
REGRESSION BY SELECTING APPROPRIATE
FEATURE(S)

7ROJD�$\GÕQ�DQG�+�$OWD\�*üvenir

Department of Computer Engineering
Bilkent University

Ankara, 06533, TURKEY

Abstract. This paper describes two machine learning methods, called
Regression by Selecting Best Feature Projection (RSBFP) and Regression
by Selecting Best Features (RSBF). RSBFP projects the training data on
each feature dimension and produces exactly one simple linear regression
line on each continuous feature. In the case of categorical features, exactly
one simple linear regression line per each distinct value of each categorical
feature is produced. Then these simple linear regression lines are analyzed
to determine the feature projection that is best among all projections. The
best feature projection and its corresponding simple linear regression line is
then selected to make predictions. RSBF consists of two phases: The first
phase uses RSBFP to sort predictive power of each feature projection. The
second phase calls multiple linear least squares regression for number of
features times, each time excluding the worst feature among the current set,
and produces multiple linear regression lines. Finally, these regression lines
are analyzed to select the best subset of features. The best subset of features
and its corresponding multiple linear regression line is then selected to
make predictions.
Keywords: Prediction, Feature Projection, Regression.

1 INTRODUCTION

Prediction has been one of the most common problems researched in data mining and
machine learning. Predicting the values of categorical features is known as classification,
whereas predicting the values of continuous features is known as regression. From this
point of view, classification can be considered as a subcategory of regression. In machine
learning, much research has been performed for classification. But, recently the focus of
researchers has moved towards regression, since many of the real-li fe problems can be
modeled as regression problems.

There are two different approaches for regression in machine learning community:
Eager and lazy learning. Eager regression methods construct models by using the training
data, and the prediction task is based on these models. The advantage of eager regression
methods is not only the abil ity to obtain the interpretation of the underlying data, but also
the reduced test time. On the other hand, the main disadvantage is their long train time
requirement. Lazy regression methods do not construct models by using the training data.
Instead, they delay all processing to prediction phase. The most important disadvantage of
lazy regression methods is the fact that, they do not enable interpretation of the training
data. Because the model is usually the training data itself. It is not a compact description of
the training data, when compared to the models produced by eager regression methods,
such as regression trees and rule based regression.

In the literature, many eager and lazy regression methods exist. Among eager
regression methods, CART [1], RETIS [7], M5 [5], DART [2], and Stacked Regressions

[9] induce regression trees, FORS [6] uses inductive logic programming for regression,
RULE [3] induces regression rules, and MARS [8] produces mathematical models. Among
lazy regression methods, kNN [4, 10] is the most popular nonparametric instance-based
approach, RFP [11] and RPFP [14] are nonparametric approaches based on feature
projections.

In this paper, we describe two eager learning methods, namely Regression by
Selecting Best Feature Projection (RSBFP) and Regression by Selecting Best Features
(RSBF). Both of the methods make use of the linear least squares regression.

RSBFP produces projections of the train data on each feature. For each continuous
feature, a simple linear regression line is produced using simple linear least squares
regression. Since it is impossible to employ simple linear least squares regression on
categorical features, a different approach is used for them. A simple least squares
regression is performed for each distinct value of each categorical feature to produce
simple linear regression lines. At the end of the train phase, these simple linear regression
lines, from both type of features, are sorted according to their prediction ability. In the test
phase, the target value of a test instance is predicted using the simple linear regression line
having the minimum relative error, i.e. having the maximum predictive power.

RSBF consists of two phases. In the first phase, RSBFP is employed to sort the
predictive power of each feature. In the second phase, multiple linear least squares
regression is employed for number of features times, each time excluding the worst feature
among the current set. The test phase is similar to the RSBFP’s test phase. That is, the
target value of a test instance is predicted using the multiple linear regression line having
the minimum relative error, i.e. having the maximum predictive power.

Although the domain of the applicabili ty of RSBFP is not restricted, RSBF suffers
at this point. Current version of RSBF does not handle missing feature values and
categorical features. The reason for not handling categorical features is the fact that
multiple linear least squares regression can be employed only on continuous features. For
any training instance to be used in a multiple linear least squares regression, all of its
feature values must be known. This training instance becomes inappropriate for multiple
linear least squares regression even in the existence of just one missing feature value.
Therefore, to avoid loss of information, RSBF is employed on domains including no
missing feature values.

In this paper, RSBF and RSBFP are compared with 3 eager (RULE, MARS,
DART) and 3 lazy methods (RFP, RPFP, kNN) in terms of predictive power and
computational complexity. The predictive power of both methods are comparable to other
eager methods. But the most important result is the fact that both methods are the fastest
among all eager and lazy methods. For most data mining or knowledge discovery
applications, where very large databases are in concern, this is thought of a solution
because of low computational complexity.

In Section 2, we review the kNN, RFP, RPFP, RULE, MARS and DART methods for
regression. Section 3 and Section 4 give a detailed description of the RSBF and RSBFP,
respectively. Section 5 is devoted to the empirical evaluation of RSBF, RSBFP and their
comparisons with other methods. Finally, in Section 6, conclusions and future works are
presented.

2 REGRESSION OVERVIEW

kNN is the most commonly used lazy method for both classification and regression
problems. The underlying idea behind the kNN method is that the closest instances to the
query point have similar target values with the query. Hence, the kNN method first finds
the closest instances to the query point in the instance space according to a distance
measure. Generally, the Euclidean distance metric is used to measure the similarity

between two points in the instance space. Therefore, by using Euclidean distance metric as
our distance measure, k closest instances to the query point are found. Then kNN outputs
the weighted average of the target values of those closest instances as the prediction for
that query instance.

Regression by Feature Projections (RFP) is another lazy method, where the
instances are stored as their projections on each feature dimension. In this method, the
kNN method is used on each individual feature dimension to find their own prediction,
independent of the predictions of other features. The final prediction is made by combining
individual feature predictions. Here, the contribution of each feature changes according to
the local position of the query instance. The prediction time requirement of RFP is much
lower than kNN.

Regression by Partitioning Feature Projections (RPFP) gives a different
approximation for each feature by using the projection of instance space to each feature
dimension separately. These approximations may be different for each feature for a single
query point. Up to this point, RPFP looks li ke RFP. But the main difference lies in the
partitioning process employed by RPFP. A partitioning strategy is employed in the method
and some portion of the data is removed from the instance space. The same
approximations are repeated for a sequence of partitioning steps, where the partitioning
continues until reaching a small number of instances and meanwhile records of previous
steps are kept.

In machine learning, inducing rules from a given train data is also popular. Weiss
and Indurkhya adapted the rule-based classification algorithm [12], Swap-1, for regression.
Swap-1 learns decision rules in Disjunctive Normal Form (DNF). Since Swap-1 is
designed for the prediction of categorical features, using a preprocessing procedure, the
numeric feature in regression to be predicted is transformed to a nominal one. For this
transformation, the P-class algorithm is used [3]. If we let {y} a set of output values, this
transformation can be regarded as a one-dimensional clustering of training instances on
response variable y, in order to form classes. The purpose is to make y values within one
class similar, and across classes dissimilar. The assignment of these values to classes is
done in such a way that the distance between each yi and its class mean must be minimum.
After formation of pseudo-classes and the application of Swap-1, a pruning and
optimization procedure can be applied to produce an optimum set of regression rules.

MARS method partitions the training set into regions by splitting the features
recursively into two regions, by constructing a binary regression tree. MARS is continuous
at the borders of the partitioned regions. It is an eager, partitioning, interpretable and an
adaptive method.

DART, also an eager method, is the latest regression tree induction program
developed by Friedman [13]. It avoids limitations of disjoint partitioning, used for other
tree-based regression methods, by producing overlapping regions with increased training
cost.

3 REGRESSION BY SELECTING BEST FEATURE PROJECTION (RSBFP)

RSBFP method tries to determine the feature projection that achieves the highest
prediction accuracy. The next subsection describes the training phase for RSBFP, then we
describe the testing phase.

3.1 Training

Training in RSBFP begins simply by storing the training data set as projections to the
features. A copy of the target values is associated with each projection and the training
data set is sorted for each feature dimension according to their feature values. If a training

instance includes missing values, it is not simply ignored. Instead, that training instance is
stored for the features on which its value is given. The next step involves producing the
simple linear regression lines for each feature. This step differs for categorical and
continuous features. In the case of continuous features, exactly one simple linear
regression line per continuous feature is produced. On the other hand, the number of
simple linear regression lines per each categorical feature is the number of distinct feature
values at the feature of concern. For categorical features, the parametric form of the simple
regression line is constant. This issues can be illustrated through an example.

Let our example domain consist of four features, f1, f2, f3 and f4 , where f1, f2 are
continuous and f3, f4 are categorical. For continuous features, we define minvalue [f] and
maxvalue [f] to denote the minimum and maximum value of feature f, respectively.
Furthermore, No_categories [f] is defined to give the number of distinct categories of
feature f, for categorical features. In our example domain, let the following values be
observed:

minvalue [f1] = 4, maxvalue [f1] = 10
minvalue [f2] = 2, maxvalue [f2] = 8
No_categories [f3] = 2 (A, B)
No_categories [f4] = 3 (X, Y, Z)

For this example domain, 7 simple linear regression lines are produced: 1 for f1, 1
for f2, 2 for f3, and finally 3 for f4. Let the following be the parametric form of the simple
linear regression lines:

Simple linear regression line for f1: target = 2f1 - 5
Simple linear regression line for f2: target = -4f2 + 7
Simple linear regression line for A category of f3: target = 6
Simple linear regression line for B category of f3: target = -5
Simple linear regression line for X category of f4: target = 10
Simple linear regression line for Y category of f4: target = 1
Simple linear regression line for Z category of f4: target = 12

The training phase is completed by sorting these simple linear regression lines
according to their predictive power. The relative error (RE) of the regression lines is used
as the indicator of predictive power: the smaller the RE, the stronger the predictive power.
RE of each simple linear regression line is computed by the following formula:

RE =

∑
=

−
Q

i
i |t)|t(q

MAD

Q 1

1

where Q is the number of training instances used to produce the simple linear regression
line, t is the median of the target values of Q training instances, t(qi) is the actual target
value the i th training instance The MAD (Mean Absolute Distance) is defined as follows:

MAD = ∑
=

−
Q

i
ii)|(qt)|t(q

Q 1

ˆ1

Here, t̂ (qi) denotes the predicted target value of the i th training instance according to the
induced simple linear regression line.

We had 7 simple linear regression lines, and let’s suppose that they are sorted as
the following, from the best predictive to the worst one: f3-A, f4-X, f2, f1, f4-Y, f4-Z, and

finally, f3-B. This shows that any categorical feature’s predictive power varies among its
categories. For the above sorting schema, categorical feature f3 is both the best and the
worst feature. Its predictions are reliable among its category A, although it is very poor
among category B.

3.2 Testing

In order to predict the target value of a test instance ti , the RSBFP method uses
exactly one simple linear regression line. This line may not always be the best one. The
reason for this situation is explained via an example. Let the feature values of the test
instance ti be as the following:

f1(ti) = 5, f2(ti) = 10, f3(ti) = B, f4(ti) = missing

Although the best simple linear regression line is f3-A, this line can not be used for our
ti , since f3(ti) ≠ A. The next best simple linear regression line, which is worse than only f3-
A, is f4-X. This line is inappropriate for our ti , as well . No prediction can be made for
missing feature values. (f4(ti) = missing). Therefore, the search for the best simple linear
regression line, continues. The line produced by f2 comes next. It is again not possible to
benefit from this simple linear regression line. Because f2(ti) = 10, and it is not in the range
of f2, (2, 8). Fortunately, we find an appropriate regression line in the 4th trial. Our f1(ti),
which is 5, is in the range of f1, (4, 10). This simple linear regression line computes target
as 2f1 + 5. So the prediction made for target value of ti is (2 * f1(ti) + 5) = (2 * 5 + 5) = 15.
Once the appropriate regression line is found, remaining regression lines need not be
dealed anymore.

4 REGRESSION BY SELECTING BEST FEATURES (RSBF)

RSBF method tries to determine a subset of the features such that this subset consists of
the best features. Its applicabili ty is restricted for the reasons mentioned in Section 1. The
next subsection describes the training phase for RSBF, then we describe the testing phase.

4.1 Training

The training phase of RSBF consists of two phases. The first phase is exactly the same as
the training phase of RSBFP with the exception that, the data is assumed to be free from
missing values and categorical features. At the end of this first phase of training,
continuous features are sorted according to their predictive power. In the second phase of
training, multiple linear least squares regression is employed for number of features times,
each time excluding the next worst feature of the current set. It will be suitable to describe
the second phase through an example.

Let our example domain consist of three continuous features, f1, f2, f3 and assume
that they are sorted as f2, f3, f1 according to their predictive power at the end of the first
phase of training. We begin employing multiple linear least squares regression on all 3
features. The output of this process is a multiple linear regression line involving
contributions of all three features. This line is denoted by MLRL1,2,3 . Then we exclude the
worst feature, namely f1, and run multiple linear least squares regression to obtain MLRL2,3

. In the final step, we exclude the next worst feature of the current set, namely f3, and
obtain MLRL2. Actually the multiple linear least squares regression transforms into simple
linear least squares regression in the final step, since we deal with exactly one feature.

The second phase of training is completed by sorting MLRLs according to their
predictive power, the smaller the RE of a MLRL, the stronger the predictive power of that

MLRL. The computation of RE of a MLRL is exactly the same as that of a simple linear
regression line, mentioned in Section 3.

4.2 Testing

In order to predict the target value of a test instance ti , the RSBF method uses exactly one
multiple linear regression line (MLRL). This line is always the best one. In the example,
given in Section 4.1, let’s suppose that the parametric form of MLRL2,3 is (4f2 – f3 +3) and
that MLRLs are sorted as the following: MLRL2,3 , MLRL2 and MLRL1,2,3 . RSBF method
will choose MLRL2,3 and its parametric form (4f2 – f3 +3) to determine the target values of
all test instances. In contrast to RSBFP, RSBF does not require the feature values of test
instances to be in a range to accomplish the prediction.

5 EMPIRICAL EVALUATION

RSBFP and RSBF methods were compared with the other methods in terms of predictive
accuracy and time complexity. Predictive accuracy is measured in terms of relative error
(RE). We have used two different data sets in our experiments: one consisting of 27 data
files, and the other consisting of 9 data files. In fact, the latter set is a subset of the former.
The data files in the second set include no missing values and no categorical features. So
this set is appropriate for RSBF to work with. The characteristics of the data files are
summarized in Table1.

10 fold cross-validation technique was employed in the experiments. For lazy
regression methods k parameter was taken as 10, where k denotes the number of nearest
neighbors considered around the query instance. Table 2 shows the relative errors of the 7
methods on the first set. RSBFP is the best in 5 data files. This is an improvement since no
other method is the best in more than 5 data files. The characteristics of these 5 data files
are as the following: 4 of them include missing values, 3 of them include categorical
features, 2 of them include both. The number of data files including missing values,
categorical features and both is 12, 12 and 6, respectively. From this information, it is seen
that 4/12 (%33) of the data files including missing values, 3/12 (%25) of the data files
including categorical features and 2/6 (%33) of the data files including both can best be
predicted by RSBFP. But the predictive power of RSBFP is noted to be better than only
RULE and MARS, if we are concerned with average RE.

Table 5 shows the relative errors of the 8 methods on the second set. RSBF is the
best in 2 data files. This is also an improvement since only RPFP method is the best in
more than 2 data files. If we are concerned with average RE, the predictive power of RSBF
is noted to be better than MARS, RFP, RULE and RSBFP. The predictive power of
RSBFP decreases, since it is now better than only MARS . These results indicate that
RSBFP is not appropriate for domains including neither missing values nor categorical
features. But in the presence such domains, RSBF may be a good choice, since it gives
promising results.

In machine learning, an algorithm’s success is not only determined by its
predictive power, but also by its time complexity. Therefore, the real importance of
RSBFP and RSBF methods lies in their low execution time requirements. Table 3 and 6
show the training time durations, whereas Table 4 and 7 show the test time durations of the
proposed and existing methods. Both of the proposed methods, RSBFP and RSBF, have
less training time requirements than other eager methods, MARS, DART and RULE. It is
not possible to be faster than lazy methods RFP, RPFP and kNN in the train phase, because
lazy regression methods delay all processing to the test phase.

In the test phase, both RSBFP and RSBF are better than the lazy methods. They
are better than RULE, an eager regression method, too. The total running time involves

both training and test time. In that aspect, RSBFP becomes the first, kNN the second and
RSBF the third fastest method. Many real-world data sets consist of huge number of
instances that need to be processed efficiently. Therefore, data mining and machine
learning community always searches for as eff icient as possible approaches. The two
proposed approaches mentioned in this paper handle this problem, although they aren’ t
perfect in prediction process.

6 CONCLUSIONS AND FUTURE WORK

We have described two eager regression methods, Regression by Selecting Best Feature
Projection (RSBFP) and Regression by Selecting Best Features (RSBF), which achieve
fast computation time, by preserving a comparable or better accuracy with other popular
eager and lazy regression methods. They also enable the interpretation of the data, which is
desired by data mining community.

RSBF selects the best features to form a parametric model, namely multiple linear
regression line. On the other hand, RSBFP determines a unique feature projection that is
best among all projections and makes use of it.

RSBFP is suitable for domains including missing feature values and categorical
features. On the other hand, RSBF is strong on domains including neither missing values
nor categorical features. From this perspective, these two methods seem to complement
each other. The RSBF method can be modified to handle missing values and categorical
features as a future work.

Table1.Characteristics of the data fil es used in the empirical evaluations. C: Continuous, N: Nominal
Dataset Original Name Instances Features Missing

(C+N) Values
AB Abalone 4177 8 (7 + 1) None
AI Airport 135 4 (4 + 0) None
AU Auto-mpg 398 7 (6 + 1) 6
BA Baseball 337 16 (16 + 0) None
BU Buying 100 39 (39 + 0) 27
CL College 236 25 (25 + 0) 381
CO Country 122 20 (20 + 0) 34
CP Cpu 209 7(1 + 6) None
EL Electric 240 12 (10 + 2) 58
FA Fat 252 17 (17 + 0) None
FI Fishcatch 158 7 (6 + 1) 87
FL Flare2 1066 10 (0 + 10) None
FR Fruitfly 125 4 (3 + 1) None
GS Gss2 1500 43 (43 + 0) 2918
HO Home Run Race 163 19 (19 + 0) None
HU Housing 506 13 (12 + 1) None
NO Normal Temp. 130 2 (2 + 0) None
NR Northridge 2929 10 (10 + 0) None
PL Plastic 1650 2 (2 + 0) None
PO Poverty 97 6 (5 + 1) 6
RE Read 681 25 (24 + 1) 1097
SC Schools 62 19 (19 + 0) 1
SE Servo 167 4 (0 + 4) None
ST Stock Prices 950 9 (9 + 0) None
TE Televisions 40 4 (4 + 0) None
UN Usnews Coll. 1269 31 (31 + 0) 7624
VL Villages 766 32 (29 + 3) 3986

Table2. Relative Errors of Algorithms. Best results are typed with bold font
Dataset RSBFP RFP RPFP KNN RULE MARS DART
AB 0.788 0.748 0.675 0.661 0.899 0.683 0.678
AI 0.593 0.499 0.473 0.612 0.744 0.720 0.546
AU 0.510 0.426 0.334 0.321 0.451 0.333 0.346
BA 0.720 0.787 0.653 0.443 0.666 0.493 0.508
BU 0.656 0.911 0.840 0.961 0.946 0.947 0.896
CL 0.807 1.001 0.692 0.764 0.290 1.854 0.252
CO 2.524 1.439 1.301 1.642 6.307 5.110 1.695
CP 0.882 0.766 0.625 0.944 0.678 0.571 0.510
EL 1.008 1.032 1.009 1.194 1.528 1.066 1.118
FA 0.720 0.887 0.667 0.785 0.820 0.305 0.638
FI 0.599 0.540 0.352 0.697 0.355 0.214 0.415
FL 2.324 1.368 1.218 2.307 1.792 1.556 1.695
FR 1.010 1.065 1.056 1.201 1.558 1.012 1.077
GS 0.672 0.768 0.566 0.654 0.218 0.359 0.410
HO 0.883 1.000 0.868 0.907 0.890 0.769 0.986
HU 0.887 0.798 0.618 0.600 0.641 0.526 0.522
NO 0.969 1.040 0.962 1.232 1.250 1.012 1.112
NR 1.046 0.984 0.947 1.034 1.217 0.928 0.873
PL 0.833 0.895 0.415 0.475 0.477 0.404 0.432
PO 0.931 0.670 0.703 0.796 0.916 1.251 0.691
RE 1.004 1.011 1.008 1.062 1.352 1.045 1.189
SC 0.310 0.404 0.319 0.388 0.341 0.223 0.352
SE 0.710 0.822 0.527 0.619 0.229 0.432 0.337
ST 1.731 0.992 0.729 0.599 0.906 0.781 0.754
TE 4.577 4.014 1.659 1.895 4.195 7.203 2.690
UN 0.395 0.714 0.666 0.480 0.550 0.412 0.623
VL 1.017 0.967 0.970 1.017 1.267 1.138 1.355
Mean 1.078 0.983 0.772 0.900 1.166 1.161 0.841

Table 3. Train time of algorithms in milliseconds. Best results are typed with bold font
Dataset RSBFP RFP RPFP KNN RULE MARS DART
AB 201 144.2 174.7 8.9 3219 10270 477775
AI 2.2 1 1.2 0 90.8 159.2 62
AU 11.7 7.7 9.5 0.6 248.9 570.5 1890.1
BA 24.4 14.9 21 0 181.8 915.1 3171.1
BU 15.4 9.5 15.1 0 67.1 761.7 794.4
CL 23.6 14.4 21.4 0.5 148.2 1274.3 717.6
CO 9.4 5.4 8.6 0.1 108.6 475.3 481
CP 5.5 3.6 4.1 0 52.7 575.3 286
EL 11.5 7.1 9.4 0.2 69.5 407.5 1017
FA 19 11.4 16 0 161.1 985 1773.9
FI 3 2.1 3.1 0 47.8 240.2 201.4
FL 45.3 30.6 39.7 3.5 108.8 667.2 971.4
FR 1.1 0.7 1.1 0 34.1 99.5 45.9
GS 337.5 217.4 303.9 13.5 862.8 10143.9 27266
HO 11.6 6.5 10 0 57.5 616.3 893.9
HU 28.7 18 26.4 1 264.9 1413.9 8119.7
NO 0 0.1 0 0 30.6 69.3 18.9
NR 173.7 98 128.2 7.4 3493 5709.9 87815
PL 18.4 12.7 15.7 0.2 175.3 824.8 10024.4
PO 2.1 1 1.7 0 40.9 127.3 44
RE 73.4 47.2 67.5 3 196 2744.6 33044.6
SC 4 2.4 4.2 0 45.3 260.8 84.4
SE 2.3 1 2.2 0 37 116.4 83.4
ST 41.3 26.6 33.4 1.4 365.1 2281.4 17346.4
TE 0 0 0 0 30.9 31.1 3.1
UN 181.8 114.8 186 7.4 2547.1 8435.2 168169
VL 94.3 57.8 95.6 4.4 513.6 3597.8 23405
Mean 49.711 31.707 44.433 1.9296 488.83 1991.61 32055.7

Table 4. Test time of algorithms in milliseconds. Best results are typed with bold font
Dataset RSBFP RFP RPFP KNN RULE MARS DART
AB 27.8 201.6 43994 6547 14433.1 7.9 6.1
AI 1 3.2 8.9 3.4 141.7 0 0
AU 2.4 14.6 139.5 64.5 462.2 0 0
BA 2.3 29.4 298.3 54.6 244.8 0 0
BU 0 11.9 69.5 11.6 32.1 0 0
CL 1.1 22.9 168.5 38.2 40.3 1 0
CO 0.4 12.3 35.4 8.4 98.4 0 0.1
CP 1 6.4 31.7 11.6 87.3 0 0
EL 1.5 13.7 143.2 21 117.5 0 0
FA 1.3 23.7 187.6 33.1 96.4 0 0
FI 1 5.5 18.9 7.9 48.8 0 0
FL 4.2 86.8 1387 407.8 223.6 0.4 0
FR 0.2 2.5 10.2 2 45.4 0 0
GS 10.2 517.1 16008.5 2699.7 312.3 2.7 1.7
HO 0.4 10.9 104 13.3 43 0 0
HU 3.2 36.9 503.2 107.8 410.5 0 0
NO 0.2 1.1 7.7 1.9 30.8 0 0
NR 15 404 27054.5 3399.4 11326.8 4.7 1.75
PL 11.7 21.1 1721.4 571.9 2192.7 0.2 1.2
PO 0.1 2.2 6.9 2.2 37.1 0 0
RE 3.1 75.4 3163.3 265.6 627.2 0 1
SC 0 5.5 8.3 2 27.8 3.7 0
SE 0 1.8 7.6 4.2 49.1 0 0
ST 6.8 46.7 1344 303.2 1090.9 0.1 0
TE 0 0 0.3 0 24 0 0
UN 8.5 173.9 7365.2 1383.2 1877.3 7 2
VL 6.2 149.1 2455.6 439 1118.2 0.3 0
Mean 4.059 69.637 3934.93 607.574 1305.16 1.03704 0.513

Table 5. Relative Errors of Algorithms. Best results are typed with bold font
(Domain is restricted
Dataset RSBFP RSBF RFP RPFP KNN RULE MARS DART
AI 0.593 0.641 0.499 0.473 0.612 0.744 0.720 0.546
BA 0.720 0.575 0.787 0.653 0.443 0.666 0.493 0.508
FA 0.720 0.379 0.887 0.667 0.785 0.820 0.305 0.638
HO 0.883 0.715 1.000 0.868 0.907 0.890 0.769 0.986
NO 0.969 0.975 1.040 0.962 1.232 1.250 1.012 1.112
NR 1.046 1.033 0.984 0.947 1.034 1.217 0.928 0.873
PL 0.833 0.403 0.895 0.415 0.475 0.477 0.404 0.432
ST 1.731 1.028 0.992 0.729 0.599 0.906 0.781 0.754
TE 4.577 4.697 4.014 1.659 1.895 4.195 7.203 2.690
Mean 1.341 1.161 1.233 0.819 0.887 1.241 1.402 0.949

Table 6. Train time of algorithms in milliseconds. Best results are typed with bold font
(Domain is restricted)
Dataset RSBFP RSBF RFP RPFP KNN RULE MARS DART
AI 2.2 65 1 1.2 0 90.8 159.2 62
BA 24.4 590.7 14.9 21 0 181.8 915.1 3171.1
FA 19 607.3 11.4 16 0 161.1 985 1773.9
HO 11.6 444.9 6.5 10 0 57.5 616.3 893.9
NO 0 29.1 0.1 0 0 30.6 69.3 18.9
NR 173.7 1634.1 98 128.2 7.4 3493 5709.9 87815
PL 18.4 109.8 12.7 15.7 0.2 175.3 824.8 10024.4
ST 41.3 593.4 26.6 33.4 1.4 365.1 2281.4 17346.4
TE 0 50.7 0 0 0 30.9 31.1 3.1
Mean 32.289 458.333 19.022 25.056 1 509.567 1288.011 13456.522

Table 7. Test time of algorithms in milliseconds. Best results are typed with bold font
(Domain is restricted)
Dataset RSBFP RSBF RFP RPFP KNN RULE MARS DART
AI 1 0.3 3.2 8.9 3.4 141.7 0 0
BA 2.3 2.1 29.4 298.3 54.6 244.8 0 0
FA 1.3 1.3 23.7 187.6 33.1 96.4 0 0
HO 0.4 0 10.9 104 13.3 43 0 0
NO 0.2 1.3 1.1 7.7 1.9 30.8 0 0
NR 15 11.8 404 27054.5 3399.4 11326.8 4.7 1.75
PL 11.7 8.6 21.1 1721.4 571.9 2192.7 0.2 1.2
ST 6.8 5 46.7 1344 303.2 1090.9 0.1 0
TE 0 0.1 0 0.3 0 24 0 0
Mean 4.3 3.389 60.011 3414.133 486.711 1687.9 0.556 0.328

References

[1] Breiman, L, Friedman, J H, Olshen, R A and Stone, C J ‘Classifi cation and
Regression Trees’ Wadsworth, Belmont, Cali fornia (1984)

[2] Friedman, J H ‘Local Learning Based on Recursive Covering’ Department of
Statistics, Stanford University

[3] Weiss, S and Indurkhya, N ‘ Rule-based Machine Learning Methods for Functional
Prediction’ Journal of Artifi cial Intell igence Research Vol 3 (1995) pp 383-403

[4] Aha, D, Kibler, D and Albert, M ‘I nstance-based Learning Algorithms’ Machine
Learning Vol 6 (1991) pp 37 – 66

[5] Quinlan, J R ‘Learning with Continuous Classes’ Proceedings AI’ 92 Adams and
Sterling (Eds) Singapore (1992) pp 343-348

[6] Bratko, I and Karalic A ‘First Order Regression’ Machine Learning Vol 26 (1997) pp
147-176

[7] Karalic, A ‘Employing Linear Regression in Regression Tree Leaves’ Proceedings of
ECAI’ 92 Vienna, Austria, Bernd Newmann (Ed.) (1992) pp 440-441

[8] Friedman, J H ‘Multivariate Adaptive Regression Splines’ The Annals of Statistics
Vol 19 No 1 (1991) pp 1-141

[9] Breiman, L ‘Stacked Regressions’ Machine Learning Vol 24 (1996) pp 49-64
[10] Kibler, D, Aha D W and Albert, M K ‘I nstance-based Prediction of Real-valued

Attributes’ Comput. Intell. Vol 5 (1989) pp 51-57
[11] Guvenir, H A, Uysal, I ‘Regression on Feature Projections’ Proceedings of 3rd

European Conference on Principles and Practice of Knowledge Discovery in
Databases (PKDD'99), Springer-Verlag, LNAI 1704, Jan. M. Zytkow and Jan Rauch
(Eds.), Prague, Czech Republic, (September 15-18, 1999), 568-573.

[12] Weiss, S and Indurkhya, N ‘Optimized Rule Induction’ IEEE Expert Vol 8 No 6
(1993) pp 61-69

[13] Friedman, J H, Local Learning Based on Recursive Covering, 1996.
[14] Uysal I , ‘I nstance-Based Regression By Partitioning Feature Projections’ , M.S.

Thesis, Bilkent University, Ankara (2000)

