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Abstract

This paper presents a new instance-based method, called Regression by Partition-
ing Feature Projections (RPFP) to fill the gap in the literature for lazy methods
that achieves higher accuracies for regression problems. RPFP also presents some
additional advantages and even better performance when compared to other lazy ap-
proaches such as k-Nearest Neighbor Regression and Locally Weighted Regression.
RPFP makes predictions on each feature dimension separately, and combines these
predictions to find a prediction for a given query instance. Even with its additive
nature, RPFP can properly handle strong dependencies between features as shown by
its comparison with the additive algorithm, Regression on Feature Projections (RFP).
Besides those benefits, RPFP enjoys some other properties; e.g., it is robust to missing
values, irrelevant features and the curse of dimensionality.
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1 Introduction

Predicting values of numeric or continuous attributes is known as regression in statistics.
Predicting real values is an important research field in machine learning. Even though,
much research is concentrated on classification in machine learning literature, recently the
focus of machine learning community has moved strongly towards regression, since a large
number of real-life problems can be modeled as regression problems. Various names are
used for this problem in the literature, such as functional prediction, real value prediction,
function approximation and continuous class learning. We will prefer its historical name,
regression, in the paper.

The term eager is used for learning systems that construct rigorous models of the
domain during training. By constructing models, two types of knowledge, prediction and
concept descriptions that enable interpretation can be addressed. By using induced models
of many eager methods, interpretation of the underlying data can be done. On the other
hand, lazy approaches do not construct models and delay processing to the prediction
phase (Aha, 1997).
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under Grant 198E015.



An important problem, common to many lazy learning algorithms, is that they are
not suitable for interpretation by humans; since they do not produce compact descriptions
especially when compared to algorithms that induce models such as trees or rules. Hence,
the major task of these methods is prediction.

Nevertheless, lazy approaches are very popular in the literature, because of some impor-
tant properties. They make predictions according to the local position of query instances.
They can form complex decision boundaries in the instance space even when relatively lit-
tle information is available, since they do not generalize the training data by constructing
global models. Another advantage is that learning in lazy approaches is very simple and
fast, since training generally involves just storing the instances. Finally they do not have
to construct a new model, when a new instance is added to the data.

Besides these common characteristics of lazy approaches, however, the most significant
problem with them is the one posed by irrelevant features (Domingos, 1997). Some feature
selection and feature weighting algorithms have been developed in the literature for this
purpose (Wettscherect, Aha & Mohri, 1997). A good property that must be enabled in a
lazy algorithm is that some features may be important or relevant only in some regions of
the instance space. This characteristic is known as context-sensitivity or adaptivity in the
literature.

This paper describes a new lazy regression method based-on feature projections called
Regression by Partitioning Feature Projections (RPFP). Feature projection based ap-
proaches store the training instances as their projected values on each feature dimension
separately (Giivenir & Sirin, 1996; Giivenir, Demiroz & Ilter, 1998; Uysal & Giivenir,
1999b). In predicting the target value of a query instance, each feature makes a separate
prediction using only the value of the query instance for that feature, then all the feature
predictions are combined to make the final prediction.

Feature projection based techniques have been applied to many classification problems
successfully. The main advantage of feature projection based classification methods are
their short classification time. They are also robust to irrelevant features and missing
feature values. On the other hand, the main shortcoming of feature projection based
methods is that they ignore the interactions or dependencies between features.

The RPFP method described in this paper is adaptive and robust to irrelevant features.
Further, it can cope with the curse of dimensionality problem, therefore it is suitable for
high-dimensional data, and can handle interactions between features. It does not require
any normalization of feature values and handles successfully the cases having missing
feature values. RPFP can be designed as a lazy, non-parametric, non-linear, and adaptive
induction method based on feature projections.

The next section gives a short overview on related regression methods. In Section 3,
RPFP is described. Important properties of the RPFP method are described in detail in
Section 4. Section 5 gives the complexity analysis of RPFP. Section 6 compares RPFP
with KNN and LWR. Results of empirical evaluations are presented in Section 7. Section 8
concludes the paper with some directions for the future work.

2 Lazy Methods for Regression

The literature does not provide as many lazy approaches for regression as the case for
eager approaches. The two well known lazy approaches are K-Nearest Neighbor (KNN)
regression, and Locally Weighted Regression (LWR). They are similar to each other. The
most important similarity is that both of them use nearest neighbor instances for a given
query location, and make the predictions by using these instances. The major difference



is in the way they compute their predictions. KNN makes local approximations by using
neighboring instances, on the other hand LWR constructs a local model using these in-
stances, and makes approximation on the extracted linear or nonlinear local models. Many
improvements and implementations of them are developed so far. They are described in
the following sections briefly, since these methods are similar to RPFP in the literature of
both statistics and machine learning.

2.1 Instance-Based Regression

Instance-based learning (IBL) algorithms are very popular since they are simple for compu-
tation during the training of instances (Aha, Kibler & Albert, 1991; Dasarathy, 1991). In
most applications, training is done simply by storing the instances. This section describes
the application of this technique for regression (Kibler, Aha & Albert, 1989).

In instance-based regression, each instance is usually represented as a set of attribute
value pairs, where the values are either nominal or numeric, and the value to be predicted
is continuous. The problem to be solved is, for a given query instance, to predict its
target value as a function of similar other instances whose target values are known. The
nearest neighbor is the most popular instance-based algorithm. The target values of
the most similar neighbors are used in this task. Here the similarity is the negation
of the Euclidean distance between instances. Formally, if we let real numbers R be a
numeric domain, and X be an instance space with p attributes, then we can describe the
approximation function, F', for predicting the target value y; of instance z; as follows:

F(zu,...,zp) =0t where 7; € R. (1)

[1]  Vx; € Training Set

[2] normalize(x;)

3]  Vx; € Test Set

[4] normalize(xy)

[5] Vxi{x; # x¢}: Calculate Similarity(x,x;)

[6] Let Similars be set of N most similar instances to x; in Training Set
[7] Let Sum = 3"« c similars Similarity(x, x;)

[8] Then Yp = ineSimilars %Wlp’(xi)

Figure 1: The Proximity Algorithm

There are a variety of instance-based algorithms in the literature. Here, the simplest
one, called prorimity algorithm is described in Figure 1. The proximity algorithm simply
saves all training instances in the training set. The normalization algorithm maps each
attribute value into the continuous range (0 — 1). The estimate 7, for test instance x; is
defined in terms of a weighted similarity function of x;’s nearest neighbors in the training
set. The similarity of two normalized instances is described by Equation 2.

P
Similarity(xs,x;) = > _ Sim(zy;, zij) (2)
7=1

where Sim(z,y) = 1.0 — |z — y|, and ;.



The assumption in this approach is that the function is locally linear. For sufficiently
large sample sizes this technique yields a good approximation for continuous functions.
Another important property of instance-based regression is its incremental learning be-
havior. By default, the instance-based regression assumes that all the features are equally
relevant. However, the prediction accuracy of this technique can be improved by assigning
weights to the attributes. In order to reduce the storage requirements for large training
sets, averaging techniques for the instances can be employed (Aha, Kibler & Albert, 1991).

2.2 Locally Weighted Regression

Locally weighted regression (LWR) is similar to the nearest neighbor approach described
in the previous section, especially for three properties. First, the training phases of both
algorithms include just storing the training data, and the main work is done during pre-
diction. Such methods are also known as lazy learning methods. Second, they predict
query instances by strong influence of the nearby or similar training instances. Third, they
represent instances as real-valued points in p-dimensional Euclidean space. The main dif-
ference between IBL and LWR is that, while the former predicts instances by averaging
the nearby instances, the latter makes predictions by forming an averaging model at the
location of query instance. This local model is generally a linear or nonlinear parametric
function. After a prediction for query instance is done, this model is deleted, and for every
new query a new local model is formed according to the location of query instance. In
such local models, neighboring instances of the query have large weights on the model, and
distant instances have less or no weights. For a detailed overview of the locally weighted
methods see (Atkenson, Moore & Schaal, 1997).

2.2.1 Nonlinear Local Models

Nonlinear local models can be constructed by modifying global parametric models. A
general global model can be trained to minimize the following training criterion:

C = ZL f(xi,8), i) (3)

where y; is the response value corresponding to the input vectors x;, and 3 is the parameter
vector for the nonlinear model i; = f(x;, 8) and L is the general loss function for predicting
y;. If this model is a neural net, then the 8 will be a vector of the synaptic weights. If we
use least squares for the loss function L, the training criterion will be as follows:

C = Z f(xi,B) —ui)? (4)

In order for making nearby points to the query to have more influence in the regression,
a weighting factor can be added to the criterion.

Clg) = Y _[L(f(xi, B),y:) K (d(xi, q))] (5)
i
where K is the weighting or kernel function and d(x;,q) is the distance between the data
point x; and the query q. Using this training criterion, f becomes a local model, and it
can have different set of parameters for each query point.



2.2.2 Linear Local Models

The well-known linear global model for regression is the simple regression, where the least
squares approximation is used as training criterion. Such linear models can be expressed
as:

xi = yi (6)
where 8 is the parameter vector. Whole training data can be defined with the following
matrix equation.

XB =y (7)

where X is the training matrix whose ith row is x; and y is a vector whose ith element
is y;. Estimating the parameters 8 using least squares criterion minimizes the following
criterion:

C=> (xB - ) (8)

)

We can use this global linear parametric model, where all the training instances have
equal weights; for locally weighted regression, by assigning nearby instances to the query
point higher weights. This can be done by using the following weighted training criterion:

C = S M/ (x::8) — 9 K (d(xi, ) )

Various distance (d) and weighting (K) functions for local models are described in (Atken-
son, Moore & Schaal, 1997). Different linear and nonlinear locally weighted regression
models can be estimated with those functions.

3 Regression by Partitioning Feature Projections

In this section we describe the new regression method called Regression by Partitioning
Feature Projections (RPFP). It is an instance-based method where most properties are
similar to other instance-based methods such that it is a local, memory-based, lazy and
distance-based approach. Furthermore, RPFP incorporates some advantages of eager
approaches, while eliminating many limitations of both eager and lazy methods.

In Section 2, we described KNN and LWR. Both KNN and LWR use instances close
to the location of query in the instance space. RPFP also uses similar instances, that
is nearest instances to the query location. However, the space formed by the nearest
instances are spherical in previous approaches, whereas it is a rectangular region for RPFP.
This difference brings some advantages to RPFP. These advantages are related with the
effect of irrelevant features, and the difference in the effects of all the features in different
locations of the instance space. These benefits of using rectangular regions formed by
nearest neighbors are described in Section 4.

On the other hand, RPFP is similar to LWR, in that, the effect of closest instances
are larger than the others. However RPFP does not restrict the number of instances to
K closest instances as in KNN and LWR.

One of the main differences of RPFP from KNN and LWR is that, the predictions
are made separately for each feature, as done in the additive eager models. However
RPFP handles the dependencies between features by making predictions in local regions



of instance space. If the underlying phenomenon is additive itself, which is a frequent case
for most real data sets, RPFP is suitable for those problems because of its additive nature.

3.1 RPFP Algorithm

In this section we give an intuitive description of RPFP algorithm, described in detail
in the following sections. In RPFP, training involves associating each feature value with
its corresponding target value, and a sorting process for each dimension on their feature
values. The prediction is done for each feature dimension separately, either on the whole
data or a partitioned portion of it. The final phase includes combining these results to
form a single prediction for a given test instance. An overview of RPFP algorithm is
shown in figure 2.

TRAINING:
[1]  Associate target values for each sorted feature value in all dimensions.

PREDICTION:

[2]  Find local weights and feature predictions for each feature dimension for
given test instance.

[3]  Partition the instance space around the query location.

Find local weights and feature predictions for each feature dimension for the

given test instance in the partitioned region.

[65]  Combine feature predictions to find final prediction, by selecting one of the
results for each feature, obtained either in step 2 (on the whole data)
or step 4 (on partitioned region), according to the local weight values.

o

Figure 2: An overview of RPFP algorithm

3.1.1 Training

Training involves simply storing the training set as their projections to the features as
described above. If there are missing feature values, they are placed at the end of the
feature dimensions by setting their feature values to infinity. These instances are ignored
when prediction is done for that feature.

3.1.2 Approximation using Feature Projections

Approximation at feature projections is the first stage in the prediction phase of RPFP
algorithm. Since the location of the query instance is known, the approximation is done
according to this location. At each feature dimension, a separate approximation is obtained
by using the value of the query instance for that feature.

Taylor’s theorem states that if a region is local enough, any continuous function can
be well approximated by a low order polynomial within it (Friedman, 1996). Given the
linear equation to be approximated in the following form (10), the classical approach is to
approximate coefficients of this equation using the least squares error criterion in (11).

Ggr = Bof + Prgags (10)



n
Er = (vi— i) (11)
i=1
where n is the number of training instances, g, is the approximation for query at feature
[ i 1s the actual target value, and g, is the target estimate for instance i.

RPFP employs the weighted linear least squares approximation for the feature predic-
tions. Similar to the standard linear least squares approach, the parameters of (10), Sor
and 3y are computed for each feature by employing a weight function to the least squares
error, in order to determine weighted linear least squares approximation.

n
Ep =Y wif(yi — fis)’? (12)

i=1

where

1
(@i — mq5)?
By taking the derivative of (14) to minimize the error Fy, the parameters §y and /5
for weighted linear least squares approximation are obtained.

(13)

Wi =

Er =Y wis(yi — Bog — Biywis)® (14)
=1

The weighted linear least squares approximation is not appropriate for two cases. One
of them is for categorical features. Since there is no ordering between most categorical
features, extracting a linear relation is not meaningful. On the other hand, if a cate-
gorical feature has an ordering between categorical values, weighted linear least squares
approximation is employed.

Another case is for linear features. If all the instances have the same linear value for
a particular feature dimension, the slope of the equation will be infinity.

In these two cases RPFP employs an averaging procedure instead of linear regression.
In such cases, mean values of the target values are used as an approximation for such
cases as given in (15). For categorical features, if the value of a feature does not match the
feature value of the query instance, the contribution of that feature in the final prediction
is excluded.

P Z?:l Yi

Yas n (15)

3.1.3 Local Weight

Some regions on a feature dimension may produce better approximations when compared
to others. In order to obtain a degree of prediction ability of a region on feature dimension,
we employ a measure in the prediction algorithm. If the region that query point falls in
is smooth on a feature dimension, we give a high weight to that feature in the final
prediction. In this way the effects of irrelevant features, as well as the irrelevant regions
on a feature dimension, are eliminated. This establishes an adaptive or context sensitive
nature, where at different locations in the instance space, the contribution of features on
the final approximation differs.

In order to measure the degree of smoothness for continuous features we compute
the distance weighted mean squared residuals. Residuals are differences between target
values of the instances and their predicted values found by weighted linear least squares



approximation for the feature value of each instance. We denote this measure with V; as
given in (17). By subtracting V; from the variance of the target values of all instances,
Vi, we find the explained variance according to the region that the query instance falls in.
By normalizing it with the variance of training set we obtain a measure, called prediction
indezx (PI) (19). We use the squared PI as the local weight (LW) for each feature (20).

S (yi — 9)?

Vair = - (16)

where 7 is the mean of target values of training set.
Vf — ?:1 wz(yln_ /BO /_ /leif)z (17)

i=1W;

where w; is defined in (18). For an overview of weight functions for regression problems
see (Atkenson, Moore & Schaal, 1997).

/ 1
= 18
Vil T T (i — wg9)? (18)
Vau =V,

PI? if PI; >0
— f f
LWf { 0 otherwise (20)

In computing the local weight for categorical features, a refinement is required. We
replace (21) with (17). Then we use the same procedure used for continuous features for
the computation of local weight. Note that w;f in (18) will be 1 for all the instances in
the same category.

Ne !
V= =5 . (21)

where N is the number of instances having the same categorical value, and g, is the
average of their target values.

3.1.4 Partitioning Algorithm

Partitioning the set of training instances enables us to deal with dependencies among fea-
tures. If a feature does not have a dependency with any other, we simply ignore the par-
titioning procedure for that feature and use the approximation for all projected instances.
On the other hand, according to the local weight values obtained after partitioning, if an
improvement is obtained, then prediction on partitioned region is used for that feature.
Partitioning is an iterative procedure applied for each query instance, and the final region
after partitioning may be different for each of them.

Partitioning improves the context-sensitive nature of RPFP such that, the edges of the
final region, a hyper-rectangle, are not equal in length for each query. The length of edges
are determined according to the relevancy of features for the prediction of the query. This
causes longer edges for irrelevant features, and shorter edges for relevant ones. The region
is formed by the partitioning algorithm that will be described in this section, by using an



iterative procedure that continues until a small number of instances, say k, are left. K is
taken as 10 by default in the experiments.

In the first step of partitioning, the predictions and local weights of the features are
found and recorded. For the partitioning of the data, the feature with the highest local
weight is used. Partitioning is done again on this feature dimension. The farthest in-
stances to the query on this feature dimension are marked. The number of such instances
are determined by using local weight of that feature. Large number of instances are re-
moved from the instance space if local weight is high. Then, these are removed from all
feature dimensions separately. If the feature selected for partitioning is nominal, simply
all the instances having different nominal values are removed. After shrinking the marked
instances from other feature dimensions, partitioning continues by selecting a new feature.

The partitioning algorithm applies a strategy, in order to select the right feature for
partitioning. For example, if the feature selected in the first step has the highest local
weight again, for the query in the second step, then the feature having the second highest
local weight is selected. By this way, we can pass over possible ridges in the data set.
Selecting a feature with small local weight may increase their local weights in forthcoming
steps significantly. However, at a particular step, the features with zero local weights are
not used for partitioning for that step, unless all local weights in a particular step are zero.
This strategy decreases the effect of irrelevant features, especially in high-dimensional
domains. Since all of the features may have been selected before partitioning ends, a
counter is associated with each feature in order to give chance to different features each
time.

A different strategy is applied for nominal features. If a nominal feature is selected for
partitioning once, it is never used again for partitioning. The partitioning algorithm of
RPFP is shown in Figure 3. The partitioning is repeated for all query instances from the
beginning, by using a copy of the feature projections of the data obtained in the training
phase.

At line 21, in Figure 3, number of steps for the partitioning is recorded to be used in
the final prediction phase. At line 19, a partitioning of the remaining training set, D', is
employed along the feature dimension, MazF', selected for partitioning.

3.1.5 Prediction

After completing the partitioning and obtaining a final region, where the query instance is
in the center of it, we compare local weights obtained for each feature for this region and
for the whole region before partitioning. This comparison is performed for each feature
separately. If the local weight of a feature for the initial projections is larger than that
of final region, we use the initial computations for that feature. Otherwise, we use the
computations on the final region for that feature in the final prediction.

If a query value for a feature is missing, that feature is not used in the final prediction.
Finally a prediction is done for a query instance by computing the weighted average of
feature predictions, where weights are the computed local weights. Prediction algorithm
is shown in Figure 4.

4 Properties of RPFP

In this section, we describe important properties and problems for regression algorithms
and we present theoretical evaluations of RPFP according to these properties. These
properties show the behavior of RPFP in handling the curse of dimensionality problem,



[1] n < n; Smaz +— logn; s + 0; D « D
[2] For f=1top

B priority(f) < Smas
[4  Whilen >k and 5 < Spaz

[5] s s+1

[6] For f=1top

[7] if z4¢ is known then

[8] compute and record LW (s) and §,,(s) on D'
[9] MazF < any f where z,; is known and LW¢(s) > 0
[10] For f=1top

[11] if LW¢(s) > 0 and z4y is known then

[12] if priority(f) > priority(Maxf) then MazF <+ f
[13] if priority(f) = priority(Maz f) then

[14] if LW¢(s) > LWarezr(s) then MaxF « f
[15] if MaxF is continuous then

[16] priority(MazF) < priority(MazF) — 1

[17] if MaxF is nominal then

[18] priority(MazF) < 0

[19] D' « partition(D', MaxF)

[20] n' « size of D'

[21] S+ s

[22] Return D’

Figure 3: Partitioning Algorithm

its additive nature, its ability in handling dependencies between features, its vote for
either bias or variance error, its complex nature in making predictions, its robustness to
irrelevant features, its ability in handling large number of dimensions, its context sensitive
nature, and finally its robustness to missing feature values.

4.1 Curse of Dimensionality

The curse of dimensionality is a problem for nearly all learning and prediction methods
that do not make strong assumptions about the domains. There are some models that
handles this situation with assumptions. Assuming that features separately contribute to
the solutions is the assumption used in additive models. Another solution to this problem
is proposed by the projection pursuit regression. The instance space is projected to a
lower dimensional space (generally one or two dimensional). However, this approach also
makes an assumption such that, the information in data can be evaluated by using only
the projection of data to some projection axes. Assuming linearity between input features
and target in the prediction problems can be seen as a sub-category of additive models
and it is a strong assumption that is employed in classical linear regression and linear
discriminant analysis, which are parametric models.

The strong assumptions made in prediction tasks introduce large bias errors in most
domains. This is also what the curse of dimensionality problem causes in other non-

10



[1]  Prediction < 0; WeightSum < 0
S, LW and g, are determined during partitioning process.

S

[3] For f=1top

[4] if 247 is known then

[5] if LW;(0) > LW} (S) then

[6] Prediction < Prediction + §,;(0)

[7] WeightSum < WeightSum + LW¢(0)
[8] else

[9] Prediction < Prediction + §,;(S)

[10] WeightSum < WeightSum + LW;(S)
[11] Prediction < Prediction/W eightSum

Figure 4: Prediction Algorithm

parametric learning methods. Therefore, generally the choice is whether to put up with
strong assumptions or with the curse of dimensionality.

Most modern techniques for regression in the literature are developed in order to obtain
better accuracies by eliminating assumptions employed in classical, generally linear and
parametric methods. Hence, developing some measures to decrease the effect of curse of
dimensionality is important for modern techniques in order to achieve higher accuracies.

The problem can be illustrated with a simple example. Consider a one dimensional
input space, where all instances are uniformly distributed and feature values range from
0 to 1. In this situation half of the feature dimension contains half of the instances. If we
add one more feature with the same properties to the instance space, using half of each
feature dimension will include 1/4th of the instances. One more feature will decrease this
ratio to 1/8, and so on exponentially. Adding new features will cause more sparse instance
spaces. In order to keep the same ratio for the number of instances in a region we have to
increase the volume of the region exponentially. This is because in high dimensional spaces
it is impossible to construct regions that have small size simultaneously in all directions
and containing sufficient training data; thus, using large regions for approximation causes
large bias errors (Friedman, 1996). The following expression, described by Friedman
(1996), explains the problem for KNN.

size(Ry) _ (E) v (22)

size(Ry) n

where k is the number of training instances in region R; and Ry is the instance space.

Thus, in high dimensions the size of the region will be close to Ry even for k = 1.
Curse of dimensionality is a much more important problem for KNN, when compared
to eager methods. Nearly all eager learning approaches (e.g., Rule-based learning, tree-
based learning and MARS) have some measures to decrease the effect of the curse of
dimensionality. The most important one is to properly select the features to be included
in the model, and decrease the number of dimensions. This is also the reason for the
success of eager approaches against irrelevant features.

Another measure is the adaptive nature of partitioning eager approaches. For example,
in a uniformly distributed space, after a normalization process, KNN always forms regions

11



with a sphere shape, having the same diameter in all dimensions. However this volume is
a hyper-rectangle for most eager approaches rather than a sphere or hypercube, since the
edge lengths are determined according to the position of a region in the instance space.
Intuitively, important features have smaller edges when compared to unimportant features
at the location of region.

Some solutions similar to these measures is available for KNN, by using external feature
selection and feature weighting algorithms before applying KNN (Wettscherect, Aha &
Mohri, 1997). Feature selection techniques can eliminate irrelevant features and feature
weighting can produce elliptic regions instead of spherical ones. Another desired property
is that, the shape of this elliptic region must change according to the location of the query
in the instance space.

On the other hand, the problem of curse of dimensionality is much more important
for KNN when the task is regression instead of classification. There is an important em-
pirical evidence that KNN can achieve high accuracies in many domains for classification.
However this is not the situation for regression (Friedman, 1996). This property of KNN
will be discussed in the following sections.

RPFP is a member of instance-based approaches, that are local, memory-based, lazy,
non-parametric and do not depend on strong assumptions such as those described above.
However, RPFP has some measures to decrease the effect of curse of dimensionality.

In the final prediction phase of RPFP, a subset of features are used in additive form,
only for their main effects on the target. The curse of dimensionality does not effect their
contributions, since the feature predictions are determined on a single dimension. For
remaining features, the effect of curse of dimensionality is not severe. The partitioning
algorithm either does not allow irrelevant features to effect partitioning (if their local
weights are 0), or their effect are small since a dynamic partitioning occurs according to
their local weights. The partitioning strategy of RPFP forms adaptive regions. According
to the position of each query instance, the edge lengths of these regions for each feature
dimension may change. For remaining features, predictions are done on these regions.

4.2 Classification versus Regression for Additive Models

The success of additive classification algorithms is pointed out by many different additive
approaches in the machine learning literature. Holte (1993), Giivenir et.al. (1993,1998)
and Frank et.al. (1998) show significant performance of their additive classification al-
gorithms, on real data sets. However, regression implementations of those methods, do
not show such significant success, when compared to regression methods that handle de-
pendencies between features. An analogy by Frank et.al.(1998) shows that naive Bayes
method is more successful in classification, when compared to its success in regression. In
this paper, we show that RFP (Uysal & Giivenir 1999b), the additive version of RPFP
is not as successful in performance when compared to RPFP, where we involve a parti-
tioning procedure in order to handle interactions. However, RPFP does not exclude some
advantages of additive methods, such as handling missing feature values naturally, and
especially when some features additively effect the response in a given data set.

4.3 Bias-variance Trade-off

Following the considerations presented by Friedman (1997), two important error types
collectively effect the success of learning approaches according to the underlying problem
they are applied. They are bias and variance errors, caused by under-fitting and over-
fitting respectively on the learning application. A decrease in one of those errors, generally

12



causes an increase on the other. However the behavior of interaction between bias and
variance differs according to the algorithm and problem the algorithms are applied. If we
illustrate these error components with an example, large k values in the application of
KNN algorithm may cause large bias error, on the other hand, small £ values may cause
large variance error.

Many factors are effective for these error components. The curse of dimensionality,
model complexity, model flexibility, local vs. global approximations, assumptions of the
learning approach, noise, missing attribute values, number of features and number of
observations in applications are some of those. For example large number of features,
small number of training instances, many missing values, large local approximation regions,
strong assumptions and simple models are among reasons of bias error. The effect of these
issues on RPFP will be discussed in the following sections.

An important result presented by Friedman (1997) is that for classification tasks the
major component of the error is formed by variance, on the other hand, for regression
problems the bias error becomes important. This is shown as the main reason for the suc-
cess of the simple nearest neighbor approach such that it over-performs some sophisticated
methods for many classification tasks even the curse of dimensionality problem of KNN
causes strong bias. The success of additive approaches for classification is also reported by
Guvenir et.al.(1996,1998).However, this is not the situation for regression, and the effect
of bias error is much more important unless the underlying domain includes small number
of features or large number of observations.

In learning problems, this trade-off is unavoidable and RPFP casts its vote for variance
by employing many arguments to decrease the bias error. The way for handling bias error
caused by the curse of dimensionality is described in the previous section. Besides, it does
not make strong assumptions as non-parametric methods. It develops flexible, adaptive
and locally weighted approximations in small local projections at each feature dimension
for each query instance. All these things may increase the over-fitting, which causes
an increase on the variance error. However empirical results show that RPFP is more
successful than KNN, which justifies these ideas about the behavior of classification and
regression for the bias-variance trade-off.

4.4 Model Complexity and Occam’s Razor

William of Occam’s Razor principle states that “Entities should not be multiplied be-
yond necessity” (Domingos, 1998). This idea has been accepted theoretically in machine
learning with two different interpretations (Domingos, 1998). One of them is, “Given two
models with the same accuracy, the simpler one must be selected because the simplicity is
desirable in itself”. The other interpretation states that, “Given two models with the same
training-set error, the simpler one should be preferred because it is likely to have lower
prediction error”. The well known example for the second interpretation is the pruning
applied in decision tree learning.

The second interpretation has been found inconvenient by many researchers recently
and some theoretical and empirical work are published supporting this idea (Webb &
Kuzmycz, 1996). An overview is given by Domingos (1998). It is also possible that
complex models can produce better accuracies than simpler ones.

RPFP is flexible and complex, such that for different query locations in the instance
space, producing infinite number of different local approximation functions on many dif-
ferent domains is possible. If we consider many different feature dimensions having such
approximations, RPFP becomes more flexible and complex as the number of dimensions
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increase. The performance results of RPFP on real data sets vindicate those resent worries
about the second interpretation of the Occam’s Razor principle.

4.5 Irrelevant Features and Dimensionality

The sensitivity to irrelevant features is the most important problem for lazy methods. On
the other hand, eager approaches in general (especially recursive partitioning methods)
are successful in eliminating the effects of irrelevant features. For example, in regression
tree induction, the partitioning starts from the most significant feature and continues
recursively by processing less relevant ones. It is very likely that some irrelevant features
will not be used even in constructing a regression tree.

The reason that irrelevant features cause problems in lazy learners comes from the
distance measure used in those methods. In nearest neighbor approaches for example,
nearest instances are determined according to a distance measure in p dimensional space,
which is generally the Euclidean distance. In the computation of distances all features are
given equal importance, including irrelevant ones. This may cause important instances for
a query to go away from the query.

Irrelevant features do not cause much difficulty for RPFP, since distances are com-
puted for each feature separately. Another important advantage of RPFP is that it is
very likely for those features to take lower local weights, since the distribution of target
values of nearest instances at any query location will be very close to the distribution of
the whole target values in the training set (19). RPFP is capable of incorporating all
features according to their relevancy on the query instance. If the irrelevant features or
the relevance of features changes according to the locations of the instance space, this is
handled by RPFP, due to its adaptive nature.

However large dimensionality may cause problems on some eager approaches, in ad-
dition to the curse of dimensionality problem. With regression trees, for example, after
a small number of steps in the tree construction process, the number of instances at tree
nodes may be exhausted before many relevant features get a chance. This second problem
of high dimensionality is also resolved in RPFP, since all the features are used in the final
prediction phase.

4.6 Context-sensitive Learning

RPFP is an adaptive or context-sensitive method in the sense that in different locations
of the instance space the contribution of the features are different. This property is
enabled with two characteristics of RPFP. One of them is the partitioning algorithm.
The region formed around the query instance is determined adaptively; different features
have different lengths of edges in the final region according to the location of query. The
other one is in the local weights. Features may take different local weights according
to the location of the query. On the other hand, the local weights of features will be
different since different instances will be the neighbors at different feature dimensions. The
difference in the neighbors will reduce possible over-fitting, similar to sampling approaches
such as boosting (Breiman, 1996), which brings an advantage to RPFP. Nearly all eager
approaches, to some extent, are context-sensitive, which is an advantage over KNN.

4.7 Missing Feature Values

It is very likely that some feature values may be unknown in the application domain.
In relational databases, the most suitable form of databases for the most current learn-
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ing techniques, the problem occurs frequently because all the records of a table must
have the same fields, even if values are inexistent for most records (Matheus, Chan &
Piatetsky-Shapiro, 1993). For example, in a hospital database including many fields for
many laboratory tests and medical procedures, only a few of these fields will be filled in
for any patient.

The natural and the best solution for handling missing values is leaving those places
empty and not to distort the information in the data. Additive models or feature projection
based methods handle missing values in that way, since each feature is evaluated separately.
However, their limitation is that they assume all features to have independent effects on
the target.

RPFP deals with missing values similar to additive or previous feature projection based
models, and also resolve the interactions between features by applying a partitioning
process. RPFP achieves this by applying approximations on feature projections using
only known values, and in partitioning, for a selected feature dimension along with the
partitioning occurs, by keeping missing valued instances of that feature.

5 Complexity Analysis

Since RPFP is a lazy approach, and stores all instances in the memory, a space proportional
to the whole training data is required. Given a data set with n instances and m features this
space is proportional to m.n. Again, for the training phase, the computational complexity
of projecting instances to input features, which requires a sort operation on each feature,
is O(m.n.logn). The computation of variance (O(n)) of target values for all training data
is also computed in the training phase, and it does not change the above complexity.

Taking a copy of projections for a feature requires a complexity of O(n). The com-
putation complexity of local approximation in the first step of partitioning is again O(n).
The complexity of computing local weight is also O(n), which also the total computation
complexity at first partitioning step. The partitioning at each step removes, on the aver-
age, half of the instances. For the whole partitioning process the total computation for a
single feature will be proportional to 2n since n+n/2+n/4+... =~ 2n. If we compute the
complexity for all features we obtain a complexity proportional to O(m.n), which is equal
to the complexity of KNN. If we consider situations for nominal features, this complexity
does not change much. Prediction time is even shorter for nominal features then linear
features. In the worst case where a nominal feature has two values, it requires on the
average the same complexity. The test times of the algorithms, run on the real datasets
also shows that the running test time of RPFP is proportional to KNN.

6 Comparisons of Regression Methods

In the previous sections we have described some properties and limitations of RPFP, and
made some comparisons with the other lazy approaches KNN (Mitchell, 1997) and LWR
(Atkenson, Moore & Schaal, 1997). A comparison of RPFP, KNN and LWR is summarized
in Table 1 according to important properties. A detailed overview and comparison of many
other regression techniques is also given in Uysal & Guvenir (1999a).
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Table 1: Properties of Regression Algorithms. The (/) is used for cases if the correspond-
ing algorithm handles a problem or it is advantageous in a property when compared to
others.

Properties RPFP KNN LWR
Adaptive (context sensitive) Vv Vv
Continuous at the boundaries of regions Vv V4 V4
Nominal feature types can be evaluated Vv 4

All features can be evaluated Vv

Incremental Vv 4 4
Handle strong dependencies between features Vv Vv Vv
Robust to irrelevant features 4

Local learning method Vv Vv
Memory cost is large

Robust to missing values Vv

Normalization is not required 4

Regions formed around queries overlap 4 Vv Vv
Testing cost is low

Training cost is low Vv Vv Vv

7 Empirical Evaluations

In this section empirical results of RPFP and other lazy regression methods are presented.
The accuracy performance of the regression methods is based on the prediction error of
the algorithms. Since the target values are continuous, the absolute difference between the
prediction and the true target value in the test example is used. One common measure is
mean absolute distance (MAD) (Weiss & Indurkhya, 1995; Weiss & Indurkhya, 1998). It
is the mean of absolute error found for all test examples.

Ethl |Z/t - ?Jt|
T

MAD = (23)

where T is the number of test instances.

However in order to get similar performance values for all datasets a modified version
of MAD, relative error (RE) is used in the experiments (Weiss & Indurkhya, 1995; Weiss
& Indurkhya, 1998). Relative error is the true mean absolute distance normalized by the
mean absolute distance from the mean target value. Mean target value is computed using
the training data.

B MAD

T 15T -
T Zi:1 |il/z - y|
Performance results in the experiments are reported as the average of relative errors

measured by applying 10-fold cross-validation on datasets.

RE (24)

7.1 Algorithms Used in Comparisons

In this section the properties of algorithms used in experiments are briefly described.
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7.1.1 RPFP

K is the parameter of RPFP! that defines the minimum number of instances allowed for
a region determined by the partitioning algorithm; and it is set to 10.

7.1.2 KNN

The weighted KNN? algorithm described by Mitchell (1997) is used. It performs better
than simple KNN that employs simple averaging. The instances close to the query have
larger weights, and these weights are determined by inverse squared distance. The distance
measure used is the Euclidean distance. A normalization on test and train input feature
values is applied in order to obtain values range between 0 and 1. In computing Euclidean
distance, for matching nominal values the difference is measured as 0, and for different
nominal values on a single dimension 1 is assigned.

Missing values are filled with mean values of the feature if it is continuous, or filled
with the most frequent categorical value, if feature is nominal.

7.1.3 LWR

The Weka program (Witten & Frank, 1999) is used to experiment Locally Weighted Re-
gression method. Number of nearest instances is determined to be 10 as done for KNN
and RPFP method.

7.1.4 RFP

In order to experiment whether RPFP handle interactions well, and performs better than
an additive regression approach, Regression of Feature Projection (RFP) is used in the
experiments (Guvenir & Uysal, 2000b). RFP is also a feature projection-based regression
approach, where a partitioning on the data is not enabled. We can consider it as an
additive regression method.

7.2 Real Datasets

The datasets used in the experiments are provided by Witten et.al. (1997). These data
sets are also used as benchmark datasets by Frank et.al. (1998). Characteristics of the
data sets (30 different domains) used in experiments are given in Table 2.

7.3 Accuracy

In order to measure accuracy performance of algorithms, relative errors on the real data
sets are computed. We employed 10-fold cross-validation, and computed the average
relative error of 10 different test instance sets for each data set. The relative errors of
algorithms on real data sets are shown in Table 3. The best results, smallest relative
errors, are typed in bold font. In order to compare algorithms, a pairwise comparison
is done with respect to RPFP. The results that are significantly below that of RPFP are
marked by (#) sign. On the other hand if the relative error of any algorithm is significantly
better than that of RPFP, the result is marked by (*).

The pairwise comparisons are summarized in Table 4. According to the comparisons,
RPFP is better than all three algorithms. The comparisons between LWR, KNN and

Implementations of RPFP in C code is available from authors upon request.
2K is set to 10 for all experiments, and implementation of KNN is available from authors upon request.
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Table 2: Datasets used for experiments.

Data sets Abbr. Instances  Missing Numeric =~ Nominal
values (%) attributes attributes
auto-mpg AU 398 0.2 4 3
basketball BK 96 0.0 4 0
bodyfat BD 25 0.0 14 0
bolts BL 40 0.0 7 0
breast tumor BT 286 0.3 1 8
cholesterol CL 303 0.1 6 7
cleveland (Y 303 0.1 6 7
cloud CcuU 108 0.0 4 2
cpu CH 209 0.0 6 1
echoMonths EM 131 7.5 6 3
elusage EU 59 0.0 1 1
fishcatch FC 158 6.9 5 2
fruitfly FF 125 0.0 2 2
housing HO 506 0.0 12 1
hungarian HG 294 19.4 6 7
longley LO 16 0.0 6 0
lowbwt LW 189 0.0 2 7
mbagrade MB 61 0.0 1 1
pbc PB 418 15.6 10 8
pharynx PH 195 0.1 1 10
pollution PO 60 0.0 15 0
pwLinear PW 200 0.0 10 0
quake QU 2178 0.0 3 0
schlvote SV 38 0.4 4 1
sensory SN 376 0.0 0 11
Servo SE 167 0.0 0 4
sleep SL 57 2.0 7 0
strike ST 625 0.0 5 1
veteran VE 137 0.0 3 4
vineyard VY 52 0.0 3 0

RFP can also be seen in the table, and these results do not show significant differences
among them. Accordingly, LWR is better than RFP and worse than KNN, and RFP is
better than KNN. These results also show that RPFP is much better than RFP, which
is an additive regression method. This result shows the ability of RPFP in handling
interactions between features.

In order to obtain a summary of the relative errors of the algorithms, average values
on all the data sets are computed and shown in Table 5. The average errors shows that,
RPFP has the smallest value, 0.74. In order to make a better comparison of the averages,
and to prevent the effect of high values in the results (e.g. the error of LWR on PO data
set, 3.89), a new average is computed using some of data sets, where all of the algorithms
have results below 1, and where all algorithms accomplish a useful performance. These
averages also do not change the relative performance comparisons. Consequently, the
average error of RPFP is smaller than all others, and standard deviation values show
that RPFP, KNN and RFP are robust to domain differences, which show the domain
independent characteristic of RPFP.

The robustness of RPFP to missing values, irrelevant features and noise were also
determined with an earlier study by using real data sets of Bilkent Function Approximation
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Table 3: Relative Errors of Algorithms. Best results are typed with bold font.The results
that are significantly below that of RPFP are marked by (#) sign. On the other hand if
the relative error of any algorithm is significantly better than that of RPFP, the result is
marked by (*).

Data Sets RPFP LWR KNN RFP

AU 034 048 # 0.32 0.43 #
BK 0.88 098 # 096 # 0.96#
BD 0.06 0.16 # 031 # 041 #
BL 039 0.18 * 053 # 0.36*
BT 0.96 161 # 121 # 0.98

CL 0.99 331 # 1.09 # 1.04#
cv 0.77 135 # 0.62 * 0.90 #
CcU 051  0.44 * 058 # 0.50

CH 036  0.26 * 027 * 051 #
EM 0.75 082 # 0.69 * 0.8 #
EU 0.50 059 # 054 # 0.50

FC 034  0.31 * 063 # 0.53#
FF 1.00 126 # 134 # 1.05#
HO 0.60  0.66 # 0.59 0.78 #
HG 062  1.08 # 0.52 * 1.22#
LO 026  0.18 * 042 # 0.29#
LW 2.00 0.93 * 184 * 1.35%
MB 126  0.88 * 137 # 1.12%
PB 1.03 217 # 1.01 0.93 *
PH 0.84 093 # 0.82 0.93 #
PO 0.73 389 # 0.67 * 0.77%
PW 058  0.57 0.48 * 0.74 #
QU 0.99 114 # 112 # 1.00

SV 0.68 121 # 083 # 0.82#
SN 1.03 144 # 1.04 1.02

SE 045 0.28 * 032 * 0.66 #
SL 0.96  0.99 0.87 * (.88 *
ST 0.86  0.78 * 094 # 0.86

VE 0.77 117 # 093 # 0.85#
VY 069  0.56 * 0.68 0.75 #

Repository (Guvenir & Uysal, 2000a). These experiments also shows that RPFP show
better performance on real data sets, when compared to eager algorithms of machine
learning literature, and statistics (Uysal, 2000).

7.4 Interactions

RPFP handles interactions in a similar way other eager partitioning approaches work, by
partitioning the instance space. The best way to show how partitioning in RPFP handles
interactions and generally increase accuracy for datasets having interactions is to compare
it with its additive version. All other algorithms compared in the previous sections have
this property. The following experiment show that RPFP also has this property as other
eager partitioning algorithms.

The additive version of RPFP is obtained by excluding the partitioning from RPFP al-
gorithm and simply by combining the feature predictions and obtaining the final prediction
after the first step.
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Table 4: Pairwise comparison of RPFP with LWR, KNN and RFP. In 18 of the data sets,
RPFP is better than LWR and RFP.

RPFP LWR KNN RFP

RPFP - 18 15 18
LWR 10 - 11 14
KNN 9 16 - 12
RFP 6 13 14 -

Table 5: Average relative errors of algorithms and their standard deviations. Standard
deviation values show that RPFP, KNN and RFP are robust to difference domains

RPFP LWR KNN RFP
Average 0.74 1.02 0.78 0.80
Stand. Dev. 0.37 0.85 0.37  0.26
Average (< 1) 0.56 0.72 0.59 0.65
Stand.Dev.(< 1) 025 0.84 022 021

The experiment is done with a simple artificial dataset having two interacting features
and 100 instances formed as shown in Figure 5. Here z1 and x2 are the input features and
y is the target. The featurexl takes binary values and z2 and y take continuous values
from 0 to 50. The relative error of RPFP on this data set is 0.31, which is much smaller
than that of additive RPFP, whose relative error is 1.35.

8 Conclusions

In this paper we have presented a new regression method RPFP. It is an instance-based,
non-parametric, nonlinear, context-sensitive, and local supervised learning method based
on feature projections. It achieves higher accuracy especially when compared to the well-
known lazy approaches, KNN and LWR. The main drawback of RPFP is the lack of
interpretation and its high prediction time, which is smaller than LWR, comparable to
that of KNN and worse than that of RFP.

Further research for RPFP can be directed to overcome its limitations, such that inter-
pretation can be enabled by determining relative importance of features, and interactions

50 ‘ ‘ ‘
40 \ -
30
20

10 x1=0

x2

Figure 5: Artificial data set. x1 and x2 are input features.

20



between them. Another study can be done to measure performance of RPFP, when it is
modified for classification tasks. Incorporating domain knowledge for stand-alone applica-
tions where explicit domain knowledge is available and incorporating misclassification cost
for domains where a cost function is available can also be considered for further research.
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