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ABSTRACTREGRESSION BY SELECTING BEST FEATURE(S)Tolga Ayd�nM.S. in Computer EngineeringSupervisor: Assoc. Prof. Halil Altay G�uvenirSeptember, 2000Two new machine learning methods, Regression by Selecting Best FeatureProjections (RSBFP) and Regression by Selecting Best Features (RSBF), arepresented for regression problems. These methods heavily make use of leastsquares regression to induce eager, parametric and context-sensitive models.Famous regression approaches of machine learning and statistics literaturesuch as DART, MARS, RULE and kNN can not construct models that areboth predictive and having reasonable training and/or querying time dura-tions. We developed RSBFP and RSBF to �ll the gap in the literature for aregression method having higher predictive accuracy and faster training andquerying time durations. RSBFP constructs a decision list consisting of simplelinear regression lines belonging to linear features and/or categorical featuresegments. RSBF is the extended version of RSBFP such that the decision listconsists of both simple, belonging to categorical feature segments, and/or mul-tiple, belonging to linear features, linear regression lines. A relevancy heuristichas been developed to determine the features involving in the multiple regres-sion lines. It is shown that the proposed methods are robust to irrelevantfeatures, missing feature values and target feature noise, which make themsuitable prediction tools for real-world databases. In terms of robustness, RS-BFP and RSBF give better results when compared to other famous regressionmethods.Keywords: Regression, function approximation, feature projections.iii



�OZETEN _IY_I �OZN_ITEL_IKLER_I SEC�ME _ILE REGRESYONTolga Ayd�nBilgisayar M�uhendisli�gi, Y�uksek LisansTez Y�oneticisi: Do�c. Dr. Halil Altay G�uvenirEyl�ul, 2000Regresyon problemleri i�cin, En _Iyi �Oznitelik _Izd�u�s�umlerini Se�cerek Regresyon(RSBFP) ve En _Iyi �Oznitelikleri Se�cerek Regresyon (RSBF) ad�nda iki yenimakine �o�grenmesi metodu sunulmu�stur. Bu metodlar minimum kareler re-gresyonunun a�g�rl�kl� kullan�m� ile �cal��skan, parametrik ve adaptif modellerolu�stururlar. Makine �o�grenmesi ve istatistik literat�ur�un�un DART, MARS,RULE ve kNN gibi �unl�u metodlar� hem tahmin g�uc�u y�uksek, hem de h�zl��o�grenme ve/veya sorgulama yapan modeller �uretememektedirler. RSBFP veRSBF, literat�urdeki bu bo�slu�gu doldurmak i�cin geli�stirilmi�stir. RSBFP, lineer�ozniteliklere ve/veya kategorik �oznitelik par�calar�na ait olan basit lineer re-gresyon do�grular�ndan bir karar listesi (model) olu�sturur. RSBF, RSBFP'ningeli�smi�s versiyonu olup, karar listesi hem lineer �ozniteliklere ait �coklu hem dekategorik �oznitelik par�calar�na ait basit lineer regresyon do�grular�ndan olu�sur.C�oklu regresyon do�grular�nda yer alan �oznitelikler geli�stirilen bir uygunluksezgisi ile bulunur. RSBFP ve RSBF'in, gereksiz �ozniteliklere, bilinmeyende�gerlere ve g�ur�ult�ul�u hedef �oznitelik de�gerlerine kar�s� dayan�kl� bir perfor-mansa sahip oldu�gu g�osterilmi�stir. B�oyle durumlarda di�ger metodlara nazarandaha iyi sonu�clar vermeleri, ger�cek veri k�umeleri i�cin uygun birer tahmin arac�olduklar�n� g�osterir.Anahtar S�ozc�ukler: Regresyon, fonksiyon yakla�st�r�m�, �oznitelik izd�u�s�um�u.iv
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Chapter 1IntroductionPrediction is the most common problem researched in machine learning anddata mining. Predicting values of categorical or nominal features is calledclassification, whereas predicting values of numeric or linear features is calledregression in the literature. In machine learning, much research has been per-formed on classi�cation. But recently, researchers began to deal with regressionsince many real-world problems can be modeled as regression problems. Dy-namic control problems can be considered as real-world problems. For instance,learning to catch a ball moving in a three-dimensional space, is a dynamiccontrol problem that is mainly researched by robotics community. Aha andSalzberg proposed several variants of k-nearest, an instance-based algorithm,algorithms to increase the ability of the robot in catching the ball moving inthree dimensions [2]. Furthermore, learning the city-cycle fuel consumptionof cars in miles per gallon is another interesting real-world problem that canbe modeled as a regression problem [20]. Fuel consumption is determined bymany factors including the horsepower, weight, acceleration and the number ofcylinders. A regression algorithm can be employed to model the relationshipbetween the fuel consumption and the factors mentioned above. Althoughregression term is mainly used, there are other names given to it, such asfunctional prediction, function approximation and continuous class learning.1



CHAPTER 1. INTRODUCTION 2Databases can store large amounts of data belonging to many di�erent do-mains. And since database management systems enable only deductive query-ing, di�erent experts are required for each di�erent domain to discover knowl-edge in databases. In some cases, a domain expert may not be available orthe knowledge of the experts may be implicit [1, 29]. Therefore, the use ofautomatic methods such as induction becomes helpful for knowledge discovery.Many induction techniques have been developed in machine learning todiscover knowledge from databases. The idea of using induction techniquesis widely accepted by Knowledge Discovery in Databases (KDD) discipline,which incorporates researchers from various areas. Knowledge engineers anddatabase experts cooperate to create a database management system that notonly enables deductive querying, but also provides an inductive component forautomatic knowledge discovery.The term \knowledge" means two types of information. One is the infor-mation used for prediction of a new case, given training cases; the other is theinformation used for extracting new rules about the domain by interpretingthe induced models. The induced models reviewed and developed in this the-sis can be employed in cases, when the underlying problem is formalized as aprediction of a linear target feature.1.1 Parametric versus Non-Parametric Learn-ingParametric learning methods try to �t the data to a global parametric func-tion. On the other hand, non-parametric learning methods make no assumptionabout the structure of the function. Parametric learning methods perform wellwhen the assumed structure of the function is close to the function that gener-ated the data. However, non-parametric learning methods can be preferred if�nding a general structure rich enough to model a large portion of all possiblefunctions is of concern, or no information about the structure of the functionis available.



CHAPTER 1. INTRODUCTION 3The classical linear regressionmodel is a well-known example of parametriclearning. This model consists of a dependent (target) feature y and independent(predictor) features (x's). The relationship between y and each x is assumedto be linear. That is, target feature's value changes at a constant rate as thevalue of any predictor feature changes.yi = �0 + �1xi1 + �2xi2 + � � � + �pxip + "i (1.1)The subscript i denotes the observations, the second subscript p denotes theindex of independent features. There are p+ 1 parameters, �j; j = 0; : : : ; p, tobe estimated. In the parametric model, the structure of the function is given,and the procedure estimates the values of the parameters, �j, according to a�tting criterion. This criterion is generally a minimization of an error functionfor all data points in a training set. Very often this is the least squarescriterion, which minimizes the sum of the squares of the prediction errors ofthe estimated linear function for all instances. The error term, "i , denotesthe error of estimation for each instance i, and it is assumed to be normallydistributed.1.2 Eager versus Lazy LearningLearning methods can also be grouped as eager versus lazy methods. Lazymethods do not construct models since the model is the training data itself.On the other hand, eager methods construct rigorous models. These two typeof methods can be compared in many aspects.The major task of both methods is prediction. Although they both performwell in this major task, only eager methods address the induction of conceptdescription that enables interpretation of the data. Eager methods inducemodels such as decision trees and decision rules that enable us to interpret theunderlying data. Furthermore, lazy methods store the whole data in memoryto process them in the prediction phase rather than the training phase. Thismay cause some storage problems when the size of the data is too big to �t into



CHAPTER 1. INTRODUCTION 4the memory. Eager methods are very fast in the prediction phase. On the otherhand lazy methods su�er at this point since all the computations are performedat this phase. Finally, although most eager methods are adaptive (context-sensitive), most of lazy methods do not hold this property. An adaptive methodcan determine the relevant or important regions of the instance space. Thatis, it does not simply label predictor features as relevant or irrelevant; instead,it determines the relevant regions of each predictor feature.Although eager methods are preferable in terms of less storage require-ments, fast prediction phase and interpretation of the underlying data, theyare outperformed by lazy methods in terms of some criteria. Lazy methods donot generalize the data by constructing global models. Therefore, their trainingphase is very simple and fast since it involves only storing the training data.In the prediction phase, they make predictions according to the local positionof the query instances. This brings out the fact that lazy methods can formcomplex decision boundaries around the query instance even in the existenceof little information.A powerful regression method is the one that has small training and pre-diction time requirements, while preserving a comparable predictive accuracy.In this thesis, we have developed two eager regression methods holding thesedesired properties. As being an eager method, the proposed methods are fastin the prediction phase. In the training phase, they are much more faster thanother popular eager approaches. This is achieved by the simplicity of our ap-proach in constructing the models. Our proposed methods are not only fastand predictive, but also interpretable. So they will especially be preferable inmodeling large databases.1.3 Regression by Selecting Best Feature(s)This thesis describes two new machine learning methods based on selecting bestfeature(s). They are Regression by Selecting Best Feature Projections (RSBFP)and Regression by Selecting Best Features (RSBF). Training in RSBFP aimsto �nd the predictive power of each predictor feature by constructing simple



CHAPTER 1. INTRODUCTION 5linear regression lines, one per each linear predictor feature and number of cat-egories per each categorical predictor feature. Although the predictive powerof a linear predictor feature is constant, it varies for each distinct value ofcategorical predictor features. At the end of the training part, these simplelinear regression lines are sorted according to their predictive power to inducethe �nal model. Training in RSBF consists of two phases: The �rst phase issimilar to the training part of RSBFP. We construct simple linear regressionlines, one per each linear predictor feature and number of categories per eachcategorical predictor feature. The second phase constructs multiple linear re-gression lines among linear predictor features, each time excluding the worstpredictor feature among the current set. Finally, these multiple linear regres-sion lines and categorical predictor features' simple linear regression lines aresorted according to their predictive power to induce the �nal model. Thesetwo phases are together called the training part of the RSBF method. In theprediction part of learning, the best (simple or multiple) linear regression linein the case of RSBF, and the best simple linear regression line in the case ofRSBFP are selected to make predictions for the query instances.Both RSBFP and RSBF are robust to irrelevant features. They select theregression line consisting of best feature(s) to predict the target feature value ofa query instance. They are also exible methods since the best feature(s) maydi�er for each query instance. They handle missing feature values naturally,without �lling them with estimated values. The experimental results show thatthey achieve the highest accuracy values when there are many missing values,irrelevant features and target noise.RSBFP and RSBF are eager regression methods since they construct aglobal model in the training phase. The form of the global model is para-metric, the model is actually a decision list consisting of parametric, explicitlylinear, regression lines. The high predictive power of the proposed methods isimportant since parametric, especially linear, models are not expected to �tinto the real-world databases. Important properties of RSBFP and RSBF, alsoa detailed comparison of them with other famous lazy and eager methods aredescribed in the following chapters.



CHAPTER 1. INTRODUCTION 61.4 Outline of the ThesisIn the next chapter, we make an overview of existing important regressionmethods in the literature. In Chapter 3 and Chapter 4, we describe RSBFPand RSBF, respectively. The detailed description of characteristic propertiesof our methods are given in these chapters. Empirical evaluations of RSBFPand RSBF are shown in Chapter 5, and we conclude the thesis with Chapter 6.



Chapter 2Overview of RegressionTechniquesIn this chapter, some regression techniques developed in machine learning andstatistics community are reviewed. In the �rst two sections, we review two lazyapproaches for regression: k nearest-neighbor regression, and locally weightedregression. In the subsequent sections, from Section 2.3 to Section 2.5, threeeager approaches for regression are reviewed. These are namely rule-basedregression, tree-based regression and multivariate adaptive regression splines.2.1 k Nearest Neighbor Regressionk Nearest neighbor regression is an instance-based learning (IBL) algorithm.IBL algorithms are well known due to their computationally simple training(learning) phases [3, 11]. In the k nearest neighbor regression, as in many otherIBL algorithms, training is performed by simply storing the instances in thememory.Each training instance is represented as a set of feature-value pairs. Pre-dictor feature values may be of categorical (nominal) or linear (ordered) type,whereas target feature values are of only linear type. In the training phase,each training instance is stored in memory. The querying phase of the k nearest7



CHAPTER 2. OVERVIEW OF REGRESSION TECHNIQUES 8neighbor regression tries to predict the target feature value of a query instanceas a function of most similar instances' target feature values. The k value isselected as the number of nearest (most similar) neighbors that will be takeninto account in the querying phase.Training:[1] 8xt 2 Training Set[2] Store xt in memoryQuerying:[1] 8xq 2 Query Set[2] 8xtfxt 6= xqg: Calculate Similarity(xq;xt)[3] Let Similars be set of k most similar instances to xq in Training Set[4] Let Sum = Pxt2Similars Similarity(xq;xt)[5] Then �yq = Pxt2Similars Similarity(xq ;xt)Sum ytFigure 2.1. The k Nearest Neighbor RegressionThere is a variety of k nearest neighbor regression approaches in the liter-ature. The algorithm, shown in Figure 2.1, is the simplest k nearest neighborregression approach. For a given query instance, k nearest (similar) traininginstances are determined by using the Similarity function. The similaritybetween the query instance xq and a training instance xt is determined as,Similarity(xq;xt) =vuut pXi=1 Sim(xqi; xti) (2.1)where Sim(xqi; xti) = ( xqi�xtirange (i))2 where i is the feature dimension.Finally, the weighted sum of the target values of the k nearest neighbors ofxq is used as the predicted target value, �yq, of the query instance xq.The k nearest neighbor algorithm assumes that all the predictor featuresare equally relevant. However, the prediction accuracy of the model can beimproved if the predictor features are assigned proper weights to denote theirrelevancy in the prediction process [39]. These weight values can be eitherobtained from database experts or automatically determined by some featureweight learning algorithms [10, 26]. In terms of interpretability, the k nearest



CHAPTER 2. OVERVIEW OF REGRESSION TECHNIQUES 9neighbor algorithm is very poor, since it is a lazy approach. It does not inducemodels that enable interpretation of the underlying data set [28]2.2 Locally Weighted RegressionLocally weighted regression is very similar to k nearest neighbor regression.It is also an instance based algorithm. In the training phase, it just storesthe training instances in the memory. The main work is done in the queryingphase, where it makes use of k nearest neighbors of the query point, andgives importance to the nearby instances proportional to their similarity tothe query instance. Although k nearest neighbor regression approach takes theweighted average of the target values of the nearby training instances, locallyweighted regression approach constructs a local linear or non-linear model byusing these nearest neighbors. As in k nearest neighbor regression approach,nearby instances have more weight on the construction of the local parametricmodel, whereas distant instances have less weight on the model constructionprocess. The local models are each speci�c to the query point. That is, adi�erent model is constructed for each di�erent query instance. A detailedinformation about the structure of the linear or non-linear models constructedfor query instances can be found in [6].2.2.1 Nonlinear Local ModelsA non-linear local model can be constructed by modifying the non-linear globalmodel. A general global model can be trained to minimize the following un-weighted training criterion: C =Xi L(f(xi;�); yi) (2.2)where the yi is the output value corresponding to the input vector xi, � isthe parameter vector for the nonlinear model �yi = f(xi; �), and L(�yi; yi) is ageneral loss function for predicting �yi when the training data is yi. Often the



CHAPTER 2. OVERVIEW OF REGRESSION TECHNIQUES 10least squares criterion is used for the loss function L(�yi; yi) = (�yi�yi)2, leadingto the training criterion: C =Xi (f(xi;�)� yi)2 (2.3)The parameters of a global model may not provide a good approximation ofthe true function. In this case, there are two approaches to solve the problem.First, we can use a larger, more complex global model and hope that it canapproximate the data su�ciently. The second approach, which is the mainconcern of this subsection, is to �t the model to local patches instead of thewhole region.The training data set can be tailored to the query point by emphasizingnearby points in the regression. This can be accomplished by weighting thetraining criterion: C(q) =Xi [L(f(xi;�); yi))K(d(xi;q))] (2.4)whereK is the weighting or kernel function and d(xi;q) is the distance betweenthe data point xi and the query q. Using this training criterion, f(x; �(q))becomes a local model, and can have a di�erent set of parameters �(q) for eachquery point q.2.2.2 Linear Local ModelsGiven that we are using local models, it seems advantageous to keep themsimple, and to keep the training criterion simple as well. This leads us toexplore local models that are linear in the unknown parameters, and to use theleast squares criterion:C(q) =Xi [(xi�)� yi)2K(d(xi;q))]: (2.5)There are many variations of distance (d) and weighting (K) functions for



CHAPTER 2. OVERVIEW OF REGRESSION TECHNIQUES 11local models [6]. These functions lead us to construct many types of linear andnon-linear locally weighted regression methods.2.3 Regression by Decision Rule InductionLearning decision rules in Disjunctive Normal Form (DNF) from a given train-ing set is also popular in machine learning. Weiss and Indurkhya developed arule-based classi�cation algorithm [40], called Swap1, and then adapted it forregression [41, 42].[1] Input: D, a set of training cases[2] Initialize R1 empty set, k  1, and C1 D[3] repeat[4] create a rule B with a randomly chosen feature as its left-hand side[5] while (B is not 100-percent predictive) do[6] make single best swap for any component of B, includingdeletion of the component, using cases in Ck[7] If no swap is found, add the single best component to B[8] endwhile[9] Pk  rule B that is now 100-percent predictive[10] Ek  cases in C that satisfy the single-best-rule Pk[11] Rk+1  Rk [ fPkg[12] Ck+1  Ck � fEkg[13] k k + 1[14] until (Ck is empty)[15] �nd rule r in Rk that can be deleted without a�ecting performanceon cases in training set D[16] while (r can be found)[17] Rk+1  Rk � frg[18] k k + 1[19] endwhile[20] output Rk and halt.Figure 2.2. Swap-1 AlgorithmLearning decision tree induction models is similar to learning decision ruleinduction models in the sense that they can be converted into DNF models.In decision tree induction models, there is exactly one path from the root to



CHAPTER 2. OVERVIEW OF REGRESSION TECHNIQUES 12a leaf that is satis�ed for a query instance. Therefore, if each of these pathsis regarded as a rule, the fact that these rules are mutually exclusive is easilyobserved. This leads to the restriction that decision tree induction models arenot compact. On the other hand, decision rule induction models, like Swap1,are compact since the rules are not mutually exclusive. This may cause a queryinstance to satisfy more than one rule. For example, Swap1 algorithm mayassign more than one class for a query instance. This problem can be resolvedby assigning ordering to the rules according to their extraction order. The �rstrule, according to this ordering, that satis�es the query instance determinesthe class of the query instance. The Swap-1 decision rule induction model [40]and a sample output are shown in Figure 2.2 and Figure 2.3, respectively.X > 0:2 And Y > 2:5  Class = 1Z > 4:5  Class = 1[True]  Class = 2Figure 2.3. A sample outputIn constructing a new rule, Swap-1 constantly searches all the conjunctivecomponents it has already formed, and tries all the swapping combinationsbetween the components already held in the rule and the components lyingoutside the rule. If some of the swapping combinations improve the rule, thenthe best swap, the swap leading to best predictive value of the rule, is selectedamong them. It may be the case that none of the swapping combinationsimproves the rule. In that case, the best component lying outside is insertedinto the rule. The best component is the one that increases the predictivevalue of the rule most. In the existence of more than one best componentsto be added, maximum instance coverage is used as the second criterion. Theswappings and additions end when the rule reaches 100% predictive value. Anyconjunctive component that is swapped out need not necessarily stay out, itcan swap in during the next swappings and additions provided that its additionincreases the predictive value of the rule.Table 2.1 shows a sample decision rule induction. After the rule reaches100% predictive value, the instances covered by that rule are removed from theinstance space. The remaining instances are now ready for the next decisionrule induction steps.



CHAPTER 2. OVERVIEW OF REGRESSION TECHNIQUES 13STEP PREDICTIVEVALUE (%) RULE1 31 p32 36 p63 48 p6 & p14 49 p4 & p15 69 p4 & p1 & p26 80 p4 & p1 & p2 & p57 100 p3 & p1 & p2 & p5Table 2.1. Example of swapping and adding components.Upon the construction of all rules, a pruning and an optimization procedurecan be employed [40]. Pruning aims to decrease the number of rules. If theremoval of any rule does not a�ect the predictive value on training set, thenthat rule need not be stored anymore.Many decision rule induction models, such as Swap-1, are intended to pre-dict categorical target features. By employing a preprocessing step, the lineartarget features can be transformed to categorical target features. This pre-processing step enables us to use decision rule induction models in regressionproblems.Figure 2.4 shows the P-class algorithm [42] that transforms the linear targetfeatures to categorical target features. The underlying idea of P-class algorithmis to make y values within one class most similar and y values across classesmost dissimilar. Assignment of y values is performed in such a way that thedistance between each yi and its class mean should be minimized.P-Class algorithm is in fact a variation of the famousKMEANS clusteringalgorithm [14, 24]. It is very simple when compared to the KMEANS, sinceit produces only one-dimensional clustering of training data. On the otherhand, KMEANS can produce multi-dimensional clustering of training data byswapping the instances between the clusters according to a clustering criterion.The drawback of both KMEANS and P-Class algorithms is their unability todetermine the number of clusters and classes, respectively.The use of P-Class algorithm in the preprocessing step lets us to use Swap-1



CHAPTER 2. OVERVIEW OF REGRESSION TECHNIQUES 14[1]Input: fyg a set of output values[2] Initialize n = number of cases, k = number of classes[3] repeat for each Classi[4] Classi = next n=k cases from list of sorted y values[5] end[6] repeat for each Classi (until no change for any class)[7] repeat for each case j in Classi[8] 1. Move Caseij to Classi�1 , compute Errnew[9] If Errnew > Errold return Caseij to Ci[10] 2. Move Caseij to Classi+1 , compute Errnew[11] If Errnew > Errold return Caseij to Ci[12] next Casej in Classi[13] Next Classi[14] repeat for each Classi (until no change for any class)[15] If Mean(Classi) = Mean(Classj) then[16] Combine Classi and Classj[17] end Figure 2.4. Constructing Pseudo-Classes (P-Class)in regression problems. An overview of the whole procedure for decision ruleinduction in regression problems is shown in Figure 2.5.There are di�erent approaches to predict the target feature of the queryinstance. Mean or median value of the class can be assigned for the predictionof the target feature of the query instance. However, some parametric (such aslinear least squares regression) or non-parametric (such as k nearest neighborregression) models can also be employed. Weiss obtained signi�cant improve-ments by employing nearest neighbor regression instead of simply using medianor mean of the class [42].2.4 Regression by Decision Tree InductionDecision tree induction models determine the nodes in the tree and the testsassociated with nonterminal nodes. They rely on recursive partitioning of



CHAPTER 2. OVERVIEW OF REGRESSION TECHNIQUES 15[1] Generate a set of Pseudo-classes using the P-Class algorithm.[2] Generate a covering rule-set for the transformed classi�cationproblem using a rule induction method such as Swap-1.[3] Initialize the current rule set to be the covering rule set and save it.[4] If the current rule set can be pruned, iteratively do the following:a) Prune the current rule set.b) Optimize the pruned rule set and save it.c) Make this pruned rule set the new current rule set.[5] Use test instances or cross-validation to pick the best of the rule sets.Figure 2.5. Overview of Method for Decision Rule Induction in RegressionProblemsthe data by picking the single best feature to separate the data and repeatthe process on the subdivisions of the data. The terminal nodes are assignedthe majority class of the training instances found in the terminal node forclassi�cation. In the case of regression, terminal nodes are generally assignedthe mean or median value of the training instances found in the terminal node.Decision tree induction models may also employ some pruning strategies toavoid over�tting and to obtain simpler decision trees.Decision tree induction models are well suited for high dimensional appli-cations, since they employ dynamic feature selection. They have the abilityto exploit low local dimensionality of functions. In local regions of the train-ing data set, a few predictor features may have the highest inuence on thepredicted target feature. The decision tree induction models enable us to han-dle such cases. Another advantage of these models is the fact that they allowinterpretation of the underlying training data set. In terms of accuracy ofthe predictions and time complexity, they are also comparable to many othermodels.On the other hand, these models have some drawbacks. For instance, thereis no continuity between the terminal nodes (regions). As a consequence of thissituation, they can not approximate even simple continuous functions such aslinear functions. By just analyzing the structure of the decision tree, it is notpossible to understand the structure of the function (e.g. linear or additive).



CHAPTER 2. OVERVIEW OF REGRESSION TECHNIQUES 16The following subsections describe three di�erent decision tree inductionmodels: CART, RETIS and M5. Although they all have the characteristicsmentioned above, they di�er in some of properties and measures such as themeasure used to select the single best feature and its partitioning value.2.4.1 CARTCART is the �rst decision tree induction model developed by the statisticalresearch community [9]. It is suitable for both classi�cation and regression.CART induces decision trees in the following manner. It begins with the wholetraining data set and stores them in the root of the tree. Then it searchesfor the best feature and feature value of any instance to split the root node.Splitting the root node yields two nodes, and the original training data is nowdivided among them. These nodes represent two disjoint regions in the trainingdata set, and one of these regions is selected for further splitting. Again thebest feature and feature value of any instance lying in the splitted region issearched for splitting process. At any step of the decision tree induction, one ofthe disjoint regions that has not yet been splitted is chosen for further splitting.The decision tree induction process ends when a prede�ned number of disjointregions is reached.The selection of the region to be splitted among non-splitted disjoint re-gions, the feature and the splitting feature value play a key role at each stepof the induction process. CART uses an error criterion to produce optimumdisjoint leaf nodes. The optimum value of this error criterion, Equation 2.8, isused at every step of the induction process to select the best disjoint region,feature and splitting feature value.At each leaf node, the variance of the output values of the training instanceslying in that node is used as the impurity measure.V ariance = 1n nXi=1(yi � �y)2 (2.6)where n is the number of instances in the disjoint region.



CHAPTER 2. OVERVIEW OF REGRESSION TECHNIQUES 17Splitting Error = 1n 8<: Xxi2Xleft(yi � �yleft)2 + Xxj2Xright(yj � �yright)29=; (2.7)Then at each leaf node, the splitting error is computed for each possiblefeature and splitting feature value pair. The disjoint region, the feature andthe splitting feature value that maximizes the C in Equation 2.8 are used forthe current splitting step of the decision tree induction process.C = V ariance� Splitting Error (2.8)An example regression tree and its construction process are shown in Fig-ure 2.6 and Figure 2.7, respectively.
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CHAPTER 2. OVERVIEW OF REGRESSION TECHNIQUES 18When the decision tree induction process is completed, each leaf (non-splitted) node determines a constant value to be used in predicting the targetfeature value of a query instance. In the case of classi�cation, each leaf nodeis assigned the majority class of the training instances found in that leaf node.In the case of regression, each leaf node is assigned the mean or median valueof the training instances found in that leaf node. Any query instance followsa unique path from the root node to the leaf node covering its location. Thevalue found in the covering leaf node is used as the predicted target featurevalue of that query instance.Decision tree induction models like CART may produce a tree consistingof many disjoint regions. If the regions are too small, then it is very probablethat the classi�cation or the regression tree will over�t the training data. Toovercome this problem, a pruning strategy can be employed.One strategy may be to remove some of the leaf nodes of the tree. Butat this time, when a query instance follows the path from the root node toone of these removed nodes, the tree will not determine a prediction value forthat query instance. This problem can be avoided by removing the sibling leafnodes together, and by merging them to a single disjoint region [9].2.4.2 RETISRETIS (Regression Tree Induction System) decision tree induction model isdi�erent from CART in that it uses a di�erent error criterion to maximizeand it is suitable only for regression problems. Therefore, RETIS [22, 23] isactually a regression tree induction model. In CART, the leaf (terminal) nodesuse �y of the instances lying in their disjoint region as a prediction value ofthe query instances. In the case of RETIS, a multiple linear regression line isconstructed at every leaf node. The use of linear regression at the leaf nodesof the regression tree is called local linear regression [22].Since RETIS employs local linear regression at the leaf nodes, this techniquealso a�ects the measure of the error criterion used in the model. In CART, theEquation 2.8 is used as the error criterion. The disjoint region, the feature and
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1Figure 2.8. An example region consisting of only one predictor , with largevariance, which is not suitable for splittingthe splitting feature value that maximizes the expected variance reduction areselected for further splitting. However, expected variance reduction may notbe suitable for RETIS. In a region, if the relationship between the predictorfeatures and the target feature is linear, it will not be suitable to further splitthat region even in the existence of high variance as shown in Figure 2.8. Insuch a case, the use of C in Equation 2.8 as an error criterion may cause thisregion to be selected for further splitting. Therefore, RETIS uses the errorcriterion C given in Equation 2.9.C = I(X)� Splitting Error (2.9)I (impurity measure) is de�ned as the following:I(X) = 1n nXi=1(yi � f(xi))2 (2.10)where n is the number of instances, f is the linear function that best �tsthe instances of the region. Furthermore, the splitting error is de�ned as inEquation 2.11. Splitting Error = 1n [nleftIleft + nrightIright] (2.11)The disjoint region, the feature and the splitting feature value whose splitgives the maximum C are selected for the current step of splitting process. Inthe querying phase of learning, the multiple linear regression line of the leaf



CHAPTER 2. OVERVIEW OF REGRESSION TECHNIQUES 20node is used to predict the target feature value of the query instance falling inthat leaf node.A pruning strategy may be employed after the construction of the regressiontree to overcome over�tting the training data. RETIS computes two errormeasures: static error and the backed-up error at each node. The static errorof a node is the error that will be faced if the node was converted to a leafnode. On the other hand, backed-up error of a node is the error that will befaced if the node's subtree was not pruned. The subtree is pruned at that nodeif the static error is less than or equal to the backed-up error.2.4.3 M5M5 decision tree induction model is actually a regression tree induction model,since it is suitable only for regression problems. It is similar to both CART andRETIS. The error criterion used in M5 [33] is the expected standard deviationreduction (Equation 2.12). The disjoint region, the feature and the splittingfeature value that maximize the expected standard deviation reduction arechosen for the current step of the splitting process. This error criterion issimilar to the one used in CART (the expected variance reduction).Expected StdDev Reduction = �(X)�Xi jXijjXj �(Xi): (2.12)where � is standard deviation and i is the number of subregions of a regionwhose instances are denoted by X.M5 is also similar to RETIS, in that it employs linear regression modelson the nodes [30]. Although RETIS employs linear regression models justafter each split process, M5 employs those models after the regression treewas constructed. Another important di�erence between M5 and RETIS isthe fact that any node of M5 restricts itself to the predictor features that arereferenced by tests or linear regression models somewhere in the subtree at thisnode. Therefore, it can not use all the predictor features in constructing itsown linear regression model.



CHAPTER 2. OVERVIEW OF REGRESSION TECHNIQUES 21The linear regression models may underestimate the error on query in-stances. This usually happens if the linear regression model involves manyparameters and was constructed from small number of cases. Therefore, theerror on any query instance is multiplied by (n + v)=(n � v), where n is thenumber of instances and v is the number of parameters in the linear regressionmodel.After constructing the regression tree and linear regression models, M5eliminates the parameters of its linear regression models to minimize the erroron query instances. Even though the elimination of parameters generally causesthe error on query instances to increase, it also reduces the multiplicative factor(n + v)=(n � v). Therefore, the multiplied error value decreases. M5 uses agreedy search to remove parameters that contribute little to the model; in somecases, M5 removes all of the parameters, leaving only a constant [22].Finally, a pruning strategy, which is the same as that of RETIS, can beemployed. A nonterminal node is pruned if its linear regression model givesless prediction error than its subtree. Pruning strategy is employed by startingnear the bottom.2.5 Multivariate Adaptive Regression SplinesThe CART decision tree induction model's major drawback is the lack of con-tinuity. Piecewise constant values are assigned to the subregions, and sharplydiscontinuous patterns are formed at subregion boundaries. The second draw-back of CART is its inability to produce good approximations to some func-tions, including very simple linear functions. MARS (Multivariate AdaptiveRegression Splines) was developed to overcome these drawbacks [15]. It givesbetter accuracy when compared to the CART decision tree induction model.MARS is a exible regression modeling of high dimensional data. It takesthe form of an expansion in product spline basis functions, where the num-ber of product spline basis functions as well as the parameters associated witheach one (product degree and knot locations) are automatically determined by



CHAPTER 2. OVERVIEW OF REGRESSION TECHNIQUES 22the data [15]. Actually, the procedure is implemented by constructing a setof globally de�ned product spline basis functions that span the space of qthorder spline approximations and by �tting the coe�cients of the expansion tothe data by ordinary least-squares. MARS is motivated by the recursive par-titioning approach used in regression tree induction models. However, MARSis di�erent from those models in that it produces continuous models in thesubregions. It has more power to model relationships that are nearly addi-tive or involve interactions in at most a few predictor features. In addition, itcan be represented in a form that separately identi�es additive and interactioncontributions.Each product spline basis function is a low order polynomial belonging toa di�erent subregion of the training data set. The actual function is approxi-mated as an expansion of these product spline basis functions. This is calledas piecewise parametric �tting of the data set.A product spline basis function is univariate, if it is in the following form:[�(x� t)]q+ (2.13)where t is the knot location, q is the order of the spline, and the subscriptindicates the positive part of the argument. That is, the subscript indicatesa value of zero for negative values of the argument. For q > 0, the splineapproximation is continuous.Although any q > 0 guarantees the spline approximation to be continuous,MARS selects the value of 1 for q for a simple implementation. The use ofsplines handles the lack of continuity problem. A general review of splines isgiven in [12].The use of splines causes subregions to involve functions having high orderinteractions among predictor features. At each split of a region, the paramet-ric function of that region is removed, and two new parametric functions areconstructed for two child regions. These new functions involve one more vari-able than the parent region's function. The interaction order among predictorfeatures increases by 1. As a consequence of having such complex parametric



CHAPTER 2. OVERVIEW OF REGRESSION TECHNIQUES 23functions, having high order interactions, it becomes di�cult to approximatesome functions, including very simple linear functions.MARS (shown in Figure 2.9) also handles this situation. It does not deletethe lower order parametric function of the parent region after splitting it.Therefore, many such splits can be performed on the same parent. By em-ploying this strategy, MARS does not increase the depth of the model andsimple functions such as linear ones are well approximated since permitting aparent region to be splitted more than once gives an additive property to themodel.A product spline basis function is multivariate, if it is in the following form:B(q)m (x) = KmYk=1[skm:(xv(k;m) � tkm)]q+ (2.14)where the quantity Km is the number of splits that gave rise to Bm, and Thequantity skm takes (+=�)1 values indicating the right/left portions, v(k;m)label the predictor features, and tkm represent values on the correspondingpredictor features. The discussion about the selection of q is given in [15].Multivariate spline basis functions may involve the same predictor featuremore than once. For q > 0, higher orders than q may be produced on suchpredictor features. MARS handles this problem by restricting the multivariatespline basis functions to involve distinct features as shown in line 4 of Figure 2.9.Finally, a pruning strategy can also be employed in MARS. The child re-gions need not be deleted in pairs as in CART. Because, the parent region isnot deleted in MARS, there will not be any holes left in the model.



CHAPTER 2. OVERVIEW OF REGRESSION TECHNIQUES 24[1] B1(x) 1; M = 2[2] Loop until M > Mmax : lof�  1[3] For m = 1 to M � 1 do :[4] For v =2 fv(k;m)j1 � k � Kmg[5] For t 2 fxvjjBm(xj) > 0g[6] g  PM�1i=1 aiBi(x) + aMBm(x)[+(xv � t)]++aM+1Bm(x)[�(xv � t)]+[7] lof  mina1:::aM�1LOF (g)[8] if lof < lof� , then lof�  lof ; m� m; v� v; t� t end if[9] end for[10] end for[11] end for[12] BM(x) Bm�(x)[+(xv� � t�)]+[13] BM+1(x) Bm�(x)[�(xv� � t�)]+[14] M  M + 2[15] end loop[16] end algorithm Figure 2.9. MARS Algorithm
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Chapter 3Regression by Selecting BestFeature ProjectionsIn this chapter we describe the new regression method called Regression bySelecting Best Feature Projections (RSBFP). RSBFP is an eager, parametricand adaptive method which makes use of feature projections and least squaresregression. All such properties of RSBFP will be described and discussed indetail in the chapter.3.1 The RSBFP AlgorithmRSBFP constructs simple linear regression lines for each feature by using theprojections of the training instances on each feature dimension separately. Inthe case of linear (ordered) valued features, exactly one simple linear regressionline is constructed. On the other hand, in the case of categorical (unordered)valued features, exactly one simple linear regression line per each distinct valueof a categorical feature is constructed. All of these simple linear regression linesare then sorted according to their predictive power, and the sorted list deter-mines the induced parametric model. A target noise elimination procedure isemployed to increase the predictive power of the model before construction ofthe regression lines. 25



CHAPTER 3. REGRESSION BY SELECTING BEST FEATURE PROJECTIONS 26All query instances use the same induced model, which makes RSBFPan eager method. That is, a di�erent model for each query instance is notconstructed as in lazy methods. Although there is exactly one induced model,the choice of the appropriate regression line in the model di�ers for each queryinstance, which gives RSBFP exibility in terms of selecting the appropriateregression line.3.1.1 TrainingTraining begins by storing the training instances as their projections on eachfeature dimension separately. A copy of target value is associated with eachfeature dimension. In the existence of missing feature values, the traininginstance is stored only on feature dimensions whose values are known. That is,the training instance is not simply ignored when it has some missing featurevalues. An example training set with four features and ten training instancesprojected to these features is shown in Figure 3.1.f1 : 9 8 7 10 6 7 4 5 8 4TARGET : 7 6:9 8 10 7:4 11 6:9 18 7:11 2f2 : 8 7 6 6 5 8 4 2 7 3TARGET : 7 6:9 8 10 7:4 11 6:9 18 7:11 2f3 : A B B B B B A B A BTARGET : 7 6:9 8 10 7:4 11 6:9 18 7:11 2f4 : X X Y Y Z Z Z Z Y YTARGET : 7 6:9 8 10 7:4 11 6:9 18 7:11 2Figure 3.1. An example training set projected to four features: f1, f2, f3 andf4. After storing the training instances as their projections on the feature di-mensions, simple linear regression lines are constructed at each feature dimen-sion and sorted according to their predictive power to induce a parametricmodel. The use of simple linear least squares regression and the construction



CHAPTER 3. REGRESSION BY SELECTING BEST FEATURE PROJECTIONS 27of the model will be described in the next two sections.3.1.1.1 Simple Linear Least Squares RegressionSimple linear least squares regression can be applied when the parametric formof the model is assumed to be linear, and consists of a single feature. The para-metric form is given in Equation 3.1, and the task is to approximate coe�cientsof this equation using the least squares error criterion in Equation 3.2.ŷqf = �0f + �1fxqf (3.1)here, xq is the query point, xqf is the f th feature value of the query, �0f and�1f are the two parameters of the linear function and ŷqf is the approximationfor query instance at feature f .Ef = nXi=1(yi � ŷif )2 (3.2)where n is the number of training instances, ŷif is the approximation for train-ing instance at feature f , and yi is the actual target value of the traininginstance.The parameters of (3.1), �0f and �1f for each feature f are computed asthe following:By taking the derivatives of (3.3) to minimize the error Ef , the parameters�0f and �1f are determined for linear least squares approximation.Ef = nXi=1(yi � �0f � �1fxif)2 (3.3)From @E@�0f = 0 n�0f + �1f nXi=1 xif = nXi=1 yi (3.4)



CHAPTER 3. REGRESSION BY SELECTING BEST FEATURE PROJECTIONS 28From @E@�1f = 0 �0f nXi=1 xif + �1f nXi=1 x2if = nXi=1 xifyi (3.5)By solving the above equations, �0f and �1f are found as follows.�0f = Pni=1 yi � �1fPni=1 xifn (3.6)�1f = SPfSSxf (3.7)where SPf = nXi=1 xifyi � (Pni=1 xif )(Pni=1 yi)n (3.8)and SSxf = nXi=1 x2if � (Pni=1 xif )2n (3.9)3.1.1.2 Model ConstructionSimple linear least squares regression is applied to obtain the simple linearregression lines. For each linear (ordered) valued feature, a unique regressionline is constructed. But if all the training instances have the same linear valuefor a particular feature dimension, the slope of the simple linear regression linewill be in�nity. This situation can be determined by looking at the value ofSSxf in Equation 3.9. If SSxf = 0, it will not be possible to apply the linearleast squares approximation.Although linear features sometimes encounter this problem, categorical fea-tures always encounter the same problem. The number of regression lines isequal to the number of distinct values for each categorical (unordered) valuedfeature. And SSxf = 0 for any C value of any categorical feature f , againleading to division by 0 situation. Those problematic situations can be han-dled by taking �1f parameter in Equation 3.7 as zero. It is also observed that�0f parameter always gives the mean target value of the training instances insuch problematic situations.Upon the construction of the simple linear regression lines, model construc-tion phase continues by sorting those lines according to their predictive power



CHAPTER 3. REGRESSION BY SELECTING BEST FEATURE PROJECTIONS 29to induce the model. The relative error measure, RE, in Equation 3.10 is em-ployed to determine the predictive power of any regression line. The smaller therelative error, the stronger the predictive power of the corresponding regressionline. RE = Pni=1 jt(qi)� t̂(qi)jPni=1 jt(qi)� �tj (3.10)where n is the number of training instances used to construct the simple linearregression line, �t is the median of the target values of n training instances,t(qi) is the actual target value of ith training instance and t̂(qi) is the predictedtarget value of the ith training instance.To illustrate the model construction phase, the training set given in Fig-ure 3.1 is used. The training set consists of four features, and the set willconstruct a total of seven simple linear regression lines. The decision list ofthese lines according to their associated relative errors is shown in Figure 3.2.The induced model shows that the predictive power of any categorical featuremay vary among its values. In the given example, f4 is very powerful for Xvalue, although it is very poor on the remaining values, Y and Z.[1] Y = 6:950 if f4 = X; RE = 1:000[2] Y = 7:003 if f3 = A; RE = 1:016[3] Y = 6:249f1 + 0:243 if 4 � f1 � 10; RE = 1:043[4] Y = 5:882f2 + 0:338 if 2 � f2 � 8; RE = 1:081[5] Y = 8:660 if f3 = B; RE = 1:098[6] Y = 8:370 if f4 = Y; RE = 1:128[7] Y = 8:433 if f4 = Z; RE = 1:252Figure 3.2. The decision list of simple linear regression lines (the modellearned).The model construction process in RSBFP is summarized in Figure 3.3.3.1.2 QueryingIn the querying phase of the RSBFP, for a query instance the most predictivesimple linear regression line is tried �rst. However, it is sometimes not possible



CHAPTER 3. REGRESSION BY SELECTING BEST FEATURE PROJECTIONS 30[1] For f = 1 to p[2] if f is a linear feature[3] Construct a simple linear regression line of the form ŷf = �0f + �1f :xf[4] end if[5] else (f is a categorical feature)[6] For each distinct value c of f[7] Construct a simple linear regression line of the form ŷfc = �0fc[8] end for[9] end else[10] end for[11] Sort the simple linear regression lines according to their relative errors[12] Store the ordered list of ŷf 'sFigure 3.3. Model Construction in RSBFPto use the most predictive line due to di�erent feature value, missing featurevalue and out of range problems. Therefore, the search for the next bestregression line continues until a suitable one is found. The querying phase canbe explained through an example. We will again refer to the training set givenin Figure 3.1.Step Regression Line Tested Result Reason[1] Y = 6:950 if f4 = X not suitable f4(= Y ) 6= X[2] Y = 7:003 if f3 = A not suitable f3(=?) 6= A[3] Y = 6:249f1 + 0:243 if 4 � f1 � 10 not suitable f1(= 12) is notin the range[4; 10][4] Y = 5:882f2 + 0:338 if 2 � f2 � 8 suitable f2(= 5) isin the range[2; 8]Prediction : Y = (5:582 � 5) + 0:338Figure 3.4. An example for querying phaseFigure 3.4 shows an example for querying phase. The query instance usedin the example is Q :< 12; 5; ?; Y >. Q uses the 4th best regression line of themodel to approximate its target feature value (Y).The querying phase in RSBFP is summarized in Figure 3.5.



CHAPTER 3. REGRESSION BY SELECTING BEST FEATURE PROJECTIONS 31[1] Prediction 0; v 1; Suitable-Regression-Line-Found = FALSE[2] u Number of simple linear regression lines[3] Simple linear regression lines are in sorted order[4] While Suitable-Regression-Line-Found = FALSE and v < u+ 1[5] f  Predictor feature of vth simple linear regression line[6] if xqf is known then[7] if f is a linear feature then[8] if xqf is in the range of xf values of the training data then[9] Prediction Prediction+ ŷf (xqf)[10] Suitable-Regression-Line-Found = TRUE[11] end if[12] end if[13] else (f is a categorical feature)[14] if xqf = v0s categorical value for f[15] Prediction Prediction+ ŷf (xqf)[16] Suitable-Regression-Line-Found = TRUE[17] end if[18] end else[19] end if[20] else[21] v v + 1[22] end else[23] end while Figure 3.5. Querying Phase in RSBFP3.1.3 Target Noise EliminationThe distribution of the target values of the instances determines the success ofthe model induced by RSBFP. The induced model will be more predictive if thetarget values do not deviate so much from their mean value. However, in reallife databases, it is generally not possible to �nd such a smooth distributionof the target values. Therefore, a target noise elimination procedure can beemployed as a preprocessing step of the model induction process.In this preprocessing step, training instances whose target values are within



CHAPTER 3. REGRESSION BY SELECTING BEST FEATURE PROJECTIONS 32k standard deviations of the mean target value are selected as non-noisy train-ing instances to be used in the training phase of RSBFP method. The re-maining instances whose target values are outside the k standard deviations ofthe mean target value are regarded as noisy training instances. The k valuemaximizing the predictive accuracy of the RSBFP method on the data sets,which were used in our emperiments, was empirically determined to be p2, asshown in Figure 3.6. For this k value, the mean relative error of the RSBFPmethod on our data sets is minimized, and therefore the predictive accuracy ismaximized.The target noise elimination procedure causes RSBFP to use less numberof training instances to induce its parametric model. The selection of p2guarantees that at least 50% of the training instances will be used in thetraining phase according to Chebyshev's Result.There is a remarkable result discovered by the Russian mathematicianChebyshev that uses the standard deviation to determine the proportion ofvalues in a population that is within a speci�ed distance from the mean. Cheby-shev's Result [18] is as the following:1. At least 75% of the values in any population of numbers arewithin 2 standard deviations of the mean (that is, at least 75% ofthe population values have Z-scores between -2 and 2 inclusive).2. At least 88% of the values in any population of numbers arewithin 3 standard deviations of the mean (that is, at least 88% ofthe population values have Z-scores between -3 and 3 inclusive).3. For any positive number k, at least (1 - 1/k2) * 100% of the valuesare within k standard deviations of the mean (that is, at least (1- 1/k2) * 100% of the population values have Z-scores between -kand k inclusive).
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k = 1.414  achieves the minimum mean relative errorFigure 3.6. Determination of the optimal value of k for the RSBFP method.3.2 Properties of RSBFPIn this section, we describe properties and problems encountered in regressionalgorithms and evaluate RSBFP in terms of these topics.3.2.1 Eager LearningEager learning methods complete most of the processing in the training phaseby inducing a model. This global model is used to �t all the training instances.It has both advantages and disadvantages over lazy learning methods. Eagerlearning methods enable interpretation of the underlying data by human be-ings. They generally give more accurate approximations, since they generalize



CHAPTER 3. REGRESSION BY SELECTING BEST FEATURE PROJECTIONS 34the whole data set. They are also very fast in the prediction phase. Queryinstances just use the induced model, rather than inducing models in the pre-diction phase. However, eager methods are not suitable for cases where thetraining data changes dynamically. RSBFP, being an eager approach, has theproperties of eager methods explained above.3.2.2 Context-sensitive (Adaptive) LearningA regression method has a context-sensitive nature, if the contribution of thefeatures varies in di�erent locations of the instance space. This property isachieved in the categorical features in RSBFP. The contribution of a categoricalfeature may di�er among its values. Although the feature's predictive power islarge in some values, the same feature may be the worst feature among othervalues in terms of its predictive power.3.2.3 Di�erent Feature TypesRegression methods accept two type of features, categorical or linear. Cat-egorical features take unordered values, whereas linear features take ordered(linear) values. Regression methods di�er at handling these two type of fea-tures. Any one or both of these two types should be handled. If the regressionmethod handles only linear features, then the categorical ones can be replacedwith a unique linear one. If the method handles only categorical features, thena clustering procedure is employed to transform linear features to categoricalones. In most of the cases, each cluster is given a unique categorical value,and the linear feature values are replaced with their corresponding cluster'scategorical value.These transformation procedures are not only time consuming but also opento erroneous situations. RSBFP does not employ any transformation strategy.It is designed to handle both type of features.



CHAPTER 3. REGRESSION BY SELECTING BEST FEATURE PROJECTIONS 353.2.4 Curse of DimensionalityMany regression methods mentioned in Chapter 2 su�er from sparsity for verylarge feature dimensions and with moderate number of training instances. Inother words, much more training instances are required to make better approx-imations, as the feature dimension increases. This problem can be explainedthrough an example. Consider an input space consisting of exactly one feature.Also let the training instances be uniformly distributed among this feature,having values ranging from 1 to 2. In this scenario, a random choice of half ofthe feature dimension will contain half of the training instances. If we add onemore feature having the same properties to the previous one, using randomchoices of halves of each feature dimension will contain 1=4th of the traininginstances. A further addition of a new feature will cause this ratio to decreaseto 1=8. That is, increasing the feature dimension will lead much sparse instancespaces.In machine learning community, this problem is called as curse of dimen-sionality. In RSBFP, linear regression lines are constructed on each featuredimension separately. As the number of feature dimensions increases, the den-sity of training instances at any feature projection does not change. This showsthat RSBFP is suitable for data sets with large number of features.3.2.5 Normalization of FeaturesNormalization procedure is important for regression methods that make useof Euclidean distance measure. For instance, kNN regression method heavilyuses Euclidean distance measure to determine the k nearest neighbors. Thevalues of all the predictor features need normalization to ensure that all featurescontribute equally in the computation of distance. The lack of normalizationprocedure may lead to erroneous situations. For example, a linear predic-tor feature whose unit is miles may lead to di�erent nearest neighbors thanthe same linear predictor feature whose unit is kilometers. Therefore, nor-malization causes regression methods to operate independent of the domainknowledge.



CHAPTER 3. REGRESSION BY SELECTING BEST FEATURE PROJECTIONS 36Although RSBFP does not employ any normalization procedure, it can alsooperate independent of the domain knowledge. Because, it makes use of featureprojections that naturally handle the normalization problem.3.2.6 Irrelevant FeaturesEliminating irrelevant features is also an important concept in machine learn-ing. Lazy methods generaly su�er from irrelevant features. For instance, inkNN regression method, nearest k neighbours are determined according to theEuclidean distance measure. While computing Euclidean distances of train-ing instances to the query instance, all features are given equal weight. Theexistence of irrelevant features may cause bene�cial training instances to bethrown away.On the other hand, eager regression methods are successful in eliminationof the irrelevant features. For instance, in regression tree induction methods,the partitioning begins from the most signi�cant feature and continues withless relevant features in the subsequent partitionings.The interpretation of the model induced by RSBFP shows that it is some-what similar to the regression tree induction methods. Because, it places themost relevant feature and its simple linear regression line on top of the model.The other features, along with their equations, come next in the model hierar-chy.3.2.7 Redundant FeaturesThere are two types of redundant features. The �rst one is due to the existenceof same feature more than once in the database. The second one is due to theexistence of functional dependencies between features. That is, a feature mayactually be a combination of some of the other predictor features.RSBFP is suitable for both type of redundant features. If a feature isrepeated more than once in the database, then the simple linear regression



CHAPTER 3. REGRESSION BY SELECTING BEST FEATURE PROJECTIONS 37line of that feature will be duplicated in the model. This will not a�ect thequerying phase of the method, the model will just have a massy appearance.Furthermore, if a feature is a combination of the other ones, then this situationwill not e�ect the querying phase, either.The redundant feature situation is a problem in the regression methodsespecially making use of feature projections. Because the contribution of thefeatures in the querying phase may be doubled, tripled etc.3.2.8 Missing Feature ValuesIn real-life databases, some feature values may be unknown for some instancesor tuples. And it will not be suitable to completely discard an instance havingmissing feature values in regression methods. There are di�erent approachesto handle missing feature value problem. The most common approach is to�ll those places with some constant values. These constant values may bethe mean of the known values or the mostly encountered value of the corre-sponding feature. However, this may cause distortion of the data set. Manylearning methods can not prevent this distortion caused by �lling missing fea-ture values [31, 32, 34]. If missing feature values are very frequently seen onsome instances or features, removing these instances or features can also beemployed.RSBFP leaves those places empty to provide a natural solution. By thisway, the contents of the original data set is not distorted. RSBFP uses theknown values of each feature projection to construct the simple linear regressionlines.3.2.9 NoiseIn data sets, two types of noise can occur, predictor feature noise and targetfeature noise. Although most of the regression methods are robust to predictorfeature noise, they are not so robust in the case of target feature noise.



CHAPTER 3. REGRESSION BY SELECTING BEST FEATURE PROJECTIONS 38For target feature noise problem, in RSBFP, the training instances whosetarget values are not in some prede�ned range are avoided in the model con-struction phase. But at least 50% of the training instances are employed in thetraining phase. The empirical results show that robustness to target featurenoise in RSBFP is better than some other well known regression methods.3.2.10 Bias-variance Trade-o�There are two error types, bias and variance, that a�ect the success of theregression algorithms. Bias is a consequence of under�tting the training data,whereas variance is a consequence of over�tting the training data. It is gen-erally not possible to decrease both of these errors simultaneously. Because, adecrease in bias leads to an increase in variance. As an example, kNN regres-sion method causes a large bias error if a large k is chosen. On the other hand,kNN will lead to a large variance error if a small k is chosen.In regression algorithms, this trade-o� always exists. RSBFP chooses tominimize the variance error. It makes strong assumptions about the trainingdata. A detailed information about this trade-o� concept is presented in [17].3.2.11 Model Complexity and Occam's RazorWilliam of Occam's Razor principle states that \Entities should not be mul-tiplied beyond necessity" [13]. This principle has been approved by machinelearning community as in many other communities. Given two learning al-gorithms with the same accuracy, the simpler one must be selected. This isespecially the case if our concern is interpretation of the induced model.The model constructed by RSBFP is a simple decision list. Therefore,RSBFP follows the Occam's Razor principle.



CHAPTER 3. REGRESSION BY SELECTING BEST FEATURE PROJECTIONS 393.2.12 InterpretationThe interpretation of the induced model by human beings is an important traitof a machine learning algorithm. Eager regression methods' induced modelsare usually easy to interpret, whereas lazy methods' ones are hard to interpret.RSBFP, as a parametric eager approach, constructs global models. By ana-lyzing the model, the importance of the predictor features and the importantsegments of the categorical predictor features can be determined.3.2.13 Interactions and Lack of Many Additive TermsRSBFP has two main limitations. Firstly, it is not suitable for domains havinginteractions among its features. Furthermore, the linear regression lines of themodel are simple rather than multiple. That is, the linear regression linesconsist of at most one additive term. This generally causes large bias errorin the induced model. Nevertheless, the empirical evaluations indicate thatRSBFP achieves comparable accuracy values in spite of these limitations.If the e�ect of any predictor feature on the target feature is dependenton some of the other predictor features, then this indicates the existence ofinteractions in the data set. For example, we can not determine the increasein the area of a rectangle when the width of the rectangle is increased. Theincrease amount depends on the particular value of the height of the rectangle.The area calculation formula involves, actually consists of just, one interactionterm which is width * height.On the other hand, we can determine the increase in the perimeter of arectangle when the width of the rectangle is increased. The increase amountdoes not depend on the particular value of the height of the rectangle. Theperimeter calculation formula involves, actually consists of, exactly two addi-tive terms which are width and height.The induced model of RSBFP does not have any interaction terms, andinvolves at most one additive term. The second drawback is handled in RSBF



CHAPTER 3. REGRESSION BY SELECTING BEST FEATURE PROJECTIONS 40(Regression by Selecting Best Features) method that will be explained through-out the Chapter 4. But the interaction problem still remains in the inducedmodel of RSBF.3.3 Complexity AnalysisRSBFP is an eager method, and stores the simple linear regression lines inthe memory. Given a data set with n instances and m features, where ml ofthe features are linear and (m � ml) are categorical, we let c to denote themaximum number of values of a categorical feature. Then, in the worst case,the number of simple regression lines will be ml + (m�ml):c. Therefore, thespace complexity of RSBF method will be O(ml + (m�ml):c).The computational complexity of the method di�ers for the training andthe querying phase. In the training phase, determination of the training in-stances that are free of target noise requires an O(n) time complexity. Storingand sorting the non-noisy training instances at each feature separately requiresO(m:n) and O(m:n: log n), respectively. Construction of the simple linear re-gression lines at each feature takes a total of O(ml + (m �ml):c) time. Thetraining phase ends by sorting the simple linear regression lines, which bringsa cost of O((ml+(m�ml):c): log (ml + (m�ml):c)). The computation of themean and the standard deviation of the target values is also computed in thetraining phase, which causes an extra O(n) time complexity.In the training phase, the computational complexity is the sum of the com-ponents described above; O(n) +O(m:n) + O(m:n: log n) +O(ml+(m�ml):c)+ O((ml + (m�ml):c): log (ml + (m�ml):c)) + O(n). So the complexity ofthe training phase is O((ml+ (m�ml):c): log (ml + (m�ml):c) +m:n: log n).In the querying phase, a query instance will have to search all the linearregression lines of the model to �nd a suitable regression line, in the worst case.Since ml + (m�ml):c is the upper bound for the number of regression lines,the computational complexity of the querying phase for a single query instanceis O(ml + (m�ml):c).



CHAPTER 3. REGRESSION BY SELECTING BEST FEATURE PROJECTIONS 41The empirical results show that RSBFP is fast both in training and queryingphase, while preserving a comparable predictive accuracy.



Chapter 4Regression by Selecting BestFeaturesIn this chapter we describe another regression method called Regression bySelecting Best Features (RSBF). RSBFP, described in the previous chapter,method was incapable of inducing models involving additive terms. RSBFwas developed to override this limitation. It is also an eager, parametric andadaptive method which makes use of feature projections and least squaresregression. All such properties of RSBF will be described and discussed indetail in the chapter.4.1 The RSBF AlgorithmRSBF's induced model is similar to that of RSBFP. The categorical featuresare handled in the same way. Exactly one simple linear regression line per eachdistinct value of a categorical feature is constructed. However, linear featuresare handled in a di�erent way. Multiple linear regression lines are constructedamong linear features. The number of multiple regression lines is equal to thenumber of linear features. The linear features to be involved in each multipleregression line are determined by using a relevancy heuristics. The inducedmodel consists of an ordered list of multiple and simple linear regression lines42



CHAPTER 4. REGRESSION BY SELECTING BEST FEATURES 43according to their predictive power. A target noise elimination procedure isalso employed to increase the predictive power of the model before constructionof the regression lines.RSBF is an eager method, since all query instances use the same inducedmodel. A di�erent model per query instance is not constructed, as in lazyregression methods. RSBF is also a exible method since the choice of theappropriate regression line di�ers for each query instance.4.1.1 TrainingTraining phase again begins by storing the training instances as their pro-jections on each feature dimension separately. A copy of the target value isassociated with each feature dimension. The existence of missing feature valuesis handled in a natural way. RSBF stores an instance only on feature dimen-sions whose values are known. An example training set with �ve features andten training instances projected to these features is shown in Figure 4.1.f1 : 3 5 4 7 10 �11 6 0 �12 20TARGET : 15 14:5 13:6 15:2 17:3 15 13:4 13:9 18:7 15f2 : 4 �10 5 �4 �3 �5 9 12 �4 �12TARGET : 15 14:5 13:6 15:2 17:3 15 13:4 13:9 18:7 15f3 : 1 7 �5 12 2 10 15 �3 6 9TARGET : 15 14:5 13:6 15:2 17:3 15 13:4 13:9 18:7 15f4 : A B B B B A B B B ATARGET : 15 14:5 13:6 15:2 17:3 15 13:4 13:9 18:7 15f5 : Z Y Y Z Y Y X X Z ZTARGET : 15 14:5 13:6 15:2 17:3 15 13:4 13:9 18:7 15Figure 4.1. An example training set projected to �ve features: f1, f2, f3, f4and f5.



CHAPTER 4. REGRESSION BY SELECTING BEST FEATURES 44After storing the training instances as their projections on the feature di-mensions, the linear regression lines are constructed. Multiple linear regressionlines belonging to the linear features and simple linear regression lines belong-ing to categorical features are used to induce the model. The use of simple leastsquares regression was explained in Chapter 3. The next two sections describethe multiple linear least squares regression and the construction of the model.4.1.1.1 Multiple Linear Least Squares RegressionMultiple linear least squares regression can be applied when the parametricform of the model is assumed to be linear, and consists of multiple features.The parametric form is given in Equation 4.1, and the task is to approximatethe coe�cients of this equation by using the least squares error criterion inEquation 3.2. Simple linear least squares regression is the primitive form ofthe multiple version since it employs exactly one feature.ŷq = pXj=1�j:xqj + �0 (4.1)here, p is the number of features, xq is the query point, xqj is the jth fea-ture value of the query, �j is the jth parameter of the function and ŷq is theapproximated value of the function for the query point xq.For a training data set consisting of n instances and ml linear features,matrix Anx(ml+1) is used to store the feature values of the instances. Each aijentry of A denotes the jth feature value of the ith instance. Furthermore, thetarget feature values of the instances are stored in ynx1 vector. Multiple linearleast squares regression �nds a least squares solution to A� = y by employingthe method of Normal Equations given in Figure 4.2. The least squares solutionvector, �, includes the parameters of (4.1).Normal Equations method makes use of Cholesky Factorization that is ex-plained in Figure 4.3. Cholesky Factorization overwrites the lower triangularportion of C matrix, and the overwritten lower triangular portion is assignedto the G matrix.



CHAPTER 4. REGRESSION BY SELECTING BEST FEATURES 45[1] Multiply both sides of A� = y by AT[2] ! ATA� = ATy[3] C = ATA and d = ATy[4] Compute the Cholesky Factorization of C[5] ! C = GGT where G is a lower triangular matrix[6] z = GT�[7] Solve Gz = d and GT� = zFigure 4.2. Normal Equations Method[1] For k = 1 to m do[2] if C(k; k) = 0 then[3] goto [1][4] end if[5] C(k; k) = qC(k; k)[6] For j = (k + 1) to m do[7] C(j; k) = C(j; k)=C(k; k)[8] end for[9] For j = (k + 1) to m do[10] For i = j to m do[11] C(i; j) = C(i; j)� C(i; k)C(j; k)[12] end for[13] end for[14] end for Figure 4.3. Cholesky Factorization4.1.1.2 Model ConstructionFor each distinct value, C, of categorical feature f , the simple linear regressionline will consist of one parameter, which is the mean target value of the traininginstances having the categorical value of C for f . In the case of linear features,exactly one simple linear regression line is constructed. Equation 3.10 is usedto �nd the relative error, and therefore the predictive power, of the lines. Then,the regression lines belonging to linear features are sorted according to theirpredictive power. This sorting procedure is used as our relevancy heuristics inconstructing multiple linear regression lines among linear features. The �rst



CHAPTER 4. REGRESSION BY SELECTING BEST FEATURES 46multiple linear regression line will consist of all the linear features. The secondone will exclude the worst linear feature and use the remaining linear features.From this point, each incoming multiple linear regression line will excludethe next worst linear feature along with the previously discarded features.Therefore, the number of multiple linear regression lines will exactly be equalto the number of linear features.Upon the completion of multiple regression line construction phase, thecategorical features' simple and linear features' multiple linear regression lineswill be sorted by using again the Equation 3.10. This last procedure will resultin the induced model of the RSBF method, which is a decision list.To illustrate the model construction phase, we will use the training setgiven in Figure 4.1. The training set consists of �ve features and the set willconstruct a total of �ve simple (two for f4, three for f5) and three multiple linearregression lines that will construct the model. To determine which of the linearfeatures will participate in which of the multiple linear regression lines, weconstruct simple linear regression lines by using the linear features and measurehow each one is successful by using only that feature for prediction purposes.The sorted order of these regression lines according to their associated relativeerrors are shown in Figure 4.4.[1] Y = �0:068f2 + 14:736 RE = 0:869[2] Y = 0:003f3 + 14:753 RE = 1:027[3] Y = 0:031f1 + 14:613 RE = 1:060Figure 4.4. The ordered list of simple linear regression lines of linear features.Figure 4.4 shows that f2 is the most relevant (predictive) linear feature,whereas f1 is the least one. In constructing the �rst multiple linear regressionline, none of the linear features are discarded. The second multiple regressionline will discard the least relevant linear feature f1, and the third one willdiscard the next least relevant linear feature f3 along with the previously dis-carded linear feature f1. This shows that the third multiple linear regressionline is actually a simple linear regression line consisting of only the most rel-evant linear feature f2. Therefore, the parametric form of the third multiplelinear regression line is the same as that of f2's simple linear regression line.



CHAPTER 4. REGRESSION BY SELECTING BEST FEATURES 47Model construction is completed by sorting these multiple linear regressionlines along with the simple linear regression lines belonging to the categoricalfeatures. Figure 4.5 shows the induced model by using our example data set.The smaller the relative error, the larger the predictive power of the regressionline in the model.The model construction in RSBF is summarized in Figure 4.6.[1] Y = 15 if f4 = A; RE = 0:000[2] Y = �0:08f2 � 0:036f3 + 14:92 RE = 0:863[3] Y = �0:068f2 + 14:736 RE = 0:869[4] Y = 0:008f1 � 0:077f2 � 0:035f3 + 14:884 RE = 0:890[5] Y = 13:650 if f5 = X; RE = 1:000[6] Y = 15:010 if f5 = Y; RE = 1:048[7] Y = 14:650 if f4 = B; RE = 1:049[8] Y = 15:067 if f5 = Z; RE = 1:333Figure 4.5. The induced model4.1.2 QueryingIn the querying phase of the RSBF, for a query instance the most predictivelinear regression line is tried �rst. However, it is sometimes not possible to usethe most predictive line due to di�erent feature value and missing feature valueproblems. Therefore, the search for the next best regression line continues untila suitable one is found.The querying phase can be better explained through an example. We willagain refer to the training set given in Figure 4.1. If we let our query instancebe Q :< 2; 10; ?; B; Z >, the best regression line of the model will not besuitable for this query instance since f4 = B rather than A in Q. The secondbest regression line, which is a multiple regression line in this case, will alsobe unsuitable since the value of f3 is missing. Finally, the third regression lineis suitable for Q, and this regression line of the model will be used to predictthe target value of Q. The search will stop here and the remaining regressionlines of the model need not be dealed anymore. That is, Q uses the 3th bestregression line of the model, and the value of Y for the query instance Q is



CHAPTER 4. REGRESSION BY SELECTING BEST FEATURES 48[1] For f = 1 to p[2] if f is a linear feature[3] Construct a simple linear regression line of the form ŷf = �0f + �1f :xf[4] end if[5] else (f is a categorical feature)[6] For each distinct value c of f[7] Construct a simple linear regression line of the form ŷfc = �0fc[8] end for[9] end else[10] end for[11] Let pl be the number of linear features[12] Sort the simple linear regression lines belonging to linear featuresaccording to their relative errors[13] s pl[14] While s > 0[15] Construct a multiple linear regression line by using s linearfeatures of the form ŷ = (Psi=1 �ixi) + �0[16] Exclude the current worst linear feature[17] s s� 1[18] end while[19] Sort pl multiple linear regression lines belonging to linearfeatures and simple linear regression lines belonging to categoricalfeatures altogether[20] Store the ordered list of (multiple and simple) linear regression linesFigure 4.6. Model Construction in RSBFpredicted as (�0:068 � 10) + 14:736.The querying phase in RSBF is summarized in Figure 4.7.4.1.3 Target Noise EliminationTarget noise elimination procedure employed as a preprocessing step of themodel induction process in RSBFP is also used in the case of RSBF. The kvalue maximizing the predictive accuracy of RSBF method on all the datasets was empirically determined to be p2, as shown in Figure 4.8. It can beobserved that both RSBF and RSBFP has the same optimal value of k, which



CHAPTER 4. REGRESSION BY SELECTING BEST FEATURES 49[1] Prediction 0; v 1; Suitable-Regression-Line-Found = FALSE[2] u Number of (multiple and simple) linear regression lines[3] Linear regression lines are in sorted order[4] While Suitable-Regression-Line-Found = FALSE and v < u+ 1[5] if v is a simple linear regression line[6] f  Feature of vth simple linear regression line[7] if xqf is known then[8] if xqf = v0s categorical value for f[9] Prediction Prediction+ ŷf (xqf)[10] Suitable-Regression-Line-Found = TRUE[11] end if[12] end if[13] end if[14] else (v is a multiple linear regression line)[15] Let v consist of j linear features[16] if xq has known values for all of these j linear features[17] Prediction Prediction+ ŷ(xq)[18] Suitable-Regression-Line-Found = TRUE[18] end if[19] end else[20] v v + 1[21] end while Figure 4.7. Querying Phase in RSBFis p2.4.2 Properties of RSBFIn this section, we describe properties of and limitations encountered in RSBFregression method.
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k = 1.414 achieves the minimum mean relative error Figure 4.8. Determination of the optimal value of k for RSBF method4.2.1 Eager LearningRSBF is an example of eager learning methods. It induces a model in thetraining phase, and query instances use this model in the querying phase ratherthan constructing their own model around their query location. Being an eagermethod, it enables the interpretation of the training instances. In terms oftime complexity, it is very fast in the querying phase while preserving a slowerexecution time in the training phase (Section 4.4).



CHAPTER 4. REGRESSION BY SELECTING BEST FEATURES 514.2.2 Context-sensitive (Adaptive) LearningContext-sensitive property of RSBF is satis�ed by categorical features, as inRSBFP. The contribution of a categorical feature may di�er among its values.It may be more predictive in some values, although it would be poor in theremaining values. The predictive segments of the categorical features are placedat top levels of the model, whereas the other segments stay at bottom levels.4.2.3 Di�erent Feature TypesRSBF method accepts both categorical and linear features. It combines thesetwo type of features to induce its model. There is no need to transform anylinear feature to a categorical one, or vice versa. No need for transformationensures that erroneous situations will not be encountered.4.2.4 Curse of DimensionalityRSBF does not follow a partitioning strategy as in regression tree inductionmethods, which will cause the number of instances to decrease in proportionalto the increase in the feature dimension. It always uses the whole training dataset to construct simple and multiple linear regression lines. Therefore, RSBFis suitable for data sets with large number of features. There is not a curse ofdimensionality problem in our method.4.2.5 Normalization of FeaturesRSBF does not employ any normalization procedure. Although it does notcause any problems in the case of simple linear regression lines, the multiplelinear regression lines may su�er if the range of the values greatly di�ers amonglinear features.



CHAPTER 4. REGRESSION BY SELECTING BEST FEATURES 524.2.6 Irrelevant FeaturesThe main motivation behind RSBF was to select the best subset of featuresand construct a linear regression line by using those features. However, RSBFdoes not limit itself to exactly one linear regression line. It constructs manylinear regression lines to induce its model. The linear regression line consistingof the most predictive, relevant features is placed at the top of the model. Theother lines come next in the model hierarchy. A linear feature may exist inmore than one linear regression line, indicating that the linear regression linesare not isolated from each other.4.2.7 Missing Feature ValuesMissing (absent) feature value problem is commonly encountered in real-lifedatabases. RSBF leaves these places empty, rather than assigning an arbitraryvalue to them. This guarantees that the original data set will not be distorted.The RSBF method uses the known values while projecting the training in-stances on each feature dimension. Also the regression functions involving afeature for which the corresponding value is missing in a query instance arenot used.4.2.8 NoiseThe RSBF is robust to especially target feature noise. Training phase beginsby avoiding instances whose target values are not in some prede�ned range. Inspite of this elimination procedure, at least 50% of the training instances areemployed in the training phase. The empirical results show that RSBF is veryrobust to target feature noise when compared to the other regression methods.(See Section 3.1.3 for details of the elimination of noisy instances)



CHAPTER 4. REGRESSION BY SELECTING BEST FEATURES 534.2.9 Bias-variance Trade-o�There is always a trade-o� between bias and variance. RSBF behaves similarlyto RSBFP in that respect, and chooses to minimize the variance error. Itmakes strong assumptions about the underlying data set and tries to �t thedata set into an ordered list of linear (multiple or simple) regression lines. Asa consequence, RSBF generally under�ts, and avoids over�tting the trainingdata set.4.2.10 Model Complexity and Occam's RazorRSBF is not a complex regression method when compared to other eager andlazy methods in the literature. However, it achieves better accuracy values inaddition to its simplicity and interpretability. The performance results of RSBFon real data sets con�rm its compliance with the Occam's Razor principle,which states that given the two learning algorithms having the same accuracy,the simpler one should be selected. The decision list model constructed byRSBF is very simple compared to other regression techniques.4.2.11 InterpretationInterpretation of an induced model by human experts is important in machinelearning. RSBF induces a global model that is easy to understand and inter-pret. By analyzing the linear regression lines of the model, one can determinethe best subset of features and the predictive segments of the categorical pre-dictor features.4.2.12 Interactions and Lack of CombinationsRSBF has two main limitations. Firstly, it is not suitable for domains havinginteractions among its features. Furthermore, although the linear regressionlines of the model are multiple, they do not try all the combinations of the



CHAPTER 4. REGRESSION BY SELECTING BEST FEATURES 54linear predictor features. This causes the induced model to include a biaserror.The induced model of RSBF does not include any interaction terms thatwere mentioned in Chapter 3. However, it is empirically shown that usually thereal-world data sets do not contain interacting features [21, 19]. Besides this,while constructing the multiple linear regression lines, RSBF uses a relevancyheuristics. That is, once a linear feature is selected to be the next worstlinear feature among the current set, it can not be reused in the constructionof the further multiple linear regression lines. There is a need for having agreedy relevancy heuristics, because it is computationally infeasible to try eachpossible combination of the linear features to determine the best subset offeatures in terms of predictive accuracy.4.3 Complexity AnalysisRSBF is an eager method, and stores the simple and multiple linear regressionlines in the memory. Given a data set with n instances and m features, whereml of the features are linear and (m �ml) are categorical, we let c to denotethe maximum number of values of a categorical feature. Then, in the worstcase, the number of simple and multiple regression lines will be (m � ml):cand ml, respectively. Therefore, the space complexity of RSBF method will beO(ml + (m�ml):c).The computational complexity of the method di�ers for the training andthe querying phase. In the training phase, determination of the training in-stances that are free of target noise requires an O(n) time complexity. Storingand sorting the non-noisy training instances at each feature separately requiresO(m:n) and O(m:n: log n), respectively. Construction of the simple linear re-gression lines at each feature takes a total of O(ml + (m �ml):c) time. Thesimple linear regression lines belonging to the linear features need sorting tobe used in the construction of the multiple linear regression lines. This causesa O(ml: logml) time complexity. Construction of the ml multiple linear regres-sion lines, by making use of Normal Equations method, takes O(n:m3l +m4l ) [5].



CHAPTER 4. REGRESSION BY SELECTING BEST FEATURES 55The training phase ends by sorting the simple linear regression lines of categor-ical features and multiple linear regression lines of linear features altogether,which brings a cost of O((ml + (m�ml):c): log (ml + (m�ml):c)). The com-putation of the mean and the standard deviation of the target values is alsocomputed in the training phase, which causes an extra O(n) time complexity.In the training phase, the computational complexity is the sum of the com-ponents described above; O(n) +O(m:n) + O(m:n: log n) +O(ml+(m�ml):c)+ O(ml: logml) + O(n:m3l +m4l ) + O((ml+(m�ml):c): log (ml + (m�ml):c))+ O(n). Therefore, the overall computational complexity of the training phaseis O((ml + (m�ml):c): log (ml + (m�ml):c) + n:m3l +m4l +m:n: log n).In the querying phase, a query instance will have to search all the linearregression lines of the model to �nd a suitable regression line, in the worst case.Since ml + (m�ml):c is the upper bound for the number of regression lines,the computational complexity of the querying phase for a single query instanceis O(ml + (m�ml):c).The empirical results show that RSBF is fast both in training and queryingphases, while preserving a comparable predictive accuracy. Although queryingtime complexity of RSBF is exactly the same as that of RSBFP, training timecomplexity of RSBF is bigger than RSBFP. These results are also empiricallyveri�ed on real-world data sets. The empirical evaluation of RSBFP and RSBFis given in the next chapter.



Chapter 5Empirical EvaluationsThis chapter is devoted to the empirical evaluations of RSBFP, RSBF and otherregression methods mentioned in Chapter 2. A large number of real data sets,available in the Bilkent University Function Approximation Repository [20],are used to compare the predictive power and computational complexity ofthose methods.The regression methods selected to compare with RSBFP and RSBF aresuccessful representatives of rule-based learning, regression tree induction, spline-based regression and instance-based learning. RULE, KNN, DART and MARSare used as representatives of rule-based learning, instance-based learning, re-gression tree induction and spline-based regression, respectively. All of thesemethods are the most recent versions of their categories and outperform thepreviously implemented versions. The source code of these methods are ob-tained from publicly available resources.The organization of the chapter is as follows: We �rst de�ne the perfor-mance measure that will be used to compare the methods in terms of predictiveaccuracy. Then, a brief explanation of the particular implementation of thepreviously developed methods is given. The properties of the real data setsused in the experiments are also mentioned in this chapter. Finally, the em-pirical results including the predictive power of the methods, robustness to56



CHAPTER 5. EMPIRICAL EVALUATIONS 57the irrelevant features, missing feature values and target feature noise are dis-cussed. The chapter concludes by computational complexity comparison of themethods in terms of training time and querying time requirements.5.1 Performance MeasureThe performance measure is used to determine the predictive power of themethods. The predictive power of a method is large if the actual target valuesof the query instances are close to the target values predicted by the proposedmethod. There are two commonly used performance measures: mean absolutedistance and relative error. The second performance measure is exactly thesame as the one used for calculating the predictive power of simple and multiplelinear regression lines.Mean absolute distance (MAD) [42, 43] is computed as the following:MAD = PQi=1 jyi � ŷijQ (5.1)where Q is the number of query instances.However, MAD is not an appropriate performance measure. It depends onthe range of the target values of the query instances. MAD will be large fordomains having large target values, and small for domains having small targetvalues [39]. Therefore, relative error (RE) [42, 43] is employed as the modi�edversion of MAD. RE is an appropriate performance measure since it normalizesthe MAD by the mean absolute distance from the median target value. RE iscomputed as the following:RE = MAD1QPQi=1 jyi �median(y)j (5.2)10-fold cross validation technique [19] is employed on the experiments.Therefore, the prediction error of a method on any data set is computed asthe average of 10 runs in each of which a disjoint set of 1=10 of the data set is



CHAPTER 5. EMPIRICAL EVALUATIONS 58used in the querying and the remaining 9=10 in the training phase.5.2 Other Regression Methods Used in Com-parisonsIn this chapter, we will briey explain the properties of the implementationsof the other regression algorithms used in experiments.5.2.1 RULEThe most recent rule-based regression implementation, written by Weiss andIndurkhya [42, 43] is used in the experiments. The source code of the programis available in the data mining software kit (DMSK), attached to [43].5.2.2 KNNThe version of KNN implemented by Bilkent University Machine LearningGroup is used in our experiments. It makes use of Euclidean distance to deter-mine the similarities of the training instances to the query point. A normal-ization procedure is also employed in order to obtain values ranging between 0and 1.Missing feature values are handled di�erently for categorical and linearfeatures. If the feature is of linear type, mean values of the feature is usedto �ll the empty places. In the case of categorical features, the most frequentcategorical value is selected to �ll the empty places. K parameter is set to 10in all the experiments.



CHAPTER 5. EMPIRICAL EVALUATIONS 595.2.3 DARTThe most recent regression-tree induction implementation, written by Fried-man [16] is used in the experiments. The regression-tree induction methodsgenerally su�er from disjoint partitioning of the regions. However, DARTavoids this problem by permitting to construct overlapping regions.5.2.4 MARSThe most recent version of MARS, mars3.6, written by Friedman [15] is usedin the experiments. Linear spline approximation produces better results thancubic spline approximations. So, linear spline approximation choice is set inour experiments. Also, the highest possible interaction level is set to �gure outthe interactions in our real data sets.5.3 Real Data SetsTwenty nine data sets, collected mainly from three sources [27, 8, 35], wereused in the experiments. It was not easy to collect much more data sets, sincemost of the data sets are produced to be used in classi�cation tasks. Table 5.1shows the properties of these data sets. Further and detailed information aboutthose data sets can be found in Bilkent University Function ApproximationRepository [20].5.4 AccuracyTable 5.2 shows the relative errors (RE) of the regression methods on 29 realdata sets. For each data set, the smallest relative error indicating the bestresult is typed in boldface. RSBFP and RSBF achieve the best results in 6and 8 of these data sets, respectively. The other methods, DART, MARS,KNN and RULE, achieve the best results in 5, 5, 4, and 2 of these data sets,
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Original Name Abbrev. Instances Features Missing Target(L+C) Values FeatureAbalone AB 4177 8 (7+1) None RingsAirport AP 135 4 (4+0) None Tons of mailAuto AU 398 7 (6+1) 6 Gas consumptionBaseball BA 337 16 (16+0) None SalaryBuying BU 100 39 (39+0) 27 Husbands buy videoComp.Hard. CH 209 7 (6+1) None CPU performanceCountry CN 122 20 (20+0) 34 PopulationCollege CO 236 25 (25+0) 381 CompetitivenessEducation ED 1500 43 (43+0) 2918 Income in 1991Electric EL 240 12 (10+2) 58 Serum 58Fat FA 252 17 (17+0) None Body heightFishcatch FC 158 7 (6+1) 87 Fish weightFruity FF 125 4 (3+1) None Sleep timeHousing HO 506 13 (12+1) None House pricesHomerunrace HR 163 19 (19+0) None Run race scoreNorthridge NE 2929 10 (10+0) None Earthquake magnit.Normtemp NT 130 2 (2+0) None Heart ratePlastic PL 1650 2 (2+0) None PressurePoverty PV 97 6 (5+1) 6 Death rateRead RE 681 25 (24+1) 1097 Reader satisfactionSolarFlare S2 1066 10 (0+10) None Flare productionSchools SC 62 19 (19+0) 1 Reading scoreServo SE 167 4 (0+4) None Rise time of a servoStock SP 950 9 (9+0) None Stock priceTelevision TV 40 4 (4+0) None People per TVUsnews US 1269 31 (31+0) 7624 Rate of Ph.D.'sVillage VL 766 32 (29+3) 3986 Number of sheepWeatherAnkara WA 1609 9 (9+0) None Mean temperatureWeatherIzmir WI 1461 9 (9+0) None Mean temperatureTable 5.1. Properties of the data sets used in the experiments. L: Linear, C:Categorical.



CHAPTER 5. EMPIRICAL EVALUATIONS 61respectively. Although these results indicate the high predictive power of thenewly developed regression methods, RSBFP and RSBF, mean value of relativeerrors on 29 data sets can also be used as an indicator of predictive power fora regression method. RSBFP, having a mean relative error of 0.740, becomesthe most predictive regression method. On the other hand, RSBF becomesthe third most predictive regression method by having a mean relative error of0.805 which is very close to the DART's mean relative error, 0.789.For any regression method, the distribution of the relative errors for di�er-ent data sets is also important [39]. In Table 5.2, the standard deviation ofthese relative errors for each di�erent regression method were computed. RS-BFP and RSBF achieved the lowest standard deviation values, 0.316 and 0.389.This shows the domain independent characteristics of our methods. They canbe applied on many real life databases regardless of any prior knowledge aboutthose domains.The last column of Table 5.2 shows the standard deviation of the relativeerrors achieved by the regression methods for each data set. These standarddeviation values are used to determine a small portion of data sets to be used forfurther comparison of regression methods in terms of robustness to irrelevantfeatures, missing feature values and target noise. We have chosen six datasets (AB, AU, HO, SC, WA and WI) having the minimum standard deviationvalues, since it would be suitable to compare the regression methods, in termsof irrelevant features, missing feature values and target noise, for data setshaving initially similar relative error values. These standard deviation valuesare also typed in boldface in Table 5.2.5.5 Robustness to Irrelevant FeaturesThe predictive performance of regression methods on selected data sets (AB,AU, HO, SC, WA and WI) by adding new irrelevant features are shown inFigure 5.1. The performance of RSBFP is not e�ected from new irrelevantfeatures in all data sets. On the other hand, RSBF's performance degradesonly on SC data set. Besides RSBFP and RSBF, the regression methods
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Data Set RSBFP RSBF KNN RULE MARS DART StdDevAB 0.729 0.678 0.661 0.899 0.683 0.678 0.082AP 0.550 0.532 0.612 0.744 0.720 0.546 0.085AU 0.489 0.413 0.321 0.451 0.333 0.346 0.063BA 0.768 0.570 0.443 0.666 0.493 0.508 0.111BU 0.678 0.732 0.961 0.946 0.947 0.896 0.113CH 0.781 0.606 0.944 0.678 0.735 0.510 0.618CN 1.429 1.469 1.642 6.307 5.110 1.695 1.989CO 0.514 1.554 0.764 0.290 1.854 0.252 0.137ED 0.668 0.461 0.654 0.218 0.359 0.410 0.159EL 1.003 1.020 1.194 1.528 1.066 1.118 0.179FA 0.725 0.177 0.785 0.820 0.305 0.638 0.246FC 0.578 0.638 0.697 0.355 0.214 0.415 0.169FF 1.016 1.013 1.201 1.558 1.012 1.077 0.196HO 0.698 0.589 0.600 0.641 0.526 0.522 0.062HR 0.890 0.707 0.907 0.890 0.769 0.986 0.093NE 0.969 0.938 1.034 1.217 0.928 0.873 0.114NT 0.976 0.977 1.232 1.250 1.012 1.112 0.111PL 0.887 0.444 0.475 0.477 0.404 0.432 0.166PV 0.921 0.715 0.796 0.916 1.251 0.691 0.187RE 0.997 1.001 1.062 1.352 1.045 1.189 0.126S2 1.434 1.434 2.307 1.792 1.556 1.695 0.300SC 0.376 0.175 0.388 0.341 0.223 0.352 0.081SE 0.868 0.868 0.619 0.229 0.432 0.337 0.248SP 1.416 1.101 0.599 0.906 0.781 0.754 0.267TV 1.176 1.175 1.895 4.195 7.203 2.690 2.123US 0.402 0.385 0.480 0.550 0.412 0.623 0.087VL 0.940 0.930 1.017 1.267 1.138 1.355 0.161WA 0.255 0.096 0.113 0.116 0.073 0.095 0.060WI 0.209 0.071 0.098 0.100 0.064 0.082 0.049Mean 0.805 0.740 0.845 1.093 1.091 0.789StdDev 0.316 0.389 0.483 1.246 1.467 0.548Table 5.2. Relative errors of regression methods. Best results are typed withbold font.



CHAPTER 5. EMPIRICAL EVALUATIONS 63RULE and MARS are also noted to be robust to irrelevant features.Table 5.3 shows the comparison of regression methods on all data sets where30 irrelevant features are added to each of them. RSBFP and RSBF achievethe two lowest mean relative error values. RSBFP is the best in 8 data sets,whereas RSBF is the best in 7 data sets. MARS regression method, havingthe lowest relative error values in 10 data sets, is also noted to be a successfulmethod.5.6 Robustness to Missing Feature ValuesThe predictive performance of regression methods on selected data sets (AB,AU, HO, SC, WA and WI) by increasing missing feature values are shown inFigure 5.2. The performance of RSBFP and RSBF is slightly a�ected fromincreasing missing values in all data sets, except WI (RSBFP), AU (RSBF)and HO (RSBF). However, RSBFP and RSBF's response to increasing missingvalues is not worse than the other methods in WI, AU, and HO. They arecomparable to other regression methods. Therefore, our proposed methodscan be regarded as robust to missing feature values. From Figure 5.2, it isnoted that DART is also a robust method to missing feature values.Table 5.4 shows the comparison of regression methods on all data sets where20% of the values of real data sets are removed. RSBF and RSBFP achievethe two lowest mean relative error values. RSBFP is the best in 2 data sets,whereas RSBF is the best in 12 data sets. DART regression method, havingthe lowest relative error values in 8 data sets, is also noted to be a successfulmethod.5.7 Robustness to Target NoiseThe predictive performance of regression methods on selected data sets (AB,AU, HO, SC, WA and WI) by increasing target noise are shown in Figure 5.3.The performance of RSBFP and RSBF is not a�ected from increasing noise in
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Figure 5.1. Relative errors of methods with increasing irrelevant features



CHAPTER 5. EMPIRICAL EVALUATIONS 65Data Set RSBFP RSBF KNN RULE MARS DARTAB 0.728 0.677 0.873 0.934 0.682 *AP 0.555 0.794 1.514 0.723 0.682 0.657AU 0.488 0.429 0.538 0.491 0.368 0.511BA 0.768 0.603 0.568 0.574 0.536 0.628BU 0.678 1.325 0.968 1.073 0.877 0.969CH 0.781 0.676 1.107 0.753 0.613 0.668CN 1.425 2.119 2.854 1.794 4.126 1.662CO 0.514 1.111 1.162 0.284 2.195 0.306ED 0.668 0.461 0.802 0.268 0.404 0.573EL 1.006 1.010 1.037 1.367 1.134 1.236FA 0.725 0.204 1.026 1.039 0.249 0.877FC 0.578 0.694 0.917 0.456 0.247 0.420FF 1.030 1.096 1.063 1.513 1.777 1.430HO 0.698 0.601 0.920 0.701 0.521 0.653HR 0.890 0.800 0.932 1.049 0.847 1.165NE 0.969 0.938 1.076 1.284 0.916 *NT 1.000 1.070 1.079 1.484 1.370 1.156PL 0.887 0.450 0.961 0.575 0.407 0.734PV 0.966 0.838 0.855 0.934 1.005 1.013RE 0.998 1.014 1.045 1.380 1.042 1.311S2 1.433 1.429 1.454 1.765 1.629 1.490SC 0.376 0.672 0.582 0.386 0.305 0.391SE 0.926 1.036 0.835 0.471 0.798 0.641SP 1.416 1.104 1.188 0.914 0.817 0.756TV 1.220 2.222 3.241 5.572 5.614 2.709US 0.402 0.385 0.757 0.557 0.394 0.906VL 0.939 0.930 1.050 1.454 1.257 1.307WA 0.255 0.097 0.552 0.127 0.073 0.129WI 0.209 0.072 0.550 0.112 0.064 0.114Mean 0.811 0.857 1.086 1.036 1.067 0.909StdDev 0.319 0.489 0.586 0.979 1.164 0.536Table 5.3. Relative errors of regression methods, where 30 irrelevant featuresare added to real data sets. If the result is not available due to singular vari-ance/covariance matrix, it is shown with (*). Best results are typed with boldfont.
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Figure 5.2. Relative errors of methods with increasing missing feature values



CHAPTER 5. EMPIRICAL EVALUATIONS 67Data Set RSBFP RSBF KNN RULE MARS DARTAB 0.729 0.720 0.750 0.961 0.748 0.688AP 0.562 0.496 0.726 0.676 0.798 0.546AU 0.500 0.499 0.414 0.526 0.414 0.363BA 0.785 0.714 0.553 0.833 0.637 0.576BU 0.785 0.682 0.951 0.878 0.862 1.026CH 0.746 0.719 0.922 0.832 0.747 0.608CN 1.480 1.399 1.856 3.698 3.733 2.377CO 0.583 0.622 0.942 0.399 0.801 0.435ED 0.685 0.572 0.743 0.497 0.595 0.536EL 1.005 1.019 1.097 1.537 1.073 1.191FA 0.749 0.739 0.849 0.948 0.731 0.735FC 0.570 0.631 0.675 0.543 0.537 0.401FF 1.019 1.034 1.711 1.557 1.012 1.347HO 0.718 0.729 0.761 0.748 0.649 0.590HR 0.899 0.725 0.910 1.040 0.836 0.974NE 0.974 0.951 1.072 1.272 0.972 *NT 1.020 1.006 1.229 1.363 0.989 1.222PL 0.903 0.515 0.733 0.686 0.679 0.420PV 0.920 0.767 0.976 1.189 1.026 0.792RE 0.996 0.995 1.059 1.364 1.048 1.229S2 1.429 1.429 1.851 1.751 1.557 1.421SC 0.409 0.281 0.449 0.500 0.303 0.370SE 0.879 0.879 0.921 0.849 0.746 0.495SP 1.430 1.228 0.744 0.904 0.930 0.707TV 1.272 1.408 4.398 3.645 16.502 2.512US 0.460 0.388 0.558 0.620 0.497 0.844VL 0.949 0.947 1.056 1.410 1.090 *WA 0.265 0.119 0.190 0.203 0.183 0.133WI 0.221 0.089 0.181 0.167 0.173 0.115Mean 0.826 0.769 1.010 1.090 1.409 0.843StdDev 0.316 0.340 0.754 0.807 2.917 0.570Table 5.4. Relative errors of regression methods, where 20% of values of realdata sets are removed. If the result is not available due to singular vari-ance/covariance matrix, it is shown with (*). Best results are typed withbold font.



CHAPTER 5. EMPIRICAL EVALUATIONS 68AB, AU, HO and WA until a 30% noise level is reached. Their performanceis not a�ected also in WI until a 20% noise level is reached. In cases wherethe performance of RSBFP and RSBF is a�ected from increasing noise level,that performance are comparable to other methods. Therefore, our proposedmethods can be regarded as robust to target noise.Table 5.5 shows the comparison of regression methods on all data sets where20% target noise is added to the data sets. RSBF and RSBFP achieve the twolowest mean relative error values. RSBFP is the best in 10 data sets, whereasRSBF is the best in 16 data sets. The other methods perform far below RSBFPand RSBF in the existence of 20% target noise.5.8 Computation TimesThe computation times of the regression methods are measured in terms oftraining and querying times. Table 5.6 shows that RSBF and RSBFP are veryfast with respect to other eager methods, in the training phase. Since kNNis a lazy regression method, it does not do much work in the training phase.Hence, RSBFP and RSBF are not faster than kNN in the training phase. Inthe querying phase, RSBFP and RSBF are very fast with respect to kNN andRULE, whereas they have very close querying times when compared to MARSand DART. Table 5.7 shows the querying times of the regression methods.When comparing a lazy regression method to an eager one in terms ofcomputational complexity, it will be more fair to compare one's training timeto the other's querying time. In this aspect, the querying times of kNN arenoted to be much more longer than the training times of RSBFP and RSBF.So it can be easily stated that the proposed regression methods, RSBFP andRSBF, are not only best in terms of predictive accuracy, but also best in termsof computational complexity.
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Data Set RSBFP RSBF KNN RULE MARS DARTAB 0.819 0.726 7.592 9.301 7.602 6.603AP 0.952 0.906 0.807 1.122 0.856 0.785AU 0.488 0.398 1.832 2.531 2.107 1.981BA 0.813 0.675 0.457 0.712 0.537 0.556BU 0.597 0.935 12.660 12.920 13.300 10.670CH 0.815 0.720 0.930 0.782 0.745 0.636CN 1.516 1.702 1.676 3.102 5.874 2.040CO 0.468 0.834 8.283 11.237 9.393 6.127ED 0.653 0.430 2.166 2.384 2.164 2.276EL 0.978 0.995 1.465 1.899 1.148 1.431FA 0.684 0.170 2.525 3.208 2.447 2.058FC 0.544 0.653 0.710 0.528 0.501 0.387FF 1.030 1.036 2.394 3.247 1.710 2.089HO 0.865 0.575 2.801 3.635 2.893 2.611HR 0.863 0.754 7.853 11.530 10.290 6.115NE 0.986 0.947 38.840 42.320 37.660 31.540NT 0.951 0.909 1.403 2.220 1.037 1.196PL 0.852 0.411 5.492 5.777 4.921 5.107PV 0.829 0.692 9.429 9.456 4.213 6.038RE 0.952 0.958 6.597 10.33 6.759 7.108S2 2.366 2.366 73.890 77.210 70.900 71.400SC 0.538 0.533 0.583 0.968 0.700 0.627SE 0.697 0.697 21.290 27.770 22.010 21.720SP 1.183 0.646 1.921 3.887 1.966 1.871TV 1.468 1.747 2.087 4.569 7.267 2.671US 0.643 0.634 0.636 0.865 0.541 0.764VL 0.973 0.976 1.030 1.513 0.977 1.518WA 0.200 0.088 0.606 0.657 0.573 0.521WI 0.176 0.067 0.540 0.623 0.487 0.444Mean 0.858 0.799 7.534 8.839 7.640 6.859StdDev 0.411 0.474 14.779 15.656 14.236 13.889Table 5.5. Relative errors of regression methods, where 20% target noise isadded to real data sets. Best results are typed with bold font.
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Data Set RSBFP RSBF KNN RULE MARS DARTAB 148 211.5 8.9 3219 10270 477775AP 1.1 2 0 90.8 159.2 62AU 8.9 12.5 0.6 248.9 570.5 1890.1BA 19 35.3 0 181.8 915.1 3171.1BU 10.5 45.5 0 67.1 761.7 794.4CH 4.1 6.3 0 52.7 575.3 286CN 8 17.9 0.1 108.6 475.3 481CO 15.9 34.1 0.5 148.2 1274.3 717.6ED 278.2 691.1 13.5 862.8 10143.9 27266EL 8.1 13.3 0.2 69.5 407.5 1017FA 15.8 36.4 0 161.1 985 1773.9FC 2.1 4.2 0 47.8 240.2 201.4FF 1.1 1 0 34.1 99.5 45.9HO 21.2 36.3 1 264.9 1413.9 8119.7HR 8.2 19 0 57.5 616.3 893.9NE 130.5 189.9 7.4 3493 5709.9 87815NT 0 0.2 0 30.6 69.3 18.9PL 10 13.7 0.2 175.3 824.8 10024.4PV 1 2.1 0 40.9 127.3 44RE 52 104.3 3 196 2744.6 33044.6S2 36.1 40.8 3.5 108.8 667.2 971.4SC 3 8.1 0 45.3 260.8 84.4SE 1.8 2.2 0 37 116.4 83.4SP 28.5 57.1 1.4 365.1 2281.4 17346.4TV 0 0.2 0 30.9 31.1 3.1US 136.4 245 7.4 2547.1 8435.2 168169VL 74.6 136.8 4.4 513.6 3597.8 23405WA 130.8 181.2 10.4 1288.6 3201.6 44525.6WI 114.6 159.6 3.2 1085.5 2662.4 36524.1Mean 43.776 79.57 2.265 536.98 2056.46 32639.8Table 5.6. Training time durations of methods in milliseconds. Best resultsare typed with bold font.



CHAPTER 5. EMPIRICAL EVALUATIONS 72
Data Set RSBFP RSBF KNN RULE MARS DARTAB 23.3 21.3 6547 14433 7.9 6.1AP 1 1 3.4 141.7 0 0AU 3 2.1 64.5 462.2 0 0BA 2.1 2.2 54.6 244.8 0 0BU 0 0 11.6 32.1 0 0CH 1 1 11.6 87.3 0 0CN 1 0.3 8.4 98.4 0 0.1CO 1.1 1 38.2 40.3 1 0ED 9 8.1 2699.7 312.3 2.7 1.7EL 1.6 1.6 21 117.5 0 0FA 2 1.4 33.1 96.4 0 0FC 1.1 1.2 7.9 48.8 0 0FF 0.9 0.1 2 45.4 0 0HO 3.2 3 107.8 410.5 0 0HR 0.6 0.6 13.3 43 0 0NE 14 12.6 3399.4 11327 4.7 1.75NT 1 0 1.9 30.8 0 0PL 16.7 9.5 571.9 2192.7 0.2 1.2PV 0 0 2.2 37.1 0 0RE 3 3.2 265.6 627.2 0 1S2 4 4.2 407.8 223.6 0.4 0SC 0 0.3 2 27.8 3.7 0SE 0.1 0.1 4.2 49.1 0 0SP 6.2 5.4 303.2 1090.9 0.1 0TV 0 0 0 24 0 0US 8 7.3 1383.2 1877.3 7 2VL 6 5.8 439 1118.2 0.3 0WA 2.1 0.2 1794.6 6606.7 2.1 1.1WI 0 0 1462.4 5267.5 2 1.1Mean 3.862 3.224 677.983 1624.60 1.107 0.553Table 5.7. Querying time durations of methods in milliseconds. Best resultsare typed with bold font.



Chapter 6Conclusion and Future WorkIn this thesis, we have presented two new regression methods called RSBFPand RSBF. They are eager, parametric, linear and context-sensitive methodsbased on feature projections. They achieve higher accuracy results and fasterexecution times when compared to important eager and lazy methods of bothmachine learning and statistics community. The common drawback of RSBFPand RSBF is the lack of handling interactions among predictor features. RS-BFP does not allow the regression lines of the induced model to include morethan one feature. Although this limitation is handled in RSBF, it does not useall the possible combinations of the predictor features because of the infeasi-bility of the approach. Therefore, we used a relevancy heuristics to determinethe best subset of the predictor features.Besides these drawbacks, RSBFP and RSBF are powerful in the existenceof missing feature values, target noise and irrelevant features. These threefactors heavily exist in real life databases, and it is important for a learningmethod to give promising results in the presence of those factors. The ro-bustness to irrelevant features was our main motivation to induce RSBFP andRSBF. RSBFP method orders the features in terms of their predictive power,that is, in terms of their relevancy. On the other hand, RSBF produces a de-cision list of multiple linear regression lines. The regression line on the top ofthe list is claimed to include the most predictive, relevant predictor features.Furthermore, our methods are context-sensitive since the predictive power of73



CHAPTER 6. CONCLUSION AND FUTURE WORK 74any categorical feature may vary among its values.The computational complexity of a learning method is also important inmachine learning. The success of a learning method is not only measured byits predictive power, but also by its training and querying time requirements.RSBFP and RSBF are very fast both in training and querying phases. Al-though kNN is the fastest regression method in training phase, it su�ers inquerying phase and also gives higher prediction errors when compared to RS-BFP and RSBF. On the other hand, DART is as successful as RSBFP andRSBF in making correct predictions. But its training phase takes a lot of time.In fact, it is the slowest method in training phase. RULE and MARS arethe weakest methods since they neither make promising predictions, nor havesmall training or querying times. The proposed methods, RSBFP and RSBF,can be regarded as the best regression methods since they both make betterpredictions and execute faster than the other approaches.The advantages and limitations of RSBFP and RSBF are described in detailin previous chapters. Future work can be directed to overcome these limita-tions, such as allowing regression lines include interaction terms, and to in-corporate di�erent properties to our methods, such as incorporating an expertknowledge or using a di�erent relevancy heuristic in the elimination process ofirrelevant features.Machine learning methods were developed to extract knowledge withoutan expert, since databases come from a large number of domains. However,when we deal with data belonging to a single domain where a domain expert isavailable, the expert knowledge can be incorporated to our methods to increasethe accuracy signi�cantly.As a �nal word, regression by selecting best feature(s) is a successful tech-nique in regression. RSBFP and RSBF can compete with the famous andsuccessful methods of machine learning and statistics community. Some im-portant properties of our methods, which are missing in many other methods,such as robustness, domain independence and handling missing feature val-ues naturally enable them to be invaluable tools for knowledge extraction andprediction systems.
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