3.5. Example training set after partitioning.

Bop, = =159 | Bog,  : 2.868
Gy 2 0476 | By, —0.002
LWy = 0959 | LWy, @ 0.981
g, 3.950 g : 2.860

Figure 3.6. Approximations for Feature Projections

feature separately. If the local weight of a feature on the initial projections
of the instances is larger than that of the projections of the final region, we
use the initial computations for prediction and local weight of that feature.
Otherwise we use the computations for the final region for that feature in the

final prediction.

It a query value for a feature is missing, that feature is not used in the final
prediction. Finally a prediction is done for a query instance by computing the
weighted average of feature predictions, where weights are the computed local
weights. Prediction algorithm is shown in Figure 3.7. For the query in the
example above, the solution is:

prediction = (0.959 % 3.95 4+ 0.981 * 2.86)/1.94 = 3.4.

3.2 RPFP-N Algorithm

We have extended the RPFP algorithm to RPFP-N in order to use it with
domains with noisy target values. Instance-based algorithms are robust to

noisy or extreme input feature values since the query instances will be far from
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[1]  Prediction « 0; WeightSum «— 0
[2] S, LW and §q are determined by partitioning algorithm.

[3] For feature f =1 to p

[4] if 2,5 is known then

5] if LW;(0) > LW(S) then

6] Prediction «— Prediction + y,5(0)

[7] WeightSum «— WeightSum + LW{(0)
8] end if

9] else

[10] Prediction «— Prediction + y,¢(5)

[11] WeightSum — WeightSum + LW,(5)
[12] end else

[13] end if

[14] end for

[15] Prediction «— Prediction/W eight Sum

Figure 3.7. Prediction Algorithm

these instances and their effect will be very small [40]. However if the target

values of training instances are noisy, this situation must be handled.

We have modified RPFP algorithm, by changing only the feature prediction
phase, in order to cope with noisy domains, as described in Section 3.1.2. We
have employed an averaging procedure in RPFP-N, instead of weighted linear
least squares approximation for feature prediction. This is distance weighted
median and its algorithm is shown in Figure 3.8, which is used for both cate-
gorical and continuous features. For categorical features, the instances which
are in the same category as the feature value of query instance are used for
computation of both feature prediction and local weight. In the algorithm,

equation (3.19) is used as the weight function for feature prediction.

After determining the prediction of a feature, in order to determine its local

weight, (3.22) is employed in (3.20), for both categorical and continues features.
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[1]  sum «0

2] weight « 37, w;f

[3] sort instances according to their target values

[3] While sum < weight/2 take a new instance in the sorted order
[4] feature prediction «— y;

[5] sum < sum + w;f

[6] end while

(7] 4,5 < feature prediction

Figure 3.8. Weighted Median Algorithm

3.3 Properties of RPFP

In this section, we describe important properties and problems for regression

algorithms and evaluate RPFP according to them.

3.3.1 Curse of Dimensionality

The curse of dimensionality is a problem for nearly all learning and predic-
tion methods that do not make strong assumptions about the domains. There
are some models that handle this situation by making some assumptions. As-
sumption made in additive models is that features separately contribute to the
solutions, as in (3.2). Another solution to this problem comes with projec-
tion pursuit regression. The instance space is projected to a lower dimensional
space (generally one or two dimensional). However, this approach also has an
assumption such that, the information in data can be evaluated by using only
the projection of data to some projection axes. Assuming linearity between in-
put features and target in the prediction problems can be seen as a sub-category
of additive models by comparing (3.1) and (3.2); and it is a strong assumption
that is employed in classical linear regression and linear discriminant analysis,

which are parametric models.

The strong assumptions made in prediction tasks cause large bias errors in
most domains. This is also what the curse of dimensionality problem causes

in other non-parametric learning methods. Therefore, generally the choice is
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whether to put up with strong assumptions or with the curse of dimensionality.

Most modern techniques for regression in the literature, such as those de-
scribed in Chapter 2, are developed in order to obtain better accuracy results
by eliminating assumptions employed in classical, generally linear and para-
metric methods. So developing some measures to decrease the effects of curse
of dimensionality is important for modern techniques in order to achieve higher

accuracies.

The problem can be illustrated with a simple example. Consider a one
dimensional input space, where all instances are uniformly distributed and fea-
ture values range from 0 to 1. In this situation half of the feature dimension
contains half of the instances. If we add one more feature with the same prop-
erties to the instance space, using half of each feature dimension will include
1/4th of the instances. One more feature will decrease this ratio to 1/8, and so
on exponentially. Adding new features will cause much sparse instance spaces.
In order to keep the same ratio for the number of instances in a region we have
to increase the volume of the region exponentially. This is because in high
dimensional spaces it is impossible to construct regions that have small size
simultaneously in all directions and containing sufficient training data; thus,

using large regions for approximation causes large bias errors [23].

% _ (%)W (3.24)

where £ is the number of training instances in region Ry and Ry is the instance

space.

Thus, in high dimensions the size of the region will be close to Ry even for
k =11n (3.24). Curse of dimensionality is a much more important problem for
KNN, when compared to eager methods. Nearly all eager learning approaches
(Rule-based learning, tree-based learning and MARS) have some measures to
decrease the effect of the curse of dimensionality. The most important one
is to properly select the features to be included in the model, and decrease
the number of dimensions. This is also the reason for the success of eager

approaches against irrelevant features.
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Another measure is the adaptive nature of partitioning eager approaches.
For example, in a uniformly distributed space, after a normalization process,
KNN always has regions with a sphere shape, having the same diameter in
all dimensions. However this volume is a hyper-rectangle for most eager ap-
proaches rather than a sphere or hypercube, since the edge lengths are deter-
mined according to the position of the query in the instance space. Intuitively,
important features have smaller edges when compared to unimportant features

at that location.

Some solutions similar to these measures are available for KNN. by using
external feature selection and feature weighting algorithms before applying
it [61]. Feature selection can eliminate irrelevant features and feature weighting
can produce elliptic regions instead of spherical ones. However, there is still
a problem, that the shape of this elliptic region does not change according to
the location of the query in the instance space, which is dynamic in most eager

approaches.

On the other hand, the problem of curse of dimensionality is much impor-
tant for KNN when the task is regression instead of classification. There is an
important empirical evidence that KNN can achieve high accuracies in many
domains for classification. However this is not the situation for regression [23].

This property of KNN will be discussed in the following sections.

RPFP is a member of instance-based approaches, that are local, memory-
based, lazy, non-parametric and do not depend on strong assumptions such
as those described above. However, RPFP has some measures to decrease the

effect of curse of dimensionality.

In the final prediction phase of RPFP, a subset of features are used in addi-
tive form, only for their main effects on the target. The curse of dimensionality
does not effect their contributions, since feature prediction is determined only
on that single dimension. For remaining features, the effect of curse of di-
mensionality is not severe. The partitioning algorithm either does not allow
irrelevant features to effect partitioning (if their local weights are 0), or their

effects are small since a dynamic partitioning occurs according to their local
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weights. The partitioning strategy of RPFP forms adaptive regions. Accord-
ing to the position of each query instance, the edge lengths of these regions for
each feature dimension may change. For remaining features, predictions are

done on these regions.

3.3.2 Bias-variance Trade-off

Following the considerations presented in [22], two important error types col-
lectively effect the success of learning approaches according to the underlying
problem they are applied. They are bias and variance errors, caused by under-
fitting and over-fitting respectively on the learning application. A decrease in
one of those errors, generally causes an increase on the other. However the
behavior of interaction between bias and variance differs according to the al-
gorithm and the domains the algorithms are applied. If we illustrate these
error components with an example, large K values in the application of KNN
algorithm may cause large bias error, on the other hand, small K values may

cause large variance error.

Many factors are effective for these error components. The curse of dimen-
sionality, model complexity, model flexibility, local vs. global approximations,
assumptions of the learning approach, noise, missing attribute values, number
of features and number of observations in applications are some of those. For
example large number of features, small number of training instances, many
missing values, large local approximation regions, strong assumptions and sim-
ple models are among reasons of bias error. The effect of these issues on RPFP

will be discussed in the following sections.

An important result presented in [22] is that for classification tasks the
major component of the error is formed by variance, on the other hand, for
regression problems the bias error becomes important. This is shown as the
main reason for the success of the simple nearest neighbor approach such that
it over-performs some sophisticated methods for many classification tasks even
though the curse of dimensionality problem of KNN causes strong bias. How-
ever, this is not the situation for regression, and the effect of bias error is much

important unless the underlying domain includes small number of features or
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large number of observations.

In learning problems, this trade-off is unavoidable and RPFP casts its vote
for variance by employing many arguments to decrease the bias error. The
way for handling bias error caused by the curse of dimensionality is described
in the previous section. Besides, it does not make strong assumptions as non-
parametric methods. It develops flexible, adaptive and locally weighted approx-
imations in small local projections at each feature dimension for each query
instance. All these things may increase the over-fitting, which causes an in-
crease on the variance error. However empirical results show that RPFP is
much more successful than KNN, which justifies these claims stated about the

behavior of classification and regression for the bias-variance trade-off.

3.3.3 Model Complexity and Occam’s Razor

William of Occam’s Razor principle states that “Entities should not be mul-
tiplied beyond necessity” [14]. This idea has been accepted theoretically in
many disciplines including machine learning. Its adaptation on learning ap-
proaches states that, simpler models must be preferred to complex ones. Two
different versions of this idea are described in [14]. One of them is, “Given two
models with the same accuracy, the simpler one must be selected because the
simplicity is desirable in itself.” Especially, if the interpretation of the induced
model is concerned, it is widely accepted. On the other hand, another version
states that, “Given two models with the same training-set error, the simpler
one should be preferred because it is likely to have lower prediction error on the
test set.” The well known example for this second interpretation is the pruning
applied in some eager learning methods in order to achieve better accuracy in

unknown test cases.

The second interpretation has been found inconvenient by many researchers
recently and some theoretical and empirical work are published supporting this
idea [56]. An overview is given by Domingos [14]. The model complexity issue
is strongly related with the considerations presented in previous two sections.
It is also possible that complex models can produce better accuracies than

simpler ones. That is why the belief for second interpretation may cause to
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cease developing new complex techniques that will perform well. Especially
with very large databases today, with many instances, avoiding complex models

in order to prevent over-fitting may cause information loss and poor accuracies.

RPFP is flexible and complex, such that for different query locations in
the instance space, producing infinite number of different local approximation
functions on many different domains is possible. If we consider many different
feature dimensions having such approximations, RPFP becomes more flexible
and complex as the number of dimensions increase. The performance results
of RPFP on real data sets confirm those resent worries about the second in-

terpretation of the Occam’s Razor principle.

3.3.4 Lazy Learning

Lazy learning methods defer most processing to the prediction time. The train-
ing phase includes mainly storing the instances. Since those methods store
instances without any generalization in the memory, they are also referred to
as memory-based methods. On the contrary eager learning methods complete
most processing in the training phase, before a query is given. These two
categories among learning methods is probably the most important in order
to differentiate learning methods. Both of them have some advantages and

disadvantages in itself.

In eager learning, a single global model is used to fit all the training data.
The generalization of the whole data set may improve accuracy, besides such
representations generally produce comprehensible models that allow interpre-
tation by humans. An other advantage of eager approaches is their fast pre-
diction time. However if the training instances change dynamically, forming a
new model each time new instances are added may be time consuming for such
domains, if the method is not incremental. If an eager method is incremental,

this time it will be sensitive to the presentation order of the instances.

On the other hand, lazy approaches are useful in dynamic domains, since
the main processing is accomplished after the query is given. They are incre-

mental in nature, and it is not order sensitive. Lazy learning enables an other
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advantage such that they attempt to fit the training data in the region of the
query instance, which may allow better fitting. However if the queries are very
frequent, this situation makes lazy approaches time consuming because of long
prediction time. Besides, their memory cost is larger. Another limitation of
lazy approaches is that generally they are not suitable for interpretation, since

they do not produce global models.

Being a lazy approach, RPFP has the properties of lazy approaches ex-
plained above. When compared to KNN its training phase includes an extra
sort operation on the train data. However, RPFP avoids some tasks required in
the training phase of KNN. They are normalization and filling missing values
and they will be discussed in the following sections. Incrementality of RPFP
can easily be enabled by inserting new instances on sorted feature projections.
Extracting relative importance of features and determining features having

interactions using RPFP are some interpretation tasks that can be researched.

3.3.5 Local Learning

Local learning is a paradigm devoted to lazy and some eager learning (e.g.
recursive partitioning) approaches. It is motivated by the Taylor’s theorem
which states that if a region is local enough any continuous function can be
well approximated by a low order polynomial within it [23]. With this approach

the instance space is covered by a set of local regions.

Lazy approaches are those mainly benefit from this paradigm, by locating
queries in the center of such overlapping regions. However, recursive parti-
tioning approaches that produce disjoint regions have some trouble that the
different low order approximations for each region are not continuous at the
boundaries of these regions. The adaptive and flexible determination of the
boundaries of these regions is their main advantage that allows local approx-
imations. However, this does not prevent discontinuity. Some solutions are
developed for the discontinuous approximations of recursive partitioning ap-
proaches by producing overlapping regions instead of disjoint ones [19, 23].
We have compared RPFP with those improved implementations of recursive

partitioning methods in the next chapter.
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The local learning paradigm is strongly related with the curse of dimension-
ality, which will effect the size of the regions and the performance of approxi-
mations in these regions. The measures taken for RPFP against the curse of
dimensionality are described above. The discontinuity problem of some local
learning approaches is not encountered for RPFP, since, being a lazy approach,

queries are always centered in these overlapping regions.

3.3.6 Irrelevant Features and Dimensionality

The sensitivity to irrelevant features is the most important problem for lazy
methods. On the other hand, eager approaches are successful in eliminating the
effects of irrelevant features. For example, in recursive partitioning regression
(e.g. regression tree induction), the partitioning starts from the most significant
feature and continues recursively by employing less relevant ones. It is very
likely that most of the irrelevant features will not be used in constructing a

regression tree.

The reason that irrelevant features cause problems in lazy learners stems
from the distance measure used in those methods. In the nearest neighbor
approach for example, nearest instances are determined according to a distance
measure in a p dimensional space. This is generally the Euclidean distance. In
the computation of distance all features are given equal importance including
irrelevant ones. This may cause important instances for a query to go away

from the query.

Irrelevant features do not cause any difficulty for RPFP, since distances are
computed for each feature separately. Another important advantage of RPFP
is that it is highly likely for those features to take lower local weights, since
the distribution of target values of nearest instances at any query location will
be very close to the distribution of the whole target values in the training
set (3.20). RPFP is capable of incorporating all features according to their
relevancy on the query instance. If the irrelevant features or the relevance
of features changes according to the locations of the instance space, this is

handled by RPFP, since it is an adaptive approach.
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Eager approaches also handle the adaptivity case by arranging the edge
lengths of the regions according to relevancy of feature dimensions in the in-
stance space. However, in contrast to irrelevant features problem, another
problem may harm most eager approaches. This is high dimensionality. If the
number of features is large when compared to the number training cases, in
addition to the curse of dimensionality, it is possible that some features will
not be evaluated even they are very relevant. This can be illustrated with re-
gression trees. After a small number of steps in the tree construction process,
the number of instances at tree nodes may be exhausted before many relevant

features get a chance.

This second problem of high dimensionality is also resolved in RPFP, since

all the features are used in the final prediction phase.

3.3.7 Context-sensitive Learning

RPFP is an adaptive or context-sensitive method in the sense that in different
locations of the instance space the contribution of the features are different.
This property is achieved by two characteristics of RPFP. One of them is
the partitioning algorithm. The region formed around the query instance is
determined adaptively; different features have different lengths of edges in the
final region according to the location of query. The other one is in the local
weights. Features may take different local weights according to the location of
the query. On the other hand, the local weights of features will be different since
different instances will be the neighbors at different feature dimensions. The
difference in the neighbors will reduce possible over-fitting, similar to sampling
approaches such as boosting [10], which brings an advantage to RPFP. Nearly
all eager approaches, in some extent, are context-sensitive, while it is one of

the limitations of KNN [15].
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3.3.8 Missing Feature Values

It is likely that some feature values may be unknown in the application domain.
In relational databases, the most suitable form of databases for the most cur-
rent learning techniques, the problem occurs frequently because all the records
of a table must have the same fields, even if values are inexistent for most
records [38]. For example, in a hospital database including many fields for
many laboratory tests and medical procedures, only a few of these fields will

be filled in for any patient.

Even the importance of handling missing values is accepted in literature,
the distortion on the information contained in the data caused by missing
values is not exactly prevented in many learning techniques [46, 47, 48]. The
most common way to handle missing values is to fill those places with some
approximations or some constant values. If missing values are very frequent
on some rows or columns, removing these instances or features can also be

considered.

The most natural solution for handling missing values is leaving those places
empty and not to distort the information in the data. Additive models or
feature projection based methods handle missing values in that way, since each
feature is evaluated separately. However, their limitation is that they assume

all features to have independent effects on the target.

RPFP deals with missing values similar to additive or previous feature pro-
jection based models, and also resolve the interactions between features by
applying a partitioning process. RPFP achieves this by applying approxima-
tions on feature projections using only known values, and in partitioning, for
a selected feature dimension along with the partitioning occurs, by keeping

missing valued instances of that feature.
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3.3.9 Interactions

If some input features have inter-relationship such that the effect of any feature
on the target is dependent on one or more different input features, those rela-
tions are called as interactions. RPFP produces a local region for each query.
Making predictions on those regions enable it to handle interactions and to

achieve better accuracy.

On the other hand, some research on the classification methods and real
data sets show that, generally the main effects of the features are sufficient to
determine the target values [24, 31]. If some features have only main effects on
targets, RPFP makes predictions for those features by using the whole instance
space instead of local region determined by partitioning, since large number
of training instances allow better approximations. Another limitation of some
partitioning methods, such as regression tree induction is that the partitioning
always occurs with many variables and this causes handling of only high-order
interactions. This problem makes it difficult to approximate even some simple

forms such as linear functions [19].

Dealing with interactions is an important property for regression methods
in order to achieve better accuracies. To illustrate it with a simple example,
we can consider predicting the area of a rectangle. Both width and length of
a rectangle must be evaluated together since predicting the area by using only

one of them is not sufficient.

3.3.10 Feature Projection Based Learning

RPFP is a feature projection based learning approach. The results reported
for feature projection based classification methods, CFP [24], KNNFPR [5],
COFI [25], FIL [6, 27] and VFI [26], and feature projection based regression
method RFP [54] motivated us to develop RPFP. The major distinction be-
tween those methods and RPFP is its capability of dealing with interactions.

RPFP inherits most advantages of feature projection based approaches

(handling missing values, robustness to irrelevant features etc.), on the other
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hand benefits from the advantages of nearest neighbor (nearest instances at
any dimension have larger effects on solution when compared to others) and
partitioning methods (dealing with interactions, adaptivity and regions with

flexible edges are formed by partitioning).

3.3.11 Different Feature Types

Induction methods generally accepts two feature types. One of them is nominal
features, which take binary or categorical values, the other one is continuous
features which take numeric or real values. Induction methods either can han-
dle both type of features, or use only on type. If the later is the case, some
transformation methods are applied. If a method accepts only continuous fea-
tures, each nominal value of a feature is replaced with a unique numerical
value. On the other hand, if a method use only nominal features, the con-
tinuous features are transferred to discrete values generally by employing a
clustering procedure. In that case, the range of all possible values of a feature
is partitioned into intervals and all the values in each interval is replaced with
a unique nominal value. Such procedures may be time consuming, and may
cause some information loss. For such reasons, RPFP is developed in order to

handle both type of features without any modification.

3.3.12 Noise

Instance based algorithms are generally robust to extreme or noisy input fea-
ture values since query locations will not be close to these values [40]. On
the other hand, most regression approaches, including KNN, are not robust
to target noise. The empirical results show that robustness to noise in RPFP
is better than some other well known methods. Even though, the robustness
of RPFP is better when compared to others, it is unacceptable especially for

extremely noisy domains.

A measure of robustness is called the breakdown point, which is defined

to be the smallest percentage of noisy data that can lead prediction to take
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unacceptable large value. The RPFP-N algorithm developed for noisy data,
achieves close to the highest possible breakdown value of 50%, since it em-
ploys median for approximation on feature projections. On the other hand, in
comparison, for classical linear least squares regression method, the breakdown

point is only 0%.

3.3.13 Normalization

Learning approaches, such as KNN| that employ distance measures require the
normalization of feature values in order to give all features equal contribution
in the computation of distance. The wider the range of values for a feature,
the higher effect it has in the distance computation. For example, without
normalization, a feature which includes values for body weight will cause dif-
ferent nearest neighbors to be determined if it is measured with pound instead
of kilogram. On the other hand the weight feature will not effect the computa-
tion of distance if there exists an other feature, say population, having values
that ranges with millions. RPFP eliminates the need for normalization, since

approximations are done on each feature separately.

3.4 Limitations of RPFP

RPFP has two main limitations. The effect of redundant features is a com-
mon problem for most inductive algorithms, and lack of interpretation is the
common shortcoming of instance-based approaches, which are described be-
low. The limitation caused by rectangular regions, common to most learning

approaches, is also mentioned.

3.4.1 Redundant Features

In a database, it is possible that the same information may be repeated in
different places. Existence of features that have functional dependencies with

each other is such a case. A similar case occurs if some features in the data
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are obtained by combining some others. This issue is known in statistical
literature as collinearity, if such a relation occurs between two features, or as

multicollinearity, if more than two features have similar relationship.

The effect of redundant features in RPFP is seen on the final prediction
phase when merging feature approximations. Redundancy will cause similar
features to effect the final prediction more than the other features. Intuitively,
if one feature is a copy of another for example, the weight of that information

will be duplicated in the final result.

3.4.2 Interpretation

The inerpretability of the constructed model is an important aspect of eager
learning algorithms. The conventional motivation of statistical data analysis is
to develop simple compact models that are easy to interpret by human experts.
However, the accuracy is the main goal in many applications. That is why re-
cent research has resulted in many complex models, hard to interpret, such
as neural networks. KNN is also a common lazy approach that does not pro-
duce any model for interpretation. RPFP, as a non-parametric lazy approach
which does not construct global models, does not have this property either.
However, instead of concept descriptions, some information about the relative
importance of the features and interactions between them can be determined

with further research.

3.4.3 Rectangular Regions

The partitioning algorithm employed in RPFP partitions the instance space
around query point by using a single feature at each step, and the space is
partitioned along this feature dimension. This process forms regions as hyper-
rectangles. It is not always possible that the instances at any query location
will have a rectangular shape parallel to feature dimensions. However, this
is the way most partitioning approaches work, and it is generally possible to

make good local approximations using instances enclosed by hyper-rectangles.
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3.5 Complexity Analysis

Since RPFP is a lazy approach, and stores all instances in the memory, a space
proportional to the whole training data is required. Given a data set with
n instances and m features this space is proportional to m.n. Again, for the
training phase, the computational complexity of projecting instances to input
features, followed by a sort operation on each feature, is O(m.n.logn). The
computation of variance, O(n), of target values for all training data is also

computed in the training phase, and it does not change the above complexity.

Computing the prediction of the target value for a query point starts with
making a copy of the projections, which has a complexity of O(n). The com-
putation complexity of local approximation in the first step of partitioning is
again O(n). The complexity of computing local weight is also O(n), which is
also the total computation complexity at first partitioning step. The parti-
tioning at each step removes, on the average, half of the instances. For the
whole partitioning process the total computation for a single feature will be
proportional to 2n since n+n/2+n/4+... &~ 2n. If we compute the complex-
ity for all features we obtain a complexity proportional to O(m.n), which is
equal to the complexity of KNN. If we consider situations for nominal features,
this complexity is even slightly shorter than linear features. In the worst case,
where a nominal feature has two values (only half of the data is removed), it
requires on the average the same complexity. The test times of the algorithms,
run on the real data sets also shows that the running test time of RPFP is

proportional to KNN.

3.6 Comparisons of Regression Methods

In the previous sections we have described some properties and limitations of
RPFP, and made some comparisons with other important approaches in the
literature. In this section we summarize such properties and comparisons with
different important approaches. Methods included are instance-based regres-

sion (KNN [40]), locally weighted regression (LOESS [7]), rule-based regression
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(RULE [59]), projection pursuit regression (PPR [20]), partitioning algorithms
that induces decision trees (CART [9],DART ( [23]) and multivariate adap-
tive regression splines (MARS [19]). The summary of properties is shown in
Table 3.1. One interesting result obtained from the table shows that all par-
titioning methods (RULE, CART, DART, MARS) except RPFP have similar
properties. A detailed overview and comparison of these regression techniques

is given in [53].

| Properties | RPFP | KNN | LOESS [ PPR | RULE | CART | DART | MARS |
Adaptive Vv Vv v v v v
Continuous V4 V4 V4 V4 Vv V4
Between Regions
Different V4 4 V4 Vv v v
Feature Types
Curse of V4 Vv
Dimensionality
Incremental V4 4 Vv
Handle Vv Vv Vv v v v v v
Interactions
Interpretable Vv Vv V4 Vv Vv
Handle Irrel. Vv v v v vV
Features
Local V4 4 Vv V4 Vv Vv v
Memory Cost Vv v v v v
Handle Missing V4
Values
Robust to RPFP-N
Noise
No Need for V4 Vv Vv v v
Normalization
Regions Overlap V4 4 Vv Vv Vv v
Partitioning 4 Vv v v v
Occurs
Testing Cost Vv v v v v
Train Cost V4 V4 V4

Table 3.1. Properties of Regression Algorithms. The (/) is used for cases if the
corresponding algorithm handles a problem or it is advantageous in a property
when compared to others.



Chapter 4

Empirical Evaluations

In this chapter empirical evaluation of RPFP and other important regression
methods are presented. Even though, the main purpose is to measure the
relative performance of RPFP and to compare it with contemporary regression
algorithms, another intension is to present a comparison of those methods on
a large number of real domains since it is difficult to find such comparative

evaluations in the literature.

The algorithms are properly selected according to some criteria. All of
them can handle high dimensional domains and accept both categorical and
continuous input features. We did not include LOESS for example, since it does
not work with higher dimensions, for more than 6 features. On the other hand,
they are successful representatives of different approaches, such as regression
tree induction, instance-based learning and rule-based learning. Most of them
are recently developed and outperform early developed algorithms within the
same approach. Finally, all of them are obtained from shared resources or

available in published material.

Those algorithms are KNN (instance-based), the most important one since
it belongs to the same category as RPFP, RULE (rule-based learning), DART

(regression tree induction), and MARS (spline-based, partitioning regression).

In this chapter, we describe the evaluation methodology commonly used

to measure accuracy of regression methods. Later, algorithms and real data

67
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sets are described and empirical results are presented, including the accuracy
performance, robustness of algorithms to irrelevant features, missing values

and noise, and computation times.

4.1 Performance Measure

The accuracy performance of the regression methods is measured by comput-
ing the prediction error of the algorithms. Since the target values are con-
tinuous, the absolute difference between prediction and true target value in
the test example is used. One common measure is the mean absolute distance

(MAD) [59, 60]. It is the mean of absolute error found for all test examples.

MAD =
T

(4.1)

where T is the number of test instances.

MAD values depend on the target values in the given domain. MAD will
be higher for a domain with high target values than for a domain with low
target values. In order to get a normalized performance measure for all data
sets, a modified version of MAD, relative error (RE) [59, 60] is used in the
experiments. Relative error is the true mean absolute distance normalized by

the mean absolute distance from the median.

MAD

RE = ,
T Lie [yi — median(y)|

(4.2)

Performance results in the experiments are reported as the average of rel-

ative errors measured by applying 10-fold cross-validation on data sets.

4.2 Algorithms Used in Comparisons

In this section the properties of algorithms used in experiments are briefly

described.
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4.2.1 RPFP

K is the parameter of RPFP that defines the minimum number of instances
allowed for a region determined by the partitioning algorithm; and is set to
10. An other parameter is the windowing constant, ¢, that is described in
Section 3.1.4, and it is taken as 0.3. RPFP-N algorithm is also used for artificial

noisy domains extracted from real data sets, to measure robustness to noise.

4.2.2 KNN

The distance weighted KNN algorithm [40] is used here since it performs better
than simple KNN that employs simple averaging. The instances close to the
query have larger weights, and these weights are determined by inverse squared
distance. The distance measure is Euclidean distance. A normalization on
test and train input feature values is applied in order to obtain a value range
between 0 and 1. For matching nominal values, the difference is measured as 0,
and for the difference between different nominal values on a single dimension

1 is assigned.

Missing values are filled with mean values of the feature if it is continuous,
or filled with the most frequent categorical value, if that feature is nominal. K

is set to 10 for all experiments.

4.2.3 RULE

The latest rule-based regression implementation, written by Weiss and In-
durkhya [59, 60] is used in experiments. The program is available in the data
mining software kit (DMSK), attached to [60].

4.2.4 DART

[t is the latest regression tree induction program developed by Friedman [23]. Tt

avoids limitations of disjoint partitioning, used for other tree-based regression
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methods, by producing overlapping regions with increased training cost. In the
experiments, the maximum dimension (features) parameter, is increased from

100 to 200, in order to enable experiments for irrelevant features.

4.2.5 MARS

The latest shared version of MARS, mars3.6, is used in experiments, which is
developed by Friedman [19]. The highest possible interaction level is enabled
and linear spline approximation is set, it generally produces better results than

cubic splines on most real data sets.

4.3 Real Data Sets

It is possible to obtain large number of real world data sets for classification,
however this is not easy for regression. That is why, data sets used in the
experiments are collected mainly from three sources [37, 8, 51]. Properties of
all data sets are shown in Table 4.1. Detailed information about these data
set is available in Bilkent Function Approximation Repository [28]. In order to

save space, they are coded with two letters (e.g., AB for Abalone).

4.4 Accuracy

The relative errors of algorithms on 27 real data sets are shown in Table 4.2.
The best results, smallest relative errors, are typed in boldface. RPFP achieves
best results in 9 of these data sets. DART and MARS achieves the best in 7
and 6 of these data sets, respectively. In the remaining 6 data sets KNN and
RULE achieves better accuracy.

One important result extracted from Table 4.2 is the distribution of relative
errors for different data sets. We have computed the variance of errors for each
algorithm on all data sets. These variance values show that the performance

of RPFP is not effected much for different domains. This is an important
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Data Set Code Instances Features Missing Target
(C+N) values  Feature

Abalone AB 4177 8 (74+1) None  Rings
Airport Al 135 4 (44-0) None  Tons of mail
Auto AU 398 7 (641) 6 Gas consumption
Baseball BA 337 16 (1640) None  Salary
Buying BU 100 39 (3940) 27 Husbands buy video
College CL 236 20 (204-0) 381 Competitiveness
Country cO 122 20 (204-0) 34 Population
Cpu CPp 209 7 (1+46) None  CPU performance
Electric EL 240 12 (10+42) 58 Serum 58
Fat FA 252 17 (1740)  None  Body height
Fishcatch FI 164 7 (6+1) 87 Fish weight
Flare2 FL 1066 10 (0+10)  None  Flare production
Fruitfly FR 125 4 (34+1) None  Sleep time
Gss2 GS 1500 43 (434-0) 2918 Income in 1991
Homerun HO 163 19 (1940) None  Run race score
Housing HU 506 13 (1241) None  House prices
Normtemp NO 130 2 (240) None  Heart rate
Northridge NR 2929 10 (1040) None  Earthquake magnit.
Plastic PL 1650 2 (240) None  Pressure
Poverty PO 97 6 (54+1) 6 Death rate
Read RE 681 25 (2441) 1097  Reader satisfaction
Schools SC 62 19 (19+0) 1 Reading score
Servo SE 167 4 (44-0) None  Rise time of a servo
Stock ST 950 9 (940) None  Stock price
Television  TE 40 4 (44-0) None  People per TV
Usnews UN 1269 31 (3140) 7624  Rate of Ph.D.’s
Village VL 766 32 (2943) 3986 Number of Sheep

Table 4.1. Characteristics of the data sets used in the empirical evaluations.
C: Continuous, N: Nominal.
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result that shows the domain independence characteristic of RPFP, which is
important for large databases today, where data that belong to large number
of domains is collected together. Increasing number of different domains in
databases is one of the reasons that increase the need for automatic knowledge
discovery tools and inductive learning algorithms. On the other hand, when
the average relative errors of algorithms on real data sets are compared, RPFP
again achieves the smallest average relative error. Also the variance of RE is

the smallest.

The final column of Table 4.2 shows the standard deviation of results of
algorithms for all data sets. The standard deviation values are used only to
determine small number of data sets to be used for further comparisons of al-
gorithms for noise, irrelevant features and missing values. We have determined
a subset of data sets that have similar results for the comparison of algorithms
for increasing missing values, irrelevant features and noise. Selected data sets
with standard deviation less than 0.07 are typed in last column with bold font.
Only in one of these selected data sets RPFP performs best, by chance.

4.5 Robustness to Irrelevant Features

The performance of algorithms on selected data sets (AU, BU, CP, HU, PL, and
SC) by adding new irrelevant features are shown in Figure 4.1. From graphs it
is seen that, the performance of RPFP is not effected from irrelevant features
in all data sets except PL, by preserving nearly a straight line parallel to the
horizontal axis. RULE and MARS are also robust to irrelevant features. It is
affected from irrelevant features in PL probably because it is a low dimensional
data set, initially having only two input features. Note that, in only one of
these data sets (BU), RPFP performs best initially. Most advantages of RPFP

are generally benefited for high dimensions.

These graphs show that RPFP is not affected much from irrelevant fea-
tures. This is the major drawback of KNN, the other lazy algorithm in these
comparisons, and this is apparent in the graphs. Robustness of RPFP to irrel-

evant features is achieved by the local weights assigned to each feature and by
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Data Set RPFP KNN RULE DART MARS StdDev
AB 0.675 0.661 0.899  0.683 0.678 0.101
Al 0.473 0.612 0.744  0.720 0.546 0.115
AU 0.334 0.321 0.451 0.333 0.321 0.056
BA 0.664 0.441 0.668  0.497 0.525 0.102
BU 0.792 0.951 0.944  0.883 0.858 0.066
CL 0.692 0.764 0.290 1.854 0.261 0.646
CcO 1.301 1.642 6.307 5.110 1.845 2.300
CP 0.650 0.603 0.678 0.571 0.510 0.066
EL 1.009 1.194 1.528  1.066 1.095 0.207
FA 0.667 0.785 0.820 0.305 0.638 0.204
FI 0.243 0.582 0.2358 0.190 0.284 0.155
FL 1.218 2.307 1.792  1.556 1.695 0.397
FR 1.056  1.201 1.558 1.012 1.077 0.222
GS 0.566 0.654 0.218 0.359 0.342 0.177
HO 0.868  0.907 0.890 0.769 0.986 0.078
HU 0.618 0.600 0.641 0.526 0.522 0.054
NO 0.962 1.232 1.250 1.012 1.112 0.128
NR 0.947 1.034 1.217 0.928 0.873 0.134
PL 0415 0475 0.477 0.404 0.432 0.034
PO 0.703 0.796 0.916 1.251 0.677  0.233
RE 1.008 1.062 1.352 1.045 1.194 0.142
SC 0.319 0.388 0.341 0.223 0.350 0.062
SE 0.527 0.619 0.229 0.441 0.337 0.153
ST 0.729 0.599 0.906  0.781 0.754 0.110
TE 1.659 1.895 4.195  7.203 2.690 2.281
UN 0.666 0.480 0.550 0.412 0.444 0.101
VL 0.970 1.017 1.267 1.138 1.131 0.116
Mean 0.768 0.882 1.162 1.158 0.821

Variance 0.102 0.220 1.659  2.323 0.310

Table 4.2. Relative Errors of Algorithms.

font.
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Best results are typed with bold
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Figure 4.1. Relative errors of algorithms with increasing irrelevant features.



CHAPTER 4. EMPIRICAL EVALUATIONS 75

making computations on each feature separately.

A comparison of algorithms on all data sets where 30 irrelevant features are
added to each of them is shown in Table 4.3. RPFP and MARS outperform
other algorithms for the robustness to irrelevant features according to this

table.

4.6 Robustness to Missing Values

With current relational databases, the issue of missing values is a common
problem for most domains. RPFP handles missing values naturally by simply
ignoring them, and using all other values available. A comparison of RPFP
with other algorithms for increasing missing values on selected data sets is
shown in Figure 4.2. As the values are removed from the data, information
loss and performance degradation become obvious. However, the decrease in
performance is smaller in RPFP than other algorithms, where the missing
values are filled with means or most frequent nominal value. The error rate of
RPFP becomes relatively minimal in all selected data sets, when proportion of
missing values reaches 90%, except for low dimensional PL data set. According

to these results, DART also performs well in robustness to missing values.

A comparison of algorithms on all data sets, where 20% of the values of
real data sets are removed, is shown in Table 4.4. According to these results

RPFP outperforms other algorithms in terms of robustness to missing values.

4.7 Robustness to Noise

It is apparent from the graphs in Figure 4.3 that RPFP-N outperforms other
algorithms for most of the selected data sets. An interesting result is that
RPFP also achieves better than other algorithms in most data sets. However,
all algorithms except RPFP-N reaches unacceptable error rates with a small

increase in the ratio of noise.
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Table 4.3.

added to real data sets.

Data Set RPFP KNN RULE DART MARS
AB 0.704 0.906 0.899 * 0.682
Al 0.500 1.539 0.744  0.658 0.682
AU 0.351 0.618 0.451  0.511 0.369
BA 0.670 0.723 0.668 0.641 0.573
BU 0.802 1.005 0.944 0.938 1.049
CL 0.716 1.320 0.290 0.306 2.195
CcO 1.330 3.027 6.307 1.662 @ 4.126
CP 0.753 1.214 0.678 0.668 0.590
EL 1.018 1.076 1.528  1.236 1.134
FA 0.698 1.058 0.820 0.877 0.249
FI 0.295 0.985 0.258 0.350 0.208
FL 1.038 1.537 1.792  1.490 1.629
FR 0.959 1.075 1.558 1.430 1.777
GS 0.568 0.893 0.218 0.573 0.404
HO 0.876  0.974 0.890 1.165 0.847
HU 0.642 0.963 0.641 0.653 0.521
NO 1.024 1.071 1.250  1.157 1.370
NR 0.979 1.149 1.217 * 0.916
PL 0.674 0.952 0477 0.734 0.407
PO 0.775 0.934 0916 1.013 1.005
RE 1.033 1.060 1.352 1.311 1.042
SC 0.362 0.673 0.341 0.391 0.305
SE 0.589 1.021 0.229 0.650 0.798
ST 0.782 1.151 0.906 0.756 0.818
TE 1.617 2.455 4.195  2.709 5.614
UN 0.671 0.856 0.550 0.906 0.394
VL 0.972 1.111 1.267 1.307 1.257
Mean 0.793 1.161 1.162 0.964 1.147
Variance 0.084 0.258 1.659  0.271 1.429
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Relative errors of algorithms, where 30 irrelevant features are

It the result is not available due to singular vari-

ance/covariance matrix, it is shown with (*). Best results are typed with bold

font.
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Figure 4.2. Relative errors of algorithms with increasing missing values.
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Data Set RPFP KNN RULE DART MARS
AB 0.739  0.750 0.962 0.688 0.748
Al 0.532 0.726 0.676  0.546  0.798
AU 0.393 0.414 0.526 0.363 0.414
BA 0.817 0.560 0.783 0.565  0.709
BU 0.881 0.964 0989 0983 0.877
CL 0.796 0.942 0.400 0.435 0.801
CcO 1.439 1.856 3.698  2.377  3.733
cPp 0.584 0.652 0.843 0.607  0.880
EL 1.029 1.097 1.337 1.191 1.074
FA 0.767 0.849 0949 0.735 0.731
FI 0.273 0.584 0.336  0.320 0.348
FL 1.377 1.851 1.751 1.421 1.557
FR 1.033 1.711 1.557 1.347 1.012
GS 0.702 0.743 0.497 0.536  0.595
HO 0.889 0911 1.040 0974 0.836
HU 0.687 0.761 0.748 0.590 0.649
NO 0.986 1.229 1.363 1.222  0.989
NR 0.940 1.072 1.272 * 0.972
PL 0.668 0.733 0.686 0.420 0.679
PO 0.682 0976 1.189 0.792 1.026
RE 1.007 1.059 1.364 1.229 1.048
SC 0.327 0.449 0.500 0.370 0.303
SE 0.938  0.921 0.849 0.495 0.733
ST 0.777 0.744 0904 0.707 0.930
TE 1.810 4.398  3.645 2.512 16.503
UN 0.669 0.559 0.620 0.844 0.497
VL 1.014 1.056 1.410 * 1.090
Mean 0.843 1.058 1.152 0.891 1.501
Variance 0.110 0.587 0.670  0.323 9.372

78

Table 4.4. Relative errors of algorithms, where 20% of values of real data sets

are removed. If the result is not available due to singular variance/covariance

matrix, it is shown with (*). Best results are typed with bold font.
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RPFP is generally more robust when compared to other methods even it
produces complex models, that may cause large variance error which is sensi-
tive to noise. The reason for that may be the decrease in variance error since
the feature predictions are computed with different neighbors in each feature
dimension. This probably makes bootsrapping effect on prediction. Boot-
strapping is a common method to decrease variance error by using multiple

overlapping subsets of the same data instead of a single training set.

4.8 Interactions

RPFP handles interactions in a similar way as the other eager partitioning
approaches work, that is by partitioning the instance space. The best way
to show how partitioning in RPFP handles interactions and generally increase
accuracy for data sets having interactions is to compare it with its additive
version. All other algorithms compared in the previous chapters have this
property. The following experiments show that RPFP also has this property

as other eager partitioning algorithms.

The additive version of RPFP is obtained by excluding the partitioning
from RPFP algorithm and simply by combining the feature predictions and
obtaining the final prediction after the first step. We denoted the additive
version as RPFP-A.

The first experiment is done with a simple artificial data set having two
interacting features and 100 instances formed as shown in Figure 4.4. Here x1
and z2 are the input features and y is the target. The feature z1 takes binary
values while x2 and y take continuous values from 0 to 50. The relative error
of RPFP on this data set is 0.31, which is much smaller than that of RPFP-A,

whose relative error is 1.35.

Another experiment is conducted on real data sets, and the results are
shown in Table 4.5. The results show that RPFP significantly outperforms
RPFP-A, which indicate the ability of RPFP in handling interactions.
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Figure 4.3. Relative errors of algorithms with increasing target noise.
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Figure 4.4. Artificial data set. x1 and 22 are input features.

D RPFP RPFP-A D RPFP RPFP-A D RPFP RPFP-A
AB 0.675 0.815 FA 0.667 0.855 PL 0.415 0.819
Al 0.473 0.500 FI  0.243 0.334 PO 0.703 0.783
AU 0.334 0.430 FL.  1.218 1.487 RE  1.008 1.000
BA 0.664 0.752 FR  1.056 1.041 SC 0.319 0.337
BU 0.792 0.896 GS 0.566 0.667 SE  0.527 0.944
CL 0.692 0.773 HO 0.868 0.939 ST 0.729 0.992
CO 1.301 1.354 HU 0.618 0.710 TE  1.659 1.629
CP 0.650 0.738 NO 0.962 0.958 UN 0.666 0.718
EL  1.009 1.019 NR 0.947 0.956 VL 0.970 0.988

Table 4.5. Comparison of RPFP with its additive version RPFP-A. Best results
are typed with bold font.
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4.9 Computation Times

Since the computation times of lazy and eager approaches differ significantly
for training and prediction phases, training times of eager approaches and
prediction or test times of lazy approaches are given in Table 4.6. Generally
test times of eager approaches and training times of lazy approaches are close
to zero. The time durations are measured on a Pentium450 personal computer

running Linux operating system.

The results justify the theoretical considerations in determining the compu-
tational complexity of RPFP such that it is proportional to the linear predic-
tion complexity of KNN. On the average, prediction time of RPFP is 2.5 times
higher than of KNN. This is more apparent for largest datasets (AB, GS, NR).

In general computation performances of algorithms differ for different datasets.
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Data Set  RPFP KNN RULE DART MARS RPFP/KNNR

Test Test  Train Train Train Ratio
AB 40081.2 17217.1 6593.3 458503.0 7629.1 2.3
Al 7.5 3.0 2484 57.8 153.5 2.5
AU 124.1 41.8 4074 1772.2 573.9 3.0
BA 261.9 50.1  429.8 3022.1 912.4 5.2
BU 51.6 49.2  284.9 667.7 738.6 1.0
CL 150.9 35.6  464.0 708.6  1039.9 4.2
CcO 32.0 31.7  396.5 459.4 484.8 1.0
CP 30.6 161.0 251.4 263.6 361.0 0.2
EL 141.1 19.5  389.1 933.2 385.6 7.2
FA 167.0 30.3  403.9 1654.4 755.8 5.5
FI 18.1 161.3  278.5 200.5 226.7 0.1
FL 1198.8 775.9  408.7 901.4 543.8 1.5
FR 9.0 44.0 2345 42.8 99.9 0.2
GS 14241.0  6435.2 1236.6  23845.8 &8797.0 2.2
HO 92.8 140.7  266.3 835.8 616.2 0.7
HU 449.2 98.9 5944 7576.7  1186.2 4.5
NO 6.0 1.7 236.8 18.0 68.1 3.5
NR 24027.0  9346.7 7006.4  81984.0 4207.3 2.6
PL 1536.4  1415.5  503.3 9343.1 670.7 1.1
PO 6.1 2.0  250.3 41.1 121.6 3.1
RE 2717.0 674.6  625.2  35541.5 2260.1 4.0
SC 7.5 2.0  251.2 78.2 283.8 3.8
SE 6.9 4.0 221.6 78.2 109.0 1.7
ST 1173.8 759.8  845.6  16203.2 1839.2 1.5
TE 0.1 0.0 2354 3.1 25.5 *
UN 6459.7  3858.9 4834.2 153959.0 7287.0 1.7
VL 2113.9  1229.5 1101.0 107661.0 3082.9 1.7
Mean 2.5

Table 4.6. Time durations of algorithms for real data sets in milliseconds.



Chapter 5

Conclusion and Future Work

In this thesis we have presented a new regression method called RPFP. It
is an instance-based, non-parametric, nonlinear, context-sensitive, and local
supervised learning method based on feature projections. It achieves higher
accuracy results especially when compared to the most common lazy approach,
KNN. Its performance is also significant when compared to important eager
approaches of both machine learning and statistics. The main drawback of
RPFP is the lack of interpretation and its high prediction time requirement,

as other lazy approaches.

Even though, RPFP is a lazy method, it eliminates most drawbacks of
other lazy methods. The most important one is that it is robust to irrelevant
features. The local weight associated with each feature enables this property.
Besides, it is context-sensitive that is contribution of features are computed
separately in different regions of the instance space. Some features may be

important only some regions of the instance space.

RPFP also properly handles most problems belonging to all types of learn-
ers, eager or lazy. Those are curse of dimensionality, missing feature values,
and noise, handled by a modification on RPFP algorithm. These are important
and common problems especially with large databases today. RPFP outper-
forms all other important methods used in comparisons on domains having

large number of missing values or noise.
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The advantages and limitations of RPFP is described in the previous chap-
ter. Future work can be directed to overcome these limitations and to incor-
porate new properties to RPFP. Possible improvements are described in the

following paragraphs.

Redundant Features: If there are functional dependencies between some fea-
tures, or some of the features give the same information, they can be factorized

to a single feature, or some of them can be removed from the training set.

Interpretation: Lack of interpretation of the underlying data is a common
drawback of all lazy approaches. However further research can be directed for
RPFP in order to determine relative importance of features by using the local
weights of features determined for each query instance. Similar work can be
done in order to determine interactions between features, by using the changes

in the local weights of features at each partitioning step.

Incorporating Domain Knowledge: The main motivation to develop ma-
chine learning algorithms or knowledge discovery tools is to extract knowledge
without an expert, since number of domains in the databases is large. How-
ever for stand-alone applications, where the data belongs to a single domain,
and where a domain knowledge is available, incorporating domain knowledge to

these automatic tools, including RPFP, may increase the accuracy significantly.

Muselassification Cost: Incorporating misclassification costs to classification
algorithms is a current research topic. Misdiagnosing a patient as healthy
is much important fault than vise versa. Given a misclassification function
for continuous target values, similar research can be directed for regression

algorithms, including RPFP.

Feature Weighting and Selection: RPFP employs an implicit local weight
for each feature at each step of RPFP algorithm. Incorporating feature weights
computed by external weighting algorithms is not researched as well as feature

selection algorithms.

Classification Tasks: Some authors describe classification as a sub-category
of regression. By associating a feature having binary values for each class value

of a categorical target, the performance of RPFP for classification tasks can
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be evaluated.

Bootstrapping: Bootstrapping is a sampling method used to increase the
performance of learning algorithms by decreasing the variance error. However
for lazy approaches, where variance error is small when compared to bias error,
this method does not work and they are called stable because of this property.
The same thing may not occur for RPFP since it an adaptive partitioning

method, and whether boosting increase its performance can be researched.

As a final word, instance-based regression by partitioning feature projec-
tions is a successful technique in regression. RPFP method can compete with
the most famous and successful methods of both machine learning and statis-
tical literature. Some important properties of RPFP that are missing in many
important other methods such as handling missing values naturally, robustness,
and domain independence enable it to become an important tool for knowledge

discovery and data mining systems.
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