REGRESSION BY SELECTING
BEST FEATURE(S)

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER
ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

by
Tolga Aydin
September, 2000



I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Halil Altay Givenir (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Ozgiir Ulusoy

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Ilyas Cicekli

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet Baray

Director of Institute of Engineering and Science

i



ABSTRACT

REGRESSION BY SELECTING BEST FEATURE(S)

Tolga Aydin
M.5. in Computer Engineering

Supervisor: Assoc. Prof. Halil Altay Guvenir
September, 2000

Two new machine learning methods, Regression by Selecting Best Feature
Projections (RSBFP) and Regression by Selecting Best Features (RSBF), are
presented for regression problems. These methods heavily make use of least
squares regression to induce eager, parametric and context-sensitive models.
Famous regression approaches of machine learning and statistics literature
such as DART, MARS, RULE and kNN can not construct models that are
both predictive and having reasonable training and/or querying time dura-
tions. We developed RSBFP and RSBF to fill the gap in the literature for a
regression method having higher predictive accuracy and faster training and
querying time durations. RSBFP constructs a decision list consisting of simple
linear regression lines belonging to linear features and/or categorical feature
segments. RSBF is the extended version of RSBFP such that the decision list
consists of both simple, belonging to categorical feature segments, and /or mul-
tiple, belonging to linear features, linear regression lines. A relevancy heuristic
has been developed to determine the features involving in the multiple regres-
sion lines. It is shown that the proposed methods are robust to irrelevant
features, missing feature values and target feature noise, which make them
suitable prediction tools for real-world databases. In terms of robustness, RS-
BFP and RSBF give better results when compared to other famous regression

methods.

Keywords: Regression, function approximation, feature projections.
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OZET
EN IYI OZNITELIKLERI SECME ILE REGRESYON

Tolga Aydin
Bilgisayar Mihendisligi, Yiksek Lisans
Tez Yoneticisi: Dog¢. Dr. Halil Altay Guvenir
Eylil, 2000

Regresyon problemleri icin, En Iyi Oznitelik Izdiisiimlerini Secerek Regresyon
(RSBFP) ve En Iyi Oznitelikleri Secerek Regresyon (RSBF) adinda iki yeni
makine ogrenmesi metodu sunulmugtur. Bu metodlar minimum kareler re-
gresyonunun agirlikli kullanimi ile ¢aligkan, parametrik ve adaptif modeller
olugtururlar. Makine ogrenmesi ve istatistik literatirunin DART, MARS,
RULE ve kNN gibi tnli metodlari hem tahmin gicu yiksek, hem de hizh
6grenme ve/veya sorgulama yapan modeller iiretememektedirler. RSBEFP ve
RSBF, literatiirdeki bu boglugu doldurmak i¢in geligtirilmigtir. RSBFP, lineer
ozniteliklere ve/veya kategorik oznitelik parcalarina ait olan basit lineer re-
gresyon dogrularindan bir karar listesi (model) olugturur. RSBF, RSBFPnin
geligmig versiyonu olup, karar listesi hem lineer 6zniteliklere ait coklu hem de
kategorik oznitelik parcalarina ait basit lineer regresyon dogrularindan olusur.
(oklu regresyon dogrularinda yer alan oznitelikler gelistirilen bir uygunluk
sezgisi ile bulunur. RSBFP ve RSBF’in, gereksiz ozniteliklere, bilinmeyen
degerlere ve gurultilti hedef 6znitelik degerlerine kargi dayanikli bir perfor-
mansa sahip oldugu gosterilmistir. Boyle durumlarda diger metodlara nazaran
daha iyi sonuclar vermeleri, gercek veri kiimeleri i¢in uygun birer tahmin araci

olduklarini gosterir.

Anahtar Sozciikler: Regresyon, fonksiyon yaklagtirimi, 6znitelik izdiigiimii.
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Chapter 1

Introduction

Prediction is the most common problem researched in machine learning and
data mining. Predicting values of categorical or nominal features is called
classt fication, whereas predicting values of numeric or linear features is called
regresston in the literature. In machine learning, much research has been per-
formed on classification. But recently, researchers began to deal with regression
since many real-world problems can be modeled as regression problems. Dy-
namic control problems can be considered as real-world problems. For instance,
learning to catch a ball moving in a three-dimensional space, is a dynamic
control problem that is mainly researched by robotics community. Aha and
Salzberg proposed several variants of k-nearest, an instance-based algorithm,
algorithms to increase the ability of the robot in catching the ball moving in
three dimensions [2]. Furthermore, learning the city-cycle fuel consumption
of cars in miles per gallon is another interesting real-world problem that can
be modeled as a regression problem [20]. Fuel consumption is determined by
many factors including the horsepower, weight, acceleration and the number of
cylinders. A regression algorithm can be employed to model the relationship
between the fuel consumption and the factors mentioned above. Although
regresston term is mainly used, there are other names given to it, such as

functional prediction, function approximation and continuous class learning.
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Databases can store large amounts of data belonging to many different do-
mains. And since database management systems enable only deductive query-
ing, different experts are required for each different domain to discover knowl-
edge in databases. In some cases, a domain expert may not be available or
the knowledge of the experts may be implicit [1, 29]. Therefore, the use of

automatic methods such as induction becomes helpful for knowledge discovery.

Many induction techniques have been developed in machine learning to
discover knowledge from databases. The idea of using induction techniques
is widely accepted by Knowledge Discovery in Databases (KDD) discipline,
which incorporates researchers from various areas. Knowledge engineers and
database experts cooperate to create a database management system that not
only enables deductive querying, but also provides an inductive component for

automatic knowledge discovery.

The term “knowledge” means two types of information. One is the infor-
mation used for prediction of a new case, given training cases; the other is the
information used for extracting new rules about the domain by interpreting
the induced models. The induced models reviewed and developed in this the-
sis can be employed in cases, when the underlying problem is formalized as a

prediction of a linear target feature.

1.1 Parametric versus Non-Parametric Learn-

ing

Parametric learning methods try to fit the data to a global parametric func-
tion. On the other hand, non-parametric learning methods make no assumption
about the structure of the function. Parametric learning methods perform well
when the assumed structure of the function is close to the function that gener-
ated the data. However, non-parametric learning methods can be preferred if
finding a general structure rich enough to model a large portion of all possible
functions is of concern, or no information about the structure of the function

is available.
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The classical linear regression model is a well-known example of parametric
learning. This model consists of a dependent (target) feature y and independent
(predictor) features (2’s). The relationship between y and each z is assumed
to be linear. That is, target feature’s value changes at a constant rate as the

value of any predictor feature changes.

Yi = Bo+ Brxa + feviz + - + Bpwip + & (1.1)

The subscript ¢ denotes the observations, the second subscript p denotes the
index of independent features. There are p 4+ 1 parameters, 3;,7 =0,...,p, to
be estimated. In the parametric model, the structure of the function is given,
and the procedure estimates the values of the parameters, 3;, according to a
fitting criterion. This criterion is generally a minimization of an error function
for all data points in a training set. Very often this is the least squares
criterion, which minimizes the sum of the squares of the prediction errors of
the estimated linear function for all instances. The error term, &; , denotes

the error of estimation for each instance 7, and it is assumed to be normally

distributed.

1.2 Eager versus Lazy Learning

Learning methods can also be grouped as eager versus lazy methods. Lazy
methods do not construct models since the model is the training data itself.
On the other hand, eager methods construct rigorous models. These two type

of methods can be compared in many aspects.

The major task of both methods is prediction. Although they both perform
well in this major task, only eager methods address the induction of concept
description that enables interpretation of the data. Fager methods induce
models such as decision trees and decision rules that enable us to interpret the
underlying data. Furthermore, lazy methods store the whole data in memory
to process them in the prediction phase rather than the training phase. This

may cause some storage problems when the size of the data is too big to fit into
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the memory. Eager methods are very fast in the prediction phase. On the other
hand lazy methods suffer at this point since all the computations are performed
at this phase. Finally, although most eager methods are adaptive (context-
sensitive ), most of lazy methods do not hold this property. An adaptive method
can determine the relevant or important regions of the instance space. That
is, it does not simply label predictor features as relevant or irrelevant; instead,

it determines the relevant regions of each predictor feature.

Although eager methods are preferable in terms of less storage require-
ments, fast prediction phase and interpretation of the underlying data, they
are outperformed by lazy methods in terms of some criteria. Lazy methods do
not generalize the data by constructing global models. Therefore, their training
phase is very simple and fast since it involves only storing the training data.
In the prediction phase, they make predictions according to the local position
of the query instances. This brings out the fact that lazy methods can form
complex decision boundaries around the query instance even in the existence

of little information.

A powerful regression method is the one that has small training and pre-
diction time requirements, while preserving a comparable predictive accuracy.
In this thesis, we have developed two eager regression methods holding these
desired properties. As being an eager method, the proposed methods are fast
in the prediction phase. In the training phase, they are much more faster than
other popular eager approaches. This is achieved by the simplicity of our ap-
proach in constructing the models. Our proposed methods are not only fast
and predictive, but also interpretable. So they will especially be preferable in

modeling large databases.

1.3 Regression by Selecting Best Feature(s)

This thesis describes two new machine learning methods based on selecting best
feature(s). They are Regression by Selecting Best Feature Projections (RSBFP)
and Regression by Selecting Best Features (RSBF). Training in RSBFP aims

to find the predictive power of each predictor feature by constructing simple
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linear regression lines, one per each linear predictor feature and number of cat-
egories per each categorical predictor feature. Although the predictive power
of a linear predictor feature is constant, it varies for each distinct value of
categorical predictor features. At the end of the training part, these simple
linear regression lines are sorted according to their predictive power to induce
the final model. Training in RSBF consists of two phases: The first phase is
similar to the training part of RSBFP. We construct simple linear regression
lines, one per each linear predictor feature and number of categories per each
categorical predictor feature. The second phase constructs multiple linear re-
gression lines among linear predictor features, each time excluding the worst
predictor feature among the current set. Finally, these multiple linear regres-
sion lines and categorical predictor features’ simple linear regression lines are
sorted according to their predictive power to induce the final model. These
two phases are together called the training part of the RSBF method. In the
prediction part of learning, the best (simple or multiple) linear regression line
in the case of RSBF, and the best simple linear regression line in the case of

RSBFP are selected to make predictions for the query instances.

Both RSBFP and RSBF are robust to irrelevant features. They select the
regression line consisting of best feature(s) to predict the target feature value of
a query instance. They are also flexible methods since the best feature(s) may
differ for each query instance. They handle missing feature values naturally,
without filling them with estimated values. The experimental results show that
they achieve the highest accuracy values when there are many missing values,

irrelevant features and target noise.

RSBFP and RSBF are eager regression methods since they construct a
global model in the training phase. The form of the global model is para-
metric, the model is actually a decision list consisting of parametric, explicitly
linear, regression lines. The high predictive power of the proposed methods is
important since parametric, especially linear, models are not expected to fit
into the real-world databases. Important properties of RSBFP and RSBF, also
a detailed comparison of them with other famous lazy and eager methods are

described in the following chapters.
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1.4 Outline of the Thesis

In the next chapter, we make an overview of existing important regression
methods in the literature. In Chapter 3 and Chapter 4, we describe RSBFP
and RSBF, respectively. The detailed description of characteristic properties
of our methods are given in these chapters. Empirical evaluations of RSBFP

and RSBF are shown in Chapter 5, and we conclude the thesis with Chapter 6.



Chapter 2

Overview of Regression

Techniques

In this chapter, some regression techniques developed in machine learning and
statistics community are reviewed. In the first two sections, we review two lazy
approaches for regression: k nearest-neighbor regression, and locally weighted
regression. In the subsequent sections, from Section 2.3 to Section 2.5, three
eager approaches for regression are reviewed. These are namely rule-based

regression, tree-based regression and multivariate adaptive regression splines.

2.1 k Nearest Neighbor Regression

k Nearest neighbor regression is an instance-based learning (IBL) algorithm.
IBL algorithms are well known due to their computationally simple training
(learning) phases [3, 11]. In the k nearest neighbor regression, as in many other
IBL algorithms, training is performed by simply storing the instances in the

memory.

Each training instance is represented as a set of feature-value pairs. Pre-
dictor feature values may be of categorical (nominal) or linear (ordered) type,
whereas target feature values are of only linear type. In the training phase,

each training instance is stored in memory. The querying phase of the k nearest

7
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neighbor regression tries to predict the target feature value of a query instance
as a function of most similar instances’ target feature values. The k value is
selected as the number of nearest (most similar) neighbors that will be taken

into account in the querying phase.

Training:
[1] Vx; € Training Set
2] Store x; in memory

Querying:

[1] Vx, € Query Set

2] Vx{x: # x,}: Calculate Similarity(x,, x;)

(3] Let Similars be set of k most similar instances to x, in Training Set
[4] Let Sum = Yy, esimitars Stmilarity(Xy, X¢)
[5]

5 Similarity(Xq,X¢)

Then ?jq = ZXtESimilars — Sum Yt

Figure 2.1. The k£ Nearest Neighbor Regression

There is a variety of k nearest neighbor regression approaches in the liter-
ature. The algorithm, shown in Figure 2.1, is the simplest & nearest neighbor
regression approach. For a given query instance, k nearest (similar) training
instances are determined by using the Swimilarity function. The similarity

between the query instance z, and a training instance z; is determined as,

P
Similarity(x,, x;) = \l Z Stm( g, T4 (2.1)
=1

Tgi—Ttq

where Sim(x g, 1) = ( )2 where 7 is the feature dimension.

range (1)

Finally, the weighted sum of the target values of the & nearest neighbors of

x4 1s used as the predicted target value, y,, of the query instance z,.

The k nearest neighbor algorithm assumes that all the predictor features
are equally relevant. However, the prediction accuracy of the model can be
improved if the predictor features are assigned proper weights to denote their
relevancy in the prediction process [39]. These weight values can be either
obtained from database experts or automatically determined by some feature

weight learning algorithms [10, 26]. In terms of interpretability, the & nearest
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neighbor algorithm is very poor, since it is a lazy approach. It does not induce

models that enable interpretation of the underlying data set [28]

2.2 Locally Weighted Regression

Locally weighted regression is very similar to k nearest neighbor regression.
It is also an instance based algorithm. In the training phase, it just stores
the training instances in the memory. The main work is done in the querying
phase, where it makes use of £ nearest neighbors of the query point, and
gives importance to the nearby instances proportional to their similarity to
the query instance. Although &k nearest neighbor regression approach takes the
weighted average of the target values of the nearby training instances, locally
weighted regression approach constructs a local linear or non-linear model by
using these nearest neighbors. As in k nearest neighbor regression approach,
nearby instances have more weight on the construction of the local parametric
model, whereas distant instances have less weight on the model construction
process. The local models are each specific to the query point. That is, a
different model is constructed for each different query instance. A detailed
information about the structure of the linear or non-linear models constructed

for query instances can be found in [6].

2.2.1 Nonlinear Local Models

A non-linear local model can be constructed by modifying the non-linear global
model. A general global model can be trained to minimize the following un-

weighted training criterion:

C=> L(f(xi.B).4) (2.2)

where the y; is the output value corresponding to the input vector x;, 3 is
the parameter vector for the nonlinear model y; = f(x;, ), and L(y;,y;) is a

general loss function for predicting y; when the training data is y;. Often the
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least squares criterion is used for the loss function L(y;, ;) = (y; — y:)?, leading

to the training criterion:

€ = S B) — i) (23)

The parameters of a global model may not provide a good approximation of
the true function. In this case, there are two approaches to solve the problem.
First, we can use a larger, more complex global model and hope that it can
approximate the data sufficiently. The second approach, which is the main
concern of this subsection, is to fit the model to local patches instead of the

whole region.

The training data set can be tailored to the query point by emphasizing
nearby points in the regression. This can be accomplished by weighting the

training criterion:

Cla) = _[L(f(xi, ), y:)) K (d(xi,q))] (2.4)

where K is the weighting or kernel function and d(x;, q) is the distance between
the data point x; and the query q. Using this training criterion, f(x, /5(q))

becomes a local model, and can have a different set of parameters 3(q) for each

query point q.

2.2.2 Linear Local Models

Given that we are using local models, it seems advantageous to keep them
simple, and to keep the training criterion simple as well. This leads us to
explore local models that are linear in the unknown parameters, and to use the

least squares criterion:

Cla) = D_[(xiB) — y:) K (d(x:,q))]. (2.5)

K3

There are many variations of distance (d) and weighting (K') functions for



CHAPTER 2. OVERVIEW OF REGRESSION TECHNIQUES 11

local models [6]. These functions lead us to construct many types of linear and

non-linear locally weighted regression methods.

2.3 Regression by Decision Rule Induction

Learning decision rules in Disjunctive Normal Form (DNF) from a given train-
ing set is also popular in machine learning. Weiss and Indurkhya developed a
rule-based classification algorithm [40], called Swapl, and then adapted it for
regression [41, 42].

[1] Input: D, a set of training cases
[2] Initialize Ry « empty set, k «— 1, and C7 «— D

[3] repeat

[4] create a rule B with a randomly chosen feature as its left-hand side

[5] while (B is not 100-percent predictive) do

[6] make single best swap for any component of B, including
deletion of the component, using cases in Cj,

[7] If no swap is found, add the single best component to B

8] endwhile

[9] Py, « rule B that is now 100-percent predictive

[10] B+ cases in (' that satisfy the single-best-rule P

[11] Rk—l—l — Rk U {Pk}

[12]  Chyr = O — {Ex}

[13] ke—Fk+1

[14] until (Cf is empty)

[15] find rule r in Ry that can be deleted without affecting performance

on cases in training set D

[16] while (r can be found)
(171 BRpyr < Bp —{r}
[18] ke—Fk+1

[19] endwhile

[20] output Ry and halt.

Figure 2.2. Swap-1 Algorithm

Learning decision tree induction models is similar to learning decision rule
induction models in the sense that they can be converted into DNF models.

In decision tree induction models, there is exactly one path from the root to
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a leaf that is satisfied for a query instance. Therefore, if each of these paths
is regarded as a rule, the fact that these rules are mutually exclusive is easily
observed. This leads to the restriction that decision tree induction models are
not compact. On the other hand, decision rule induction models, like Swapl,
are compact since the rules are not mutually exclusive. This may cause a query
instance to satisty more than one rule. For example, Swapl algorithm may
assign more than one class for a query instance. This problem can be resolved
by assigning ordering to the rules according to their extraction order. The first
rule, according to this ordering, that satisfies the query instance determines
the class of the query instance. The Swap-1 decision rule induction model [40]

and a sample output are shown in Figure 2.2 and Figure 2.3, respectively.

X>02AndY >2)5 « C(Class=1
Z > 4.5 — (Class=1
[True] — (Class=?2

Figure 2.3. A sample output

In constructing a new rule, Swap-1 constantly searches all the conjunctive
components it has already formed, and tries all the swapping combinations
between the components already held in the rule and the components lying
outside the rule. If some of the swapping combinations improve the rule, then
the best swap, the swap leading to best predictive value of the rule, is selected
among them. It may be the case that none of the swapping combinations
improves the rule. In that case, the best component lying outside is inserted
into the rule. The best component is the one that increases the predictive
value of the rule most. In the existence of more than one best components
to be added, maximum instance coverage is used as the second criterion. The
swappings and additions end when the rule reaches 100% predictive value. Any
conjunctive component that is swapped out need not necessarily stay out, it
can swap in during the next swappings and additions provided that its addition

increases the predictive value of the rule.

Table 2.1 shows a sample decision rule induction. After the rule reaches
100% predictive value, the instances covered by that rule are removed from the
instance space. The remaining instances are now ready for the next decision

rule induction steps.
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STEP | PREDICTIVE RULE
VALUE (%)
1 31 3
3 36 D6
3 48 p6 & pl
4 49 pd & pl
5 69 pd & pl & p2
6 80 pd & pl & p2 & p)
7 100 p3 & pl & p2 & p)

Table 2.1. Example of swapping and adding components.

Upon the construction of all rules, a pruning and an optimization procedure
can be employed [40]. Pruning aims to decrease the number of rules. If the
removal of any rule does not affect the predictive value on training set, then

that rule need not be stored anymore.

Many decision rule induction models, such as Swap-1, are intended to pre-
dict categorical target features. By employing a preprocessing step, the linear
target features can be transformed to categorical target features. This pre-
processing step enables us to use decision rule induction models in regression

problems.

Figure 2.4 shows the P-class algorithm [42] that transforms the linear target
features to categorical target features. The underlying idea of P-class algorithm
is to make y values within one class most similar and y values across classes
most dissimilar. Assignment of y values is performed in such a way that the

distance between each y; and its class mean should be minimized.

P-Class algorithm is in fact a variation of the famous KM EANS clustering
algorithm [14, 24]. It is very simple when compared to the KM EANS, since
it produces only one-dimensional clustering of training data. On the other
hand, KM EANS can produce multi-dimensional clustering of training data by
swapping the instances between the clusters according to a clustering criterion.
The drawback of both KM EANS and P-Class algorithms is their unability to

determine the number of clusters and classes, respectively.

The use of P-Class algorithm in the preprocessing step lets us to use Swap-1
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[1]Input: {y} a set of output values
[2] Initialize n = number of cases, k& = number of classes

[3] repeat for each Class;
[4] Class; = next n/k cases from list of sorted y values

[5] end

6] repeat for each Class; (until no change for any class)

[6]

[7] repeat for each case 7 in Class;

3] 1. Move Case;; to Class;_y , compute Err,c,
[9] If Evrpe, > Errgg return Caseg; to O

[10] 2. Move Case;j to Class;yy , compute Err,e,
[11] If Errpew > Errgg return Case;j to C;

[12] next C'ase; in Class;

[13] Next Class;

14] repeat for each Class; (until no change for any class)
] If Mean(Class;) = Mean(Class;) then
] Combine Class; and Class;
| end

[

15
16
17

Figure 2.4. Constructing Pseudo-Classes (P-Class)

in regression problems. An overview of the whole procedure for decision rule

induction in regression problems is shown in Figure 2.5.

There are different approaches to predict the target feature of the query
instance. Mean or median value of the class can be assigned for the prediction
of the target feature of the query instance. However, some parametric (such as
linear least squares regression) or non-parametric (such as k nearest neighbor
regression) models can also be employed. Weiss obtained significant improve-
ments by employing nearest neighbor regression instead of simply using median

or mean of the class [42].

2.4 Regression by Decision Tree Induction

Decision tree induction models determine the nodes in the tree and the tests

associated with nonterminal nodes. They rely on recursive partitioning of
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[1] Generate a set of Pseudo-classes using the P-Class algorithm.
[2] Generate a covering rule-set for the transformed classification
problem using a rule induction method such as Swap-1.
[3] Initialize the current rule set to be the covering rule set and save it.
[4] If the current rule set can be pruned, iteratively do the following;:
a) Prune the current rule set.
b) Optimize the pruned rule set and save it.
¢) Make this pruned rule set the new current rule set.
[5] Use test instances or cross-validation to pick the best of the rule sets.

Figure 2.5. Overview of Method for Decision Rule Induction in Regression
Problems

the data by picking the single best feature to separate the data and repeat
the process on the subdivisions of the data. The terminal nodes are assigned
the majority class of the training instances found in the terminal node for
classification. In the case of regression, terminal nodes are generally assigned
the mean or median value of the training instances found in the terminal node.
Decision tree induction models may also employ some pruning strategies to

avoid overfitting and to obtain simpler decision trees.

Decision tree induction models are well suited for high dimensional appli-
cations, since they employ dynamic feature selection. They have the ability
to exploit low local dimensionality of functions. In local regions of the train-
ing data set, a few predictor features may have the highest influence on the
predicted target feature. The decision tree induction models enable us to han-
dle such cases. Another advantage of these models is the fact that they allow
interpretation of the underlying training data set. In terms of accuracy of
the predictions and time complexity, they are also comparable to many other

models.

On the other hand, these models have some drawbacks. For instance, there
is no continuity between the terminal nodes (regions). As a consequence of this
situation, they can not approximate even simple continuous functions such as
linear functions. By just analyzing the structure of the decision tree, it is not

possible to understand the structure of the function (e.g. linear or additive).
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The following subsections describe three different decision tree induction
models: CART, RETIS and M5. Although they all have the characteristics
mentioned above, they differ in some of properties and measures such as the

measure used to select the single best feature and its partitioning value.

2.4.1 CART

CART is the first decision tree induction model developed by the statistical
research community [9]. It is suitable for both classification and regression.
CART induces decision trees in the following manner. It begins with the whole
training data set and stores them in the root of the tree. Then it searches
for the best feature and feature value of any instance to split the root node.
Splitting the root node yields two nodes, and the original training data is now
divided among them. These nodes represent two disjoint regions in the training
data set, and one of these regions is selected for further splitting. Again the
best feature and feature value of any instance lying in the splitted region is
searched for splitting process. At any step of the decision tree induction, one of
the disjoint regions that has not yet been splitted is chosen for further splitting.
The decision tree induction process ends when a predefined number of disjoint

regions is reached.

The selection of the region to be splitted among non-splitted disjoint re-
gions, the feature and the splitting feature value play a key role at each step
of the induction process. CART uses an error criterion to produce optimum
disjoint leaf nodes. The optimum value of this error criterion, Equation 2.8, is
used at every step of the induction process to select the best disjoint region,

feature and splitting feature value.

At each leaf node, the variance of the output values of the training instances

lying in that node is used as the impurity measure.

n

1
Variance = =Y (yi — y)* (2.6)

n =1

where n is the number of instances in the disjoint region.



CHAPTER 2. OVERVIEW OF REGRESSION TECHNIQUES 17

. 1 _ _
Splitting Error = - { Z (y; — yleft)2 + Z (y; — ?Jm’ght)Q} (2.7)

Xiexleft Xy eXright

Then at each leaf node, the splitting error is computed for each possible
feature and splitting feature value pair. The disjoint region, the feature and
the splitting feature value that maximizes the C' in Equation 2.8 are used for

the current splitting step of the decision tree induction process.

C' = Variance — Splitting Error (2.8)

An example regression tree and its construction process are shown in Fig-

ure 2.6 and Figure 2.7, respectively.

Figure 2.6. An Example Regression Tree

R1

X, R1 R2

X, R1 R2 R3

Figure 2.7. Construction process of the example regression tree. Predictor
features z; and z, construct three leaf nodes.
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When the decision tree induction process is completed, each leaf (non-
splitted) node determines a constant value to be used in predicting the target
feature value of a query instance. In the case of classification, each leaf node
is assigned the majority class of the training instances found in that leaf node.
In the case of regression, each leaf node is assigned the mean or median value
of the training instances found in that leaf node. Any query instance follows
a unique path from the root node to the leaf node covering its location. The
value found in the covering leaf node is used as the predicted target feature

value of that query instance.

Decision tree induction models like CART may produce a tree consisting
of many disjoint regions. If the regions are too small, then it is very probable
that the classification or the regression tree will overfit the training data. To

overcome this problem, a pruning strategy can be employed.

One strategy may be to remove some of the leaf nodes of the tree. But
at this time, when a query instance follows the path from the root node to
one of these removed nodes, the tree will not determine a prediction value for
that query instance. This problem can be avoided by removing the sibling leaf

nodes together, and by merging them to a single disjoint region [9].

2.4.2 RETIS

RETIS (Regression Tree Induction System) decision tree induction model is
different from CART in that it uses a different error criterion to maximize
and it is suitable only for regression problems. Therefore, RETIS [22, 23] is
actually a regression tree induction model. In CART, the leaf (terminal) nodes
use y of the instances lying in their disjoint region as a prediction value of
the query instances. In the case of RETIS, a multiple linear regression line is
constructed at every leaf node. The use of linear regression at the leat nodes

of the regression tree is called local linear regression [22].

Since RETIS employs local linear regression at the leaf nodes, this technique
also affects the measure of the error criterion used in the model. In CART, the

Equation 2.8 is used as the error criterion. The disjoint region, the feature and
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Xy

Figure 2.8. An example region consisting of only one predictor , with large
variance, which is not suitable for splitting

the splitting feature value that maximizes the expected variance reduction are
selected for further splitting. However, expected variance reduction may not
be suitable for RETIS. In a region, if the relationship between the predictor
features and the target feature is linear, it will not be suitable to further split
that region even in the existence of high variance as shown in Figure 2.8. In
such a case, the use of (' in Equation 2.8 as an error criterion may cause this
region to be selected for further splitting. Therefore, RETIS uses the error

criterion C' given in Equation 2.9.

C = I(X) — Splitting Error (2.9)

I (¢mpurity measure) is defined as the following:

1 n
1(X) = =2 (yi = f(x)* (2.10)

=1
where n is the number of instances, f is the linear function that best fits
the instances of the region. Furthermore, the splitting error is defined as in

Equation 2.11.

L 1
Splitting Error = —[nieselicst + right Lright] (2.11)
n

The disjoint region, the feature and the splitting feature value whose split
gives the maximum C are selected for the current step of splitting process. In

the querying phase of learning, the multiple linear regression line of the leaf
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node is used to predict the target feature value of the query instance falling in

that leaf node.

A pruning strategy may be employed after the construction of the regression
tree to overcome overfitting the training data. RETIS computes two error
measures: static error and the backed-up error at each node. The static error
of a node is the error that will be faced if the node was converted to a leaf
node. On the other hand, backed-up error of a node is the error that will be
faced if the node’s subtree was not pruned. The subtree is pruned at that node

if the static error is less than or equal to the backed-up error.

2.4.3 M5

M5 decision tree induction model is actually a regression tree induction model,
since it is suitable only for regression problems. It is similar to both CART and
RETIS. The error criterion used in M5 [33] is the expected standard deviation
reduction (Equation 2.12). The disjoint region, the feature and the splitting
feature value that maximize the expected standard deviation reduction are
chosen for the current step of the splitting process. This error criterion is

similar to the one used in CART (the expected variance reduction).

|1 X

Eaxpected StdDev Reduction = o(X) — Y X o

7

(X)), (2.12)

where o is standard deviation and ¢ is the number of subregions of a region

whose instances are denoted by X.

M5 is also similar to RETIS, in that it employs linear regression models
on the nodes [30]. Although RETIS employs linear regression models just
after each split process, M5 employs those models after the regression tree
was constructed. Another important difference between M5 and RETIS is
the fact that any node of M5 restricts itself to the predictor features that are
referenced by tests or linear regression models somewhere in the subtree at this
node. Therefore, it can not use all the predictor features in constructing its

own linear regression model.
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The linear regression models may underestimate the error on query in-
stances. This usually happens if the linear regression model involves many
parameters and was constructed from small number of cases. Therefore, the
error on any query instance is multiplied by (n + v)/(n — v), where n is the
number of instances and v is the number of parameters in the linear regression

model.

After constructing the regression tree and linear regression models, M5
eliminates the parameters of its linear regression models to minimize the error
on query instances. Even though the elimination of parameters generally causes
the error on query instances to increase, it also reduces the multiplicative factor
(n 4+ v)/(n — v). Therefore, the multiplied error value decreases. M5 uses a
greedy search to remove parameters that contribute little to the model; in some

cases, M5 removes all of the parameters, leaving only a constant [22].

Finally, a pruning strategy, which is the same as that of RETIS, can be
employed. A nonterminal node is pruned if its linear regression model gives
less prediction error than its subtree. Pruning strategy is employed by starting

near the bottom.

2.5 Multivariate Adaptive Regression Splines

The CART decision tree induction model’s major drawback is the lack of con-
tinuity. Piecewise constant values are assigned to the subregions, and sharply
discontinuous patterns are formed at subregion boundaries. The second draw-
back of CART is its inability to produce good approximations to some func-
tions, including very simple linear functions. MARS (Multivariate Adaptive
Regression Splines) was developed to overcome these drawbacks [15]. It gives

better accuracy when compared to the CART decision tree induction model.

MARS is a flexible regression modeling of high dimensional data. It takes
the form of an expansion in product spline basis functions, where the num-
ber of product spline basis functions as well as the parameters associated with

each one (product degree and knot locations) are automatically determined by
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the data [15]. Actually, the procedure is implemented by constructing a set
of globally defined product spline basis functions that span the space of gth
order spline approximations and by fitting the coefficients of the expansion to
the data by ordinary least-squares. MARS is motivated by the recursive par-
titioning approach used in regression tree induction models. However, MARS
is different from those models in that it produces continuous models in the
subregions. It has more power to model relationships that are nearly addi-
tive or involve interactions in at most a few predictor features. In addition, it
can be represented in a form that separately identifies additive and interaction

contributions.

Each product spline basis function is a low order polynomial belonging to
a different subregion of the training data set. The actual function is approxi-
mated as an expansion of these product spline basis functions. This is called

as piecewise parametric fitting of the data set.

A product spline basis function is univariate, if it is in the following form:

[t = 3 (2.13)

where t is the knot location, ¢ is the order of the spline, and the subscript
indicates the positive part of the argument. That is, the subscript indicates
a value of zero for negative values of the argument. For ¢ > 0, the spline

approximation is continuous.

Although any ¢ > 0 guarantees the spline approximation to be continuous,
MARS selects the value of 1 for ¢ for a simple implementation. The use of
splines handles the lack of continuity problem. A general review of splines is

given in [12].

The use of splines causes subregions to involve functions having high order
interactions among predictor features. At each split of a region, the paramet-
ric function of that region is removed, and two new parametric functions are
constructed for two child regions. These new functions involve one more vari-
able than the parent region’s function. The interaction order among predictor

features increases by 1. As a consequence of having such complex parametric
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functions, having high order interactions, it becomes difficult to approximate

some functions, including very simple linear functions.

MARS (shown in Figure 2.9) also handles this situation. It does not delete
the lower order parametric function of the parent region after splitting it.
Therefore, many such splits can be performed on the same parent. By em-
ploying this strategy, MARS does not increase the depth of the model and
simple functions such as linear ones are well approximated since permitting a
parent region to be splitted more than once gives an additive property to the

model.

A product spline basis function is multivariate, if it is in the following form:

Km
BO(x) = T [skm-(ugem) — tem)]} (2.14)
k=1

where the quantity K, is the number of splits that gave rise to B,,, and The
quantity sg, takes (+/—)1 values indicating the right/left portions, v(k,m)
label the predictor features, and tg,, represent values on the corresponding

predictor features. The discussion about the selection of ¢ is given in [15].

Multivariate spline basis functions may involve the same predictor feature
more than once. For ¢ > 0, higher orders than ¢ may be produced on such
predictor features. MARS handles this problem by restricting the multivariate

spline basis functions to involve distinct features as shown in line 4 of Figure 2.9.

Finally, a pruning strategy can also be employed in MARS. The child re-
gions need not be deleted in pairs as in CART. Because, the parent region is

not deleted in MARS, there will not be any holes left in the model.
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[1] Bi(x) « 1; M =2

[2] Loop until M > M,,., : lof* + oo
3] Form=1toM—1do:

[4] Forv ¢ {v(k,m)|l <k < K,}
[5]

[6]

5 For t € {x,;|Bn(x;) > 0}
6 g o ST aBi(x) + an B () (o, — )]s
Fanr41 B (X)[— (2, — 1))+
7] lof — ming,. a,,_LOF(g)
8] if lof <lof* . then lof* « lof; m* «— m; v* «— v; t* «— t end if
9] end for

10] end for

11] end for

12] Bup(x) « B (x)[+ (@ — )]+
18] Bun(x) e By (x)[—(0r — )15
14] M — M +2

15] end loop

16] end algorithm

Figure 2.9. MARS Algorithm

R1
a
Xy R2 R3
b a
X3 R4 R5 R3
b a c
Xy R4 R5 R6 R7
d
X3 R8 R9

Figure 2.10. An example for the regions of MARS algorithm



Chapter 3

Regression by Selecting Best

Feature Projections

In this chapter we describe the new regression method called Regression by
Selecting Best Feature Projections (RSBFP). RSBFP is an eager, parametric
and adaptive method which makes use of feature projections and least squares
regression. All such properties of RSBFP will be described and discussed in
detail in the chapter.

3.1 The RSBFP Algorithm

RSBFP constructs simple linear regression lines for each feature by using the
projections of the training instances on each feature dimension separately. In
the case of linear (ordered) valued features, exactly one simple linear regression
line is constructed. On the other hand, in the case of categorical (unordered)
valued features, exactly one simple linear regression line per each distinct value
of a categorical feature is constructed. All of these simple linear regression lines
are then sorted according to their predictive power, and the sorted list deter-
mines the induced parametric model. A target noise elimination procedure is
employed to increase the predictive power of the model before construction of

the regression lines.

25
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All query instances use the same induced model, which makes RSBFP
an eager method. That is, a different model for each query instance is not
constructed as in lazy methods. Although there is exactly one induced model,
the choice of the appropriate regression line in the model differs for each query
instance, which gives RSBFP flexibility in terms of selecting the appropriate

regression line.

3.1.1 Training

Training begins by storing the training instances as their projections on each
feature dimension separately. A copy of target value is associated with each
feature dimension. In the existence of missing feature values, the training
instance is stored only on feature dimensions whose values are known. That is,
the training instance is not simply ignored when it has some missing feature
values. An example training set with four features and ten training instances

projected to these features is shown in Figure 3.1.

fi 9 8 7 10 6 7T 4 5 8 4
TARGET : 7 69 8 10 74 11 6.9 18 7.11 2
Iz 8 7 6 6 5 8 4 2 7T 3
TARGET : 7 69 8 10 74 11 6.9 18 7.11 2
f3 A B B B B B A B A B
TARGET 7 69 8 10 74 11 6.9 18 7.11 2
fa X XYY zZ 7Z Z Z Y Y
TARGET 7 69 8 10 74 11 6.9 18 7.11 2

Figure 3.1. An example training set projected to four features: fi, fo, f3 and

Ja-

After storing the training instances as their projections on the feature di-
mensions, simple linear regression lines are constructed at each feature dimen-
sion and sorted according to their predictive power to induce a parametric

model. The use of simple linear least squares regression and the construction
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of the model will be described in the next two sections.

3.1.1.1 Simple Linear Least Squares Regression

Simple linear least squares regression can be applied when the parametric form
of the model is assumed to be linear, and consists of a single feature. The para-
metric form is given in Equation 3.1, and the task is to approximate coefficients

of this equation using the least squares error criterion in Equation 3.2.

Ups = Bos + Brses (3.1)

here, z, is the query point, z,s is the f' feature value of the query, 3o; and
1+ are the two parameters of the linear function and 7,, is the approximation
f P Yot PP

for query instance at feature f.

n

Ey = Z(yz - ?)if)z (3-2)

=1
where n is the number of training instances, g, is the approximation for train-
ing instance at feature f, and y; is the actual target value of the training

instance.

The parameters of (3.1), foy and 15 for each feature f are computed as
the following:

By taking the derivatives of (3.3) to minimize the error E, the parameters

Bos and By are determined for linear least squares approximation.

n

By =3 (yi — Bog — Brjais)” (3.3)

=1

9E
From B0y = 0

nBos + By D xip = > y; (3.4)
=1 =1
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oF
From 56 = 0

50f2$z’f + 51f2$?f = infyi (3.5)
=1 =1 =1
By solving the above equations, Bys and 31 are found as follows.

Z:?:1 Yi — 61f Z:?:1 xlf

Boy = - (3.6)
SP,
b= g5 (3.7)
where . . .
=1 n
and n n 2
SSxf:Zx?f—M (3.9)
=1 n

3.1.1.2 Model Construction

Simple linear least squares regression is applied to obtain the simple linear
regression lines. For each linear (ordered) valued feature, a unique regression
line is constructed. But if all the training instances have the same linear value
for a particular feature dimension, the slope of the simple linear regression line
will be infinity. This situation can be determined by looking at the value of
SSxy in Equation 3.9. If SSz; = 0, it will not be possible to apply the linear

least squares approximation.

Although linear features sometimes encounter this problem, categorical fea-
tures always encounter the same problem. The number of regression lines is
equal to the number of distinct values for each categorical (unordered) valued
feature. And SSxy = 0 for any C value of any categorical feature f, again
leading to division by 0 situation. Those problematic situations can be han-
dled by taking 31y parameter in Equation 3.7 as zero. It is also observed that
Bos parameter always gives the mean target value of the training instances in

such problematic situations.

Upon the construction of the simple linear regression lines, model construc-

tion phase continues by sorting those lines according to their predictive power
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to induce the model. The relative error measure, RFE, in Equation 3.10 is em-
ployed to determine the predictive power of any regression line. The smaller the
relative error, the stronger the predictive power of the corresponding regression

line.

iy l1a0) — f(g)
St () — 1]

where n is the number of training instances used to construct the simple linear

RE =

(3.10)

regression line, ¢ is the median of the target values of n training instances,
t(g;) is the actual target value of i*" training instance and #{(¢;) is the predicted

target value of the ¢ training instance.

To illustrate the model construction phase, the training set given in Fig-
ure 3.1 is used. The training set consists of four features, and the set will
construct a total of seven simple linear regression lines. The decision list of
these lines according to their associated relative errors is shown in Figure 3.2.
The induced model shows that the predictive power of any categorical feature
may vary among its values. In the given example, f; is very powerful for X

value, although it is very poor on the remaining values, Y and Z.

[1] Y =6.950 if fi=X, RE = 1.000
2] Y =7.003 if fa=A, RE =1.016
3] YV =6.249f, +0.243 if 4 < f, <10, RE =1.043
[4] Y =5.882f,+0.338 if2< f, <8, RE=1.081
[5] Y = 8.660 if f»=B, RE = 1.098
[6] Y =8.370 if f1=Y, RE = 1.128
[7] Y =8.433 if fi= 7, RE = 1.252

Figure 3.2. The decision list of simple linear regression lines (the model
learned).

The model construction process in RSBFP is summarized in Figure 3.3.

3.1.2 Querying

In the querying phase of the RSBFP, for a query instance the most predictive

simple linear regression line is tried first. However, it is sometimes not possible
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[1] For f=1top

2] if fis a linear feature

(3] Construct a simple linear regression line of the form g, = foy + B15.2;
[4] end if

[5] else (f is a categorical feature)

6] For each distinct value ¢ of f

[7] Construct a simple linear regression line of the form g;. = Foy.
8] end for

9] end else

[10] end for

[11] Sort the simple linear regression lines according to their relative errors
[12] Store the ordered list of ;s

Figure 3.3. Model Construction in RSBFP

to use the most predictive line due to different feature value, missing feature
value and out of range problems. Therefore, the search for the next best
regression line continues until a suitable one is found. The querying phase can
be explained through an example. We will again refer to the training set given

in Figure 3.1.

Step Regression Line Tested Result Reason
1] Y =6.950 if fi=X not suitable fi(=Y)# X
2] Y =7.003 if fs=A not suitable  f3(=7) # A
[

3] Y =6.249f, 40243 if 4< f, <10 not suitable fi(=12) is not
in the range
[4,10]
[4] Y =5.882f;, +0.338 ¢f 2< f;, <8 suitable f2(=5) is
in the range

2, 8]

Prediction : Y = (5.582 % 5) + 0.338

Figure 3.4. An example for querying phase

Figure 3.4 shows an example for querying phase. The query instance used
in the example is ) :< 12,5,7,Y >. () uses the 4" best regression line of the

model to approximate its target feature value (Y).

The querying phase in RSBFP is summarized in Figure 3.5.
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[1]  Prediction <« 0; v < 1; Suitable-Regression-Line-Found = FALSE
[2] w + Number of simple linear regression lines
[3] Simple linear regression lines are in sorted order

[4]  While Suitable-Regression-Line-Found = FALSE and v < u + 1
[5] f « Predictor feature of v simple linear regression line

6] if x5 is known then

[7] if fis a linear feature then

3] if x,¢ is in the range of x; values of the training data then
9] Prediction < Prediction 4 §;(x,5)

[10] Suitable-Regression-Line-Found = TRUE

[11] end if

[12] end if

[13] else (f is a categorical feature)

[14] if .5 = v's categorical value for f

[15] Prediction — Prediction + ;(z45)

[16] Suitable- Regression-Line-Found = TRUE

[17] end if

[18] end else

[19] end if

[20] else

[21] ve—ov+1

[22] end else

[23] end while

Figure 3.5. Querying Phase in RSBFP

3.1.3 Target Noise Elimination

The distribution of the target values of the instances determines the success of
the model induced by RSBFP. The induced model will be more predictive if the
target values do not deviate so much from their mean value. However, in real
life databases, it is generally not possible to find such a smooth distribution
of the target values. Therefore, a target noise elimination procedure can be

employed as a preprocessing step of the model induction process.

In this preprocessing step, training instances whose target values are within



CHAPTER 3. REGRESSION BY SELECTING BEST FEATURE PROJECTIONS 32

k standard deviations of the mean target value are selected as non-noisy train-
ing instances to be used in the training phase of RSBFP method. The re-
maining instances whose target values are outside the k£ standard deviations of
the mean target value are regarded as noisy training instances. The &k value
maximizing the predictive accuracy of the RSBFP method on the data sets,
which were used in our emperiments, was empirically determined to be v/2, as
shown in Figure 3.6. For this £ value, the mean relative error of the RSBFP
method on our data sets is minimized, and therefore the predictive accuracy is

maximized.

The target noise elimination procedure causes RSBFP to use less number
of training instances to induce its parametric model. The selection of /2
guarantees that at least 50% of the training instances will be used in the

training phase according to Chebyshev’s Result.

There is a remarkable result discovered by the Russian mathematician
Chebyshev that uses the standard deviation to determine the proportion of
values in a population that is within a specified distance from the mean. Cheby-

shev’s Result [18] is as the following:

1. At least 75% of the values in any population of numbers are
within 2 standard deviations of the mean (that is, at least 75% of

the population values have Z-scores between -2 and 2 inclusive).

2. At least 88% of the values in any population of numbers are
within 3 standard deviations of the mean (that is, at least 88% of

the population values have Z-scores between -3 and 3 inclusive).

3. For any positive number k, at least (1 - 1/k*) * 100% of the values
are within k standard deviations of the mean (that is, at least (1
- 1/k*) * 100% of the population values have Z-scores between -k

and k inclusive).
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Figure 3.6. Determination of the optimal value of & for the RSBFP method.

3.2 Properties of RSBFP

In this section, we describe properties and problems encountered in regression

algorithms and evaluate RSBFP in terms of these topics.

3.2.1 Eager Learning

Fager learning methods complete most of the processing in the training phase
by inducing a model. This global model is used to fit all the training instances.
It has both advantages and disadvantages over lazy learning methods. Eager
learning methods enable interpretation of the underlying data by human be-

ings. They generally give more accurate approximations, since they generalize
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the whole data set. They are also very fast in the prediction phase. Query
instances just use the induced model, rather than inducing models in the pre-
diction phase. However, eager methods are not suitable for cases where the
training data changes dynamically. RSBFP, being an eager approach, has the

properties of eager methods explained above.

3.2.2 Context-sensitive (Adaptive) Learning

A regression method has a context-sensitive nature, if the contribution of the
features varies in different locations of the instance space. This property is
achieved in the categorical features in RSBFP. The contribution of a categorical
feature may differ among its values. Although the feature’s predictive power is
large in some values, the same feature may be the worst feature among other

values in terms of its predictive power.

3.2.3 Different Feature Types

Regression methods accept two type of features, categorical or linear. Cat-
egorical features take unordered values, whereas linear features take ordered
(linear) values. Regression methods differ at handling these two type of fea-
tures. Any one or both of these two types should be handled. If the regression
method handles only linear features, then the categorical ones can be replaced
with a unique linear one. If the method handles only categorical features, then
a clustering procedure is employed to transform linear features to categorical
ones. In most of the cases, each cluster is given a unique categorical value,
and the linear feature values are replaced with their corresponding cluster’s

categorical value.

These transformation procedures are not only time consuming but also open
to erroneous situations. RSBFP does not employ any transformation strategy.

It is designed to handle both type of features.
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3.2.4 Curse of Dimensionality

Many regression methods mentioned in Chapter 2 suffer from sparsity for very
large feature dimensions and with moderate number of training instances. In
other words, much more training instances are required to make better approx-
imations, as the feature dimension increases. This problem can be explained
through an example. Consider an input space consisting of exactly one feature.
Also let the training instances be uniformly distributed among this feature,
having values ranging from 1 to 2. In this scenario, a random choice of half of
the feature dimension will contain half of the training instances. If we add one
more feature having the same properties to the previous one, using random
choices of halves of each feature dimension will contain 1/4th of the training
instances. A further addition of a new feature will cause this ratio to decrease
to 1/8. That is, increasing the feature dimension will lead much sparse instance

spaces.

In machine learning community, this problem is called as curse of dimen-
stonality. In RSBFP, linear regression lines are constructed on each feature
dimension separately. As the number of feature dimensions increases, the den-
sity of training instances at any feature projection does not change. This shows

that RSBEFP is suitable for data sets with large number of features.

3.2.5 Normalization of Features

Normalization procedure is important for regression methods that make use
of Euclidean distance measure. For instance, kNN regression method heavily
uses Euclidean distance measure to determine the k& nearest neighbors. The
values of all the predictor features need normalization to ensure that all features
contribute equally in the computation of distance. The lack of normalization
procedure may lead to erroneous situations. For example, a linear predic-
tor feature whose unit is miles may lead to different nearest neighbors than
the same linear predictor feature whose unit is kilometers. Therefore, nor-
malization causes regression methods to operate independent of the domain

knowledge.
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Although RSBFP does not employ any normalization procedure, it can also
operate independent of the domain knowledge. Because, it makes use of feature

projections that naturally handle the normalization problem.

3.2.6 Irrelevant Features

Eliminating irrelevant features is also an important concept in machine learn-
ing. Lazy methods generaly suffer from irrelevant features. For instance, in
ENN regression method, nearest £ neighbours are determined according to the
Euclidean distance measure. While computing Fuclidean distances of train-
ing instances to the query instance, all features are given equal weight. The
existence of irrelevant features may cause beneficial training instances to be

thrown away.

On the other hand, eager regression methods are successful in elimination
of the irrelevant features. For instance, in regression tree induction methods,
the partitioning begins from the most significant feature and continues with

less relevant features in the subsequent partitionings.

The interpretation of the model induced by RSBFP shows that it is some-
what similar to the regression tree induction methods. Because, it places the
most relevant feature and its simple linear regression line on top of the model.
The other features, along with their equations, come next in the model hierar-

chy.

3.2.7 Redundant Features

There are two types of redundant features. The first one is due to the existence
of same feature more than once in the database. The second one is due to the
existence of functional dependencies between features. That is, a feature may

actually be a combination of some of the other predictor features.

RSBFP is suitable for both type of redundant features. If a feature is

repeated more than once in the database, then the simple linear regression
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line of that feature will be duplicated in the model. This will not affect the
querying phase of the method, the model will just have a massy appearance.
Furthermore, if a feature is a combination of the other ones, then this situation

will not effect the querying phase, either.

The redundant feature situation is a problem in the regression methods
especially making use of feature projections. Because the contribution of the

features in the querying phase may be doubled, tripled etc.

3.2.8 Missing Feature Values

In real-life databases, some feature values may be unknown for some instances
or tuples. And it will not be suitable to completely discard an instance having
missing feature values in regression methods. There are different approaches
to handle missing feature value problem. The most common approach is to
fill those places with some constant values. These constant values may be
the mean of the known values or the mostly encountered value of the corre-
sponding feature. However, this may cause distortion of the data set. Many
learning methods can not prevent this distortion caused by filling missing fea-
ture values [31, 32, 34]. If missing feature values are very frequently seen on
some instances or features, removing these instances or features can also be

employed.

RSBFP leaves those places empty to provide a natural solution. By this
way, the contents of the original data set is not distorted. RSBFP uses the
known values of each feature projection to construct the simple linear regression

lines.

3.2.9 Noise

In data sets, two types of noise can occur, predictor feature noise and target
feature noise. Although most of the regression methods are robust to predictor

feature noise, they are not so robust in the case of target feature noise.
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For target feature noise problem, in RSBFP, the training instances whose
target values are not in some predefined range are avoided in the model con-
struction phase. But at least 50% of the training instances are employed in the
training phase. The empirical results show that robustness to target feature

noise in RSBFP is better than some other well known regression methods.

3.2.10 Bias-variance Trade-off

There are two error types, bias and wvariance, that affect the success of the
regression algorithms. Bias is a consequence of underfitting the training data,
whereas variance is a consequence of overfitting the training data. It is gen-
erally not possible to decrease both of these errors simultaneously. Because, a
decrease in bias leads to an increase in variance. As an example, kNN regres-
sion method causes a large bias error if a large k is chosen. On the other hand,

ENN will lead to a large variance error if a small k is chosen.

In regression algorithms, this trade-off always exists. RSBFP chooses to
minimize the variance error. It makes strong assumptions about the training

data. A detailed information about this trade-off concept is presented in [17].

3.2.11 Model Complexity and Occam’s Razor

William of Occam’s Razor principle states that “Entities should not be mul-
tiplied beyond necessity” [13]. This principle has been approved by machine
learning community as in many other communities. Given two learning al-
gorithms with the same accuracy, the simpler one must be selected. This is

especially the case if our concern is interpretation of the induced model.

The model constructed by RSBFP is a simple decision list. Therefore,
RSBFP follows the Occam’s Razor principle.
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3.2.12 Interpretation

The interpretation of the induced model by human beings is an important trait
of a machine learning algorithm. Eager regression methods’ induced models
are usually easy to interpret, whereas lazy methods’ ones are hard to interpret.
RSBFP, as a parametric eager approach, constructs global models. By ana-
lyzing the model, the importance of the predictor features and the important

segments of the categorical predictor features can be determined.

3.2.13 Interactions and Lack of Many Additive Terms

RSBFP has two main limitations. Firstly, it is not suitable for domains having
interactions among its features. Furthermore, the linear regression lines of the
model are simple rather than multiple. That is, the linear regression lines
consist of at most one additive term. This generally causes large bias error
in the induced model. Nevertheless, the empirical evaluations indicate that

RSBFP achieves comparable accuracy values in spite of these limitations.

It the effect of any predictor feature on the target feature is dependent
on some of the other predictor features, then this indicates the existence of
interactions in the data set. For example, we can not determine the increase
in the area of a rectangle when the width of the rectangle is increased. The
increase amount depends on the particular value of the height of the rectangle.
The area calculation formula involves, actually consists of just, one interaction

term which is width * height.

On the other hand, we can determine the increase in the perimeter of a
rectangle when the width of the rectangle is increased. The increase amount
does not depend on the particular value of the height of the rectangle. The
perimeter calculation formula involves, actually consists of, exactly two addi-

tive terms which are width and height.

The induced model of RSBFP does not have any interaction terms, and

involves at most one additive term. The second drawback is handled in RSBF
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(Regression by Selecting Best Features) method that will be explained through-
out the Chapter 4. But the interaction problem still remains in the induced

model of RSBF.

3.3 Complexity Analysis

RSBFP is an eager method, and stores the simple linear regression lines in
the memory. Given a data set with n instances and m features, where m; of
the features are linear and (m — m;) are categorical, we let ¢ to denote the
maximum number of values of a categorical feature. Then, in the worst case,
the number of simple regression lines will be m; + (m — my).c. Therefore, the

space complexity of RSBF method will be O(m; + (m — my).c).

The computational complexity of the method differs for the training and
the querying phase. In the training phase, determination of the training in-
stances that are free of target noise requires an O(n) time complexity. Storing
and sorting the non-noisy training instances at each feature separately requires
O(m.n) and O(m.n.logn), respectively. Construction of the simple linear re-
gression lines at each feature takes a total of O(m; + (m — my).c) time. The
training phase ends by sorting the simple linear regression lines, which brings
a cost of O((m;+ (m —my).c).log (m; + (m — my).c)). The computation of the
mean and the standard deviation of the target values is also computed in the

training phase, which causes an extra O(n) time complexity.

In the training phase, the computational complexity is the sum of the com-
ponents described above; O(n) + O(m.n) + O(m.n.logn) + O(m;+(m—my).c)
+ O((my + (m — my).c).log (m; + (m —my).c)) + O(n). So the complexity of
the training phase is O((m; 4 (m —my).c).log (m; + (m — my).c) + m.n.logn).

In the querying phase, a query instance will have to search all the linear
regression lines of the model to find a suitable regression line, in the worst case.
Since my; 4+ (m — my).c is the upper bound for the number of regression lines,
the computational complexity of the querying phase for a single query instance

is O(my + (m — my).c).
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The empirical results show that RSBFP is fast both in training and querying

phase, while preserving a comparable predictive accuracy.



Chapter 4

Regression by Selecting Best

Features

In this chapter we describe another regression method called Regression by
Selecting Best Features (RSBF). RSBFP, described in the previous chapter,
method was incapable of inducing models involving additive terms. RSBF
was developed to override this limitation. It is also an eager, parametric and
adaptive method which makes use of feature projections and least squares
regression. All such properties of RSBF will be described and discussed in
detail in the chapter.

4.1 The RSBF Algorithm

RSBF’s induced model is similar to that of RSBFP. The categorical features
are handled in the same way. Exactly one simple linear regression line per each
distinct value of a categorical feature is constructed. However, linear features
are handled in a different way. Multiple linear regression lines are constructed
among linear features. The number of multiple regression lines is equal to the
number of linear features. The linear features to be involved in each multiple
regression line are determined by using a relevancy heuristics. The induced

model consists of an ordered list of multiple and simple linear regression lines

42
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according to their predictive power. A target noise elimination procedure is
also employed to increase the predictive power of the model before construction

of the regression lines.

RSBF is an eager method, since all query instances use the same induced
model. A different model per query instance is not constructed, as in lazy
regression methods. RSBF is also a flexible method since the choice of the

appropriate regression line differs for each query instance.

4.1.1 Training

Training phase again begins by storing the training instances as their pro-
jections on each feature dimension separately. A copy of the target value is
associated with each feature dimension. The existence of missing feature values
is handled in a natural way. RSBF stores an instance only on feature dimen-
sions whose values are known. An example training set with five features and

ten training instances projected to these features is shown in Figure 4.1.

fi 3 3 4 7 10 —11 6 0 —-12 20
TARGET : 15 14.5 13.6 152 173 15 134 13.9 18.7 15

f2 4 =10 5 -4 -3 =5 9 12 —4 =12
TARGET : 15 14.5 13.6 152 173 15 134 13.9 18.7 15

f3 o1 7 -5 12 2 10 15 =3 6 9
TARGET : 15 14.5 13.6 152 173 15 134 13.9 18.7 15

fa : A B B B B A B B B A
TARGET : 15 14.5 13.6 152 173 15 134 13.9 18.7 15

Is /4 Y Y Z Y Yy X X Z Z
TARGET : 15 14.5 13.6 152 173 15 134 13.9 18.7 15

Figure 4.1. An example training set projected to five features: fi, fo, f3, fu
and fs.
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After storing the training instances as their projections on the feature di-
mensions, the linear regression lines are constructed. Multiple linear regression
lines belonging to the linear features and simple linear regression lines belong-
ing to categorical features are used to induce the model. The use of simple least
squares regression was explained in Chapter 3. The next two sections describe

the multiple linear least squares regression and the construction of the model.

4.1.1.1 Multiple Linear Least Squares Regression

Multiple linear least squares regression can be applied when the parametric
form of the model is assumed to be linear, and consists of multiple features.
The parametric form is given in Equation 4.1, and the task is to approximate
the coefficients of this equation by using the least squares error criterion in
Equation 3.2. Simple linear least squares regression is the primitive form of

the multiple version since it employs exactly one feature.

g, = Z Bj.xg; + Bo (4.1)

here, p is the number of features, z, is the query point, x,; is the 7 fea-
ture value of the query, 3; is the j* parameter of the function and g, is the

approximated value of the function for the query point z,.

For a training data set consisting of n instances and m; linear features,
matrix A, (m,41) is used to store the feature values of the instances. Each ay;
entry of A denotes the ;% feature value of the " instance. Furthermore, the
target feature values of the instances are stored in y,,; vector. Multiple linear
least squares regression finds a least squares solution to A = y by employing
the method of Normal Equations given in Figure 4.2. The least squares solution

vector, 3, includes the parameters of (4.1).

Normal Equations method makes use of Cholesky Factorization that is ex-
plained in Figure 4.3. Cholesky Factorization overwrites the lower triangular
portion of ' matrix, and the overwritten lower triangular portion is assigned

to the G matrix.
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[1]  Multiply both sides of A3 =y by AT
[2] — ATAB = ATy
3] C=ATA and d = ATy
[4]  Compute the Cholesky Factorization of C
[5] — C = GGT where G is a lower triangular matrix
6] »=GI3
[7] Solve Gz =d and GT3 = »
Figure 4.2. Normal Equations Method
[1] For k=1 tom do
2] if C(k,k) =0 then
B ool
[4] end if
5] Clk,k)=+/C(k,k)
6] For j =(k+1) tom do
1 Uik = RO
8] end for
9] For j =(k+1) tom do
[10] For « =j tom do
1] C(ir§) = Clirj) — Cli, O, )
[12] end for
[13] end for
[14] end for

Figure 4.3. Cholesky Factorization

4.1.1.2 Model Construction

For each distinct value, €, of categorical feature f, the simple linear regression
line will consist of one parameter, which is the mean target value of the training
instances having the categorical value of ' for f. In the case of linear features,
exactly one simple linear regression line is constructed. Equation 3.10 is used
to find the relative error, and therefore the predictive power, of the lines. Then,
the regression lines belonging to linear features are sorted according to their
predictive power. This sorting procedure is used as our relevancy heuristics in

constructing multiple linear regression lines among linear features. The first
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multiple linear regression line will consist of all the linear features. The second
one will exclude the worst linear feature and use the remaining linear features.
From this point, each incoming multiple linear regression line will exclude
the next worst linear feature along with the previously discarded features.
Therefore, the number of multiple linear regression lines will exactly be equal

to the number of linear features.

Upon the completion of multiple regression line construction phase, the
categorical features’ simple and linear features’ multiple linear regression lines
will be sorted by using again the Equation 3.10. This last procedure will result
in the induced model of the RSBF method, which is a decision list.

To illustrate the model construction phase, we will use the training set
given in Figure 4.1. The training set consists of five features and the set will
construct a total of five simple (two for fy, three for f5) and three multiple linear
regression lines that will construct the model. To determine which of the linear
features will participate in which of the multiple linear regression lines, we
construct simple linear regression lines by using the linear features and measure
how each one is successful by using only that feature for prediction purposes.
The sorted order of these regression lines according to their associated relative

errors are shown in Figure 4.4.

[1] Y = —0.063/; + 14.736 RE = 0.369
2] Y =0.003f; +14.753 RE = 1.027
3] Y =0.031f; +14.613 RE = 1.060

Figure 4.4. The ordered list of simple linear regression lines of linear features.

Figure 4.4 shows that fy is the most relevant (predictive) linear feature,
whereas f; is the least one. In constructing the first multiple linear regression
line, none of the linear features are discarded. The second multiple regression
line will discard the least relevant linear feature f;, and the third one will
discard the next least relevant linear feature f; along with the previously dis-
carded linear feature f;. This shows that the third multiple linear regression
line is actually a simple linear regression line consisting of only the most rel-
evant linear feature f;. Therefore, the parametric form of the third multiple

linear regression line is the same as that of fy’s simple linear regression line.
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Model construction is completed by sorting these multiple linear regression
lines along with the simple linear regression lines belonging to the categorical
features. Figure 4.5 shows the induced model by using our example data set.
The smaller the relative error, the larger the predictive power of the regression

line in the model.

The model construction in RSBF is summarized in Figure 4.6.

1] Y =15 if fa=A, RE =0.000
[2] Y = —0.08f, — 0.036 f5 + 14.92 RE = 0.863
[3] Y = —0.068f, + 14.736 RE = 0.869
[4] Y =0.008f, — 0.077f, — 0.035f5 + 14.884 RE =0.890
[5] Y =13.650 if fs =X, RE =1.000
[6] Y = 15.010 if fs=Y, RE =1.048
[7] Y = 14.650 if f=B, RE =1.049
[8] Y =15.067 if fs =7, RE =1.333

Figure 4.5. The induced model

4.1.2 Querying

In the querying phase of the RSBF, for a query instance the most predictive
linear regression line is tried first. However, it is sometimes not possible to use
the most predictive line due to different feature value and missing feature value
problems. Therefore, the search for the next best regression line continues until

a suitable one is found.

The querying phase can be better explained through an example. We will
again refer to the training set given in Figure 4.1. If we let our query instance
be () :< 2,10,7,B,7Z >, the best regression line of the model will not be
suitable for this query instance since f; = B rather than A in ). The second
best regression line, which is a multiple regression line in this case, will also
be unsuitable since the value of f3 is missing. Finally, the third regression line
is suitable for (), and this regression line of the model will be used to predict
the target value of (). The search will stop here and the remaining regression
lines of the model need not be dealed anymore. That is, @ uses the 3'* best

regression line of the model, and the value of Y for the query instance @) is
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[1] For f=1top

2] if fis a linear feature

(3] Construct a simple linear regression line of the form g, = foy + B15.2;

[4] end if

[5] else (f is a categorical feature)

6] For each distinct value ¢ of f

[7] Construct a simple linear regression line of the form g;. = Foy.

8] end for

9] end else

[10] end for

[11] Let p; be the number of linear features

[12] Sort the simple linear regression lines belonging to linear features
according to their relative errors

[13] s —p

[14] While s > 0

[15] Construct a multiple linear regression line by using s linear

features of the form y= (X7_; fizi) + o

[16] Exclude the current worst linear feature

[17] se—s—1

[18] end while

[19] Sort p; multiple linear regression lines belonging to linear

features and simple linear regression lines belonging to categorical
features altogether
[20] Store the ordered list of (multiple and simple) linear regression lines

Figure 4.6. Model Construction in RSBF

predicted as (—0.068 x 10) + 14.736.

The querying phase in RSBF is summarized in Figure 4.7.

4.1.3 Target Noise Elimination

Target noise elimination procedure employed as a preprocessing step of the
model induction process in RSBFP is also used in the case of RSBF. The k
value maximizing the predictive accuracy of RSBF method on all the data

sets was empirically determined to be v/2, as shown in Figure 4.8. It can be

observed that both RSBF and RSBFP has the same optimal value of k£, which
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[1]  Prediction <« 0; v < 1; Suitable-Regression-Line-Found = FALSE
[2] w « Number of (multiple and simple) linear regression lines
[3] Linear regression lines are in sorted order

[4]  While Suitable-Regression-Line-Found = FALSE and v < u + 1
[5] if v is a simple linear regression line

6] f « Feature of v'* simple linear regression line

[7] if x5 is known then

3] if v, = v's categorical value for f

9] Prediction < Prediction 4 §;(x,5)

[10] Suitable- Regression-Line-Found = TRUE

[11] end if

[12] end if

[13] end if

[14] else (v is a multiple linear regression line)

[15] Let v consist of j linear features

[16] if , has known values for all of these j linear features
[17] Prediction «— Prediction + y(x,)

[18] Suitable- Regression-Line-Found = TRUE

[18] end if

[19] end else

20] veuvtl

[21] end while

Figure 4.7. Querying Phase in RSBF

is V2.

4.2 Properties of RSBF

In this section, we describe properties of and limitations encountered in RSBF

regression method.
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k= 1.414 achieves the minimum mean relative error

0.75 | | | | | | | | | |

Figure 4.8. Determination of the optimal value of k for RSBF method

4.2.1 Eager Learning

RSBF is an example of eager learning methods. It induces a model in the
training phase, and query instances use this model in the querying phase rather
than constructing their own model around their query location. Being an eager
method, it enables the interpretation of the training instances. In terms of
time complexity, it is very fast in the querying phase while preserving a slower

execution time in the training phase (Section 4.4).
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4.2.2 Context-sensitive (Adaptive) Learning

Context-sensitive property of RSBF is satisfied by categorical features, as in
RSBFP. The contribution of a categorical feature may differ among its values.
It may be more predictive in some values, although it would be poor in the
remaining values. The predictive segments of the categorical features are placed

at top levels of the model, whereas the other segments stay at bottom levels.

4.2.3 Different Feature Types

RSBF method accepts both categorical and linear features. It combines these
two type of features to induce its model. There is no need to transform any
linear feature to a categorical one, or vice versa. No need for transformation

ensures that erroneous situations will not be encountered.

4.2.4 Curse of Dimensionality

RSBF does not follow a partitioning strategy as in regression tree induction
methods, which will cause the number of instances to decrease in proportional
to the increase in the feature dimension. It always uses the whole training data
set to construct simple and multiple linear regression lines. Therefore, RSBF
is suitable for data sets with large number of features. There is not a curse of

dimensionality problem in our method.

4.2.5 Normalization of Features

RSBF does not employ any normalization procedure. Although it does not
cause any problems in the case of simple linear regression lines, the multiple
linear regression lines may suffer if the range of the values greatly differs among

linear features.
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4.2.6 Irrelevant Features

The main motivation behind RSBF was to select the best subset of features
and construct a linear regression line by using those features. However, RSBF
does not limit itself to exactly one linear regression line. It constructs many
linear regression lines to induce its model. The linear regression line consisting
of the most predictive, relevant features is placed at the top of the model. The
other lines come next in the model hierarchy. A linear feature may exist in
more than one linear regression line, indicating that the linear regression lines

are not isolated from each other.

4.2.7 Missing Feature Values

Missing (absent) feature value problem is commonly encountered in real-life
databases. RSBF leaves these places empty, rather than assigning an arbitrary
value to them. This guarantees that the original data set will not be distorted.
The RSBF method uses the known values while projecting the training in-
stances on each feature dimension. Also the regression functions involving a
feature for which the corresponding value is missing in a query instance are

not used.

4.2.8 Noise

The RSBF is robust to especially target feature noise. Training phase begins
by avoiding instances whose target values are not in some predefined range. In
spite of this elimination procedure, at least 50% of the training instances are
employed in the training phase. The empirical results show that RSBF is very
robust to target feature noise when compared to the other regression methods.

(See Section 3.1.3 for details of the elimination of noisy instances)
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4.2.9 Bias-variance Trade-off

There is always a trade-off between bias and variance. RSBF behaves similarly
to RSBFP in that respect, and chooses to minimize the wvariance error. It
makes strong assumptions about the underlying data set and tries to fit the
data set into an ordered list of linear (multiple or simple) regression lines. As
a consequence, RSBF generally underfits, and avoids overfitting the training

data set.

4.2.10 Model Complexity and Occam’s Razor

RSBF is not a complex regression method when compared to other eager and
lazy methods in the literature. However, it achieves better accuracy values in
addition to its simplicity and interpretability. The performance results of RSBF
on real data sets confirm its compliance with the Occam’s Razor principle,
which states that given the two learning algorithms having the same accuracy,
the simpler one should be selected. The decision list model constructed by

RSBF is very simple compared to other regression techniques.

4.2.11 Interpretation

Interpretation of an induced model by human experts is important in machine
learning. RSBF induces a global model that is easy to understand and inter-
pret. By analyzing the linear regression lines of the model, one can determine
the best subset of features and the predictive segments of the categorical pre-

dictor features.

4.2.12 Interactions and Lack of Combinations

RSBF has two main limitations. Firstly, it is not suitable for domains having
interactions among its features. Furthermore, although the linear regression

lines of the model are multiple, they do not try all the combinations of the
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linear predictor features. This causes the induced model to include a bias

error.

The induced model of RSBF does not include any interaction terms that
were mentioned in Chapter 3. However, it is empirically shown that usually the
real-world data sets do not contain interacting features [21, 19]. Besides this,
while constructing the multiple linear regression lines, RSBF uses a relevancy
heuristics. That is, once a linear feature is selected to be the next worst
linear feature among the current set, it can not be reused in the construction
of the further multiple linear regression lines. There is a need for having a
greedy relevancy heuristics, because it is computationally infeasible to try each
possible combination of the linear features to determine the best subset of

features in terms of predictive accuracy.

4.3 Complexity Analysis

RSBF is an eager method, and stores the simple and multiple linear regression
lines in the memory. Given a data set with n instances and m features, where
my of the features are linear and (m — m;) are categorical, we let ¢ to denote
the maximum number of values of a categorical feature. Then, in the worst
case, the number of simple and multiple regression lines will be (m — m;).c
and my, respectively. Therefore, the space complexity of RSBF method will be
O(m; 4 (m —my).c).

The computational complexity of the method differs for the training and
the querying phase. In the training phase, determination of the training in-
stances that are free of target noise requires an O(n) time complexity. Storing
and sorting the non-noisy training instances at each feature separately requires
O(m.n) and O(m.n.logn), respectively. Construction of the simple linear re-
gression lines at each feature takes a total of O(m; + (m — my).c) time. The
simple linear regression lines belonging to the linear features need sorting to
be used in the construction of the multiple linear regression lines. This causes
a O(my.log m;) time complexity. Construction of the m; multiple linear regres-

sion lines, by making use of Normal Equations method, takes O(n.mj+m}) [5].
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The training phase ends by sorting the simple linear regression lines of categor-
ical features and multiple linear regression lines of linear features altogether,
which brings a cost of O((m; + (m —my).c).log (m; 4+ (m — my).c)). The com-
putation of the mean and the standard deviation of the target values is also

computed in the training phase, which causes an extra O(n) time complexity.

In the training phase, the computational complexity is the sum of the com-
ponents described above; O(n) + O(m.n) + O(m.n.logn) + O(m;+(m—my).c)
+ O(my.logmy) + O(n.mj+m}) + O((my+(m—my).c). log (m; + (m — my).c))
+ O(n). Therefore, the overall computational complexity of the training phase

is O((my 4+ (m —my).c).log (m; + (m — my).c) + n.m? + m} + m.n.logn).

In the querying phase, a query instance will have to search all the linear
regression lines of the model to find a suitable regression line, in the worst case.
Since my; 4+ (m — my).c is the upper bound for the number of regression lines,
the computational complexity of the querying phase for a single query instance

is O(my + (m — my).c).

The empirical results show that RSBF is fast both in training and querying
phases, while preserving a comparable predictive accuracy. Although querying
time complexity of RSBF is exactly the same as that of RSBFP, training time
complexity of RSBF is bigger than RSBFP. These results are also empirically
verified on real-world data sets. The empirical evaluation of RSBFP and RSBF

is given in the next chapter.



Chapter 5

Empirical Evaluations

This chapter is devoted to the empirical evaluations of RSBFP, RSBF and other
regression methods mentioned in Chapter 2. A large number of real data sets,
available in the Bilkent University Function Approximation Repository [20],
are used to compare the predictive power and computational complexity of

those methods.

The regression methods selected to compare with RSBFP and RSBF are
successful representatives of rule-based learning, regression tree induction, spline-
based regression and instance-based learning. RULE, KNN, DART and MARS
are used as representatives of rule-based learning, instance-based learning, re-
gression tree induction and spline-based regression, respectively. All of these
methods are the most recent versions of their categories and outperform the
previously implemented versions. The source code of these methods are ob-

tained from publicly available resources.

The organization of the chapter is as follows: We first define the perfor-
mance measure that will be used to compare the methods in terms of predictive
accuracy. Then, a brief explanation of the particular implementation of the
previously developed methods is given. The properties of the real data sets
used in the experiments are also mentioned in this chapter. Finally, the em-

pirical results including the predictive power of the methods, robustness to

56
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the irrelevant features, missing feature values and target feature noise are dis-
cussed. The chapter concludes by computational complexity comparison of the

methods in terms of training time and querying time requirements.

5.1 Performance Measure

The performance measure is used to determine the predictive power of the
methods. The predictive power of a method is large if the actual target values
of the query instances are close to the target values predicted by the proposed
method. There are two commonly used performance measures: mean absolute
distance and relative error. The second performance measure is exactly the
same as the one used for calculating the predictive power of simple and multiple

linear regression lines.
Mean absolute distance (MAD) [42, 43] is computed as the following:
YL |y — i)

Q

where () is the number of query instances.

MAD = (5.1)

However, MAD is not an appropriate performance measure. It depends on
the range of the target values of the query instances. MAD will be large for
domains having large target values, and small for domains having small target
values [39]. Therefore, relative error (RE) [42, 43] is employed as the modified
version of MAD. RE is an appropriate performance measure since it normalizes
the MAD by the mean absolute distance from the median target value. RE is

computed as the following:

MAD
RE =

= : (5.2)
YL, |y — median(y)|

10-fold cross validation technique [19] is employed on the experiments.
Therefore, the prediction error of a method on any data set is computed as

the average of 10 runs in each of which a disjoint set of 1/10 of the data set is
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used in the querying and the remaining 9/10 in the training phase.

5.2 Other Regression Methods Used in Com-

parisons

In this chapter, we will briefly explain the properties of the implementations

of the other regression algorithms used in experiments.

5.2.1 RULE

The most recent rule-based regression implementation, written by Weiss and
Indurkhya [42, 43] is used in the experiments. The source code of the program
is available in the data mining software kit (DMSK), attached to [43].

5.2.2 KNN

The version of KNN implemented by Bilkent University Machine Learning
Group is used in our experiments. [t makes use of Euclidean distance to deter-
mine the similarities of the training instances to the query point. A normal-
ization procedure is also employed in order to obtain values ranging between 0

and 1.

Missing feature values are handled differently for categorical and linear
features. If the feature is of linear type, mean values of the feature is used
to fill the empty places. In the case of categorical features, the most frequent
categorical value is selected to fill the empty places. K parameter is set to 10

in all the experiments.
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5.2.3 DART

The most recent regression-tree induction implementation, written by Fried-
man [16] is used in the experiments. The regression-tree induction methods
generally suffer from disjoint partitioning of the regions. However, DART

avoids this problem by permitting to construct overlapping regions.

5.2.4 MARS

The most recent version of MARS, mars3.6, written by Friedman [15] is used
in the experiments. Linear spline approximation produces better results than
cubic spline approximations. So, linear spline approzimation choice is set in
our experiments. Also, the highest possible interaction level is set to figure out

the interactions in our real data sets.

5.3 Real Data Sets

Twenty nine data sets, collected mainly from three sources [27, 8, 35], were
used in the experiments. It was not easy to collect much more data sets, since
most of the data sets are produced to be used in classification tasks. Table 5.1
shows the properties of these data sets. Further and detailed information about
those data sets can be found in Bilkent University Function Approximation

Repository [20].

5.4 Accuracy

Table 5.2 shows the relative errors (RFE) of the regression methods on 29 real
data sets. For each data set, the smallest relative error indicating the best
result is typed in boldface. RSBFP and RSBF achieve the best results in 6
and 8 of these data sets, respectively. The other methods, DART, MARS,
KNN and RULE, achieve the best results in 5, 5, 4, and 2 of these data sets,
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Original Name  Abbrev. Instances Features Missing Target

(L—I—C) Values Feature
Abalone AB 4177 8 (7+1) None  Rings
Airport AP 135 4 (44-0) None  Tons of mail
Auto AU 398 7 (6+1) 6 Gas consumption
Baseball BA 337 16 (164+0) None  Salary
Buying BU 100 39 (3940) 27 Husbands buy video
Comp.Hard. CH 209 7 (641) None  CPU performance
Country CN 122 20 (204-0) 34 Population
College cO 236 25 (2540) 381 Competitiveness
Education ED 1500 43 (434-0) 2918  Income in 1991
Electric EL 240 12 (10+2) 58 Serum 58
Fat FA 252 17 (1740)  None  Body height
Fishcatch C 158 7 (6+1) 87 Fish weight
Fruitfly FF 125 4 (341) None  Sleep time
Housing HO 506 13 (1241) None  House prices
Homerunrace HR 163 19 (1940) None  Run race score
Northridge NE 2929 10 (1040) None  Earthquake magnit.
Normtemp NT 130 2 (2+0) None  Heart rate
Plastic PL 1650 2 (2+0) None  Pressure
Poverty PV 97 6 (5+1) 6 Death rate
Read RE 681 25 (2441) 1097  Reader satisfaction
SolarFlare S2 1066 10 (04+10)  None  Flare production
Schools SC 62 19 (19+0) 1 Reading score
Servo SE 167 4 (044) None  Rise time of a servo
Stock Sp 950 9 (9+0) None  Stock price
Television TV 40 4 (44-0) None  People per TV
Usnews UsS 1269 31 (3140) 7624  Rate of Ph.D.’s
Village VL 766 32 (2943) 3986 Number of sheep
WeatherAnkara WA 1609 9 (9+0) None  Mean temperature
Weatherlzmir WI 1461 9 (9+0) None  Mean temperature

Table 5.1. Properties of the data sets used in the experiments. L: Linear, C:

Categorical.
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respectively. Although these results indicate the high predictive power of the
newly developed regression methods, RSBFP and RSBF, mean value of relative
errors on 29 data sets can also be used as an indicator of predictive power for
a regression method. RSBFP, having a mean relative error of 0.740, becomes
the most predictive regression method. On the other hand, RSBF becomes
the third most predictive regression method by having a mean relative error of

0.805 which is very close to the DART’s mean relative error, 0.789.

For any regression method, the distribution of the relative errors for differ-
ent data sets is also important [39]. In Table 5.2, the standard deviation of
these relative errors for each different regression method were computed. RS-
BFP and RSBF achieved the lowest standard deviation values, 0.316 and 0.389.
This shows the domain independent characteristics of our methods. They can
be applied on many real life databases regardless of any prior knowledge about

those domains.

The last column of Table 5.2 shows the standard deviation of the relative
errors achieved by the regression methods for each data set. These standard
deviation values are used to determine a small portion of data sets to be used for
further comparison of regression methods in terms of robustness to irrelevant
features, missing feature values and target noise. We have chosen six data
sets (AB, AU, HO, SC, WA and WI) having the minimum standard deviation
values, since it would be suitable to compare the regression methods, in terms
of irrelevant features, missing feature values and target noise, for data sets
having initially similar relative error values. These standard deviation values

are also typed in boldface in Table 5.2.

5.5 Robustness to Irrelevant Features

The predictive performance of regression methods on selected data sets (AB,
AU, HO, SC, WA and WI) by adding new irrelevant features are shown in
Figure 5.1. The performance of RSBFP is not effected from new irrelevant
features in all data sets. On the other hand, RSBF’s performance degrades
only on SC data set. Besides RSBFP and RSBF. the regression methods
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Data Set RSBFP RSBF KNN RULE MARS DART StdDev

AB 0.729 0.678 0.661 0.899 0.683  0.678  0.082
AP 0.550  0.532 0.612 0.744  0.720  0.546 0.085
AU 0.489 0.413 0.321 0.451 0.333 0.346  0.063
BA 0.768 0.570 0.443 0.666  0.493  0.508 0.111
BU 0.678 0.732 0.961 0.946  0.947  0.896 0.113
CH 0.781 0.606 0.944 0.678 0.735 0.510 0.618
CN 1.429 1469 1.642 6.307 5.110  1.695 1.989
CO 0.514 1.554 0.764 0.290 1.854 0.252  0.137
ED 0.668 0.461 0.654 0.218 0.359  0.410 0.159
EL 1.003 1.020 1.194 1.528 1.066  1.118 0.179
FA 0.725 0.177 0.785 0.820 0.305  0.638 0.246
FC 0.578 0.638 0.697 0.355 0.214 0.415 0.169
FF 1.016 1.013  1.201 1.558 1.012 1.077 0.196
HO 0.698 0.589  0.600 0.641  0.526 0.522 0.062
HR 0.890 0.707 0.907 0.890 0.769  0.986 0.093
NE 0.969 0.938 1.034 1.217 0928 0.873 0.114
NT 0.976 0.977 1.232 1.250 1.012 1.112 0.111
PL 0.887  0.444 0475 0.477 0.404 0.432 0.166
PV 0.921 0.715 0.796 0916 1.251 0.691  0.187
RE 0.997 1.001 1.062 1.352 1.045 1.189 0.126
S2 1.434 1.434 2307 1.792 1.556  1.695 0.300
SC 0.376  0.175 0.388 0.341  0.223  0.352  0.081
SE 0.868 0.868 0.619 0.229 0.432  0.337 0.248
SP 1.416 1.101  0.599 0.906 0.781  0.754 0.267
TV 1.176  1.175 1.895 4.195 7.203  2.690 2.123
USs 0.402 0.385 0.480 0550 0412  0.623 0.087
VL 0.940 0.930 1.017 1.267 1.138  1.355 0.161
WA 0.255 0.096 0.113 0.116 0.073 0.095 0.060
WI 0.209 0.071  0.098 0.100 0.064 0.082 0.049
Mean 0.805 0.740 0.845 1.093 1.091  0.789

StdDev 0.316  0.389 0483 1.246  1.467  0.548

Table 5.2. Relative errors of regression methods. Best results are typed with

bold font.
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RULE and MARS are also noted to be robust to irrelevant features.

Table 5.3 shows the comparison of regression methods on all data sets where
30 irrelevant features are added to each of them. RSBFP and RSBF achieve
the two lowest mean relative error values. RSBFP is the best in 8 data sets,
whereas RSBF is the best in 7 data sets. MARS regression method, having
the lowest relative error values in 10 data sets, is also noted to be a successtul

method.

5.6 Robustness to Missing Feature Values

The predictive performance of regression methods on selected data sets (AB,
AU, HO, SC, WA and WI) by increasing missing feature values are shown in
Figure 5.2. The performance of RSBFP and RSBF is slightly affected from
increasing missing values in all data sets, except WI (RSBFP), AU (RSBF)
and HO (RSBF). However, RSBFP and RSBF’s response to increasing missing
values is not worse than the other methods in WI, AU, and HO. They are
comparable to other regression methods. Therefore, our proposed methods
can be regarded as robust to missing feature values. From Figure 5.2, it is

noted that DART is also a robust method to missing feature values.

Table 5.4 shows the comparison of regression methods on all data sets where
20% of the values of real data sets are removed. RSBF and RSBFP achieve
the two lowest mean relative error values. RSBFP is the best in 2 data sets,
whereas RSBF is the best in 12 data sets. DART regression method, having
the lowest relative error values in 8 data sets, is also noted to be a successtul

method.

5.7 Robustness to Target Noise

The predictive performance of regression methods on selected data sets (AB,
AU, HO, SC, WA and WI) by increasing target noise are shown in Figure 5.3.
The performance of RSBFP and RSBF is not affected from increasing noise in
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Figure 5.1. Relative errors of methods with increasing irrelevant features
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Data Set RSBFP RSBF KNN RULE MARS DART
AB 0.728 0.677 0.873 0.934  0.682 *

AP 0.555 0.794 1.514 0.723  0.682  0.657
AU 0.488 0.429 0.538 0491 0.368 0.511
BA 0.768 0.603 0.568 0.574 0.536  0.628
BU 0.678 1.325 0.968 1.073  0.877  0.969
CH 0.781 0.676 1.107 0.753 0.613  0.668
CN 1.425 2119 2854 1.794 4.126  1.662
CO 0.514 1.111  1.162 0.284 2.195  0.306
ED 0.668 0.461 0.802 0.268 0.404  0.573
EL 1.006 1.010 1.037 1.367 1.134  1.236
FA 0.725 0.204 1.026 1.039  0.249  0.877
FC 0.578 0.694 0917 0.456 0.247 0.420
FF 1.030 1.096 1.063 1.513  1.777  1.430
HO 0.698 0.601 0920 0.701 0.521  0.653
HR 0.890 0.800 0.932 1.049 0.847 1.165
NE 0.969 0.938 1.076 1.284 0.916 *

NT 1.000 1.070 1.079 1.484 1.370  1.156
PL 0.887  0.450 0.961 0.575 0.407 0.734
PV 0.966 0.838 0.855 0.934 1.005 1.013
RE 0.998 1.014 1.045 1.380 1.042 1.311
S2 1.433  1.429 1454 1.765 1.629  1.490
SC 0.376 0.672 0.582 0.386 0.305 0.391
SE 0.926 1.036  0.835 0.471 0.798  0.641
SP 1.416 1.104 1.188 0914 0817 0.756
TV 1.220  2.222  3.241 5572 5.614  2.709
USs 0.402 0.385 0.757 0.557  0.394  0.906
VL 0.939 0.930 1.050 1.454  1.257  1.307
WA 0.255 0.097 0.552 0.127  0.073  0.129
WI 0.209 0.072 0.550 0.112 0.064 0.114
Mean 0.811  0.857 1.086 1.036  1.067  0.909
StdDev 0.319 0.489 0.586 0.979 1.164  0.536

65

Table 5.3. Relative errors of regression methods, where 30 irrelevant features
are added to real data sets. If the result is not available due to singular vari-
ance/covariance matrix, it is shown with (*). Best results are typed with bold

font.
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Figure 5.2. Relative errors of methods with increasing missing feature values
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Data Set RSBFP RSBF KNN RULE MARS DART
AB 0.729 0.720  0.750 0.961  0.748 0.688
AP 0.562 0.496 0.726 0.676  0.798  0.546
AU 0.500 0.499 0.414 0.526 0.414 0.363
BA 0.785 0.714 0.553 0.833  0.637  0.576
BU 0.785 0.682 0.951 0.878 0.862  1.026
CH 0.746 0.719 0.922 0832 0.747 0.608
CN 1.480  1.399 1.856 3.698  3.733  2.377
CcO 0.583 0.622  0.942 0.399 0.801  0.435
ED 0.685 0.572  0.743 0.497 0.595  0.536
EL 1.005 1.019 1.097 1.537 1.073  1.191
FA 0.749 0.739  0.849 0948 0.731  0.735
FC 0.570 0.631 0.675 0.543  0.537 0.401
FF 1.019 1.034 1.711 1.557 1.012  1.347
HO 0.718 0.729 0.761 0.748  0.649 0.590
HR 0.899 0.725 0.910 1.040 0.836  0.974
NE 0974 0.951 1.072 1.272 0.972 *

NT 1.020 1.006 1.229 1.363 0.989  1.222
PL 0.903 0.515 0.733 0.686  0.679  0.420
PV 0.920 0.767 0976 1.189 1.026  0.792
RE 0.996 0.995 1.059 1.364 1.048  1.229
S2 1.429 1.429 1.851 1.751  1.557 1.421
SC 0.409 0.281 0.449 0.500  0.303  0.370
SE 0.879 0.879 0.921 0.849 0.746 0.495
SP 1.430 1.228 0.744 0.904 0.930 0.707
TV 1.272 1408 4.398 3.645 16.502  2.512
USs 0.460  0.388 0.558 0.620  0.497  0.844
VL 0.949 0.947 1.056 1.410 1.090 *

WA 0.265 0.119 0.190 0.203  0.183  0.133
WI 0.221 0.089 0.181 0.167 0.173  0.115
Mean 0.826 0.769 1.010 1.090 1.409  0.843
StdDev 0.316  0.340 0.754 0.807 2917  0.570
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Table 5.4. Relative errors of regression methods, where 20% of values of real

data sets are removed.

ance/covariance matrix, it is shown with (*).

bold font.

It the result is not available due to singular vari-

Best results are typed with
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AB, AU, HO and WA until a 30% noise level is reached. Their performance
is not affected also in WI until a 20% noise level is reached. In cases where
the performance of RSBFP and RSBF is affected from increasing noise level,
that performance are comparable to other methods. Therefore, our proposed

methods can be regarded as robust to target noise.

Table 5.5 shows the comparison of regression methods on all data sets where
20% target noise is added to the data sets. RSBF and RSBFP achieve the two
lowest mean relative error values. RSBFP is the best in 10 data sets, whereas
RSBF is the best in 16 data sets. The other methods perform far below RSBFP
and RSBF in the existence of 20% target noise.

5.8 Computation Times

The computation times of the regression methods are measured in terms of
training and querying times. Table 5.6 shows that RSBF and RSBFP are very
fast with respect to other eager methods, in the training phase. Since ANN
is a lazy regression method, it does not do much work in the training phase.
Hence, RSBFP and RSBF are not faster than ANN in the training phase. In
the querying phase, RSBFP and RSBF are very fast with respect to kNN and
RULE, whereas they have very close querying times when compared to MARS
and DART. Table 5.7 shows the querying times of the regression methods.

When comparing a lazy regression method to an eager one in terms of
computational complexity, it will be more fair to compare one’s training time
to the other’s querying time. In this aspect, the querying times of kNN are
noted to be much more longer than the training times of RSBFP and RSBF.
So it can be easily stated that the proposed regression methods, RSBFP and
RSBF, are not only best in terms of predictive accuracy, but also best in terms

of computational complexity.
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Figure 5.3. Relative errors of methods with increasing target noise
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Data Set RSBFP RSBF KNN RULE MARS DART

AB 0.819 0.726 7.592 9.301 7.602  6.603
AP 0.952 0.906 0.807 1.122 0.856 0.785
AU 0.488 0.398 1.832 2,531  2.107 1.981
BA 0.813 0.675 0.457 0.712  0.537  0.556
BU 0.597  0.935 12.660 12,920 13.300 10.670
CH 0.815 0.720  0.930 0.782 0.745 0.636
CN 1.516  1.702 1.676  3.102 5.874  2.040
CO 0.468 0.834 8.283 11.237 9.393  6.127
ED 0.653 0.430 2.166 2.384  2.164  2.276
EL 0.978 0.995 1465 1.899 1.148 1.431
FA 0.684 0.170 2.525  3.208  2.447  2.058
FC 0.544  0.653 0.710 0.528  0.501  0.387
FF 1.030 1.036 2.394 3.247 1.710  2.089
HO 0.865 0.575 2.801 3.635 2.893 2611
HR 0.863 0.754 7.853 11.530 10.290 6.115
NE 0.986  0.947 38.840 42320 37.660 31.540
NT 0.951  0.909 1.403 2.220 1.037  1.196
PL 0.852  0.411 5.492 5777 4.921  5.107
PV 0.829 0.692 9429 9456 4.213  6.038
RE 0.952  0.958 6.597 10.33  6.739  7.108
S2 2.366 2.366 73.890 77.210 70.900 71.400
SC 0.538 0.533 0.583 0.968  0.700  0.627
SE 0.697 0.697 21.290 27.770 22.010 21.720
SP 1.183 0.646 1.921 3.887 1.966 1.871
TV 1.468  1.747 2.087 4.569  7.267  2.671
Us 0.643 0.634 0.636  0.865 0.541 0.764
VL 0.973 097 1.030 1.513  0.977  1.518
WA 0.200 0.088 0.606 0.657 0.573  0.521
WI 0.176  0.067 0.540 0.623  0.487  0.444
Mean 0.858 0.799 7.534 8.839 7.640  6.859

StdDev 0.411  0.474 14.779 15.656 14.236 13.889

Table 5.5. Relative errors of regression methods, where 20% target noise is
added to real data sets. Best results are typed with bold font.
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Data Set RSBFP RSBF KNN RULE MARS DART

AB 148 211.5 8.9 3219 10270 477775
AP 1.1 2 0 90.8 159.2 62
AU 8.9 12.5 0.6 248.9 570.5 1890.1
BA 19 35.3 0 181.8 915.1 3171.1
BU 10.5 45.5 0 67.1 761.7 794.4
CH 4.1 6.3 0 52.7 575.3 286
CN 8 17.9 0.1 108.6 475.3 481
CO 15.9 34.1 0.5 148.2  1274.3 717.6
ED 278.2 691.1 13.5 862.8 10143.9 27266
EL 8.1 13.3 0.2 69.5 407.5 1017
FA 15.8 36.4 0 161.1 985 1773.9
FC 2.1 4.2 0 47.8 240.2 201.4
FF 1.1 1 0 34.1 99.5 45.9
HO 21.2 36.3 1 2649 1413.9  8119.7
HR 8.2 19 0 57.5 616.3 893.9
NE 130.5 189.9 7.4 3493 5709.9 87815
NT 0 0.2 0 30.6 69.3 18.9
PL 10 13.7 0.2 175.3 824.8  10024.4
PV 1 2.1 0 40.9 127.3 44
RE 52 104.3 3 196 2744.6  33044.6
S2 36.1 40.8 3.5 108.8 667.2 971.4
SC 3 8.1 0 45.3 260.8 84.4
SE 1.8 2.2 0 37 116.4 83.4
SP 28.5 57.1 1.4 365.1 22814 17346.4
TV 0 0.2 0 30.9 31.1 3.1
USs 136.4 245 7.4  2547.1 84352 168169
VL 74.6 136.8 4.4 513.6  3597.8 23405
WA 130.8 181.2 10.4 1288.6 3201.6 44525.6
WI 114.6 159.6 3.2 1085.5 26624 36524.1
Mean 43.776  79.57  2.265 536.98 2056.46 32639.8

Table 5.6. Training time durations of methods in milliseconds. Best results
are typed with bold font.
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Data Set RSBFP RSBF  KNN RULE MARS DART
AB 23.3 21.3 6547 14433 7.9 6.1
AP 1 1 3.4 141.7 0 0
AU 3 2.1 64.5 462.2 0 0
BA 2.1 2.2 54.6 2448 0 0
BU 0 11.6 32.1 0 0
CH 1 1 11.6 87.3 0 0
CN 1 0.3 8.4 98.4 0 0.1
CO 1.1 1 38.2 40.3 1 0
ED 9 8.1 2699.7 312.3 2.7 1.7
EL 1.6 1.6 21 117.5 0 0
FA 2 1.4 33.1 96.4 0 0
FC 1.1 1.2 7.9 48.8 0 0
FF 0.9 0.1 2 45.4 0 0
HO 3.2 3 107.8 410.5 0 0
HR 0.6 0.6 13.3 43 0 0
NE 14 12,6 3399.4 11327 4.7 1.75
NT 1 0 1.9 30.8 0 0
PL 16.7 9.5 571.9 2192.7 0.2 1.2
PV 0 0 2.2 37.1 0 0
RE 3 3.2 265.6 627.2 0 1
S2 4 4.2 407.8 223.6 0.4 0
SC 0 0.3 2 27.8 3.7 0
SE 0.1 0.1 4.2 49.1 0 0
SP 6.2 5.4 303.2 1090.9 0.1 0
TV 0 0 0 24 0 0
Us 8 7.3 1383.2  1877.3 7 2
VL 6 5.8 439 1118.2 0.3 0
WA 2.1 0.2 1794.6  6606.7 2.1 1.1
WI 0 0 1462.4  5267.5 2 1.1
Mean 3.862 3.224  677.983 1624.60 1.107 0.553
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Table 5.7. Querying time durations of methods in milliseconds. Best results
are typed with bold font.



Chapter 6

Conclusion and Future Work

In this thesis, we have presented two new regression methods called RSBFP
and RSBF. They are eager, parametric, linear and context-sensitive methods
based on feature projections. They achieve higher accuracy results and faster
execution times when compared to important eager and lazy methods of both
machine learning and statistics community. The common drawback of RSBFP
and RSBF is the lack of handling interactions among predictor features. RS-
BFP does not allow the regression lines of the induced model to include more
than one feature. Although this limitation is handled in RSBF, it does not use
all the possible combinations of the predictor features because of the infeasi-
bility of the approach. Therefore, we used a relevancy heuristics to determine

the best subset of the predictor features.

Besides these drawbacks, RSBFP and RSBF are powerful in the existence
of missing feature values, target noise and irrelevant features. These three
factors heavily exist in real life databases, and it is important for a learning
method to give promising results in the presence of those factors. The ro-
bustness to irrelevant features was our main motivation to induce RSBFP and
RSBF. RSBFP method orders the features in terms of their predictive power,
that is, in terms of their relevancy. On the other hand, RSBF produces a de-
cision list of multiple linear regression lines. The regression line on the top of
the list is claimed to include the most predictive, relevant predictor features.

Furthermore, our methods are context-sensitive since the predictive power of
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any categorical feature may vary among its values.

The computational complexity of a learning method is also important in
machine learning. The success of a learning method is not only measured by
its predictive power, but also by its training and querying time requirements.
RSBFP and RSBF are very fast both in training and querying phases. Al-
though kNN is the fastest regression method in training phase, it suffers in
querying phase and also gives higher prediction errors when compared to RS-
BFP and RSBF. On the other hand, DART is as successful as RSBFP and
RSBF in making correct predictions. But its training phase takes a lot of time.
In fact, it is the slowest method in training phase. RULE and MARS are
the weakest methods since they neither make promising predictions, nor have
small training or querying times. The proposed methods, RSBFP and RSBF,
can be regarded as the best regression methods since they both make better

predictions and execute faster than the other approaches.

The advantages and limitations of RSBFP and RSBF are described in detail
in previous chapters. Future work can be directed to overcome these limita-
tions, such as allowing regression lines include interaction terms, and to in-
corporate different properties to our methods, such as incorporating an expert
knowledge or using a different relevancy heuristic in the elimination process of

irrelevant features.

Machine learning methods were developed to extract knowledge without
an expert, since databases come from a large number of domains. However,
when we deal with data belonging to a single domain where a domain expert is
available, the expert knowledge can be incorporated to our methods to increase

the accuracy significantly.

As a final word, regression by selecting best feature(s) is a successful tech-
nique in regression. RSBFP and RSBF can compete with the famous and
successful methods of machine learning and statistics community. Some im-
portant properties of our methods, which are missing in many other methods,
such as robustness, domain independence and handling missing feature val-
ues naturally enable them to be invaluable tools for knowledge extraction and

prediction systems.
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