QUASI-BIRTH-AND-DEATH PROCESSES
WITH LEVEL-GEOMETRIC DISTRIBUTION

TUGRUL DAYAR* AND FRANCK QUESSETTE!

Abstract. A special class of homogeneous continuous-time quasi-birth-and-death (QBD) Markov
Chains (MCs) which possess level-geometric (LG) stationary distribution are considered. Assuming that
the stationary vector is partitioned by levels into subvectors, in an LG distribution all stationary sub-
vectors beyond a finite level number are multiples of each other. Specifically, each pair of stationary sub-
vectors that belong to consecutive levels are related by the same scalar, hence the term level-geometric.
Necessary and sufficient conditions are specified for the existence of such a distribution and the results
are elaborated on three examples.
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1. Introduction. The continuous-time Markov process on the countable state
space S = {(l,7) : [ >0, 1 < ¢ < m} with block tridiagonal infinitesimal generator
matrix

{ By Ag \
Ay A A

(1) Q= A, Ay A

having blocks of order m is called a homogeneous continuous-time quasi-birth-and-death
(QBD) Markov chain (MC). The row sums of @) are zero meaning (By + Ag)e = 0 and
(Ao + A1 + Az)e = 0, where e is a column vector of 1’s with appropriate length. The
matrices Ag and A, are nonnegative, and the matrices By and A; have nonnegative
off-diagonal elements and strictly negative diagonals. The first component, [, of the
state descriptor vector denotes the level and its second component, ¢, the phase. In
homogeneous QBD MCs, the elements of the (m x m) matrices By, Ao, A1, and Ay do
not depend on level number.

Neuts has done substantial work in the area of matrix analytic methods for such
processes and has written two books [11], [12]. An informative resource that discusses
the developments in the area since then is the recent book of Latouche and Ramaswami
[9]. The most significant application area of these methods at present is the performance
evaluation of communication systems.

We assume that the homogeneous continuous-time QBD MC at hand is irreducible
and positive recurrent meaning its steady state probability distribution vector, = (see
[13]), exists. Throughout the paper, we adhere to the convention that probability vectors
are row vectors. Being a stationary distribution, 7 satisfies #() = 0 and 7e = 1. Now,
let # be partitioned by levels into subvectors 7;, [ > 0, where 7; is of length m. Then =
also satisfies the matrix-geometric property [9, p. 142]:

(2) i =R for >0,
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where the matrix R of order m records the rate of visit to level (I + 1) per unit of time
spent in level [. Fortunately, the elements of R for homogeneous QBD MCs do not depend
on level number. Quadratically convergent algorithms for solving QBD MCs appear in
81, (31, 1]

In this paper, we consider a special class of homogeneous continuous-time QBD
MCs which possess, what we call, level-geometric (LG) stationary distribution. A level-
geometric distribution is one that satisfies

(3) w1 =am for [ > L,

where a € (0,1) and L is a finite nonnegative integer. Note that an LG distribution with
L = 01is a product-form solution. An LG distribution can be expressed alternatively as

(4) Tk = (1 — oz)ozka for k>0,

where @ is a positive probability vector of length m, with ae = 1 when L = 0. In an
LG distribution, the level is independent of the phase for level numbers greater than or
equal to L, and the marginal probability distribution of the levels are given by 7y e =
(1 — a)d*ae [9, pp. 295-299] for k& > 0. Throughout the paper, we refer to an LG
distribution for which L is the smallest possible nonnegative integer that satisfies equation
(3) as an LG distribution with parameter L. Our motivation is to come up with a solution
method for this special class of QBD MCs that does not require R to be computed.
We remark that if S, is the number of iterations required to reach an accuracy of e
by the successive substitution algorithm [5, p. 160], then the computation of R with
quadratically convergent algorithms takes about O(log, S¢) iterations (hence, the term
quadratically convergent) each of which has a time complexity of O(m?) floating-point
operations. The results that we develop can be extended to the homogeneous discrete-
time case without difficulty.

In section 2, we provide background information on the solution of QBD MCs with
special structure. In section 3, we give three examples of QBD MCs with LG stationary
distribution. In section 4, we specify conditions related to such a distribution and show
how it can be computed when it exists. In section 5, we reconsider the three examples
of section 3 under the light of the new results introduced in section 4. In section 6, we
conclude.

2. Background material. In this section, an overview of some concepts discussed
in [9] and other remarks are given. Wherever something has been taken from [9], the
appropriate reference to the corresponding page(s) is placed.

Due to the fixed pattern of transitions among levels and within each level, it is not
difficult to check the irreducibility of (). The next remark is about checking the positive
recurrence of () when () and A = Ag+ A1+ A; are both irreducible. When () is irreducible,
but A has multiple irreducible classes, one can resort to the theorem in [9, p. 160]. Note
that A is an infinitesimal generator matrix.

REMARK 1. If () and A are irreducible, then () is positive recurrent if and only if
mwa(Ao — Az)e < 0, where 74 satisfies 1aA =0 and mae =1 [9, p. 158].

Throughout the paper, we assume that the homogeneous continuous-time QBD MC
at hand is irreducible and positive recurrent. Now, let p(R) denote the spectral radius
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of R (i.e., p(R) = max{|\| | A € A(R)}, where A(R) = {\ | Rv = lv,v # 0} is its
spectrum). Then, p(R) <1 ]9, p. 133].

The next remark specifies necessary and sufficient conditions for the existence of an
LG distribution with parameter L = 0.

REMARK 2. The stationary distribution of ) is LG with parameter L = 0 if and
only if a(Ao + aA;s + o*Ay) = 0 and a(By + aAy) = 0, where a = p(R) and ae =1 [9,
pp. 297-298].

This remark, although very concise and to the point, has two shortcomings. First,
it does not indicate how to check for an LG distribution with parameter L > 1. Second,
it requires the solution of a nonlinear system of equations.

The following two remarks indicate the improvement that is obtained in the solution
when A, and/or Ag are rank-1 matrices.

REMARK 3. When Ay is of rank-1, R = —Ao(A; + Aoeb?)™!, where Ay = cb? and
be =1 [9, p. 197]. Furthermore, my can be computed up to a multiplicative constant
using wo(Bo + Ageb’) =0 [9, p. 236].

Hence, it is relatively simple to compute the stationary distribution when A, is of
rank-1.

REMARK 4. When Ay is of rank-1, R = cf¥, where Ay = cb?, ble = 1,
8 = —bT(A) + ady)™, and a = e with o = p(R) [9, p. 198]. The stationary
subvectors satisfy mo = mCo, where Cy = —AyBy", and 7 = w1 Cy for [ > 1, where
Cy = —Aq(Ay + Ageb?)7L 9, p. 236].

COROLLARY 1. When Ag is of rank-1, R is also of rank-1, and R?> = aR thereby
implying miy1 = amy for [ > 1. Hence, () has an LG distribution with parameter L <1.

The next section elaborates these results on three examples.

3. Examples. The following examples all have LG distributions, and they aid in
understanding the concepts introduced in section 2 and the concepts to be developed in
section 4.

3.1. Example 1. The first example we consider is a system of two independent
queues, where queue 1 is M/M/1 and queue 2 is M/M/1/m — 1. Queue ¢ € {1,2} has a
Poisson arrival process with rate A; and an exponential service distribution with rate p;.
This system corresponds to a QBD process with level representing the length of queue
1, which is unbounded, and phase representing the length of queue 2, which can range
between 0 and (m — 1). We assume Ay < pq. Letting d = Ay + Ay 4 p1 + p2, we have
Ao =M1, Ay = i,

(Tl \

Al - c. 9
H2 —d Ag
pz —(d—As)
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(—()\1 + A2) Ao \

fo —(d =) X
By = ) -
p2 —(d—p) Ay
M2 (A1 + p2)
Q) 1is irreducible, and from Remark 1 we have
=Xz Ao
( pa —(Aa4p2) A \
A=A+ A1+ Ay = i . ,

poe —(Ae 4 p2) g

M2 —H2

which is irreducible, and 7 4 is the truncated geometric distribution with parameter Ay /o
[5, p. 84]. Hence, m4(Ao — Az)e = Ay — g1 < 0 and @ is positive recurrent. For this
example, @ = \; [y, ap = v¥(1—v)/(1—v™),0 <k <m—1,and L = 0, where v = Xy /o,
turn out to be the parameters in equation (4) that specifies an LG distribution.

Note that the QBD MC in this example is lumpable [7, p. 124], and the lumped
chain represents queue 1.

3.2. Example 2. The second example we consider is the continuous-time equivalent
of the discrete-time QBD process discussed in [8, pp. 668-669]. The model has 2 phases
at each level (i.e., m = 2). Assuming that 0 < p < 1, the process moves from state (/,1),
[ > 1, to (I,2) with rate p, and to (I — 1,1) with rate (1 — p). The process moves from
state (1,2), [ >0, to (I,1) with rate 2p, and to (/4 1,2) with rate (1 — 2p). Finally, the
process moves from state (0,1) to (0,2) with rate 1. All diagonal elements of @) are —1.
Hence, we have

(0 0 (-1 p (1-p 0 (-1 1
AO_(O 1—2p)’A1_(2p —1)’A2_( 0 0)’30_(2p —1)‘

Q) 1is irreducible, and from Remark 1 we have

A:A0+A1—|—A2:(;p P )7

p —2p

which is irreducible, and 74 = (2/3 1/3). Hence, m4(Ao — Az)e = —1/3 < 0 and @ is
positive recurrent. For this example, « = (1 — 2p)/(1 — p), a = (1/2 1/2), and L = 0
turn out to be the parameters in equation (4) that specifies an LG distribution. Direct
substitution in 7¢) = 0 and 7e = 1 confirms this solution.

In this example, Remark 3 applies with ¢ = (1 — p)e; and b = ey, where ¢; is the
ith principal axis vector. Hence, R = (1 — 2p)ele/(1 — p), and p(R) = « as expected.
Furthermore, 7o = (1 — «)(1/2 1/2). Note that in this example, Remark 4 applies as
well. The rate matrix is of rank-1 and ¢ = ¢/(1 — p). In section 5, we will argue why
this example has an LG distribution with parameter L = 0, and not L = 1. Finally, we
remark that this example is also used as a test case in [1].



QBDS WITH LEVEL-GEOMETRIC DISTRIBUTION )

3.3. Example 3. The third example we consider is the E,, /M/1 FCFS queue which
has an exponential service distribution with rate g and an m-phase Erlang arrival process
with rate mA in each phase [9, pp. 206-208]. The expected interarrival time and the
expected service time of this queue are respectively 1/A and 1/u. We assume A < p. The
queue corresponds to a QBD process with level representing the queue length (including
any in service) and phase representing the state of the Erlang arrival process. Letting
d = m\ + p, we have the (m x m) matrices Ag = mAenel, Ay = ul,

[ —d m\ \ /[ —mA m\

Alz BOZ

—d mA |’ —mA  mA
—d —mA
Q) 1is irreducible, and from Remark 1 we have

[ —m)\ m\ \

A=A+ A1+ Ay =

—mA mA |’

mA —mA

which is irreducible, and 74 = eI /m. Hence, m4(Ag— Az)e = A—p < 0 and @ is positive
recurrent. Although, the E,,/M/1 FCFS queue does not have an explicit solution, it can
be shown by following the formulae in [6, p. 323] that its stationary distribution has an
LG distribution with parameter L = 1.

In this example, Remark 4 applies with ¢ = me,, and b = ey, implying R is of
rank-1, Cop = — Ay By ", and € = —Ay(A; + peel) ™

The next section builds on the results in section 2 with the aim of coming up with
a solution method to compute an LG distribution when it exists.

4. Checking for and computing the LG distribution. The negated infinitesi-
mal generator —(@) is known to be a singular M-matrix (see [2]). From the values in By
and our assumption of irreducibility for ¢}, it follows that — By is a nonsingular M-matrix
and By! exists [10, p. 626]. The next remark is essential in formulating the results in
this section.

REMARK 5. If DI, 1 > 0, denotes the diagonal block at level | after | steps of block
Gaussian-elimination (GE) on QT, then Dy = By and Dyyy = Ay — AyDi M Ag for 1> 0
since —Dy is a nonsingular M-matriz, therefore invertible and —D;* > 0. Furthermore,
7 = m1Ch, where Cp = _AQDZ_I >0, forl > 0.

In other words, since QT is a block tridiagonal matrix, block GE on Q7#? = 0 yields
ZT7T = 0 (or equivalently 7Z = 0), where

{ Dy
AZ Dl
A2 D2

-

(5) 7z =

That C; > 0 for [ > 0 follows from —Dl_l >0 and A; > 0.
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4.1. Checking for the LG distribution. The form of Z in equation (5) together
with Remark 5 suggests the next lemma.

LEMMA 1. If Dpy1 = Dy for some finite nonnegative integer L, then Dy = Dy for
[>L+1, and 7, = 7rL+ka for k> 0.
Proof. From Remark 5 we have D11 = Ay — AQDZIAO and Dpio = Ay — AQDZ_II_IAO. If
Dry1 = D, then Dpyy = Ay — AQDZIAO = Dry1 = Dg. The same argument may be
used to show that D; = Dy, for [ > L + 2. The second part of the lemma follows from its
first part and the second part of Remark 5. O

The next theorem states a condition under which one has an LG distribution.

THEOREM 1. Let L be the smallest finite nonnegative integer for which Dy1 = Dy.
Then the stationary distribution of Q) is LG with parameter less than or equal to L.
Proof. From Lemma 1 and equation (5), when Dyy1 = Dy, we have

o \
(6) Z = )
Ay Dr—4
Yo 7L
where
/ A\ { Dy \
Y; = 8 and Z; = Az D

A, Dg

Since Z is a singular matrix and 7; of length m is positive for finite [ and unique up
to a multiplicative constant with lim;_,., 7; = 0, the identities (7, 7r41,...)Z = 0 and
(TL41, TL42,.-.) % = 0 obtained from equations #Z = 0 and (6) suggest that =11 = am
for [ > L, where a € (0,1). O

COROLLARY 2. When By = Ay — AyBy ' Ao, the stationary distribution of Q is LG
with parameter L =0

The next remark helps us to state two lemmas which will be used in checking for an
LG distribution.

REMARK 6. The wnverse of an irreducible nonsingular matriz having a nonzero
diagonal is full unless numerical coincidence occurs [4, p. 72].

LEMMA 2. If Ay is irreducible and Aze > 0, then D; is irreducible and C; > 0 for
[>1.
Proof. From Remark 5 we have Dy = Ay + C1Ag, where () = _AQDZ_I >0and ! >0.
Since Ag > 0 by definition, we obtain C;Ag > 0. Besides, A; has nonnegative off-diagonal
elements and is assumed to be irreducible. Hence, its sum with the nonnegative C; Ay will
not change the irreducibility thereby implying irreducible Dy for { > 0. Alternatively,
Dy, I > 1, is irreducible. On the other hand, —D; is a nonsingular M-matrix from
Remark 5, and therefore has a nonzero diagonal and a nonnegative inverse. When Dy is
irreducible, its inverse is full due to Remark 6 implying —D;' > 0. Since Ay > 0 and
is assumed to have a nonzero in each row, its product with —D; ' is positive. Hence,
C;>0forl>1. O
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LEMMA 3. If el Ay > 0, Aye > 0, and Dy, is irreducible for some finite nonnegative
integer L, then Dy is irreducible and C; > 0 for [ > L.
Proof. When Dy, is irreducible and A; has a nonzero in each row, we have C, > 0 as in
the proof of Lemma 1. Since Ag > 0 and is assumed to have a nonzero in each column,
we have U Ag > 0 thereby implying an irreducible Dy ;. The same circle of arguments
may be used to show that C; > 0 and D;y4 is irreducible for [ > L. O

The next theorem states another condition under which one has an LG distribution.

THEOREM 2. Let L be the smallest finite nonnegative integer for which Cy is irre-
ducible and p(Cy) = p(Ci41), where | > L. Then the stationary distribution of Q) is LG
with parameter L.
Proof. From Remark 5 we have C; > 0 for [ > 0. If C}, | > L, is irreducible, then by the
Perron-Frobenius theorem C; has p(C;) > 0 as a simple eigenvalue and a corresponding
positive left-hand eigenvector. There are no other linearly independent positive left-
hand eigenvectors of C; [10, p. 673]. From Remark 5 we also have 7, = m41C; and
7 > 0 with lim_ m = 0. Multiplying both sides of m; = m11C; by p(C)), we obtain
p(C)m = (p(C1)mi41)Co. Since p(C)) is a simple eigenvalue of C for [ > L, we must have
7, as its corresponding positive left-hand eigenvector. Therefore, it must also be that
7 = p(C)miqq for [ > L. Since p(Cy) = p(Ciyq) for | > L, we have 7 = p(CL)mi41, or
mi41 = (1/p(CL))m for | > L. Consequently @ has an LG distribution with parameter
L. O

4.2. Computing the LG distribution. The next theorem gives the value of «
in equation (3) and indicates how 7z, can be computed up to a multiplicative constant
when one has an LG distribution with parameter L.

THEOREM 3. If the stationary distribution of () is LG with parameter L, then

p(Cr)rr, = 71,Cr, where o = 1/p(Cp) and g, > 0.
Proof. Since @) has an LG distribution with parameter L, from equation (3) we have
Tr+1 = arxg, where o € (0,1), 7, > 0 and 741 > 0 with limy_., 7, = 0. That is,
for finite L, w41 is a positive multiple of 7. Furthermore, from Remark 5 we have
7w, = m+1Cp, where Cp > 0. Since w4 is a positive multiple of 7z, 7 is clearly a
positive left-hand eigenvector of Cp,, and therefore corresponds to the eigenvalue p(Cp) |2,
p. 28]. Combining the two statements, we obtain p(Cp)rr, = 7,Cr, where a = 1/p(Cy)
and 77, > 0. O

COROLLARY 3. When the stationary distribution of () is LG with parameter less
than or equal to L, where L > 0, if p(Cp) # p(Cr_1), then the parameter is L, else the
parameter is less than or equal to L — 1.

5. Examples revisited. In this section, we demonstrate the results of the previous
section using the three examples introduced in section 3.

5.1. Example 1. For the first example in section 2, D;', [ > 0, is a full matrix,
and we have experimentally shown that D;yy = D; as [ approaches infinity. For the
particular case of m = 2, we have

B0_1 _ —1 ()\1 + pio A2

EN IV d Co=—-AB;' = — B!
A(d — ) I )\1-|-)\2) o ° aro HrZo
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where d = Ay 4+ Ay + p1 + p2. The correction to Ay is given by CoAg = —)\1#130_1, and
therefore

—(d = pig) + 1) Ao+ 22 )
Dy =A —|—CA:( xZ i £ By,
S iy + sz —(d = Ag) 4 tautra) J 70

In a similar manner one can show that D;yy # D; for finite values of [. Hence, Theorem
1 does not apply. However, Lemma 3 applies since Ay and A are of full-rank and Dy
is irreducible, implying irreducible C; for [ > 0. Consequently, there is reason to guess
that the QBD MC has an LG distribution with parameter L = 0 from Theorem 2 and to
compute the eigenvalue-eigenvector pair (p(Co),7o) using Theorem 3. Then the guessed
solution can be verified in 7¢) = 0. Although, this approach will sometimes fail, it works
in Example 1, and can be recommended for small values of L.

For m = 2, it is not difficult to find using Theorem 3 that p(Co) = w1/ > 1
implying & = A; /1, and

o= (1—-a) (11__:2 Vil—_yl;)) ’

where v = Ay /.

5.2. Example 2. Consider the second example in section 2 for which we have

_ -1 1 1 _ 1—p (1 1
1__ - = — 1:
By = 2 (2}? 1) and Cjy A2 Bj§ 2 (0 0).

Note that Cy is reducible. The correction to Ay is given by Co4y = (1 — p)eleg, and
therefore

-1 1
Dl:A1+COA0:(2p _1):B0

Hence, in this example, D; = Dg for [ > 1 from Lemma 1 due to Dy = Dy. From
Corollary 2 we conclude Example 1 has an LG distribution with parameter L = 0.
Finally, from Theorem 3 we obtain p(Co) = (1 — p)/(1 — 2p) > 1 implying o =
(1 -=2p)/(1 —p), and mo = (1 — a)(1/2 1/2).
5.3. Example 3. Now, consider the third example in section 3 for which we have

/ T\ 71 1 TN
1 1 1 1 1 1

1
and Cp=—A,B;' = 1=
: mA .o
1 1
Note that Cj is reducible and p(Cy) = p/(mA), which is not necessarily greater than 1.
The correction to Ay is given by CoAg = ,ueeir, and therefore

—mA mA
( poo —(mA+p) mA
D, = : # By.
p —(mA + p) mA

p —(mA + p)
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Noticing that D; = A; + peel in which the correction peel is of rank-1, the Sherman-
Morrison formula [10, p. 124] yields
D= AT At ee%A !

14 pel ATte

Letting v = mA/(mA + p), we obtain

1 v ,}/2 ,_ym—l
1 1 ql/ f\l/m_2\
A= o | QAT =,
1 gl
1
[ 1=9"  A(l=9") o AL =)
_ _ 1L L=mmh (=™t e T =y
N(A11€)(eir1411): A+ : : - :
l—y =9 - " (1=7)

and after some algebra, C; Ay = ,ueel Hence, Dy = A1 + C1Ag = Dy implying D; = D,

for [ > 2 from Lemma 1. From Theorem 1 we have an LG distribution with parameter

L <1. We also remark that the two matrices Cy and C; introduced in Remark 4 for

QBD processes with rank-1 Ay matrices are given in this example as Cy = —pDg" and

Cy = —uDi*. Since p(Cy) may be less than 1 and therefore different than p(C}), from

Corollary 3 we conclude Example 2 has an LG distribution with parameter L = 1.
Regarding the computation of «, for instance, when m = 2

1 1 1 1
00:77(0 1) and 01:77( ‘7|7‘77 1),

where n = u/(2)). Hence, we have

p(C1) =17 (1 + %n +14/n(1+ in)) :

Note that p(Co) # p(Cy). Now, using p(Cy)wy = m1Cy, mg = m1Co, and me/(1—a)+mpe =
1, where a = 1/p(Cy), we obtain

o ( (p(C1) = n)(p(C1) = 1) n(p(C1) — 1) )
p2(C1) +n(p(Cr) — 1)(2p(C1) — ) p*(C1) +n(p(C1) — 1)(2p(C1) — 1)

and

_ :( n(p(C1) = n)(p(C1) = 1) np(C1)(p(C1) — 1) )
° 7 \p2(Ch) +n(p(Cr) = 1)(20(C1) — 1) p2(C1) +n(p(C1) — 1)(2p(C1) — 1))

Normally the computation would be performed numerically for the given parameters
of the problem. For m > 3, we would first compute Cy and Cy. Then we would obtain the
eigenvalue-eigenvector pair (p(Cy),m1) from p(Ci)my = 71 Cy (see Theorem 3). Next we
would compute mg = 71 Cy. Finally we would normalize 7o and 7 with me/(1— )+ mge.
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6. Conclusion. This paper introduces necessary and sufficient conditions for a ho-
mogeneous continuous-time quasi-birth-and-death (QBD) Markov Chain (MC) to possess
level-geometric (LG) stationary distribution. Furthermore, it discusses how an LG dis-
tribution can be computed when it exists. Results that utilize the matrices Ay, Ay, As,
and By are given showing how one can easily check for and compute an LG distribution
with parameter . < 1. The results are elaborated on three examples. Examples 2 and 3,
which have been used in the literature as test cases, are shown to possess LG distributions
with parameter L. = 0. Since the matrices Ag, A1, Az, and By that arise in applications
are usually sparse, the results developed in this paper may be used before resorting to
quadratically convergent algorithms to compute the rate matrix, R.

References

[1] N. AkaR AND K. SOHRABY, An invariant subspace approach in M/G/1 and G/M/1 type Markov
chains, Communications in Statistics: Stochastic Models, 13 (1997), pp. 381-416.
[2] A.BERMAN AND R. PLEMMONS, Nonnegative Matrices in the Mathematical Sciences, SIAM Press,
Philadelphia, Pennsylvania, 1994.
[3] D. Bin1 AND B. MEINI, On the solution of a nonlinear matriz equation arising in queueing prob-
lems, STAM Journal on Matrix Analysis and Applications, 17 (1996), pp. 906-926.
[4] J. R. GILBERT, Predicting structure in sparse malriz computations, SIAM Journal on Matrix
Analysis and Applications, 15 (1994), pp. 62-79.
[5] B. R. HAVERKORT, Performance of Computer Communication Systems: A Model-Based Approach,
John Wiley & Sons, Chichester, England, 1998.
[6] K. KANT, Introduction to Computer System Performance Fvaluation, McGraw-Hill, New York,
1992.
[7] J. R. KEMENY AND J. L. SNELL, Finite Markov Chains, Van Nostrand, New York, 1960.
[8] G. LATOUCHE AND V. RaMaswaMi, A logarithmic reduction algorithm for gquasi-birth-and-
processes, Journal of Applied Probability, 30 (1993), pp. 650-674.
[9] G. LATOUCHE AND V. RaMaswaMl, Introduction to Matriz Analytic Methods in Stochastic Mod-
eling, SIAM Press, Philadelphia, Pennsylvania, 1999.
[10] C. D. MEYER, Matriz Analysis and Applied Linear Algebra, STAM Press, Philadelphia, Pennsyl-
vania, 2000.
[11] M. F. NEuUTs, Matriz-Geometric Solutions in Stochastic Models. An Algorithmic Approach, The
Johns Hopkins University Press, Baltimore, Maryland, 1981.
[12] M. F. NEuTs, Structured Stochastic Matrices of M/G/1 Type and Their Applications, Marcel
Dekker, New York, 1989.
[13] W. J. STEWART, Introduction to the Numerical Solution of Markov Chains, Princeton University
Press, Princeton, New Jersey, 1994.



