BU-CE-0012

AN EAGER REGRESSION METHOD BASED ON SELECTING
APPROPRIATE FEATURES"

Tolga Aydin and H.Altay Giivenir

Department of Computer Engineering
Bilkent University
Ankara, 06533, TURKEY

Abstract. This paper describes a machine learning method, called
Regression by Selecting Best Features (RSBF). RSBF consists of
two phases: The first phase aims to find the predictive power of each
feature attribute by constructing simple linear regression lines, one
per each continuous feature and number of categories per each
categorical feature. Although the predictive power of a continuous
feature is constant, it varies for each distinct value of categorical
features. The second phase constructs multiple linear regression lines
among continuous features, each time excluding the worst feature
among the current set, and constructs multiple linear regression lines.
Finally, these multiple linear regression lines and categorical
features’ simple linear regression lines are sorted according to their
predictive power. In the querying phase of learning, the best linear
regression line and the features constructing that line are selected to
make predictions.

Keywords: Prediction, Feature Projection, Regression.

1 INTRODUCTION

Prediction has been one of the most common problems researched in data mining
and machine learning. Predicting the values of categorical features is known as
classification, whereas predicting the values of continuous features is known as
regression. From this point of view, classification can be considered as a
subcategory of regression. In machine learning, much research has been performed
for classification. But, recently the focus of researchers has moved towards
regression, since many of the real-life problems can be modeled as regression
problems.

There are two different approaches for regression in machine learning
community: Eager and lazy learning. Eager regression methods construct rigorous
models by using the training data, and the prediction task is based on these models.
The advantage of eager regression methods is not only the ability to obtain the
interpretation of the underlying data, but also the reduced query time. On the other
hand, the main disadvantage is their long train time requirement. Lazy regression
methods, on the other hand, do not construct models by using the training data.
Instead, they delay all processing to prediction phase. The most important
disadvantage of lazy regression methods is the fact that, they do not provide an

" This research is supported, in part, by TUBITAK (Scientific and Technical Research Council of
Turkey) under Grant 198E015

interpretable model of the training data, because the model is usually the training
data itself. It is not a compact description of the training data, when compared to
the models constructed by eager regression methods, such as regression trees and
rule based regression.

In the literature, many eager and lazy regression methods exist. Among
eager regression methods, CART [1], RETIS [7], M5 [5], DART [2], and Stacked
Regressions [9] induce regression trees, FORS [6] uses inductive logic
programming for regression, RULE [3] induces regression rules, and MARS [8]
constructs mathematical models. Among lazy regression methods, kNN [4, 10] is
the most popular nonparametric instance-based approach.

In this paper, we describe an eager learning method, namely Regression by
Selecting Best Features (RSBF). This method makes use of the linear least squares
regression.

A preprocessing phase is required to increase the predictive power of the
method. According to the Chebyshev’s result [13], for any positive number %, at
least (1 — 1/k*) * 100% of the values in any population of numbers are within k
standard deviations of the mean. We find the standard deviation of the target values
of the training data, and discard the training data whose target value is not within k&
standard deviations of the mean target. Empiricaly, we reach the best prediction by
taking k as /2.

In the first phase, RSBF constructs projections of the training data on each
feature, and this phase continues by constructing simple linear regression lines, one
per each continuous feature and number of categories per each categorical feature.
Then, the simple linear regression lines belonging to continuous features are sorted
according to their prediction ability. The second phase begins by constructing
multiple linear regression lines among continuous features, each time excluding the
worst feature among the current set, and continues by constructing multiple linear
regression lines. Then these multiple linear regression lines together with
categorical features’ simple linear regression lines are sorted according to their
predictive power. In the querying phase of learning, the target value of a query
instance is predicted using the linear regression line, multiple or simple, having the
minimum relative error, i.e. having the maximum predictive power. If this linear
regression line is not suitable for our query instance, we keep searching for the best
linear regression line among the ordered list of linear regression lines.

In this paper, RSBF is compared with three eager (RULE, MARS, DART)
and one lazy method (kNN) in terms of predictive power and computational
complexity. RSBF is better not only in terms of predictive power but also in terms
of computational complexity, when compared to these well-known methods. For
most data mining or knowledge discovery applications, where very large databases
are in concern, this is thought of a solution because of low computational
complexity. Again RSBF is noted to be powerful in the presence missing feature
values, target noise and irrelevant features.

In Section 2, we review the ANN, RULE, MARS and DART methods for
regression. Section 3 gives a detailed description of the RSBF. Section 4 is devoted
to the empirical evaluation of RSBF and its comparison with other methods.
Finally, in Section 5, conclusions are presented.

2 REGRESSION OVERVIEW

kNN is the most commonly used lazy method for both classification and regression
problems. The underlying idea behind the ANN method is that the closest instances
to the query point have similar target values to the query. Hence, the kNN method
first finds the closest instances to the query point in the instance space according to
a distance measure. Generally, the Euclidean distance metric is used to measure the
similarity between two points in the instance space. Therefore, by using Euclidean
distance metric as our distance measure, k closest instances to the query point are
found. Then kNN outputs the distance-weighted average of the target values of
those closest instances as the prediction for that query instance.

In machine learning, inducing rules from a given train data is also popular.
Weiss and Indurkhya adapted the rule-based classification algorithm [11], Swap-1,
for regression. Swap-1 learns decision rules in Disjunctive Normal Form (DNF).
Since Swap-1 is designed for the prediction of categorical features, using a
preprocessing procedure, the numeric feature in regression to be predicted is
transformed to a nominal one. For this transformation, the P-class algorithm is used
[3]. If we let {y} be a set of output values, this transformation can be regarded as a
one-dimensional clustering of training instances on response variable y, in order to
form classes. The purpose is to make y values within one class similar, and across
classes dissimilar. The assignment of these values to classes is done in such a way
that the distance between each y; and its class mean must be minimum. After
formation of pseudo-classes and the application of Swap-1, a pruning and
optimization procedure can be applied to construct an optimum set of regression
rules.

MARS [8] method partitions the training set into regions by splitting the
features recursively into two regions, by constructing a binary regression tree.
MARS is continuous at the borders of the partitioned regions. It is an eager,
partitioning, interpretable and an adaptive method.

DART, also an eager method, is the latest regression tree induction program
developed by Friedman [12]. It avoids limitations of disjoint partitioning, used for
other tree-based regression methods, by constructing overlapping regions with
increased training cost.

3 REGRESSION BY SELECTING BEST FEATURES (RSBF)

RSBF method tries to determine a subset of the features such that this subset consists of
the best features. The next subsection describes the training phase for RSBF, then
we describe the querying phase.

3.1 Training

Training in RSBF begins simply by storing the training data set as projections to
each feature separately. A copy of the target values is associated with each
projection and the training data set is sorted for each feature dimension according
to their feature values. If a training instance includes missing values, it is not
simply ignored as in many regression algorithms. Instead, that training instance is
stored for the features on which its value is given. The next step involves

constructing the simple linear regression lines for each feature. This step differs for
categorical and continuous features. In the case of continuous features, exactly one
simple linear regression line per feature is constructed. On the other hand, the
number of simple linear regression lines per each categorical feature is the number
of distinct feature values at the feature of concern. For any categorical feature, the
parametric form of any simple regression line is constant, and it is equal to the
average target value of the training instances whose corresponding feature value is
equal to that categorical value.

The training phase continues by constructing multiple linear regression
lines among continuos features, each time excluding the worst one. Then these
lines, together with categorical features’ simple linear regression lines are sorted
according to their predictive power. The training phase can be illustrated through
an example.

Let our example domain consist of five features, f, f>, f3, fa and fs, where fi,
f>. and f3 are continuous and fi, fs are categorical. For categorical features,
No_categories [f] is defined to give the number of distinct categories of feature f.
In our example domain, let the following values be observed:

No_categories [f;] =2 (values: A, B)
No_categories [fs] = values: X, Y,

For this example domain, 8 simple linear regression lines are constructed: 1
for fi, 1 for f>, 1 for f3. 2 for fi, and finally 3 for f5. Let the following be the
parametric form of the simple linear regression lines:

Simple linear regression line for f;: target = 2f; - 5

Simple linear regression line for f,: target = -4f, + 7

Simple linear regression line for f3: target = 5f3 + 1

Simple linear regression line for A category of f4: target =6
Simple linear regression line for B category of f;: target = -5
Simple linear regression line for X category of fs: target = 10
Simple linear regression line for Y category of fs: target =1
Simple linear regression line for Z category of f5: target = 12

The training phase continues by sorting the simple linear regression lines
belonging to continuous features according to their predictive accuracy. The
relative error (RE) of the regression lines is used as the indicator of predictive
power: the smaller the RE, the stronger the predictive power. The RE of a simple
linear regression line is computed by the following formula:

RE = MAD

1 Lo
-)= |
E: lt(q;)—t

where Q is the number of training instances used to construct the simple linear
regression line, r is the median of the target values of Q training instances, #(q;) is
the actual target value the i training instance The MAD (Mean Absolute Distance)
is defined as follows:

0
MAD = LY g,)-itg,)

i=l1

Here, 7 (g;) denotes the predicted target value of the i training instance according
to the induced simple linear regression line.

Let’s assume that continuous features are sorted as f5, f3, fi according to
their predictive power. The second step of training phase begins by employing
multiple linear least squares regression on all 3 features. The output of this process
is a multiple linear regression line involving contributions of all three features. This
line is denoted by MLRL,,3 . Then we exclude the worst feature, namely f;, and
run multiple linear least squares regression to obtain MLRL, 3 In the final step, we
exclude the next worst feature of the current set, namely f3, and obtain MLRL,.
Actually the multiple linear least squares regression transforms into simple linear
least squares regression in the final step, since we deal with exactly one feature.
Let the following be the parametric form of the multiple linear regression lines:

MLRL,,5 : target=-fi + 8/ +f3+3
MLRL,; : target=6f, + 6f;-9
MLRL, : target=-4f,+7

The second phase of training is completed by sorting MLRLs together with
categorical features’ simple linear regression lines according to their predictive
power, the smaller the RE of a regression line, the stronger the predictive power of
that regression line.

Let’s suppose that the linear regression lines are sorted in the following
order, from the best predictive to the worst one:

MLRl/Z’3 > f4=A > MLRL, > f5=X > MLRL1’2’3 > f5=Y > f5=Z > f4=B.

This shows that any categorical feature’s predictive power may vary
among its categories. For the above sorting schema, categorical feature fi ’s
predictions are reliable among its category A, although it is very poor among
category B.

3.2 Querying

In order to predict the target value of a query instance #, the RSBF method
uses exactly one linear regression line. This line may not always be the best one.
The reason for this situation is explained via an example. Let the feature values of
the query instance #; be as the following:

fl(ti) = 5, fz(ti) = 10, f3(ti) = missing, f4(ti) =B, f5(ti) = miSSil‘lg

Although the best linear regression line is MLRL, 3 , this line can not be used
for our 4, since f3(#;) = missing. The next best linear regression line, which is worse
than only MLRL, 3, is f4=A. This line is also inappropriate for our ¢, since, f4(#;) #
A. Therefore, the search for the best linear regression line, continues. The line

constructed by f, comes next. Since f»(#;) # missing, we succeed in finding the best
linear regression line. So the prediction made for target value of #; is (-4 * fo(t;) + 7)
= (-4 * 10 + 7) = -33. Once the appropriate linear regression line is found,
remaining linear regression lines need not be dealed anymore.

4 EMPIRICAL EVALUATION

RSBF method was compared with the other well-known methods mentioned
above, in terms of predictive accuracy and time complexity. We have used a
repository consisting of 27 data files in our experiments. The characteristics of the
data files are summarized in Tablel. Most of these data files are used for the
experimental analysis of function approximation techniques and for training and
demonstration by machine learning and statistics community.

10 fold cross-validation technique was employed in the experiments. For
lazy regression method k parameter was taken as 10, where k denotes the number
of nearest neighbors considered around the query instance.

In terms of predictive accuracy, RSBF performed the best on 13 data files
among the 27, and obtained the lowest mean relative error. (Table 2)

In terms of time complexity, RSBF performed the best in the total
(training + querying) execution time, and became the fastest method. (Table 3, 4)

In machine learning, it is very important for an algorithm to still perform
well when noise, missing featute value and irrelevant features are added to the
system. Experimental results showed that RSBF was again the best method
whenever we added %20 target noise, %20 missing feature value and 30 irrelevant
features to the system. RSBF performed the best on 12 data files in the presence of
%20 missing value, the best on 21 data files in the presence of %20 target noise
and the best on 11 data files in the presence of 30 irrelevant features. (Table 5, 6, 7)

5 CONCLUSIONS

In this paper, we have presented an eager regression method based on selecting
appropriate features. RSBF selects the best feature(s) and forms a parametric
model for use in querying phase. This parametric model is either a multiple linear
regression line involving the contribution of continuous features, or a simple linear
regression line of a categorical value of any categorical feature. The multiple linear
regression line reduces to a simple linear regression line, if exactly one continuous
feature constructs the multiple linear regression line.

RSBF is better than other well-known eager and lazy regression methods in
terms of prediction accuracy and computational complexity. It also enables the
interpretation of the training data. That is, the method clearly states the most
appropriate features that are powerful enough to determine the value of the target
feature.

The robustness of any regression method can be determined by analyzing
the predictive power of that method in the presence of target noise, irrelevant
features and missing feature values. These three factors heavily exist in real life
databases, and it is important for a learning algorithm to give promising results in
the presence of those factors. Empirical results indicate that RSBF is also a robust
method.

Tablel.Characteristics of the data files used in the empirical evaluations. C: Continuous, N: Nominal

Dataset Original Name Instances Features Missing
(C+N) Values
AB Abalone 4177 8(7+1) None
Al Airport 135 44+0) None
AU Auto-mpg 398 76+1) 6
BA Baseball 337 16 (16 +0) None
BU Buying 100 39 (39+0) 27
CL College 236 25(25+0) 381
(6] Country 122 20 (20 +0) 34
CpP Cpu 209 7(1 +6) None
EL Electric 240 12 (10+2) 58
FA Fat 252 17 (17 +0) None
FI Fishcatch 158 706+1) 87
FL Flare2 1066 10 (0 + 10) None
FR Fruitfly 125 43+1) None
GS Gss2 1500 43 (43 +0) 2918
HO Home Run Race 163 19 (19 +0) None
HU Housing 506 13(12+1) None
NO Normal Temp. 130 212+0) None
NR Northridge 2929 10 (10 +0) None
PL Plastic 1650 22+0) None
PO Poverty 97 6(5+1) 6
RE Read 681 2524 +1) 1097
SC Schools 62 19 (19 +0) 1
SE Servo 167 40+4) None
ST Stock Prices 950 909 +0) None
TE Televisions 40 44 +0) None
UN Usnews Coll. 1269 31(31+0) 7624
VL Villages 766 32 (29 +3) 3986

Table2. Relative errors of algorithms + standard deviation of 10 folds. Best REs are shown in bold font

Dataset RSBF KNN RULE MARS DART
AB 0.678 + 0.06 0.661 + 0.07 0.899 + 0.15 0.683 + 0.17 0.678 + 0.09
Al 0.532 + 0.19 0.612 + 0.25 0.744 + 0.24 0.720 + 0.58 0.546 + 0.15

AU 0.413 + 0.09 0.321 + 0.10 0.451 + 0.15 0.333 + 0.10 0.346 + 0.13
BA 0.570 + 0.04 0.443 + 0.05 0.666 + 0.12 0.493 + 0.06 0.508 + 0.07
BU 0.732 + 0.26 0.961 + 0.09 0.946 + 0.33 0.947 + 0.38 0.896 + 0.30
CL 1.554 + 2.34 0.764 + 0.33 0.290 + 0.23 1.854 + 4.51 0.252 + 0.06
CO 1.469 + 0.43 1.642 + 0.66 6.307 + 5.33 5.110 + 3.93 1.695 + 0.83
CpP 0.606 + 0.35 0.944 + 0.57 0.678 + 0.39 0.735 + 0.35 0.510 + 0.22

EL 1.020 + 0.03 1.194 + 0.16 1.528 + 0.41 1.066 + 0.09 1.118 + 0.08
FA 0.177 + 0.13 0.785 + 0.08 0.820 + 0.19 0.305 + 0.29 0.638 + 0.10
FI 0.638 + 0.37 0.697 + 0.51 0.355 + 0.31 0.214 + 0.18 0.415 + 0.41
FL 1.434 + 0.21 2.307 + 0.71 1.792 + 0.53 1.556 + 0.32 1.695 + 0.47
FR 1.013 + 0.05 1.201 + 0.23 1.558 + 0.56 1.012 + 0.05 1.077 + 0.12

GS 0.461 + 0.17 0.654 + 0.08 0.218 + 0.11 0.359 + 0.10 0.410 + 0.20
HO 0.707 + 0.15 0.907 + 0.17 0.890 + 0.20 0.769 + 0.13 0.986 + 0.17
HU 0.589 + 0.13 0.600 + 0.12 0.641 + 0.18 0.526 + 0.17 0.522 + 0.16
NO 0.977 + 0.10 1.232 + 0.31 1.250 + 0.48 1.012 + 0.07 1.112 + 0.21
NR 0.938 + 0.15 1.034 + 0.16 1.217 + 0.24 0.928 + 0.17 0.873 + 0.23
PL 0.444 + 0.02 0.475 + 0.05 0.477 + 0.05 0.404 + 0.03 0.432 + 0.03
PO 0.715 + 0.25 0.796 + 0.72 0.916 + 0.43 1.251 + 1.69 0.691 + 0.34
RE 1.001 + 0.03 1.062 + 0.05 1.352 + 0.08 1.045 + 0.05 1.189 + 0.12
SC 0.175 + 0.05 0.388 + 0.13 0.341 + 0.16 0.223 + 0.19 0.352 + 0.12
SE 0.868 + 0.06 0.619 + 0.16 0.229 + 0.10 0.432 + 0.13 0.337 + 0.13

ST 1.101 + 1.21 0.599 + 0.46 0.906 + 1.30 0.781 + 0.64 0.754 + 0.62
TE 1.175 + 0.78 1.895 + 2.56 4.195 + 9.44 7.203 + 12.8 2.690 + 2.92
UN 0.385 + 0.03 0.480 + 0.03 0.550 + 0.05 0.412 + 0.07 0.623 + 0.08
VL 0.930 + 0.08 1.017 + 0.12 1.267 + 0.18 1.138 + 0.32 1.355 + 0.27
Mean 0.789 0.900 1.166 1.167 0.841

Table 3. Train time of algorithms in milliseconds. Best results are shown in bold font

Dataset RSBF KNN RULE MARS DARIT
AB 211.5 8.9 3219 10270 477775
Al 2 0 90.8 159.2 62

AU 12.5 0.6 248.9 570.5 1890.1
BA 35.3 0 181.8 915.1 3171.1
BU 45.5 0 67.1 761.7 794.4
CL 34.1 0.5 148.2 12743 7176
CO 17.9 0.1 108.6 475.3 481

CP 6.3 0 52.7 5753 286
EL 13.3 0.2 69.5 407.5 1017
FA 36.4 0 161.1 985 1773.9
FI 4.2 0 47.8 240.2 201.4
FL 40.8 3.5 108.8 667.2 9714
FR 1 0 34.1 99.5 459
GS 691.1 13.5 862.8 10143.9 27266
HO 19 0 57.5 616.3 893.9
HU 36.3 1 264.9 1413.9 8119.7
NO 0.2 0 30.6 69.3 18.9
NR 189.9 7.4 3493 5709.9 87815
PL 13.7 0.2 175.3 824.8 10024.4
PO 2.1 0 40.9 127.3 44

RE 104.3 3 196 2744.6 33044.6
SC 8.1 0 45.3 260.8 84.4
SE 2.2 0 37 116.4 834
ST 57.1 14 365.1 2281.4 17346.4
TE 0.2 0 30.9 31.1 3.1

UN 245 7.4 2547.1 8435.2 168169
VL 136.8 4.4 513.6 3597.8 23405
Mean 72.84 1.9296 488.83 1991.61 32055.7

Table 4. Query time of algorithms in milliseconds. Best results are shown in bold font

Dataset RSBF KNN RULE MARS DART
AB 213 6547 144331 7.9 6.1
AL 1 3.4 1417 0 0
AU 2.1 645 4622 0 0
BA 2.2 546 2448 0 0
BU 0 1.6 321 0 0
CL 1 382 403 1 0
Cco 0.3 8.4 984 0 0.1
cP 1 1.6 873 0 0
EL 1.6 21 1175 0 0
FA 1.4 331 964 0 0
FI 1.2 7.9 488 0 0
FL 4.2 4078 2236 04 0
FR 0.1 2 454 0 0
GS 8.1 2699.7 3123 2.7 1.7
HO 06 133 43 0 0
HU 3 1078 4105 0 0
NO 0 1.9 308 0 0
NR 126 33994 113268 4.7 1.75
PL 9.5 5719 21927 0.2 1.2
PO 0 2.2 37.. 0 0
RE 3.2 2656 6272 0 1
SC 0.3 2 278 3.7 0
SE 0.1 4.2 49.1 0 0
ST 5.4 3032 1090.9 0.1 0
TE 0 0 24 0 0
UN 7.3 13832 1877.3 7 2
VL 5.8 439 11182 0.3 0
Mean 3.456 607.574 1305.16 1.03704 0.513

TableS. Relative errors of algorithms + standard deviation of 10 folds, where 20% missing feature value are
added. Best REs are shown in bold font. (¥ means result isn’t available due to singular variance/covariance matrix)

Dataset RSBF KNN RULE MARS DART

AB 0.720 + 0.05 0.750 + 0.08 0.961 + 0.18 0.748 + 0.10 0.688 + 0.08
Al 0.496 + 0.17 0.726 + 0.27 0.676 + 0.30 0.798 + 0.41 0.546 + 0.21
AU 0.499 + 0.11 0.414 + 0.15 0.526 + 0.18 0.414 + 0.14 0.363 + 0.10
BA 0.714 + 0.07 0.553 + 0.07 0.833 + 0.11 0.637 + 0.09 0.576 + 0.05
BU 0.682 + 0.20 0.951 + 0.10 0.878 + 0.21 0.862 + 0.27 1.026 + 0.29
CL 0.622 + 0.54 0.942 + 0.38 0.399 + 0.16 0.801 + 0.50 0.435 + 0.16
CO 1.399 + 0.51 1.856 + 1.13 3.698 + 3.55 3.733 + 1.89 2.377 + 1.61
CpP 0.719 + 0.34 0.922 + 0.47 0.832 + 0.34 0.747 + 0.34 0.608 + 0.23
EL 1.019 + 0.03 1.097 + 0.09 1.537 + 0.31 1.073 + 0.13 1.191 + 0.14
FA 0.739 + 0.11 0.849 + 0.10 0.948 + 0.17 0.731 + 0.32 0.735 + 0.09
FI 0.631 + 0.30 0.675 + 0.43 0.543 + 0.38 0.537 + 0.46 0.401 + 0.50
FL 1.429 + 0.20 1.851 + 0.46 1.751 + 0.40 1.557 + 0.30 1.421 + 0.13
FR 1.034 + 0.07 1.711 + 1.42 1.557 + 0.32 1.012 + 0.05 1.347 + 0.37
GS 0572+ 0.12 0.743 + 0.07 0.497 + 0.17 0.595 + 0.13 0.536 + 0.11
HO 0.725 + 0.19 0.910 + 0.14 1.040 + 0.25 0.836 + 0.13 0.974 + 0.17
HU 0.729 + 0.10 0.761 + 0.19 0.748 + 0.22 0.649 + 0.20 0.590 + 0.19
NO 1.006 + 0.08 1.229 + 0.22 1.363 + 0.28 0.989 + 0.02 1.222 + 0.18
NR 0.951 + 0.14 1.072 + 0.16 1.272 + 0.24 0.972 + 0.18 *

PL 0.515 + 0.02 0.733 + 0.05 0.686 + 0.04 0.679 + 0.02 0.420 + 0.03
PO 0.767 + 0.26 0.976 + 0.76 1.189 + 0.83 1.026 + 0.80 0.792 + 0.42
RE 0.995 + 0.03 1.059 + 0.02 1.364 + 0.14 1.048 + 0.05 1.229 + 0.10
SC 0.281 + 0.14 0.449 + 0.13 0.500 + 0.18 0.303 + 0.08 0.370 + 0.10
SE 0.879 + 0.08 0.921 + 0.32 0.849 + 0.46 0.746 + 0.21 0.495 + 0.15
ST 1.228 + 0.93 0.744 + 0.54 0.904 + 0.53 0.930 + 0.71 0.707 + 0.49
TE 1.408 + 0.86 4.398 + 7.76 3.645 + 6.07 16.50 + 30.3 2.512 + 2.99
UN 0.388 + 0.04 0.558 + 0.03 0.620 + 0.05 0.497 + 0.04 0.844 + 0.15
VL 0.947 + 0.07 1.056 + 0.12 1.410 + 0.32 1.090 + 0.29 *

Mean 0.818 1.071 1.157 1.500 0.896

Table6. Relative errors of algorithms + standard deviation of 10 folds, where 20% target noise are added.
Best REs are shown in bold font.

Dataset RSBF KNN RULE MARS DART

AB 0.726 + 0.10 7.592 + 2.46 9.301 + 2.27 7.602 + 2.57 6.603 + 1.83
Al 0.906 + 0.40 0.807 + 0.28 1.122 + 0.46 0.856 + 0.20 0.785 + 0.23
AU 0.398 + 0.09 1.832 + 0.66 2.531 + 1.32 2.107 + 0.48 1.981 + 0.51
BA 0.675 + 0.03 0.457 + 0.05 0.712 + 0.10 0.537 + 0.08 0.556 + 0.11
BU 0.935 + 0.47 12.66 + 4.88 12.92 + 9.44 13.30 + 5.14 10.67 + 5.39
CL 0.834 + 1.38 8.283 + 2.38 11.24 + 2.51 9.393 + 2.69 6.127 + 3.13

CO 1.702 + 0.48 1.676 + 0.53 3.102 + 2.05 5.874 + 7.16 2.040 + 1.06
CP 0.720 + 0.30 0.930 + 0.48 0.782 + 0.33 0.745 + 0.44 0.636 + 0.33

EL 0.995 + 0.05 1.465 + 0.30 1.899 + 0.64 1.148 + 0.17 1.431 + 0.34
FA 0.170 + 0.10 2.525 + 0.56 3.208 + 1.48 2.447 + 0.61 2.058 + 0.54
FI 0.653 + 0.33 0.710 + 0.46 0.528 + 0.30 0.501 + 0.27 0.387 + 0.12
FL 2.366 + 0.65 73.89 + 31.4 77.21 + 26.6 70.90 + 23.5 71.40 + 30.3
FR 1.036 + 0.10 2.394 + 1.40 3.247 + 3.23 1.710 + 0.50 2.089 + 1.71
GS 0.430 + 0.15 2.166 + 0.40 2.384 + 0.67 2.164 + 0.41 2.276 + 0.82
HO 0.754 + 0.17 7.853 + 1.88 11.53 + 9.88 10.29 + 7.82 6.115 + 2.34

HU 0.575 + 0.19 2.801 + 1.53 3.635 + 2.45 2.893 + 1.56 2.611 + 1.64
NO 0.909 + 0.16 1.403 + 0.60 2.220 + 0.63 1.037 + 0.16 1.196 + 0.35
NR 0.947 + 0.25 38.84 + 10.9 42.32 + 12.0 37.66 + 9.65 31.54 £+ 11.0

PL 0.411 + 0.03 5.492 + 0.52 5.777 + 0.68 4.921 + 0.21 5.107 + 0.30
PO 0.692 + 0.45 9.429 + 153 9.456 + 16.3 4.213 + 2.05 6.038 + 9.83
RE 0.958 + 0.05 6.597 + 1.62 10.33 + 4.09 6.759 + 1.07 7.108 + 1.62
SC 0.533 + 0.27 0.583 + 0.26 0.968 + 0.84 0.700 + 0.37 0.627 + 0.30
SE 0.697 + 0.23 21.29 + 6.10 27.77 + 13.5 22.01 + 8.98 21.72 + 9.32

ST 0.646 + 0.53 1.921 + 1.27 3.887 + 3.03 1.966 + 1.43 1.871 + 1.26
TE 1.747 + 1.35 2.087 + 2.76 4.569 + 6.64 7.267 + 10.7 2.671 + 2.20
UN 0.634 + 0.06 0.636 + 0.04 0.865 + 0.06 0.541 + 0.05 0.764 + 0.09
VL 0.976 + 0.14 1.030 + 0.23 1.513 + 0.38 0.977 + 0.15 1.518 + 0.53

Mean 0.853 8.050 9.446 8.167 7.331

Table7. Relative errors of algorithms + standard deviation of 10 folds, where 30 irrelevant features are added.
Best REs are shown in bold font. (* means result isn’t available due to singular variance/covariance matrix)

Dataset RSBF KNN RULE MARS DART
AB 0.677 + 0.06 0.873 + 0.06 0.934 + 0.17 0.682 + 0.17 *
Al 0.794 + 0.28 1.514 + 0.78 0.723 + 0.37 0.682 + 0.29 0.657 + 0.30

AU 0.429 + 0.08 0.538 + 0.13 0.491 + 0.19 0.368 + 0.12 0.511 + 0.19
BA 0.603 + 0.03 0.568 + 0.07 0.574 + 0.09 0.536 + 0.05 0.628 + 0.07

BU 1.325 + 0.68 0.968 + 0.07 1.073 + 0.57 0.877 + 0.50 0.969 + 0.35
CL 1.111 + 2.00 1.162 + 0.60 0.284 + 0.13 2.195 + 5.52 0.306 + 0.08
CO 2.119 + 1.02 2.854 + 1.12 1.794 + 0.67 4.126 + 2.69 1.662 + 0.74
CpP 0.676 + 0.39 1.107 + 0.20 0.753 + 0.37 0.613 + 0.26 0.668 + 0.29
EL 1.010 + 0.12 1.037 + 0.06 1.367 + 0.35 1.134 + 0.16 1.236 + 0.22
FA 0.204 + 0.13 1.026 + 0.10 1.039 + 0.30 0.249 + 0.16 0.877 + 0.06
FI 0.694 + 0.36 0.917 + 0.24 0.456 + 0.42 0.247 + 0.23 0.420 + 0.37
FL 1.429 + 0.21 1.454 + 0.27 1.765 + 0.37 1.629 + 0.31 1.490 + 0.26
FR 1.096 + 0.18 1.063 + 0.14 1.513 + 0.42 1.777 + 0.76 1.430 + 0.35
GS 0.461 + 0.17 0.802 + 0.04 0.268 + 0.09 0.404 = 0.09 0.573 + 0.23
HO 0.800 + 0.19 0.932 + 0.13 1.049 + 0.22 0.847 + 0.21 1.165 + 0.26
HU 0.601 + 0.12 0.920 + 0.26 0.701 + 0.19 0.521 + 0.17 0.653 + 0.23
NO 1.070 + 0.14 1.079 + 0.06 1.484 + 0.41 1.370 + 0.34 1.156 + 0.15
NR 0.938 + 0.14 1.076 + 0.17 1.284 + 0.26 0.916 + 0.16 *

PL 0.450 + 0.02 0.961 + 0.02 0.575 + 0.05 0.407 + 0.03 0.734 + 0.06
PO 0.838 + 0.43 0.855 + 0.24 0.934 + 0.39 1.005 + 0.65 1.013 + 0.51

RE 1.014 + 0.02 1.045 + 0.04 1.380 + 0.12 1.042 + 0.06 1.311 = 0.10
SC 0.672 + 0.63 0.582 + 0.16 0.386 + 0.18 0.305 + 0.26 0.391 = 0.14
SE 1.036 + 0.05 0.835 + 0.15 0.471 + 0.24 0.798 + 0.28 0.641 + 0.14
ST 1.104 + 1.21 1.188 + 0.79 0.914 + 1.28 0.817 + 0.58 0.756 + 0.60
TE 2,222 + 1.59 3.241 + 3.60 5.572 + 9.31 5614 + 11.3 2.709 + 2.94
UN 0.385 + 0.03 0.757 + 0.03 0.557 + 0.06 0.394 + 0.04 0.906 + 0.15
VL 0.930 + 0.08 1.050 + 0.15 1.454 + 0.25 1.257 + 0.45 1.307 = 0.16
Mean 0.914 1.126 1.104 1.141 0.967
References
[1] Breiman, L, Friedman, J H, Olshen, R A and Stone, C J ‘Classification and
Regression Trees’ Wadsworth, Belmont, California (1984)

[2] Friedman, J H ‘Local Learning Based on Recursive Covering’ Department of
Statistics, Stanford University

[3] Weiss, S and Indurkhya, N ‘ Rule-based Machine Learning Methods for Functional
Prediction’ Journal of Artificial Intelligence Research Vol 3 (1995) pp 383-403

[4] Aha, D, Kibler, D and Albert, M ‘Instance-based Learning Algorithms’ Machine
Learning Vol 6 (1991) pp 37 — 66

[5] Quinlan, J R ‘Learning with Continuous Classes’ Proceedings AI’92 Adams and
Sterling (Eds) Singapore (1992) pp 343-348

[6] Bratko, I and Karalic A ‘First Order Regression’ Machine Learning Vol 26 (1997) pp
147-176

[7] Karalic, A ‘Employing Linear Regression in Regression Tree Leaves’ Proceedings of
ECAI’92 Vienna, Austria, Bernd Newmann (Ed.) (1992) pp 440-441

[8] Friedman, J H ‘Multivariate Adaptive Regression Splines’ The Annals of Statistics
Vol 19 No 1 (1991) pp 1-141

[9] Breiman, L. ‘Stacked Regressions’ Machine Learning Vol 24 (1996) pp 49-64

[10] Kibler, D, Aha D W and Albert, M K ‘Instance-based Prediction of Real-valued
Attributes’ Comput. Intell. Vol 5 (1989) pp 51-57

[11] Weiss, S and Indurkhya, N ‘Optimized Rule Induction’ IEEE Expert Vol 8§ No 6

(1993) pp 61-69

[12] Friedman, J H, Local Learning Based on Recursive Covering, 1996.

[13] Graybill, F, Iyer, H and Burdick, R ‘Applied Statistics’ Upper Saddle River, NJ
(1998)

10

