STOCHASTIC COMPARISON ON
NEARLY COMPLETELY DECOMPOSABLE
MARKOV CHAINS

A THESIS SUBMITTED TO
THE DEPARTMENT OF COMPUTER ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

By
Denizhan N. Alparslan
July, 2000

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Tugrul Dayar (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Varol Akman

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Murat Fadiloglu

1

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet Baray
Director of the Institute

11

ABSTRACT

STOCHASTIC COMPARISON ON
NEARLY COMPLETELY DECOMPOSABLE
MARKOV CHAINS

Denizhan N. Alparslan
M.S. in Computer Engineering
Supervisor: Assist. Prof. Dr. Tugrul Dayar
July, 2000

This thesis presents an improved version of a componentwise bounding algorithm
for the steady state probability vector of nearly completely decomposable Markov
chains. The given two-level algorithm uses aggregation and stochastic comparison
with the strong stochastic (st) order. In order to improve accuracy, it employs
reordering of states and a better componentwise probability bounding algorithm
given st upper- and lower-bounding probability vectors. A thorough analysis of
the algorithm from the point of view of irreducibility is provided. The bounding
algorithm is implemented in sparse storage and its implementation details are
given. Numerical results on an application of wireless Asynchronous Transfer
Mode network show that there are cases in which the given algorithm proves to
be useful in computing bounds on the performance measures of the system. An
improvement in the algorithm that must be considered to obtain better bounds

on performance measures is also presented at the end.

Keywords: Markov chains, near complete decomposability, stochastic comparison,

st-order, reorderings, aggregation.

v

OZET

NEREDEYSE TAMAMEN BOLUNEBILIR
MARKOV ZINCIRLERI UZERINDE
RASSAL KARSILASTIRMA

Denizhan N. Alparslan
Bilgisayar Mihendisligi, Yiksek Lisans
Tez Yoneticisi: Yrd. Dog¢. Dr. Tugrul Dayar
Temmuz, 2000

Bu tezde neredeyse tamamen bolinebilir Markov zincirlerinin degismez durum
olasilik dagilimlari icin tek tek sinirlar veren bir sinirlandirma algoritmasinin
geligmig bi¢imi anlatilmaktadir. Sunulan bu iki seviyeli algoritma, birlegtirmeye
ve gligli rassal (st) siralama ile rassal kargilagtirmaya dayahidir. Sonucun
kesinliginin arttirabilmesi i¢cin durumlarin yeniden siralanmasi ve st bagintisina
gore ustten- ve alttan-simirlayan olasilik dagilimlarindan tek tek sinirlarin elde
edilmesini saglayan daha iyi bir algoritma ortaya konmustur. Sinirlandirma al-
goritmasinin indirgeme acisindan eksiksiz bir analizi yapilmistir. Bu algoritma
seyrek saklama diizeninde programlanmig ve bu programlamanin ayrintilar ver-
ilmigtir. Farkli zamanh aktarma bicimi tizerine kurulmus olan kablosuz bir ag
sisteminden elde edilen sayisal sonuclar bu algoritmanin baz durumlarda ver-
ilen sistemin bagarim degerleri tizerinde sinirlar bulmada yararli olabilecegini
gostermektedir. Bagarim degerleri tizerinde verilen sinirlarin daha iyi olabilmesi

i¢in algoritmada yapilmasi gereken iyilegtirme en sonda belirtilmigtir.

Anahtar sozcikler: Markov zincirleri, neredeyse tamamen boltunebilirlik, rassal

kargilagtirma, gicli rassal siralama, siralama, birlegtirme.

v

Acknowledgements

I would like to express my deep gratitude to my supervisor Assist. Prof.
Dr. Tugrul Dayar for his guidance, suggestions, invaluable encouragement, and
patience throughout my thesis work. I also would like to thank Assoc. Prof. Dr.
Nihal Pekergin from Université de Versailles-St.Quentin for her comments and
help during this work. Finally, I would like to thank my committee members
Prof. Dr. Varol Akman and Assist. Prof. Dr. Murat Fadiloglu for reading the

thesis and their comments.

[am grateful to my family for their infinite moral support, patience, and help.

vi

To my parents and brothers

Vil

Contents

1 Introduction

2 Theoretical Background
2.1 Stochastic Comparison
2.2 Direct Methods
2.2.1 Gaussian Elimination

2.2.2 The method of Grassmann-Taksar-Heyman

3 Componentwise Bounding Algorithm
3.1 Algorithms.

3.2 Numerical Example o000
4 Analysis

5 Implementation Details
5.1 Compact Sparse Row Format

5.2 The Details of Algorithm 1.

10

11

13

14

16

21

27

35

CONTENTS

5.2.1 The Orderings of NCD blocks

5.2.2 Bounding Matrices L oL

5.2.3 Extracting the Essential Class

5.2.4 Steady State Vectors

5.2.5 Ordering for Small Bandwidth

6 An Application

6.1 Wireless ATM model

6.2 Numerical Results

7 Conclusion

X

37

39

41

43

45

46

46

48

61

List of Figures

5.1

5.2

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Component graph of G Lo

Component graph of GT

Blocking and dropping probabilities for S¢ = 1 when B = 30 and
C=10. . . e

Blocking and dropping probabilities for S¢ = 10 when B = 30 and
C=10. . . e

Blocking and dropping probabilities for S¢ = 100 when B = 30

Blocking and dropping probabilities for S¢ = 1 when B = 60 and
C=30. . . e

Blocking and dropping probabilities for S¢ = 10 when B = 60 and
C=30. . . e

Blocking and dropping probabilities for S = 100 when B = 60

Blocking and dropping probabilities for S¢ = 1 when B = 30 and

C = 10 after the improvement.

Blocking and dropping probabilities for S¢ = 1 when B = 60 and

C = 30 after the improvement.

Chapter 1

Introduction

Most physical systems in the areas of engineering, science, and economics can be
modeled by uniquely identifying all the states the system occupies. The transi-
tions that are defined on the time axis among these states determine the future
behavior of the system. Markov chains (MCs) is an effective tool in modeling
and analyzing systems arising in areas such as queueing network analysis, com-
puter systems performance evaluation, and large-scale economic modeling. With
the help of MCs, performance measures such as blocking probabilities of finite

buffers, average number of customers can be computed.

A set of states corresponds to each Markov chain. The number of states can
be large enough to cause problems in Markovian modeling. This phenomenon
is known as the state space explosion problem. In Markovian modeling, the
system being modeled can occupy one state at a specific time instant and the
future behavior of the system is determined by the transition probabilities or
rates among states. The fundamental property in Markovian modeling is that
the next state depends only on the current state and not on the past history.

This is known as the Markovian property [21, p. 3.

A stochastic process {X(t), t € T} is a collection of random variables. The
index set 7 can be interpreted as the time axis of the process. When 7T is

countable, the process is said to be a discrete-time process. If 7 is an interval

CHAPTER 1. INTRODUCTION 2

on the real line and can take any value in that interval, the process is referred to

as a continuous-time process.

Let Xj represent the state of the system at time instant £ and let the sequence
of random variables Xg, X1, X5, ... form a discrete-time stochastic process. This
process forms a MC if it satisfies the Markovian property. Since we are observing
the process at discrete time instants, it is referred to as a discrete-time Markov
chain (DTMC). The conditional probabilities p;;(k) = Prob{X41 = j | Xx = 1}
are known as one-step transition probabilities of the DTMC. If these transition
probabilities are independent of &k, then we have a tsme-homogeneous DTMC. In

this case, Prob{Xy41 = j | Xy = ¢} = p;; for any k.

On the other hand, suppose we have a continuous-time stochastic process
{X(t), t > 0} taking values in [0,400). This stochastic process is a MC if
the distribution of the future X (¢ 4 s), given the present X(s) and the past,
depends only on the present and the length of s, and is independent of the past
(i.e., X(t) possesses the Markovian property). Under this condition the process
X (1) is referred to as a continuous-time Markov chain (CTMC). If, in addition,
Prob{X(t+s) = j | X(t) = ¢} is independent of ¢ but depends only on s, the

CTMC is time-homogeneous. This thesis considers time-homogeneous MCs.

A DTMC can be represented by the matrix of transition probabilities, P,
which has p;; in row ¢ and column j. All the entries of P are greater than or

equal to zero, and its row sums are one. In other words, P is a stochastic matrix.

The situation is different for the continuous-time case. A CTMC is repre-
sented by the matrix of transition rates, (). By discretizing the time axis, the
probability of transition from one state to another in the interval of observation
can be approximated. In this way, a CTMC can be transformed to a matrix of
transition probabilities, which is dependent on the size of the observation inter-
val. The transformation is known as uniformization [21, p. 19]. To speak more
formally, the corresponding DTMC is obtained by considering transitions that
take place at intervals of At. The interval At must be chosen sufficiently small

to make probability of more than one transition in At negligible. The transition

CHAPTER 1. INTRODUCTION 3

probability matrix of the DTMC is given by the equation
P=AtQ+1.

If0 < At < (max; | ¢; |)7', the matrix P is stochastic. To test the pro-
posed algorithm, we consider examples that are modeled as CTMCs, and the

corresponding discrete-time MCs are generated through uniformization.

Now, let us state some definitions concerning MCs. If the stochastic process,
which is represented by the MC, can reach state j from state ¢, then j is said to
be accessible from ¢. If, in addition to this, ¢ is accessible from j, then ¢ and j are
called communicating states. Two states that communicate are said to be in the
same class. The concept of communication may partition the state space of MC
into a number of subsets. The MC is said to be irreducible if there is only one
communicating class; that is, each state of the MC can be reached from every
other state. Let f; be the probability of returning to state j. In particular, if
fj=1, then state j is said to be recurrent; on the other hand, if f; <1, then state
J 1s said to be transient. Furthermore, if after leaving state j a return is possible
only in a number of transitions that is a multiple of integer v >1, then the state

J 1s said to be periodic with period ~. If y=1, then state 7 is said to be aperiodic.

By using symmetric permutations a DTMC can be transformed to the follow-

ing normal form [21, p. 26]:

Py 0 0 0 0 0
0 Pss 0 0 0 0
P = 0 0 o --- P 0 0 (1.1)
Piyia Peyrie - o Peyix Pryigrr o0 0
Pml Pm2 Pmk Pm,k—l—l Pmm

For i € {1,...,k}, the submatrices P;; are stochastic and irreducible. Once the
process enters one of the states corresponding to P;;, ¢ € {1,...,k}, it will remain
there. Each of the P;; corresponds to an essential subset of states. On the other
hand, when ¢ € {k+1,...,m}, the P;; are substochastic and each one corresponds

to a transient subset of states. If the process is in one of the transient subset

CHAPTER 1. INTRODUCTION 4

of states, it may leave that subset of states with a positive probability and not
return back to the same subset. The applications we consider consist of a single
essential subset of states (i.e., k = 1) and possibly many transient subset of states

(i.e., m > 0).

Now let us denote by 7;(k) the probability of finding the system in state
J at step k for a DTMC and by ;(t) the probability of finding the system in
state j at time ¢t for a CTMC. For a finite, irreducible, discrete or continuous,
time-homogeneous MC of n states, whose states are all aperiodic, the limiting
probabilities of being in any state in the long run exists [12, p. 29]. Whenever
this steady state probability distribution exists, it is a stationary probability
distribution and is denoted by = ; for state j. The (row) vector 7 = (71, 72,...,75)
is known as the stationary probability vector and it satisfies 7P = = (or 7Q = 0),

where 327, m; = 1.

In Markovian modeling, it is frequently the case that the state space of the
model can be partitioned into disjoint subsets, with strong interactions among
the states of a subset but weak interactions among the subsets themselves. Such
problems are referred to as being nearly completely decomposable (NCD). NCD
Markov chains [4],[15],[21] are irreducible stochastic matrices that can be sym-

metrically permuted to the block form

/Pn Py - PIN\ ny
P, P R & n

ann - .21 .22 . 2N ‘2 (12)
Pvi Pna -+ PN/ ny

in which nonzero elements of the off-diagonal blocks are small compared with
those of the diagonal blocks [21, p. 286]. To permute the matrix into the almost
block-diagonal form in equation (1.2), a pre-processing effort is needed. The
larger the elements in the off-diagonal blocks, the less NCD the chain becomes.
To summarize this more formally, let P = diag(Pi1, Pa2,..., Pyn) + F. The
diagonal blocks P; are square, of order n;, with n = SN n;. The quantity

| F'||oo is referred to as the degree of coupling and is taken to be a measure of

the decomposability of P. When the chain is NCD, it has eigenvalues close to 1,

CHAPTER 1. INTRODUCTION 3

and the poor separation of the unit eigenvalue implies a slow rate of convergence
for standard matrix iterative methods [9, p. 290]. Hence, NCD Markov chains
are said to be ill-conditioned, and the smaller || F|| is, the more ill-conditioned
P becomes [15, p. 258]. On the other hand, if P were reducible, it must be
decomposed into its essential and transient subsets of states as in equation (1.1)

and the analysis should continue on the essential subsets.

To compute performance measures of interest, either the long-run distribution
of state probabilities (i.e., steady state analysis) or the probability distribution at
a specific time instant (i.e., transient analysis) needs to be known. In this work,
we focus on steady state analysis which requires the solution of a homogeneous
system of linear equations with a singular coefficient matrix under a normalization
constraint, (i.e., 7({ — P) = 0 or 7#@) = 0,]||7||s = 1) but the scope of this work

can be extended to include transient analysis.

To each NCD MC corresponds an irreducible stochastic matrix, C', known as

the coupling matrix [15]. Its (j)th element is given by

T pe Vi,je{l,2,...,N}. (1.3)

AT

Here e represents a column vector of all ones, and 7;, of size n;, is obtained by
partitioning 7 conformally with P in equation (1.2). The coupling matrix models
the transitions of the system among NCD partitions and it cannot be computed
without the knowledge of 7. Note that it is the irreducibility of the NCD MC in

the definition which guarantees the irreducibility of C.

For the partitioning in equation (1.2), the stochastic complement [15] of P, ; for
i€ {1,2,...,N} is given by

Pii=P,;+P.(I-P)'P,,

where P, . is the n; X (n —n;) matrix composed of the ¢th row of blocks of P with
P, ; removed, P.; is the (n—n;) X n; matrix composed of the ¢th column of blocks of
P with P, ; removed, and P; is the (n—n;) X (n—n;) principal submatrix of P with
1th row and 2th column of blocks removed. The 2th stochastic complement is the

stochastic transition probability matrix of an irreducible MC of order n; obtained

CHAPTER 1. INTRODUCTION 6

by observing the original process in the :th NCD partition. The conditional
steady state probability vector of the ¢th NCD partition is m;/||m;||1, and it may
be computed by solving for the steady state vector of P;; (see [15] for details).
However, each stochastic complement has an embedded matrix inversion which

may require excessive computation.

The transient and steady state performance measures of a MC can be com-
puted exactly in floating-point arithmetic. However the time it takes to obtain
them can be very long. Stochastic comparison is a technique by which both per-
formance measures of a MC may be bounded without having to compute them
exactly. The applications of this technique exist in different areas of applied
probability [20] and in practical problems of engineering [16], [17]. The stochas-
tic comparison of MCs is discussed in detail in [13], [22], [14]. The comparison
of two MCs requires comparing their transient probability vectors at each time
instant according to a predefined order relation. Obviously, if steady states ex-
ist, stochastic comparison between their steady state probability vectors is also

possible.

Sufficient conditions for the existence of stochastic comparison due to an order
relation of two time-homogeneous MCs are given by the stochastic monotonicity
and bounding properties of their one step transition probability matrices [13],
[14]. In [23], this idea is used to devise an algorithm that constructs an optimal
st-monotone (i.e., monotonicity due to the strong stochastic order relation) upper-
bounding MC. Later, this algorithm is used to compute stochastic bounds on
performance measures that are defined on a totally ordered and reduced state
space [1]. However, the given algorithm may provide loose bounds when the

dynamics of the underlying system is not considered.

The bounded aggregation method discussed in [5] and [19] uses polyhedra
theory to compute the best possible componentwise upper and lower bounds
on the steady state probability vector of a given NCD MC. In [24], a different
componentwise bounding algorithm which trades accuracy to solution time is
given. It is a two-level algorithm using aggregation and stochastic comparison

with the strong stochastic (st) order. However, it has not been implemented

CHAPTER 1. INTRODUCTION 7

and tested on any applications; moreover, its theoretical analysis lacks essential

components.

This thesis is an extension of the work in [24]. An improved, coherent, and
readily understandable form of the algorithm is given. We remedy the situation
regarding theoretical analysis. The improvements include the possibility of re-
ordering the states in each NCD block and the introduction of a new st-monotone
lower-bounding matrix construction algorithm. In addition to these, a better
componentwise probability bounding algorithm is given. Finally, the proposed

algorithm is implemented in sparse storage, meaning zero entries are not stored.

In chapter 2, we provide the background on MCs, stochastic comparison,
irreducibility of matrices and direct methods for solving linear systems. In chapter
3, we introduce the improved algorithm. The irreducibility analysis is provided
in chapter 4. The details of the sparse implementation are given in chapter 5.
Numerical results on a current application in mobile communications is provided

in chapter 6. In chapter 7, we conclude.

Chapter 2

Theoretical Background

This chapter provides the background on stochastic comparison of MCs and direct

methods for solving them.

2.1 Stochastic Comparison

In this work, we are interested in obtaining bounds on the steady state perfor-
mance measures of problems without having to compute them exactly. In doing
this, we use stochastic comparison. The objective is to trade accuracy with solu-

tion time.

For the stochastic comparison of random variables, an ordering relation is
needed. The relation must be reflexive and transitive, but not necessarily anti-
symmetric. There are different stochastic ordering relations which satisfies these
properties and the most well known is the strong stochastic ordering (i.e., <g).
Intuitively speaking, two random variables X and Y (which take values on a
totally ordered space) being comparable in the strong stochastic sense (i.e., X <y
Y) means that it is less probable for X to take larger values than Y (see [20],
22))

CHAPTER 2. THEORETICAL BACKGROUND 9

In this thesis, we use strong stochastic ordering whose definition is given below.

For further information on stochastic comparison, we refer the reader to [22].

DEFINITION 2.1 Let X and Y be random wvariables taking values on a totally
ordered space. Then X is said to be less than Y in the strong stochastic sense,
that is, X <4 Y iff

E[f(X)] < E[f(Y)]

for all nondecreasing functions f whenever the expectations exist.

DEFINITION 2.2 Let X and Y be random variables taking values on the finite

state space {1,2,...,n}. Let p and q be probability vectors such that
pi = Prob(X =1) and ¢ = Prob(Y =1i) for i€ {1,2,...,n}.

Then X is said to be less than Y in the strong stochastic sense, that is, X <4Y
f

sz quz fOT j:nvn_lv"'vl'

=7 =7

COROLLARY 2.1 If X and Y are random variables taking values on the finite
state space {1,2,...,n} with probability vectors p and q respectively, and X <4 Y,
then

pn<¢n and p12>q.

The comparison of MCs has been largely studied in [13], [22], [14]. We use
the following definition (Definition 4.1.2 of [22, p. 59]) to compare MCs.

DEFINITION 2.3 Let {X(t), t € T} and {Y(t), t € T} be two time-homogeneous
MCs. Then {X(t), t € T} is said to be less than {Y(t), t € T} in the strong
stochastic sense, that is, {X (1)} < {Y (1)} iff

X(t) <o Y() WVteT.

CHAPTER 2. THEORETICAL BACKGROUND 10

Moreover, it is shown in Theorem 3.4 of [14, p. 355] that monotonicity and
comparability of the probability transition matrices of time-homogeneous MCs
yield sufficient conditions for their stochastic comparison, which is summarized

n:

THEOREM 2.1 Let P and P be stochastic matrices respectively characterizing
time-homogeneous MCs X (t) and Y (t). Then {X(t), t € T} <, {Y(t), t €T}
if

o X(0) <, Y(0),

e st-monotonicity of at least one of the probability transition matrices holds,

that is,

either P, <g4 P;. or P,.<gqP,. Yi,5 suchthat ¢ <y,

o st-comparability of the transition matrices holds, that s,

Pi,* Sst Pi,* \V/Z

Here P; . refers to row ¢ of P.

Next, we discuss two intimately related direct numerical solution methods for

the computation of the stationary distribution of a MC.

2.2 Direct Methods

The method used in this thesis to find componentwise upper and lower bounds
on the steady state probabilities of a given MC requires the solution of a homo-
geneous singular system of linear equations. In other words, we are concerned
with solving

r(I—P) =0

CHAPTER 2. THEORETICAL BACKGROUND 11

for a nonnegative # with unit 1-norm, where P is the transition probability ma-
trix of the MC of interest. Hence, we are seeking the nontrivial solution whose

existence is guaranteed when P is irreducible.

The nontrivial solution can be obtained by direct or iterative methods. Direct
methods compute the solution in a fixed number of floating-point operations. On
the other hand, iterative methods begin from some approximation and (hope-
fully) converge to the solution after an unknown number of iterations. There are
many types of iterative methods and they are most commonly used in large-scale
Markovian analysis. In this thesis, we use direct methods because the systems to
be solved are of moderate order. We use two types of direct methods: Gaussian
elimination (GE) and the method of Grassmann-Taksar-Heyman (GTH), which

is a more stable variant of GE.

2.2.1 Gaussian Elimination

Recall that we are seeking the nontrivial solution of 7P = 7 or equivalently
(I — PT)xT =0, where 77 is the transpose of the row vector 7. Let A = (I — PT)
and z = 7T, It is known that A is a singular M-matrix [3, p. 147]. In this way, the

linear system is transformed to the following system of homogeneous equations:
Az = 0.

Since we are seeking the stationary vector of an irreducible MC, the coefficient
matrix A must be singular (i.e., its determinant is zero), otherwise the only

solution to this system is the zero vector.

GE may be viewed as transforming the system Az = 0 to an equivalent system
Uz = 0 in which the matrix U is upper triangular. Obtaining U from A is called
the reduction phase and requires n — 1 steps, where n is the order of A. In the
1th elimination step, all nonzero elements below the ¢th diagonal element in the
reduced matrix are eliminated by adding a multiple of row 2 to all the rows below

row 7. More formally, let A®) be the reduced matrix obtained at the end of the

CHAPTER 2. THEORETICAL BACKGROUND 12

ith step of elimination with A(®) = A. Then the elements agl) are given by

() agfl_l) fork<iand [=1,2,...,n
a.; = . .)
H agl_l) - mkiagg_l) fork>¢and I=1,2,...,n
where the multipliers are given by my; = ag;_l)/ag_l). Obviously, for k > 2,
agi) = 0. The elements agf) are called pivots and they must be nonzero if the

algorithm is to carry on satisfactorily. The irreducibility of P ensures that the
pivots are nonzero in exact arithmetic. At the end of the elimination, A*~Y = U
is computed. Inherently, U is obtained by pre-multiplying the coefficient matrix

A by a nonsingular unit lower-triangular matrix. That is,
L7'A=1U,

where L is the unit lower triangular matrix (i.e., l;; = 0, for ¢ < j and [;; = 1).
The singularity of A and the nonsingularity of L imply that U must be singular.
Furthermore, it can be shown that the last row of U must be zero. Hence, we

have

(LU)z = 0

Since L is nonsingular, the only solution is available through Uz = 0. If we pro-
ceed to solve Uz = 0, (the back-substitution phase), we can assign any nonzero
value, say 7, to x, because the last row of U is zero. We can determine the
remaining elements of the vector x in terms of n and compute the solution after
normalizing = according to the constraint ||z|[;. When A is dense, GE requires
O(n?) floating point operations (flops) to reach this solution, and the space re-
quirement is O(n?). Clearly, the time complexity of GE increases rapidly with
the size of the problem.

Notice that to obtain the homogeneous linear system Ax = 0, we transform
7P = to (I — PT)zT = 0. This transformation has an important consequence:
we do not have to keep the entries of L at all. We could have also tried to solve
([— P) = 0. However, this requires one to save both the L and U factors
when row reductions are carried out. The main drawback of working with the
non-transposed version of the system is this, and therefore, in this thesis we work

with stochastic matrices in transposed form.

CHAPTER 2. THEORETICAL BACKGROUND 13

2.2.2 The method of Grassmann-Taksar-Heyman

In computing the stationary probability vector of irreducible MCs, we consider
one more direct method. The GTH method [11] is used because of the difficult
nature of some input matrices. For certain types of problems, small differences
in the input data may result in large differences in the results. Such problems
are called ¢ll-conditioned. When small differences in the data always lead to
small differences in the results, the problem is said to be well-conditioned. 1ll-
conditioning and well-conditioning are properties of the problem rather than the
algorithm used to solve the problem. On the other hand, an algorithm is a com-
puter based implementation of basic arithmetic operations and usually generates
errors. Because of this reason, algorithms are said to compute an approximation
to the exact solution. The accuracy of this approximate solution is of significant
importance. A stable algorithm is one that yields a solution that is almost exact
for a well-conditioned problem. It should not be expected to give an accurate
solution for an ill-conditioned problem. However, it should not introduce un-
acceptable errors which originate from the nature of the algorithm either. For

unstable algorithms we can not guarantee the accuracy of the solution.

In the GTH method, pivot elements are computed by summing the off-
diagonal elements below the pivot and negating this sum. This approach works,
because the column sums of the bottom rightmost submatrix of order (n —¢) in
AW are zero in each step of the elimination phase. It is known that subtractions
can lead to loss of significance in the representation of real numbers on the com-
puter. The GTH method involves no subtractions, and therefore yields a more
stable algorithm than GE [9]. If x; is the exact value and 7TJGTH is the approxi-
mate value computed by GTH for a MC of order n, the entrywise relative error
| mj — xZTH | [x; = O(nPu), where u is the unit roundoff. It is clear that GTH
requires slightly more floating point operations than GE due to the summations
to compute the pivots. In this thesis, accuracy of the solution is of importance
since we will be computing the stationary vectors of NCD MCs. We refer to [21,
p. 84] for more information about the GTH method. The implementation details

of this method in sparse storage are given in subsequent chapters.

Chapter 3

Componentwise Bounding

Algorithm

This thesis is focused on finding componentwise bounds for the steady state vec-
tor of NCD MCs without solving them exactly. Our componentwise bounding
algorithm (see Algorithm 1) is based on the two-level algorithm in [24] that uses
aggregation and stochastic comparison with the st-order. Aggregation is the pro-

cess of forming the coupling matrix given by equation (1.3).

In Step 0 of our algorithm, the given Markov chain P is permuted to an NCD
block form as in equation (1.2). This form is of significant importance and is
determined by the algorithm in [6]. The algorithm in [6] first constructs an undi-
rected graph whose vertices are states of the MC by introducing edges between
vertices ¢ and j if p;; > € or p;; > € for a particular value of the decomposability
parameter €. Then, it determines the CCs of this undirected graph. Each CC
is a subset of the NCD partitioning. The partitioning of states returned by this
algorithm is based on the (user specified) decomposability parameter e. By a
balanced partitioning, we mean one in which the order of the diagonal blocks
in equation (1.2) do not differ significantly from each other. In this thesis, we

consider balanced NCD partitionings of the state space.
After obtaining the NCD partition, we apply the first level of the algorithm.

14

CHAPTER 3. COMPONENTWISE BOUNDING ALGORITHM 15

At this level (see Step 1), componentwise upper and lower bounds on the condi-
tional steady state probability vector of each NCD subset of states are computed
for the partition of P in Step 0. This is achieved by computing st-monotone
upper- and lower-bounding matrices for each NCD subset of states (see Algo-
rithms 2-6). The stochastic matrices that are input to the bounding matrix con-
struction algorithms are generated in Step 1.b using the F;;. The st-monotone
bounding matrices for each NCD block are obtained in Step l.c. To construct
the st-monotone upper-bounding matrix, we use the algorithm in [1] as in [24]
(see Algorithm 5), but devise and use a new st-monotone lower-bounding matrix
construction algorithm (see Algorithm 6) whose optimality is proved in the next

section.

At the second level (see Step 2), st-monotone upper- and lower-bounding ma-
trices for the coupling matrix, C', corresponding to the same partition of P are
computed using the conditional steady state probability bounding vectors ob-
tained at the first level again using Algorithms 2-6. From these two matrices,
lower and upper unconditioning steady state probability bounds for the condi-
tional steady state probability bounding vectors are computed and component-
wise bounds for the steady state vector of P are given. Recall that, we cannot
compute C' exactly since we do not know the exact steady state vector of P. We

compute st-bounding matrices for C.

Obviously, the order of states within each NCD partition affects the quality
of the bounds that may be obtained by the stochastic comparison approach [7]
due to the conditions of st-monotonicity and st-comparability in Theorem 2.1. To
obtain tighter probability bounds, we permute one of the states within each NCD
partition to be the last and order the remaining states in the same partition using
the heuristic given in Algorithm 10 (see Step 1.a). The state to be permuted to the
end of each NCD block is chosen as the state which has the largest self transition
probability among the states in the same NCD partition followed by a simple
tie-breaking rule if needed. We do not use ordering at the second level of the
algorithm since the resulting matrices are highly diagonally dominant implying a
small gain (if at all). For more discussion on this ordering heuristic we refer the

reader to [7, p. 17].

CHAPTER 3. COMPONENTWISE BOUNDING ALGORITHM 16

Neither of the two bounding matrices computed for each NCD block may
be irreducible [1]. However, as we prove in the next section, they both have one
essential subset of states. This is also true for the st-monotone bounding matrices
computed for C'. In other words, if we try to permute the bounding matrices to
the form given in equation (1.1), we obtain k = 1. After identifying and removing
the transient states (see Steps 1.d and 2.d), the resulting irreducible matrices are
solved for their steady state vectors. In extracting the essential subsets from the
bounding matrices, we use a slightly different version of the strongly connected
component (SCC) search algorithm in a graph. The details of this algorithm are
given in Chapter 5. We remark that Steps 1.d and 2.d should omit the removal of
transient states and replace the steady solution process with a transient solution

procedure when performing transient analysis.

3.1 Algorithms

ALGORITHM 1. Componentwise bounding algorithm for the steady state vector
of NCD MCs:

0. Find a (balanced) NCD partitioning of P and symmetrically permute it to
the form in equation (1.2). Let {S1,Sz,...,Sn} be the resulting state space

partition.
1. fore =1,2,..., N,

a. Choose a state from §;, say f;, make it the last state and find the
ordering of the remaining states in S; with respect to f; by Algorithm

10. Symmetrically permute P;; according to the resulting ordering.

b. Compute the two stochastic matrices S; and S; of order n; correspond-

ing to P;; by Algorithms 2 and 3, respectively (see Remark 3.1).

c. Compute the st-monotone upper-bounding matrix @); of order n; cor-
responding to S; by Algorithm 5 and the st-monotone lower-bounding
matrix (), of order n; corresponding to S; by Algorithm 6.

CHAPTER 3. COMPONENTWISE BOUNDING ALGORITHM 17

d. Extract the irreducible submatrices of (); and &), and solve the corre-
sponding systems of equations for their steady state vectors 7' and

7%, respectively. Place zero steady state probabilities for transient

states in each vector.

7

P on the

e. Compute the componentwise bounding vectors =7 and =
conditional steady state probability vector corresponding to §; from
7t and 7 by Algorithm 7.

13

2. a. Compute U and L of order N using 7" and anf, i€ {1,2,...,N}
by Algorithms 8 and 9, respectively.

b. Compute the two stochastic matrices S and S of order N corresponding

to L and U by Algorithms 2 and 3, respectively.

c. Compute the st-monotone upper-bounding matrix) of order N cor-
responding to S by Algorithm 5 and the st-monotone lower-bounding
matrix) of order N corresponding to S by Algorithm 6.

d. Extract the irreducible submatrices of @) and @ and solve the corre-
sponding systems of equations for their steady state vectors E“ and §5t,
respectively. Place zero steady state probabilities for transient states

in each vector.

e. Compute the componentwise bounding vectors £**» and £/ on the
steady state probability vector corresponding to C' from E“ and §5t by
Algorithm 7.

3. Compute the componentwise steady state probability upper- and
lower-bounding vectors for S; respectively as &x"" and ffnfﬂ'fnf,

1€ {1,2,...,N}.

REMARK 3.1 When Algorithms 2 and 3 are invoked for the substochastic ma-
trices Pi;, L = P;; and U = L + A, where d = e — Le and A = [d d --- d].

CHAPTER 3. COMPONENTWISE BOUNDING ALGORITHM 18

ALGORITHM 2. Construction of stochastic matrix S corresponding to L and U

of order m:

A=U-1L;
fore =1,2,...,m,
=1 1
fore =1,2,...,m,
fory=m,m—1,...,1,
Sig = lij + min(6; 5, (" 7)F);
((m=i+1) (m=i) _§

i = ¢ 0,79

ALGORITHM 3. Construction of stochastic matrix S corresponding to L and U

of order m:

A=U-1L;

fore =1,2,...,m,
D =1- >oiey bigs

fore =1,2,...,m,

for y =1,2,...,m,

ALGORITHM 4. Construction of matrix B (to be used in Algorithms 5 and 6)

corresponding to stochastic matrix S of order m:

fore =1,2,...,m,
bi,mzsi,m;
fory=m—-1m-2,...,1,

bij = bijy1 + sij;

CHAPTER 3. COMPONENTWISE BOUNDING ALGORITHM 19

ALGORITHM 5. Construction of st-monotone upper-bounding matrix) corre-

sponding to stochastic matrix S of order m:

Compute B by Algorithm 4 for S of order m.
Qi = bl,m§
fore=2,3,...,m,

Tin = MaX (i, i1,);
forl=m—-1,m-—2,...,1,

G1g = b1 — biigy;

fore=2,3,...,m,

@'71 = maX(bM, Z;‘n:l qi—l,j) - Z;n:H—l qi,j;

ALGORITHM 6. Construction of st-monotone lower-bounding matrix () corre-

sponding to stochastic matrix S of order m:

Compute B by Algorithm 4 for S of order m.
forl=1,2,...,m—1,

ng - bm,l - bm,l—l—l;

fore=m-—1,m—-—2,...,1,
! -
4= max(1 — bi 141,35 Q¢+1,J‘) o 4; 5
ngn = bm,ma
fore=m-—-1,m—2,...,1,
m—1 .
9 m = =275 4.5

ALGORITHM 7. Computation of componentwise probability bounding vectors

v and v given st upper- and lower-bounding probability vectors 7 and v**

of length m:
sup __ 73st.
vm - vm?
inf __ ,,st.
vm - Qm?

fory=m—-1m-2,...,1,

CHAPTER 3. COMPONENTWISE BOUNDING ALGORITHM 20

v =g]_St S i1 Vi

mf (Zk] — > he =j+1 ¥)+§

ALGORITHM 8. Computation of componentwise upper-bounding matrix U for C
of order N using P and 7}, ¢ € {1,2,...,N}:

fore =1,2,..., N,
for y=1,2,..., N,

u; ; = min(w; " P; je, max(P; je));

ALGORITHM 9. Computation of componentwise lower-bounding matrix L for C
of order N using P and ©i"/, 7 € {1,2,...,N}:

fore =1,2,..., N,
forjzl,Z,...,N,
l; ; = max(m; fP”e,mm(P €));

ALGORITHM 10. Determining the ordering of NCD block of size m which is
permuted to make the selected state last. The ordering is kept in the vector

indez.

s =m — 1;
for y =1,2,...,1s,

state = j;

T =T U {state};
end;
index,, = m;
while zs > 0 do

L, =A{k | k € I, prm = maxier pim };

if #(Z;) > 1 then

CHAPTER 3. COMPONENTWISE BOUNDING ALGORITHM 21

=1
while (m — j > 1s) and (#(Z;) > 1) do
Ty = {k | k € L4, prindec,n_; = MaXicT, Pijinderm_; |}
Ty = Ty
if #(Z;) > 1 thenj=j5+1
else let the one in Z; be k;
end
else let the one in Z; be k;
if #(Z;) > 1 then
if prom < Prm, k € Iy then Iy = {k | k € Iy, k. = maxier, Prmi }
else Zyy = {k | k € Ii, pr = minjer, P };
if #(Zy) > 1 then
choose one from Z;; randomly; let it be k
else let the one in Z;; be k;
index;, = k;
15 =18 — 1;
T=1—{k};

end;

3.2 Numerical Example

In this section, we give a numerical example due to Courtois [5] and apply Algo-
rithm 1 to obtain componentwise bounds for its steady state vector. The Courtois

matrix is given by

1 0.85 0 0.149 0.0009 0 0.00005 0 0.00005
2 0.1 0.65 0.249 0 0.0009 | 0.00005 O 0.00005
3 0.1 0.8 0.0996 | 0.0003 O 0 0.0001 O

p_ 4 0 0.0004 O 0.7 0.2995 | 0 0.0001 O
5 0.0006 0 0.0004 | 0.399 0.6 0.0001 0 0
6 0 0.00005 0 0 0.00005 | 0.6 0.2499 0.15
7 0.00003 O 0.00003 | 0.00004 O 0.1 0.8 0.0999
8 0 0.00005 O 0 0.00005 | 0.1999 0.25 0.55

CHAPTER 3. COMPONENTWISE BOUNDING ALGORITHM 22

In Step 0, we choose a degree of decomposability of 0.001 and obtain the
partitioning {Si, S2, S3}, where S; = {1,2,3}, Sy = {4,5} and S5 = {6,7,8}.
This is an NCD partitioning with degree of coupling 0.001 (i.e., || F||e = 0.001).
The corresponding NCD blocks are

Pii=1 01 0.65 0.249

085 0 0.149
9 22_(
0.1 08 0.0996

0.7 0.2995
0.399 0.6 ’

0.6 0.2499 0.15
Pis=]| 0.1 0.8 0.0999
0.1999 025 0.55

After this initial step we apply Step l.a. States 1,4, and 7 in P are chosen as
the last states in the NCD blocks 1,2, and 3 respectively. Using these last states
in Step 1.a, we apply Algorithm 10 to find the ordering within each NCD block.
The algorithm returns the orderings (3,2,1), (2,1), and (1,3,2) for the NCD blocks
1,2, and 3 respectively. If we symmetrically permute the P;; with respect to these

orderings, the blocks become

5
Pii= 2| 0249 065 01 |, Pp=

3 {0096 08 01
4(
1\ 0149 0 0.85

0.6 0.399
0.2995 0.7 ’

6 (0.6 0.15 0.2499
Pss= 8 | 01999 055 025
7\ 0.1 0.0999 0.8

Obviously, the P,; are substochastic. Step 1.b generates 2 stochastic matrices for

each of the (permuted) NCD blocks, which are given by

0.0996 0.8 0.1004 01 08 0.1
Si=1 0249 065 0101 |,S =] 025 065 01 |,
0.149 0 0.851 0.15 0 0.85

_ 0.6 0.4 0.601 0.399
52 =) §2 =)
0.2995 0.7005 0.3 0.7

CHAPTER 3. COMPONENTWISE BOUNDING ALGORITHM 23

0.6 0.15 025 0.6001 0.15 0.2499
Ss=1| 01999 055 02501 |, Ss=] 02 0.55 0.25
0.1 0.0999 0.8001 0.1001 0.0999 0.8

Using these stochastic matrices, in Step 1.c we compute st-monotone upper-
bounding and lower bounding matrices for each of the NCD blocks. The bounding

matrices are given by

£ 0.0996 0.8 0.1004 £0.25 0.65 0.1
Q= 00996 0.7994 0101 |, Q =] 025 065 0.1 |,
0.0996 0.0494 0.851 0.15 0 0.85
_ 0.6 0.4 0.601 0.399
QQZ 7Q2: 9
0.2995 0.7005 03 0.7
0.6 0.15 025 0.6001 0.15 0.2499
Qs=1] 01999 055 02501 [, @ =| 0.2 0.55 0.25
0.1 0.0999 0.8001 0.1001 0.0999 0.8

All of the upper and lower bounding st-monotone matrices for the NCD blocks
of the Courtois example turn out to be irreducible. In other words, they do
not have any transient states. In Step 1.d we solve the st-monotone bounding
matrices directly for their steady state vectors using GTH. The 7" and z{* in 6

decimal digits of precision are
75 = [0.099600,0.496639,0.403761], x2* = [0.210000, 0.390000, 0.400000],

75 = [0.428163,0.571837), =3 = [0.429185,0.570815],
75 = [0.240679,0.203597, 0.555724], x5 = [0.240882,0.203616, 0.555502].

Using these vectors, in Step 1.e. we compute componentwise bounding vectors

on the conditional steady state probability vectors for the NCD blocks as
757 =[0.210000, 0.500400, 0.403761], =™/ = [0.099600, 0.386239, 0.400000],

75" =1[0.429185,0.571837], =5 = [0.428163,0.570815],

73U = [0.240882, 0.203819, 0.555724], = = [0.240679, 0.203393, 0.555502].

CHAPTER 3. COMPONENTWISE BOUNDING ALGORITHM 24

Since Step 1 of Algorithm 1 is over, we start executing Step 2. In Step 2.a,
we generate U and L of order 3 using 7*” and 7"/, i € {1,2,3}, as

" 0.999600 0.000877 0.000100 | " 0.999000 0.000737 0.000100 |
U=1| 0000615 0999500 0.000100 |,Z=| 0.000614 0.999000 0.000100
0.000056 0.000044 0.999900 0.000056 0.000044 0.999900

The stochastic matrices S and S corresponding to L and U computed in Step
2.b are

\

/ 0.999023 0.000877 0.000100 / 0.999163 0.000737 0.000100 \
S=1 0.000614 0.999286 0.000100 |, S 0.000615 0.999285 0.000100
0.000056 0.000044 0.999900 0.000056 0.000044 0.999900

In Step 2.c we obtain the st-monotone upper and lower bounding matrices

" 0.999023 0.000877 0.000100 " 0.999163 0.000737 0.000100 |
0.000614 0.999286 0.000100 |, Q 0.000615 0.999285 0.000100
0.000056 0.000044 0.999900 0.000056 0.000044 0.999900

Q

These two bounding matrices are also irreducible. In step 2.d, we solve them

for their steady state vectors and obtain
ESt = [0.210388,0.289612, 0.500000],

£ =10.230836, 0.269164, 0.500000].
In Step 2.e, the componentwise bounding vectors on the steady state proba-
bility vector corresponding to C using E” and §5t are computed as

&P =0.230836, 0.289612, 0.500000],

£ =10.210388,0.269164,0.500000].

In Step 3 of Algorithm 1, we compute the componentwise steady state prob-
ability upper- and lower-bounding vectors for each NCD block as

1 Pri"? = [0.048476,0.115510,0.093203], mf mf = [0.020955, 0.081260,0.084155],

£ S = [0.124297,0.165611], £ 7" = [0.115246,0.153643],

suprsuP — 0.120441,0.101910,0.277862], £ 7inf = [0.120339,0.101697,0.277751].

CHAPTER 3. COMPONENTWISE BOUNDING ALGORITHM 25

The exact steady state vector of the Courtois matrix in four digits of precision

is given by
7 = [0.0893,0.0928, 0.0405, 0.1585,0.1189, 0.1204,0.2778,0.1018].

We must consider the permutations that we performed on each NCD block to
obtain the correctly ordered componentwise bounding vectors for 7. Hence, we
permute the componentwise bounding vectors back to their original ordering and

obtain the following componentwise upper and lower bounding vectors on 7
7P =[0.093203,0.115510,0.048476,0.165611,0.124297,0.120441,0.277862,0.101910],

i = [0.084155,0.081260,0.020955,0.153643,0.115246,0.120339,0.277751,0.101697].

Compare the result of the improved algorithm with those of the following

three cases:
(i) No reorderings used :
%P = [0.093817,0.116272,0.048795,0.166606,0.125044, 0.166694, 0.309165, 0.125083]

7" =[0.083459,0.080588,0.020781, 0.152774, 0.114594, 0.100000, 0.208222, 0.090835]

(ii) Algorithm 11 used instead of Algorithm 7:
%P =[0.093277,0.115602,0.049383,0.165698,0.124363, 0.120552, 0.277862,0.101910]

i = [0.084094,0.081201, 0.020149,0.153538,0.115168,0.120228,0.277751,0.101697]

(iii) Both improvements turned off (i.e., No reorderings used and Algorithm 11
used instead of Algorithm 7):

%P =[0.128242,0.124810,0.052378,0.168326,0.126335, 0.200943, 0.309165, 0.125083]
T = [0.059553,0.079426, 0.020482, 0.143034, 0.107289,0.065751,0.208222,0.090835]
After assessing the quality of the bounds, we conclude that the performance

of the Algorithm 1 on the Courtois example is extremely good, and it is superior

to each of the three cases. However, the Courtois problem is small, and to have

CHAPTER 3. COMPONENTWISE BOUNDING ALGORITHM 26

a better understanding of Algorithm 1 we must apply it to larger examples. One

of the following chapters is dedicated to such a problem.

The theoretical analysis of Algorithm 1 is given in the next chapter. The
former work reported in [24] and in [1] lacks essential theoretical components.

We remedy this situation by providing a comprehensive analysis.

Chapter 4

Analysis

In the componentwise bounding algorithm, we extract the submatrix correspond-
ing to the irreducible subset of states from each bounding matrix and solve this
subset for its steady state vector. Recall that, the steady state probability dis-
tribution of an st-monotone bounding matrix exists iff there exists only one ir-
reducible subset (i.e., one essential subset) in the bounding matrix. Since it is
possible to have transient states in each bounding matrix the existence of a sin-
gle irreducible subset of states must be proved. This discussion, which is very
important for the analysis of the algorithm, can not be found in [24]. A similar dis-
cussion exists in [1] but lacks important aspects. In this chapter, we give a proof
to that effect by stating various definitions, lemmas, and theorems, and show
why Algorithm 1 works. Moreover, we prove that our componentwise bounding
algorithm that takes in st upper- and lower-bounding probability vectors (see
Algorithm 7) is superior to its counterpart in [24]. In [24], the st lower-bounding
vector on the steady state distribution of a MC is computed by reversing the
order of its states and running Algorithm 5 on the permuted MC. See [24, p. 847]
for details. Our new st-monotone lower-bounding matrix construction algorithm
(see Algorithm 6) eliminates the need for a permutation vector to order the states
of the input stochastic matrix in reverse. The optimality proof of this algorithm
is also given in this chapter. Our discussion assumes matrices of order 2 or larger

and is based on [18]. First, we introduce two types of stochastic matrices.

27

CHAPTER 4. ANALYSIS 28

DEFINITION 4.1 A stochastic matriz A of order m that satisfies:

(1) 35 € {2,3,...,m} such that a;; > 0,
(i) Fe € {1,2,...,m — 1} such that a;, > 0,

(1)) Voee {1,2,...,m —1} 3k <1 and 35 > ¢ such that a; >0
is called a type-1 stochastic matriz.

DEFINITION 4.2 A stochastic matriz A of order m that satisfies:

(1) 35 € {1,2,...,m — 1} such that a,, ; > 0,
(1) Fe € {2,3,...,m} such that a;; > 0,

(1)) Ve € {2,3,...,m} Ik > ¢ and 35 < i such that aj; > 0
is called a type-2 stochastic matriz.

LEMMA 4.1 Let S; be the stochastic matriz computed by Algorithm 2 for the

submatriz Py; of order n; in Algorithm 1. Then S; is a type-1 stochastic matriz.

LEMMA 4.2 Let S; be the stochastic matriz computed by Algorithm 3 for the

submatriz P;; of order n; in Algorithm 1. Then S, is a type-2 stochastic matriz.

PROOF. Let us prove Lemma 4.1. The proof of Lemma 4.2 is similar. The proof
consists of showing that parts (z), (¢¢), and (427) of Definition 4.1 hold for S;.
Note that S; (alternatively, S;) is P; with its last (alternatively, first) column
perturbed. See Remark 3.1 and consider its implications on Algorithms 2 and 3.

For ease of understanding, let us denote P; by Y, S; by A, and n; by m.

CHAPTER 4. ANALYSIS 29

(i) There are two cases. If >27_,y;; = 1, then Y;, = A, . implying 35 €
{2,3,...,m} such that a;; > 0, otherwise state 1 would be absorbing
contradicting the fact that P is irreducible. If 37, y;; < 1, then by
Algorithm 2 we have 650) > 0 and 61, > 0 implying a;,, > 0. Hence,

5 €{2,3,...,m} such that a;; > 0.

(ii) InY, it is not possible to have y; , = 0 and 3°7", y; ; = 1 Vi € {1,2,...,m—
1}, otherwise P would be reducible. There are two cases. Suppose for a
row ¢ € {1,2,...,m — 1}, we have y;,, > 0. Then a;,, > 0. On the
other hand, suppose for a row ¢ € {1,2,...,m — 1}, we have }-7_, y;; < 1.
Then by Algorithm 2, 650) > 0 and 6;,, > 0 implying a;,, > 0. Hence,
1 € {1,2,...,m — 1} such that a;,, > 0.

(iii) Let [be the smallest row index among ¢ € {1,2,...,m—1} for which a; ,, >
0. From part (ii), there exists such an [. By considering the particular values
k=1and j =m, foreach : € {[,I+1,....,m — 1} Fk < i and Jj > ¢ such
that ay; > 0. Since for each 2 € {1,2,....,0 =1}, y;,n =0 and 372, y; 5 = 1,
the irreducibility of P implies that for each 7 € {1,2,...,1— 1} 3k < ¢ and
3y > ¢ such that a5 ; > 0. O

LEMMA 4.3 Let S be the stochastic matriz computed by Algorithm 2 for the com-
ponentwise upper- and lower-bounding coupling matrices U and L of order N in

Algorithm 1. Then S is a type-1 stochastic matriz.

LEMMA 4.4 Let S be the stochastic matriz computed by Algorithm 3 for the com-
ponentwise upper- and lower-bounding coupling matrices U and L of order N in

Algorithm 1. Then S is a type-2 stochastic matriz.

PROOF. Let us prove Lemma 4.3. The proof of Lemma 4.4 is similar. The proof
consists of showing that parts (), (i7), and (#17) of Definition 4.1 hold for S. Note
that, if C' is the coupling matrix given by equation (1.3), then L < C < U by

construction (see Algorithms 8 and 9).

CHAPTER 4. ANALYSIS 30

(i) Since C is irreducible, there is at least one column j € {2,3,..., N} such
that ¢;; > 0. Now, there are two cases. When [; ; = 0, we have 650) >0
and 6;; > 0 (since L < C) implying 3k > 7 51 > 0. When [;; > 0, we
have 31 ; > 0. Hence, 35 € {2,3,..., N} such that 3, ; > 0.

(ii) Since C is irreducible, there is at least one row ¢ € {1,2,..., N — 1} such
that ¢; v > 0. Now, there are two cases. When [; ;v = 0, we have 650) >0

and 6; y > 0 (since L < C) implying 3; v > 0. When [; y > 0, we have
Sin > 0. Hence, 30 € {1,2,..., N — 1} such that 5; x > 0.

(iii) Since C is irreducible, for each row ¢ € {1,2,..., N =1}, 3k <7 and 35 > ¢
such that ¢ ; > 0. Again there are two cases. For row ¢, [; = 0 implies
620) > 0 and 6;; > 0 (since L < C). Then 31 > j 55, > 0. For row ¢,
l,; > 0 implies 35 ; > 0. Hence, for each row ¢ € {1,2,...,N — 1}, 3k <
and dj5 > ¢ such that 55 ; > 0. a

LEMMA 4.5 If the input matriz S to Algorithm 5 is a type-1 stochastic matriz of
order m, then there is a path from each state 1 € {1,2,...,m — 1} to state m in

the output st-monotone upper-bounding matriz Q.

LEMMA 4.6 If the input matriz S to Algorithm 6 is a type-2 stochastic matriz of
order m, then there is a path from each state v € {2,3,...,m} to state 1 in the

output st-monotone lower-bounding matriz ().

PrROOF. Let us prove Lemma 4.5. The proof of Lemma 4.6 is similar. Let
[be the state with the smallest index in S such that Sim > 0. Since S is a
type-1 stochastic matrix, the existence of such an [is guaranteed by part (¢z) of
Definition 4.1. From Algorithm 5, g, ,,, > 0 as well. From the st-monotonicity of
Q, for each 7 € {I,l+1,...,m — 1} we have G;m > 0 implying a path of length
one from each state e € {I,/+1,...,m — 1} to state m in Q. What remains to
be done is to show that there is a path from each state e € {1,2,...,1 —1} to

state m in Q.

Now, let /; be the state with the largest index such that 53, > 0. The

existence of such an /4 is guaranteed by part (z) of Definition 4.1. From Algorithm

CHAPTER 4. ANALYSIS 31

5, Gy, > 0 since the first rows of S and () are identical. From the st-monotonicity
of @, for each 7 € {2,3,...,m} 35 > [it must be that ¢;; > 0. Hence, there

are two cases depending on the value of /5.

When [; > [, for each state e € {2,3,...,1 — 1} there is a direct transition to
a state j(> /1) and a path from state j to state m in . When [; < I, consider
part (z22) of Definition 4.1 and notice that 3¢ <y and 3k > [; such that 5, > 0.
Since () is an st-monotone upper-bounding matrix, this implies 3ly > k > [; such
that g;;,, > 0. Now, let ¢; be the state with the smallest index among (< [;)
corresponding to the state with the largest index ly; then @, ,, > 0. From the
st-monotonicity of @, for each ¢ € {4y,41 +1,...,m} 3Jj > I, it must be that

q:; > 0. Again, there are two cases.

When e > iy, there is a direct transition from state e to a state e/(> [> [y)
in Q. When e < iy, there is a direct transition from state e to a state j(> [).
Since 77 < ¢ < [y, we have j > 77 implying the existence of direct transitions from
state e to a state j and from state j to a state ¢/. Then we must observe the
value of [,. If [; > [, we are at the very first case. If I3 < [, we must continue the
recursive analysis as above until /3 becomes larger than [. Note that Iy > [; and

[y will eventually exceed |. a

THEOREM 4.1 If the input matriz S to Algorithm 5 is a type-1 stochastic matriz
of order m, then there is a single irreducible (sub)set of states that includes state

m in the given ordering of states in the output st-monotone upper-bounding matriz

Q.

THEOREM 4.2 If the input matriz S to Algorithm 6 is a type-2 stochastic matriz
of order m, then there is a single irreducible (sub)set of states that includes state

1 in the given ordering of states in the output st-monotone lower-bounding matriz
Q.

PRrROOF. Let us prove Theorem 4.1. The proof of Theorem 4.2 is similar. Since
@ is not necessarily irreducible, it may have several classes of states (see [21,

p. 26]). Let us denote these classes by C; and the class which contains state m as

CHAPTER 4. ANALYSIS 32

Ci. Now, if C; is an irreducible class, then from each class C;, j # [, there must
be a path to . This follows from Lemma 4.5 and the fact that the classes C;
form an exact partition of the state space. Furthermore, if C; is an irreducible
class, it is not possible to leave). Suppose C is transient and there is path from
C; to C; for some j # [. Then C; and C; are equivalent, which contradicts the
fact that C; and C; are distinct classes. Hence, C; must be irreducible. Note that

C; cannot be an irreducible class since there is a path to Cj. a

It is possible to have different st-monotone upper and lower-bounding matrices
for a stochastic matrix. The problem is to obtain the optimal bounding matrix
with respect to the st-order. The optimality of the st-monotone upper-bounding
matrix computed by Algorithm 5 is proved in [1, pp. 12-14]. Here we give the

proof for the st-monotone lower-bounding matrix computed by Algorithm 6.

THEOREM 4.3 Let () be the st-monotone lower-bounding matriz computed by Al-
gorithm 6 for the stochastic matriz S of order m. Let R be another st-monotone

lower-bounding matriz for S. Then Q) is optimal in the sense that R <, Q.

PROOF. The proof is by induction. By construction, row m in () and S are iden-
tical (see Algorithm 6). Since R is another st-monotone lower-bounding matrix
for S, it must be that R, , <4 Qm L= Sy« This forms the basis step. Now, let
us assume that R;, < Q. fori € 7{1, [4+1,...,m—1}. This forms the induction
hypothesis. We must shovx; that By . <q @

R

Since R is st-monotone, R; ;. <y [;,. Since it is an st-monotone lower-
bound for S, we have R, , <4 ;.. Then from the induction hypothesis, B;_; . <
R, <a @, . Observe that the inequality R;_,, <y (), , to be proven is

equivalent to

k k
Zz 22 Vke{l,2,...,m}.

Now, we analyze Algorithm 6 to see how the elements of @) are computed. In

the algorithm,

k
Zg_ ,—maxl—bllkH,qu Vke {1,2,...,m — 1}

CHAPTER 4. ANALYSIS 33

(when k = m, all row sums are 1). We remark that

k
1 —bi_y 41 = Zﬁz_m

i=1

from Algorithm 4; therefore, the (1 — b;_y x41) argument of max is due to com-
parison with matrix S for a lower-bound. The second argument of max is due to

comparison with row [of () for st-monotonicity. Hence, there are two cases for

each k € {1,2,...,m — 1}. We either have
k

k k k
24, =2 s, implying D om; =) g
=1 Jj=1 Jj=1 =1

since R < S, or we have

k
Zil—m
71=1

k k k
49, again implying Zﬁl—l,j 2 Zﬂl_m
7=1 7=1 7=1

since Rj_1 . <s Q1. Combining the two cases, we obtain
k k
Zﬂl—l,j > Zgl_lj Vk e {1,2,...,m}
Jj=1 =1 ’
1mp1y1ng El—l,* Sst Ql_17*‘ O

LEMMA 4.7 Algorithm 7 computes better componentwise probability bounds than
the following algorithm used in [24]:

ALGORITHM 11. Computation of componentwise probability bounding vectors
w*P and w™™f as in [24] given st upper- and lower-bounding probability vectors

5" and v** of length m:

sup __ swst.
wm _vm7
inf __ ,.st.
wm _QWN

fory=m—-1,m-2,...,1
w5 = min(1, (S, 0 = S wf 7)),
i
J

wh = min(1, (ZZL:]' vy — Dbt w)

Y

CHAPTER 4. ANALYSIS 34

PROOF. The proof is by induction. We must show that v**» < w**? and v/ >

w™ . By construction (see Algorithms 7 and 10), v*P = w*? = 7% and v/ =

“P and

w™f = v, This is the basis step. Now, let us assume that v < w;p
vlinf > wmf for j € {[,I+1,...,m — 1}. This forms the induction hypothesis.

We must show that v < wi™ and v;"] > w]™.

From Algorithms 7 and 10, we respectively have

sup up o Y inf
o =) —|—vll—vl and wi_] = w; —|—vll—wl.

From the induction hypothesis, we have v;*" < wi*” and v;"™’ > w{"™/. Observing

that v§* > ;™ from Algorithm 7, we obtain v*? < w™.
Similarly, from Algorithms 7 and 10, we respectively have
=ty =T and i =t —

Observing that v < v;*" and using the induction hypothesis, we obtain vl >

inf
-1 O

Chapter 5

Implementation Details

The pioneering work about finding componentwise bounds for the steady state
vector of NCD MCs in [24] and [1] does not include any applications. Such
applications generally have thousands of states and possess some sparsity pattern.
To asses the validity of our work, we apply the proposed algorithm to a current

application.

Working on applications requires the implementation of Algorithm 1 efficiently
in terms of time and space. Obviously, Algorithm 1 is complicated to implement.
Our implementation is focused on obtaining results in acceptable time limits using
memory available on a workstation. To achieve this, we use different types of data

structures in implementing the algorithm.

5.1 Compact Sparse Row Format

There are matrices generated from Markov models that are too large or too dense
to permit regular two-dimensional storage in computer memory. In addition to
this, these matrices are sparse (i.e., a large percentage of their elements are zero).
For these reasons, we store MCs in a different type of data structure which leads to

considerable storage and computational savings at run-time. Our data structure

35

CHAPTER 5. IMPLEMENTATION DETAILS 36

is a kind of compaction scheme whereby only the nonzero elements and their
positions in the matrix are stored and is called the Compact Sparse Row (CSR)
format. It requires for each coefficient matrix of order m one real and one integer
array of size nz (i.e., number of nonzero elements in the coefficient matrix), and
one integer array of size (m 4 1). This scheme not only has the advantage of
using less space but is also very useful in computation. Whenever we see the
advantage of exploiting the zeros in any step of Algorithm 1, we use CSR format.

The following is an example stored in CSR format:

/—2.1 0.8 0.2 0.0
0.0 —-08 1.5 0.3
1.7 0.0 —-1.7 0.2
0.4 0.0 0.0 =05

1 2 3 4 3 6 7 8 91 10 11
aa: | -2.1 10802]-08 15|03 |1.7]|-1.7102]04]-05
Ja: 1 2 3 2 3 4 1 3 4 4
wa: 1 4 7| 10| 12

Here aa is the real and ja is the integer array of size nz and a is the integer
array of size (m + 1). Most of the steps of Algorithm 1 are implemented in CSR

format.

5.2 The Details of Algorithm 1

The input matrix P of order n which has nz nonzero elements is kept in CSR
format in our implementation. Assume that the nonzero elements of P are dis-
tributed uniformly across the matrix. Note that nz is considered to be O(n) for
sparse matrices. Hence, there will be roughly £ = nz/n nonzero elements per
row/column of P and k; = nz X n;/n? nonzero elements per row/column of P;;.

The uniform assumption is neither an optimistic nor a pessimistic one.

In [6], an efficient way of implementing the NCD partitioning algorithm in
CSR format is given. We implement the algorithm in [6] in CSR format, which

CHAPTER 5. IMPLEMENTATION DETAILS 37

requires extra O(n+nz) integer and O(nz) real space. We name these extra spaces
as integer and real work arrays, allocate them at the beginning of the program,
and use them in any step of Algorithm 1 when we need temporary space. In other
words, we do not allocate extra space when needed. For the time complexity, we
account for floating-point comparisons and floating-point arithmetic operations.
Hence, the time complexity of the NCD partitioning algorithm is O(n + nz)

floating-point comparisons [6].

In Step 0 we symmetrically permute the matrix P to put it in the form of
equation (1.2). The cost of permutation in CSR format is negligible since it
does not involve any comparisons or arithmetic operations and is faster than
two dimensional (2D) implementations because we do not deal with permuting
the zero entries. On the other hand, the permutation operation is not in place.
Therefore, we need to store the permuted matrix in temporary space. For this
reason, we use nz real and (nz + n + 1) integer temporary space to store the

permuted matrix in CSR format.

5.2.1 The Orderings of NCD blocks

Recall that, in order to improve the quality of the bounds, we find an ordering
for each of the NCD blocks using Algorithm 10 in Chapter 3 after determining
the last state in each block. Considering the uniform distribution assumption re-
garding the nonzeros, the last state that has the largest self-transition probability
is determined after nearly n; x k;/2 + n; floating-point comparisons for block ¢
in our CSR implementation if tie-breaking rules are not used. We store the se-
lected state as the last entry of a permutation vector whose other elements will
be the remaining states of the particular NCD block. This permutation vector
is given as input to the implementation of Algorithm 10. In this way, symmet-
ric permutation of the selected state to be the last in the NCD block becomes

unnecessary.

Algorithm 10 is a complicated algorithm. Our implementation is done in

CSR format and runs in a reasonable time as we will see later. The underlying

CHAPTER 5. IMPLEMENTATION DETAILS 38

implementation of Algorithm 10 is quite different than the corresponding pseudo-
code given in Chapter 3. There is a lot of repetition in the code. For example,
there is no need to generate the set Z; from scratch in each step if it contains
more than one element in any step of the algorithm. Removing one element from

7; in the next step is sufficient after generating it in the current step (see line 8).

We keep Z, Z;, and Z;; as singly linked lists. The elements of 7 are kept
sorted with respect to the field p;, (m is the order of the NCD block) with
insertion sort before starting the outer while loop. The worst case cost of this
sort is O(m?) floating-point comparisons. The elements which have the largest
transition probabilities to the last state are placed at the head of Z. In this way,
when generating 7;, we just look at the head of the list. If 7, has more than one
element, it is not generated in the following steps until all the elements of Z; are
placed in the permutation vector. This kind of implementation minimizes the

cost of generating the set Z;.

In the case of more than one element in 7;, we have two tie-breaking rules to
select a state from Z;. If the tie is not broken in the first rule, it is broken in
the second rule. We implement the second tie-breaking rule as it appears in the
algorithm, but consider a different implementation for the first rule to improve
time. Before entering the first rule, we map the states of Z; to an ordinary array.
This is done at the time of creation of Z; and this array is kept until the next
creation of 7;. Assume that the condition (m — j > ¢s) is satisfied and we enter
the inner while loop. We perform a quick sort in the array with respect to the
field p; indes,,_, - Now, it is possible to have a sorted array as {51, 52, 53}, where
S; represents the subset of states that have the same value in the sort field and
the set having the largest value is at the beginning of this array. In the best case,
the set S has just one element, the tie is broken, and the algorithm moves to the
next step. However, we do not move to the next step in our implementation if the
condition (m —j > ¢s) permits us to stay in the innermost while loop and at least
one of the remaining subsets has more than one element. We do not leave because
the algorithm enters the first rule to resolve the tie in the subsets having more
than one element. Our implementation stays and performs another quick sort

due to the field p;indes,,_, (i-e., next field) in the other subsets. We break from

CHAPTER 5. IMPLEMENTATION DETAILS 39

the while loop if (m — j < ¢s) or all the subsets have a single element. At that
point, it is possible to have a sorted array as {51, Ss,, S2,, S3,, 53,, 53, }, where all
S; represent subsets having one or more states. If one of these subsets have more
than one state, in the next entrance to the first rule we order the remaining states
starting from the field where we left in the previous sort. We never start from
the beginning as in the pseudo-code. These improvements introduce substantial
savings to the cost of Algorithm 10. The space complexity of implementing this
algorithm is O(m) integers. There are at most O(m?) floating-point comparisons
in our implementation. After determining the ordering for each of the NCD
blocks, we symmetrically permute each block according to the corresponding

ordering.

5.2.2 Bounding Matrices

In Steps 1.b and 1.c we generate the st-monotone bounding matrices for each
NCD block, and in Steps 2.b and 2.c we obtain the bounding matrices for the

exact coupling matrix.

We implement Algorithms 2 and 3 in a slightly different manner when gener-
ating the stochastic matrices for each NCD block P;;. When we apply Algorithm
2 (alternatively, Algorithm 3) to P;; to generate S; (alternatively, S;), we see that
Siis Py with its last column perturbed and similarly S; is P;; with first column
perturbed. However this observation does not hold when we use the same al-
gorithms in Step 2.b. Perturbations may occur in any column of L and U to
generate the stochastic matrices S and S. Hence, in our implementation the in-
nermost loops of Algorithms 2 and 3 execute exactly once for each block in Step
1.b. For Step 2.b, these algorithms are implemented as they appear. The time
complexity of Step 1.b is roughly O(n; x k; + n;) floating-point arithmetic op-
erations and O(n;) floating-point comparisons for block P;;. On the other hand,

Step 2.b requires O(N?) floating-point comparisons and arithmetic operations.

The ordered NCD blocks, which are input to Step 1.b, are kept in CSR format.

This format gives us the advantage of not dealing with zero entries in finding the

CHAPTER 5. IMPLEMENTATION DETAILS 40

row sums. However, we do not keep the output of Algorithms 2 and 3 in CSR
format. It is possible to extract the zero entries with additional floating point
comparisons, but this approach ends up being inefficient when we consider the

details of Algorithms 2,3,5, and 6.

Algorithms 2 and 3 may change the nonzero structure of the matrices they
have as input. When we employ these algorithms to NCD blocks in Step 1.b
of Algorithm 1, the resulting stochastic matrices may have additional nonzero
entries in the last column or in the first column. Since we are keeping the blocks
in CSR format, adding nonzero entries to the matrix in this format requires an
expansion and a compaction. It is clear that if a compaction is done in Step
1.b, an expansion must follow in the next step. These are all unwanted costs. In
addition, the bounding matrix algorithms (i.e., Algorithms 5 and 6) may change
the nonzero structure of these stochastic matrices altogether. They may insert a
nonzero to or remove a nonzero from any location of the stochastic matrices they
have as input. As a result, the number of nonzeros in the st-monotone bounding
matrices cannot be known. If the number of nonzeros cannot be anticipated,
storage advantages of the CSR format diminish. Therefore, we employ a 2D
implementation and storage scheme in Algorithms 2,3.5, and 6 for NCD blocks.

We generate L and U in Step 2a row by row and construct the rows of S and S
simultaneously. A compaction is not performed, because the number and location
of nonzeros in the bounding matrices which will be generated by Algorithms 5
and 6 are completely unknown. For this reason, the stochastic matrices are kept

in 2D and the implementation of Step 2.c is also done in this format.

The 2D implementation and storage scheme requires at least two (maxn;)?
real temporary space for Steps 1.b and 1.c. One of them is used to generate S;
and @Q;; the other one is used for S; and ¢, Similarly, the space complexity
of Steps 2.b and 2.c is (2 x N?) reals. The time complexity of st-monotone
bounding matrix construction algorithms is O(m?) floating-point comparisons
and arithmetic operations for a matrix of order m. Floating-point operations
needed to implement Algorithms 5 and 6 may seem higher than this value at

first, but we have an efficient implementation. We keep a temporary vector of

CHAPTER 5. IMPLEMENTATION DETAILS 41

size m that holds the sum of newly computed entries in each row. In this way,

the summation operations in the innermost loops become negligible.

5.2.3 Extracting the Essential Class

Remember that the st-monotone bounding matrices may be reducible. However
in Chapter 4, we proved the existence of only one essential class in these stochastic
matrices. In order to achieve good run times in our implementation, extracting
the essential block from all bounding matrices must be negligible when compared

with other steps.

Let () be an st-monotone upper bounding stochastic matrix in Algorithm 1.
Obtaining the essential block in @ is equivalent to making a modified strongly
connected component (SCC) search in the directed graph G represented by Q.

GYY whose nodes repre-

The SCC search in (G generates the component graph
sent the SCC components of (G, and the edges are the transitions between these
components. The essential class of () can be obtained from G®““. It is the node

of G°“Y which has only incoming arcs since it is impossible to leave such a node.

In the section about direct methods for solving homogeneous linear systems,
we mentioned the advantages of solving the transposed version of these systems.
Therefore, we use the transposed version of the bounding matrices. In order to
avoid making extra transpositions of (), we run the SCC search algorithm on @T.
Let GT be the graph of @T and GT°°C be its corresponding component graph.
The SCC components of GG and G are the same, but GT°° is the transpose of
G . Consequently, the essential class of) is the SCC component of G which
has only outgoing arcs. Figures 5.1 and 5.2 summarize these results. Let the
component graph of GG take the form in Figure 5.1. It can be seen that SCCY,
SCCy, and SCC5 represent the transient blocks of (). SCC} is the only essential
block of Q).

The essential class in @T can be obtained by making another search in GT>c°

after generating it. However this is an inefficient solution. We make a small

CHAPTER 5. IMPLEMENTATION DETAILS 42

=

Figure 5.1: Component graph of G

=

Figure 5.2: Component graph of G7

modification in the SCC search algorithm given in [2, p. 196] to detect the essential
class during the SCC search in @T. Our modification introduces negligible change

in the time complexity and space requirement of the algorithm in [2].

The SCC search algorithm in [2] keeps track of vertices to be placed in SCCs
by pushing each vertex and its adjacent vertices into a stack. When a SCC
component is detected, the vertices in that component are in the top positions of
the current stack. They are popped, and therefore do not enter the stack again.
To obtain the essential class, we follow the same implementation in [2], but apply
it to @T by adding some checkpoints to detect the essential class. During the
search of adjacent vertices of a vertex in @T, if we encounter a vertex which
has been discovered and placed in an SCC, we call its corresponding SCC block
as transient. It means that, this SCC has an incoming arc from another SCC
which has not been discovered yet in GT°°°. In addition to this, there is one
more criteria to detect the essential class. The algorithm in [2] starts popping
the vertices of an SCC from the stack when it discovers a new component. At
the end of these popping operations, the stack may be nonempty. If the stack

is not empty, this means that the newly discovered SCC has an incoming arc in

CHAPTER 5. IMPLEMENTATION DETAILS 43

GT7°° | and this arc belongs to the vertex which still exists in the stack after the

pop operations for the new SCC. Consequently this SCC is a transient class of
Q.

Using these two checks in the SCC algorithm, we detect the SCC which has
only outgoing arcs in @T (i.e., essential class) at the end of the search. The
implementation of this search is done in CSR format. We have a routine to
transform the 2D bounding matrices to CSR format in transposed version. We
call this routine before making the search. The CSR format introduces substantial
savings to the run time of our implementation. The complexity of the search is
O(nz,,) floating-point comparisons and space used by the recursion stack is O(m)

integers for a matrix of order m having nz, nonzero entries [2, p. 196].

5.2.4 Steady State Vectors

After extracting the essential class from the transposed version of the bound-
ing matrix, we solve the transposed system for its steady state vector. A direct
method is employed in solving the linear system. Due to the nature of the prob-
lem, the bounding matrices may be ill-conditioned. We prefer to use the GTH

method for ill-conditioned problems and solve the others using GE.

Let B be the transpose of the submatrix corresponding to the essential class
in the bounding matrix and assume that it is of order m. We seek the LU fac-
torization of B. Only U needs to be kept; multipliers are discarded immediately

after they are used. We keep B in CSR format in our implementation.

In the implementation of GE, keeping B in CSR format has several advantages
over traditional implementations in two dimensional storage. These advantages
originate from the sparsity pattern of B. In our implementation of GE, we ex-
pand the row to be processed and eliminate it using the rows above. No further
updates are made on the current row. Speaking more formally, when row ¢ of B
is considered, rows 1 through (¢ — 1) have been reduced to upper triangular form.

The first (: — 1) rows may then be used to eliminate all nonzero elements in row :

CHAPTER 5. IMPLEMENTATION DETAILS 44

between column positions 1 through (¢ —1). Once row ¢ is treated in this manner,
no more fill-in occurs. After this, row : may be compacted into CSR format and
appended to the rows that have already been reduced. Here, the U factor must
be kept in an another storage area, because the nonzero pattern of U can not be
forecasted at the beginning. We store U in our real and integer temporary work

arrays.

The implementation of GTH is quite different from GE. Difficulties arise in
implementing GTH because the LU factorization of B is sought and CSR stor-
age scheme is used. In the CSR format, we have easy access to the rows of B.
However, since we are solving the transposed system we also need easy access
to the columns of B to obtain the pivots by the GTH way. The CSR storage
scheme does not provide convenient access to columns of B. To alleviate this
problem, we use a different elimination procedure in GTH. We update all rows
with indices larger than ¢ in the ¢th step of elimination. Moreover, the running
sum of elements that contribute to the pivot of the (i 4+ 1)st step is computed. In
other words, the negated sum of the elements below row (: 4 1) for the (: 4 1)st
column is accumulated and taken as the pivot element in the next elimination
step. This elimination procedure requires the expansion and recompaction of the
unreduced submatrix continuously throughout the algorithm. Hence, the CSR
implementation of GTH is inefficient. However, we need GTH for ill-conditioned
problems that are sparse. To solve this dilemma, we consider a different com-
paction scheme for GTH. It is based on generating linked lists for each row of B

to hold its nonzeros.

During elimination, it is possible for the number of nonzeros in a row to
increase. As a result of this, the number of nodes necessary to store the row in the
linked list may be insufficient. To solve this problem efficiently, for each row we
generate a number of nodes equal to a multiple of the number of nonzeros in that
row before the elimination. Obviously, it is possible to have fill-in that exceeds the
preallocated number of nonzeros. Only in that case, we generate additional nodes
in the linked list for that row. This implementation of GTH seems inefficient at
first, but its comparison with the available CSR implementation of GTH reveals

that the linked list implementation for sparse matrices works substantially faster.

CHAPTER 5. IMPLEMENTATION DETAILS 45

5.2.5 Ordering for Small Bandwidth

In our experimental observations, we see that the bounding matrices are mostly
sparse. To expedite the solution process of direct solvers in Algorithm 1, we
consider an ordering approach for sparse matrices. The objective of the ordering is
to minimize the number of operations in the elimination by permuting the matrix
to a form which has narrower bandwidth. The ordering of interest is found by
the Reverse Cuthill— McKee (RC M) algorithm given in [10, p. 153]. When the
matrix is symmetrically permuted according to this ordering, it is transformed to
a form which generally has smaller bandwidth. For large bounding matrices, we
employ the RCM algorithm and permute the matrices according to the resulting
orderings before solving them with direct solvers. The execution times of the
RCM algorithm and the permutation are negligible in CSR format, and the gain

with this ordering is worth its run time.

In conclusion, the space complexity of Algorithm 1 other than the storage set
aside for P is max {O(nz), max; {O(n?), O(N?)}} reals and integers from Steps 0,
1.b, 1.c, 2.b, and 2.c. Other steps contribute as lower order terms. As for the time
complexity of the algorithm, we should account for floating-point comparisons and
floating-point arithmetic operations separately. From Steps 0, 1.a-d, 2.a, and 2.d,
we have max {O(nk?), "N max {O(n?), O(n;k?)}, O(Nn), O(N*®)} floating-point
comparisons. From Steps 1.d, 2.a, and 2.d, we have max {>N, O(n?),O(nz),
O(Nn),O(N?)} floating-point arithmetic operations. Other steps contribute as
lower order terms. Now it is evident why one should opt for balanced NCD

partitionings (cf. Step 0).

Chapter 6

An Application

To assess the validity of our work, we performed various experiments on a current
application. The application that we consider arises in wireless asynchronous

transfer mode (ATM) networks and possesses NCD structure.

6.1 Wireless ATM model

In [25], a multiservices resource allocation policy (MRAP) is developed to inte-
grate two types of service over time division multiple access (TDMA) frames in
a mobile communication environment established on a wireless ATM network.
These are the constant bit rate (CBR) service for two types of voice calls (i.e.,
handover calls from neighboring cells and new calls) and the available bit rate
(ABR) service for data transfer. A single cell and a single carrier frequency is

modeled.

The TDMA frame is assumed to have C slots. Each mobile user that has
a call in progress generates a handover request as s/he moves from one cell to
another. To allow the call in progress to continue in the newly entered cell, the
handover requests should be served immediately. Hence, handover requests have

priority over new call arrivals, and they respectively arrive with probabilities py,

46

CHAPTER 6. AN APPLICATION 47

and p,. Moreover, each voice call takes up a single slot of a single TDMA frame
but may span multiple TDMA frames whereas each data packet is served in a
single slot. When all the slots are full, incoming voice calls are rejected. The
number of voice calls that may terminate in a given TDMA frame depends on
the number of active calls and is modeled as a binomial process with parameter
ps. In this way, it is possible to have multiple departures of voice calls during
a TDMA frame. On the other hand, data is queued in a FIFO buffer of size B
and has the least priority. The arrival of data packets is modeled as an on-off
process. The process moves from the on state to the off state with probability «
and from the off state to the on state with probability 3. The load offered to the
system is defined as L = #/(a+). Assuming that the time interval between two
consecutive on periods is ¢, the burstiness of such an on-off process is described
by the square coefficient of variation, S¢ = Var(t)/[E(¢)]>. In terms of L and
Se, B=2L(1—-L1)/(Sc+1—1L)and o = (1 — L)/L. When the on-off process
is in the on state, we assume that ¢ € {0,1,2,3} data packets may arrive with
probability pg;. The mean arrival rate of data packets in the on state is defined
as R =371 x pg. Hence, the global mean arrival rate of data packets is given
by G = L x R. When the buffer is full, any excess packet is dropped. In this
model, we do not consider the arrival of multiple handovers or new calls during a
TDMA frame since the associated probabilities with these events are small. The
arrival process of data and the service process of calls we consider is quite general

and subsumes the model in [25].

The parameters of the model are p, = C' x 107, p, = C' x5 x 107°, and p, =
C x5 x 107, The performance measures of interest are the blocking probability
of voice calls and the dropping probability of data packets. We obtain these
performance measures by generating the underlying MC by a three-component
state descriptor (a,b,c), where a denotes the state of the data arrival process,
b denotes the number of data packets in the buffer and ¢ denotes the number
of active voice calls. State changes happen at frame boundaries and transition
probabilities are computed using the priority rules among handover requests, new

call arrivals and data packet arrivals. Using the steady state probabilities, the

CHAPTER 6. AN APPLICATION 48

blocking probability of voice calls is calculated as

1 B
Poiock = [(Pu(1 = pn) + (1 = pa)pn + 2pnpn) (1 = ps)7 DD mijo
=0 5=0
‘|‘pnph0(1 - ps Z Z Ti,5,C
=0 5=0

1 B
+Pupr(1 — ps) T DN misom1)/[pa(1 — i) + (1 = pa)ph + 2P pa)

=0 5=0

and the dropping probability of data packets can be obtained from

c c
Parop = [(Pa1 + 2paz + 3pas) Z 71,8, + (Pa2 + 2pas) Z T1,B-1,i
=0 =0
c
+pa3 Z 71,8-2,)/[pa1 + 2paz + 3pas)-
=0

We remark that the above formulae is defined on the product state space having
2(B+1)(C +1) states of which some are unreachable. In other words, the states

which do not exist in the model are never generated.

6.2 Numerical Results

We executed Algorithm 1 on the wireless ATM model. Since the resulting NCD
MCs are of moderate order (i.e., thousands of states) and sparsity (i.e., tens of
nonzeros per row), we consider the direct solution method of GTH at each level of
Algorithm 1. We do not consider the Cuthill-Mckee ordering approach because its
effect is negligible for such kind of small systems. All code is written in Fortran/C
and compiled in double precision with ¢77/gcc on a SUN UltraSparcstation 10
with 128 MBytes of RAM running Solaris 2.6. The numerical experiments are
timed using a C function that reports CPU time. We compare the run-time
of Algorithm 1 with that of GTH and iterative aggregation-disaggregation (IAD)
[21] which are both geared towards NCD MCs. In order to make a fair comparison,
with IAD we use the same partitionings as in Algorithm 1. For all combinations
of the integer parameters we considered, there is sufficient space to factorize

in sparse format (that is, to apply sparse GE to) the diagonal blocks in TAD.

CHAPTER 6. AN APPLICATION 49

Furthermore, we use block Gauss-Seidel (BGS) in the disaggregation step and
employ a stopping tolerance of 107'° on the infinity norm of the residual vector
at each iteration. We remark that for each problem solved, the relative backward
error in TAD turns out to be less than 107'6. See [8] for recent results on the
computation of the stationary vector of Markov chains. The bounds obtained on

performance measures are given in Figures 6.1, 6.2, 6.3, 6.4, 6.5, and 6.6.

In Figures 6.1, 6.2, and 6.3 using Algorithm 1 we present bounds on the
blocking probability of voice calls and the dropping probability of data packets
in the system with B = 30, C' = 10. We set (p4o, pa1, Paz, pas) = (0.4,0.3,0.2,0.1)
implying R = 1.0, take L € {0.1,0.2,...,0.9} and S¢ € {1,10,100}. Observe
that there is orders of magnitude between the average interarrival time of voice
calls and the average interarrival time of data packets, which makes this problem
NCD. In fact, the smallest degree of coupling values we computed for this problem
and the larger version next are on the order of 107*. The NCD partitionings
considered for S¢ = 1 in Figures 6.1.(a)-(b) all have 11 blocks with orders between
42 and 62, and a degree of coupling 6 x 107*. The NCD partitionings considered
for S¢ = 10 in Figures 6.2.(a)-(b) all have 22 blocks with orders between 21 and
31, and degree of coupling values between 1 x 107" (for L = 0.1) and 2 x 1072 (for
L =0.9). The NCD partitionings considered for S¢ = 100 in Figures 6.3.(a)-(b)
all have 22 blocks with orders between 21 and 31, and degree of coupling values
between 2 x 1072 (for L = 0.1) and 2 x 1072 (for L = 0.9). The underlying MC
that has 572 states and 20,198 nonzero elements takes 0.3 seconds to solve when
Sc =1 and 0.2 seconds to solve when S¢ € {10,100} using Algorithm 1. Steps
0 and 1.a take a total of about 0 seconds. It takes 2.6 seconds to solve the same
MC by GTH for each L. It takes at least 1.5 seconds (5 iterations) to solve when
Sc =1 and at least 1.8 seconds (9 iterations) to solve when S¢ € {10,100} using
IAD.

CHAPTER 6. AN APPLICATION 30

SC=1, B=30, C=10, (pdo, Pyq Pypr pd3)=(0.4, 0.3,0.2,0.1)

0.05 T T T T T T T
B- — — — . _ g : : : . —x— lower bound
—© © - =—--9 —— exact value
0.045+ . . v 3
) 1 —O——upperbound
\
004_ \ —
\
\
0.035 \ =
\
\
= 0.03F \ -
= \
S \
00_025_ \ —
S \
2 \
= 0.02r- —
[5] \
o
el \
0.015- \\ -
\
0.0 - Nl -
\
\
0.005 - oo i
: el e - S
[0 2 — S —— S ———— sy I T o a) 3
1 1 1 1 1 L 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
L (Load)
(a)
10 Sg=1, B=30, C=10, (P, P> Pyp» Pyg)=(0-4, 0.3, 0.2, 0.1)
126—— 1 T T T T T T
O - --e-__ -6 5 .| =<— lower bound
\ —— exact value
\ —O— upper bound
\
\

dropping probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
L (Load)

(b)

Figure 6.1: Blocking and dropping probabilities for S¢ = 1 when B = 30 and
¢ = 10.

CHAPTER 6. AN APPLICATION 51

In Figures 6.4, 6.5, and 6.6 using Algorithm 1 we present bounds on the
blocking probability of voice calls and the dropping probability of data packets
in the system with B = 60, C' = 30. We set (p4o, pa1, Paz, pas) = (0.4,0.3,0.2,0.1)
implying R = 1.0, take L € {0.1,0.2,...,0.9} and S¢ € {1,10,100}. The NCD
partitionings considered for S¢ = 1 in Figures 6.4.(a)-(b) all have 31 blocks
with orders between 62 and 122, and a degree of coupling 5 x 1073. The NCD
partitionings considered for S¢ = 10 in Figures 6.5.(a)-(b) all have 62 blocks
with orders between 31 and 61, and degree of coupling values between 2 x 107!
(for L = 0.1) and 2 x 1072 (for L = 0.9). The NCD partitioning considered for
Sc = 100 in Figures 6.6.(a)-(b) all have 62 blocks with orders between 31 and
61, and degree of coupling values between 2 x 1072 (for L = 0.1) and 7 x 1072
(for L = 0.9). The underlying MC that has 2,852 states and 217,778 nonzero
elements takes 3.3 (Step 0: 0.3 seconds; Step l.a: 0.3 seconds) to solve when
Sc = 1 and 2.5 seconds (Step 0: 0.3 seconds; Step l.a: 0.2 seconds) to solve
when S¢ € {10,100} using Algorithm 1. It takes 260.0 seconds to solve the same
MC by GTH for each L. It takes at least 64.2 seconds (3 iterations) to solve when
Sc = 1 and at least 75.4 seconds (4 iterations) to solve when S¢ € {10,100} using
IAD.

Since voice calls have priority in service, their blocking probability is not af-
fected by L and S¢ (see Figures 6.1-6.6 part (a)) whereas the dropping probability
of data packets increases with L and S¢ though the increase with S¢ happens
very slowly (see Figures 6.1-6.6 part (b)). Both probabilities decrease when we
move from Figures 6.1, 6.2, and 6.3 to Figure 6.4, 6.5, and 6.6. A bigger C
implies a smaller blocking probability for voice calls, bigger B and C' imply a
smaller dropping probability for data packets.

The time spent to compute bounds using Algorithm 1 is very promising com-
pared to solving the NCD MCs using GTH or TAD. This is understandable since
Algorithm 1 solves multiple smaller systems (i.e., two systems corresponding to
each NCD block ¢ with order at most n;) and two aggregated systems of order
at most V whereas GTH solves the global system of order n and IAD performs
a number of aggregation-disaggregation iterations. In addition, the memory re-

quired for running our bounding algorithm on these problems is moderate and

CHAPTER 6. AN APPLICATION 52

SC=10, B=30, C=10, (pdo, Pyq Py pd3)=(0.4, 0.3,0.2,0.1)

0.025 _ T T T T T T T
T T o~ : : : : .| === lower bound
T - —— exact value
= < =O——upperbound
S e
~
002 = >~ & R R —
~a
~N
~N
~N
~N
N
30'015 A NG .
= N
% AN
_8 N
g Q
(=) AN
£ AN
E 0.0 | - - \.\. -
o N
S
BN
N
N
N
N
0.005 %
O — X e 3 e e X T X T T T TN T T T T]
1 1 1 1 1 L 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
L (Load)
(a)
<10~ Sc=10, B=30, C=10, (P4: Py;: Pyp: Pys)=(0-4, 0.3, 0.2, 0.1)
10 T T T T T T T
—x— lower bound :
—— exact value :
—O— upper bound - -0 - — - 5 _

dropping probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
L (Load)

(b)

Figure 6.2: Blocking and dropping probabilities for S¢ = 10 when B = 30 and
¢ = 10.

CHAPTER 6. AN APPLICATION

§=100, B=30, C=10, (P, Py Pyp Pys)=(0.4, 0.3, 0.2, 0.1)

0.025 T T T T T T T
L : —x— |ower bound
~ - —— exact value
& —O——upper bound
0.02| - i
s ~
<
~
~
s\
~ ~
0.015} DR .
> ~
= >~
8 ~o.
e} ~
o T~
g 0.07 | oo Y IR R -
£ ~
= =~
S o — — —
o
0.005 - -
0(-f———><—4—~-)é~—4—x—————x——-——x—————x—————x——f—j
1 1 1 1 1 L 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
L (Load)
(a)
%107 S.=100, B=30, C=10, (Pyy: Pyy> Pyp: Pys)=(0-4, 0.3, 0.2, 0.1)
1 T T T T T T T
; ; —x— lower bound
—— exact value
—O— upper bound
0_8 — - .
>
=06
e)
<
=)
o
S
j=2]
£
(=%
5]
5 04
0 1 | 1 | 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
L (Load)

(b)

33

Figure 6.3: Blocking and dropping probabilities for S¢ = 100 when B = 30 and

C = 10.

CHAPTER 6. AN APPLICATION 54

%108 SC=1, B=60, C=30, (puo’ Pyq» Pyos pd3)=(0.4, 0.3,0.2,0.1)
T T T T T T T
. —x— |ower bound
4.5 — — — ©O— — — —_) =~ — G = - - —q o PN o P exact value
0y —O—upper bound
L \. 4
4 \
\
3.5 ! -
\
\
3 \ |
- \
% \
S 251 Vo -
S \
S \
= 2 [\ _
£
g o
s \
1.5 \\E -
O~ _ 4
1+ . ..$Q~._._h._®,(-
0.5 =
oF— ==X == X = = = = = X — = = — X e e e e =K
1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
L (Load)
(a)
x 107%° Sg=1, B=60, C=30, (P4, Pyy> Pyp Pya)=(0-4, 0.3, 0.2, 0.1)
8 T T T T T T T
: : —x— lower bound
: exact value
7+ : : —O— upper bound

dropping probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
L (Load)

(b)

Figure 6.4: Blocking and dropping probabilities for S¢ = 1 when B = 60 and
C' = 30.

CHAPTER 6. AN APPLICATION)

10~ S=10, B=60, C=30, (py,: Py;> Pyo» Pyz)=(0.4, 0.3, 0.2, 0.1)
3 T T T T T T T
: : : : . —x— lower bound
—— exact value
—O——upper bound
2.5+ -
G — — — : :
©O- - — _o_ _ :
- -6 _ _
: s :
2| - f i
e
RS
= T~
= ~
5 a v
g1sr NECRE 1
[<] > :
S ~
1= O
£ ~
= =<
S 1r 4
o
O — — — HK— — = — K — — = M — = — N o = — M~ e M o SR e
1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
L (Load)
(a)
X102 S=10, B=60, C=30, (py,, Py: Pyp» Pyz)=(0-4, 0.3, 0.2, 0.1)
8 T T T T T T T
—x— lower bound D,/z’e_“‘—&\ :
—— exact value _ - T~
7| —~O— upper bound o= - : O - o
- = o)
e
7
6 P < -
7
7
7
51 > .
= Ve
5 s
g 4 / —
s /
g) /
= /
§3— v i
S

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
L (Load)

(b)

Figure 6.5: Blocking and dropping probabilities for S¢ = 10 when B = 60 and
C' = 30.

CHAPTER 6. AN APPLICATION 56

< 10-"® SC=1 00, B=60, C=30, (pdo, Pyq> Pyos pd3)=(0.4, 0.3,0.2,0.1)
3 T T T T T T T
: : : : . —x— lower bound
—— exact value
—O——upper bound
25 —
} =~ —
- _ ~ :
~o_ _
2t TO~ . _ 4
N »\\\\o_—_‘ —_____@//
= -©
g15F .
o
S
>
£
<
S 1r .
o
O — — — X— — — — X R o R R e X o e X e o o
1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
L (Load)
(a)
X 10°2° SC=100, B=60, C=30, (de’ Py Pyos pd3)=(0-4, 0.3,0.2,0.1)
8 T T T T T T T
: : —x— lower bound
: exact value
van : : —O— upper bound

dropping probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
L (Load)

(b)

Figure 6.6: Blocking and dropping probabilities for S¢ = 100 when B = 60 and
C' = 30.

CHAPTER 6. AN APPLICATION d7

can be easily accommodated by a workstation (see section 5.2.5 for the space

complexity of Algorithm 1).

The bounds computed on pyoer and pgrop using Algorithm 1 are highly accept-
able; the bounds on pg,,, are especially tight. Note that the 4(B+1) steady state
probabilities used in computing py.ce comprise those 3(C' 4 1) used in computing
Pdrop- 1f we remove the unreachable states from the two formulae, there happens
to be exactly [4(B + 1) — 2] steady state probabilities that contribute to ppiock
and 6 that contribute to pg,.,. This can be an an intuitive explanation for having
tighter bounds for pg.,, compared to those for pyoe. There are other factors
that influence the quality of the computed bounds such as the NCD partitioning
employed, the ordering chosen by our heuristic within each NCD block, and the

irreducibility structure of the computed st-monotone matrices.

In our experiments, we observed that the location of each state inside an
NCD block has considerable influence on its componentwise bound. Recall that
the ordering of the states inside each NCD block is determined by the heuristic
in Algorithm 10 in Chapter 3. It is generally the case that the closer the state to
the end of its corresponding NCD block, the better the componentwise bounds
obtained on it. Therefore, in order to see the effect of this conjecture, we place the
6 states of interest that contribute to pg,., at the end of their corresponding NCD
blocks and order the remaining states due to the heuristic given in Algorithm 10.
For example, in Figures 6.1.(a)-(b), 3 of these 6 states are in the 11th block,
2 are in the 10th block, and 1 is in the 9th block. If there exists more than
one state that contribute to pg.., in the same block (for example, block 11 in
the system given in Figures 6.1.(a)-(b) has 3 of them), we select the state which
has the largest self transition probability among the states of interest, make it
the last state in the block, and place the others in the preceding locations at
the end of the block. After positioning the states of interest, Algorithm 10 is
applied to find the ordering of remaining states. This improvement has one
more advantage. As we mentioned in earlier chapters, bounding matrices may
be reducible. Moreover, the identity and number of states in the essential classes
of these bounding matrices are unpredictable. The bounding matrix algorithms

generate more nonzeros towards the bottom of the computed matrix. Because of

CHAPTER 6. AN APPLICATION 38

this reason, if a state is placed towards the end of its NCD block, it will most
likely be placed in the essential class of its corresponding bounding model. It is
expected that if the states of interest reside in the essential class, one will have

better componentwise bounds.

Considering these, we made the above change and reran all of the experiments
for the systems given in Figures 6.1, 6.2, 6.3, 6.4, 6.5, and 6.6. The improvement
affected the results for the systems given in Figures 6.1.(a)-(b) and 6.4.(a)-(b).
The new bounds computed for these systems are presented in Figures 6.7 and
6.8. The bounds for the systems in Figures 6.2.(a)-(b), 6.3.(a)-(b), 6.5.(a)-(b),
and 6.6.(a)-(b) did not change. Especially for low loads, we obtained considerable
improvement on the bounds for the 6 states of interest that contribute to pg,p
for the systems S¢ =1, B =30, C =10 and S¢ =1, B = 60, C' = 30. For the
systems with S¢ = 10 and S = 100 these 6 states of interest have larger steady
state probabilities than the systems with S¢ = 1. Moreover, the systems with
S¢ = 10 and S¢ = 100 have more unbalanced steady state probabilities than the
systems with S¢ = 1. In addition to these, some of these 6 states are already
placed towards the end of their NCD blocks when S¢ = 10 and S¢ = 100. This
is an intuitive explanation for not having any improvement in the bounds for
the systems with S¢ = 10 and Sz = 100 when we place the 6 states of interest
towards the end of their NCD blocks. In our experimental runs with different
types of applications we observed that Algorithm 1 is more useful for finding

bounds on states with larger steady state probability mass.

CHAPTER 6. AN APPLICATION 39

S=1, B=30, C=10, (P, Py Py Pyz)=(0-4, 0.3, 0.2, 0.1)

0.05 T T T T T T T
b : : —x— lower bound
I O : —— exact value
0.045 - T~ —O— upper boundH
0.04 - A -
\
\
0.035F - O -
\
\
> 0.03|- Y -
g \
S 0.025 \\ -
o
= K
£ \
i (— -
S 0.02 N
el \
N
0'015 = T \ —
\
0.01F N |
\
S _
0.005 - ~ —
S S S
0Ok — — — X— — — — % — — — — % — o X o T T e T T T TR R
1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
L (Load)
(a)
<10~ S=1, B=30, C=10, (P, Pyy» Py, Pyz)=(0-4, 0.3, 0.2, 0.1)
10 T T T T T T T
: : : : —x— lower bound
—— exact value
9r —O— upper boundH

dropping probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
L (Load)

(b)

Figure 6.7: Blocking and dropping probabilities for S¢ = 1 when B = 30 and
C = 10 after the improvement.

CHAPTER 6. AN APPLICATION

SC=1, B=60, C=30, (puo’ Pyq» Pyos pd3)=(0.4, 0.3,0.2,0.1)

60

x 10
5 T T T T T T T
: : —x— lower bound
—— exact value
48P = =g ° —O— upper bound [
AN
N
4 — . \ —
N
AN
_ N -
3.5 &
A
\
= 3r \ —
3 \
s \
e 2_5 — B \ —
Q- \
>
\
£ o % g
8 ~ E
o ~ N
N :
1.5 N -
N
[_ A
1k : - '\'S*_"‘O"/"/" -
0.5 —
OF —— X = — — X — — = =% — = — = = == o e e e R e e R e e e e
1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
L (Load)
(a)
x 107%° Sg=1, B=60, C=30, (P4, Pyy> Pyp Pya)=(0-4, 0.3, 0.2, 0.1)
8 T T T T T T T
: —x— lower bound
exact value
7L —O— upper bound | |
/O
6 2
7
7
7
5 . L/ -
= 5 - -°
T‘Eu : o~ g
84_ T a
5 —~
(=) _ - <
= _ -
o _©
8- 3 S R —
]
1 L 1 I 1 1 1

0.5
L (Load)

(b)

Figure 6.8: Blocking and dropping probabilities for S¢ = 1
C = 30 after the improvement.

0.6 0.7

0.8 0.9

when B = 60 and

Chapter 7

Conclusion

In this thesis, we gave an algorithm to find bounds on performance measures of
real-life systems which possess the NCD structure when they are modeled by a
MC. Bounds on performance measures are obtained by an improved version of
a componentwise bounding algorithm for the steady state vector of NCD MCs.
The given two-level algorithm uses aggregation, stochastic comparison with the
strong stochastic (st) order. In order to improve accuracy, it employs reordering
of the states and a better componentwise probability bounding algorithm given
st upper- and lower-bounding probability vectors. A thorough analysis of the
algorithm from the point of view of having one essential class in a bounding
matrix is provided. The essential class in bounding matrices is obtained using
an efficient version of ordinary strongly connected component search algorithm
on graphs. Moreover, a linked list implementation of the direct solver GTH is
considered to compute steady state vectors of bounding matrices. Most of the
implementation of the proposed algorithm is done in sparse storage to make this
work applicable to large sparse systems and to benefit from the advantage of not

dealing with zero entries during computation.

We applied our bounding algorithm to a wireless asynchronous transfer mode
(ATM) network and gave bounds on the performance measures for this model.
Some of the bounds are improved by placing the states which contribute to the

performance measures at the end of their corresponding blocks. The run-time

61

CHAPTER 7. CONCLUSION 62

of the algorithm is much better than that of GTH and iterative aggregation-
disaggregation in sparse storage and the quality of the computed bounds on steady

state probabilities are highly acceptable for the chosen application.

From the wireless ATM model we experienced that our componentwise bound-
ing algorithm is very effective in NCD MCs with highly unbalanced steady state
probabilities and a small number of states accumulating a large probability mass.
In addition to this, the states of a system that contribute to the performance mea-
sures of interest should be the ones that are placed towards the end of their NCD
blocks. Finally, a small degree of coupling in the partitioning is very important

in obtaining acceptable componentwise bounds.

Future work may focus on implementing Algorithm 1 for transient analysis.
Moreover, Algorithm1 must be applied to other problems to make stronger gen-

eralizations on the conditions that makes the algorithm useful.

Bibliography

Abu-Amsha O. and Vincent J.-M., An algorithm to bound functionals of
Markov chains with large state space, Rapport de recherche MAI n 25,
IMAG, (1996).

Baase S., Computer Algorithms, Addison-Wesley, Reading, MA (1988)

Berman A. and Plemmons R.J., Nonnegative Matrices in the Mathematical

Sciences, SIAM Press, Philadelphia (1994).

Courtois P.-J., Decomposability: Queueing and Computer System Applica-
tions, Academic Press, New York (1977).

Courtois P.-J. and Semal P., Bounds for the positive eigenvectors of non-
negative matrices and for their approximations by decomposition, Journal

of the Assocation for Computer Machinery 31(4) 804-825 (1984).

Dayar T., Permuting Markov chains to nearly completely decomposable
form. Tech. Report BU-CFEIS-9808, Department of Computer Engineer-
ing, Bilkent University, Ankara, Turkey, (1998); available via ftp from
ftp://ftp.cs.bilkent.edu.tr/pub/tech-reports/1998 /BU-CEIS-9808.ps.z.

Dayar T. and Pekergin N., Stochastic comparison, reorderings, and nearly
completely decomposable Markov chains, In Proceedings of the Interna-
tional Conference on the Numerical Solution of Markov Chains (NSMC’99),
(Edited by B. Plateau et al.), pp. 228-246, Prensas Universitarias de
Zaragoza, Spain (1999).

63

BIBLIOGRAPHY 64

[10]

[11]

[12]

[13]

[14]

[19]

Dayar T. and Stewart W.J., Comparison of partitioning techniques for two-
level iterative solvers on large, sparse Markov chains, STAM Journal on Sci-

entific Computing 21 (2000) 1691-1705.

Dayar T. and Stewart W.J., On the effects of using the Grassmann-Taksar-
Heyman method in iterative aggregation-disaggregation, SIAM Journal on

Scientific Computing 17(1) 287-303 (1996).

Duff I.S., Erisman A.M., and Reid J.K., Direct Methods for Sparse Matrices,
Oxford University Press, Oxford (1986).

Grassmann W.K., Taksar M.I., and Heyman D.P., Regenerative analysis
and steady state distributions for Markov chains, Operations Research 33(5)
1107-1116 (1985).

Kleinrock L., Queueing Systems Volume 1: Theory, John Wiley & Sons, New
York (1975).

Keilson J. and Kester A., Monotone matrices and monotone Markov pro-

cesses, Stochastic Processes and their Applications 5 231-241 (1977).

Massey W.A., Stochastic orderings for Markov Processes on partially ordered
spaces, Mathematics of Operations Research 12(2) 350-367 (1987).

Meyer C.D., Stochastic complementation, uncoupling Markov chains, and

the theory of nearly reducible systems, STAM Review 31(2) 240-272 (1989).

Pekergin N.; Stochastic performance bounds by state reduction, Performance

FEvaluation 3637 1-17 (1999).

Pekergin N., Stochastic delay bounds on fair queueing algorithms, In Pro-
ceedings of INFOCOM’99, pp. 1212-1220, New York, (1999).

Pekergin N., Dayar T., and Alparslan D.N., Componentwise bounds for
nearly completely decomposable Markov chains using stochastic comparison

and reordering, submitted for publication (2000).

Semal P., Analysis of large Markov models, bounding techniques and appli-
cations, Doctoral Thesis, Université Catholique de Louvain, Belgium, (1992).

BIBLIOGRAPHY 65

[20]

[21]

22]

23]

[24]

[25]

Shaked M. and Shantikumar J.G., Stochastic Orders and Their Applications,
Academic Press, California (1994).

Stewart W.J., Introduction to the Numerical Solution of Markov Chains,
Princeton University Press, New Jersey (1994).

Stoyan D., Comparison Methods for Queues and Other Stochastic Models,
John Wiley & Sons, Berlin, Germany (1983).

Tremolieres M., Vincent J.-M., and Plateau B., Determination of the optimal
upper bound of a Markovian generator, Technical Report 106, LGI-IMAG,
(1992).

Truffet L., Near complete decompasibility: bounding the error by stochastic
comparison method, Advances in Applied Probability 29 830-855 (1997).

Veque V. and Ben-Othman J., MRAP: A multiservices resource allocation
policy for wireless ATM network, Computer Networks and ISDN systems,
29 2187-2200 (1998).

