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ABSTRACT

Categorization in a Hierarchically Structured Text Database

Ferhat Kutlu
M.S. in Computer Engineering
Supervisor: Assoc. Prof. H. Altay Giivenir
February 2001

Over the past two decades there has been a huge increase in the amount
of data being stored in databases and the on-line flow of data by the effects of
improvements in Internet. This huge increase brought out the needs for intelli-
gent tools to manage that size of data and its flow. Hierarchical approach is the
best way to satisfy these needs and it is so widespread among people dealing
with databases and Internet. Usenet newsgroups system is one of the on-line
databases that have built-in hierarchical structures. Our point of departure is
this hierarchical structure which makes categorization tasks easier and faster.
In fact most of the search engines in Internet also exploit inherent hierarchy
of Internet. Growing size of data makes most of the traditional categorization
algorithms obsolete. Thus we developed a brand-new categorization learning
algorithm which constructs an index tree out of Usenet news database and then
decides the related newsgroups of a new news by categorizing it over the index
tree. In learning phase it has an agglomerative and bottom-up hierarchical
approach. In categorization phase it does an overlapping and supervised cate-
gorization. k Nearest Neighbor categorization algorithm is used to compare the
complexity measure and accuracy of our algorithm. This comparison does not
only mean comparing two different algorithms but also means comparing hier-
archical approach vs. flat approach, similarity measure vs. distance measure
and importance of accuracy vs. importance of speed. Our algorithm prefers hi-
erarchical approach and similarity measure, and greatly outperforms £ Nearest

Neighbor categorization algorithm in speed with minimal loss of accuracy.

Keywords: learning, categorization, clustering, hierarchy, Usenet, newsgroup,
top-level, header-line, posting, frequency, norm-scaling, similarity measure, dis-

tance measure, agglomerative, bottom-up, stemming, stopword, index
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OZET
Hiyerargik Yapida Olan Bir Veritabaninin Kategorizasyonu

Ferhat Kutlu
Bilgisayar Miihendisligi, Yiiksek Lisans Programi
Tez Yoneticisi: Dog. Dr. H. Altay Giivenir
Subat 2001

Son yirmi yildir Internet alanindaki geligmelerin etkisiyle veritabanlarinda
saklanan verinin boyutunda ve on-line veri akiginda biiyiik bir artig oldu.
Bu artig beraberinde, bu biiyiikliikteki veri yigininmi ve akigini yonetebelicek
aracglara olan ihtiyaclar1 aciga cikardi. Hiyerarsik yaklagim, bu ihtiyaclar: tat-
min icin en iyi yoldur ve Internet ve veritabanlariyla ugrasanlar arasinda da
cok yaygindir. Usenet haber gruplar sistemi, iginde yapisal bir hiyerarsi bu-
lunduran on-line veritabanlarindan biridir. Bizim hareket noktamiz da katego-
rizasyon islerini daha kolay ve hizli hale sokan bu hiyerarsik yapidir. Aslinda
Internetteki arama motorlarimin cogu Internetin yapisal hiyerarsisinden fay-
dalanmaktadir. Verilerin artan boyutu bircok geleneksel kategorizasyon algo-
ritmasini kullanilmaz hale sokmugtur. Bu sebeple Usenet haberlerinden olusan
bir veri tabanindan indeks cikartan ve daha sonra bu indeks iizerinden katego-
rizasyon yaparak yeni bir haberin ilgili haber gruplarini belirleyen yeni bir kate-
grizasyon ogrenme algoritmasi gelistirdik. Bu algoritma 6grenme sathasinda
birlegtirici ve asagidan yukariya hiyerarsik bir yaklagima sahiptir. Katego-
rizasyon safhasinda ise ortiigiimlii ve denetlemeli bir kategorizasyon yapmak-
tadir. Algoritmamizin kompleksite Olciitiinii ve dogrulugunu kiyaslamak icin
k En Yakin Komsu kategorizasyon algoritmasi kullanilmigtir. Bu kiyaslama
sadece iki algoritmanin kiyaslanmasi demek degil, hiyerarsik yaklagimin diiz
yaklagimla, benzerlik 6l¢iitiiniin mesafe olgiitiiyle ve dogrulugun 6neminin hizin
onemiyle kiyaslanmasidir. Algoritmamiz hiyerarsik yaklagimi ve benzerlik ol¢ii-
tini benimsemekte ve kiiciik bir dogruluk kaybiyla £ En Yakin Komsu algo-

ritmasindan ¢ok daha hizl calismaktadir.

Anahtar sozciikler: 6grenme, kategorizasyon, boliimleme, hiyerarsi, Usenet,
haber grubu, iist seviye, baghk satiri, postalama, frekans, norm o6lcekleme,
benzerlik 0l¢iitii, mesafe 6l¢iitii, birlestirici, asagidan yukari, eklerinden ayirma,

yvaygin kelime, indeks
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Chapter 1

Introduction

Amount of on-line information is growing at an ever-increasing rate and the
needs for concepts to help manage this huge size of information are rising each
day. One of these concepts is the categorization of every kind of data so that
data parts with similar contents are in the same category. To date there have
been many categorization algorithms implemented. This is because different
types of data require different types of techniques, and growing sizes of data
creates the need not only for new hardware but also for new software originating

from algorithms faster than the previous ones.

In this thesis we try to figure out the benefits of built-in hierachical struc-
tures in text databases by developing a brand-new algorithm and implementing

it. We used a sample database downloaded from Usenet newsgroups because:

e Usenet system has such a built-in hierachical structure in itself which
makes us able to run our algorithm without a pre-arrangement of the

input data.

e Usenet system is a source of large number of documents and there is

always new data available for training and testing [39].

e Most of the news are text-based and there is no need to worry about

removing HTML commands or interpreting image files.

e There are a large variety of subjects covered, so it is possible to study a

particular area or more general topics.

1
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e Postings are grouped together by category, so initiating a supervised

learning is very easy.

1.1 Usenet System

As a global definition Usenet system is a set of people with common interests
exchanging messages tagged with one or more universally-recognized labels
called newsgroups. More technically, Usenet system is a world-wide distributed
discussion system including a set of newsgroups with names that are classified
hierarchically by subject. Messages are posted to those newsgroups by people
on computers with the appropriate software, and then they are broadcasted
to other interconnected computer systems via a wide variety of networks, but
the bulk of modern Usenet traffic is transported over the Internet as a line of
the Information Superhighway. In short, Usenet system is such a conference

system embedded in Internet.

From: Buday Gergely <gergoe@math.bme.hu>

Date: 23 Feb 2000 16:59:08 +1100

Subject: iterative deepening

Organization: Technical University of Budapest
Newsgroups: comp.ai, comp.ai.philosophy

Hi Folks,

I’ve bumped into the expression ’iterative deepening’.
I’ve tried to understand it from a 1985 AI paper

(R.Korf, Vol. 27 pp. 97-109),but his explanation is not
really clear, at least for me.

Could anybody explain it clearly, or provide a
(preferrably electronical) reference to it?

Thanks in advance...Gergely

Figure 1.1: A Sample News

A sample news is given in Figure 1.1. Most common header-lines in a news

are From (name and e-mail address of sender), Date (posting date), Subject



Chapter 1. Introduction 3

(a few words about the matter), Organization (name of university, company,
etc.), Newsgroups (names of newsgroups to be posted). Below the header-lines

there is the text part of news and attaching a file to news is also possible.

Important rules to obey while using Usenet system®:

e Never forget that the person on the other side is a human being.
e Do not blame system administrators for their users’ behaviour.
e Never assume that a person is speaking for an organization.

e Be brief and pay attention to what you say about others.

e Your postings reflect upon you, be proud of them.

e Use descriptive titles.

e Think about your audience.

e Be careful with humour and sarcasm.

e Only post a message once.

e Please rotate material with questionable content.

e Summarize what you are following up.

e Use mail, don’t post a follow-up.

e Read all follow-ups and do not repeat what has already been said.
e Check your return e-mail address and expect responses.

e Double-check follow-up newsgroups and distributions.

e Be careful about copyrights and licenses.

e (Cite appropriate references.

e Mark or rotate answers or spoilers.

e Spelling flames considered harmful.

e Do not overdo signatures.

! Available from http://www.hypernews.org/HyperNews/get/usenet.html
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Limit line-length and avoid control characters.

Do not use Usenet system as a resource for homework assignments.

Do not use Usenet system as an advertising medium.

Avoid posting to unnecessarily multiple newsgroups.

These rules are to make Usenet system a functional, helpful, and dependable
platform. Most of them are easy to obey but the last rule is the hardest one to
realize. Because there are a large number of newsgroups embedded in Usenet
system and their organization is not very clear. Sometimes it is impossible or
takes much time to detect which newsgroup is dealing with what. Fortunately
each day new newsgroups are popping up and enriching Usenet platform. But
unfortunately the total number of available newsgroups is getting near to the

point of becoming impossible to keep track of even for a frequent user.

1.2 Motivation

Top-level names of the newsgroups already available in Usenet system are alt
(alternative newsgroups), bionet (Biology Network), bit (originating from BIT-
NET (IBM mainframe)), clari (Clarinet News Service (commercial)), comp
(computer newsgroups), gnu (GNU operating system), misc (miscellaneous
newsgroups), news (Usenet news), rec (recreational newsgroups), sci (science
newsgroups), soc (social issues newsgroups), talk (talk newsgroups)?. All other
newsgroup names are produced by adding different names to top-level names

and they are seperated by dots such as comp.ai.philosophy.

Multiple copies of a posting appearing in unrelated multiple newsgroups are
called spamming, and a posting that has multiple newsgroups on its Newsgroups
header line is cross-posted. It might look easy to find out a related newsgroup
to your new message by beginning with top-level names and going down the
hierarchy. But this is neither useful most of the times nor does it find out
other related newsgroups placed at some other braches of the hierarchy for real

cross-posting but not spamming.

2 Available from http://www.faqs.org/faqs/usenet /hierarchy-list/
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For a new user brute force approach is that: Read as many news as possible
from each newsgroup and construct something such as a map to see his/her
way to post a message and keep this map updated. Most probably such a user
will no longer be a user after a few days. In reality Usenet users always post
their messages to their most favorite newsgroups. Therefore they are not aware
of other related newsgroups and randomly cross-post their messages without

caring for the relation issue which gives way to spamming most of the time.

Our approach is quite different. Technology brings its imperfection with its
perfection but this imperfection also could be solved by the same technology.
Imagine that you have a software which takes your new message as an input
and looks up an index which is ready and updated beforehand and finally fills
in the Newsgroups header line of your message form. All you need is to install
such a software and supply its initial database for constructing an index or in

other words for learning.

In this work we challenge the unpredictable nature of the Usenet news-
groups. Usenet system has an evolving structure. We want to invent an intelli-
gent algorithm which learns the most recent structure of Usenet system, solves
almost all of the problems discussed above, and gives way to the implementa-
tion of the imagined software mentioned in the previous paragraph. The main
target of this algorithm is to make Usenet users feel comfortable about where

to post their newly written messages.

In general terms, our purpose in choosing such a problem area, or such a
database is to deal with its built-in hierarchical structure. We want to show
that if a database has an already present and substantially built-in hierarchy
in itslef then categorization could be done faster and more accurately than the

traditional categorization algorithms do.

The outline of our algorithm can be summarized in a few sentences. It
begins with a database that contains various messages from all newsgroups or
at least from some newsgroups under the top-level names we are interested in.
This database should have sufficient number of documents downloaded from
each newsgroup in itself to be able to do an exact learning - lets say a number
between 50 - 100 news for each newsgroup. Then we run our algorithm to

construct an index tree which is as high as the longest hierarchy in the database
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such that each node of the tree contains different number of features inherited
from its children. Finally a new document/a set of documents travel(s) down
the tree by the guidance of a similarity measure and a threshold value of this

similarity measure to find its/their related category or multiple categories.

We are doing Categorization in a Hierarchically Structured Text Database
in this thesis. So we get the abbreviation CHSD for our algorithm. News-
groups have a hierarchy implied in their names such as a newsgroup called
comp.groupware.lotus-notes.admin is placed at depth four in the hierarchy of
Usenet system. This is the feature that we exploited in our algorithm to
construct the index tree at the learning phase. In other words, the index tree
constructed by our algorithm is an exactly the same copy of the already present
hierarchy in Usenet system. Actually this is the main force behind our chal-
lenge for speed in categorization. As for the correctness, we use a few tools
such as an exclusive stoplist of words to be ignored, norm-scaling formula for
weightening the features, a similarity measure to find the best matches and

sufficient amount of data for training.

Unfortunately there are some problems in realizing this solution:

Usenet system does not have a service to download already posted mes-
sages in newsgroups. People can get such a database by saving messages
one by one and spending great amount of time on this work. This is also

the way we used to get our test database.

e Even after constructing the initial database users should periodicaly col-
lect new posted messages for the sake of the maintanence of their software.
Because in long term the database needs to be updated in order not to

loose accuracy in its results.

e Unpreventable spamming in Usenet system is decreasing the accuracy of

categorization algorithms by creating noisy data.

e Great amount of disk space for database is needed if it is necessary to

cover all newsgroups in Usenet system.
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1.3 Organization of the Thesis

In Chapter 2 we give background information and mention related works done
up to now about hierarchical clustering algorithms, text categorization algo-
rithms, and projects dealing with Usenet news. In Chapter 3 we present the
pseudocodes of our algorithm, explain them in details in two parts called learn-
ing and categorization, simulate a run time example done by hand and finally
give the details of a small experiment done with a database of 1000 docu-
ments and a query document. In this last example we also explain the issues
of stopword elimination and stemming of words which we have dealt with in
the implementation of CHSD. In Chapter 4 we do complexity analysis and em-
pirical evaluation of our algorithm, present our data sets and test results, and
compare results of our algorithm with the results of KNN algorithm which we
ran over the same sample database. At the end of Chapter 4 we give details
and results of a scalability test that we did with as many documents as we
could collect. The aim of this scalability test is to show that CHSD is scalable
in terms of time and space complexities whatever the size of the database is.
In Chapter 5 we give our conclusions and determine the future works which

are to be done later for more improved versions of CHSD.



Chapter 2

Previous Work

Popularity of text categorization is increasing by the growing interest and usage
of text data available on World Wide Web. In fact explosion of on-line infor-
mation created a great deal of demand for categorization concept to allow users
to easily access this information. Compulsorily some clustering algorithms are
modified or new algorithms are developed from scratch for categorization. The
most succesful approach for organizing this huge information is to make it com-
prehesible by categorizing into multiple topics where topics are organized in a

hierarchy with a downwards increasing specificity [7, 16].

In this chapter we give the background information of hierarchical clustering
and categorization algorithms in general terms. We explain the most popular
algorithms in the first two sections and in the final section we give the details

of two different projects implemented on Usenet news.

2.1 Clustering Algorithms

Clustering is segmenting a collection of items into subsets that are called clus-
ters. Each cluster is a collection of related items such that its members are
more similar to each other than they are to members of any other cluster. A
cluster may be contained in multiple clusters or it may contain multiple clus-
ters in itself. Items are in the same cluster if they share some characteristics

such as certain attributes, certain values for certain attributes, certain range
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of values for some combination of attributes and some general predicates.

Clustering algorithms divide the set of objects into previously unknown
clusters as shown in Figure 2.1 and the main principle may be summarized as
follows : the most similar objects are put in the same cluster and the less similar
ones in distinct clusters. PDDP (Principal Direction Divisive Partitioning)
algorithm is one of the newest works in this area and a typical example of

clustering [6].

RSP
&8

P
O
S B

Figure 2.1: Clustering

S -
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A function of proximity is used to evaluate the likeness degree of pair of
objects. The aim of a proximity measure is to evaluate to what extent a pair of

objects are alike/unlike with respect to the available information about them.

Most of the existing algorithms for document clustering are based on either
probabilistic methods or distance and similarity measures. Distance-based al-
gorithms such as k-means analysis and hierarchical clustering use a selected
set of words appearing in different documents as features. In these algorithms
each document is represented by a feature vector, and can be viewed as a point

in a multidimensional space.

There are a number of problems with clustering in a multi-dimensional
space using traditional distance or probability-based algorithms [28, 31]. First,
it is not trivial to define a distance measure in this space. Feature vectors must
be scaled to avoid skewing the result by different document lengths or possibly
by how common a word is across many documents. Second, the number of

different words in the documents can be very large. Distance-based schemes
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generally require the calculation of the mean of document clusters, which are

often chosen initially at random.

Advantages of clustering:

Provides a framework for managing locality.

Allows performance tuning to different configurations and architectures

by allowing the size of the clusters to be adjusted.

Simplifies lock structuring issues, and hence reduces the code complexity

which can lead to improved performance and scalability.

Can differentiate heterogeneous collections.

Creates an overview of collection and meaningful themes.

Reflects emphases present in the collection of documents

Disadvantages of clustering:

Many of the ways documents could be grouped together are not shown.

Does not always give easy to understand results.

Creates different levels of granularity.

There is always variability in quality of results.

Does not work well for differentiating homogenous collections.

Results always require interpretation.

2.1.1 Hierarchical Clustering Algorithms

Hierarchical clustering is a kind of work that transforms a set of data points
with a given measurement for similarity into a sequence of nested partitions [22].
In other words a hierarchical clustering algorithm yields a dendogram repre-

senting the nested partitions and similarity levels at which partitions change.

There are two basic approaches in hierarchical clustering:
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e Agglomerative (starting with each data point as a single cluster, at each

step merge two of them together)

e Divisive (starting with all data points in one cluster, at each step divide

one cluster into two clusters)

Step 1: Create n clusters such that each cluster contains exactly one item
Step 2: Search the two clusters ¢ and j that have most similarity
Step 3: Merge clusters ¢ and j into a cluster (ij)

Step 4: Repeat Steps 2 and 3 until the number of clusters is equal to one

Figure 2.2: Agglomerative Hierarchical Clustering Algorithm

Due to its advantages and easy to implement speciality agglomerative hi-
erarchical clustering algorithms are used frequently. In Figure 2.2 we give a
sample algorithm that consists a mainframe for such an algorithm. For the
realization of step 2 in this algorithm most of the hierarchical methods use
distance measure between data points and there are four different approaches

to determine the most similar cluster to the current cluster:

e Single Link Method takes the sum of minimum distances between the
data points of clusters to calculate the distances between cluster and
then chooses the cluster which has the minimum distance to the current
cluster to be merged. This method is so versatile that it can even extract
heavily concentric clusters but it is unsuitable for isolating spherical or

poorly seperated clusters.

o Complete Link Method takes the sum of mazimum distances between the
data points of clusters to calculate the distances between clusters and
then chooses the cluster which has the minimum distance to the current
cluster to be merged. This method creates small, tightly bound and

compact hierarchies in many applications.

e Average Link Method takes the sum of averages of the distances between

the data points of clusters to calculate the distances between clusters and
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then chooses the cluster which has the minimum distance to the current
cluster to be merged. This method creates intermediate results between

the methods above.

e Ward’s Method is also known as the minimum variance method because
it joins at each step the two clusters whose merger minimizes the in-
crease in the total within-group error sum of squares. It tends to produce

homogeneous clusters and a symmetric hierarchy [4].

Besides, hierarchical clustering algorithms have some disadvantages worth

considering beforehand:

e Results can be influenced by extraneous data or noise in the data set.
e Since misclassification is probable final results need to be checked.

e Possibility of having the same minimum distances between different clus-

ters enforces arbitrary choices.

2.1.2 k-Means Algorithm

Step 1: Choose k cluster centers to coincide with £ randomly chosen
patterns or k£ randomly defined points inside the hypervolume
containing the pattern set

Step 2: Assign each pattern to the closest cluster center

Step 3: Recompute the cluster centers using the current cluster memberships

Step 4: If the convergence criterion is not met go to Step 2

Figure 2.3: k-Means Clustering Algorithm

k-Means algorithm is popular because it is easy to implement, and its time
complexity is O(n) where n is the number of patterns [21]. Sole disadvantage
of k-Means Algorithm is its being so sensitive to the selection of the initial

partition - first step in Figure 2.3 - and its possibilty to converge to a local
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minimum of the criterion function value if the initial partition is not properly

chosen.

Typical convergence criteria checked at last step of the algorithm are:

e No or minimal reassignment of patterns to new cluster centers.

e Minimal decrease in squared error.

2.2 Categorization Algorithms

We need to categorize everything in order to make sense of the world and
simplify our perception, but once we have done so we respond to objects in
terms of their class membership rather than their uniqueness. Nonetheless
most of the objects have multiple memberships and this phenomenon stimulates
the need for categorization. Actually what really needed is classification but

categorization is a kind of classification task.

Document categorization is the automated assigning of natural language
texts to predefined categories based on their content [9]. Most of the document
categorizing systems regard documents as bags of words where each word is

represented with its occurance number called frequency or zero if not present.
o & O
C
é) 6]3 é)c O
> %C
Figure 2.4: Categorization

Slight differences between Figures 2.1 and 2.4 explain how categorization

differs from clustering. Categorization finds out label(s) for each object instead
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of determining the partitions in the sample space. Therefore categorization
gets rid of most of the disadvantages of clustering mentioned in Section 2.1
by creating easy to understand results and determining almost all possible

labelings with highest possible accuracy.

Present theories of document categorization rely too much on similarity
computation. Given a tree of category descriptors, there are two possible

approaches to perform document categorization:

e Document-centered categorization: Given a document, find the most ap-
propriate categories it belongs to. Complexity is proportional to the num-

ber of documents.

o Category-centered categorization: Given the category descriptors, search
the database to find the documents that satisfy best each category de-
scriptor. Complexity is proportional to the number of categories which is

typically much smaller than the number of documents to categorize.

2.2.1 k Nearest Neighbor(KNN) Algorithm

KNN algorithm is based on the assumption that the nearest neighbor of an
unclassified instance in the training dataset should belong to the same class as
that instance [11] similar to work done in Figure 2.4. KNN algorithm assigns
each unclassified instance to the category of its nearest neighbor instance if the
distance to that labeled neighbor is below a threshold and the process continues

until all instances are labelled or no additional labelings occur [35, 2, 1].

More technically KNN algorithm is an instance-based learning algorithm
which performs training by simply storing the instances in the memory [5, 27].
Each training instance is represented as a set of feature-value pairs. Predictor
feature values may be of categorical (nominal) or linear (ordered) type, whereas

target feature values are of only linear type [26].

The querying phase of the KNN algorithm tries to predict the target fea-
ture value of a query instance as a function of most similar instances’ target
feature values. The k value is selected as the number of nearest (most similar)

neighbors that will be taken into account in the querying phase.
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Training:
[1] Vx; € Training Set Store x; in memory

Querying;:
[1] Vx, € Query Set

2] Vxi{x: # x4}: Calculate Similarity(xq, x¢)
[3] Let Similars be set of k most similar instances to x, in Training Set
[4] Let Sum = 3, c simitars Stmilarity(xq, x;)
_ Similarity(xq,
[5] Then Yq = thGSimilars %ﬁfquoyt

Figure 2.5: The k Nearest Neighbor Approach

There is a variety of approaches to KNN algorithm in the literature. The
algorithm, shown in Figure 2.5, is the simplest approach. For a given query
instance, k nearest (similar) training instances are determined by using the

Similarity function given in equation 1.

The similarity between the query instance z, and a training instance x; is

determined as:

P
Similarity(xy,x;) = \IZ Sim(zq;, ;) (1)
i=1
where Sim(zq, 2u) = (5345 ;) and i is the feature dimension. Finally, the

weighted sum of the target values of the k nearest neighbors of z, is used as

the predicted target value, g,, of the query instance z, [26].

KNN algorithm assumes that all the predictor features are equally relevant.
This assumption makes it less effective when the database contains irrelevant,
weakly relevant and noisy features. However, the prediction accuracy of the
model can be improved if the predictor features are assigned proper weights
to denote their relevancy in the prediction process [15]. These weight values
can be either obtained from database experts or automatically determined by
some feature weight learning algorithms [32, 29]. In terms of interpretability,
KNN algorithm is very poor, since it is a lazy approach. It does not induce

models that enable interpretation of the underlying data set [36].
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2.2.2 Rainbow Algorithm

Rainbow is a Naive Bayes classifier for text classification tasks [36], developed
by Andrew McCallum at CMU!. It estimates the probability that a document
is a member of a certain category using the probabilities of words occurring in

documents of that category independent of their context.

Rainbow makes use of the naive independence assumption. More precisely,
the probability of document d belonging to class C' is estimated by multiplying
the prior probability Pr(C') of category C with the product of the probabilities
Pr(w; | C) that the word w; occurs in documents of this class and then this
product is normalized by the product of the prior probabilities Pr(w;) of all

words as shown in equation 2 below.

PrC | d) = PrO)] %

=1

(2)

As many of the probabilities Pr(w; | C) are typically 0:0 (hence their
product will be 0:0), Rainbow smoothes the estimates using the technique
proposed in [14]. A more detailed description of this smoothing technique and

of Rainbow in general can be found in [24].

2.2.3 Ripper Algorithm

Ripper? [37] is an efficient, noise-tolerant rule learning algorithm based on the
incremental reduced error pruning algorithm [19, 17]. It learns single rules by
greedily adding one condition at a time (using Foil’s information gain heuristic
[30]) until the rule no longer makes incorrect predictions on the growing set,
a randomly chosen subset of the training set. Thereafter, the learned rule is
simplified by deleting conditions as long as the performance of the rule does
not decrease on the remaining set of examples (the pruning set). All examples
covered by the resulting rule are then removed from the training set and a
new rule is learned in the same way until all examples are covered by at least

one rule. Thus, Ripper is a member of the family of separate-and-conquer rule

! Available from http://www.cs.cmu.edu/afs/cs/ project/theoll/www /naivebayes.html.
% Available from http://www.research.att.com/ wcohen /ripperd.html.
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learning algorithms [18].

What makes Ripper particularly well-suited for text categorization prob-
lems is its ability to use set-valued features [38]. For conventional machine
learning algorithms, a document is typically represented as a set of binary
features, each encoding the presence or absence of a particular word in that
document. This results in a very inefficient encoding of the training examples
because much space is wasted for specifying the absence of words in a doc-
ument. Ripper allows to represent a document as a single set-valued feature
that simply lists all the words occurring in the text. Conceptually, Ripper’s
use of such a set-valued feature is no different than the use of binary features in

conventional learning algorithms, although it makes use of some optimizations.

2.2.4 Fuzzy Algorithm

Step 1: Select an initial fuzzy partition of N objects into K categories by
selecting the NxK membership matrix U such that an element
u;; of U represents the grade of membership x; in category c;
(Typically u;; € [0,1])

Step 2: Using U, find the value of a fuzzy criterion function and then reassign
patterns to categories to reduce this criterion function value and
recompute U

Step 3: Repeat Step 2 until entries in U do not change significantly

Figure 2.6: Partitional Fuzzy Categorization Algorithm

Traditional categorization algorithms tends to partition data items such
that each item belongs to only one category. This is a kind of hard catego-
rization. On the other hand fuzzy algorithms extend this notion to associate
each pattern with every category using a membership function. So that each
category turns out to be a fuzzy set of all patterns. In Figure 2.6 the outline

of partitional fuzzy categorization algorithm is given [21].



Chapter 2. Previous Work 18

2.3 Projects Dealing with Usenet News

Many researchers have worked for Usenet news categorization or they have
taken these news as the input of their experiments just as we did in this thesis.
Most of the projects have been done in filtering tasks such that users submit
their interest profiles and then receive the news in accordance with their pro-
files [23, 34]. However there are new type of projects such as Websom [33]
which uses a self-organizing map to automatically group similar documents
into a two-dimensional space. In such projects clustering and categorization
concepts are prefered according to the purpose of the project. In this section we
mention two projects called as Newsgroup Clustering Based on User Behavior

and Usenet News Categorization in detail.

2.3.1 Newsgroup Clustering Based on User Behavior

Jussi Karlgren created an algorithm called Newsgroup Clustering Based on
User Behavior [20] in 1994 which aims the retrieval of useful information
from the Usenet news domain that a user really needs. In this algorithm the
distance measure is based on knowledge about the user or knowledge about
the use of the document rather than knowledge about the content or genre of
the document. This knowledge is extracted from user models that indicate the
preferences of users. The user model contains a vector of user grades. The
documents in the document base are graded by a user to be good (+), bad (-),

or not, accessed (0) such that :

e User is interested in a document if the grade of that document is (+).
e User is uninterested in a document if the grade of that document is (-).

e User does not know the document if the grade of that document is (0).

These grades are quantified by an algebra similar to Table 2.1 and then
proximities between each document pair are calculated by formula 3 and a

proximity-matrix is obtained after this process.
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proxzimity(doca, doc) = _(interest(reader;, docs) ) interest(reader;, docg))

| 3)

where @ stands for the quantitive recommendation algebra given in Table 2.1.

D
+

oo+
[en]l Hen) Han] Nan)

0
0
0

o

Table 2.1: Quantitative Recommendation Algebra

The base hypothesis of this algorithm is : If a user A is interested in docu-
ments K and L, and another user X is interested in K, it is likely that X will
also like L. In the light of this hypothesis documents are categorized by runing

an average-link agglomerative method over the matrix of proximities.

2.3.2 Usenet News Categorization

A different project was done by a team from Johns Hopkins University in
1996 [39]. Their approach was to create a model for each newsgroup and to

compare new documents with each model to find the best match.

Set of Newsgroups

% Metadocuments

Figure 2.7: Usenet News Categorization System

Models are created from a collected set of documents from each newsgroup
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as shown in Figure 2.7. Thus a model is equivalent to a metadocument in this
project. Three different methods are proposed for the metadocument creation

phase:

o Full-text Concatenation: For each newsgroup form a single document
which is concatenation of all documents in itself - creates a great meta-

document.

e Document Selection: Identify the documents that are most useful in dis-
criminating topics and concatenate them into a single document - creates

a smaller metadocument.

e Discriminating Term Selection: Pick out the terms that exemplify the
concept of a particular newsgroup and concatenate them into a single

document - creates fairly small metadocument.

The angle between two vectors has been exploited as an effective measure
of content similarity, and many systems use the cosine similarity measure to
compute the similarity among document and profile representations [10]. The
cosine similarity between two vectors, v; and vy is based on the inner (dot)

product of v; and v, and can be formulated as:

cosine(vy, vg) = 2ot Wiy Wiy n

o 2 2
\/Zt wt,m . \/Zt wt,’UQ

where w; , stands for the frequency of word ¢ in vector z, and the result is the

similarity between vectors v; and vy such that 1 for identical vectors and 0 for

the vector with no common terms.

After metadocuments are constructed cosine similarity is used to find the
best match for new documents and a comparison is made between each news-
group and each query document. This approach accepts a great deal of redun-
dant time complexity because unnecessary comparisons are highly probable.
Actually the main aim in this project is to determine the most appropriate
topic labels for a given document to be posted to Usenet newsgroups. Thus

accuracy is prefered to speed in the query phase.
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CHSD Algorithm

CHSD algorithm is similar to the other categorization learning algorithms.
First of all similar to others it executes a learning phase which takes more time
than the others, but after such a heavy work it achieves the capability of doing
faster categorization. Because an index tree is constructed to the cost of many
data replications in the learning phase but this makes it easier and faster to

categorize new documents.

CHSD operates on a sample space of m categories in which each category
consists of n documents. Each category is represented by a three-row vector
in which rows contain words, frequencies and norm-scaling values respectively.
Beginning with m vectors an agglomerative, bottom-up hierarchical ap-
proach is applied that ends up with a single node at root and an index tree

with nodes that have different numbers of children.

CHSD is supervised since labels of categories are predefined, overlap-
ping since a document is allowed to be present in more than one category,
polythetic since all features of database are used simultaneously, document
centered since it takes in a query document as input and finds out its related

categories one by one.

In this chapter all details of CHSD are explained exclusively by pseu-
docodes. There are 7 interrelated functions in the algorithm given in separate
sections named as learning and categorization as the phases of a typical cat-

egorization task. Finally in Section 3.3 a small run time simulation and the

21
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results of a categorized news are given and discussed with other certain issues.

3.1 Learning

At learning phase CHSD begins with raw data and takes in a database which
consists of multiple groups such that each group has multiple documents and a
group name which is a concatination of multiple names implying the hierarchy
of database as shown in Figure 3.1. For instance X.Y.Z means this group is a
child of XY and X.Y is a child of X.

Set. of Newsgroups

Names
of
Newsgroups

Leaf Vectors

Figure 3.1: Initial Database System of CHSD

First of all InitTree function which is given in Figure 3.2 takes database as

input and passes it to ProcessData(Figure 3.3).

ProcessData deals with each word of each document in each group in lines
5-17. In lines 10-14 frequency table is filled up and in lines 15-17 denominator
of the norm-scaling formula (equation 1) is calculated for each word. Hash
function mentioned in line 8 could be any hash function which generates a

definitely distinct number for each different word in the database.

While dealing with words only the words that are not member of a pre-

defined stoplist are counted. Making words not case sensitive by turning all
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InitTree (DB) /* DB: database of newsgroups */
[1] GroupNo <« ProcessData(DB)
[2] Create RootNode[GroupNo]

[3] for each group; € DB do

[4] Create NewNode /* a node with a name and a words array */
[5] NewNode.name < group;.name

6] for each wordy, € group; do

[7] NewNode.words[k].name <— wordy.name

8] NewNode.words[k].frequency < wordy.frequency

9] NewNode.words|[k].scale <— wordy.scale

[10]  RootNode[i] < NewNode

[11]BuildTree(RootNode, 1)

Figure 3.2: InitTree Function

capitals into small letters and getting rid of punctuations before stoplist mem-
berance check will be helpful. In addition, as explained in Section 3.3 stemming
the words that pass this check increases the accuracy of results since it prevents

missing most of the words that are similar to each other in the meaning.

After all documents are processed in the current group, norm-scaling values
are calculated and a vector file is written out for each group which contains
names, frequencies and norm-scaling values of words (line 21). The if check
in line 19 prevents zero values to be written out thereby CHSD deals with
only non-zero values. After all groups are processed ProcessData returns the

number of groups in the database.

We scale the word frequencies by norm-scaling method [6] which is given

by equation 1. By this scaling unimportant words for similarity calculation
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gain lower values while important words gain higher values. For instance a
widespread word which occurs once or more in each document of database
gains a scaling value which is greater than one, while another word which
occurs only once in a few documents gains one or less than one as a scaling

value.

Norm-scaling method can be formulated as:

TF,
dy= ——t (1)

VE TE
where d; stands for the relative frequency of word ¢, T'F; stands for the total
frequency of word ¢, and T'F}; stands for the frequency of word ¢ in particular

document j.

In addition, there is another scaling method called as TFIDF [12]. But this
scaling results in a non-zero value for each word and does not help to produce
distinctly better results. It also needs a complicated coding and more time to

be applied.

In line 2 of InitTree a root node is created which has enough number of
pointers for leaf nodes. For each newsgroup in the database a new node is
created such that each node keeps the name of the group and a word vector to
include leaf vector of the current group. We can read these vector files written
out by ProcessData and fill in the current new node’s word vector as shown in
lines 6-9. Initialization is done after all nodes get filled up and joined to the

root.

At the next step, InitTree calls BuildTree (Figure 3.4) by passing the root
and number 1 to it. Number 1 stands for the first parts of the hierarchical
names mentioned above. Thus BuildTree begins to construct the index tree
by merging the leaf nodes with similar first names at its first recursion. That
is, new nodes for top-level names in Usenet system are created such as comp,

bionet and their children are joined to them.

BuildTree takes in a node and a key value as input. It detects the groups
which have similar first key many name parts. In other words siblings are found
first and a new node is created for each sibling group. Each new node takes

concatination of those key many names as its name (line 4). Then BuildTree
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fills in the words vector of new node with the words of its children as shown in
lines 7 through 14 of Figure 3.4.

One of the most crucial points in BuildTree function is to sieve the words of
leaf nodes. In our experiments we determined /2 as the threshold of norm-
scaling value for a word to be copied up to the nodes over the leaf level. That
is, the words with norm-scaling values less than v/2 will be present only in leaf
nodes. The if check in line 9 of BuildTree function does this work. Purpose of
such an elimination is to get rid of ignorable words and to lessen the number
of words in the vectors of nodes that are higher than the leaf level. So that
categorization phase becomes faster thereby supporting our main goal in this
thesis in regards to time complexity. In addition, we believe that this method

prevents the negative effect of noisy data to some extent.

As for the space complexity, it is obvious that this method saves a lot of
memory. In addition, threshold of norm-scaling value could be bigger than /2

in accordance with the size of the database dealt with.

Recursion of BuildTree stops when there are no siblings to be merged by a
new parent node. That is, all hierarchies of the database are constructed and
the index tree is ready for categorization phase. In other words, learning is

done sufficiently and control may return to main function.
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ProcessData (DB)

[18]

[19]
[20]

[21]
[22]
[23]
[24]

[25]

StopList /* list of words to be ignored */
SubDictionary /* list of words in current group under DB */
Frequency /* keeps frequency of each word in SubDictionary */
Scale /* keeps normal scale value of each word in SubDictionary */
for each group; € DB do

for each document; € group; do

for each wordy, € document; do

hashValue < Hash(wordy)
/* Hash function returns a bucket number for current word */

if wordy, ¢ StopList and wordy ¢ SubDictionary then
SubDictionaryhashValue| < wordy,
Frequency|hashValue| < Frequency[hashValue]+1

if wordy, ¢ StopList and wordy € SubDictionary then
Frequency[hashValue] < Frequency[hashValue]+1

for each word; € SubDictionary do

if Frequency[k] # 0 then
Scale[k] < Scale[k] + Frequency[k] * Frequency|k]

for each word; € SubDictionary do

if Frequency[k] # 0 then
Scale[k] < Frequency[k| / /Scalelk]

WriteToFile(SubDictionary[k], Frequency[k], Scale[k])
SubDictionary[k] <— NULL /* reset arrays */
Frequency[k] < 0

Scale[k] < 0

return ¢

Figure 3.3: ProcessData Function
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BuildTree (Node, key)

[1] for each Group; in the children of Node

[2] such that first key many parts of their names are similar do

[10]
[11]
[12]
[13]
[14]

[15]

Create NewNode /* a node with a name, a words array, child pointers */
NewNode.name <+ (concatenation of key many similar parts detected)
wordCounter < 0
childCounter < 0
for each node; € Group; do
for each word,, € node; do
if node;.words[k].scale > v/2 then /* eliminate ignorable words */
NewNode.words[wordCounter|.name <— node;.words[k].name
NewNode.words[wordCounter|.frequency <« node;.words[k].frequency
NewNode.words[wordCounter|.scale <— node;.words[k].scale
wordCounter <— wordCounter + 1
NewNode[childCounter] < node;

childCounter < childCounter + 1

[16]Node[i] < NewNode

[17]BuildTree(NewNode, key+1) /* go on recursively */

Figure 3.4: BuildTree Function
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3.2 Categorization

After such a learning phase categorization becomes the fastest and easiest phase
of CHSD. Because all we need for the categorization of a new document is to
produce its word vector and make it travel down the tree from root to a leaf

or to multiple leaves and report final name(s) of the leaf/leaves as the result.

FindCategories (document, threshold)

[1] StopList /* list of words to be ignored */

[2] FoundCategories /* keeps names of categories found */
[3] Create NewNode /* a node with a words array only */

[4] for each wordy € document do

[5] if wordy ¢ StopList and wordy, ¢ NewNode.words then

6] NewNode.words[k] < wordy,

[7] if wordy, ¢ StopList and word, € NewNode.words then

8] NewNode.words[k].frequency <~ NewNode.words[k|.frequency—+1

[9] HierarchicalSearch(NewNode, RootNode, threshold, FoundCategories)

[10] return FoundCategories

Figure 3.5: FindCategories Function

FindCategories takes a text document and a threshold value of similar-
ity as input (Figure 3.5). First of all it creates a new node for this document
and fills in the words vector of this new node from the document as shown in
the lines 3-8. At this step it is a must to process data with the same func-
tions used in ProcessData (Figure 3.3) for consistency. Otherwise accuracy
decreases too much. After the new node gets filled up it is passed to Hierar-

chicalSearch (Figure 3.6) in line 9 to make it travel down the tree and to get
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its FoundCategories array filled up with the names of the leaf nodes visited.

HierarchicalSearch is a recursive function which takes in a node, a threshold
value and an empty array as input as shown in Figure 3.6. Beginning by the
root’s children it calculates the similarity value between the new node and the
nodes of index tree by our Similarity function (Figure 3.7) and it gives way to
recursion through the nodes which has similarity to new node higher than the

threshold value of similarity.

HierarchicalSearch (NewNode, Node, threshold, FoundCategories)
1] i+ 0

[2] while Node.child; # NULL do

3] sim < Similarity(NewNode.words, Node.child;.words)

[4] if sim > threshold then

5] if Node.child;.child = NULL then /* if NewNode met a leaf node */

6] Insert(FoundCategories, Node.child;.name, sim)

[7] else

8] HierarchicalSearch (NewNode, Node.child;, threshold, FoundCategories)
0] i i+l

Figure 3.6: HierarchicalSearch Function

Actually the threshold value of similarity is an option of user which floats
between 0 - 1. It acts as a measure which determines the sensitivity of the
algorithm. If we use 0 as a threshold value then the new node will visit all
other nodes in the index tree and we will get the names of all leaf nodes as
a result of our categorization request and because of this the query will take
much time. If we use 1 as a threshold then we will most probably get no result

of our categorization request and the query will take very short time. So there
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is a trade-off between time complexity and accuracy in here and the threshold
value of similarity is the key to solve this trade-off. We are certain that the
best threshold value can be found by trying out the algorithm on different
types and sizes of databases with certain number of different threshold values,

as we did in our evaluation tests of CHSD.

Similarity (guest, host)

[1] number < 0 /* upper part of formula */
[2] divisorl < 0 /* first part of divisor */
[3] divisor2 < 0 /* second part of divisor */

[4] for each wordy € guest do

[5] for each word,, € host do

[6] if word, = word,, then

7 number < number + wordy.frequency * word,,.frequency
[

8 divisorl < divisorl + word,,.frequency * word,,.frequenc
[ quency quency
9 divisor2 < divisor2 + wordy.frequency * word;.frequenc

[ quency quency

[10] return (number / (Vdivisorl * v/divisor2))

Figure 3.7: Similarity Function

Similarity function given in Figure 3.7 takes in two word vectors - containing
words and their frequencies - as input and calculates similarity between them

according to the equation 2 :
Wiy - Wi g,
Sim(uy, ) = =t ©)
\/Zt Wi, -\/Zt Wi vy

where w,, stands for the frequency of word ¢ in vector =, and the result is the

similarity between vectors v; and vy such that 1 for identical vectors and 0 for

the vectors with no common terms. We only deal with the common words of
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both vectors in this formula. In addition, binary search technique can be used

instead of for loop in line 5 to make Similarity function faster.

Finally in line 6 HierarchicalSearch fills in the FoundCategories array with
the names of visited leaf nodes by the help of Insert function which is given

in Figure 3.8.

Insert (FoundCategories, category, sim)
1] i+ 0

[2] while FoundCategories[i].sim > sim do
3] i < i+1 /* find the right place in sorted order */

[3] temp <« FoundCategories|i]
[4] FoundCategories[i] «— category

[5] 1< i+l
6] j«i

[7] while FoundCategories[j] do
8] j < j+1 /* go to the end of FoundCategories */

9] <+l

[10] while j > i do /* one right shift until i’th element */
[11] FoundCategories[j| «+— FoundCategories][j - 1]
[12] -1

[13] FoundCategories[j] < temp

Figure 3.8: Insert Function

Insert function takes in an array of catagory names, a new category name
and a similarity value belonging to that new category name as input as shown
in Figure 3.8. It inserts the new name according to its similarity value in
the array, so that the input array is kept sorted by similarity values in non-

increasing order. Actually this work is done in a similar way to Insertion Sort
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technique. So the first category name in FoundCategories array is the best

match for the new document.

After all recursions are popped up in HierarchicalSearch, control returns to
FindCategories and FoundCategories array becomes filled up with the category
names determined by CHSD and then it is returned as the result of the query
(line 10).
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3.3 Examples

In this section we present a simulated categorization experiment such that
we have three groups/categories in our database and each group has three
documents as shown in Figure 3.9. Next we give a real document categorization
example in a sample database of 10 newsgroups - 100 news per each - and

discuss about stoplist and stemming issues on this example.

3.3.1 Learning

Assume that we have 3 newsgroups named as X.Y.Z, X.K, L.M such that each
newsgroup contains 3 documents with a few words. Our first job is to process
our sample database by the function ProcessData which is given in Figure 3.3.
After processing data we get a representative vector for each group that consists
of name, frequency and norm-scaling value of each word in the group as shown

in Figure 3.9.

wW.: a m
f. : 1 2
s. 1

(w. : name of word ; f. : frequency of word ; s. : normal scaling value)

Figure 3.9: Sample Database and Produced Vectors

The next step is initiating the tree by creating a dummy root and connecting
those representative vectors as leaves to the root as we did in Figure 3.10.

InitTree function which is given in Figure 3.2 does this step.

The initial tree is the starting point of BuildTree function (Figure 3.4) and

the result of its first step is given in Figure 3.11. A couple of new nodes are
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ROOT

X.Y.Z A/’/X.K\ L.M
w.:abcdef w.:bcdefg :
f.:312522 f.:312215
s. ;1311211 s. ;1311112

(w. : name of word ; f. : frequency of word ; s. : normal scaling value)

Figure 3.10: Work Done by InitTree

created and named as X and L respectively. Leaf nodes X.Y.Z and X.K became
children of X and L.M became a child of L. At this step the crucial point is the
elimination of words of representative vectors which have norm-scaling value as
less than 1.2. So that vectors of nodes other than leaf nodes gain less number
of words which are actually the most important ones in the current group. For
instance words h and k are copied to new node L while words a, b, g, m stay

intact in node L.M.

X
w.:abdg
f.:3355
X.Y.Z
.:abcdef
312522
1311211

(w. : name of word ; f. : frequency of word ; s. : normal scaling value)

Figure 3.11: First Step of BuildTree
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The last step of BuildTree is given in Figure 3.12 which shows a tree of
height 3 because the longest hierachy is 3 in the database which is represented
by the group X.Y.Z. To determine the end of the recursion of BuildTree, CHSD
exploits the structure in group names such that if the difference between the
numbers of parts in the names of a parent and a child is bigger than one then
recursion goes on, otherwise it stops. Since there is a missing level between X
and X.Y.Z a new node is created and named as X.Y. By this last step learning
phase ends up with a well built index tree consisting of three leaf nodes, three

inner nodes and a root.

w.: ad w.:bcdefg w.:abghkm
f.:35 f.:312215 f.: 112352
s.:1.31' 1112 s.: 1111321
X.Y.Z
7 X B S\
w.:abcdef
f.:312522
s.:1.31 1211

(w. : name of word ; f. : frequency of word ; s. : normal scaling value)

Figure 3.12: Last Step of BuildTree

3.3.2 Categorization

For the categorization phase let us assume that we have three different doc-
uments, and the index tree shown in Figure 3.12. As a threshold value of

similarity let us take 0.5 in all of the following experiments. In the following
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figures we represent input documents as vectors such that the first row contains
the words and the second row contains frequencies of the words. Actually these

vectors are the results of first step in FindCategories function (lines 3-8).

w.:adh
f.: 221 _

document 1

(w. : name of word ; f. : frequency of word)
Figure 3.13: Categorization of Document 1

Beginning by the root, first document follows the path of X — X.Y —
X.Y.Z and it is determined by 77% similarity that this documnet belongs to
group X.Y.Z as shown in Figure 3.13. This document does not deviate from
this path because children of the nodes with similarity less than the threshold
value are not visited according to our algorithm. Therefore node L with 0.17

similarity and node X.K with 0.2 similarity are not visited.

w.:b gk
f.:221 —

document 2

(w. : name of word ; f. : frequency of word)

Figure 3.14: Categorization of Document 2
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Second document follows the path of X — X.K and it is determined by 80%
similarity that this documnet belongs to group X.K as shown in Figure 3.14. If
we had taken a threshold value of less than 0.28 this document would have also
gone through the path L — L.M. thereby determining that this document not
only belongs to group X.K but also to group L.M. Most probably this would
not be a right categorization. Thus the importance and the functionality of

threshold value is very high in our algorithm.

w.: dhk
f.: 122 -

document 3

(w. : name of word ; f. : frequency of word)
Figure 3.15: Categorization of Document 3

Third document follows the path of L — L.M and it is determined by 80%
similarity that this document belongs to group L.M as shown in Figure 3.15.
Since similarity of the node X to the third document is 0.2 which is less than
0.5 all of the left subtree is totally ignored as a correct decision. One of the

best sides of CHSD is that it prevents doing unnecessary calculations.

3.3.3 A real document categorization

To give a more specific example and explain certain other details about pro-
cessing raw data we collected 100 news documents for each newsgroup shown
in Table 3.1. After learning phase the query document given in Figure 3.16 is
categorized and the results are discussed in this section. The query document

is a news which we do not know the newsgroups to post it.

It has been recognized since the earliest days of information retrieval that
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[ Name of Newsgroup | Documents | Words | Similarity ||
comp.ai 100 2184 0.4021
comp.ai.alife 100 1376 0.5494
comp.ai.edu 100 2098 0.5737
comp.ai.fuzzy 100 1276 0.4823
comp.ai.genetic 100 1250 0.5474
comp.ai.nat-lang 100 2132 0.5503
comp.ai.neural-nets 100 937 0.5692
comp.ai.philosophy 160 2119 0.4879
comp.compilers.tools.javacc 100 758 0.6431
comp.compilers.tools.pccts 100 639 0.4982
Total Number of News 1000 - -

Table 3.1: Sample Database

many of the most frequently occuring words in English are worthless as index
terms such as the, of, and, to, for etc. These words make up a large fraction
of the text of the documents. Eliminating such words from consideration early
in the automatic indexing speeds up processing, saves huge amount of space
in indexes and does not damage retrieval effectiveness [4]. Conventionally the

group of these words is called stoplist or negative dictionary.

As for the categorization problems, determining the stoplist content is a cru-
cial step that must be taken beforehand. This step requires a highly cautious
examination of the database. Because each type of data has certain features
which are required to be eliminated and some others which are required to be
kept intact. In our database of Usenet news words such as from, newsgroups,
subject, date, message-id, hello, help occur in all documents. Thus we expanded
a basic stoplist with these words and filtered all of them while constructing a
leaf vector for each group. For instance in the query document given in Fig-
ure 3.16 words such as the, is, from, date, subject, newsgroups, hello, everybody,
I, yours, into are eliminated by an efficient stoplist memberance-check algo-

rithm. We also eliminated e-mail and web site addresses in news documents.

In general terms stemming is the work of relating morphologically similar
words to improve effectiveness and reduce the size of indexing files. Since a
single stem typically corresponds to several full terms, by storing stems instead
of terms, compression factor of over 50% can be achieved [8]. The sole disad-

vantage of stemming is that information about the full terms will be lost if
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From: fkutlu@bilkent.edu.tr

Date: Fri, 03 Mar 2000 21:05:14 -0500
Subject: Calculate numbers in java
Newsgroups: 7

Hello Everybody,

I like sincerity, suggestive approaches and java.

I am a working for a commercial company.

Nowadays I am dealing with java packages.

I have built a new multitask application form where you can choose
things that you prefer to buy among different products from a catalog.
I used an applicable and satisfactory javac compiler.

Actually it is a package of certain number of applets added

into our web-site that are runing at background pretty well.

In future we want to make our system capable of calculating the prices
in javae and return it simultaneously.

What I need is a jawascript where you can convert strings into numbers
(Integers), and then by the send command (Send button in a form) the
script calculates the choosen products (Prices, Integers) to a total.
Product id numbers, prices and results are integer.

It should be a javascript that directly converts text to integer and
another javascript that calculates in a new HTML or ASP file a total
of the products. Even some support of not so highly pseudocode
suggestions might be a satisfaction for me.

You can find a detailed description and gui of this project at:
http://www.cs.bilkent.edu.tr/~fkutlu

It is also possible to download a freeware beta wversion of it.

I hope to get some help in time. Sincerely yours...

Figure 3.16: Query Document

stemming is done more heavily than required.

We used affiz-removal stemmer algorithm in our experiment. This algo-
rithm removes suffixes and prefixes from terms leaving them as stems or re-
places some suffixes with some default letters. Suffixes such as -ing, -ed, -s
are deleted completely while -ies parts of -ies, -eies, -aies are replaced by -y.
Prefixes such as fore-, extra-, kilo-, micro-, milli-, intra-, intro-, ultra-, mega-,
nano-, pico-, pseudo-, multi-, mono-, pro-, tele-, over- are also deleted. Imple-
mentation of this algorithm required a few more if-checks other than its own

rules to prevent producing wrong stems. For instance the word skies may have
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been reduced to the stem ski which will not match the word sky.

A vector of 76 words is produced from the query document and to draw
notice to the stemming done by our software the words and their stems are
given in Table 3.2 - which is an extraction from the query document and its
vector. It should be noticed that there are many words with similar stems and
they also have similar meanings. A more detailed example of a newsgroup leaf

vector which CHSD uses at its initial step is given in Apendix A.

Word Stem Word Stem
multitask task product duct
Sincerely sincer sincerity sincer
suggestion sugges suggestive sugges
application applic applicable applic
satisfaction satisfac satisfactory | satisfac
commercial commerci || highly highli
simultaneously | simultan | Integers integ

Table 3.2: Stemmed Words of The Query Document

In this experiment a sample database of 10 newsgroups is taken from top-
level comp to categorize the query document given in Figure 3.16. Choosing
the sample database out of sibling newsgroups is a challenge to see if CHSD
could distinguish them. After building the index tree out of this database the
query document is given as an input to CHSD and 0.5 is determined as the

threshold value of similarity to travel down the tree.

Word | Doc-Fr | Gr-Fr || Word Doc-Fr | Gr-Fr || Word Doc-Fr | Gr-Fr
version 1 19 javascript 3 7 code 1 2
java 4 155 send 2 4 duct 4 8
task 1 2 form 2 3 html 1 9
asp 1 3 javac 1 16 total 2 4
compil i 38 capable i 2 package 2 37
applic 2 26 applet 1 11 number 3 11
website 1 8 script 1 3 command 1 7
button 1 2 freeware 1 2 convert 2 8

Table 3.3: Common Words

Firstly, word-frequency vector of the query document is constructed and
then this vector is allowed to follow its path. Since similarity of the query

document to node comp.ai is calculated as 0.4021 which is less than 0.5, all
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of the comp.av’s subgroups are ignored. Thus the vector followed the path
comp - comp.compilers - comp.compilers.tools - comp.compilers.tools.javacc
and comp.compilers.tools.javacc is determined as the best newsgroup to post

this news by 64.31% similarity.

The similarity of 64.31% is the result of our Similarity function of CHSD.
Common words and their frequencies of the query document and the newsgroup
comp.compilers.tools.javacc are given in Table 3.3 and they are also italized in
Figure 3.16. Similarity function detects these common words and calculates
the similarity by using their frequencies according to the similarity formula

given by equation 2 in Section 3.2.

In fact this is a pre-arranged experiment and the italized words in Fig-
ure 3.16 are the leading factors to this result. But Table 3.1 implies that there
are many comp.ai subgroups with similarity over 50% to query document and
it might be considered to post it to these groups as well whereas they are

ignored.

There are three main reasons of such an implication :

e The sample database is choosen out of sibling newsgroups.

e Despite that the number of documents are equal in all newsgroups some
of them contain excessively long news resulting in huge leaf vectors for our
algorithm such that they become dominant over other newsgroups. This

causes an unfounded increase in similarity measure and a biased result.

e It needs a great deal of manual work to expand a stoplist to such an
optimal extent that filtering stopwords prevents this kind of unbalanced

stiuation.

In addition a stopword determined for a group might be a characteristic
feature for another one. The best way is to have a different stoplist for each
newsgroup or at least for each top-level newsgroup and then to produce differ-
ent vectors out of the query document according to these stoplists. This will
definitely increase the time complexity to such an extent that people might not
prefer to use such a software. Another way is to use auxilary algorithms for

selecting representative words or features of each group as explained in [25].
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H Priority ‘ Name of Newsgroup ‘ Similarity ”
1 comp.compilers.tools.javacc 0.6431
2 comp.ai.edu 0.5737
3 comp.ai.neural-nets 0.5692
4 comp.ai.nat-lang 0.5503
5 comp.ai.alife 0.5494
6 comp.ai.genetic 0.5474

Table 3.4: Proposed Newsgroups

On the other hand, such results are not bad for our approach since we want
to propose more than one newsgroups for a news for posting. According to the
results in Table 3.1, CHSD will propose the newsgroups given in Table 3.4 by
their priority and the user will be free to choose one more newsgroups in the

proposed list.
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Evaluation

In this section we do complexity analysis of CHSD and give details of our
experiments that have been done so far. To reveal the best sides of CHSD
more clearly we used KNN algorithm as a competitor in our first experiment.
Our last experiment is a scalability test for CHSD such that the database
used is 2.5 times bigger than the database of the first experiment and the
algorithm has been run with the optimal threshold value found in the previous

experiment.

4.1 Complexity Analysis

As a function of input sizes, we deal with the running time of CHSD in time
complexity analysis and the memory space that CHSD requires in space com-

plexity analysis.

4.1.1 Time Complexity

Notations given in Table 4.1 are used to explain complexity analysis. Actually
these notations are abbreviations retirieved by concatinating initial letters of

the input data features such as numbers of words, documents and newsgroups.

Time complexities of each function of CHSD are given in Figure 4.1. As

43
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NOTATION | MEANING |

twon total words of node

twod total words of a document
tcon total children of a node
tgodb total groups of database
tdog total documents of a group
twog total words of a group

tef total categories found

h height of the index tree

Table 4.1: Notations Used in Complexity Analysis Formulations

explained in Chapter 3 ProcessData, InitTree and BuildTree are implemented
sequentially in the learning phase. Thus the time complexity of learning phase
is O(tgodb - tdog - twog).

FindCategories is the main function of the categorization phase. It calls
HierarchicalSearch and HierarchicalSearch calls auxillary functions Similarity
and Insert. Since HierarchicalSearch and Similarity functions are the most
time consuming functions, time complexity of categorization phase goes to
O(h - log tcon - twon?).

As for the overall time complexity of CHSD, learning phase is so dominant
that time complexity of CHSD is O(tgodb - tdog - twog). Because main goal
of CHSD is to learn the built-in hierarchy in the database and to make the
categorization phase easier and faster. But it should be noticed that in this
thesis the learning phase is accepted as the work which begins with raw data
and ends up with an index-tree that represents the learned hierarchy of the
database. Briefly the time complexity of CHSD grows by the number of groups
in the database, the number of documents in the groups and the number of

words in the documents.

4.1.2 Space Complexity

An algorithm which requires only constant memory space such that the memory
required is independent on input size is called as in-place algorithm. Unfor-
tunately CHSD is not an in-place algorithm because its space compelxity is

O(now - non) in the worst case where now is the number of words in the global
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FUNCTION TIME COMPLEXITY

LEARNING PHASE

ProcessData O(tgodb(tdog(twod + twog) + twog))
= O(tgodb - tdog - twog)

InitTree O(tgodb(tdog(twod + twog)) + twog) + h - log tgodb - twog)
= O(tgodb - tdog - twog)

BuildTree O(h - logtgodb - twog)
CATEGORIZATION PHASE
Insert O(tcf)

Similarity O(twon?)
(O(twon - log twon) when Binary Search is used)

HierarchicalSearch  O(h - logtcon - twon?)

FindCategories O(twod + h - log tcon - twon?)
= O(h - logtcon - twon?)

Figure 4.1: Time Complexities of Functions

dictionary of the database and non is the number of nodes in the index tree.
That is each word occurs in all documents and copied to all nodes in the index
tree. However it is not possible for this worst case to be realized since CHSD
eliminates the words according to their norm-scaling values as explained in
Chapter 3.

An algorithm which has consistent space complexity for all cases is called
as every-case space complexity algorithm. CHSD is not an every-case space
complexity algorithm either. Because its space complexity is dependent on the
number of words extracted from the database and the number of nodes that
the hierarchy requires. In addition, words are chosen to be copied into upper

nodes according to the norm-scaling value which is a variable.
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We implemented CHSD in C++ programming language. In C++, func-
tion calls are handled by using an internal stack of activation records. Every
activation record needs a piece of memory space to hold it. As the activation
records become larger and larger, the stack to hold them requires more and
more memory space. In recursive algorithms, recursive function calls can build
up the stack very quickly while in sequential algorithms memory requirement
for this stack is limited. CHSD is a recursive algorithm in constructing index

tree and searching over it. In the space vs. speed trade-off CHSD prefers speed.

4.2 Emprical Evaluation

4.2.1 Performance Measures

Text categorization is the assignment of free text documents to one or more
of a predefined set of categories. While a number of different accuracy mea-
sures have been used in evaluating text categorization in the past, almost all
have been based on the same model of decision making by the categorization
system [8]. Some of these measures are recall and precision, accuracy or error,

break-even point, micro average, macro average and 11-point average precision.

For the evaluation of our test results of CHSD and KNN we used interpo-
lated 11-point average precision measure method which is especially designed

for category ranking.

Interpolated 11-point Average Precision

Category ranking can be evaluated by using measures similar to the conven-
tional measures for evaluating ranking-based document retrieval systems such
as recall, precision, and 11-point average precision. Given a classifier whose
input is a document, and whose output is a ranked list of categories assigned
to that document, the recall and precision can be computed at any threshold
on this ranked list [40]:

categories found and correct
recall =

(1)

total categories correct
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. categories found and correct
precision = . (2)
total categories found

where categories found means categories above the decision threshold.

For the global evaluation of a classifier on a collection of test documents,
we adapt the procedure for the conventional interpolated 11-point average pre-

cision, as described below:

e For each document, compute the recall and precision at each position in

the ranked list where a correct category is found.

e For each interval between recall thresholds of 0%, 10%, 20%, ..., 100%,
use the highest precision value in that interval as the representative pre-

cision value at the left boundary of this interval.

e For the recall threshold of 100% the representative precision is either the
exact precision value if such a data point exists, or the precision value
at the closest point in terms of recall. If the interval is empty, use the

default precision value of zero.

e Interpolation: At each of the above recall thresholds, replace the represen-
tative precision using the highest score among the representative precision
values at this threshold and the higher thresholds.

e Per-interval Averaging: Average per-document data points over all the
test documents, at each of the above recall thresholds respectively. This

step results in 11 per-interval average precision scores.

e Global Averaging: Average of the per-interval average precision scores to

obtain a single-numbered performance average (11-pt AVGP).

4.2.2 Data Set

For the evaluation tests of CHSD a sample database of 2000 documents is
collected from Usenet top-level groups called comp and bionet as shown in
Table 4.2. Each newsgroup under comp contains 100 documents and each
newsgroup under bionet contains different number of documents. This is done

on purpose to test robustness of CHSD. Because in real life it is not possible to
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find a balanced database such that each group contains equal number of doc-
uments. In fact categorization algorithm has to prevent the effect of different
datasizes and irrelevant features on results [3]. This database does not include
all newsgroups of comp because it is one of the biggest top-levels in Usenet
system. However we collected all news in all newsgroups of under the top-level

bionet.

H Label | Name of Newsgroup | Documents ‘ Words H
bl bionet.agroforestry 97 4265
b2 bionet.announce 46 3419
b3 bionet.audiology 30 937
b4 bionet.biology.cardiovascular 40 1492
bb bionet.biology.computational 9 618
b6 bionet.biology.grasses 29 1112
b7 bionet.biology.n2-fixation 10 527
b8 bionet.biology.symbiosis 13 698
b9 bionet.biology.tropical 25 971
bl0 | bionet.biophysics 42 1773
bll | bionet.celegans 30 1003
bl2 | bionet.software 97 2480
b13 | bionet.toxicology 32 1931
cl comp.apps.spreadsheets 100 1799
c2 comp.arch 100 2481
c3 comp.arch.arithmetic 100 2113
c4 comp.arch.fpga 100 2379
ch comp.arch.storage 100 2524
cb comp.compilers.tools.javacc 100 1801
c7 comp.compilers.tools.pccts 100 1746
c8 comp.compression 100 1423
c9 comp.databases.btrieve 100 2045
cl0 | comp.databases.informix 100 2139
cll comp.databases.ms-access 100 2183
c12 | comp.os.linux.development.apps 100 1793
cl3 | comp.os.linux.development.system 160 2026
cl4 | comp.os.linux.networking 100 1902
clb comp.os.linux.setup 100 2128

- Total Number of News 2000 -

Table 4.2: Sample Database

Table 4.3 shows inner nodes and number of words in their vectors con-
structed by CHSD. There are 9 inner nodes over 28 leaves - in other words 28

categories - in this database and number of words in the global dictionary is
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6495. In Table 4.2 and Table 4.3 all these newsgroups and innner nodes are la-
beled and the index tree structure out of this experiment is given in Figure 4.2

which is drawn by using these labels.

Appendix A shows the leaf vector of the newsgroup bionet.biology.n2-fixation
which has only 10 documents and 527 words. That many documents are not
enough to gain the most representative features of a newsgroup. When we ex-
amine the leaf vector in Appendix A, it is seen that there are many irrelevant

words with higher norm-scaling values such as free, job, make, call.

H Label | Name of Inner-Node | Number of Words ”
b14 | bionet 2696
bl5 | bionet.biology 941
cl6 | comp 2576
cl7 | comp.compilers 1187
cl8 comp.compilers.tools 1187
cl9 comp.databases 1574
c20 | comp.os 1903
c21 comp.os.linux 1903
c22 | comp.os.linux.development 1219
c23 | comp.arch 1981
c24 | comp.apps 1421

Table 4.3: Inner Nodes of Index-Tree

4.2.3 Test Results

There are three measures taken for the evaluation of test results :

e Train Time is the time spent during learning phase but does not include
the time spent for processing raw data. Begins with matrix upload and

ends at the time categorization begins.
e Test Time is the time spent during categorization of query documents.

e Accuracyis the value calculated by interpolated 11-point average precision
method which takes in the real labels and the labels found by the running
algorithm.
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ROOT

clo

b b b1l | b b3 b2 bl : c8
N
b5 b7 c9| k10 | [c11 203l lca||es|] el

D Inner Node
O Leal Node

10-fold cross validation technique [13] is used in the experiments. Therefore,

Figure 4.2: Index Tree of The Sample Database

the accuarcy of algortihms on data set is computed as the average of 10 runs
in each of which a disjoint set of 1/10 of the data set is used in the querying,
and the remaining 9/10 in the training phase. To calculate the accuracy of
each fold Interpolated 11-point Average Precision method is used as explained

in the previous section.

Firstly we run! CHSD over database of 2000 documents shown in Table 4.2
for 16 times with different threshold values floating between 0.5 - 0.875. At each
run we increased the threshold value by 0.025 to determine the best threshold

value which gives the highest accuracy.

The results are given in Table 4.4. The best accuracy value that we found is
0.87 with threshold value 0.825 at the 14" run which took 4724 msec. train

We used a computer with 64 MB memory and an Intel Celeron 333 Mhz. processor in our
experiments.
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[ No. | Threshold | Train(msec.) | Test(msec.) | Accuracy ||

1 0.5 4707 6721 0.22
2 0.525 4657 6679 0.29
3 0.55 4602 6610 0.33
4 0.575 4658 6551 0.38
5 0.6 4687 6509 0.42
6 0.625 4668 6454 0.46
7 0.65 4671 6406 0.48
8 0.675 4642 6392 0.51
9 0.7 4635 6350 0.55
10 0.725 4606 6305 0.59
11 0.75 4721 6289 0.63
12 0.775 4604 6237 0.72
13 0.8 4664 6191 0.81
14 0.825 4724 6173 0.87
15 0.85 4623 6122 0.79
16 0.875 4723 6099 0.65

Table 4.4: Results of CHSD on the Database Given in Table 4.2

time and 6173 msec. test time. We accept these values as the representative
values of CHSD to compare it with KNN. We did not run CHSD with further
more threshold values since accuracy began to decrease after 0.825 as shown

in Figure 4.3.

Since we shuffled data at the beginning of each run of CHSD, the train
time changed sporadically as shown in the chart given in Figure 4.4. However
the test time decreased as the threshold value increased because number of
unvisited nodes becomes higher by the increase in threshold value. That is,
as threshold value approaches to 1 test time approaches to 0 as shown in the

chart given in Figure 4.5.

Next we ran KNN over the same database with k& parameter as 10 and
got 0.93 accuracy, in 205492 msec. train time and 27196800 msec. test
time. In other words, for each data fold KNN spent nearly 3.5 minutes to
train and 454 minutes to test the data. It took 76 hours to gain the results of
the database given in Table 4.2. The version of KNN implemented by Bilkent
University Machine Learning Group is used in our experiments. It makes use
of Euclidean distance to determine the similarities of the training instances to

the query point.



Chapter 4. Evaluation 52

ACCURACY
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Figure 4.3: Accuracy vs. Threshold

As compared with KNN, CHSD resulted in 0.06 less accuracy even with
the most optimal threshold value as shown in Table 4.4. Nevertheless this is
not an untolerable loss of accuracy as we consider the speed difference between
them. According to the results of this experiment CHSD was faster than KNN
43 times in the training time and for 4405 times in the test time. We claim
that CHSD is more optimal and functional than KNN in these circumstances.
Time scalability of an algorithm is so important because the amount of data

is getting bigger each day.

4.2.4 Scalabilty Test

To test the scalability of CHSD the database used in previous experiment is
expanded to the size of 5000 documents by adding the database shown in
Table 4.5. We take the threshold value of similarity as 0.825 since it was found

to be the most optimal value in the previous test.

In this experiment accuracy is calculated as 0.892 in 21922 msec. train
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TRAIN TIME
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Figure 4.4: Train Time vs. Threshold

time and 48656 msec. test time. Naturally train and test times increased but
not beyond the considerable limits. Fortunately accuracy increased by 0.022
as compared to 0.87 in previous test. The main reason of this increase is the

effect of larger data. The more learning brings out the better results.

Besides accuracy was expected to be more than this since we expanded the
database by adding 3000 more documents to the database in the previuos test
as shown in Table 4.5. The main reason of this less than expected increase in
accuracy is the approach of Interpolated 11-point Average Precision such that
redundant hits of the algorithm are severly punished during the evaluation.
That is, if there are wrong ones in a series of answers besides right ones then
accuracy is decrased by a great extent. Since the database is 2.5 times bigger
than the previous databases redundant hits are inevitably proliferated in this

experiment.

We could not apply KNN to this database since it was impossible within
means of space limitations. The KNN software that we used takes in an input
matrix of n X m where n is the number of documents and m is the number
of all words in the global dictionary of the database. So this matrix is such
a sparce matrix that non-zero values are the frequencies of the words. Size of
this matrix grows by the number of the documents since each new document

adds a new row and a few new columns to it. By the way in this software there
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Figure 4.5: Test Time vs. Threshold

is no elimination among the words - other than filtering stopwords - causing
many redundant words to be stored in the memory. For example the database
with 5000 documents produced 5000 x 7422 matrix of integers which is stored
in a 149 MB file as an input for KNN. It is fairly huge as compared to the 64

MB memory of an average computer.

These experiments prove that CHSD is scalable and outperforms KNN in
view of time and space complexity measures. Because CHSD runs over a dense
input with no zero values and eliminates redundant words by checking norm-
scale values. For instance only 4.5 MB memory space is used by CHSD in
this experiment with 5000 documents. At the other hand, as proved by the
previous experiment CHSD is faster than KNN and its time complexity does
not grow as fast as KNN’s does. Because CHSD uses a hierarchical structure
and a threshold value of similarity to travel on it. Therefore it neither does

redundant calculations nor deals with unnecessary data points.
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Name of Newsgroup

| Documents ‘ Words H

comp.ai.alife 100 3883
comp.ai.edu 100 2858
comp.ai.fuzzy 100 3197
comp.ai.genetic 100 3039
comp.ai.nat-lang 100 5247
comp.ai.neural-nets 100 2463
comp.ai.philosophy 100 4995
comp.databases.object 100 2564
comp.databases.olap 100 2141
comp.databases.paradox 100 1895
comp.databases.pick 100 2113
comp.databases.sybase 100 2381
comp.databases.theory 100 2513
comp.databases.visual-dbase 100 1521
comp.groupware.lotus-notes.admin 100 1440
comp.groupware.lotus-notes.apps 100 1107
comp.groupware.lotus-notes.misc 100 1266
comp.groupware.lotus-notes.programmer 100 1340
comp.os.linux.hardware 100 1031
comp.os.linux.portable 100 1304
comp.os.linux.powerpc 100 1362
comp.os.linux.questions 100 1307
comp.os.linux.security 100 1354
comp.os.ms-windows.misc 100 1875
comp.os.cpm 100 2124
€Omp.0S.geos. misc 100 1324
comp.sys.ibm.pc.hardware 100 1808
comp.sys.mac.hardware 100 2240
comp.security.ssh 100 1046
comp.security.unix 100 1393
Total Number of News 3000 -

Table 4.5: Database Used to Expand Sample Database
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Conclusion

This thesis was started with the question of how to manage the huge database
of Usenet newsgroups as a user. There are a lot newsgroups in the system and
it is hard to find the a specific newsgroup for a new news to post. In this thesis
we have presented a brand-new categorization algorithm named as CHSD for
the solution of this problem. It is an appropriate algorithm for hierarchically
structured databases such that the database owns a substantial and built-in
hierarchy in itself just as Usenet does. The more CHSD learns this hierarchy

the better categorization results it brings out.

We succeeded in providing a detailed experimental performance study of
both CHSD and KNN algorithms. As compared with KNN, CHSD results in
less accuracy even with the most optimal threshold value. But this is not an
untolerable difference. However a query takes shorter time by CHSD than it
does by KNN. For instance in the experiment of 2000 documents and 6495
words CHSD is 2514 times faster than KNN at the average of total train and

test time.

This comparison does not only mean comparing two different algorithms
but also means comparing hierarchical approach vs. flat approach, similarity
measure vs. distance measure and importance of accuracy vs. importance of
speed. CHSD prefers hierarchical approach and similarity measure, and greatly
outperforms KNN in speed to the cost of a little loss in accuracy. We conclude
that time scalability of an algorithm is so important because amount of data

is getting bigger each day thereby CHSD accomplishes its mission.
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The advantages of CHSD:

Robust against the differences among datasizes of groups to some consid-

erable extent.
e Faster than the most of the traditional categorization algorithms.
e Scalable to larger databases in terms of time and space complexities.
e BEasy to implement, use and improve.

e It is a combination of components which are open to modifications and

improvements.

e Height of the index tree is limited by the depth of the hierarchy in

database. Thus no redundant level is constructed.

e It has two useful measures to play with for better results which are called

threshold of norm-scaling value and threshold of similarity.

The disadvantages of CHSD:

e [t is vulnerable to the spamming in the database.

e Necessarily most of the initial data is replicated in the inner nodes of

index tree to construct the hierarchy in the memory.

e The source database that the initial data is produced from must be main-

tained periodically to keep index-tree updated in long term.

e The optimal threshold value of similarity that controls down-travel of a
query vector should be determined beforehand by experimentation since

it varies according to the types and sizes of databases.

For more improved versions and better usages of CHSD algorithm there is

future work which could be done later:

e The algorithm might have a dynamic structure such that it continues its
learning phase while responding to queries and receiving newly posted

news from server and updates its index.
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Some of the newsgroups no longer have message traffic. Algorithm can
detect these groups and eradicate them from its index. This might be

done by checking the Date header-lines of posted messages.

Weigthening words might be helpful to solve biased similarity measures.

Constructing a different stoplist for each newsgroup will make it more
easy to get rid of redundant words and will increase the accuracy to the

cost of more time consuming data processing.

Already constructed tree might be copied to an object file and stored into

disk to make later usages faster.

Finally we conclude that CHSD is a worthwhile departure point to im-
plement an efficient and user friendly categorization software. Because it is
possible to add new aspects to CHSD by developping new components for bet-
ter accuracy. In addition, CHSD is applicable to any kind of text database
that has or could be arranged into a hierarchical data structure. In short, we
believe that CHSD merits further attention in order for it to be put to better

use in the future.



Appendix A

Leaf Vector of

bionet.biology.n2-fixation

Word Frq | N-S Word Frq | N-S Word Frq | N-S

led 1 1 act 2 1.41421 || gem 1 1

pai 1 1 job 8 7.07107 || aol 2 1.41421
sai 2 1.41421 || map 4 2 bui 2 1.41421
wai 1 1 fit 1 1 gui 4 2.82843
ion 1 1 per 1 1 gmt 2 1.41421
fun 1 1 new 2 2 owe 1 1

how 1 1 ron 1 1 ext 2 2

low 2 1.41421 || now 3 1.73205 || put 3 1.73205
back 3 2.23607 || lead 2 2 abil 2 1.41421
area 1 1 data 1 1 base 5 3

read 2 1.41421 || page 5 3.60555 || make 11 | 6.08276
cash 1 1 life 1 1 name 4 2.82843
free 12 | 5.65685 || mail 4 2 real 5 2.64575
sale 4 2.44949 || ject 5 2.23607 || line 5 3
possibl 1 1 fulltim 1 1 smarter 1 1
continu 2 2 inquiri 1 1 turnkei 1 1
resourc 4 2 context 1 1 softwar 2 1.41421
request 1 1 network 4 2 univers 3 1.73205
california 4 2.82843 || background 1 1 vanderbilt 1 1
technologi 1 1 subsidiari 1 1 comprehens 1 1
drosophila 1 1 understand 1 1 permacltur 1 1
scienceweek 4 4 bioinformat 2 2 biologynfix 1 1
permacultur 1 1 contributor 1 1 neurodegener 1 1
selfdisciplin 1 1 lightningfast 1 1 complimentari 1 1

Table A.1: Leaf Vector of bionet.biology.n2-fization (1)
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APPENDIX A. LEAF VECTOR OF BIONET.BIOLOGY.N2-FIXATION

Word Frq | N-S Word Frq | N-S Word Frq | N-S
financi 1 1 medicin 1 1 guidanc 1 1
openfac 1 1 briefli 1 1 bernard 1 1
homebas 1 1 special 1 1 nowadai 1 1
hammond 1 1 increas 3 1.73205 || address 2 2
compani 4 2.82843 || nematod 2 1.41421 || central 2 1.41421
descrip 2 2 qualifi 2 2 contact 5 3
account 6 4.24264 || privaci 1 1 develop 1 1
announc 2 1.41421 || comment 1 1 complet 3 1.73205
forward 2 1.41421 || purchas 1 1 atrophi 1 1
success 4 2.82843 || absolut 2 2 content 1 1
support 1 1 american 1 1 alphabet 1 1
interfac 2 2 research 6 6 approach 1 1
directli 1 1 merchant 6 4.24264 || deliveri 1 1
cashflow 1 1 maryland 2 1.41421 || phenomen 1 1
individu 1 1 simplifi 1 1 advertis 1 1
glossari 1 1 transfer 1 1 thousand 1 1
discount 2 1.41421 || frequent 1 1 mountain 2 1.41421
interest 3 1.73205 || approxim 1 1 whatsoev 1 1
transmit 1 1 thankyou 1 1 position 3 3
thingyou 1 1 question 3 2.23607 || opportun 5 3.60555
callpacif 2 1.41421 || searchabl 1 1 sheffield 1 1
hierarchi 1 1 highlight 2 2 recommend | 2 1.41421
bioscimrc 4 2 chainlett 1 1 sellingdo 1 1
prerecord 1 1 regularli 1 1 inconveni 1 1
rcjohnsen 1 1 millenium 2 2 kumershek 1 1
parkinson 1 1 scientist 1 1 astronomi 1 1
mycorrhiz 1 1 universit 1 1 wbehherjec 1 1

call 8 4.89898 || talk 2 2 inalifetim 1 1

oblig 2 2 server 1 1 cell 1 1

help 4 2.44949 || relat 3 3 oxidative 1 1

onlin 10 | 5.83095 || collect 1 1 bionet 10 | 3.16228
polici 3 2.23607 || famili 1 1 mlm 2 1.41421
immedi 1 1 comput 2 2 home 5 3
somon 1 1 platinum 3 3 summari 1 1

le 1 1 panel 1 1 center 1 1
mentor 1 1 vender 2 1.41421 || ignor 1 1

fine 4 2.82843 || kind 3 1.73205 || link 3 1.73205
sincer 1 1 consist 1 1 long 3 2.23607
monei 6 6 SW 3 3 function 1 1
resend 1 1 acounti 1 1 phone 4 2.82843
thought 1 1 biologi 6 4.24264 || good 2 1.41421
root 2 2 apologi 1 1 bro 1 1

frog 1 1 troubl 2 1.41421 || lyon 2 2
happi 1 1 repli 1 1 import 2 1.41421
input 1 1 noprofit 1 1 topic 1 1
applic 4 2.82843 || expert 2 1.41421 || mailbox 1 1

leav 2 1.41421 || bark 1 1 carl 1 1

earn 3 2.23607 || rare 2 1.41421 || jbrin 2 1.41421
screen 1 1 jersei 2 1.41421 || server 1 1
veryifi 1 1 airlin 2 2 more 1 1

biolog 1 1 archiv 2 2 dollar 1 1
abnorm 1 1 attend 1 1 medium 1 1
materi 1 1 market 4 2.44949 || effort 2 1.41421
editor 1 1 commis 1 1 commit 1 1
inform 3 1.73205 || servic 7 4.3589 primat 1 1
websit 9 5.91608 || hubsit 2 2 answer 3 3

Table A.2: Leaf Vector of bionet.biology.n2-fization (2)
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Word Frq | N-S Word Frq | N-S Word Frq | N-S
normal 3 1.73205 || current 2 2 surgic 1 1

easi 1 1 pass 3 1.73205 || abstract 1 1

schoo 1 1 cess 6 4.24264 || describ 1 1
messag 8 4 respect 1 1 cism 1 1

discus 1 1 list 1 1 wish 1 1
configur 2 1.41421 || hms 1 1 insa 1 1

cost 2 1.41421 || lose 3 3 custom 4 2.82843
card 14 | 9.89949 || cart 2 1.41421 || matt 2 2

rate 2 1.41421 || satisfac 4 2.82843 || action 1 1
detail 1 1 liter 1 1 nitrogen 1 1

site 1 1 vital 2 1.41421 || onthi 1 1
carrer 1 1 lot 1 1 notabl 1 1
extrem 2 1.41421 || neuron 1 1 club 2 2

mous 1 1 fruit 1 1 colleagu 2 1.41421
advis 2 1.41421 || invit 1 1 recogn 1 1
power 2 1.41421 || fungi 2 2 fix 1 1
grateful 1 1 box 1 1 day 3 1.73205
hey 2 1.41421 || joyou 2 2 literatur 1 1
connec 1 1 bean 1 1 dear 1 1

featur 2 1.41421 || learn 3 2.23607 || search 5 3.31662
year 5 2.23607 || channel 5 5 find 2 1.41421
place 1 1 email 10 | 4.47214 || small 4 2.82843
sparr 1 1 frame 2 2 grader 1 1

train 1 1 guarante 1 1 await 1 1

tabl 1 1 web 2 2 public 1 1

fact 2 1.41421 || access 2 2 receiv 10 | 5.2915
held 1 1 pfcc 1 1 ticket 2 2
travel 1 1 incom 2 2 locat 1 1

duct 7 4.3589 apprieci 1 1 dealt 2 1.41421
confirm 1 1 radiat 1 1 respond 1 1
respons 2 1.41421 || vide 4 2 andor 1 1

index 3 3 bodi 1 1 model 4 4

nodul 1 1 todai 4 2.44949 || need 2 1.41421
weekth 2 1.41421 || skeptic 1 1 blem 2 1.41421
electron 1 1 pleas 2 1.41421 || spent 2 1.41421
credit 20 | 14.1421 || fred 1 1 great 4 2.82843
present 1 1 eastern 2 1.41421 || yeast 1 1
eventu 1 1 biomed 1 1 afford 1 1

offer 7 5.19615 || differ 2 1.41421 || lifetim 1 1

imfo 2 2 info 4 2.82843 || degre 1 1
legitim 1 1 high 1 1 engin 3 3

advic 1 1 repres 4 2.82843 || organ 6 6
suggest 1 1 school 3 3 recent 2 2

daili 1 1 main 5 5 waiv 2 1.41421
includ 1 1 scienc 2 2 tein 1 1
complaint 1 1 rhizobia 2 2 nitrif 2 2

click 2 2 approv 2 1.41421 || join 1 1

voic 2 1.41421 || quick 2 1.41421 || commun 2 1.41421
easili 1 1 diseas 2 1.41421 || direct 1 1
honest 1 1 tomato 2 2 script H H
anymor 1 1 revers 1 1 requir 1 1
explor 1 1 explos 1 1 report 11 | 11
involv 2 2 xenopu 1 1 system 3 1.73205
apolog 1 1 databas 1 1 credibl 2 1.41421

Table A.3: Leaf Vector of bionet.biology.n2-fization (3)
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Word | Frq | N-S Word Frq | N-S Word Frq | N-S
amaz 1 1 send 6 4.24264 || meet 1 1

week 10 | 4.69042 || focu 1 1 elit 1 1

time 8 447214 1l sell 1 1 spam 1 1

crit 1 1 busi 29 | 18.6279 || pubm 1 1

menu 3 3 note 4 2 burn 1 1

past 2 1.41421 || risk 2 1.41421 || shop 2 1.41421
toll 4 2.44949 || word 3 1.73205 || titl 3 2.23607
hour 3 2.23607 || grow 1 1 show 1 1

type 5 3 work 6 3.16228 || issu 2 2

post 1 1 turn 1 1 beagl 1 1

chanc 2 1.41421 || check 2 1.41421 || chang 1 1
medic 3 3 reach 2 1.41421 || field 1 1

charg 1 1 death 1 1 direc 2 1.41421
blank 1 1 sagan 1 1 local 4 2

brain 1 1 ethic 2 1.41421 || delet 1 1

vacat 2 2 build 2 2 gener 2 2

bring 1 1 genet 1 1 speci 1 1

navig 1 1 genom 4 2 desir 1 1

level 1 1 human 4 2 thing 6 3.16228
centr 4 2 initi 1 1 updat 2 1.41421
spect 2 2 peopl 8 4.69042 || tocol 1 1

devot 1 1 coupl 1 1 simpl 2 1.41421
month 4 3.16228 || steve 1 1 world 4 2.82843
remov 12 | 6 error 2 1.41421 || north 1 1

sourc 1 1 group 1 1 start 3 1.73205
visit 1 1 short 1 1 futur 2 1.41421
elegan 1 1 aggreg 1 1 availb 1 1
accept | 15 | 9.94987 || fitabl 1 1 hawaii 2 1.41421
fascin 1 1 scheme 1 1 harder 1 1

major 10 | 7.07107 || ag 3 2.23607 || de 1 1

dh 2 1.41421 || jg 2 1.41421 || 4 2 2

jm 2 1.41421 || is 2 1.41421 || uk 1 1

ps 1 1 yo 1 1 tv 1 1

bad 2 1.41421 || add 3 1.73205 || ibc 1 1

def 1 1 fee 2 1.41421 || dan 2 1.41421

Table A.4: Leaf Vector of bionet.biology.n2-fization (4)
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