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Abstract

Visualization of large geometric environments has always been an important problem of com-
puter graphics. In this paper, we present a framework for the stereoscopic view-dependent
visualization of large scale terrain models. We use a quadtree based multiresolution representa-
tion for the terrain data. This structure is queried to obtain the view-dependent approximations
of the terrain model at different levels of detail. In order not to loose depth information, which
is crucial for the stereoscopic visualization, we make use of a different simplification criterion,
namely distance-based angular error threshold. We also present an algorithm for the construc-
tion of stereo pairs in order to speed up the view-dependent stereoscopic visualization. The
approach we use is the simultaneous generation of the triangles for two stereo images using a
single draw-list so that the view frustum culling and vertex activation is done only once for
each frame. The cracking problem is solved using the dependency information stored for each
vertex. We eliminate the popping artifacts that can occur while switching between different
resolutions of the data using morphing. We implemented the proposed algorithms on personal
computers and graphics workstations. Performance experiments show that the second eye im-
age can be produced approximately 45 % faster than drawing the two images separately and
a smooth stereoscopic visualization can be achieved at interactive frame rates using continuous

multi-resolution representation of height fields.

Keywords: Stereoscopic visualization, terrain height fields, multiresolution rendering,

quadtrees.

I. INTRODUCTION

Modern graphics workstations allow rendering of millions of polygons per second. Al-
though the power of these systems increases greatly, it cannot catch up with the quality
demand needed for graphics systems used for visualizing complex geometric environments
since the data that needs to be processed increases quite fast as well. In general, geome-
try processing is the main bottleneck of all graphics applications. Even high-end graphics
workstations have the ability to draw only a very small fraction of triangles needed to
draw large complex scenes at interactive frame rates. Furthermore, virtual reality appli-
cations need twice the processing power as needed for their monoscopic correspondents.

Therefore, the surface has to be approximated up to a certain threshold.



The most common way to approximate a surface is to use algorithms based on screen-space
error threshold that provide suitable heuristics for the approximation. However, one of
the most important disadvantages of using screen-space error threshold as a simplification
criterion is the loss of depth information, which is crucial in stereo visualizations. To solve
this problem, we propose a distance-based angular error threshold criterion that preserves

depth information of the terrain data during the simplification process.

In order to visualize complex scenes, such as terrain height fields, at interactive frame
rates, efficient data structures need to be used. Quadtree representation perfectly fits
into grid elevation data. Generally, triangles are used as modeling primitives for complex
scenes. The triangulation must be adaptive in order to reduce the number of polygons
to be processed and make efficient use of the limited memory sources. This means that
high frequency elevation changes should be triangulated with more triangles than low

frequency regions.

In stereoscopic visualization, the two views must be generated fast enough to achieve
interactive frame rates. It is apparent that there will be some limitations in terms of
the features that could be incorporated to increase the realism of the visualizations as
compared to monoscopic visualizations. Since the amount of data that can be processed
decreases drastically, complex visualizations, such as the visualization of urban scenery
over the terrain, cannot be done easily. Our goal in this work is to decrease the time needed
for generating the second eye image so that complex stereoscopic visualizations can be
possible. For this purpose, an algorithm is proposed to speed up the generation of stereo
pairs for stereoscopic view-dependent visualizations. The algorithm, called Simultaneous
Generation of Triangles (SGT), generates the triangles for the left and right eye images
simultaneously using a single draw-list, thereby avoiding the need for performing the view

frustum culling and the vertex activation operations twice.
The contributions of the paper can be summarized as follows:

1. A traversal algorithm on the quadtree representation of the terrain data that is
preventing the formation of cracks using dependency information between the vertices.

2. A distance-based angular error metric for view-dependent refinement of the terrain



data that preserves the depth information of the terrain data during simplification
process, which is necessary for correct stereoscopic view.

3. An algorithm to speed-up the generation of the stereo pairs for stereoscopic view-
dependent visualizations, namely Simultaneous Generation of Triangles.

4. Several strategies to optimize the view frustum culling process that are user-specifiable
and can be switched according to navigation characteristics while the program is
running: coherency utilization between the frames of a visualization, deferred view
frustum culling that culls at predefined intervals, view frustum culling based on the
deviation of the viewer location that culls when the user moves a prespecified dis-
tance from its position, and culling with respect to the far plane whose distance is
determined based on the altitude of the viewer.

5. A morphing technique that works in the same manner for both refining and coarsening

operations while visualizing the terrain data.

The rest of this paper is organized as follows. In Section 2, we describe related work
on both multi-resolution modeling of terrain data and stereoscopic visualization. Our
quadtree based multi-resolution modeling approach and distance based angular error
threshold as the approximation criterion are explained in Section 3. The algorithm that
is proposed to speed up the generation of second eye image for stereoscopic visualization
is explained in Section 4. Section 5 discusses the performance of the proposed algorithms
in terms of processing speed and quality of the visualizations. Finally, conclusions are

given in Section 6.

II. RELATED WORK

A. View-dependent Visualization of Terrain Height Fields

In [1], a dynamic approach is presented for level of detail (LOD) construction of terrain
data. In this work, grid elevation data was used to represent height fields and to visualize
terrain at real time. The simplification hierarchy is represented using a quadtree structure.
During simplification process, block based tests are done first to select discrete levels of

detail for blocks of the quadtree. After this coarse level of simplification, a fine-grained



simplification is performed in which individual vertices are considered for removal. To
check a vertex for removal, the difference between the projections of a vertex when it is
active and inactive is compared to a prespecified pixel threshold. If this value is smaller

than the threshold then the vertex is removed.

In [2], a framework for monoscopic visualization of regular grid elevation data is proposed.
The framework that addresses different problems of visualizing terrain data represented
as a quadtree structure is as follows: In order to achieve a valid triangulation, the basic
quadtree construction scheme has been turned into a restricted one by applying a depen-
dency relation between the vertices. Every vertex is dependent on the two other vertices
of the same or the next higher level in the quadtree hierarchy. This means that if a vertex
is selected for triangulation then the dependents must also be selected. A breadth-first
search is performed in the quadtree for progressive mesh construction. For triangle strip
construction, the quadtree is traversed using Hamiltonian paths. Blending is used to
prevent popping effects. A windowing mechanism is used for large terrains by applying
spatial database access in order not to load the whole terrain data into the memory. The

Euclidean distance between the vertices is used as simplification criterion.

In [3], regular grid data is first approximated with minimum error and the triangulation
is converted into a triangulated irregular network (TIN) model. Later, the blocks are
simplified step by step for each LOD and simplification steps are recorded to construct
hierarchical representation of the terrain. While switching between different resolutions,
morphing is used to eliminate popping artifacts. The pixel threshold that is used to

control the simplification process is adjusted according to the frame rate defined.

Grid elevations and quad cells are also used in [4]. The lowest acceptable rendering speed is
chosen and the appropriate LOD for that rendering speed is selected. Elevation differences
are taken into account for simplification and a distance based polygon resolution technique
is used for simplification. Texture binding is used for large texture mapping. Although
the swapping cost is very high, this is necessary if large textures are to be used. To hide
the appearance of cracks, each crack is closed by an additional triangle. Although this

scheme produces a stepped view on cracked regions this appearance is decreased by the



use of textures.

Other techniques, which decrease the number of polygons to be processed, hence optimize
CPU usage, include view frustum culling, back face removal, and occlusion culling. In [5],
some methods are proposed to speed up view frustum culling by using bounding boxes.
They use movement coherency during visualization based on the properties of axis aligned

and oriented bounding boxes.

Some other work use special capabilities of the underlying graphics system. In [6], selection
buffer mechanism of OpenGL is used for view frustum culling. This mechanism is very
effective in determining which quad blocks are in the view frustum and eliminates the need
to make intersection tests. However, the bounding boxes must be drawn to the selection
buffer as filled polygons and backface culling should not be performed. Otherwise, it is
possible that the viewer is completely inside of a box and the selection buffer may not
create a hit although the block is in the viewing frustum. Besides, culling tests bring
additional overhead if it is needed to distinguish between the blocks that are completely
inside and the blocks intersecting with the view frustum since a hit produced cannot
differentiate between these cases. For occlusion culling, they use OpenGL’s stencil buffer

mechanism.

B. Stereoscopic Rendering and Visualization

Stereoscopic visualization systems are used in many applications, such as simulators and
scientific visualization. These systems can be used with suitable hardware designed for
this purpose. One of the most commonly used hardware is the time multiplexed display
system that is supported by liquid crystal shutter (LCS) glasses and virtual reality (VR)
glasses. In this work, we chose to use LCS glasses since they are less expensive and many
users can simultaneously see the results of a visualization application in stereo. Detailed
information about these systems can be found in [7] and [8]. Most of the applications
support stereoscopic display by completely generating the two images for the left and right
eye views separately. Except large-scale simulator applications such as flight simulators,

there are not many applications for low-end systems, especially personal computers, that



allow the user to navigate freely over the data. In our work, we propose algorithms to
reduce the overhead for stereoscopic visualization while the user is navigating over the

data.

For stereoscopic viewing, the application must support a kind of display technique to
make each eye see the image generated for it. In visualization with LCS glasses, when the
left eye view is drawn onto the screen, the right eye of the glasses dims to occlude the left
eye image from the right eye. The same procedure is applied when the right eye image is
drawn onto the screen. Average refresh rate of a real-time visualization application should
be around 25 frames per second (fps) for monoscopic view. However, since two images
should be generated for each frame in stereoscopic visualization, the application should
be able to generate 50 or more images per second to achieve the same frame rate as the
monoscopic correspondent. This means that when you convert a monoscopic application

to stereo without any improvement, the frame rate decreases by half.

The algorithms developed for speeding-up stereo rendering generally make use of the
mathematical characterization of an image that change when the eye-point shifts hori-
zontally and a recognition of the characteristics that are invariant with respect to the
eyepoint, like the scanlines to which an object project as stated in [7]. In [9], the au-
thors present a visible surface ray-tracing algorithm that infers a right-eye view from a
fully ray-traced left-eye view and this algorithm is further improved in [10]. In [11], a
non-ray-tracing algorithm is described to speed up the second eye image generation for
polygon filling, hidden surface elimination and clipping. In [12], methods that take ad-
vantage of the coherence between the two halves of a stereo pair for ray traced volume
rendering are presented. In [13], the authors present an algorithm using segment compo-
sition and linearly-interpolated re-projection for fast direct volume rendering. Hubbold
et al. [14] propose extensions of a direct volume renderer for use with an autostereoscopic
display in radiotherapy planning. Since the terrain data does not have any mathematical
characterization, mentioned algorithms cannot be adapted easily to stereoscopic terrain

visualization.



III. MULTIRESOLUTION MODELING

A. Data Structures

Here, we present the data structures used in our implementation. To allow morphing and
crack prevention, the elevation structure has to be equipped with suitable fields. The
elevation data structure stores elevation data, the distance at which the vertex will be
activated, the state of the vertex (active or inactive), indices of its dependent vertices,
morph field indicating at which stage the vertex is, a pre-calculated value showing the
distance between active and inactive states of the vertex, and a morph lock flag to prevent
the morph field from being decremented again by other neighboring vertices at the same

frame (see Figure 1).

In the quad structure, minimum and maximum elevations and minimum and maximum
activation distances for a quad block are stored. Flags indicating whether or not the quad
block is activated, previously culled, and its children are activated are also stored in this

structure.

For a terrain with n? vertices, the Terrain structure holds 60n? bytes. The structure can
be modified to reduce the amount of storage required by calculating the dependent vertices
on the fly, which reduces the storage requirement at the expense of some processing
overhead. However, dependent blocks for a vertex must be determined using a search
process in the preprocessing phase since there is no straightforward way of determining

the neighbors of an arbitrary quad block [15].

The QuadTree array occupies 26 bytes per node. Since each lowest level quad block
(highest detail) contains four vertices, the quadtree contains N = ((n — 1)/2)? nodes at
the most detailed level. Given L = log4N levels and Ty = Yr, ,_; 4°*?~1 nodes, the

quadtree structure occupies 267y bytes.

The tag data structure stores flags to indicate the activated vertices for the quad blocks
and uses up two bytes for each node. This information is used while drawing the second

eye image.



struct elevation

{
short int elevation; // elevation in meters
int activation; // vertex activation distance
int dependent[4][3]; // array of dependents: [][0]=col,[][1]=row,
// [1[3]=belonging quad block number
float morphdistance; // distance for each vertex to be morphed
char morph; // level of morphing
unsigned activestate:1; // keeps activation locks on vertex
unsigned morphlock:1; // flag to prevent another quad
// decrement the morph value
};

struct elevation Terrain[COL] [ROW]; // terrain data

struct quad

{
short int elevmin, elevmax; // minimum and maximum elevations
int minact, maxact; // minimum and maximum vertex enabling distance
int rcenter, ccenter; // indices of the center vertex
char activated; // the cell is activated or not
char culled; // the cell is previously culled or not
char childactivated[4];
};
struct quad QuadTree[NODECOUNT]; // quadtree array
struct tag
{
char center;

unsigned leftborder
unsigned bottomleft
unsigned bottomborder
unsigned bottomright
unsigned rightborder
unsigned upperright
unsigned upborder
unsigned upperleft

I

struct tag EyeBlock [NODECOUNT];

N N s

Fig. 1. Data structures

B. Terrain Representation

The quadtree structure is represented as a one-dimensional array (Figure 2). In this tree,
each level represents a different level of detail on the terrain. We use the quadtree to store
the indices, minimum and maximum elevations, and minimum and maximum activation
distances for the vertices. Activation data for the vertices are not stored in the quadtree.

In addition, we use an array-based representation of the quadtree to eliminate the need
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Fig. 3. Numbering scheme for the quad blocks

for pointer manipulation. The numbering scheme for the quadtree structure when it is
stored in a one-dimensional array is illustrated in Figure 3. The root is labeled as 0 and

the rest is numbered recursively in counter-clockwise direction.

C. Approximation Criterion

As mentioned previously, screen-space error criterion for approximating the terrain is not
sufficient in order to achieve a correct stereoscopic view. This is illustrated in Figure 4.
Elevation differences are taken into account to evaluate a vertex for removal when screen-
space error metric is used. The number of projected pixels for the vertex is calculated
for this purpose. If this number is greater than the pre-specified pixel tolerance then the
vertex is kept, otherwise it is removed. The problem here is that if the eye is above a quad

block then its projection to the camera plane will be very small yielding to the elimination
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Fig. 4. Screen-space error metric. (a) Side view of a quad block. (b) Top view of the same block. (c)
Edge removal by screen-space error based algorithm.

of the candidate vertex. This problem can be illustrated by an example. Assume that
we are looking at a tower from above and we use screen-space error tolerance. Since the
projection of the elevation difference will be very small with respect to the position of the
eye, tested vertices will be removed. Therefore, although the screen-space error metric
is suitable for monoscopic view, it degrades the stereo effect and results in incorrect

stereoscopic vision.

Elevation and distance of objects from the viewer are two important criteria that make us
feel the depth and differentiate between objects. Therefore, the threshold value must be
specified adaptively so that it takes into account both of these parameters to reflect the
correct depth information. For this purpose, we specify our distance based angular error
threshold for simplification as follows. We accept the eye to be in the center of a sphere.
The candidate vertices tested for the elimination are located on the surface of the sphere.
Our threshold value at a vertex location is computed by using the prespecified angular
threshold value and the radius of the sphere. The greater the radius of the sphere (i.e.,
the distance from eye to the vertex) is, the larger the size of the threshold will be. We
can derive the elevation threshold by taking the tangent of the angular threshold at the
given distance. Figure 5 illustrates our angular error metric for evaluation of a vertex for

removal.

The distance from the eye position to the vertex is
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Fig. 5. Angular error threshold representation for vertex removal.

d= /(e —v:)2 + (e — 1,)2 + (e; — v,)% (1)

The distance between the original and removed positions of the vertex is

0 =

(leftcornerz + rightcornerz> ‘
v, — .
2

The tangent value of the angular threshold in degrees is given by A’ = tan(7) d.
Hence, our rule for enabling or disabling a vertex is

if 6 < A’ then
disable vertex
else
enable vertex

Our aim is to find a distance at which the threshold value does not exceed the elevation



difference (). So

The vertex activation distance v, = d/tan(7) is a pre-computable value. So the rule for

enabling or disabling a vertex can be restated as

if vuq < d then
disable vertex
else
enable vertex

When the quadtree is built, v, values for each vertex are computed. In addition, the
maximum distance necessary for at least one vertex to be activated (ming,) and the
minimum distance necessary for all vertices to be activated (max,) are precomputed for
each quad-cell. If the distance is greater than min,., then the lowest resolution block is
drawn. If it is less than max,., then the full resolution block is drawn without checking

internal vertices. Otherwise, vertices are considered individually.

D. View Frustum Culling

An efficient view frustum culler (VFC) is crucial for interactive frame rates. While the
quadtree is traversed, the nodes are checked against the viewing frustum and flags for the
nodes in the quad block are cleared and set accordingly. To speed-up frustum culling,

frustum tests are done using bounding spheres enclosing the quad blocks.
In VFC, several optimizations can be performed as listed below.

1. One of the most important optimizations is to utilize the coherence between two
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frames when the user navigates through the terrain. If the user moves forward then
there is no need to cull the whole terrain again since the terrain is already culled in
the previous frame. So, previously culled blocks can be used for the current frame.
This method is applicable if the VF is not culled according to the far plane.

2. Another method is deferred VFC. By deferred VFC, we mean that VFC is not done
for every frame but at predefined intervals. In this way, the overhead brought by the
VFC step can be decreased. One problem with this approach is the navigation speed.
If the user moves very fast involving rotation and backward motion then the screen
may not refresh itself on time. This is suitable for slow motion walkthroughs of the
terrain.

3. As another approach, VFC depending on the deviation of the viewer location is
used. Deviation based culling is very suitable for walkthroughs in which the viewer
navigates through the terrain very fast. Here, we run the VFC only if the user moves
a prespecified distance from the previously culled position.

4. If the terrain is large then we have to test for the far plane too. In this case, an
altitude-based scheme is used for far plane distance determination. If the altitude of
the viewer is at lower levels in the terrain, the far plane is brought closer to the viewer
in proportion to the altitude of the viewer because it is not possible to see farther
distances. This approach establishes a balance between the frustum distance and the

terrain resolution.

All of the optimizations mentioned above are user-specifiable and can be switched on/off
while the program is running. Besides, it is possible to see the performance differences
during fly-through. In deferred VFC and VFC depending on the deviation of the viewer

location, the VFC is not done for every frame.

In view frustum culling algorithm (Figure 6), the quadtree is traversed in preorder. If
the viewer moves forward, the algorithm checks only the previously culled blocks. In this
way, we make use of frame coherency. If the movement is not a forward movement then
all quad blocks are to be checked. Since, our scene construction is not graph based, we

do not use rotation coherency as in [5].



Algorithm ViewFrustumCulling;
while (nodes are not finished) {

if (viewer moves forward)
(check only previously culled blocks for culling)

else {
(check all nodes for culling)
clear previous frame flags
node=CheckFrustum(node)

}

node=sibling(node)

}

Fig. 6. View frustum culling algorithm

Algorithm CheckFrustum;
QuadTree[node] .activated=test (node)
if (QuadTree[node].activated==intersecting) {
increment hits
mark the node as intersecting
return child(node)

}
else
if (QuadTree[node] .activated==inside) {
increment hits
mark the node as inside
mark all children as inside
return sibling(node)

}
node=sibling(node)
return node

Fig. 7. Frustum checking algorithm

In frustum checking part (Figure 7), we test whether the block is completely inside,
intersecting or completely outside of the view frustum. If the block is intersecting with
any of the planes then the children of the block are checked further and its index is returned
to view frustum culling function. Otherwise, we conclude it is completely inside or outside
the frustum and there is no need to check the children. If the block is completely inside
the frustum then the flags of all children of the checked block are cleared and marked as

inside.
E. Vertex Activation

Vertex activation takes place after view frustum culling. In this module (Figure 8), the

quadtree is again traversed in preorder but only traverse the nodes that are in the view
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Algorithm ActivateVertices;
node=0 // start activation from the root
if (hits!=NIL)
while (all view frustum culled nodes are not finished) {
if (QuadTreel[node].culled==YES) {
d=(eye_x-vertex_x)**2 + (eye_y-vertex_y)**2 + (eye_z+vertex_z)**2
if (((QuadTree[node] .maxact*QuadTree[node] .maxact)>=d)) {
// If the viewer is closer than all vertices’ activation distance
// lock all vertices down the quadtree without checking them individually
for all quadblocks including this one do {
LockDependents (centervertex)
LockDependents (bottombordervertex)
LockDependents (rightbordervertex)
LockDependents (upbordervertex)
LockDependents (leftbordervertex)
}
node=sibling(node)
}
else // the distance is in uncertainty section
if ((QuadTree[node] .minact*QuadTree[node] .minact)>=d) {
LockDependents (centerrow,centercol)
for all border vertices do {
d=(eye_x-vertex_x)**2 + (eye_y-vertex_y)**2 + (eye_z+vertex_z)**2
if (Terrain[borderrow] [bordercol].activation>=d)
LockDependents (borderrow,bordercol)
}
node=child(node)
}
else // the block will not be activated
node=sibling(node)
}
else
node=sibling(node)

Fig. 8. Vertex Activation Algorithm

frustum. In this step, the distance from the viewer position to the center of the quad block
is calculated and this value is compared with the vertex activation value of the block. Since
the maximum of the activation values in the block is assigned to the activation value of
the center vertex, block selection decision requires only a comparison of the distance from

the quad-center to the eye-point and the activation value of the block.

If the distance is smaller than the maximum activation distance, it means that the viewer
is close enough to the quad block and all vertices in the quad block should be activated.
Since the maximized activation values are assigned to higher level quad blocks, it is not

necessary to check the children of the quad block and can safely be activated without
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further investigation. If the distance falls between the minimum and maximum activation
distances then we check each border vertex individually, measuring the eye-point and
vertex distances and comparing with their activation distances. If the activation distance
is greater than the distance measured then it means that the viewer is close enough and
the vertex should be activated. While activating a vertex, it is also necessary to activate

its dependents.

F. Handling Cracks

Cracks are one of the artifacts on the geometry when the two neighboring quad blocks
differ in level of detail. There are several approaches to crack handling. These include
drawing another triangle patch in the cracked position [4], triangulation of the gapped

position [16], or not allowing crack formation by using the dependency relations [2].

In order to prevent cracks without causing discontinuities, dependency relations are im-
posed between vertices. If a border vertex is activated in a block then a triangle including
that vertex is drawn. If a neighboring block is not on the same level of detail then no tri-
angles including the common border vertex will be drawn for the neighboring block. This
causes the formation of a crack. In such a case, the dependency relation works. If any of
the border vertices is activated then the neighboring quad-center vertex at the same level
is activated as well. Since this newly activated quadrant will include the common border
vertex in its draw-list, a triangle including the common border vertex will be drawn for
the neighboring block (Figure 9). For this purpose, the dependency relationships over
the data are generated and used. As shown in Figure 10, center vertices are dependent
on the four corner vertices, and if they are activated then the dependents are activated
accordingly. Likewise, the border vertices are dependent on the center vertices of the two
neighboring blocks at the same level. If a border vertex is activated then its dependent
vertices are activated as well. The dependencies of the vertices are stored in the elevation

structure.

During the vertex activation process, vertex dependents are locked by calling the depen-

dency locking procedure (Figure 11) when a vertex is activated. This procedure activates
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Fig. 9. Crack prevention: a) crack formation, b) activate the center vertex in the higher level block, and
c) use it in the triangulation to eliminate the crack.

Fig. 10. Dependency relationships of center and border vertices.

Algorithm LockDependents(row, col, node);
Terrain[row] [col] .activestate=YES
for (i=0; i<4; i++) {
if (Terrain[row] [col].dependent[i] [0] !=NIL) {
if (Terrain[Terrain[row] [col].dependent[i][0]]
[Terrain[row] [col] .dependent[i] [1]].activestate==N0) {
NotifyParents(node)
LockDependents (Terrain[row] [col] .dependent[i] [0],
Terrain[row] [col] .dependent [i] [1], Terrain[row] [col].dependent[i] [2])
}
else
break // exit without checking the rest since no more dependents exist

Fig. 11. Locking the vertex dependents
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Algorithm NotifyParents(node) ;
childno=node-child(parent(node)) // calculate the quadrant index
while (node) {
node=parent (node)
if (QuadTree[node].childactivated[childno]==N0)
QuadTree[node] .childactivated[childno]=YES
else
break // exit since the rest of the parents already
// know that the quadrant is already activated
childno=node-child(parent (node))

}

Fig. 12. Notifying parents

the related vertex by turning its flag on. The dependent vertices are located sequentially
in the dependent slots. A vertex can have at most four dependent vertices. If the ver-
tex is a border vertex then the number of the dependent vertices is two. Therefore, the
procedure checks if the dependent vertex is null or not; and if not, it informs its parents
that the corresponding quad block is activated. It then calls itself recursively to further
lock the dependents of the dependent vertex. It is important to stop the locking process
if the dependent vertex has been enabled previously because this means that locking has
already been done and there is no need to go further. Figure 12 gives the algorithm for
notifying the parents of a node. In this algorithm, parents are notified in order not to
generate a triangle towards the location of the activated child block. The notification
process is stopped if the location of the child block in the quad was marked before, which

means the higher level quad blocks have already been notified.

G. Valid Triangulation of the Mesh

In order to prevent cracks on the terrain, a valid triangulation should be maintained. Our
distance-based vertex activation scheme accomplishes this by using the activation values
assigned to each vertex at preprocessing phase. In this part, a corner vertex refers to
one of the vertices on the four corners of a quad block; border vertex refers to the vertex
between the corner vertices on the same edge of a quad block; center vertex refers to the
vertex located at the center of the quad block; sub-center vertex refers to the center vertex
of the sub-quad (see Figure 13). The activation values are assigned starting from the level

just above the lowest level in the quadtree structure as explained below:
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Fig. 13. Naming of the vertices in a quad block.

o Calculate the activation values for each border vertex of the quad blocks.

« Find the activation distances for the sub-center vertices by taking into account the
diagonals based on the position of the sub-center in the quad block and assign the
maximum of its four border activation distances and the calculated value as the sub-

center vertex activation distance.

After finding the activation distances for this level, we go up one level in the quadtree
and the activation distances for the higher level nodes are calculated similarly. However,

there are minor differences for the calculations at higher level nodes as explained below.

o Calculate activation distance values for border vertices for each edge and assign the
maximum of the sub-border vertex activation distances on the same edge and the
calculated value as the border vertex activation distance.

« Find activation distances for sub-center vertices by taking into account the two corner
vertices (based on its position in the larger quad block) and assign the maximum of
nine values to the centers (maximum of four sub-subcenter, four sub-border and the

calculated value).

This process is repeated going up until the root of the quadtree is reached. At the root,

only the activation distance of the center vertex is calculated.

In the draw-list construction algorithm (Figure 15), each block is checked whether its
center vertex is activated or not. If it is activated (i.e., the case when the eye is closer

than the minimum activation distance of the quad block), the quadrants of the block are
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Algorithm TriangulateBlock(node, eye);
center_elevation=Morph(centerrow,centercol)
// triangulate the bottom left quadrant
if (EyeBlock[node].bottomleft) { // bottom left quad can be triangulated

}

if

(EyeBlock[node] .leftborder) { // vertex at left border is activated
PutVertex(eye,centerrow,centercol,center_elevation)
border_elevation=Morph(centerrow,minc)
PutVertex(eye,centerrow,minc,border_elevation) // left border
border_elevation=Morph(minr,minc)

PutVertex(eye,minr ,minc,border_elevation) // bottomleft corner

}

if (EyeBlock[node].bottomborder) { // vertex at bottom border is activated
PutVertex (eye,centerrow,centercol,center_elevation)
border_elevation=Morph(minr,minc)
PutVertex(eye,minr,minc,border_elevation) // bottomleft cormner
border_elevation=Morph(minr,centercol)
PutVertex (eye,minr,centercol,,border_elevation) // bottom border

}

else

if (EyeBlock[node] .bottomright) { // bottom right quad can be triangulated
PutVertex(eye,centerrow,centercol,center_elevation)
border_elevation=Morph (minr,minc)

PutVertex(eye,minr,minc,border_elevation) // bottomleft corner
border_elevation=Morph (minr ,maxc)
PutVertex(eye,minr,maxc,border_elevation) // bottomright corner

// triangulate the bottom right quadrant

Fig. 14. Triangulation algorithm

checked for triangulation. In order to triangulate a quadrant no children should be active

in that quadrant. Otherwise, overlapping triangle patches may exist in that area. This is

guaranteed for a block by checking the fields showing the activation status of its children.

The triangulation algorithm, which is called from the draw-list construction algorithm, is

given in Figure 14. The triangulation of a quad block resulting from an execution of the

triangulation algorithm is illustrated in Figure 16.



Algorithm ConstructDrawList(eye);

node=0

while (nodes are not finished) {
if (Terrain[centerrow] [centercol].activestate==YES) {
EyeBlock[node] .center=YES

}

//
if

process bottom left quadrant

(canIdrawbottomleft(node)==YES) { // no subquads are active

if (canldrawupperleft(node)==N0) // above subquad is active
EyeBlock[node] .leftborder=YES

EyeBlock[node] .bottomleft=YES

if (canIdrawbottomright(node)==N0) // next subquad is active
EyeBlock[node] .bottomborder=YES

(canIdrawbottomborder (node)==YES) // neighboring quadrant centers
EyeBlock[node] .bottomborder=YES // are inactive & border is active

process bottom right quadrant

TriangulateBlock(node,eye)
node=child(node)

else
node=sibling(node)

Fig. 15. Construction of the draw-list

activated

8 o
00000000000000
activated @il L L UL 1

deactivated

s

deactivated

Fig. 16. A sample execution of the triangulation algorithm for a quad block.
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H. Morphing

One of the important issues while visualizing complex geometric environments using a
multiresolution representation is that there should be no popping artifacts while switching
between different levels of detail. The best way to achieve this is with a smooth morphing
of the geometry between successive frames. Blending, which is a less expensive solution
for eliminating popping artifacts, cannot be used in stereo visualizations, especially in the

interleaved drawing of the triangles for stereoscopic viewing.

The proposed morphing scheme works as follows. The distances between activated and
deactivated states of the vertices are precalculated. A prespecified morph-segment value
is used to decide at how many steps should the enabling or disabling vertex reach its new
position. If this value is specified to be too large then the vertices being morphed do not
reach their new positions when navigation is very fast. In order to get the morphing state
of each vertex, a field is kept for each elevation on the terrain. At each frame, the morph
value of a vertex is modified and the calculated distance is used as the new elevation for
that point. If the morph-segment value is modified more than once by the neighboring
quad blocks while drawing a frame, then gaps may occur between the neighboring quad
blocks. In order to prevent the formation of such gaps, a flag is used to lock the vertex

morphing at each frame. The morphing algorithm is given in Figure 17.

This approach provides a uniform morphing scheme for both refinement and coarsening
operations during the navigation. A positive morph value is set if the vertex is to be
enabled and a negative morph value is set for a vertex to be disabled. While the viewer
gets closer to the terrain, vertices are enabled and morphing is started. As soon as the

viewer begins to get away from the terrain, morphing for the coarsening vertices starts.

The determination of the morph segment value is very important. This is due to the fact
that the terrain does not come to its new state on time if the viewer moves very fast and
the morphing lasts too long. On the other hand, if the morph segment value is too small
then a popping-like appearance may result. Our experiences show that morphing should

not last more than one second. The morph segment value can be determined adaptively
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Algorithm Morph(cr, cc)
if (MORPHING==0N) {
emorph=Terrain[cr] [cc] .morph
// if vertex is disabled then corrected elevation is taken
if (Terrain[cr] [cc].activestate==DISABLED)
morphed_el=Terrain[cr] [cc].elevation - Terrain[cr] [cc].morphdistance
else
morphed_el=Terrain[cr] [cc].elevation
if (emorph) {
// if elevation is above its deactivated state morphdistance > 0
// if elevation is below its deactivated state morphdistance < 0
morphdist=(emorph*(Terrain[cr] [cc] .morphdistance/MORPHSEGMENTS) )
if (emorph<0) { // the vertex is coarsening
morphed_el=morphed_el-Terrain[cr] [cc].morphdistance-morphdist
if (!'Terrain[cr] [cc].morphlock) { // vertex not locked by another quad
(Terrain[cr] [cc] .morph) ++
Terrain[cr] [cc] .morphlock=YES

}
}
else { // the vertex is refining
morphed_el=morphed_el-morphdist
if (!'Terrain[cr] [cc].morphlock) { // vertex not locked by another quad
(Terrain[cr] [cc] .morph) -~
Terrain[cr] [cc] .morphlock=YES
}
}
}
return morphed_el

}

Fig. 17. The morphing algorithm

according to the frame rate when frame budgeting is implemented. Frame budgeting is

not implemented in our work.

The morphing scheme imposes approximately ten to thirty percent overhead on the frame
rate due to clearance of the morph flags for the vertices going out of the view frustum when
the user moves fast. Non-zero morph values are taken into account while drawing the next
frame since taking only activated center vertices as the starting point of the triangulation
is not correct for coarsening vertices. Therefore, these out-of-frustum vertices need to be
cleared at each view frustum culling operation to make them ready for the next frame.

The overhead comes from the traversal of the out-of-frustum nodes.

This morphing scheme is used when the culling is done for every frame. We also propose

another morphing scheme that is used when the culling is not done on every frame. This
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approach is used for deferred VFC and the VFC based on the deviation of the viewer
location. In this approach, the vertex activation and the view frustum culling processes
will not run for every frame. This way, the frame rate is increased considerably and
flickering in stereo visualization due to the insufficient frame rate is eliminated. This
approach has another advantage in terms of the reduced number of morphing vertices.
That is the morph locking flags will not be cleared when the VFC is not running. The
distance between activated state and deactivated state of any vertex will be divided to
morph segments and no morphing may take place without user navigation. As opposed
to the continuous vertex morphing, there will be no vertex movement while the viewer is

not moving.

IV. STEREOSCOPIC VISUALIZATION

At first, we need to explain the stereoscopic projection system we used. In general, stereo
projections are divided into two: on-azis and off-axis [7]. Off-axis projections require
the implementation of asymmetric parallel view frustum projections (Figure 18 (a)). By
using off-axis projections, a more accurate stereo view can be achieved in terms of reduced
ghosting effect in the peripheries. However, it has a disadvantage in terms of execution
speed because control of the center of projection is not implemented in hardware for most
low-end systems. Therefore, on-axis projection (Figure 18 (b)), which modifies the data
with translations and rotations, has an important advantage over off-axis projections in
terms of speed. The disadvantages of on axis-projections, namely ghosting effect and loss
of data in side-views, are eliminated with our simple correction: we operate on the data
that is in the view frustum, plus the data on the left and right of the view frustum in half

of the inter-ocular distance for each eye (Figure 18 (c)).

With the correction of the ghosting effect, the coverage of the stereoscopic area is the same
as the stereoscopic area in off-axis projections. Besides, this ensures that each element in
the view frustum is in stereo. Since the inter-ocular projection is very small with respect
to the terrain, elimination of the ghosting effect does not cause significant processing

overhead.



25

\ 4

Fig. 18. Stereo projections. (a) Off-axis projection, (b) on-axis projection, (c) elimination of the ghosting
effect.

A. Simultaneous Generation of Triangles

Terrain data is huge with respect to the inter-ocular distance (IOD). In order to prevent
the ghosting effect that can occur in on-axis projections, we add the necessary data to
the view frustum by enlarging it by half the distance of IOD in both sides. Besides, we
do not make occlusion culling since it does not increase the performance significantly for
the terrain data [3]. Therefore, left and right eye views may operate on the same view
frustum culled data safely. The critical point here is that necessary flags should be cleared

during morphing and vertex activation processes without bringing too much overhead.

The second eye image is generated during the draw-list construction for the first eye.
In the EyeBlock array, the flags indicating the activated vertices in the quad block are
stored. For the second eye drawing interval, we do not repeat the view frustum culling
and vertex activation processes. Furthermore, we do not clear any flags for morphing
because the same state will apply to the left eye view as well. We only traverse the
draw-list constructed for the right eye and do not make any modifications on the data
created previously, while the left eye view is drawn. This is achieved by modifying the
algorithm for construction of the draw-list given in Figure 15 as in Figure 19. Stereoscopic
drawing algorithm using the SGT approach is given in Figure 21. The algorithm that
decides when vertex activation and frustum culling operations should be done according

to different culling schemes is given in Figure 20.
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Algorithm ConstructDrawList(eye);

node=0

while (nodes are not finished) {

if ((eye==left_eye)&& (LISTTRANSFER==0N)) {
if (EyeBlock[node].center) {

TriangulateBlock(node,left_eye)
ClearEyeBlock
node=child(node)

}
else
node=sibling(node)
}
else

Fig. 19. Using the draw-list constructed for the right eye in generating triangles for the left eye image
in the SGT algorithm

Algorithm Draw(eye)
if (DEFERREDCULLING == ON) {
time = gettime()
if (time - frustumtime) > DEFERRINGTIME || rotating) {
ViewFrustumCulling
ActivateVertices
rotating = no
frustumtime = time
}
}
else
if (DEVIATIONCULLING == ON) {
d = sqrt((current_x - old_x)**2 +
(current_y - old_y)**2 +
(current_z - o0ld_z)*%2)
if (d > DEVIATIONDISTANCE || rotating) {
old_x = current_x
old_y = current_y

old_z = current_z
ViewFrustumCulling
ActivateVertices
rotating = no
}
}
else

// dynamic morphing is on, or
// the viewer is moving while dynamic morphing is off
if (CullingNeeded) {

ViewFrustumCulling

ActivateVertices

}

ConstructDrawList (eye)

Fig. 20. The algorithm that calls view frustum culling and activation procedures depending on the
culling scheme used
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Algorithm SGTStereo {
// Draw right-eye view.
SelectRightBuffer
ClearBuffer
Calculate the view transformation for the right eye
Draw(right_eye)

// Draw left-eye view.

SelectLeftBuffer

ClearBuffer

Calculate the view transformation for the left eye
ConstructDrawList (left_eye)

Fig. 21. Stereoscopic drawing using the SGT Algorithm

We could do several other optimizations that can be used in stereoscopic visualization. In
general, many algorithms designed for speeding up second stereo pair use the mathemat-
ical characterization of the data when the eye point shifts horizontally. However, since
the subject includes navigation over the data and there is not a mathematical character-
ization for the terrain but only the elevation data, it is not possible to shift the right eye
data to the left only by its x-coordinates. We also tried to calculate the correct positions
of the second eye vertices, but since the translations are implemented in hardware the
approach of using the same draw-list resulted in faster draw times with respect to calcu-
lating projected vertex coordinates of the second eye. We could also use the frame buffer
data drawn for right eye view for producing the left eye image by copying the right buffer
to the left and shifting the data by the IOD. However, this would result in divergent

parallax, which is very hard to visualize in stereo and may cause eye fatigue.

V. PERFORMANCE RESULTS

In the visualization experiments, approximately 4,000 polygons were rendered for each eye
on the average at each frame. Number of polygons were almost the same in corresponding
frames for the different types of visualizations. Our terrain is a part of Grand Canyon
that has very sharp ridges in it, with 513x513 vertices. The results were obtained on a
personal computer with Intel Pentium III-550 Mhz CPU and 64 MB of main memory
with 32 MB of graphics memory.
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We prepared a flythrough of the terrain with approximately 5,000 frames. Screen shots
from the monoscopic flythrough is shown in Figure 26. The number of polygons rendered
during the flythrough is shown in Figure 23. The reason for sudden changes in the poly-
gon count is that the viewer gets close to the edges and corners of the terrain. Figure 22
shows the performance comparisons of different types of visualization techniques by using
different morphing, culling and rendering techniques at different parts of the flythrough.
It gives a general overview about the performance of the visualization techniques. In this
test, the average frame rate of the proposed SGT approach is 17.65 fps whereas the frame
rate of the monoscopic visualization is 25.05 fps. Performance comparison of the visual-
ization methods with different types of culling, morphing and rendering techniques are
given in Table I. In this table, theoretical performance gain is calculated as the perfor-
mance gain when the normal stereoscopic rendering speed is taken as half of monoscopic
rendering speed. Practical performance gain is calculated by using the performance re-
sults obtained for normal stereoscopic visualization. These results show that the best
performance in stereo is achieved when deviation-based culling is used without morphing
with the proposed SGT approach. In this case, the average rendering speed for SGT is
27.48 fps where its monoscopic correspondent is 43.25 fps. The largest performance gain
is achieved when SGT approach is used with dynamic culling without morphing. In this

case, a performance gain of 43.27 % over normal stereo implementation is achieved.

In Figure 24, performance comparison showing the frame rates of our culling techniques
with each visualization method is given. In deviation-based culling tests, the deviation
threshold was taken as 500 meters. In deferred culling, the deferring time was taken as
0.1 second. As it is seen in the figure, deviation based culling and deferred culling perform
better than dynamic culling. The performances are almost the same when dynamic culling
is on or off since the viewer is continuously moving. Turning dynamic culling off becomes
advantageous when the viewer does not move. In this case, the frame rate increases
since the view frustum culling and vertex activation operations are not performed. Under
normal conditions, the viewer generally stops moving at undetermined instances. Since

the screen will be rendered without being culled, the stereo effect will be much better.
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Visualization Morph | Dynamic | Deferred | Deviation | Average | Theoretical Practical

Method Culling VEC VEC FPS Performance | Performance
Gain Gain

Monoscopic OFF OFF OFF OFF 30.66

SGT OFF OFF OFF OFF 21.83 42.41 42.61

Normal Stereo | OFF OFF OFF OFF 15.31

Monoscopic OFF OFF ON OFF 44.88

SGT OFF OFF ON OFF 26.83 19.56 12.15

Normal Stereo | OFF OFF ON OFF 23.92

Monoscopic OFF ON OFF OFF 30.85

SGT OFF ON OFF OFF 21.90 41.99 43.27

Normal Stereo | OFF ON OFF OFF 15.29

Monoscopic ON OFF OFF OFF 22.56

SGT ON OFF OFF OFF 16.42 45.58 27.61

Normal Stereo ON OFF OFF OFF 12.87

Monoscopic ON OFF ON OFF 31.38

SGT ON OFF ON OFF 19.13 21.91 27.54

Normal Stereo ON OFF ON OFF 15.00

Monoscopic ON ON OFF OFF 22.57

SGT ON ON OFF OFF 16.43 45.61 37.29

Normal Stereo ON ON OFF OFF 11.97

Monoscopic OFF OFF OFF ON 43.25

SGT OFF OFF OFF ON 27.48 27.07 8.54

Normal Stereo | OFF OFF OFF ON 25.32

Monoscopic ON OFF OFF ON 31.91

SGT ON OFF OFF ON 20.70 29.73 15.25

Normal Stereo ON OFF OFF ON 17.96

In Figure 25, the performances of the visualization methods for each of the proposed

culling schemes are given. It is apparent that the proposed stereo visualization method

performs much better than the normal stereoscopic visualization.

VI. CONCLUSION

This paper presents a framework for the stereoscopic view-dependent visualization of large

scale terrain models. A quadtree based multiresolution representation is used for the ter-

rain data. This structure is queried to obtain the view-dependent approximations of the

terrain model at different levels of detail. In order not to loose depth information, which

is crucial for the stereoscopic visualization, we make use of a different simplification cri-

terion, namely distance-based angular error threshold. An algorithm is proposed for the
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Fig. 24. Comparison of the frame rates for each type of visualization with different morphing/culling op-

tions: (a) monoscopic visualization with morphing; (b) monoscopic visualization without morphing;
(c) standard stereoscopic visualization with morphing; (d) standard stereoscopic visualization with-
out morphing; (e) simultaneous generation of triangles with morphing; (f) simultaneous generation

of triangles without morphing.



32

Dynamic Culling Off with Morphing Dynamic Culling Off without Morphing
80.0 T T T T 80.0 T T T T
~— Monoscopic Visualization I ~— Monoscopic Visualization N
Normal Stereo Visualization Normal Stereo Visualization
i G ion of Triangles i G ion of Triangles

£
g
=
.
£
g
=
T
.

N
e
)

N

e

)

Frame Rate (frames per second)
=
=

Frame Rate (frames per second)
=
=

ﬂmmv A

0.0 . I . I 0.0 . I . I
0.0 1000.0 2000.0 3000.0 4000.0 5000.0 0.0 1000.0 2000.0 3000.0 4000.0 5000.0
Frame Number Frame Number
Dynamic Culling On with Morphing Dynamic Culling On without Morphing
80.0 T T T T 80.0 T T T T
Monoscopic Visualization Monoscopic Visualization
Normal Stereo Visualization Normal Stereo Visualization
Sil G ion of Triangles Sil G ion of Triangles

E
e
B

E

e

B

»
S
=

»

S

=

Frame Rate (frames per second)
g
=3

Frame Rate (frames per second)
g
=3

0.0 . . . . 0.0 . . . .
0.0 1000.0 2000.0 3000.0 4000.0 5000.0 0.0 1000.0 2000.0 3000.0 4000.0 5000.0
Frame Number Frame Number
Deferred Culling with Morphing Deferred Culling without Morphing
80.0 T T T T 80.0 T T T T
— Monoscopic Visualization I — Monoscopic Visualization In
Normal Stereo Visualization Normal Stereo Visualization
i G ion of Triangles i G ion of Triangles

60.0 *J w

60.0 -

40.0 || 40.0

20.0 20.0

Frame Rate (frames per second)
Frame Rate (frames per second)

0.0 . I . I 0.0 . I . I
0.0 1000.0 2000.0 3000.0 4000.0 5000.0 0.0 1000.0 2000.0 3000.0 4000.0 5000.0
Frame Number Frame Number
Deviation-Based Culling with Morphing Deviation-Based Culling without Morphing
80.0 T T T T 80.0 T T T T
Monoscopic Visualization Monoscopic Visualization n
Normal Stereo Visualization Normal Stereo Visualization J‘L
—_ Simultaneous Generation of Triangles —_ Simultaneous Generation of Triangles ‘ ’I’_L '|-
=) =)
g g 60.0
2 2
] ] i
=% =%
40.0
g g Y I “
“i % | w I
E E 20 N
P P oy Iy
[ 3 20.0 WY -
= =
0.0 1 I 1 I 0.0 1 I 1 I
0.0 1000.0 2000.0 3000.0 4000.0 5000.0 0.0 1000.0 2000.0 3000.0 4000.0 5000.0
Frame Number Frame Number
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morphing.



Fig. 26.

Still frames from a walkthrough
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construction of stereo pairs in order to speed-up the view-dependent stereoscopic visu-
alization. The proposed algorithm simultaneously generates the triangles for two stereo
images using a single draw-list so that the view frustum culling and vertex activation is
done only once for each frame. The cracking problem is solved using the dependency
information stored for each vertex. The popping artifacts that can occur while switching
between different resolutions of the data are eliminated using morphing. The proposed
algorithms are implemented on personal computers and graphics workstations. Perfor-
mance experiments show that the second eye image can be produced approximately 45 %
faster than drawing the two images separately and a smooth stereoscopic visualization can

be achieved at interactive frame rates using continuous multi-resolution representation of

height fields.
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