HYPERGRAPH BASED DECLUSTERING FOR
MULTI-DISK DATABASES

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER
ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Mehmet Koyuturk
September, 2000

1

I certify that I have read this thesis and that in my opin-
ion it is fully adequate, in scope and in quality, as a thesis

for the degree of Master of Science.

Assoc. Prof. Dr. Cevdet Aykanat(Principal Advisor)

I certify that I have read this thesis and that in my opin-
ion it is fully adequate, in scope and in quality, as a thesis

for the degree of Master of Science.

Assoc. Prof. Dr. Halil Altay Guvenir

I certify that I have read this thesis and that in my opin-
ion it is fully adequate, in scope and in quality, as a thesis

for the degree of Master of Science.

Asst. Prof. Dr. Ugur Gudikbay

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet Baray, Director of Institute of Engineering and Science

11

ABSTRACT

HYPERGRAPH BASED DECLUSTERING FOR MULTI-DISK
DATABASES

Mehmet Koyutiirk
M.S. in Computer Engineering

Supervisor: Assoc. Prof. Dr. Cevdet Aykanat
September, 2000

In very large distributed database systems, the data is declustered in order
to exploit parallelism while processing a query. Declustering refers to allocat-
ing the data into multiple disks in such a way that the tuples belonging to
a relation are distributed evenly across disks. There are many declustering
strategies proposed in the literature, however these strategies are domain spe-
cific or have deficiencies. We propose a model that exactly fits the problem and
show that iterative improvement schemes can capture detailed per-relation ba-
sis declustering objective. We provide a two phase iterative improvement based
algorithm and appropriate gain functions for these algorithms. The experimen-
tal results show that the proposed algorithm provides a significant performance
improvement compared to the state-of-the-art graph-partitioning based declus-

tering strategy.

Key words: Distributed Databases, Declustering, Hypergraph Partitioning,
Max-cut Graph Partitioning.

v

OZET

COK DISKLI VERITABANLARI ICIN HIPERCIZGE TABANLI
AYRISTIRMA

Mehmet Koyutiirk
Bilgisayar Mihendisligi, Yiksek Lisans
Tez Yoneticisi: Dog. Dr. Cevdet Aykanat
Eylil, 2000

(ok buyuk daginik veritabanlarinda, sorgularin iglenmesini paralellegtirmek
icin veri disklere ayrigtirilmaktadir. Ayrigtirma, verinin her iligkide yer alan
ogelerin disklere egit dagilacaklari sekilde yerlestirilmesi anlamina gelir. Lit-
eraturde bircok ayrigtirma yontemi onerilmig olmasina kargin énerilen yontemler
ya alana 6zel ya da baz1 dezavantajlar1 olan yontemlerdir. Bu caligmada prob-
leme tam olarak uyan bir model 6nerilmig ve yinelemeliiyilegtirme yontemlerinin
her iligkiyi detayl olarak degerlendirerek ayristirma hedefini gerceklestirme
yetisine sahip olduklarini gosterilmistir. Ayrigtirma probleminin ¢ézimu igin
iki agamali bir yinelemeli iyilegtirme algoritmas: ve bu probleme uygun kazang
fonksiyonlar1 6nerilmistir. Yapilan deneyler, onerilen algoritmanin en geligkin
ayrigtirma yontemi olan ¢izge parcalama yonteminden daha tstin performans

sergiledigini gostermektedir.

Anahtar kelimeler: Dagimk veritabanlari, ayrigtirma, hipercizge parcalama,

cizge parcalama.

Gul’anama ve Babama...

vi

ACKNOWLEDGMENTS

Derin bilgi ve zekasi, insana cogku veren heyecani, sonsuz anlayisi ve hig
eksik olmayan gileryuziu ile bu teze deger kazandiran damigmanim Cevdet

7
Hoca’ya,

Sagladig1 test verileri ve elegtirileriyle katkida bulunan Sayin Halil Altay

Guvenir’e,
Bu tezi okuyup yorumlariyla giiclendiren Sayin Ugur Gudikbay’a,
Akademik caligmaya dair kendisinden ¢ok sey 6grendigim Metin Nafi Giircan’a,

Bu bolimde yiksek lisans yapmam icin beni cesaretlendirerek bu tezin

temelini atan Nihan Ozyﬁrek’e,
Bagimin sikigtigi her noktada zevkle yardimei olan tistat Armagan Yavuz’a,

Sadece tezle kalmayip tim ytiksek lisans hayatim boyunca her konuda destek

olan kardeg Bora Ucar’a,
Ve varligy, sevgisi ve inceligiliyle beni giclu kilan yarim Gunnur’a,

Sonsuz tegekkirler...

Contents

1 Introduction 1
2 Background 3
2.1 Basic Definitions on Declustering 5
2.2 Mapping Function Based Declustering Techniques 7
2.3 Weighted Similarity Graph Model 10
2.4 Flaws of Weighted Similarity Graph Model 12
3 Hypergraph Model for Declustering 17
3.1 Hypergraph Partitioning Problem 18
3.2 Hypergraph Based Declustering Model 19

3.3 Algorithms for Partitioning the Relational Hypergraph of a Database
Systemo 21

3.3.1 [Iterative Improvement Based Partitioning Algorithms . . 22
3.3.2 Initial Recursive Bipartitioning of Relational Hypergraph 24

3.3.3 K-way Refinement of Relational Hypergraph Partitioning 34

4 Experiments and Results 41

Vil

CONTENTS Viil

5 Conclusion 50

List of Figures

2.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

Sample partition of WSG with given database information . . . 14

KL-FM algorithm for hypergraph partitioning 23
Pin distribution of a net of size 24 during recursive bipartitioning 25

Initialization of the table containing best-case maximum degree

of connectivity of eachneto 27

Update of the global table with given resulting hypergraph after

a bipartitioning step oL oo 27
Gain initialization algorithm for recursive bipartitioning 29
Gain update algorithm for recursive bipartitioning 30
Estimation of gain changesfork =1 31
Estimation of gain changes fork =2 31
Estimation of gain changes for x >2 32
K-way refinement phase oL 35
Estimation of the gain of moving vertex v; topart ¢t 37
Part non-optimal virtual gains initialization algorithm 38
Part non-optimal virtual gains update algorithm 39

X

LIST OF FIGURES X

3.14 Part-maximum virtual gains initialization algorithm 40

3.15 Part-maximum virtual gains update algorithm 40

4.1 Performance of declustering algorithms with respect to number

of disks 44

List of Tables

2.1

4.1

4.2

4.3

4.4

4.5

Examples of false cost estimation of similarity graph model . . . 15
Description of test data L. 41
Averages of average retrieval timeo 44
Averages of parallel retrieval overhead 46
Averagesof run time o oL oL 48
Comparison of WSG cut values and retrieval times 49

xi

Chapter 1

Introduction

In many database applications like scientific and multimedia databases, very
large multi-dimensional or multi-attribute datasets are processed. When the
storage space required for such databases is huge and the time required to
process a query on such databases is very high, such applications are generally
implemented on distributed environments. This is also the case in world wide

web applications.

In very large distributed database systems, data placement is an important
issue because it directly affects the access time required to process a query.
As the disks in the multi-disk system are accessed in parallel, it is desired to
access the same amount of data from each disk at a time, so that the I/O
times required for access to all disks are balanced. A poor distribution of data
over the disks may cause the system to access only a small number of disks
among various number of disks resulting in ineffective usage of resources. To
use the resources effectively by providing maximum parallelization of query
processing, the data is distributed over the disks in such a way that the data
that are more likely to be processed together are located into different disks.
This operation is known as declustering. Declustering can be applied to any

distributed database system with pre-defined relations on the data.

There have been significant amount of research on declustering in the liter-

ature. The great amount of work was on mapping function based declustering

CHAPTER 1. INTRODUCTION 2

techniques that scatter the data into disks in such a way that the neighboring
data in multi-dimensional space are placed into different disks. Such methods
apply only to spatial databases and specific indexing techniques. A promising
declustering technique is based on max-cut graph partitioning which outper-
formed all mapping function based strategies [34]. This method can be applied
to any relational database system. However, this method have some deficiencies
as a relational database system cannot be fully represented by a graph and the
cost model of graph partitioning does not accurately represent the cost function
of declustering. We show the flaws of the graph model and provide a model
that exactly fits to the physical problem.

We model the declustering problem by representing the relational database
system by a hypergraph, where each data item is represented by a vertex and
each relation is represented by a net, and we define a cost function for par-
titioning this hypergraph to fit the cost function of the declustering problem.
We adapt the iterative improvement based graph and hypergraph partitioning
algorithms to this problem. We propose a two phase algorithm that first ob-
tains an initial partitioning by recursively bipartitioning the hypergraph, then
applying a K-way refinement on this partitioning. We provide effective gain
models for both phases. Our experimental results show that the model we
propose provides significantly better declustering then the graph model which

is the most promising strategy in the literature.

We overview and discuss the literature on the declustering problem in Chap-
ter 2. In this chapter, we also show the flaws of the graph model for declus-
tering. We introduce our model and the adaptation of iterative improvement
techniques to the problem in chapter 3. In Chapter 4, we report the experimen-
tal results showing the performances of the proposed algorithms. We finally

discuss our contributions and the directions for future work in Chapter 5.

Chapter 2

Background

In very large database systems, parallel I/O is considered to be the main bot-
tleneck by several researchers [28, 32]. In order to exploit the I/O bandwidth in
multi-node database machines and multi-disk database systems, the relations
are declustered. Declustering, or horizontal partitioning refers to placing the
tuples belonging to a single relation on multiple disks [29]. There have been
many research on developing strategies to effectively decluster the data on sev-
eral disks in order to achieve minimum I/O cost. Many declustering strategies
were developed on declustering multidimensional data structures such as carte-
sian product files, grid files, quad trees and R-trees [7, 12, 26, 28, 30, 32, 34],
multimedia databases [2, 5, 27, 31, 33], parallel web servers [20], signature
files [8], spatial databases and geographic information systems (GIS) [34, 35].

Most of the efforts on developing declustering strategies were based on
mapping functions. These mapping-function based strategies include coordi-
nate modulo declustering (CMD) [28], field-wise exclusive-OR distribution [25],
Hilbert curve method [12, 19], lattice allocation method [10] and cyclic alloca-

tion scheme [32]. These methods are briefly discussed in Section 2.2.

A remarkable declustering method is using error correcting codes in order
to partition binary strings into groups of unsimilar strings [8, 11, 12, 13]. The
method is based on the idea of providing the strings in a group have large Ham-

ming distances by grouping the strings in such a way that each group forms an

CHAPTER 2. BACKGROUND 4

error correcting code. The method was applied to problems such as decluster-
ing cartesian product files [11], grid files [7, 12] and signature files [8]. Local
Load Balance (LLB) methods [21, 35] define a local window around the data
item to be allocated, and map this data item to the disk with minimum load
over the local window. This method was applied to parallelizing R-trees [21]
and parallelizing geographic information systems (GIS) [35].

Graph theoretical models were applied to declustering problems by several
researchers. Berchtold et.al. [2] model the declustering problem as a graph
coloring problem by defining the disk assignment graph as an undirected graph
with vertices corresponding to buckets and the edges corresponding direct and
indirect relationships between buckets in the multidimensional data structure.
As graph coloring is an NP-hard problem [36], they exploit some regularities

in the specific graph and develop a simple yet efficient coloring algorithm.

Shekhar and Liu [34] introduced the idea of the similarity graph based
on the similarity definition of Fang et.al. [14] and developed the max-cut
graph-partitioning based declustering technique which outperforms all of the
mapping-function based algorithms. The similarity graph partitioning ap-
proach will be discussed in detail in Sections 2.3 and 2.4. Moon et.al [30]
applied Prim’s minimal spanning tree algorithm to the similarity graph and
proposed the minimax spanning tree algorithm. The algorithm grows K dis-
joint minimax spanning trees in round-robin order to obtain K groups of ver-
tices with similar vertices in different groups. The algorithm uses a minimum
of maximum cost criterion and selects the vertex that minimizes the maximum
of all edge weights between itself and the already selected vertices. This al-
gorithm provides exact storage balance in all disks, i.e. any disk can have a
storage load of at most (%W data items where N is the number of data items

and K is the number of disks.

In the rest of this chapter, we will briefly introduce the mapping function
based declustering algorithms in Section 2.2, discuss the similarity graph model
in detail in Section 2.3, and finally show the flaws of the similarity graph model
in Section 2.4. Before discussing the declustering methods in the literature, it

will be appropriate to give the basic definitions on the declustering problem.

CHAPTER 2. BACKGROUND 3

2.1 Basic Definitions on Declustering

Declustering problem can be defined in various ways depending on the appli-
cation. Shekhar and Liu [34] define the problem in a database environment
with given data set and a query set. Information on possible queries can be
available in many database applications, the possible queries may be predicted
using the information on the application or queries may be logged with the
assumption that the queries that will be processed in the future will be similar
to the recent ones. In some cases, information on queries may not be available
and it can be more appropriate to decluster the data items in such a way that
the data items sharing a feature are stored in separate disks. This can be the
case in some multimedia servers [27, 31] or content-based image retrieval sys-
tems [18, 33]. Therefore it will be more convenient to provide a definition of
the problem in terms of a set of data items and a set of relations between data
items as in the work of Zhou and Williams [37]. The set of relations may refer
to the query set or a possible query may be the union of a set of relations in

many applications.

Definition 2.1 A relation g; on a set D of data items is defined to be a subset
of D such that the data items in q; are likely to be accessed together by the
database system. Set of relations () is the set containing all possible relations
q; on D. Function f(q;) maps the query set Q to a relative frequency, i.e. the
probability that the items in q; are expected to be accessed together.

With this definition of a relation on a set of data items, a relation corre-
sponding to a query becomes the set of data items that should be accessed
in order to process that query as these data items are obviously likely to be
accessed together. The relative frequency of a relation corresponds to the

probability of processing the corresponding query.

Definition 2.2 Given a partitioning of the set of data items D and a relation
q;, retrieval time t(q;) of relation q; is defined as the cardinality of the largest
set among the sets q¢j1,¢q;2,...,q;xk < ¢q;, where subset q;; of q; is the set of

data items in q; assigned to disk 1.

CHAPTER 2. BACKGROUND 6

This definition of the retrieval time of a relation corresponds to the time
required to process a query if we assume that a data item is accessed by the

database system in unit time.

Definition 2.3 Given a set D of data items and a set of relations @) on D,
declustering problem is defined as assigning the data items in D to K parts so
that the total retrieval time over the set of relations T(Q) = 3-,.cq f(g;)(q;)

s minimized.

The cost function defined above has been used as the performance metric
of the declustering methods in the literature, and Shekhar and Liu [34] use the
average retrieval time as the metric to measure the quality of a declustering
strategy which is equal to the cost defined above divided by the total relative

frequency of queries. It is obvious that the retrieval time of a relation g;

las]
K

performance of an allocation method.

cannot be lower than [5£] and this number forms the basis of analyzing the

Definition 2.4 An allocation method is strictly optimal with respect to a rela-

tion g; if and only if t(q;) = (%W

Definition 2.5 An allocation method is strictly optimal with respect to a set

Q of relations if and only if it is strictly optimal for every relation ¢; € Q).

The extension of the definition of strict optimality of a relation and a set
of relations to a query and a set of queries is straightforward from the above
discussion. An allocation method is strictly optimal with respect to a query
set if it achieves the minimum possible processing time for all queries in the

set, 1.e. if it provides maximum parallelism.

CHAPTER 2. BACKGROUND 7

2.2 Mapping Function Based Declustering Tech-

niques

Most of the work on declustering in the literature address the mapping-function
based declustering techniques. These techniques take advantage of the spatial
information on data items (buckets, pages etc.) and scatter the data items
across disks in order to ensure that the data items that are more likely to be
processed together by a query are stored in different disks. The methods try
achieving this objective by maximizing the distance between any pair of data
items that are assigned to the same disk in the n-dimensional data space. We
will define and discuss these algorithms briefly in this section. In the rest of
this chapter, we will denote the number of data items by N, number of disks
by K, the number of dimensions in the database by n, a data item d; € D
in n-dimensional space by vector Z = (X1, X2, ..., X,,) and the function that

— —
maps a data item d; to a disk by Disk(d;).

Definition 2.6 Coordinate Modulo Declustering (CMD) is the allocation method
that maps data item Z to disk Disk(Z) = (X7, X;) mod K.

Li et al. [28] show that CMD provides exact storage balance and is strictly
optimal for all range queries whose length in some dimension is equal to kK

where k € ZT.

Definition 2.7 Field-wise exclusive-or distribution method (FX) is the declus-
tering strategqy with mapping function Disk(Z) = (X1®0X2®...0X,,) mod K.

Kim and Pramanik [25] showed that when the number of disks and the size
of each field are powers of two, the set of partial match queries that CMD 1is
strictly optimal for is a subset of that of FX. The probability that FX will be
strictly optimal with respect to a range query is greater than that of CMD [12].

Definition 2.8 Hilbert Curve Allocation Method (HCAM) is the declustering

strateqy that imposes a linear ordering on the data items with a space-filling

CHAPTER 2. BACKGROUND 8

curve in n-dimensional space, and traverses the sorted list of data items by

assigning data items to disks in a round-robin fashion.

HCAM was proposed by Faloutsos and Bhagwat [12] in order to apply the
good clustering properties of space filling curves to the declustering problem.
Hilbert curve visits all points in a d-dimensional grid exactly once and never
crosses itself. This property of Hilbert curve ensures that neighboring data
items will be close to each other on the linear ordering, and thus assigned
to separate disks. It is shown experimentally that HCAM achieves better
declustering than CMD, FX and error correcting codes [12].

Definition 2.9 A lattice allocation method in 2-dimensional space with basis
H
vectors @ = (ap,0) and b = (by,b1) where by < ag and ag, b, by integers is

defined by the mapping function:

X d X f0< Xy < d 0<X;<b
Disk((Xo, X,)) = (o mod ag) + 161.07 1f 0< Xo <ag an <X S .1
Disk((Xo — bo(X1 div by)) mod ag, X1 mod by), otherwise
Lattice allocation methods are designed to parallelize the set of small range

queries. The performance of lattice allocation methods depends on the query

distribution [10].

Definition 2.10 Cyclic allocation methods are mapping functions defined as

Disk(d) = (Y Hi X;) mod K , Hy =1

=1

where H;, 1 = 1..n are constants specified by the allocation scheme.

Obviously, CMD is a special case of the cyclic allocation methods. It is
proved in [32] that for any cyclic allocation, the cost of the query depends
only on its shape, not its location. Prabhakar et al. provide methods for
determining the H; values in order to obtain minimum load imbalance while
processing an arbitrary query. The reported experimental results show that

proposed cyclic allocation methods perform better than HCAM, CMD and

CHAPTER 2. BACKGROUND 9

FX [32]. Generalized disk modulo (GDM) method is a cyclic allocation method

All methods discussed above are designed for cartesian product files. These
methods can be applied to multidimensional data structures like grid files and
R-trees by introducing greedy algorithms for decision making in the case of
conflicting disk assignments. The conflicting assignments are caused by page
sharing which can be defined as the situation that multiple cells in the spatial
database are included by one data page or bucket. These greedy algorithms
include selecting the disk with minimum number of data items (data balance),
choosing the disk that occurs the most often in the conflicting mappings (most
frequent) and selecting the disk with minimum total area of assigned data items
(area balance) for a data item with conflicting alternatives [30]. However, for
grid files, with high degree of page sharing the number of conflicts become very
high resulting in poor performance of the mapping function based strategies.
Additionally, the mapping function based methods are designed by the assump-
tion that the disks are homogeneous in terms of both their storage and 1/0
capacities. However, storage and I/O capacities of disks may differ in many
situations and these strategies may perform very poor since they do not con-
sider any information about disk capacities. Therefore, mapping function based
methods are limited to spatial databases, a number of indexing techniques and
homogeneous database environments. Mapping function based techniques can-
not be applied to databases with no spatial information on the data items. For
instance, an image database with binary signature files recording significant
wavelet coefficients cannot be represented by spatial relationships [18]. In the
case of spatial databases, Shekhar and Liu provide experimental results ob-
tained on grid files which show that their Max-cut graph partitioning model
outperforms a number of mapping function based methods [34]. Therefore we
will discuss the max-cut graph partitioning model of Shekhar and Liu as a

promising and general declustering strategy in the next section.

CHAPTER 2. BACKGROUND 10

2.3 Weighted Similarity Graph Model

Shekhar and Liu proposed an elegant graph model for the declustering problem
and provided theoretical analysis of correctness of their model [34]. The model
is based on the similarity concept defined by Fang et al. [14]. They define a
weighted similarity graph corresponding to a set of data items and a query set
and define an objective function that approximates the cost of processing a

query in the database system.

Definition 2.11 Given a set D of data items and a query set @), weighted
similarity graph WSG(D,Q) = (V,E) is defined to be the graph with vertex
set V.= D and edge set £ = {e(u,v) | u,v € V and 3 ¢; € Q s.t. u,v € ¢;}.
Each edge e(u,v) € E is associated with a weight w(u,v) = ¥, cq., f(4;),
where Quy C @ is the set of all queries such that u,v € q; and f(q;) is the

relative frequency of query g¢;.

With this definition of weighted similarity graph, it becomes obvious that
the larger the weight of the edges between two vertices of WSG, the more
the two corresponding data items in the database are likely to be processed
together. Observing this property of W .SG, the similarity between two groups,
i.e. two subsets of the vertex set of W.SG is defined as follows.

Definition 2.12 Let WSG(V, E) be a weighted similarity graph. Then the
similarity between two vertex subsets V; and V; of V(W SG) is defined as

S(VZ,V]) = Z Z w(uvv)

ueV; veV;

As the definition of the declustering problem enforces similar data items to
be allocated in separate disks, all disks should be similar to each other with
respect to the data items they contain. In terms of W.SG, the partitioning
of WSG should enforce that all K groups defined by the partitioning of the
graph should be similar to each other for effective declustering. Shekhar and
Liu [34] conclude from this point that the weighted similarity graph should
be partitioned in such a way that for a given pair of groups V; and Vj, the

CHAPTER 2. BACKGROUND 11

s(V;, V;) values will be as high as possible. Therefore, the objective function
of a partition II(V) of a weighted similarity graph WSG(V, E) is defined as

maximizing the metric

sSmvy)y) = Y sV = 3 wuw)
Y Vi, V,CV i) e(uw)EE.

where F. is defined as the set of all edges e(u,v) such that uw € V;, v € V; ¢ # j,

namely the cutset of the partitioning. Thus the W SG should be partitioned to

maximize the cut in order to obtain similar subsets of the vertex of the weighted

similarity graph. Shekhar and Liu [34] define max-cut graph partitioning as

follows.

Definition 2.13 Maxz-Cut partitioning of the weighted similarity graph is de-
fined as: Given a weighted similarity graph W SG = (V, E), the number of disks
K, and the disk capacity constraints L; for each disk i, find a partition II(V) =
(G1,Gha, ..., Gk) among K disks to mazimize S(I(V)) = Y. e w(u,v)
which is the total weight of the edges in the cut set, such that L;(G;) =
TrueVil <1< K.

The max-cut graph partitioning method is a heuristic approach for declus-
tering problems. It exploits the concept of obtaining similar groups of data
items in order to ensure that similar data items are contained in separate
groups. However, Shekhar and Liu provide a number of lemmas and theo-
rems with proofs showing that this heuristic exhibits optimality under special
conditions. The following theorem states the condition for obtaining optimal
solution via max-cut graph partitioning method. We do not prove the theorem

here as the proof is provided in [34].

Theorem 2.1 If there exists a strictly optimal allocation method for a query
set), the max-cut graph partitioning method is also strictly optimal with respect

to the query set ().

As the max-cut graph partitioning problem is NP-complete, Shekhar and

Liu propose two heuristics to solve the problem. The first heuristic is named

CHAPTER 2. BACKGROUND 12

incremental max-cut declustering algorithm (SM-INCR) and aims at allocating
data items in order to fulfill the objective of maximizing the cut in a local
window around each data item in a greedy manner. The second heuristic
named global max-cut graph partitioning (SM-GP) transforms max-cut graph
partitioning problem into the well known K-way min-cut graph partitioning
problem by inverting the weight of each edge, then applies the modified ratio-
cut heuristic of Cheng and Wei [6] which is a move-based two-way partitioning
heuristic. If the number of disks K is a power of 2, SM-GP algorithm recursively
performs two-way partitioning until K parts are found, else it performs two-way
partitioning algorithm to produce a set of % vertices and a set of remaining
vertices, and repeats this procedure K —1 times on the set of remaining vertices
in order to find K balanced subsets of the vertex set of the WSG. Then the
partitioning is improved by applying the two-way partitioning procedure to the

selected pairs of K parts.

Shekhar and Liu [34] compared the similarity graph based declustering
model with declustering methods HCAM, GDM and LLB with experiments on
parallelizing grid files with 16 disks and the results are reported in [34]. The
results show that the WSG model outperforms other declustering strategies
for all row/column, square and diagonal query sets on uniform and hot-spot
data sets. SM-GP provides better quality results than SM-INCR. The experi-
ments are performed with two variations of SM-GP, a general max-cut graph
partitioning technique (SM-GP-G) and a technique adapted to query sets (SM-
GP-S) and it is reported that SM-GP-S provides better quality results than
SM-GP-G on parallelizing grid files. The effect of the number of disks is not
included in the experimental study with the assumption that the number of
disks does not affect the performance of an allocation method, however we
show in Section 2.4 that the performance of the WSG model is degraded by

increasing number of disks.

2.4 Flaws of Weighted Similarity Graph Model

Although WSG is an elegant model that finds the optimal allocation if exists,

there are some points that the objective function of the model does not fit the

CHAPTER 2. BACKGROUND 13

actual cost function of the declustering problem and these points may cause
the method to make serious errors for hard instances of the problems. In this
section, we will exploit the flaws of the model with theoretical analysis and

examples to clarify the situations where WSG is more likely to make errors.

In order to accurately model the cost function of the physical problem,
the objective function of the model must be proportional to the actual cost
function. In other words, a model fits the physical problem if one can say that
the higher/lower the objective function of the model the lower the cost function
of the model. The objective function of the WSG model is maximizing the cut,
so we can define the objective function of max-cut graph partitioning to be the
cut i.e. S(llx) = Xequer. w(u,v). As the objective of the graph model is
maximizing this function, one should be able to say that the higher the cut
on the WSG of the database system, the lower the cost function or average
retrieval time of the system. However, this is not the case for the max-cut
graph model. We can see the intuition behind our claim if we define the cost

function as the sum of the cost functions for each relation.

For the weighted similarity graph model, a relation ¢; € () induces a clique
of |g;| vertices which corresponds to the data items in that relation. We can
define the cut due to a relation as the cut on this clique. The sum of the cuts
due to all relations is clearly equal to the total cut on the WSG. The cost
or retrieval time of a relation was defined in Section 2.1. If we compare these
two functions, we can observe that the relation between these two functions
is not linear, moreover they are not proportional. The relation between the
retrieval time of a relation and the cut due to a relation is not linear, so
the sum of the retrieval times/cuts over the relations may be inconsistent. For
example, for a two disk system, the cut due to a relation ¢; can be formulated as
lg;1|(1¢;|—|g;1]) although the retrieval time of ¢; is equal to max(|¢;1|, |¢;|—|gj1])-
The functions are also not proportional, i.e. the statement that “if the cut due
to relation ¢; is higher than the cut due to relation ¢;, the cost of ¢; is lower
than the cost of ¢;” is not always true. For example if we look for an allocation
to 4 disks, and if two relations ¢; and ¢; of size 5 are distributed among these 4
disks as [21 1 1] and [2 2 1 0] respectively, the cut due to ¢; will be higher than

the cut due to ¢; although the retrieval times of these two relations are the

CHAPTER 2. BACKGROUND 14

ql= {dl, d2, d3}

q2 = {dl, d4}

43 = {d1, d5}

g4 = {d2, d4}

g5 = {d2, d5}

q6 = {d3, d4}

q7 = {d3, d5} »

b2 bz

Database System Ist partition of WSG 2nd partition of WSG

Figure 2.1: Sample partition of WSG with given database information

same. The statement is only true if the sizes of these relations are at most two
or exactly equal to two as a relation of size 1 is trivial. This is because of the
mathematical fact that the multiplication of two numbers with constant sum is
maximum if the difference between them is at most one. The graph model only
fits to the case of relations of size two as the graph model can only represent
the relations between pairs of vertices. This observation shows the necessity of
a model that can represent a relation between a set of vertices independent of

the cardinality of the set.

The example of Figure 2.1 illustrates the effect of the nonlinearity of the
relation between the retrieval time of a relation and the cut due to a relation.
The figure shows a database system with query set @ = {¢1, ..., g7} of 7 queries
and a data item set of 5 data items. The relative frequencies of all queries
are assumed to be equal and ¢; accesses 3 data items while the other queries
access two data items each. There is no strictly optimal allocation for this set
of queries. The W SG of this database system and two different partitions of
this graph are shown in the figure. The edges in the cutset of each partition
are indicated by bold lines. The total cut of the first partition is equal to 6
and the allocation is strictly optimal with respect to all queries other than ¢;.
The cut corresponding to ¢; is estimated to be zero. In the second partition
of the WSG, the total cut is again equal to 6, but now this partitioning is not
strictly optimal with respect to two queries, ¢gs and ¢;. The total actual cost

or retrieval time of the first partitioning is 9 while the second one has cost 10.

CHAPTER 2. BACKGROUND 15

This difference is the result of the over-estimation of the cost due to ¢;. The
difference between the cuts corresponding to queries gg and g7 of two parti-
tioning schemes are equal to 1 which is equal to the difference between actual
costs of these queries. However, the difference between the cuts corresponding
to ¢ is estimated to be equal to 2 while the difference between the actual costs
of this query is also 1. Assuming that the second partition was obtained at
an instance of the max-cut partitioning of the W.SG, the partitioning tool will
not move further vertices because the maximum achievable cut on this graph is
equal to the cut of this partitioning. Unfortunately, there exists a better par-
tition of this database which is the first partition but this partition is missed
by the similarity graph partitioning model.

The weighted similarity graph model can also estimate the cut corresponding
to a query lower for lower cost of that query and vice versa. This results in
the selection of higher cost partitioning as such partitioning can provide higher
cut in the case of conflicts between queries. Table 2.1 shows several examples
of this phenomenon. Two different distributions of a query of given size into
given number of parts and the actual cost functions and the cost corresponding
to that query with such partitioning are displayed in the table. In the first
example, a query of size 11 is partitioned into 3 disks. In the first partitioning,
the query accesses 5 data items in a part and the cut corresponding to this
query is 35. However, with a partitioning that provides a cost of 4 for this
query results in a cut of 36, i.e. this partitioning is preferred to the previous

one by the max-cut graph partitioning model. This deficiency of max-cut graph

Table 2.1: Examples of false cost estimation of similarity graph model

K | Query size Distribution Cost | Cut
3 11 [5, 5, 1] 5 35
6, 3, 2] 6 36

4 9 (3, 3, 3, 0] 3 27
4,2, 2, 1] 4 | 28

6 15 L4400,] 1| 88
5,2, 2,22 2 5 | 90

8 8 2,2,2,2,0,0,0,0] | 2 | 24
3,1,1,1,1,1,0,0] | 3 | 25

CHAPTER 2. BACKGROUND 16

partitioning model comes from the fact that the max-cut objective models the
variance on the distribution of queries to disks rather than the imbalance of
the distribution which depends only on the maximum number of data items
accessed by a query allocated into one disk. With greater number of disks, the
degree of freedom is greater, so the number of deviations which are not related
to the maximum of the distribution is greater. As max-cut graph partitioning
tries balancing such deviations, the probability of erroneous cost estimation is
higher in greater number of disks. This degrades the scalability of the similarity
graph model. The correctness of this observation will be shown by experimental

findings displayed in Chapter 4.

Chapter 3

Hypergraph Model for

Declustering

The deficiencies of the graph partitioning based declustering model source from
the same basis as that of graph partitioning based sparse matrix reordering
models [3, 4]. Modeling the relation between N items with N(N — 1)/2 pairs
of relations between all pairs of these items masks the conflicts between original
relations. Therefore, the problem should be modeled in such a way that each
relation defined on a set of a number of items in the item set can be captured by
the model. Catalytirek and Aykanat [4] modeled the sparse matrix reordering
problem via hypergraphs, preserving the significance of the relations between
rows/columns having non-zeros on the same column/row of a sparse matrix
and obtained a significant performance improvement when compared with the
graph model. A hypergraph is a generalized version of a graph in which an
edge(hyperedge) can define a relation between more than 2 vertices. This
property of hypergraph makes it capable of exactly modeling a set of relations
on a set of items independent of the cardinality of sets defined by the relations.
In other words, a relation of N items can be represented by an hyperedge of

N vertices in a hypergraph.

We exploit the accurate modeling ability of hypergraphs and model the
problem of declustering very large databases as an hypergraph partitioning

problem with a new cost function. In this chapter, we will define the original

17

CHAPTER 3. HYPERGRAPH MODEL FOR DECLUSTERING 18

hypergraph partitioning problem in Section 3.1, then explain the model we pro-
pose on the declustering problem in Section 3.2 and finally provide algorithms

for solving the proposed hypergraph based declustering problem in Section 3.3.

3.1 Hypergraph Partitioning Problem

The hypergraph partitioning model has been used for solving the VLSI circuit
partitioning problem [1, 15] and for reordering sparse matrices for efficient

parallelization of iterative sparse matrix problems recently [3, 4].

Definition 3.1 A hypergraph H = (V, N) is defined as a set of vertices(cells)
V and a set of nets(hyperedges) N among those vertices. FEvery net n; € N
is a subset of vertices, i.e. n; C V. FEach vertex in a net is called a pin of
the net. The size of a net nj is equal to the number of its pins, |n;|. The set
of nets containing a vertex v; is called the nets of v; and denoted as nets(v;).
The cardinality of nets(v;) is called the degree d; of v;, i.e. d; = |nets(v;)]. A
hypergraph with all nets having size 2 s a graph.

The nets or vertices of the hypergraph can be associated with a weight

function.

Definition 3.2 A K-way partitioning llx(H) of a hypergraph H is a mapping
of vertex set V of H to K disjoint groups. A net with at least a pin mapped to
a part is said to be connected to that part. The cut-set N.(H,Il) is the set of
nets that are connected to more than one part. The connectivity A; of net n;

is defined to be the number of parts that n; is connected to.

The min-cut hypergraph partitioning problem is similar to the min-cut
graph partitioning problem: find a partitioning of the hypergraph that mini-
mizes the number or the total weight of nets in the cut set of the partitioning.
Another cost function of the hypergraph partitioning problem is applied to

the sparse matrix reordering problem [4] and defined as the difference between

CHAPTER 3. HYPERGRAPH MODEL FOR DECLUSTERING 19

total connectivity of the nets and the number of nets in the hypergraph. The
hypergraph partitioning problem is solved by the iterative improvement based
heuristics frequently used for the graph partitioning problem. The iterative
improvement based partitioning algorithms start with an initial partitioning of
the hypergraph and swap the parts of two vertices [24] or move a vertex to a
different part [15] repeatedly in order to improve the quality of the partition-
ing. The quality of direct K-way partitioning strictly depends on the initial
partition and the time and space consumed by direct K-way partitioning is
high. Therefore, an initial partition is found by recursively bipartitioning the
hypergraph and the partition is refined by direct K-way partitioning scheme

in order to obtain high quality partition while consuming less time and space.

3.2 Hypergraph Based Declustering Model

We model the problem of declustering large databases as a hypergraph parti-
tioning problem with a cost function that matches the I/O cost of processing a
query in a multi-disk database system. The data items in the database are rep-
resented by the vertices of the hypergraph and the relations among these data
items are represented by its nets. This definition of the relational hypergraph

of a database system exactly represents the system.

Definition 3.3 The relational hypergraph H(D, Q) of a database system with
data item set D and relation set () among these data items is the hypergraph
with vertex set V=D and net set N = Q). Fach relation q; € () defines a net
n; € N with n; = q;. Each net n; representing a relation q; is associated with

a weight function w; = f(q;) representing the relation’s relative frequency.

The definition of declustering enforces partitioning the relational hypergraph
to find a mapping of the vertices of the hypergraph in such a way that the
number of pins of each net in the part that contains the maximum number
of pins of that net is minimized. We define the partitioning of the relational

hypergraph of a database system on this objective.

CHAPTER 3. HYPERGRAPH MODEL FOR DECLUSTERING 20

Definition 3.4 In a K-way partition llx = {V4,Va,...,Vik} of H, n;(k) C n;
denotes the subset of pins of net n; that lie in part Vi, i.e. n;(k) = n; N Vg
for k=1,2,....K. Cardinality |n;(k)| of set n;(k) is called the degree of connec-
tivity of n; to part Py. 6; = maxi<i<r{|n;(k)|} denotes the mazimum degree
of connectivity of net n;. 5;pt = (%W denotes the strictly optimal degree of
connectivity of net n;. The cost e, (n;) of net nj; due to partition 11y is defined
as the difference between maximum degree of connectivity and strictly optimal

degree of connectivity of n;, i.e.

Il

e (ny) = max {|n;(k)[} — [

1<k<K K I

Obviously, the maximum cardinality of sets n;(k) is bounded from below by
(%W , so the partitioning can achieve this value at its best. Therefore we define
the cost of the partitioning with respect to a net as the penalty of exceeding
the strictly optimal degree of connectivity of that net. The cost of a net in the
partitioning of a relational hypergraph defined above is linearly proportional
to the cost of a relation due to an allocation scheme defined in Section 2.1 by
the function ¢rp,. (n;) = cost(q;)— (%W Therefore this cost function accurately
represents the extra time spent to process a query due to the imbalance of the
partitioning of the data items accessed by a query if that query accesses the set
of data items belonging to a single relation in the database system. If the set
of data items to be accessed in order to process a query is the union of some
relations, this cost function is an upper bound of the extra time spent. However,
if no information is available on what query will access which relations, then
this upper bound is the only function representing the extra time spent to
process a query. Thus, we can conclude that the cost function defined above
accurately matches the I/O cost of a multi-disk database system. The cost
of a K-way partitioning of a relational hypergraph is defined similarly to be
linearly proportional to the actual cost function of the declustering problem.

We call this partitioning scheme as the min-net-imbalance partitioning of a

hypergraph.

Definition 3.5 The K-way min-net-imbalance partitioning of a hypergraph is
a mapping Il (H) defined on the set V of the vertices of the hypergraph which

CHAPTER 3. HYPERGRAPH MODEL FOR DECLUSTERING 21

minimizes the cost function

Cn(H)= Y wengn)= Y wy(max {Iny(R) - [220)

1<k<K
n;€N(H) n; EN(H) -

satisfying the storage capacity constraints L;(V;) = True Vil <: < K.

3.3 Algorithms for Partitioning the Relational
Hypergraph of a Database System

The min-cut and min-connectivity hypergraph partitioning problems are solved
by iterative improvement based multi-level tools like PaToH [3, 4] and hMeTiS
[22, 23]. In order to obtain a K-way partitioning of the hypergraph, these
tools find a bipartitioning of the original hypergraph and split it into two
hypergraphs with vertex sets consisting of the vertices mapped to the first
part for the first hypergraph and the second part for the second hypergraph
and net sets containing nets with pins as subsets of the corresponding nets
in the original hypergraph containing the vertices in the corresponding parts.
This procedure is recursively applied to the hypergraphs created by splitting
the original hypergraph until K parts are found. This procedure is called
recursive bipartitioning and is less time and space consuming than direct K-
way partitioning. For this reason, the K-way partitioning of a hypergraph is
performed in two phases, the recursive partitioning phase to obtain an initial
partition of the vertices followed by a K-way refinement phase in order to
increase the quality of the partitioning [3, 4, 22, 23]. This procedure is preferred
to direct K-way partitioning methods in terms of both resource usage and

partitioning quality.

We propose a two-phase algorithm for partitioning a relational hypergraph
as in the case of min-cut partitioning. Our heuristic is based on the iterative im-
provement based graph/hypergraph partitioning heuristics [15, 24] extensively
used in VLSI circuit partitioning and sparse matrix reordering applications.
The basics of the iterative improvement based heuristics are explained in Sec-
tion 3.3.1. In our method, an initial K-way partition of the hypergraph is

obtained via recursive bipartitioning with an optimistic cost model and then a

CHAPTER 3. HYPERGRAPH MODEL FOR DECLUSTERING 22

fast K-way refinement heuristic is applied to the initial partition. As the cost
function of the min-net-imbalance partitioning problem is a non-linear function
of the K-way mapping, it cannot be applied directly to the recursive biparti-
tioning scheme. Therefore, we propose an optimistic cost model that considers
the final K-way cost of the partitioning and include a memory concept that
relates the independent bipartitioning steps. The details of the method are
explained in Section 3.3.2. In order to save time and memory space during the
K-way refinement phase, we propose a fast K-way refinement heuristic using
the concept of virtual gain to approximate the actual gain of moving a vertex.

The proposed method is introduced in Section 3.3.3.

3.3.1 Iterative Improvement Based Partitioning Algo-

rithms

The well-known circuit partitioning problem is the problem of allocating the
nodes of the circuit to K parts in order to minimize the sum of the costs
of the edges between the nodes in separate parts satisfying the balance con-
straints on parts. Kernighan and Lin [24] proposed an efficient heuristic for
2-way partitioning of a graph. Their algorithm starts with a balanced random
initial partition of the vertices in the graph and tries to improve the quality
of the partitioning with respect to the cost function by swapping the parts
of selected vertices repeatedly. The gain of swapping a vertex pair is defined
as the decrease in the total cost on the cut that will be caused by swapping
these vertices. The algorithm searches for the set of ordered swappings that
will provide the largest total gain. This is done by repeatedly selecting a pair
of unlocked vertices with the highest gain, swapping them temporarily and
locking them until all vertices are locked. The vertices are locked in order
to prevent infinite loops, i.e. repeated swapping of some set of vertices. All
vertices are exhausted in order to climb out local minima of the cost function.
After all vertices are exhausted, the point in the swapping process that gives
the maximum cumulative gain is selected and the swapping operations before
that point are realized. This procedure is named a pass and repeated until an

improvement on the cost function cannot be achieved.

CHAPTER 3. HYPERGRAPH MODEL FOR DECLUSTERING 23

procedure RecursivePartitioning(H: hypergraph, K: number of parts)

begin
if K =1 then
stop
else
find initial disjoint subsets Vies: and V,gn: of V(H)
repeat
UL — 0
M — 0
count «— ()
cumgain[0] « 0
Initialize gains of all vertices gain(v;)
UL~ V(H)
while UL # () do
select v; € UL with gain(v;) > gain(v;) ¥V v; € UL
if moving v; does not violate balance constraint then
count «— count + 1
Mecount] « v;
cumgain[count| « cumgain[count — 1] + gain(v;)
update gains of all v; € UL assuming v; is moved
UL—UL\v;
select count maximizing cumgain[count|
for : =1 to count do
move vertex M[i] to the other part
passgain «— cumgain[count|
until passgain < 0
split H to obtain Hj.s; and H,izp with vertex sets Vieg and Vign
call RecursivePartitioning(Hie i, K/2)
call RecursivePartitioning(H,ign:, K/2)
end

Figure 3.1: KL-FM algorithm for hypergraph partitioning

CHAPTER 3. HYPERGRAPH MODEL FOR DECLUSTERING 24

Fiduccia and Mattheyses [15] improved Kernighan and Lin’s heuristic by
introducing the concept of single vertex move and implementing the algorithm
using buckets for selecting the vertex with maximum gain for partitioning of a
hypergraph. Their algorithm improves the bipartitioning by moving a vertex
from one part to the other instead of swapping a pair vertices. This approach
provides more flexibility for selecting the set of vertices to be moved. The move
gain of a vertex during partitioning a hypergraph is the difference between total
weight of nets that are connected to that vertex’s part with only that vertex
and the total weight of the nets that are not connected to the other part. The
algorithm proceeds as Kernighan and Lin’s algorithm and it establishes balance
by starting with a balanced initial partition and permitting the vertices to move
to the other side if the move will not exceed a pre-specified imbalance tolerance.
The algorithm is implemented by using buckets to store the gains of the vertices
with the observation that the maximum possible gain of a vertex for a given
hypergraph is bounded by the maximum vertex degree in the hypergraph. The
use of buckets provides fast update of the gains after a move and it has been
shown by Fiduccia and Mattheyses [15] that the algorithm has a linear time
complexity in the order of total number of pins of the hypergraph with such
implementation. The iterative improvement based partitioning algorithm is

known as KL-FM algorithm and summarized in Figure 3.1.

3.3.2 Initial Recursive Bipartitioning of Relational Hy-
pergraph

To solve the K-way relational hypergraph partitioning problem, we are encour-
aged to start with an initial partitioning obtained by recursive bipartitioning of
the hypergraph because recursive bipartitioning is less time and space consum-
ing when compared to direct K-way partitioning. A partitioning obtained by
recursive bipartitioning is more likely to be close to an optimal solution than
a random partitioning of the hypergraph, therefore K-way refinement of such
partitioning will be performed in significantly less number of passes than that
of random partitioning and the quality of the final partitioning will be better

for such initial partitioning.

CHAPTER 3. HYPERGRAPH MODEL FOR DECLUSTERING 25

/\

‘/ \@ @/ \®

SobbEobe

HO000 HOO01 HO10 HO11 H100 H101 HI110 HI11

Figure 3.2: Pin distribution of a net of size 24 during recursive bipartitioning

The cost of a K-way partitioning of a relational hypergraph depends on
the maximum degree of connectivity of each net with respect to the K parts
defined by the partitioning. Thus, the cost function of a 2-way partitioning in
the recursion tree of recursive bipartitioning does not fit the cost of the final
K-way partitioning as it depends only on the the two parts obtained at that

level of the recursion tree.

After bipartitioning a hypergraph at a level of the recursion tree, a net
is splitted into two nets in the two child hypergraphs containing the pins of
the net in each part. During bipartitioning, it will be inconvenient to take
into account the maximum degree of connectivity of a net due to two parts
as shown by the example of Figure 3.2. The figure shows a recursion tree of
recursive 8-way partitioning of a hypergraph and the numbers in the circles
representing the nodes of the tree show the number of pins of a net in the
hypergraphs in the recursion tree. The size of the net is 24 in the original
hypergraph H, and the number of pins in each part obtained by bipartitioning
are 15 and 9. The cost of this net due to the bipartition is 15 — 12 = 3 as
maximum degree of connectivity of this net due to the bipartition is 15 and
its ideal degree of connectivity is 12. However this net’s maximum degree of
connectivity is 4 and strictly optimal degree of connectivity is 3 resulting in
a cost of only 1 due to the 8-way partition. The bipartitioning in the first
level of the recursion tree overestimates the cost of the net as it does not take

into account the degree of freedom gathered by further partitioning of the

CHAPTER 3. HYPERGRAPH MODEL FOR DECLUSTERING 26

obtained hypergraphs. No matter if the maximum degree of connectivity of
this net to the first-level bipartitioning was 13 or 16, the minimum achievable
maximum degree of connectivity would be [12] = [18] = 4 in the further 4-way
partitioning of Hy. However if this net had 17 pins in Hy after the first-level

17

bipartitioning, the best-case maximum degree of it would be [

| =5, causing

an increment in the cost of the net due to the 8-way partition.

Observing that the cost of a bipartitioning at one level of the recursion de-
pends on the number of parts that will be obtained after further partitioning,
we propose a cost model that takes into account the best-case performance of
further partitioning. As the expected maximum degree of connectivity at the
final level of the K-way partitioning grows with the function L%J, we define
a cost function that depends on the integer division of the maximum degree
of connectivity of a net by the number of parts that will be obtained by fur-
ther partitioning each of the hypergraphs obtained by that bipartitioning step
denoted by k.

Definition 3.6 The cost cn,(nj, k) of net n; due to bipartition lly in the re-

cursion tree of a K-way partitioning of a relational hypergraph is defined as

8 — 5§ptw _ (maX(lny‘(l)la Ini(2)]) — (521 * &

K K

—‘7

e (ny, &) = |

where k is the number of parts that will be obtained by further partitioning the
children of the hypergraph at that level of the tree. The cost of bipartition 11,

is the sum of the costs of each net, i.e. Cn, (N, k) = 3, cnmywicm, (n, k).

This approach provides the flexibility of moving further vertices to the part
containing a number of pins of a net that exceeds the ideal degree of connec-
tivity of that net without increasing the expected cost of that net due to the
final K-way partitioning. This definition of the cost function of a bipartitioning

leads to simple algorithms for initializing and updating gains of vertices.

In the example of Figure 3.2, hypergraph Hyg is partitioned in a non-optimal
manner, with cost equal to 1 for this net. However, as the maximum degree of
connectivity of this net due to K-way partition is 4, this cost is overestimated,

i.e. there is no cost of that imbalanced bipartition on the overall cost of the

CHAPTER 3. HYPERGRAPH MODEL FOR DECLUSTERING 27

procedure InitBestOfNets(H:hypergraph, K: number of parts)

begin
for each n; € N(H) do

bestof[n;] (%}

end

Figure 3.3: Initialization of the table containing best-case maximum degree of
connectivity of each net

procedure UpdateBestOfNets(H: hypergraph, x: number of parts for further
partitioning)

begin
for each n; € N(H) do
6; —)
if 6; > bestof[n;] then
bestof[n;] « ¢;
end

Figure 3.4: Update of the global table with given resulting hypergraph after a
bipartitioning step

partitioning. Thus the cost of a bipartition at a level of the recursion tree
should be estimated in such a way that the best-case performance of the other
bipartitioning steps are taken into account. Such an effort will provide the flex-
ibility of permitting the algorithm not to consider the nets that are sacrificed
by the previous bipartitioning steps. We introduce the concept of the global
best-case maximum degree of connectivity in order to take advantage of this

observation.

Our algorithm keeps a table containing the minimum achievable maximum
degree of connectivity of each net, and each bipartitioning step updates this
table with its information on the size of the nets in the two children of the par-
titioned hypergraph. This table initially contains the strictly optimal degree
of connectivity of each net due to K-way partition. After a child hypergraph is

created by a bipartitioning step, the best-case maximum degree of connectivity

CHAPTER 3. HYPERGRAPH MODEL FOR DECLUSTERING 28

of the child net of each net in this hypergraph is estimated for further parti-
tioning and stored in the global table in order to provide information for other
bipartitioning steps. A bipartitioning step respects the minimum achievable
maximum degree of connectivity as the strictly optimal degree of connectiv-
ity of a net for its own gain estimations. Our algorithm updates the table
containing the minimum achievable maximum degree of connectivities of all
nets after a bipartitioning step, and uses these updated values to estimate the
gains of vertices in the next bipartitioning step. The procedures for maintain-
ing the global table of best-case maximum degree of connectivity are given in
Figures 3.3 and 3.4. Procedure InitBestO f Nets initializes the table with the
prior knowledge of strictly optimal degree of connectivity of each net. Then,
after a child hypergraph is created as a result of a bipartitioning step, the
procedure UpdateBestO f Nets computes the strictly optimal degree of con-
nectivity with respect to the size of each child net in this new hypergraph and
the number of parts this hypergraph will be partitioned into, and if this value
exceeds the previously stored best-case maximum degree of connectivity, it up-
dates the table in order to provide the knowledge that the maximum degree
of connectivity for that net can be no smaller from now on. The best-case

maximum degree of connectivity of net n; is stored in the variable bestof[n;].

The estimation of gains in each bipartitioning step depends on &, the number
of parts each resulting part will be partitioned. For the initialization of the
gains of vertices during bipartitioning, the estimation is divided into two cases
of k = 1, i.e. no further partitioning will be performed, and « > 1, i.e. the
resulting parts will be further partitioned. Figure 3.5 shows the algorithm for
initializing gains. Procedure InitGains takes the value in the global table of
best-case maximum degree of connectivity of nets and estimates the optimal
maximum degree of connectivity of each net, which is the maximum value that
has the chance of achieving the best-case maximum degree of connectivity of
that net. This estimated value is considered to be the strictly optimal degree
of connectivity of the corresponding net for the bipartitioning step and it is
denoted by ;. The case of k = 1 is the case that the resulting parts will be
the final parts of the partitioning, so each increment in the maximum degree
of connectivity of a net causes an increment in the actual K-way cost of that

net. However, in the case ¥ > 1, the resulting hypergraphs will continue being

CHAPTER 3. HYPERGRAPH MODEL FOR DECLUSTERING 29

procedure InitGains(H: hypergraph, s: number of parts for further partition-
ing)

begin
for each v; € V(H) do
gainlv;] « 0
for each n; € N(H) do
6; « bestof[n;] * k
partgain[l] < 0
partgain|r] < 0
if k =1 then
if |n](l)| = 5]‘ then
partgain(r] <« partgain|r] — w,
elseif |n;(1)| > ¢;
partgain(r] <« partgain|r] — w,
partgain|[l] « partgain[l] + w,
if |n](r)| = 5]‘ then
partgain(l] « partgain[l] — w,
elseif |n;(r)| > §;
partgain(l] « partgain[l] — w,
partgain[r] < partgain|r] + w,
elseif x > 1
if |n](l)| Z 5]‘ then
if |n;(1)] — 6;) mod k = 0 then
partgain[r] <« partgain|r] — w;
elseif |n;(l)| — 6;) mod k =1
partgain|[l] « partgain[l] + w,
if (|n](r)| Z 5]‘ then
if |n;(r)| — 6;) mod £ = 0 then
partgain(l] « partgain[l] — w,
elseif (|n;(r)| — 6;) mod k =1
partgainr] <« partgain|r| + w,
for each v; € n; do
gain|v;] « gainfv;] + partgain|[partof[v;]]
end

Figure 3.5: Gain initialization algorithm for recursive bipartitioning

CHAPTER 3. HYPERGRAPH MODEL FOR DECLUSTERING 30

procedure UpdateGains(H:hypergraph, x:Number of parts for further parti-
tioning, u: Vertex being moved)

begin
s « partof|u]
t—1-s
for each n; € nets[u] do
6; « bestof[n;] * k
Agam[s] «—0
Agam[t] «— 0
if Kk =1 then
call EstimateDeltaGainsl(H, n;, s, t)
elseif kK =2
call EstimateDeltaGains2(H, n;, s, t)
elseif k > 2
call EstimateDeltaGainss(H, k,n;j, s, t)
for each v; € n; do
gain[v;] «— gain[v] + Again[partofvi]]
end

Figure 3.6: Gain update algorithm for recursive bipartitioning

partitioned, so that each k increase in the maximum degree of connectivity
of that net due to the current bipartitioning will cause at least an increase
of 1 in the actual K-way cost. Therefore we divide the maximum degree of
connectivity to levels of k, that is each k decrease in the maximum degree of
connectivity of a net is respected to be a single gain. We initialize and update
gains of vertices due to these levels by simple estimations using mod function.
A net is considered to be critical if the number of pins of the net in a part is
a multiple of k larger than the best-case maximum degree of connectivity of
that net. The vertices increasing the number of pins of a critical net on the
part that the net is maximally connected to are assigned with a negative gain
due to this net. A vertex making a net critical by its move is associated with
a positive gain due to that net. So we check for the nets who are critical or
one pin away from being critical to estimate the gains of the vertices in the

hypergraph.

Figure 3.6 shows the algorithm for updating gains. The procedure Update-

Gains visits all nets the moved vertex is connected to, estimate the change in

CHAPTER 3. HYPERGRAPH MODEL FOR DECLUSTERING 31

procedure EstimateDeltaGainsl(H: hypergraph, n;: net, s: the part vertex
is moved from, ¢: the part vertex is moved to)

begin
lf |n](t)| = 5]‘ — 1 then
Again[s] & Again[s] — w;
elseif |n;(t)| = ¢;
Again[t] & Again[t] + w;
lf |n](3)| = 5]‘ —|— w]‘ then
Again[s] & Again[s] — w;
elseif |n;(s)| = ¢;
Again[t] & Again[t] + w;

end

Figure 3.7: Estimation of gain changes for x = 1

procedure EstimateDeltaGains2(H: hypergraph, n;: net, s: the part vertex
is moved from, ¢: the part vertex is moved to)

begin
if |n](t)| Z 5]‘ then

if (|n;(t)] — 6;) mod 2 = 0 then
Agam[] — Agam[t] + wjy
A ain [S] — Agam[s] + wy
eif ([n;(t)] — 6;) mod 2 =1
Agaln[t] — Again[t] — Wy
Agmn[S] — Again[s] — Wy
elseif |n;(t)| =6; — 1

Again[s] — Again[s] — wj
if |n;(s)] > 6; then

if (|n;(s)| — 6;) mod 2 =0 then
gam[t] — Agam[t] + wjy
gam[s] — Agam[s] + wy
it (Iny ()| — 6,) mod 2 = 1
gain[t] — Again[t] — Wy
gain[s] — Again[s] — wj
elseif |n;(s)| = ¢;

Agam[t] — Agam[t] + wjy

el

[¢2]

~~

el

A

end

Figure 3.8: Estimation of gain changes for £ = 2

CHAPTER 3. HYPERGRAPH MODEL FOR DECLUSTERING 32

procedure EstimateDeltaGainsk (H: hypergraph, x: number of parts for
further partitioning, n;: net, s: the part vertex is moved from, ¢: the part
vertex is moved to)

begin
if |n](t)| Z 5]‘ — 1 then
if (|n;(t)] — 6; + 1) mod k=0 then
Apinfs] — Dguinls] — v,
elseif (|n;(t)| — é6; + 1) mod k=1
Agaln[t] — Agaln[] —I_ w]
Againls] — Again[s] + w;
elseif (|n;(t)| — 6; + 1) mod k=2
Againlt] < Again[l] — w;
if |n;(s)| > é; then
if (|n;(s)| — 6;) mod k=0 then
Agazn[] — Again[t] + wj
elseif (|n;(s)| — é;) mod k=1
Againll] < Again[l] — w;
Againls] — Againls] — w;
elseif (|n;(s)| — é;) mod k=2
Againls] — Again[s] + w;

end

Figure 3.9: Estimation of gain changes for £ > 2

CHAPTER 3. HYPERGRAPH MODEL FOR DECLUSTERING 33

the gains of the vertices in each part connected to the visited net and then
updates the gains of all these vertices. The estimation of the change in the
gains of the vertices in each part is performed by checking if the decrease or
increase in the maximum degree of connectivity of the net causes the net to
become critical or a candidate for being critical if the net is not critical and be-
come non-critical if the net is critical. A non-critical net becomes critical if the
difference between the maximum and ideal degrees of connectivity of the net
becomes an integer multiple of k, becomes a candidate for being critical if this
difference becomes one less or more than an integer multiple of k. A critical net
becomes non-critical but a candidate for being critical if this difference is an
integer multiple of k before the move. Thus a net causes a change in the gains
of its pins if the mod of the difference between its maximum and ideal degrees
of connectivity due to k is equal to 0, 1, 2, kK — 1 or kK — 2. As these values
can intersect for the cases k = 1 and x = 2, different gain change estimation
schemes are needed for the cases Kk = 1, k = 2 and & > 2. The algorithms for
estimating the changes in gains for these cases are shown in Figures 3.7, 3.8

and 3.9 respectively.

In addition to the gain functions defined in this section, a second level gain
function can be associated with the vertices of the hypergraph relating to a
second level cost function defined for a bipartitioning step in the recursion tree.
This cost function may be defined to be the cost function of 2-way partitioning
of the hypergraph in the recursion tree, independent of the number of parts the
resulting parts will be partitioned. Such a second-level gain will provide the
algorithm to select the vertices which tend to provide balance on the degree of
connectivity of some nets, making sure that the move of such a vertex makes
the maximum degree of connectivity of these nets closer to their strictly optimal

degree of connectivity.

The algorithms provided here assume that K is a power of two, i.e. the
parts resulting from a bipartitioning step will further be partitioned into same
number of parts. However, these algorithms will also apply to the case that K
is not a power of two with slight modification. In that case, there will be two
parameters k; and &, denoting the number of parts that will be generated from

left and right parts respectively. Then, there will be two strictly optimal degrees

CHAPTER 3. HYPERGRAPH MODEL FOR DECLUSTERING 34

of connectivity of a net, 6;; and ¢;, and the algorithm will take into account
these differing values of x and 6;. Therefore, the algorithms and definitions
provided in this subsection are for the special case of k; = k., and they can be

extended to the general case easily.

3.3.3 K-way Refinement of Relational Hypergraph Par-

titioning

As the cost function of the recursive bipartitioning does not exactly repre-
sent the actual cost function of K-way partitioning and uses an optimistic cost
function which assumes the best-case performance of the recursive bipartition-
ing, a direct K-way refinement of the partitioning obtained by the recursive
bipartitioning is necessary. However, as the amount of time and memory re-
quired for the direct K-way implementation of the iterative improvement based
heuristics is huge and the instances in the very large databases domain create
hypergraphs with very large number of pins, we propose a K-way refinement
heuristic which visits each vertex in the hypergraph in a specified order and
decides whether to move the vertex to a part instead of considering all move
gains of vertices for each K — 1 parts as a selection criterion. We introduce
the concept of virtual gain and propose two virtual gain functions that can be
used to determine the order of the selection of the candidate vertices for being
moved. Instead of storing and maintaining K — 1 gain values for each vertex
in the hypergraph, we propose a virtual gain that is an approximation to the
sum of all these K — 1 gain values, and compute the actual K — 1 gains after

selecting a vertex with maximum virtual gain.

The K-way refinement consists of several passes on the K-way partitioning.
Each vertex is considered once in a pass and moved if it has a positive move gain
for one part, moved to improve the storage balance if it has no positive gain
but has at least one zero gain, and not moved if it has no non-negative gain.
We propose three selection criteria for the order of selection of vertices in each
pass. One of these criteria is random selection of vertices which provides faster
selection, the other two criteria are based on virtual gains which approximate

the sum of the actual move gains of the vertices to each part. Figure 3.10

CHAPTER 3. HYPERGRAPH MODEL FOR DECLUSTERING 35

procedure KWayRefine(H: hypergraph, K: number of parts)

begin
repeat
totgain «— 0
M — V(H)
while M # () do
select v; € M with maximum virtual gain
for k — 1 to K, k # partof[v;] do
call EstimateMoveGain(H, K, v;, partof[v;], k) to obtain
gain|v;, k|
repeat
select t s.t. gain[v;, t] = maxi<i<k, ks gain|v;, k]
if gain|v;,t] > 0 and LG U v;] = True then
move v; to part ¢
totgain «— totgain + gainfv;,]
update virtual gains
else if gainfv;, t] > 0 and|G;| > |G,| then
move v; to part ¢
update virtual gains
else
gain|v;, t] «— —1
until vertex moved or all target candidates explored
M—M \ U;
until totgain =0
end

Figure 3.10: K-way refinement phase

shows the K-way refinement algorithm. The procedure EstimateMoveGain

estimates the gain of moving vertex v; to part V; and shown in Figure 3.11.

The actual gain of moving a vertex v; to a part V; is equal to the difference
between the total weight of the nets of v; that will have a lower maximum degree
of connectivity by the move of v; and the total weight of the nets that will have
higher. A net n;’s maximum degree of connectivity will become smaller by the
move of v; if the number of pins of n; in the part of v; is the only part having
number of pins of n; equal to the maximum degree of connectivity of n; and this
number is greater than the strictly optimal degree of connectivity of n;, i.e. can

be reduced further. On the other hand, the maximum degree of connectivity

CHAPTER 3. HYPERGRAPH MODEL FOR DECLUSTERING 36

of a net n; will be increased by the move of v; to part V; if n; has the number
of pins in V; equal to the maximum connectivity of n;. The gain of moving

vertex v; to the target part V; can be formulated as

gain(vi,t) = > wi— > w;
n]ENp n]ENN
where Np = {n; € nets(v;) : |nj(partof(vi))| = &; > 6 and I no k #
partof(v;) s.t. |nj(k)| = 6;} and Ny = {n; € nets(v;) : |n;(t)| = 6;}.

The first virtual gain function we propose is called the part non-optimal
virtual gain. This virtual gain function approximates the sum of the actual
move gains of each vertex to all parts by summing the weights of the nets
connected to that vertex which have number of pins in that vertex’s part larger

than strictly optimal degree of connectivity.

Definition 3.7 The part non-optimal virtual gain of a vertex v; is defined as
the sum of the weights of the nets of v; with larger number of pins in v;’s
part than strictly optimal degree of connectivity, i.e. VGpn(v;) = 2on;eNpy Wi
where Npy = {n; € nets(v;) : |nj(partof(v:))| > 67}

This virtual gain function is based on the idea that a net with number of
pins in a part larger than its ideal degree of connectivity has cost function
larger than zero, so the partitioning can be improved by moving one vertex
in that part to another part. Clearly this metric overestimates the gain of
a vertex, however it is a promising criteria as it guarantees that the vertex
being moved will make the maximum number of nets approach to their strictly

optimal degrees of connectivity, at least in the vertex’s part, if moved.

We propose a second virtual gain function named the part-maximum vir-
tual gain, taking into account only the nets that have the maximum number
of pins in the vertex’s part as the only part with cardinality equal to the net’s
maximum degree of connectivity. In other words, the existence of a net con-
nected to a vertex is considered to be a potential gain for that vertex if the
cost associated with that net can be reduced by moving that vertex. We define

the part-maximum virtual gain as follows.

CHAPTER 3. HYPERGRAPH MODEL FOR DECLUSTERING 37

procedure EstimateMoveGain(H: hypergraph, K: number of parts, v;: ver-
tex, s: the current part vertex is moved from, ¢: the candidate part vertex is
moved to)

begin
gainfv;,t] < 0
for each n; € nets[v;] do
if |n;(s)] = ¢; and 6; > ¢ and n; = 1 then
gain[v;,t] <« gainf[v;, t] + w;
if |n](t)| = 5]‘ then
gain[v;, t] « gainfv;, t] — w;
end

Figure 3.11: Estimation of the gain of moving vertex v; to part ¢

Definition 3.8 The part-maximum virtual gain of vertex v; is defined as the
sum of weights of the nets that contain v; and have the v;’s part as the only
part having number of pins of that net equal to the net’s maximum degree of
connectivity, i.e. VGpp(vi) = > on,eNpy Wi where Npy = {n; € nets(v;) :
Inj(partof(v;))| = 6; > 6" and 3 no k # partof(v;) s.t. [n;(k)| = 6;}.

This is a more accurate approximation than the part non-optimal virtual gain
function but it still overestimates the actual gain of a vertex. In fact, these two
functions provide upper-bounds for the sum of the gains of a vertex, while the
part-maximum virtual gain provides a tighter upper-bound. But surprisingly
our experimental results show that the part non-optimal virtual gain model
provides a significantly better performance than the part-maximum virtual

gain model.

For the estimation of actual and virtual gains during the K-way refine-
ment of the partitioning, our algorithm constructs a load table containing the
number of pins of each net in each part, i.e. |n;(k)] 1 < k < K, the maxi-
mum degree of connectivity of each net, i.e. §; and the number of parts with
cardinalities equal to the maximum degree of connectivity of each net, i.e.
nj = Hk: |n;j(k)| = 6;)}, ¥ n; € N(H). The table consists of |[N(H)| rows
corresponding to each net and K + 2 columns for the K degrees of connec-

tivity, maximum of them and the number of parts having maximum of them.

CHAPTER 3. HYPERGRAPH MODEL FOR DECLUSTERING 38

procedure InitPartNonOptimalVirtualGains(H: hypergraph, K: number of
parts)

begin
for each v; € V(H) do
vgainfv;] « 0
for each n; € N(H) do
for k — 1 to K do
if [n;(k)| > &' then
partvgain[k] «— w;
else
partvgain|k] < 0
for each v; € n; do
vgain|v;] « vgain|v;| + partvgain|partof|v;]]
end

Figure 3.12: Part non-optimal virtual gains initialization algorithm

This table is constructed after the initial recursive bipartitioning phase and
maintained during the K-way refinement phase. After a vertex is moved from
source part s to target part ¢, the degrees of connectivity of that vertex’s all
nets connected to source are decremented and those to target are incremented.
The maximum degree of connectivity of each net and the net’s degree of con-
nectivity to source and target are checked and the other two entries of the
tables are updated if necessary. We initialize and update the virtual gains and

estimate the move gains of a selected vertex to each part using this load table.

The procedure for estimating the gain of moving a vertex v; to part ¢ is
shown in Figure 3.11. Figures 3.12 and 3.13 show the algorithms for initializ-
ing and updating part non-optimal virtual gains of vertices respectively. The
algorithms for initializing and updating the part-maximum virtual gains are
shown respectively in Figures 3.14 and 3.15. The algorithm for updating part
non-optimal virtual gains is simpler and requires less time than that of part-
maximum virtual gain. Thus it seems that the part non-optimal virtual gain
model can be preferred to part-maximum virtual gain model in terms of run-
time. However, a property of the part-maximum virtual gain model is that
the vertex moves are realized at the very beginning of a pass and no further

move is performed near the end of the pass as will be discussed in Chapter 4.

CHAPTER 3. HYPERGRAPH MODEL FOR DECLUSTERING 39

procedure UpdatePartNonOptimalVirtualGains(H: hypergraph, K: number
of parts, v,,:vertex being moved, ¢: target part)

begin
s « partof|v,]
for each n; € netsv,] do
for k — 1 to K do
partvgain|k] < 0
if [n;(s)] = 67" + 1 then
partvgain[s] «— —w;
if |n;(t)| = 6 then
partvgain[t] <« w;
for each v; € n; do
vgain|v;| « vgain|v;| + partvgain|partof|v;]]
end

Figure 3.13: Part non-optimal virtual gains update algorithm

This is because the part-maximum virtual gain is a good approximation to the
actual gain of a vertex especially for higher values of K. This property may be
used in such a way that no vertex is checked after some number of don't move
decisions and this will bring a significant improvement on the time complexity

of the algorithm.

CHAPTER 3. HYPERGRAPH MODEL FOR DECLUSTERING 40

procedure InitPartMaximumVirtualGains(H: hypergraph, K: number of
parts)

begin
for each v; € V(H) do
vgainfv;] « 0
for each n; € N(H) do
for k — 1 to K do
if |n;(k)| = §; and &; > 6" and 5; = 1 then
partvgain[k] «— w;
else
partvgain|k] < 0
for each v; € n; do
vgain|v;] « vgain|v;| + partvgain|partof|v;]]
end

Figure 3.14: Part-maximum virtual gains initialization algorithm

procedure UpdatePartMaximumVirtualGains(H: hypergraph, K: number of
parts, v,,:vertex being moved, ¢: target part)

begin
s « partof|v,]
for each n; € netsv,] do
for k — 1 to K do
parvgain[k] < (0)
if |n;(s)] = ¢; and 6; > ¢ and n; = 1 then
if 3k s.t. |nj(k)] =06, —1 then
partvgain[s] «— —w;
else
partvgain|s] « 0
if |n;(t)| = é[n;] then
partvgain[t] «— w;
for each v; € n; do
vgain|v;| « vgain|v;| + partvgain|partof|v;]]
end

Figure 3.15: Part-maximum virtual gains update algorithm

Chapter 4

Experiments and Results

In order to verify the effectiveness of the proposed algorithms, we have imple-

mented these algorithms and tested on a several number of real and synthetic

instances with several number of disks. We have chosen the WSG model pro-

posed by Shekhar and Liu [34] to compare the performance of our model as

this model can be applied to all kinds of data and it outperforms the previous

methods. We use two real and three synthetic instances for performance tests

which have been selected to cover a great range of possible data sets. Table 4.1

shows the number of data items, number of relations, total number of pins in

the corresponding relational hypergraph, number of edges in the corresponding

WSG and the average relation size of each data set.

Total ~ Average | Number

Number of Number of | Relation Relation | of Edges

Data set Data Items Relations Size Size in WSG
Face 844 1024 23632 23.1 254664
House 16-H 1638 1000 43309 43.3 601460
8D HS 3200 6000 147554 24.6 897150

2D Regular HS 4426 2500 67791 27.1 180074
2D Random HS 4426 5000 91626 18.3 410057

Table 4.1: Description of test data

41

CHAPTER 4. EXPERIMENTS AND RESULTS 42

The first of the real data sets we use is a face image data set. We have con-
structed the face data set by combining three face image databases which have
been used for face recognition and facial expression studies in the literature.
The first image set is collected from the MIT image database and contains a
total of 144 gray scale images of size 120X128 belonging to 16 people [38]. The
second image set is obtained from the Pilot European Image Processing Archive
and contains a total of 300 gray scale images of size 512X512 belonging to 30
people [9]. The last image set is obtained from the ORL database provided by
Cambridge AT&T Laboratories and contains a total of 400 gray scale images
of size 92X112 belonging to 40 people [39]. The 844 images are down-sampled
to get images of the same size. These 844 images of size 32X32 are used to con-
struct an image database for image retrieval purpose and the image retrieval
algorithm described in [18] is applied to this database. A 1024-bit signature
file is constructed for each image in the database with 28 1’s in a signature
corresponding to the 28 highest positive or negative wavelet coefficients of the
image. Each bit in the signature files is assumed to be a relation as the set
of images having high wavelet coefficients on a specific pixel are more likely to
be accessed together. The face image database constitutes a database system

with 1024 relations and 844 data items.

The second real data set used in the experimentsis the House 16-H database
provided by US Census Bureau and used for function approximation research [16].
The database contains 22784 instances of 17 continuous features each. The
22784 points in 17 dimensions are indexed into a grid file data structure [17].
Each page in the grid directory contains a maximum of 16 instances and the
grid directory contains approximately 10 cells in each dimension. This results
in a high degree of page sharing. The database system is constructed by ran-
domly generating 1000 rectangular range queries where each query defines a
rectangle in at most five dimensions. The House 16-H database contains 1000

relations(queries) and 1687 data items(pages).

Three synthetic data sets are constructed by randomly generating hot-spot
data in eight and two dimensions. The 8-D HS data set is a 50000 point data in
8 dimensions. The hot-spot data is indexed into a grid directory of 3200 pages

containing at most 16 points. 6000 rectangular range queries are generated

CHAPTER 4. EXPERIMENTS AND RESULTS 43

resulting in a database system of 6000 relations and 3200 data items. The
other two synthetic data sets share the same grid directory of 60000 points
in two dimensions. The grid directory contains 480 cells in each dimension
resulting in 4426 pages containing at most 16 points. The 2-D Regular HS
data set is constructed by defining 2500 regular square range queries of size 40
in one dimension on this grid directory. 2-D random HS data set is constructed
by generating 4000 random rectangular range and 1000 random diagonal of size
at most 80 in one dimension resulting in a database system of 5000 relations

and 4426 data items.

The max-cut graph partitioning algorithm is implemented by FM based re-
cursive bipartitioning. The conventional multi-level partitioning tools are not
used as the max-cut objective function conflicts by the clustering criteria of
these multi-level tools by nature. The total weight on the cut-set of the parti-
tion is used as the objective function instead of the ratio cut function proposed
by Shekhar and Liu [34] as the balance on the parts is enforced by the max-cut
objective itself. After an initial partition is found by recursive bipartitioning,
each pair of parts are refined by the same FM based bipartitioning procedure
and then a refinement is applied on selected candidate pairs of parts until a
pair to be refined cannot be found. This implementation of the max-cut graph
partitioning algorithm is similar to the SM-GP-G [34] implementation of the
method.

The relational hypergraph based declustering algorithm is implemented as
described in Chapter 3. All three proposed K-way refinement algorithms are
implemented and named as H-random(random visit order), H-nonopt (part
non-optimal virtual gain) and H-max (part-maximum virtual gain). The max-
cut graph partitioning and min-net-imbalance hypergraph partitioning algo-
rithms are implemented using C programming language on Linux platform
running on a PC with Pentium-III 500 MHz CPU and 512 MB 168-Pin 100
MHz SDRAM. All experiments are performed by running each algorithm 10

times and reporting the averages of the performance metrics on these 10 runs.

Table 4.2 shows the average retrieval times obtained by the algorithms on
each of the five data sets for 8, 16, 32 and 64 disks. The average retrieval

time is estimated by taking the average of the maximum number of data items

CHAPTER 4. EXPERIMENTS AND RESULTS 44

Graph Hypergraph
Data set K | Ideal | Max-cut | H-random H-nonopt H-max
8 | 3.32 4.15 4.12 4.11 4.12
Face 16 | 1.92 2.77 2.65 2.64 2.65
32| 1.26 2.01 1.82 1.80 1.87
64 | 1.03 1.57 1.36 1.34 1.51
8 | 5.84 6.82 6.81 6.79 6.81
House 16-H 16 | 3.18 4.21 4.09 4.06 4.16
32| 1.86 2.83 2.65 2.64 2.76
64 | 1.24 2.06 1.92 1.90 2.03
8 | 3.52 4.50 4.44 4.43 4.44
8D HS 16 | 2.01 2.98 2.87 2.86 2.88
32| 1.31 2.13 1.99 1.98 2.02
64 | 1.05 1.62 1.48 1.47 1.53
8 | 3.83 4.13 4.09 4.10 4.10
2D Regular HS || 16 | 2.03 2.50 2.37 2.39 2.45
32| 1.09 1.70 1.59 1.58 1.66
64 | 1.00 1.00 1.01 1.01 1.04
8 | 2.74 3.17 3.10 3.10 3.11
2D Random HS || 16 | 1.65 2.07 1.93 1.93 1.98
32| 1.17 1.47 1.34 1.33 1.42
64 | 1.03 1.14 1.11 1.10 1.17

Table 4.2: Averages of average retrieval time

45

o: Max-cut
4 *: H-random
+: H-nonopt
x: H-max

351

Average retrieval time

2} 4
o '\\«

I 1 L I 1
8 28 48 68 88 108 128
Number of disks

Figure 4.1: Performance of declustering algorithms with respect to number of

disks

CHAPTER 4. EXPERIMENTS AND RESULTS 45

of a relation in a part over all relations assuming that the retrieval of a data
item is performed in one time unit. The numbers displayed in the table are
the averages of these average retrieval times over 10 runs with different initial
random partitions. The bold numbers show the minimum of average retrieval
time over the five algorithms. The table also shows the ideal retrieval time
that is defined as the average of the strictly optimal retrieval times of all
relations. As seen on the table H-nonopt and H-random show nearly the same
performance but H-nonopt provides slightly lower average retrieval time for
almost all of the data sets and number of disks. These two models provide
significantly lower average retrieval times than the other two models for almost
all cases. The performance of H-max is poor when compared to the other two
hypergraph model, however it still outperforms the graph model. The poor
performance of the part-maximum virtual gain model can be due to the lower
number of moves done as this method gives priority to the vertices with highest
gain. It is likely that the move of vertices with high gains blocks the gains of
the remaining vertices resulting on lower number of moves and the algorithm
cannot climb out local minima. However, the part-non-optimal virtual gain
model orders the vertices in a more flexible manner and this property gives the
opportunity of climbing out local minima for this method. Despite this elegant
property of H-nonopt, visiting the vertices in random order can achieve very

close average retrieval times to those of H-nonopt.

For all data sets, the performance of the WSG model is close to the perfor-
mances of the three hypergraph based methods we propose for smaller number
of disks. However, as the number of disks increases, performance gap between
WSG model and hypergraph based models increases in favor of the hypergraph
based models. For example, for the Face data set, the average retrieval time
obtained by H-nonopt is only 1% better than the average retrieval time ob-
tained by Max-cut for 8 disks, while it is 4.7%, 10.4% and 14.6% better for
16, 32 and 64 disks respectively. Figure 4.1 shows the performances of each
method with the respect to the number of disks. As seen in the graph H-nonopt
and H-random show a more scalable performance than Max-cut and H-max.
H-max’s performance gets poor with increasing number of disks as the perfor-
mance of the algorithm depends more on the K-way refinement phase for large

number of disks.

CHAPTER 4. EXPERIMENTS AND RESULTS 46

Graph Hypergraph
Data set Relations | K | Max-cut | H-random H-nonopt H-max

8 850 814 812 813

Face 1024 16 874 748 738 746

32 770 574 556 624

64 553 338 320 498

8 981 968 956 975

House 16-H 1000 16 1024 910 883 975
32 977 796 782 907

64 821 678 657 783

8 5907 5513 5454 5531
8-D HS 6000 16 5806 5128 5060 5225
32 4955 4104 4025 4307
64 3401 2578 2520 2879

8 752 646 676 677
2-D Regular HS 2500 16 1173 861 901 1038
32 1532 1246 1225 1437

64 0 22 21 93
8 2139 1793 1802 1833
2-D Random HS 5000 16 2069 1386 1407 1625
32 1501 820 797 1228

64 565 443 357 699

Table 4.3: Averages of parallel retrieval overhead

Our experiments approve the theoretical result that the WSG model is able
to find the strictly optimal allocation if exists, as in the case of partitioning
the 2-D regular HS data set into 64 sets. For this case, WSG provides an
average retrieval time of 1.00, which is the minimum achievable retrieval time
for a relation. The 2-D regular HS data set has a very regular structure as
the queries are distributed uniformly over the data space and thus a strictly
optimal allocation scheme exists for enough number of disks. Although the
hypergraph model exactly fits the declustering problem so it is likely to find the
optimal allocation for all cases theorically, the three proposed hypergraph based
methods were not able to find the optimal allocation for this case. This shows
that the heuristics we propose and the tool we develop should be improved by

further research to exploit the accurate representing ability of the model.

The parallel retrieval overhead, i.e. the total deviation of the retrieval time

CHAPTER 4. EXPERIMENTS AND RESULTS 47

of all queries from ideal provides a more detailed analysis of the performance of
the methods. Table 4.3 shows the cost of each algorithm for all test runs with
this definition of parallel retrieval overhead. As a declustering method aims to
find an allocation that will be as close as possible to the minimum achievable
access time for each relation, this cost function is a proper metric to evaluate a
declustering method. We include the number of relations of each data set in the
table as the magnitude of parallel retrieval overhead depends on the number
of relations in the database system. For the Face data set, H-nonopt provides
an overhead that is 4.2%, 15.6%, 27.8% and 40.3% better than the overhead
provided by Max-cut for 8, 16, 32 and 64 disks respectively. For 16 disks, the
overhead of H-nonopt is 13.8% for House 16-H, 12.8% for 8-D HS, 23.2% for
2-D Regular HS and 32.0% for 2-D Random HS better than that of Max-cut.
Note that the overhead due to a relation was almost always equal to 1 for all
methods in our experiments. The table also shows that all of the hypergraph
based methods obtain a parallel retrieval overhead smaller than the number of
relations for all cases, concluding that a strictly optimal allocation is provided

for some number of relations in the database system.

Table 4.4 shows the average run time of each algorithm for all test runs.
We can observe from the table that the time complexity of Max-cut is stable
and it does not grow significantly with increasing number of disks. This is
because the graphs partitioned at the lower levels of the recursion tree are very
sparse as the earlier bipartitioning steps provide that many of the edges in
the original graph are cut by the partition. However, in some situations H-
max spends less time than Max-cut although it provides slightly better results
that Max-cut. These situations are the cases when the number of edges in
the WS is close to the number of pins in the relational hypergraph, i.e. the
relations are different from each other. This is because H-max cannot make a
significant improvement on the partition during the K-way refinement phase,
so it requires a very small number of passes and moves in this phase. Therefore,
H-max can only be preferred to the other methods to save time. The other
two hypergraph based methods, H-random and H-nonopt have a significantly
higher time complexity than the other two methods. The time spent by this
algorithms grows significantly with increasing number of disks, as the time

spent on the gain computations of K-way refinement phase depends on the

CHAPTER 4. EXPERIMENTS AND RESULTS

Graph Hypergraph

Data set K | Max-cut | H-random H-nonopt H-max
8 1.03 0.87 0.96 0.77

Face 16 1.18 1.08 1.41 0.82

32 1.33 1.80 2.37 0.53

64 1.67 3.84 5.50 0.29

8 2.29 1.41 1.67 1.04

House 16-H 16 2.56 2.49 3.07 1.15
32 3.24 3.61 5.09 0.86

64 4.32 5.62 7.64 0.69

8 3.98 5.85 7.08 5.29

8-D HS 16 4.52 12.78 12.78 5.50
32 5.39 26.29 30.10 6.28

64 7.00 53.69 56.91 6.92

8 1.55 3.69 3.25 3.13

2-D Regular HS || 16 1.66 6.97 5.82 2.91
32 1.80 12.33 11.47 2.31

64 2.00 7.80 0.93 0.57

8 2.38 6.47 6.10 4.26

2-D Random HS || 16 2.99 13.94 13.98 3.90
32 3.03 24.82 23.75 2.20

64 3.53 31.69 21.24 1.12

Table 4.4: Averages of run time

CHAPTER 4. EXPERIMENTS AND RESULTS 49

Retrieval Time Cut on WSG
Data set K || Max-cut ‘ H-nonopt | Max-cut ‘ H-nonopt
8 4.15 4.11 462574 461243
Face 16 2.77 2.64 494367 492787
32 2.01 1.80 509522 508190
64 1.57 1.34 516415 515478
8 6.82 6.79 1357391 | 1355250
House 16-H || 16 4.21 4.06 1452516 | 1449696
32 2.83 2.64 1498689 | 1495494
64 2.06 1.90 1520406 | 1516894

Table 4.5: Comparison of WSG cut values and retrieval times

number of disks.

Our experiments also approve the theoretical findings on the deficiencies
of the WSG model discussed in Section 2.4. To illustrate the fact that a
higher cut in the similarity graph does not necessarily provide a lower average
retrieval time, we computed the cut on the corresponding similarity graph
of the data sets for the partitions found by Max-cut and H-nonopt methods.
Table 4.5 displays the average retrieval times and the total cut of the resulting
partitions for the experiments on Face and House 16-H data sets. As seen on
the table, Max-cut provides a partition with higher cut than that of H-nonopt
for all cases, the average retrieval times provided by Max-cut are worser than
that of H-nonopt. From this observation, we can conclude that the relational
hypergraph based declustering model is a more accurate representation of the

problem than the weighted similarity graph model.

The experimental results reported in this chapter show that the proposed
model for declustering provides an accurate and reliable model of the problem
of partitioning very large databases. In addition, the relational hypergraph
based model provides a significant improvement on the performance of the
weighted similarity model which does depend on the special properties of the
application and is an elegant model that outperforms the various declustering
strategies in the literature. Therefore, we can conclude that the proposed
model is a promising declustering strategy that can be applied to any database

system independent of the application type and indexing technique.

Chapter 5

Conclusion

In this thesis, we have demonstrated the flaws of the similarity graph based
declustering model and proposed iterative improvement based algorithms to
the problem that exactly models the declustering problem. Allocation of data
into multiple number of disks will become more important by the growing
amount of information shared in the world and the growing world wide com-
munication. The problem considered in this work is a general problem that
can be faced for any kind of database applications and the data may not be
regular in many cases. The provided model and methods are designed to deal
with all kinds of applications regardless of the irregularity contained in the
data. It is also approved by the experimental results that the proposed meth-
ods provide a significantly higher declustering performance than the existing
general method and this performance can be further improved by developing

the methods proposed on the model.

The experimental results show that there is a significant performance dif-
ference between the graph and hypergraph models and the objective function
of the graph model does not fit the actual cost function of the problem. The
basic problem with the proposed model is the high time complexity for some
instances on high number of disks. However, one of the proposed K-way re-
finement schemes requires less run time than the graph model although it
outperforms the graph model on most of the instances. Therefore, this K-way

refinement scheme can be preferred if the time for allocation process is limited.

30

CHAPTER 5. CONCLUSION 51

However, if allocation is performed only once or very rarely for a database

system, then the high-quality K-way refinement schemes can be preferred.

This study covers the case of database systems with relation set of non-
identical relative frequencies and disks with non-identical storage capacities.
There can be database systems with non-identical disk I/O capacities, and
our model can be adapted to such case by slightly modifying the definition of
the cost of a net due to a partition. The methods we propose should also be
modified accordingly. Another case that can be faced is that the data items in
the database can have non-identical access times as in the case of Geographic
Information Systems. In such condition, the problem may be defined as a
multi-set number partitioning problem. We should note that the algorithms
we propose here cannot be easily adapted to this problem and further detailed

research is necessary.

The scope of this study was static allocation of the data. The problem
of updating the allocation when new data are added to the system, i.e. the
dynamic allocation problem can also be solved by the similar model. This

problem is also open to research in the future.

Bibliography

1]

2]

C. J. Alpert and A. B. Kahng. Recent directions in netlist partitioning:
A survey. VLSI Journal, 19(1-2):1-81, 1995.

S. Berchtold, C. Bohm, B. Braunmiiller, D. A. Keim, and H. P. Kriegel.
Fast parallel similarity search in multimedia databases. In SIGMOD 1997,
Proceedings ACM SIGMOD International Conference on Management of
Data, pages 1-12, 1997.

U. V. Catalyiirek. Hypergraph models for sparse matriz partitioning and
reordering. PhD thesis, Bilkent University Department of Computer En-
gineering, November 1999.

U. V. (atalyurek and C. Aykanat. Hypergraph-partitioning based decom-
position for parallel sparse-matrix vector multiplication. [EEE Transac-

tions on Parallel and Distributed Computing, 10(7):673-693, 1999.

L. T. Chen and D. Rotem. Declustering objects for visualization. In 19th
International Conference on Very Large Data Bases, pages 85-96, 1993.

C. K. Cheng and Y. C. Wei. An improved two-way partitioning algo-
rithm for stable performance. [EEE Trans. on Computer-Aided Design,
10(12):1502-1511, 1991.

P. Ciaccia. Parallel independent grid files based on dynamic declustering
method using multiple error correcting codes. Technical report, University

of Bologna Laboratory for Computer Science, November 1994.

P. Ciaccia, P. Tiberio, and P. Zezula. Declustering of key-based partitioned
signature files. ACM Trans. on Database Systems, 21(3):295-338, 1996.

52

BIBLIOGRAPHY 33

9] E. F. Clark. Pilot Europan Image Processing Archive.
http://peipa.essex.ac.uk/ipa/pix/faces/manchester/train/.

[10] M. Coyle, S. Shekhar, and Y. Zhou. Evaluation of disk allocation methods
for parallelizing spatial queries on grid files. Journal of Computer and

Software Engineering, 1995.

[11] H. C. Du and J. S. Sobolewski. Disk allocation for cartesian product files
on multiple disk systems. ACM Trans. Database Systems, 7(1):82-101,
1982.

[12] C. Faloutsos and P. Bhagwat. Declustering using fractals. In Proceedings of
the 2nd International Conference on Parallel and Distributed Information

Systems, pages 18-25, 1993.

[13] C. Faloutsos and D. Metaxas. Disk allocation methods using error cor-

recting codes. IEEE Transactions on Computers, 40(8):907-914, 1991.

[14] M. T. Fang, R. C. T. Lee, and C. C. Chang. The idea of declustering
and applications. In Proc. of International Conference on Very Large

Databases, 1986.

[15] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for im-
proving network partitions. In Proceedings of the 19th ACM/IEEE Design
Automation Conference, pages 175-181, 1982.

[16] H. A. Glivenir and I. Uysal. Bilkent University Function Approximation
Repository. http://funapp.cs.bilkent.edu.tr/, 2000.

[17] S. Hanan. The Design and Analysis of Spatial Data Structures. Addison-
Wesley, 1990.

[18] C. E. Jacobs, A. Finkelstein, and D. H. Salesin. Fast multiresolution image
querying. In Computer Graphics Proc., pages 277-286, 1995.

[19] H. V. Jagadish. Linear clustering of objects with multiple attributes. In
ACM SIGMOD Conf., pages 332-342, 1990.

[20] J. Jensch, R. Liiling, and N. Sensen. A data layout strategy for parallel
web servers. In 4th International Euro-Par Conference, pages 944-952,
1998.

BIBLIOGRAPHY 54

[21] 1. Kamel and C. Faloutsos. Parallel R-trees. In Proceedings of the Int.
Conf. on Management of Data, pages 195-204. ACM SIGMOD, 1992.

[22] G. Karypis, V. Kumar, R. Aggrawal, and S. Shekhar. hMeTis A Hyper-
Graph Partitioning Package Version 1.0.1. Uni. of Minnesota, Dept. of
Comp. Sci. and Eng., Army HPC Research Center, Minneapolis, 1998.

[23] G. Karypis, V. Kumar, R. Aggrawal, and S. Shekhar. Hypergraph par-
titioning using multilevel approach: Applications in VLSI domain. [FEFE
Trans. on VLSI Systems, to appear.

[24] B. W. Kernighan and S. Lin. An efficient heuristic procedure for parti-
tioning graphs. The Bell System Technical Journal, 49(2):291-307, 1970.

[25] M. H. Kim and S. Pramanik. Optimal file distribution for partial match
retrieval. In Proc. ACM SIGMOD Conf., pages 173-182, 1988.

[26] N. Koudas, C. Faloutsos, and I. Kamel. Declustering spatial databases
on a multi-computer architecture. In EDBT Conference, pages 592-614,
1996.

[27] T. G. Kwon and S. Lee. Load-balanced data placement for variable-rate

continuous media retrieval. Multimedia Database Systems, pages 185-207,

1996.

[28] J. Li, J. Srivastava, and D. Rotem. Cmd: A multidimensional declustering
method for parallel database systems. In 18th International Conference

on Very Large Data Bases, pages 3-14, 1992.

[29] M. Mehta and D. J. De Witt. Data placement in shared-nothing parallel
database systems. The VLDB Journal, (6):53-72, 1997.

[30] B. Moon, A. Acharya, and J. Saltz. Study of scalable declustering al-
gorithms for parallel grid files. In Proceedings of the 10th International
Parallel Processing Symposium, pages 434-440, 1996.

[31] H. Pang, B. Jose, and M. S. Krishnan. Resource scheduling in a high-
performance multimedia server. [IEEE Transactions on Knowledge and

Data Engineering, 11(2):303-320, 1999.

BIBLIOGRAPHY)

[32] S. Prabhakar, K. Abdel-Ghaffar, D. Agrawal, and A. El Abbadi. Efficient
retrieval of multidimensional datasets through parallel I/O. In Proceed-

ings of the 5th International Conference on High Performance Computing,
1998.

[33] S. Prabhakar, D. Agrawal, A. El Abbadi, A. Singh, and T. Smith. Brows-
ing and placement of multiresolution images on parallel disks. In Proceed-
ings of the Fifth Workshop on 1/O in Parallel and Distributed Systems,
pages 102-113, 1997.

[34] S. Shekhar and D. R. Liu. Partitioning similarity graphs: A framework
for declustering problems. Information Systems, 21(6):475-496, 1996.

[35] S. Shekhar, S. Ravada, V. Kumar, D. Chubb, and G. Turner. Decluster-
ing and load balancing methods for parallelizing geographical information

systems. IEEE Trans. on Knowledge and Data Engineering, to appear.

[36] H. S. Wilf. Algorithms and Complezity. Prentice Hall, Englewood Cliffs,
NJ, 1996.

[37] S. Zhou and M. H. Williams. Data placement in parallel database systems.
In M. Abdelguerfi and K.F. Wong, editors, Parallel Database Techniques,
chapter 10, pages 203-219. IEEE CS Press, Los Amitos, CA, 1998.

[38] Massachussets Institute ~ of Technology Image Database.
ftp://whitechapel.media.mit.edu/pub/images/faceimages.zip.

[39] The ORL Database of Faces.
ftp://ftp.uk.research.att.com/pub/data/att faces.tar.Z. AT&T Laborato-
ries, Cambridge, 1999.

