STOCHASTIC AUTOMATA NETWORKS
AND NEAR COMPLETE DECOMPOSABILITY*

OLEG GUSAK', TUGRUL DAYAR! AND JEAN-MICHEL FOURNEAU?

Abstract. Stochastic automata networks (SANs) have been developed and used in the last fifteen
years as a modeling formalism for large systems that can be decomposed into loosely connected com-
ponents. In this work, we extend the near complete decomposability concept of Markov chains (MCs)
to SANs so that the inherent difficulty associated with solving the underlying MC can be forecasted
and solution techniques based on this concept can be investigated. A straightforward approach to find-
ing a nearly completely decomposable (NCD) partitioning of the MC underlying a SAN requires the
computation of the nonzero elements of its global generator. This is not feasible for very large sys-
tems even in sparse matrix representation due to memory and execution time constraints. We devise
an efficient solution algorithm to this problem that is based on analyzing the NCD structure of each
component of a given SAN. Numerical results show that the given algorithm performs much better than
the straightforward approach.

Key words. Markov chains, stochastic automata networks, near complete decomposability, state
classification

AMS(MOS) subject classification. 60J27, 60J10, 65F30, 65F10, 65F50

1. Introduction. The Markovian description of a system requires one to specify all
possible states that the system can occupy and transitions among them. Most of the time,
the complexity of the underlying system implies a very large state space. Sometimes,
it is even difficult to enumerate all possible states and generate the transitions in the
system. Even if we are able to do so, the size of the system remains a major obstacle in
performance analysis.

Recently, a modeling paradigm called Stochastic Automata Networks (SANs) [16, 18,
14,17, 19, 21, 22, 10, 2, 7, 13, 24, 4] has received attention. SANs provide a methodology
for modeling large systems with interacting components. The main idea is to decompose
the system of interest into its components and to model each component separately. Once
this is done, interactions and dependencies among components can be brought into the
picture and the model finalized. With this decompositional approach, the global system
ends up having as many states as the product of the number of states of the individual
components. The benefit of the SAN approach is twofold. First, each component can
be modeled much easier compared to the global system due to state space reduction.
Second, space required to store the description of components is minimal compared to
the case in which transitions from each global state are stored explicitly. However, all
this happens at the expense of increased analysis time [14, 22, 2, 10, 7, 13, 24, 4].

An intimately related way of coping with the state space explosion problem is to con-
sider hierarchical decompositions arising in queueing network and superposed stochastic
Petri Net formalisms [5, 3, 6]. SANs which do not have dependencies among automata
are, in fact, a special case of hierarchical Markovian models. Although somewhat dis-
tant from the problem domain compared to the SAN approach, there are recent results

* This work is supported by TUBITAK-CNRS grant.
t Department of Computer Engineering, Bilkent University, 06533 Bilkent, Ankara, Turkey (E-
mail:{gusak,tugrul}@cs.bilkent.edu.tr, Tel:(+90)(312)290-1981, Fax:(+90)(312)266-4126).
! Lab. PRiSM, Université de Versailles, 45 Avenue des Etats—Unis7 78035 Versailles Cedex, France
(E-mail:jmf@prism.uvsq.fr, Tel:(4+33)(1)39-25-40-77, Fax:(+33)(1)39-25-40-57).
1

2 O. GUSAK, T. DAYAR, AND J.-M. FOURNEAU

showing that hierarchical representations lend themselves naturally to distributed steady
state analysis (see [6, p. 79]).

An important issue in choosing an efficient iterative solver for SANs is the condition-
ing [15] associated with the underlying Markov chain (MC). Recent numerical experi-
ments [12] show that two-level iterative solvers perform very well with nearly completely
decomposable (NCD) partitionings [9] having balanced block sizes when the MC to be
solved for its steady state vector is ill-conditioned. Block iterative methods based on clas-
sical splittings (Block Jacobi, Block Gauss-Seidel, Block SOR) for SANs are introduced
in [24]. Results with iterative aggregation-disaggregation [23, 20, 11, 12] type solvers for
SANs appear in [2]. However, two-level iterative solvers considered so far do not exploit
NCD partitionings. It should be emphasized that iterative aggregation-disaggregation
based on NCD partitionings has certain rate of convergence guarantees [20] that may be
useful for very large MCs.

In this paper, we extend the concept of near complete decomposability to SANs so
that the inherent difficulty associated with solving the underlying MC can be forecasted
and solution techniques based on this concept can be investigated. In doing this, we
utilize the graph theoretic ideas for SANs given in [14]. In the next section, we review
basic concepts of the SAN formalism, give an example, and introduce NCD MCs. In sec-
tion 3, we make some assumptions regarding the description of a continuous-time SAN
model, show what can be done if the given model does not satisfy the assumptions, and
introduce the state classification (SC) algorithm whose output is used by the NCD par-
titioning algorithm. In section 4, we present a three step algorithm that finds an NCD
partitioning of the MC underlying a SAN based on a user specified decomposability pa-
rameter without computing the global generator matrix. In doing this, we proceed step
by step introducing definitions, stating propositions, making remarks, and illustrating
with small examples the ideas on which our algorithm is based. The section ends with
a summary of the complexity analysis of the NCD partitioning algorithm. Numerical
results with the algorithm on three applications are presented in section 5. We conclude
in section 6. The appendix includes more detailed description of the SC algorithm dis-
cussed in subsection 3.2, the NCD partitioning algorithm discussed in section 4 and its
complexity analysis.

2. Background. In the next two subsections, we discuss basic concepts related to
the SAN formalism as a modeling paradigm and introduce NCD MCs.

2.1. SAN overview. In a SAN (see [21, Ch. 9]), each component of the global
system is modeled by a stochastic automaton. When automata do not interact (i.e.,
when they are independent of each other), description of each automaton consists of
local transitions only. In other words, local transitions are those that affect the state of
one automaton. Local transitions can be constant (i.e., independent of the state of other
automata) or they can be functional. In the latter case, the transition is a nonnegative
real valued function that depends on the state of other automata. Interactions among
components are captured by synchronizing transitions. Synchronization among automata
happens when a state change in one automaton causes a state change in other automata.
Similar to local transitions, synchronizing transitions can be constant or functional.

SANS AND NEAR COMPLETE DECOMPOSABILITY 3

A continuous-time system that does not have synchronizing events and dependen-
cies among its components can be modeled by a single stochastic automaton for each
component ¢ that is expressed by the local transition rate matrix Q,@. The underlying
continuous-time MC (CTMC) corresponding to the global system can then be obtained
by the tensor sum of the local transition rate matrices of the automata. We refer to the
tensor representation associated with the CTMC as the descriptor of the SAN.

Each synchronizing event introduces two types of matrices to the SAN formalism.
These matrices are called the synchronizing event matrix and the diagonal corrector
matrix. For automaton ¢ and synchronizing event j, we have the synchronizing event
matrix Qg? and the diagonal corrector matrix Qg”) both of order equal to that of the

local transition rate matrix Q,@. The automaton that triggers a synchronizing event
is called the master, the others that get affected are called slaves. Matrices associated
with synchronizing events are either transition rate matrices (corresponding to master
automata) or transition probability matrices (corresponding to slave automata). When
they are rate matrices, each diagonal element in the diagonal corrector matrix is the
negated sum of the off-diagonal elements in the corresponding synchronizing event matrix.
When they are transition probability matrices, each diagonal element of the corrector
matrix is the sum of the corresponding row elements in the synchronizing event matrix.
Synchronizing events introduce additional tensor products to the descriptor thereby
complicating the SAN formalism. Since a tensor sum may be written as a sum of tensor
products [8], it is possible to express the descriptor as a sum of Ordinary Tensor Products
(OTPs) in the absence of functional transitions. When functional transitions are present,
the descriptor is formed of Generalized Tensor Products (GTPs, see [13], for instance).
Summarizing the above, we can express the descriptor of a SAN as

(1) Q:QZ+Q€+Q€7

where

N E N E N
Q=" Q=YQY, Q.= Qa,
i=1 j=1i=1 j=1i=1

® is the tensor product operator, @ is the tensor sum operator, NV is the number of local
automata in the system, and F is the number of synchronizing events among automata.
Assuming that automaton i has n; states, the global system has n = [[Y, n; states. When
there are functional transitions, tensor operations become generalized tensor operations.

Ezample 1. Consider a SAN [21, pp. 470-472] that is formed of two automata (N=2)
having 2 and 3 states and two synchronizing events (EF=2). Automaton 1 is given by

m_ (M M
! 0o 0)’

0 0Y) - 0 0 10 + 10
(1) _ (1) _ (1) _ (1) _
Qe _<)\2 0>’Q€1 _<o —)\2>’Q62_<1 0>’Q62_<o 1)’

4 O. GUSAK, T. DAYAR, AND J.-M. FOURNEAU

and automaton 2 is given by

, —pr O
Q§) = 0 —H2 M2 |,
0 0 0
1 00) 1 00 0 0 0) 00 O
Q=100 [,QY=]010|,Q@Y=]000][,Q2=|00 0
100 00 1 gz 0 0 00 —pus
From equation (1), the descriptor of the SAN can be obtained as
Q = Qz + Qe+ Qe
2 2
= @Ql” +Z®Q6J >0
j 14=1 j=1l1=1
— Ql @ Ql + Qe] ® Q 2) Q ® QBQ + Qe1 ® Qe] + Qez ® Qe?
—(A1 +) 1 0 A 0 0
0 — (M + p2) 2 0 A1 0
_ 3 0 —()\1 + M3) 0 0 Al
)\2 0 0 —()\2 + Ul) M1 0
)\2 0 0 0 —(/\2 + /LQ) 2
)\2 + M3 0 0 0 0 —()\2 + Mg)

2.2. Nearly completely decomposable MCs. NCD MCs [15] are irreducible
stochastic matrices that can be symmetrically permuted [9] to the block form

Py Pay ... P
P = | 10 T
Py Pgo ... Pgg

in which the nonzero elements of the off-diagonal blocks are small compared with those
of the diagonal blocks [21, p. 286]. Hence, it is possible to represent an NCD MC as

P = diag(PH, PQQ, cuay PKK) + E,

where the diagonal blocks P;; are square and possibly of different order. The quantity
|E||oo is referred to as the degree of coupling and is taken to be a measure of the de-
composability of P. When the chain is NCD, it has eigenvalues close to 1, and the poor
separation of the unit eigenvalue implies a slow rate of convergence for standard matrix
iterative methods [11, p. 290]. Hence, NCD MCs are said to be ill-conditioned [15, p
258]. We should remark that the definition of NCDness is given through a discrete-time
Markov Chain (DTMC). The underlying CTMC of a SAN can be transformed through
uniformization [21, p. 24| to a DTMC for the purpose of computing its steady state
vector as in

1
2 P=1+=0Q,

SANS AND NEAR COMPLETE DECOMPOSABILITY)

where a > maxi<;<, |Q(i,7)|. To preserve NCDness in this transformation, oo must be
chosen as maxi<;<y, |Q(7,1)].

An NCD partitioning of P corresponding to a user specified decomposability param-
eter € can be computed as follows (see [9] for details). First, construct an undirected
graph whose vertices are the states of P by introducing an edge between vertices ¢ and j
if P(i,7) > € or P(j,1) > ¢, and then identify its connected components' (CCs). Each CC
forms a subset of the NCD partitioning. Notice that for a given value of €, the maximum
number of subsets in a computed partitioning is unique.

There is no standard specification for the description of a SAN model. In the next
section, we state definitions and propositions that enable us to transform a continuous-
time SAN description to one that is more convenient to work with when developing the
NCD partitioning algorithm. Then we introduce the SC algorithm for SANs.

3. On continuous-time SAN descriptions and state classification. First, we
briefly recall the parameters of our problem.
e A SAN consists of N automata, F synchronizing events, and possibly functional
transitions.
e Automaton i is denoted by A®), has n; states, and is described by:
— local transition rate matrix Q,@;
— 2F synchronizing event matrices;
transition matrix of synchronizing event j is denoted by Qg);
Qg) has the corresponding diagonal corrector matrix Qg),
— (being master/slave in synchronizing event j)
if A® is the master in synchronizing event j, then Qg) is a rate matrix;
if A® is a slave in synchronizing event 5, then Qg) is a probability matrix;
— (not being involved in synchronizing event j)
QYY) = I, where I, is the identity matrix of order n;.
e The descriptor of the SAN is formed of generalized tensor products and gener-
alized tensor sums; the underlying CTMC has n = [J¥, n; global states.
e States of automata and global states are numbered starting from 1.
e The state vector of the SAN model is represented by (si,$s,...,Sx), where
s; € {1,2,...,n;} denotes the state of A®. The corresponding global state is

given by s =14+ XN (s; — 1) HkN:z'+1 M-

3.1. Description of a continuous-time SAN model. Without loss of generality,
we restrict ourselves to the case in which row sums of synchronizing transition probability
matrices are either 0 or 1.

DEFINITION 1. A SAN description is said to be proper if and only if each synchro-
nizing transition probability matrix has row sums of 0 or 1.

The SAN descriptions of the three applications we consider in section 5 are proper.
In other cases, one may use the following:

PROPOSITION 1. A given SAN description can be transformed to a SAN description
that is proper.

1 Not to be mixed with the word component we have been using so far to mean subsystem.

6 O. GUSAK, T. DAYAR, AND J.-M. FOURNEAU

Proof. Without loss of generality, consider a SAN description of N automata and one
synchronizing event. There are two possible cases. In the first case, row sums of the
synchronizing transition probability matrix Qg’f) corresponding to slave automaton k are
all equal to some constant such that 0 < 8 < 1. This is the trivial case; we can replace
Qg’f) with Qg’f) = %Qg’f), and Qg”) with Qg”) = ﬁan), where m is the index of the master
automaton of the synchronizing event. Row sums of the transformed matrix Qg’f) are
1. In the second case, row sums of Qg’f) are not equal, and some are between 0 and 1.
This implies that transition rates of the master automaton m of the synchronizing event
depend on the state of automaton k. Therefore, it is possible to replace Qg’f) with a matrix
that has row sums of 0 or 1 by introducing functional transitions to QS;”) as follows. Let
B, 1 =1,2,...,ny, be the sum of row [in Q). We replace Q¥ with Qg’f) in which
QW (i,5) = QW (i, 5)/B; if 0 < Bi < 1, else QW(i,j) = QW(i,j), for j = 1,2,...,m.
We also replace QU™ with Qf;“) in which Qf;]“)(i,j) = BQ™(i,5) if 0 < B < 1, else
Q(Jl")(i,j) = Qg”)(i,j), for i,j = 1,2,...,n, when A® is in state . The transformed
matrix Qg’f) has row sums of 0 or 1.

Given a synchronizing event, the above modifications must be made for each of its
synchronizing transition probability matrices that has row sums between 0 and 1. This
implies that nonzero elements in the synchronizing event transition rate matrix of the
corresponding master automaton may need to be scaled multiple times with values that
depend on the state of multiple slave automata. The generalization to E (> 1) synchro-
nizing events is straightforward. After modifying the synchronizing event matrices, the
corresponding diagonal corrector matrices must also be modified accordingly. The new
SAN description has synchronizing transition probability matrices with row sums of 0 or
1, and therefore is proper. O

Now we introduce a definition which may seem to be specifying an artificial condition
at first, yet the condition is satisfied by the three applications in section 5 and is very
helpful in coming up with an efficient algorithm as we shall see.

DEFINITION 2. Synchronizations are separable from local transitions in a given SAN
description if and only if for any synchronizing event t whose master is automaton m
and i, j =1,2,.. ., nm, QU™ (i,5) # 0 implies Q™ (i, j) = 0.

PROPOSITION 2. A given SAN description can be transformed to a new SAN de-
scription whose synchronizations are separable from local transitions.

Proof. Assume that the given SAN description does not satisfy the condition in Definition
2. Without loss of generality, let ¢ be the event, m its master, and (7, j) the indices of
the problematic element. Decompose ng) into three terms as

Q" =R™ + Q" (i, jui] — Q" (i, jusu
where u; is the ith column of the identity matrix. Here R;m) is a transition rate matrix,
the second term is a matrix with a single nonzero transition rate at element (7, 7) and
the third term is the diagonal corrector of the second term. Now, let Rfm) be the local
transition rate matrix of automaton m, and introduce the new synchronizing event v
with master automaton m; Q™ (= ng) (4, /)uguj) is the rate matrix associated with

automaton m and synchronizing event v, and Q™ (= —Q\™ (i, juul) is its diagonal

i

SANS AND NEAR COMPLETE DECOMPOSABILITY 7

corrector. All other matrices corresponding to synchronizing event v are equal to identity.
Now, recall the following identity from tensor algebra

AP +QM +QM) BB = (AP P B +ITR Q™R N+IR Q™R

and compare its right-hand side with equation (1). The new SAN description has sepa-
rable synchronizations. O

Our next definition related to the SAN description involves the number of nonzero
elements in synchronizing transition rate matrices. Without loss of generality, we restrict
ourselves to the case where all synchronizing events in a SAN are simple.

DEFINITION 3. Synchronizations in a given SAN description are simple if and only
iof for any synchronizing event t whose master is automaton m, Qg’t") has only one nonzero
element.

PROPOSITION 3. A given SAN description can be transformed to a new SAN de-

scription whose synchronizing events are simple.
Proof. Assume that the given SAN description does not satisfy the condition in Definition
3. Without loss of generality, let ¢ be the event, m its master, and nz the number of
nonzeros in Qg”). Decompose Qg”) into nz simple synchronizing transition rate matrices
thereby creating nz new synchronizing events with master automaton m. The slave
automata of the new synchronizing events are the slave automata of synchronizing event
t. The transition probability matrices and their diagonal correctors associated with the
new slave automata are respectively equal to the transition probability matrix and its
diagonal corrector associated with the slave automata for synchronizing event ¢. All other
matrices corresponding to the new synchronizing events are equal to identity. The new
SAN description has simple synchronizations.]

In the next subsection, we discuss how we proceed when we encounter an underlying
MC with transient states and/or multiple essential subsets of states.

3.2. State classification in SANs. As discussed in subsection 2.2, NCD MCs are
irreducible by definition. However, the MC underlying a SAN may very well be reducible.
We have implemented a state classification (SC) algorithm that classifies the states in
the global state space of a SAN into essential and transient subsets following [21, pp.
25-26]. In doing this, we use a strongly connected component (SCC) search algorithm on
a directed graph (digraph) with edges whose presence can be taken into consideration on
the fly. The SC algorithm is based on an algorithm that finds SCCs of a digraph using
depth first search (DFS). The main idea of DFS is to explore all vertices of the digraph in
a recursive manner. Whenever an unvisited vertex is encountered, the algorithm starts
exploring its adjacent vertices. A detailed description of the SCC algorithm for digraphs
can be found in [1, pp. 191-197].

Any transient states identified by the SC algorithm are omitted from further con-
sideration when running the NCD partitioning algorithm. Furthermore, when the MC
underlying the given SAN has multiple essential subsets of states, NCD analysis can be
carried out on the essential subsets of states one subset at a time. The states that do not
belong to the chosen essential subset should be omitted from further consideration when
running the NCD partitioning algorithm. The detailed description of the SC algorithm
is given in appendix A. The input parameters of the SC algorithm are local transition

8 O. GUSAK, T. DAYAR, AND J.-M. FOURNEAU

rate matrices and synchronizing event matrices of the SAN. The output of the algorithm
is an integer array of length n in which states corresponding to the essential subset of
interest are marked.

4. NCD partitioning algorithm for SANs. The following is our proposed solu-
tion algorithm that computes NCD partitionings of the MC underlying a SAN without
generating) (or P).

ALGORITHM 1
NCD partitioning of MC underlying SAN for given €

Step 1. Q — P transformation
Step 2. Preprocessing synchronizing events
Step 3. Constructing NCD connected components

Step 1 computes the scalar « in equation (2) that describes the transformation of
the global generator () to a DTMC P through uniformization. In the next subsection,
we show how this can be achieved efficiently by inspecting the diagonal elements in local
transition rate matrices and the nonzero elements in diagonal corrector matrices.

Step 2 considers the locations of off-diagonal nonzero elements in the global generator
. Off-diagonal nonzero elements in local transition rate matrices cannot contribute
to the same nonzero element in () due to the fact that these matrices form a tensor
sum. Hence, their analysis is straightforward. However, off-diagonal nonzero elements
in synchronizing transition rate matrices may contribute to the same nonzero element
in () since these matrices form a sum of tensor products. Therefore, it is necessary to
identify those synchronizing events that may influence the NCD partitioning of the MC
underlying the SAN by contributing to the value of the same nonzero element in (). In
subsection 4.2, we explain how this is done.

Finally, Step 3 determines the NCD CCs by analyzing local transition rate matrices
and matrices corresponding to synchronizing events identified in Step 2 using € and the
value of o computed in Step 1. This is discussed in subsection 4.3.

4.1. () — P transformation. The CTMC) can be transformed to a DTMC
P using equation (2) after & = maxj<;<, |Q(4,7)| is computed. It is Algorithm 1.1 in
appendix B that computes « using local transition rate matrices, diagonal corrector
matrices, and dependencies among automata.

Since @ is a CTMC, we have Q(i,i) = — >, Q(i,7) for i = 1,2,...,n. Note also
that only the off-diagonal elements in P contribute to NCDness. Regarding the off-
diagonal elements in (), which determine the off-diagonal elements in P, we make the
following observations.

REMARK 1. FEach nonzero local transition rate in a SAN contributes to a different
off-diagonal element in (Q; two or more nonzero local transition rates cannot contribute
to the same off-diagonal element in ().

This observation follows immediately from the term), in equation (1) and the
definition of tensor sum.

REMARK 2. A nonzero off-diagonal element in Q) for a SAN with separable synchro-

SANS AND NEAR COMPLETE DECOMPOSABILITY 9

nizations is formed either of a nonzero local transition rate or of nonzero synchronizing
transition rates but not of both.

This observation follows from the definition of the SAN descriptor in equation (1)
and Definition 2.

REMARK 3. A nonzero off-diagonal element that is formed of synchronizing transi-
tion rates in Q) for a SAN can be represented as

N
k
(3) >oatm I .
jre; EE* k=1,k#m
Here qg”) 18 the synchronizing transition rate in Qg”), where m is the index of the master

automaton of event j; qgf) 18 a particular transition probability in Qg’f_), where k (£ m) is
the index of a slave automaton of event j. Finally, £ is the set of synchronizing events
that contribute to the off-diagonal element of interest in @Q, and |E*| < E. We have

(M) and qé’:), since only the form of equation

omitted the row and column indices from g’

(8) is important for the current discussion.
From Remarks 1-3 and equations (1)—(3), P without its main diagonal, denoted by
P*, can be computed as

N A N
© P=@(-a) + X Qe
where

o vEj

o0 — LW if AW is the master of event j
6 = Qg’) otherwise

Note that only rate matrices are scaled. What remains to be done is to compute a. To
that effect, we state two propositions.

PROPOSITION 4. The diagonal element with maximum magnitude of Q for a SAN
that does not have synchronizations and functional dependencies is given by the sum of
diagonal elements with maximum magnitude of the local transition rate matrices. Thus,

N
= (4)
@ =3 max 1@k B

Proof. Recall Remark 2. Also note that the rates of transitions out of state k of au-
tomaton 7 all appear in the same row of (), and consequently they contribute the value
Qll)(ls:, k) to the diagonal element of @) in that row. Since the state space of the global
system is all possible combinations of the automata states, there is a global state in @)
for which the off-diagonal row sums of all automata are maximized. O

REMARK 4. Dependencies among automata may arise either as explicit functions
whose values depend on the states of automata other than the ones in which they are
defined or implicitly by the existence of zero rows in synchronizing event matrices associ-
ated with slave automata. The latter case corresponds to the disabling of the synchronized
transition when the slave automaton is in local state corresponding to the zero row.

10 O. GUSAK, T. DAYAR, AND J.-M. FOURNEAU

From now on, by dependencies we refer to both explicit and implicit dependencies
as discussed in Remark 4. As an extension to Proposition 4, we have the next one.

PROPOSITION 5. The diagonal element with mazimum magnitude of @ for a SAN
that does not have dependencies can be obtained from

N
) O m

(@l‘“uc, B+ S Q9(k, k)) ‘ ,

j,@j GMZ

where M; s the set of synchronizing events whose master is automaton 1.
Proof. Observe that local and synchronizing transitions of a master automaton that
emanate from the same local state appear in the same row of (). The rest of the proof
follows from an argument similar to that for Proposition 4. Note that equation (5) is
also valid for the case in which synchronizing transition probabilities are less than 1. In
this case, the synchronizing transition rate in the master automaton is split according
to transition probabilities in slave automata. However, these fractional synchronizing
transition rates still appear in the same row of @); that is, they contribute to a diagonal
element of () the corresponding diagonal element of the diagonal corrector matrix. O

Example 2. Now let us show the computation of the diagonal element with maxi-
mum magnitude of @) for the SAN in Example 1 with (Ay, Ao, p1, p2, u3) = (2,3,3,2,1).
According to Proposition 5, we have

o = max Q" (k) + QL (k)| + max 1QF (k. k) + QF) (k.)
= max{A, Ao} + max{ 1, p2, u3} = Ao + p1 = 6,

which can be verified on

-5 3 0 2 0 0

o -4 2 0 2 0

1 0 -3 0 0 2

@= 30 0 -6 3 0
30 0 0 -5 2

4 0 0 0 0 -4

Example 3. Consider the SAN presented in Example 2 with the following modifica-
tion: @ (1,1) = 0 and Q¥ (1,2) = 0. Note that the modified SAN still does not have
functional transitions defined explicitly. However, the rate of synchronizing event 1 is
in fact a function, and it depends on the state of automaton 2 (see Remark 4). When
automaton 2 is in state 1, the synchronizing transition rate is 0 since it is disabled due
to the modification, else it is 3. It is not possible to apply Proposition 5 to this SAN,
since it would produce the incorrect result o = 6 which can be seen from

-5 3 0 2 0 0

0o -4 2 0 2 0

1 0 -3 0 0 2

@= o 0 0 -3 3 0
30 0 0 -5 2

4 0 0 0 0 -4

SANS AND NEAR COMPLETE DECOMPOSABILITY 11

For SANs having dependencies, equation (5) cannot be used. A naive solution is to
compute explicitly each diagonal element of () and to find the element with maximum
magnitude. However, this is expensive. To reduce the complexity, we propose to partition
automata into dependency sets.

DEFINITION 4. Let G(V,€) be a digraph in which v; corresponds to A® and
(vi,v;) € & if transitions in AY) depend on the state of AY) either explicitly or im-
plicitly as discussed in Remark 4. Then, the dependency sets of a SAN, denoted by Dy,
k=1,2,..., Np, are the connected components of the dependency graph G.

We assume that for each automaton of the SAN, the set of automata with which
it is involved in a functional dependency relationship is known. Regarding implicit de-
pendencies that originate from synchronizations (see Remark 4), we make the following
observation. If the diagonal corrector matrix Qg”) of slave automaton ¢ has at least one
row with a zero diagonal element, then the master automaton of event j is dependent
on the state of automaton 7. Note that we do not need to scan each synchronizing event
diagonal corrector matrix to detect such dependencies. Each row of a diagonal corrector
matrix that is a probability transition matrix can have at most one nonzero element per
row. Hence, if the number of nonzeros in QE}J) is less than the order of the matrix (i.e.,
n;), then the master automaton of event j depends on automaton i.

We refer to

(6) max Dy, = max| P diag(Qgi))+ > () diag(Qg))

i, ADeDy, J,€j€EMp, i, AD Dy,

as the maximum of the dependency set Dy, where diag returns a vector consisting of the
diagonal elements of its matrix argument, and Mp, is the set of synchronizing events
whose masters are in Dj.

PROPOSITION 6. The diagonal element with mazimum magnitude of @ for a SAN
can be obtained from

Np
(7) a =) max_Dy.

k=1

Proof. From the definition of dependency sets, automata in a dependency set are
independent of automata in other dependency sets. Now, consider a new SAN de-
scription of Np automata and E synchronizing events. In the new description, AP+
k = 1,2,...,Np, corresponds to the dependency set Dy, QZ(D’“) = D atep, Ql(i),
ng’“) = Qi AeD, Qg), and Qg”“) = Qi Avep, Qg), where j = 1,2,..., FE. We define
APk) as the master of synchronizing event j, if the master automaton of event j in the
original SAN description is a member of Dy. By construction, the new SAN does not
have dependencies. Hence, we can apply Proposition 5. Substituting in equation (5) the
matrices Ql(pk) and Qg}k), we obtain equation (7). O

Propositions 4, 5, and 6 are valid for irreducible MCs underlying SANs. When tran-
sient states and/or multiple essential subsets of states are present, the diagonal element
with maximum magnitude given by equation (7) may not belong to the essential subset
of interest (see subsection 3.2). In the following, we refer to the states other than the ones

12 O. GUSAK, T. DAYAR, AND J.-M. FOURNEAU

in the essential subset of interest as uninteresting. In the presence of uninteresting states,
we can compute « by finding the maximums of all Np dependency sets (see equations (6)
and (7)). For dependency set Dy, this task amounts to the enumeration of []; siep, 7
states and an equal number of floating-point comparisons. Now, observe that to max_Dy,
of the dependency set Dy corresponds a state S,. Hence, if the global state s that cor-
responds to Si, 5, ..., Sy, maps into the essential subset of interest, then a given by
equation (7) is taken as the diagonal element with maximum magnitude. However, if s is
an uninteresting state, we omit from further consideration the element that correspond
to max_Dy for k = 1,2,..., Np, and proceed as in the while-loop of Algorithm 1.1 in
appendix B.

In the first step, for £ = 1,2,..., Np we find the next largest value denoted by
next_max_Dj, from equation (6) and the corresponding state S,. In order to find
next_max_D;, rapidly, the vectors ‘EBZ-’A(I-)GD,c diag(Q\")+ Yjesemp, Qi aven, diag(Qg))|7
k =1,2,..., Np, should be stored as sorted. In the second step, we find ¢ such that
next_max_D; > next_max_ D, for k = 1,2,..., Np. Finally, we replace max_D; with
next_max_D;, S; with gt, and omit the element corresponding to next_max_D, from fur-
ther consideration. If the updated global state s maps to a state in the essential subset
of interest, then a given by equation (7) is taken as the diagonal element with maximum
magnitude. Else we go back to the first step. Since finite MCs have at least one recurrent
state in each essential subset, the algorithm is terminating.

Our final remark is about the special case of a SAN with a single dependency set;
that is, Np = 1 and D; = {AMW, A® . AM} In this case, finding o = max_D,
amounts to enumerating all diagonal elements of () since we have the equality
B avep, diag(Q”) + 5j0 ertp, ®iatrep, diag(QY) = diag(Q). Therefore, for a SAN
with a single dependency set, there is no need to sort and store diag((Q)) as suggested.
When finding the maximum of diag(Q), we test an element of diag(Q) only if its index
corresponds to a state in the essential subset of interest. Although it is implemented,
this case is omitted from the presentation of Algorithm 1.1 in appendix B.

Example /. This example shows the computation of the diagonal element with
maximum magnitude of) for the following SAN that has functional and synchronizing
transitions. The parameters are N =3, F =2, n; =2, no =3, n3 = 2; f = 3 when AW
is in state 1, and f = 5 when A" is in state 2. The master of synchronizing event 1 is
A®) and the master of synchronizing event 2 is A®. The matrices are

-2 2 0
m_ (-2 2 @ _ B @ _ (= f

SANS AND NEAR COMPLETE DECOMPOSABILITY 13
0 0 = 0 O =
3 3 3 3
le) = < 5 O > 7@((-31) = < O _5 > 7Q£32) - Q((-ZQ) = ['

The given SAN has two dependency sets: D; = {AM, A®} and D, = {A®}. Note
that A®) functionally depends on the state of A" due to functional transition f as well
as due to synchronizing event 1 (see Q{1). Hence, the diagonal element with maximum
magnitude of () is comprised of two terms. The maximum of D; is given by

max D; = max |diag(Q}") @ diag(Q}”) + diag(QLY) X diag(QY)|
92— f 0 -5 0
= max —2-0 + =0 = max =2 + =0 =7
- —1—f 0 ||~ —6 ol -
—-1-3 0 —4 0

On the other hand, D, is a singleton, and therefore the maximum of D is given by

-2)
max Dy = max |diag(Ql(2)) + diag(Q?)| = max || —5 | + 0 ||=T
—4

Since the underlying MC is irreducible, & = max “D; + max D, = 14 as verified on

—12 3 2 0 0 0 2 0 0 0 5 0

0 —14 0 2 5 0 0 2 0 0 0 5

2 0 —10 3 3 0 0 0 2 0 0 0

) 2 0 -12 0 3 0 0 0 2 0 0

1 0 3 0 -9 3 0 0 0 0 2 0

_) 1 0 3 0 11 0 0 0 0 0 2
@= 1 0 0 0 5 0 —-13 5 2 0 0 0
0 1 0 0 0) 0 -8 0 2 0 0

0 0 1 0 0 0 2 0 —-11 5 3 0

0 0 0 1 0 0 0 2 0 —6 0 3

0 0 0 0 1 0 1 0 3 0 =10 5

0 0 0 0 0 1 0 1 0 3 0 -5

As pointed out at the beginning of this subsection, an NCD partitioning of P that
corresponds to a user specified decomposability parameter € is determined by the off-
diagonal elements in P. Having found «, we can obtain P* by scaling each transition
rate matrix of the SAN with 1/« (see equation (4)).

4.2. Preprocessing synchronizing events. As it is mentioned in Remark 3, tran-
sition rates from different synchronizing event matrices may sum up to form a nonzero
in the generator matrix (). Hence, in some cases it may not be possible to determine the
value of an off-diagonal element in () by inspecting each automaton separately. The aim
of Step 2 in Algorithm 1 is to find sets of those synchronizing events that may influence
the NCD partitioning of (). We name these sets as potential sets of synchronizing events.
The potential sets are disjoint, and their union is a subset of the set of synchronizing

14 O. GUSAK, T. DAYAR, AND J.-M. FOURNEAU

events. It is Algorithm 1.2 in appendix C that finds these potential sets using synchro-
nizing event matrices, €, and o computed in Step 1. The output of Algorithm 1.2 is Np
potential sets denoted by P,, r =1,2,..., Np.

There are two cases in which synchronizing events may influence the NCD parti-
tioning of (). First, a simple synchronizing event has the corresponding transition rate
greater than or equal to ae. Second, a set of synchronizing events contribute to the same
element in (), and the sum of the synchronizing transition rates of the events in the set
is greater than or equal to «e.

In the first case, each synchronizing event with transition rate greater than or equal
to ae forms a potential set that is a singleton. When the transition rate of a synchroniz-
ing event is a function, its value can be evaluated only on the global state space. This
can be done in Step 3 of Algorithm 1 when NCD CCs of the SAN are formed. Hence, if
the synchronizing transition rate is a function and the maximum value of the function is
not known in advance, then the corresponding synchronizing event also forms a potential
set that is a singleton. Regarding the second case, we make the following observation.
The position of a synchronizing transition rate in () is uniquely determined by all syn-
chronizing transition matrices that correspond to the synchronizing event. This can be
seen from equation (1). Hence, we have the following proposition.

PROPOSITION 7. In a SAN with simple synchronizations, the set £* of synchronizing
events contribute to the same nonzero element of Q) if and only if there exists at least
one nonzero element with the same indices in the matrices Qg) for all e; € &£ and
i=1,2,....N.

Proof. The proof follows from equation (1), definition of tensor product, Definitions 2
and 3. O

Example 5. Consider Example 1. We remark that synchronizing events 1 and 2 are
simple. By inspecting the synchronizing event matrices of A" and A®, we see that Q{V
and Q) have a nonzero element with the same indices (2,1), and Q% and Q{? have a
nonzero element with the same indices (3,1). Hence, transition rates that correspond to
e; (i.e., A2) and ey (i.e., u3) contribute to the same element of) (see element Q(6,1)).

Those synchronizing events that are not classified as potential sets of singletons
must be tested for the condition in Proposition 7. The test of two events, ¢ and u, for the
condition requires the comparison of the indices of nonzero elements in Q%) and QY for
t=1,2,...,N; that is, we test /N pairs of matrices. For k£ events, the number of matrix
pairs that need to be tested is Nk(k — 1)/2. Note that for three events, ¢, u, and v, the
fact that the pairs (Qg"t), Qg’)) and (QSJ)) QSJ)) each have at least one nonzero element with
the same indices for ¢+ = 1,2,..., N does not imply that the events ¢t and v also satisfy
the condition. In other words, the condition is not transitive. This further complicates

the test for the condition in Proposition 7.

In order to avoid excessive computation associated with the test, we consider the set
of synchronizing events P as a potential set if for all e, € P there exists e, € P such that
the condition in Proposition 7 is satisfied for synchronizing events v and v, and the sum
of transition rates of synchronizing events in P is greater than or equal to ae. According
to this definition, we form potential sets as follows. Let £ be the set of synchronizing
events that are not classified as potential sets of singletons. We choose event e, € L,

SANS AND NEAR COMPLETE DECOMPOSABILITY 15

remove it from £, and test e, with each event in £ for the condition in Proposition 7.
Let K be the set of events that satisfy this condition. Then, if the sum of the transition
rates of synchronizing event v and those in I is greater than or equal to e, we remove
the events that are in IC from £ and form the potential set P = {e,} UK. We repeat
this procedure for all events in £ until £ = 0.

Ezample 4 (continued). Let us consider the application of Algorithm 1.2 to the SAN
in Example 4 for which o = 14. Let ¢ = 0.3 implying ce = 4.2. The transition rate of the
master automaton of simple synchronizing event 1 is 5 and greater than ce. See Qg‘?) (2,1)
in Example 4. Hence, the first potential set, P;, consists of synchronizing event 1 only.
The second synchronizing event of the SAN also forms a potential set. See Qg)(l, 3) for
justification. Thus, P; = {e;} and Py = {ez}. Now, consider the case in which € = 0.4
implying ae = 5.6. Both transition rates of synchronizing events 1 and 2 are less than
«e. Hence, we have to test these two events for the condition in Proposition 7; that is, we
check if each of the three pairs of matrices (Q(V, Q\)), (QP,QP), and (Q¥), Q¥)) have

ey ? el € el ?
at least one nonzero element with the same indi(lzes. Howeverl, thezcondition in1 Proposition
7 is not satisfied. Thus, the number of potential sets for the case of € = 0.4 is zero. This
implies that neither of the synchronizing events influence the NCD partitioning of the
underlying MC. Therefore, synchronizing events of the SAN are omitted from further

consideration in Step 3 of Algorithm 1 when ¢ = 0.4.

4.3. Constructing NCD connected components. As indicated in Remark 2, a
nonzero element in the global generator of a SAN originates either from a local transition
rate or from one or more synchronizing transition rates. Hence, NCD CCs of the un-
derlying MC are determined by (i) constant local transition rates that are greater than
or equal to we, (ii) functional local transition rates that can take values greater than or
equal to «e, or (iii) transition rates of synchronizing events that are in the potential sets
P.,r=1,2,..., Np. These three different possibilities are implemented in Algorithm 1.3
that appears in appendix D. The input parameters of the algorithm are local transition
rate and synchronizing event matrices, €, a computed by Algorithm 1.1, and potential
sets formed by Algorithm 1.2. The output of Algorithm 1.3 is the set of NCD CCs of
the underlying MC.

First, we consider possibility (i) in which local transition rates are constant, and
assume that Q = @, (see equation (1)). Using e, we can find the NCD CCs of Q,@,
i=1,2,...,N. Let C® be the set of NCD CCs of Q,@, where a member of C¥, denoted
by ¢, is a partition of states from A®. Let B and H be sets in which each member
of either set is also a set. In other words, B as well as H is a set of sets. We define the
binary operator ® between the two sets B and Has BOH ={bxh|bé& Bhec H},
where X is the ordinary Cartesian product operator. Then, based on the graph inter-
pretation of the tensor sum operator discussed in [14], the set of NCD CCs is given
by C = CV oC?® @ ---®C™. Observe that if C®, i = 1,2,...,N, are single-
tons, then C is a singleton as well; that is, the underlying MC is not NCD for given
e. One can take advantage of the same property when there are only K (< N) C®
that are singletons. In this case, we renumber the automata so that these K sets as-
sume indices from (N — K 4+ 1) to N. Then these K sets can be replaced with the set

C[N_K+1] :{{]—727~~'7nN—K+1} X {1,2,..-,”N—K} XX {1,2,---,”]\/‘}}-

16 O. GUSAK, T. DAYAR, AND J.-M. FOURNEAU

Now we bring into the picture functional local transition rates and consider possibility
(ii). Let us assume that the automata of the given SAN can be reordered and renumbered
so that transitions of automaton i depend (if at all) on the states of higher indexed
automata, but they do not depend on the states of lower indexed automata (see [13] for
details). Since Cartesian product is associative, ® is also associative, and one can rewrite
the expression for C as

(8) c=(Wo(C?o- -0 ™Yac™)...)).

Given ClHl = (c<k> ® (c<k+1> @O (c<N*1> ® c<N>) .)) the union of all members of
C*] is a set that is equivalent to the product state space of A®) A®+1) AN There-
fore, taking into account the assumed ordering of automata, functional transition rates
of A®) can be evaluated and NCD CCs of C*! can be updated accordingly. More for-
mally, let Q;k)(sk, 5k) be a functional element, i.e., ng)(sk, Sr) = f. Then the NCD CCs
clkl gkl e CI*l must be joined if (si, Spq1,...,5n5) € ¥ (3k, 5p41,...,5n5) € ¥ and
F(Sky Spat,---58N) > Qe.

Example 4 (continued). We illustrate possibilities (i) and (ii) on the SAN of Example
4 by omitting synchronizing events 1 and 2. Synchronizing events are treated in possibility
(iii). We set € = 0.3 implying ae = 4.2 and assume that the automata are ordered as
AP AG) - AM | First, we find the NCD CCs of all local transition rate matrices as in
possibility (i) by treating functional transition rates as zero. Inspection of local transition
rate matrices shows that local transition rates of all automata are less than ae. Hence,
we have C = {{1,},{2:}}, C® = {{1,},{2:},{32}}, and C® = {{15},{23}}. The
subscripts in the states enable us to distinguish between states with identical indices but
that belong to different automata. According to equation (8), we form the NCD CCs
of QP @ QY i, €® oM = {{(151)}, {(152)}, {(25, 1))}, {(25,21)}}. Then we
continue with possibility (ii). The value of the functional transition rate Ql(3)(1, 2) (= f)
depends on the state of A1) only. Hence, we can evaluate f when C® ® €™ is formed.
The functional transition rate f evaluates to 5, which is larger than ae, when A1) is in
state 2. Therefore, we join {(13,21)} and {(23,2;)}. Finally, the NCD CCs of @, are
given by

c = cPp (C(3) 0 C(l))
= {{La}, {22}, {321} © {{(13,11) }, {(13,21), (25, 21) }, { (25, 11) } }
= {12,135, 1)}, {(12, 25, 1)}, {(20, 13, 10) }, {(22, 25, 11) },
{(32, 15, 11)}, {(32, 23, 1) }, { (12, 13, 21), (12, 23, 21) }
{(22,13,21), (22, 23, 21) }, {(32, 13, 21), (32, 23, 21) } }

Now we consider possibility (iii). When possibilities (i) and (ii) are handled, the
union of all members in C is a set that corresponds to the global state space of the SAN.
The transition rate of synchronizing event ¢ can be taken into account as follows. Let
(s1,892,...,8n) € cand (81, 8s,...,5y) € ¢, where ¢, ¢ € C. Then ¢ and ¢ must be joined
if TV, Qg?(si, §;) > ae. Since the global state space of the SAN is usually very large, it
may take a significant amount of time to find all pairs ¢ and ¢ that satisfy this condition.

SANS AND NEAR COMPLETE DECOMPOSABILITY 17

Fortunately, the situation can be improved. Let p, 1 < p < N, be the smallest index
among automata involved in event ¢, i.e., Qg) =1, fori =12 ...,p—1. We rewrite
the first two terms of equation (1) as

i=1 j=1i=1 j=l,g#ti=1

9 D +Z®Qe] @QE”)@QE (®Inz)®Qet+ > ®er,

where Ql[p = o, Ql(i), and QP = @Y QW. From the definition of tensor sum, the first
two terms of expression (9) can be written as

p—1 p—1 p—1
(10) (69 Ql(”) Py + (® I) Rk = (69 @Y)) D (e +al).
=1 =1 =1

From (10), it can be seen that the transition rate of synchronizing event ¢ can be taken
into account on the smaller state space C®) © CP*) @ ... ©® C™). The same idea can be
extended to the potential sets formed in Step 2. In other words, if for P,, there exists

o, 1 < 0, < N, such that Q(Z =1, fori =1,2,...,0, — 1 and all ¢; € P,, then
transition rates of synchronlzmg events in P, can be taken into account when the set
Clorl = ¢lor) @ ¢lorth) -®CW) is formed. We remark that for the assumed ordering

of automata, all functional transitions that may be present in synchronizing transition
matrices of events in P, can be evaluated when Cl is formed.

Ezample 4 (continued). We continue with the illustration of Algorithm 1 on the SAN
of Example 4. For ¢ = 0.3, each of the two synchronizing events of the SAN is classified
as a potential set. We assume the same ordering of automata, i.e., A® .,4(3), AW After
renumbering the automata, let the new indices of the automata be 1, 2, 3, respectively.
For the given ordering of automata, the smallest index among automata 1nv01ved in event
1 as well as in event 2 is 1. Hence, the transition rates of events 1 and 2 can be taken into
account when C = C is formed. Due to the transition rate of synchronizing event 1,
we join the NCD CCs that have the members (12,23, 11) and (3, 13,11), (22,23, 1;) and
(12,13,11), (32,23, 11) and (12, 13, 11). Similarly, due to synchronizing event 2, we join the
NCD CCs that have the members (12, 13, 1) and (32, 13,2), (12, 13,21) and (32, 13, 1),
(15,23,11) and (39,23,21), (12,23,21) and (35,23,11). For justification, see C formed in
the example following possibility (ii), and the SAN in Example 4.

Our next remark is about cyclic dependencies. When the automata of a SAN have
cyclic dependencies, they cannot be ordered as discussed. Such cases can be handled as
follows. Let G(V, &) be the digraph in Wthh v; corresponds to AW and (v;,v;) € € if
transitions in A® depend on the state of AU (see Definition 4). Let Ggoc be the digraph
obtained by collapsing each SCC of G to a single vertex. This graph is acyclic and the
automata of the SAN can be ordered topologically with respect to Gscc. Assuming that
the automata are in this order, let p be the smallest index among cyclically dependent
automata. Then we can evaluate all functional transitions in the cyclically dependent
automata when CP! is formed. This observation is omitted from Algorithm 1.3 presented
in appendix D. The special case in which a cyclic dependency is created by transitions
in the synchronizing transition matrices of a particular event can be handled in the same
way as discussed in possibility (iii). There, the potential set P,, r € {1,2,..., Np},

18 O. GUSAK, T. DAYAR, AND J.-M. FOURNEAU

is taken into account when Cll is formed. Assuming that the automata are ordered
topologically with respect to Ggcc, all functions in the matrices of synchronizing events
that belong to P, can be evaluated when Cl%"! is formed.

Our final remark is about a SAN with more that one essential subset of states
and/or transient states. As in subsection 4.2, we refer to the states other than the
ones in the essential subset of interest as uninteresting. For 1 < ¢ < N, we do not
have a one-to-one mapping between the global state space and the union of all members
in Cl1. Hence, we cannot say whether a member of cl! € C[! maps to a state in the
essential subset of interest or to an uninteresting state. Therefore, the decomposition of
C as in (8) that allows us to handle functional local transition rates and synchronizing
transition rates on a smaller state space cannot be used. This is because one or both of
the members that belong to the joined NCD CCs may map to an uninteresting state.
For a SAN with uninteresting states, possibilities (ii) and (iii) should be considered on
the global state space. Hence, the NCD CCs c¢,¢ € C should be joined only if the
members under consideration from each of the two sets map into the essential subset of
interest. When we compute C = C™Y © C® @ --- ® €™, uninteresting states must also
be omitted from consideration. From the definition of the binary operator ®, if s; and §;
are in the same NCD CC of C, then it must be that (s1, so, ..., Si_1, 5, Sis1 ..., 5y) and

(81,89, -+, 8i_1,8i, Six1---,Sn) are in the same NCD CC of C. When uninteresting states
are present, we exercise the additional constraint that (s1, s2,...,8;_1, i, Siz1...,Sn) and
(81,82, -+ 8i-1, 8, Sit1---,Sn) must belong to the essential subset of interest.

In the next subsection, we summarize for Algorithm 1 the detailed space and time
complexity analysis that appears in appendix E, and apply the results to Example 4.

4.4. Complexity analysis of Algorithm 1. The core operation performed by an
algorithm that finds the NCD CCs of a MC is floating-point comparison. Hence, we
provide the number of floating-point comparisons performed in Algorithm 1. Regard-
ing the algorithm’s storage requirements, we remark that its three steps are executed
sequentially. Hence, the maximum amount of memory required by Algorithm 1 is upper
bounded by an integer array of length O(n).

As in appendix E, we assume that the MC underlying the SAN is irreducible. In
Step 1, the number of floating-point comparisons is given by Zkal IL; a®ep, mi- For
the best case in which each dependency set is a singleton, the number of floating-point
comparisons reduces to >N, n;. On the other hand, if all automata form a single de-
pendency set, we have the upper bound [[Y,n; = n. In Step 2, the lower bound on
the number of floating-point comparisons is £, and it corresponds to the case in which
the transition rate of each simple synchronizing event is greater than or equal to ce.
The upper bound is equal to 1E(E + 1) floating-point comparisons. This number of
floating-point comparisons is achieved when the transition rate of each simple synchro-
nizing event is less than ae and the transition rates of synchronizing events do not sum
up in). The number of floating-point comparisons in Step 3 depends strongly on the
number of functional transitions and synchronizing events as well as the automata or-
dering. Assuming that in Step 2 of Algorithm 1 synchronizing event r is classified as the
potential set P, r = 1,2,..., F, and the automata are ordered as discussed in possibility
(iii) in subsection 4.3, the number of floating-point comparisons in Step 3 is given by

SANS AND NEAR COMPLETE DECOMPOSABILITY 19
N o + sV g i ny + XTI, jam, n2), where nz" is the number of
nonzero off-diagonal elements in Ql(i), nf; is the number of functional transitions in Ql(i),
nzY) is the number of nonzeros in @, and m, is the index of the master automaton of
event r. Finally, the number of floating-point comparisons performed in Algorithm 1 is
given by E + XN (n; +nz") + SN nf; M ny + X T, jsm, n2Y) in the best
case, and n+ SE(E+1)+ YN, nz + N g i+ 2 I, i, 028 in the
worst case.
Step 3 of Algorithm 1 also incurs floating-point multiplications when synchronizing
events are handled. Computation of a single nonzero transition originating from syn-
chronizing event r requires (N — o,) floating-point multiplications. For synchronizing

event r, we compute Hj»v:(,r’#mT nz{) elements. Hence, the maximum number of floating-
point multiplications in Algorithm 1.3 is 1 [(N — 0,) [T)Z,, j2m, n2%]. Observe that

this expression is almost the same as the last term of the expression for the number of
floating-point comparisons performed in Algorithm 1. Hence, assuming that the time it
takes to perform floating-point multiplication and floating-point comparison are of the
same order, the time complexity of Algorithm 1 is roughly the number of floating-point
comparisons.

Ezxample 4 (continued). As an example, we calculate the number of floating-point
comparisons performed by Algorithm 1 to find an NCD partitioning of the MC under-
lying the SAN in Example 4. We use the same input parameters for Algorithm 1 as in
subsection 4.3; that is, € = 0.3 and the automata are ordered as A®, A®) AW, The
SAN in Example 4 has two dependency sets, D; = { A", A®)} and Dy = {AP®}. Hence,
Step 1 of Algorithm 1 takes ning + noy = 7 floating-point comparisons. The diagonal
element with maximum magnitude of the SAN is 14 and ae = 4.2. This SAN has two
simple synchronizing events. Transition rates of the master automata of these events are
greater than ae. Hence, each synchronizing event is classified as a potential set, and the
number of floating-point comparisons in Step 2 is 2. In Step 3, we first find the NCD CCs
of local transition rate matrices. This operation takes 7 floating-point comparisons and
corresponds to the number of off-diagonal nonzero elements in the local transition rate
matrices. The value of the functional transition rate in Q§3) depends on the state of AW,
Hence, for the given ordering of automata, the value of the function can be evaluated
when C® ®C™M is formed (see Algorithm 1.3). The number of these evaluations is equal to
the number of states in A1), Hence, the number of floating-point comparisons due to the
functional transition rate is 2. Recall that in Step 2, each synchronizing event is classified
as a potential set. Hence, transition rates of both events must be taken into consideration
in Step 3. For the given ordering of automata, let the new indices of the automata be 1,
2, and 3, respectively. For potential set 1, we have o; = 1, and for potential set 2, we have
oy = 1. Hence, the number of floating-point comparisons due to synchronizing events of
the SAN is nz{Mnz{? + nz{Vnz) = 7. Finally, the total number of floating-point com-
parisons performed in Algorithm 1 is 25. The number of floating-point multiplications
performed to process synchronizing events 1 and 2 is (N —1)(nz{Vnz? +nzUnz{¥) = 14.
When the global generator is stored in sparse format, the total number of floating-point
comparisons performed by the straightforward algorithm that finds the NCD CCs is 57,
which is almost two times as large as the corresponding value of Algorithm 1.

20 O. GUSAK, T. DAYAR, AND J.-M. FOURNEAU

5. Numerical results. We implemented the SC algorithm and Algorithm 1 in
C++ as part of the software package PEPS [18]. We ran all the experiments on a
SUN UltraSparcstation 10 with 128 MBytes of RAM. To verify the NCD partitionings
obtained for a given SAN, we compared our results with the straightforward approach
of generating in core the submatrix of () corresponding to the essential subset of states
obtained using the SC algorithm and finding its NCD CCs. We remark that the same
data structure for NCD CCs is used in Algorithm 1 and the straightforward approach.

The input parameters of Algorithm 1 are the user specified decomposability parame-
ter €, the vector output by the SC algorithm in which states corresponding to the essential
subset of interest are marked, and a file in PEPS format that contains the description of
the SAN under consideration. The only modification we introduced to the PEPS descrip-
tor file format is a matrix appended to the end which describes the dependency among
automata. This matrix is in the same sparse matrix format used for automata matrices
in PEPS. Note that the new descriptor file format is compatible with the previous version
of PEPS. We remark that the first step of Algorithm 1 (i.e., Q — P transformation) does
not introduce any explicit changes to the original input description of the SAN. In other
words, € is multiplied by « once and rates are compared with «e on the fly. Hence, upon
termination of the algorithm, the description of the SAN remains unchanged and can
be used in further processing. The only modification that we make on the SAN is the
transformation of each synchronizing event to the simple form (if the SAN is not already
in that form). Note that this transformation is taken into account in the reported results.

As test problems, we use three SAN models [24]. We name them resource sharing,
three queues, and mass storage. The first problem is a resource sharing model with U
processes of which at most S can be simultaneously accessing the resource. Each process
alternates between sleeping and resource using states. The transition rates between these
two states for process ¢ are characterized respectively by A\; and p;, 1 = 1,2,...,U. We
consider the case S < U; otherwise, all processes are independent from each other and the
problem can be modeled as a trivial multidimensional MC. In the SAN model [13], each
process is represented by a two-state automaton. There are U such automata implying a
state space size of n = 2. There is a single subset of essential states whose size depends
on S with respect to U. Since S < U, process ¢ cannot acquire the resource if it is already
being used by S processes. Hence,); is a functional transition rate, and the value of the
function (i.e., whether the transition is enabled or disabled) depends on the state of all
other automata. Observe that there is a single dependency set in the SAN model. In our
experiments, we used \; = 0.04 and p; = 0.03 for: =1,2,...,U.

The three queues problem is an open queueing network that consists of three queues
with capacities (C; — 1), (Cy — 1), and (C5 — 1). Customers from queues 1 and 2, called
respectively as type 1 and type 2 customers, try to join queue 3. When type 1 cus-
tomers try to join queue 3 and find it full, they are blocked, whereas type 2 customers
in the same situation are lost. Queue ¢ has arrival rate A\; and service rate p;, i = 1, 2.
The service rate of queue 3 depends on the type of customer and is either us, or us,;
moreover, type 1 customers have priority over type 2 customers in service. The system
is modeled by 2 synchronizing events and 4 automata A1, 4@ AGD AG2) with respec-
tively O}, Cy, C3,C3 states. The state space size is given by n = C;CoC? and there is

SANS AND NEAR COMPLETE DECOMPOSABILITY 21

a single subset of C1C,C3(C3 + 1)/2 essential states. Functional transition rates appear
in local transition rate and synchronizing event matrices. There are two dependency
sets, D; = { AW, ABY AB)Y and Dy = {AM}. In our experiments, we used A\; = 0.4,
Ao = 0.3, puy = 0.6, uo = 0.5, p3, = 0.7, and p3, = 0.2. Detailed description of the three
queues problem can be found in [13].

The model of the mass storage system considered consists of two layers of storage.
The first layer provides fast access based on magnetic disks. The second layer (i.e., near-
line storage) utilizes a robotic tape library. The system which describes the interaction
between read/write requests and these two layers is modeled by a SAN of 3 synchroniz-
ing events and 5 automata with functional transitions. The automata are denoted by
A A Am2) | A(3) Alerl) - and they respectively have [(H — L)(C —1)] + 1, Ny, No,
N3, R states, where H (L) is the high (low) water-mark for the disk cache. The state space
size is n = ([(H — L)(C — 1)] + 1)N;NoN3R and the corresponding MC is irreducible.
The SAN model has three dependency sets, D; = {A™), AM2) A2)} Dy = { A} and
D3 = { A}, Since the parameters are too many to discuss, we refer the reader to [10]
for detailed information. We used R = 5, H = 0.95, L = 0.75, and the values of the
other parameters in [10] except C, N1, Na, Ns.

Results of experiments for the resource sharing, three queues, and mass storage prob-
lems are presented respectively in Tables 1, 2, and 3. All timing results are in seconds.
In these tables, n denotes the number of states in the global state space of the particular
SAN under consideration, n.,; denotes the number of states in the essential subset when
the underlying MC is reducible, nz.ss; denotes the number of nonzero elements in the
submatrix of () corresponding to the essential subset of states, and SC denotes the time
for state classification. For each problem, we indicate, in parentheses under n the values
of the integer parameters used. The column € denotes the value of the decomposability
parameter used and |C'C's| denotes the number of NCD CCs corresponding to ¢ when
transient states are removed. The column NCD_S contains timing results for Algorithm 1.

TABLE 1
Results of the resource sharing problem (U, S).

n Ness NZess SC € |CCs| | NCD_S | Gen. NCD.N
32,768 16,384 210,664 0.69 | 0.04 1 0.46 0.61 0.04
(15,7) 0.08 16,384 0.44 0.04
65,536 39,203 563,491 1.57 | 0.04 1 1.06 1.64 0.13
(16,8) 0.08 39,203 1.03 0.12
131,072 65,536 960,858 3.29 | 0.04 1 2.15 3.06 0.22
(17.8) 008 65536 | 212 0.21
262,144 155,382 2,514,678 | 7.24 | 0.04 1| 496 | 8.02 0.57
(18,9) 0.08 155,382 4.83 0.55
524,288 262,144 4,319,100 | 15.31 | 0.04 1 9.76 | 15.03 0.85
(19,9) 0.08 262,144 | 9.83 0.91
1,048,576 616,666 11,102,426 | 33.43 | 0.04 1] 22.03
(20,10) 0.08 616,666 22.31
2,097,152 1,048,576 19,188,796 70.58 | 0.04 1 44.98
(21,10) 0.08 1,048,576 45.45
1,194,304 2,449,868 48,587,212 | 152.56 | 0.04 1] 100.79
(22,11) 0.08 2,449,868 | 101.71
8.388,608 4,194,304 84,438,360 | 319.53 | 0.04 1] 205.24
(23,11) 0.08 4,194,304 | 206.98

22 O. GUSAK, T. DAYAR, AND J.-M. FOURNEAU

TABLE 2
Results of the three queues problem (Cy,C5,Cs).

n Ness NZess SC € |CCs| | NCD-S | Gen. NCD.N
37,800 20,160 112,242 0.44 | 0.10 1 0.06 | 0.21 0.02
(12,14,15) 0.22 364 0.12 0.04
0.25 2,520 0.07 0.04
0.35 20,160 0.05 0.04
68,850 36,720 207,279 0.82 | 0.10 1 0.10 | 0.39 0.05
(18,17,15) 0.22 544 0.22 0.09
0.25 4,590 0.13 0.07
0.35 36,720 0.11 0.06
202,400 106,260 608,474 2.63 | 0.10 1 0.30 | 1.24 0.17
(23,22,20) 0.22 924 0.68 0.28
0.25 10,120 0.38 0.24
0.35 106,260 0.33 0.23
390,000 202,800 1,168,676 4.91 | 0.10 1 0.56 | 2.40 0.32
(26,24,25) 0.22 1,200 1.37 0.54
0.25 15,600 0.71 0.47
0.35 202,800 0.58 0.45
756,000 390,600 2,264,460 9.83 | 0.10 1 1.03 | 4.58 0.62
(30,28,30) 0.22 1,652 2.46 1.04
0.25 25,200 1.37 0.92
0.35 390,600 1.12 0.90
1414875 727,650 4,239,795 | 19.04 | 0.10 1] 188 837 1.16
(35,33,35) 0.22 2277 | 4.60 1.94
0.25 40,425 2.46 1.71
0.35 727,650 2.02 1.56
4,050,000 2,070,000 12,143,950 56.91 | 0.10 1 5.02
(40,50,45) 0.22 4200 | 12.66
0.25 90,000 6.74
0.35 2,070,000 5.53
6,875,000 3,506,250 20,632,250 96.37 | 0.10 1 8.63
(50,55,50) 0.22 5445 | 21.85
0.25 137,500 11.57
0.35 3,506,250 9.18
9.150,625 4,658,500 27,445,825 | 131.34 | 0.10 1] 11.25
(55,55,55) 0.22 5,995 33.04
0.25 166,375 14.24
0.35 4,658,500 | 12.44

The columns Gen. and NCD_N respectively contain timing results to generate in core the
submatrix of () corresponding to the essential subset of states and to naively compute
its NCD partitioning for given e after the SC algorithm is executed. We have varied
the value of € in each problem to see how the performance of Algorithm 1 changes for
different number of NCD CCs.

We remark that the difference between the time required to generate in core the
submatrix of () corresponding to the essential subset of states for a given SAN and the
time to find the corresponding NCD partitionings using Algorithm 1 is noticeable. Com-
pare columns Gen. and NCD_S in Tables 1-3, and also compare the sum of columns
Gen. and NCD_N with column NCD_S. Moreover, there are cases in each of the three
tables for which it is not possible to generate in core the submatrix of ¢) corresponding to

SANS AND NEAR COMPLETE DECOMPOSABILITY

TABLE 3
Results of the mass storage problem (C, N1, No, N3).

(= Ness) NZess SC € [CCs| | NCD_S | Gen. NCD.N
30,240 199,440 0.46 | 0.01 1 0.05 0.43 0.05
(10,12,14,12) 0.05 50 003 0.05
0.15 10 0.02 0.05
0.22 720 0.03 0.05
0.25 22,680 0.04 0.06
0.40 30,240 0.05 0.08
69,120 462,720 1.08 | 0.01 1 0.13 1.05 0.12
(10,16,18,16) 0.05 5 0.07 0.12
0.15 10 0.06 0.13
0.22 960 0.07 0.14
0.25 56,160 0.14 0.16
0.40 69,120 0.14 0.15
184,320 1,232,640 | 2.95 | 0.01 1 0.16 | 2.78 0.35
(38,16,16,16) 0.05 51 011 0.33
0.15 10 0.11 0.37
0.22 2,880 0.12 0.34
0.25 149,760 0.27 0.41
0.40 184,320 0.30 0.43
372,680 2,524,060 6.21 | 0.01 1 0.45 6.12 0.67
(30,22,22,22) 0.05 50 027 0.66
0.15 10 0.26 0.69
0.22 3,080 0.33 0.69
0.25 304,920 0.62 0.79
0.40 372,680 0.71 0.85
760,000 5,130,000 13.09 | 0.01 1 0.45 | 12.35 1.38
(90,20,20,20) 0.05 5 037 1.33
0.15 10 0.34 1.40
0.22 7,600 0.58 1.32
0.25 646,000 1.21 1.71
0.40 760,000 1.22 1.82
1572160 10,773,920 | 28.90 | 0.01 1] 219
(35,34,34,34) 0.05 5| 1.34
0.15 10 1.32
0.22 5440 | 1.88
0.25 1,340,960 | 3.11
0.40 1,572,160 | 3.48
3,510,000 23,985,000 65.93 | 0.01 1 2.08
(126,30,30,30) 0.05 50 173
0.15 10 1.72
0.22 15,600 3.31
0.25 3,042,000 5.78
0.40 3,510,000 6.29
5,573,750 38,220,000 | 108.92 | 0.01 1 3.53
(126,35,35,35) 0.05 5| 2.88
0.15 10 2.84
0.22 18,200 5.80
0.25 4,777,500 9.32
0.40 5,573,750 | 10.01
9,280,000 63,800,000 | 189.80 | 0.01 1 5.91
(140,40,40,40) 0.05 5| 5.4
0.15 10 5.07
0.22 23,200 10.18
0.25 8,120,000 17.31
0.40 9,280,000 17.96

23

24 O. GUSAK, T. DAYAR, AND J.-M. FOURNEAU

the essential subset of states on the particular architecture. Hence, the straightforward
approach of finding NCD partitionings is relatively more restricted with memory and is
slower than using Algorithm 1.

The time spent for state classification does not involve any floating-point opera-
tions, whereas the time spent to generate in core the submatrix of () corresponding to
the essential subset of states primarily involves floating-point arithmetic operations. The
overhead associated with evaluating functions slows down both tasks dramatically. Com-
pare columns SC and Gen. in Tables 1-3 with columns NCD_S and NCD_N. The time
spent by the SC algorithm is larger than the time spent by Algorithm 1 in all experi-
ments. This is not surprising since the former is based on finding SCCs while the latter
is based on finding CCs. The difference is more pronounced when there are multiple
dependency sets for which Algorithm 1 can bring in considerable savings.

The resource sharing problem is the most difficult of the three problems considered
since it has a single dependency set, is reducible, and contains a significant number of
functional transitions. Hence, the time to find its NCD CCs using Algorithm 1 is the
largest for a given problem size. Compare column NCD_S in Table 1 with those in Tables
2 and 3. However, even for this problem, Gen. is larger than NCD_S since we are able
to take advantage of the constant transition values in automata matrices which makes
Algorithm 1 worthwhile to use.

The case of |[CCs| = 1 corresponds to smaller ¢ and implies the largest number of
nonzeros taken into account from automata matrices in Algorithm 1 and from the sub-
matrix of () corresponding to the essential subset of states in the naive NCD partitioning
algorithm. The case of |CC's| = ness corresponds to larger e and implies larger temporary
data structures being used by both algorithms when determining NCD CCs. Hence, for
increasing €, the results in columns NCD_S and NCD_N either increase then decrease
(Table 2) or they decrease then increase (Table 3). NCD_S for intermediate € values for
the mass storage example seem to have benefited significantly from its larger number of
dependency sets, irreducibility, and the improvements introduced by possibilities (ii) and
(iii) discussed in subsection 4.3.

6. Conclusion. In this work, we have considered the application of the near com-
plete decomposability concept to SANs. The definitions, propositions, and remarks pre-
sented in sections 3 and 4 have enabled us to devise an efficient algorithm that computes
NCD partitionings of the MC underlying a SAN. The approach is based on determining
the NCD connected components of a SAN from the description of individual automata
without generating the global transition rate matrix. We have also implemented a state
classification algorithm for SANs that classifies each state in the global state space as
essential or transient. The output of the state classification algorithm is used in the
NCD partitioning algorithm for SANs. The time and space complexities of the NCD
partitioning algorithm depend on the number of automata, the number of synchronizing
events, the number of functions, the number of essential states of interest, the sparsity
of automata matrices, the dependency sets, and the ordering of automata. Future work
should focus on taking advantage of the partitionings computed by the devised algorithms
in two-level iterative solvers.

[1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

S.

SANS AND NEAR COMPLETE DECOMPOSABILITY 25

REFERENCES

BAASE, Computer Algorithms: Introduction to Design and Analysis, Addison-Wesley, Reading,
Massachusetts, 1988.

. BucHHOLZ, An aggregation\ disaggregation algorithm for stochastic automata networks, Proba-
bility in the Engineering and Informational Sciences, 11 (1997), pp. 229-253.

. BUCHHOLZ, An adaptive aggregation/disaggregation algorithm for hierarchical Markovian mod-
els, European Journal of Operational Research, 116 (1999), pp. 545-564.

. BucHHOLZ, Projection methods for the analysis of stochastic automata networks, in the Pro-
ceedings of the 3rd International Workshop on the Numerical Solution of Markov Chains, B.
Plateau, W. J. Stewart, and M. Silva, eds., Prensas Universitarias de Zaragoza, Spain, 1999,
pp. 149-168.

. Bucunorz, G. CiARDO, S. DONATELLI, AND P. KEMPER, Complezity of Kronecker opera-

tions on sparse matrices with applications to solution of Markov models, NASA /ICASE Report
No0.97-66, Langley Research Center, Virgina, December 1997.

. BucuHOLZ, M. FISCHER, AND P. KEMPER, Distributed steady state analysis using Kronecker

Algebra, in the Proceedings of the 3rd International Workshop on the Numerical Solution
of Markov Chains, B. Plateau, W. J. Stewart, and M. Silva, eds., Prensas Universitarias de
Zaragoza, Spain, 1999, pp. 76-95.

. CHAN AND W. CHING, Circulant preconditioners for stochastic automata networks, Technical
Report 98-05 (143), Department of Mathematics, The Chinese University of Hong Kong, April
1998.

M. Davio, Kronecker products and shuffle algebra, IEEE Transactions on Computers, C-30 (1981),

)

pp. 116-125.

. DAYAR, Permuting Markov chains to nearly completely decomposable form, Technical Report
BU-CEIS-9808, Department of Computer Engineering and Information Science, Bilkent Uni-
versity, Ankara, Turkey, August 1998;

Available online at http://www.cs.bilkent.edu.tr/tech-reports/1998/BU-CEIS-9808.ps.z.

. DAYAR, O. I. PENTAKALOS, AND A. B. STEPHENS, Analytical modeling of robotic tape libraries
using stochastic automata, Technical Report TR-97-189, CESDIS, NASA/GSFC, Greenbelt,
Maryland, January 1997.

. DAYAR AND W. J. STEWART, On the effects of using the Grassmann-Taksar-Heyman method in
iterative aggregation-disaggregation, STAM Journal on Scientific Computing, 17 (1996), pp. 287—
303.

. DAYAR AND W. J. STEWART, Comparison of partitioning techniques for two-level iterative
solvers on large, sparse Markov chains, SIAM Journal on Scientific Computing, 21 (2000),
pp. 1691-1705.

. FERNANDES, B. PLATEAU, AND W. J. STEWART, Efficient descriptor-vector multiplications

in stochastic automata networks, Journal of the ACM, 45 (1998), pp. 381-414.

J.-M. FOURNEAU AND F. QUESSETTE, Graphs and stochastic automata networks, in Computations

G

with Markov Chains: Proceedings of the 2nd International Workshop on the Numerical Solution
of Markov Chains, W. J. Stewart, ed., Kluwer, Boston, Massachusetts, 1995, pp. 217-235.

. D. MEYER, Stochastic complementation, uncoupling Markov chains, and the theory of nearly
reducible systems, SIAM Review, 31 (1989), pp. 240-272.

. PLATEAU, On the stochastic structure of parallelism and synchronization models for distributed
algorithms, in the Proceedings of the SIGMETRICS Conference on Measurement and Modelling
of Computer Systems, Texas, 1985, pp. 147-154.

. PLaTEAU AND K. ATIF, Stochastic automata network for modeling parallel systems, IEEE
Transactions on Software Engineering, 17 (1991), pp. 1093-1108.

. PLATEAU, J.-M. FOURNEAU, AND K.-H. LEE, PEPS: A package for solving complex Markov
models of parallel systems, in Modeling Techniques and Tools for Computer Performance Eval-
uation, R. Puigjaner and D. Ptier, eds., Spain, 1988, pp. 291-305.

. PLATEAU AND J.-M. FOURNEAU, A methodology for solving Markov models of parallel systems,
Journal of Parallel and Distributed Computing, 12 (1991), pp. 370-387.

. W. STEWART, W. J. STEWART, AND D. F. MCALLISTER, A two-stage iteration for solving

26 O. GUSAK, T. DAYAR, AND J.-M. FOURNEAU

nearly completely decomposable Markov chains, in Recent Advances in Iterative Methods, IMA
Vol. Math. Appl. 60, G. H. Golub, A. Greenbaum, and M. Luskin, eds., Springer-Verlag, New
York, 1994, pp. 201-216.

[21] W. J. STEWART, Introduction to the Numerical Solution of Markov Chains, Princeton University
Press, Princeton, New Jersey, 1994.

[22] W. J. STEWART, K. ATIF, AND B. PLATEAU, The numerical solution of stochastic automata
networks, European Journal of Operational Research, 86 (1995), pp. 503-525.

[23] W. J. STEWART AND W. WU, Numerical experiments with iteration and aggregation for Markov
chains, ORSA Journal on Computing, 4 (1992), pp. 336-350.

[24] E. UvsaL AND T. DAYAR, Iterative methods based on splittings for stochastic automata networks,
European Journal of Operational Research, 110 (1998), pp. 166-186.

Appendix

A. State classification algorithm for SANs. The SC algorithm is based on
an algorithm that finds SCCs of a digraph using DFS (see subsection 3.2). When the
digraph corresponds to the MC underlying a SAN, for each global state s of the SAN,
we have to find all states §(# s) such that Q(s,5) # 0. Recall that the global state
s can be represented as a vector (si, Sa,...,Sy), where si is the state of automaton k.
According to Remarks 1 and 2, a nonzero element in () can originate either from a local
transition or from one or more synchronizing transitions. If (s, 5) originates from the
local transition ng)(sk, §k), then it must be that § corresponds to the global state vector
(S1, .-y Sk_1, 8k, Ska1,---,5n). If Q(s,5) is formed of transitions of synchronizing event j,
then Qg’;)(sk, Sk) #0for k=1,2,..., N (see Remark 3). The implementation of a DFS
algorithm for SANs is straightforward once these observations are made. The output of
the SC algorithm is an integer array of length n with states corresponding to the essential
subset of interest marked. Assuming that the matrices of the SAN description are stored
in sparse format, the number of times global states are visited by the SC algorithm is

N nzl(i) Hfle’k# ng + Zle My, nzg), where nzl(i) is the number of off-diagonal nonzero

elements in Ql(i), and nzg? is the number of nonzero elements in Qg?.

B. Algorithm 1.1. Computing a.
Input:
e QW QW i=12,...,N,j=1,2,....E
e Dy is kth dependency set, k = 1,2,..., Np, as in Definition 4
e integer array of length n with essential subset of interest marked by SC algorithm

Output:
e « as discussed in subsection 4.1
Notation:
e S;: state that corresponds to max_Dy,
e Mop,: set of synchronizing events whose masters are in Dj,
e s: global state that corresponds to S1,S52,...,Sn,
[]

Diagy: double precision array of length [[; 4i)ep, 7

for k=1,2,...,Np, 4 .
Diagy = |@; st)ep, diag(Q”) + 2je;emp, Qi Atep, diag(Qé?)\
sort elements of Diagy in non-increasing order
find max_Dj = max; Diagy (i), and corresponding state Sk
set element corresponding to max_Dj to 0 in Diagy

SANS AND NEAR COMPLETE DECOMPOSABILITY 27

while global state s does not map into essential subset of interest,
for k =1,2,..., Np, next_max_Dj = max; Diagy(7)
find ¢ such that next_max_D; > next_max_Dy for k =1,2,...,Np
let S; be state corresponding to next_max_D;
max_D; =next_max_D;
set element corresponding to max_D; to 0 in Diagy, and Sy = Sy
_ Mo

a =) ;" max_Dy

C. Algorithm 1.2. Finding potential sets.
Input:
e QY i=12..,Nj=12..E
® ¢
e « computed by Algorithm 1.1
Output:

e P, is rth potential set, r = 1,2,..., Np, as discussed in subsection 4.2
Notation:

e ||P,||: sum of transition rates of synchronizing events in P,
. Qg’f) = ng) holds if Qg’f) and ng) have at least one nonzero element with same indices
(see second if-statement in innermost for-loop)
Remark:
e r = Np upon termination

for i =1,2,..., F, set synchronizing event e; to unmarked
r=20
fori=1,2,..., F,
if e; is unmarked then
r=r+1
P = {ez}
if ||Py|| < ce then
forj=i+1,i+2,...,F,
if e; is unmarked and |[{e;}|| < ae then
if QU = QW for k=1,2,..., N then P, = P, U{e;}
if ||Py|| < ce then
Pr=10
r=r—1
else mark each e, € P,
else mark e;

D. Algorithm 1.3. Constructing NCD CCs.

Input:

e QW QW i=12,...,N,j=1,2,....E

with A® reordered/renumbered as discussed in subsection 4.3

®c

e « computed by Algorithm 1.1

e P, is rth potential set, r = 1,2,..., Np, computed by Algorithm 1.2
Output:

e C: NCD CCs of MC underlying SAN as discussed in subsection 4.3

28 O. GUSAK, T. DAYAR, AND J.-M. FOURNEAU

Notation:
e C): set of NCD CCs of QO
e 0,: smallest index among automata involved in synchronizing events in P,
e (©: binary operator as defined in subsection 4.3

fori=1,2,...,N,
using ae, find 1 by treating all functional transition rates as 0
let K be the number of C("s that are singletons
reorder /renumber A® such that C(), i = N — K +1,N — K,..., N, are singletons
if K >0then C={{1,2,...,ny—g+1} X {1,2,...,ny_g} X...x{1,2,...,nn}}

else
c=cw)
K=1
fork=N—-KN-K-1,...,1,
c=c®oc

for each functional rate f = ng)(sk, Sk)
for each pair ¢, ¢ € C such that
(Sky Sk+1s---,8N) € c and (8, Skr1,---,8N) € € and f(Sk, Skr1,---,8N) > Q€
join ¢ with ¢
if there exists r such that o, = k then
for each pair ¢, ¢ € C such that
(Sks Skt15---,5N) € ¢ and (8, 8gy1,-..,88) € Cand 3 cp, Hf\ik Qgp)(si,@) > ae
join ¢ and ¢

E. Complexity analysis. The time complexity analysis of Algorithm 1 is com-
plicated in that it requires one to make assumptions regarding the number of nonzero
elements in automata matrices, the dependency sets, the ordering of automata, the num-
ber of functions, and the number of states in the essential subset of interest. Nevertheless,
in the following three subsections, we provide some results concerning time and space
complexity. In order to simplify the analysis of the algorithm, we assume that the MC
underlying the given SAN description is irreducible. We remark that the algorithm and
automata matrices are coded in sparse format. Most diagonal corrector matrices in ap-
plications turn out to be identity. To reduce storage requirements further and to improve
the complexity of operations with identity matrices, we do not store identity matrices.

E.1. Algorithm 1.1. According to our simplifying assumption, the MC underlying
the given SAN description is irreducible. For an irreducible SAN, the diagonal element
with maximum magnitude is given by equation (7), which is the sum of the maximums
of dependency sets. The operation of finding the maximum of a dependency set requires
[L; 4rep, i floating-point comparisons. Since this operation is performed Np times,
the total number of floating-point comparisons is given by Z,]cvfl [l; avep, ni- For the
best case in which each dependency set is a singleton, the total number of floating-
point comparisons reduces to 3%, n;. On the other hand, if all automata form a single
dependency set, we have the upper bound [IY | n; = n.

When the MC underlying the SAN has uninteresting states, the vectors
i aenp, diag(le)) + Xjeemp, Qi awen, diag(Qg)|, k = 1,2,...,Np, are stored as
sorted. For a dependency set Dy, sorting of an array of length np, = [I; 40 ep, n: requires

SANS AND NEAR COMPLETE DECOMPOSABILITY 29

O(np, log np,) floating-point comparisons. Thus, the total number of floating-point com-
parisons performed before the while-loop in Algorithm 1.1 is 32, O(np, lognp,). The
number of iterations of the while-loop depends on the number of essential states of in-
terest and their global state indices. If the number of essential states is n.ss, the number
of iterations performed of the while-loop is less than or equal to (n — ness). The memory
requirement of Algorithm 1.1 consists of a double precision array of length > r2 np,
(< n).

E.2. Algorithm 1.2. Each potential set P, is described by its member synchroniz-
ing events, the sum of scaled transition rates ||P,||, and o,, which is the smallest index
among automata involved in the synchronized events in P,. Since we can have at most
E potential sets, Algorithm 1.2 requires at most two integer arrays of length E and one
double precision array of length E.

Algorithm 1.2 does not involve any floating-point arithmetic. Therefore, its time
complexity depends on the relation between e and the transition rate of each simple
synchronizing event in the SAN description. See the comparison between ||P,|| and «e
in the second if-statement of Algorithm 1.2. Hence, we give lower and upper bounds on
the total number of floating-point comparisons.

The lower bound corresponds to the case where the transition rate of each simple
synchronizing event is greater than or equal to «e. In this case, the SAN under con-
sideration has F potential sets and each rate is compared against «e only once since
the algorithm never enters the innermost for-loop. Thus, the smallest total number of
floating-point comparisons is F.

The upper bound is achieved when the transition rate of each simple synchronizing
event is less than e and the transition rates of synchronizing events do not sum up in
Q. See the innermost if-statement in Algorithm 1.2. In this case, the outermost for-loop
is executed E times, and for each value of i, the innermost for-loop is executed (E — i)
times. Hence, the total number of floating-point comparisons with ae is $E(E +1).

E.3. Algorithm 1.3. It is clear that Algorithm 1.3 requires the largest amount
of storage since it works with the global state space of the SAN. The computed NCD
partitioning is kept in the structure C which requires an integer array of length O(n).
The exact amount of storage for C depends on the particular implementation which
must be sophisticated enough so that operations of the form “join ¢ and ¢” can be
executed rapidly. This data structure must also grant fast access to a specific element in
a particular NCD CC. On the other hand, the data structure C¥) requires an integer array
of length at most (2n; + 1). The first n; elements of this array contain a permutation of
the state indices of A®, its (n; 4+ 1)st element contains the number of NCD CCs, and
its last n; elements contain the number of states in each NCD CC since we may have n;
NCD CCs. Thus for N automata, we need a maximum of N+ 2~ | n; integer locations
for C1). The total amount of storage is then upper bounded by O(n) integer locations.

For the time complexity of Algorithm 1.3, we consider floating-point comparisons and
also count floating-point multiplications performed to compute transition rates. Floating-
point comparisons take place when C® are determined. For A®, this means nz(” com-

parisons are performed, where nz,@ is the number of off-diagonal nonzeros in Q,@. Hence,

30 O. GUSAK, T. DAYAR, AND J.-M. FOURNEAU

we have N nz,@ floating-point comparisons for N automata. Floating-point compar-
isons also take place when evaluating functions. The number depends on the ordering
of automata and the number of functions to evaluate in each automaton. The num-
ber of floating-point comparisons performed due to one functional transition in Q,(i)

N
j=it1 M- The total number of such floating-point comparisons is Infi 1l J i1 M

where nf; is the number of functional transitions in Ql(i). Based on our assumptlon re-
garding dependency among automata and their ordering, the Nth automaton cannot
contain functional transitions and is excluded from the summation. To estimate the
number of floating-point comparisons due to synchronizing events, we assume that each
synchronizing event in the SAN is classified as a potential set P,, where r corresponds to
the index of the event in P,, implying F potential sets. Let m, be the master automa-
ton of event r. Then, for synchronizing event r, we have H] - nz{) floating-point
comparisons, where nz(J) is the number of nonzeros in QET . The total number of such
comparisons is Y% TV - nz(j) Hence, the total number of floating-point compar-

isons in Algorithm 1.3 is given by N | nz @4 i J Lani+ X HJ oy i nzld.
This expression depends strongly on the number of functional transitions and synchro-
nizing events in a SAN as well as the automata ordering. Thus, an optimal ordering
that minimizes the total number of floating-point comparisons from the perspective of
synchronizing events is one in which there is no automaton with index greater than o,
uninvolved in event r.

For floating-point arithmetic operations incurred when handling synchronizing events,
we make the following observations. Computation of a single nonzero transition origi-
nating from synchronizing event r requires (N — o,) floating-point multiplications. For
synchronizing event r, we compute HJ "o me nz(g{) elements. Hence, the maximum num-

ber of floating-point multiplications in Algorithm 1.3 is 3>/ [(N — 03) [T2,, i, nzi).

