
Detetion of Abnormal ECG Reordings usingFeature IntervalsH. Altay G�uvenirBilkent University, Department of Computer EngineeringAnkara, Turkey(guvenir�s.bilkent.edu.tr)ABSTRACTA new lassi�ation algorithm, alled CFI (for Classi�ation on Feature Inter-vals), is developed and applied to problem of deteting abnormal ECG signals.The domain ontains reords of patients with known diagnosis. Given a train-ing set of suh reords the CFI algorithm learns how to detet arrhythmia. CFIrepresents a onept in the form of feature intervals on eah feature dimensionseparately. Classi�ation in the CFI algorithm is based on a real-valued vot-ing. A geneti algorithm is used to selet the set of relevant features. The CFIalgorithm an deline to make a predition its on�dene level is low. The per-formane of the CFI lassi�er is evaluated empirially in terms of lassi�ationauray and running time.Keywords: ECG, arrhythmia detetion, feature intervals, feature seletion,lassi�ation, mahine learning.1 IntrodutionResearhers working on arti�ial intelligene have reated many algorithms that suess-fully learn straightforward abilities. If the ontext is well-de�ned and the bounds of theproblem an be orretly enoded for the omputer, then these algorithms an often pikup a pattern and learn to predit it suessfully. Indutive learning is a well-known ap-proah to automati knowledge aquisition of suh patterns and lassi�ation knowledgefrom examples.In several medial domains the indutive learning systems were atually applied;for example, two lassi�ation systems are used in the loalization of primary tumor,the prognostis of reurrene of breast aner, the diagnosis of thyroid diseases, and inrheumatology [12℄. The CRLS is a system for learning ategorial deision riteria inbiomedial domains [17℄. VFI5, a feature projetion based learning system, was suess-fully applied to di�erential diagnosis of erythemato-squamous diseases [9℄.Classi�ation learning algorithms are omposed of two omponents; namely, the train-ing and the predition (lassi�ation). The training phase, using some indution algo-rithms, forms a model of the domain from the training examples enoding some previousexperienes. The lassi�ation phase, on the other hand, uses this model to predit thelass that a new instane (ase) belongs to.The main requirement for suh a system is to ahieve a high predition auray.Furthermore, a lassi�ation learning algorithm is expeted to have a short training andpredition times. Suh a system should be robust to noisy training instanes. Also,in some real-world domains, both training and test instanes may ontain some missing



values. Features (attributes) that are used to enode instanes may have di�erent levels ofrelevany to the domain. A lassi�ation learning system should be able to learn and/orinorporate information about the weights of the features. Another requirement mightbe the omprehensibility of the learned knowledge by human experts. The advantageof this trait is two folded. Firstly, the human experts an hek and verify the learnedlassi�ation knowledge before it is put to use in real-world domains. Seondly, somepreviously unknown fats and patterns may be brought to the attention of human experts,leading to interesting disoveries in the �eld.Previously developed mahine learning algorithms usually possess some of these har-ateristis, yet fail to satisfy the others. For example, some algorithms, (e.g., the nearestneighbor and the instane based learning algorithms [1, 5℄) develop a model of the domainquikly, but it may take quite a long time to make a predition using this model. Onthe other hand, some algorithms (e.g., the neural networks) an make a fast predition,however the knowledge they learn is hard to understand and verify for humans.Suess of a lassi�ation learning algorithm, in terms of the riteria mentioned above,is diretly related to the sheme used for representing the lassi�ation knowledge learned.In this paper we present a knowledge representation tehnique alled lassi�ation on fea-ture intervals (CFI, for short). The representation in CFI is based on Feature Projetionsthat has been used previously in CFP [10℄ and k-NNFP [2℄. CFI is applied to the detetionof arrhythmia in ECG (eletroardiogram) signals. Here, we show that CFI algorithm re-sults in highly aurate preditions, has short training and lassi�ation times, is robustto noisy training instanes and missing feature values, an use instanes with missingfeature values, and produes a human readable model of the lassi�ation knowledge.The rationale behind knowledge representation based on feature intervals is thathuman experts maintain knowledge in this form, espeially in medial domains. Theinput to CFI training algorithm is a set of training instanes that are the desriptions ofsubjets with known diagnoses. Learning from these training examples, CFI onstruts arepresentation of the lassi�ation knowledge inherent in these examples. This knowledgeis represented as the projetions of the training data set by feature intervals on eahfeature dimension separately. Then, for eah feature dimension, projetion points havingsimilar harateristis are grouped into intervals. Therefore, an interval represents a setof feature values that yield the same lassi�ations.When diagnosing a new subjet, eah feature partiipates in the voting proess andthe diagnosis (normal or abnormal) that reeives the maximum amount of votes is pre-dited as the diagnosis of that subjet. However, onsidering the ost of mislassi�ationin suh a domain, CFI may deline to make a predition its on�dene level is low.Sine eah feature partiipates independently of the others, both in learning andlassi�ation, CFI enables an easy and natural way of handling missing feature values bysimply ignoring them. That is, features whose values are unknown do not partiipate inthe voting, for that instane.The next setion will desribe the CFI algorithm in detail. Setion 3 desribes thegeneti algorithm used for feature seletion. In Setion 4, the problem of arrhythmiadetetion is explained. Appliation of the CFI algorithm to this domain is disussed inSetion 5. Finally, the last setion onludes with some remarks and plans for futurework.
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<A,A,0,1,0> <B,B,1,0,0> <C,C,0,0.4,0.6>Figure 1: An example training set and the feature intervals onstruted by CFI.2 The CFI AlgorithmThe CFI lassi�ation algorithm is an improved version of the early FIL, VF1 and VFI5algorithms [3, 7, 9℄. Here, the CFI algorithm is desribed in detail and explained throughan example.2.1 Knowledge RepresentationThe CFI lassi�ation algorithm represents a onept desription by a set of featureintervals. The lassi�ation of a new instane is based on a voting among the lassi�ationsmade based on the value of eah feature separately. Eah training example is representedas a vetor of nominal (disrete) or linear (ontinuous) feature values and a label thatrepresents its assoiated lass. The CFI algorithm �rst projets all training instanes oneah feature separately. Using the projetions of the training examples, it onstruts aset of intervals for eah feature. An interval is either a range or a point interval. A rangeinterval is a set of onseutive values of a given feature with the same lass value, whereasa point interval is de�ned as a single feature value. For range intervals, lower and upperbounds of the range value, its lass value and the vote are maintained. For point intervals,on the other hand, the lower and upper values are the same, but there may be severallass values. Therefore, an interval is represented by a vetor, whose �rst two elementsstore the lower and upper bounds and the remaining elements orrespond to the votes foreah lass, as shown below: < lb; ub; V1; V2; : : : Vk > :Here, k is the number of lasses in the domain, and Vi represents the vote of the intervalfor lass Ci.An example training data set and the orresponding feature intervals onstruted bythe CFI algorithms is shown in Figure 1. The example domain onsists of three features,namely f1, f2, and f3, the �rst two of whih are linear and the last one is a nominalfeature. The nominal feature an take values from the set fA;B;Cg. The lass labels areC1, C2, and C3. There are seven training instanes in this example.



train(TrainingSet):beginfor eah feature f/* sort TrainingSet with respet to f */sort (f , TrainingSet)/* onstrut a list of point intervals using feature values and lass labels */interval list  make intervals (f , TrainingSet)if f is linear/* join adjaent point intervals to form range intervals */interval list  generalize (interval list)intervals[f ℄  normalize votes (interval list)t = ompute min thresholds(TrainingSet):end.generalize (interval list)beginI = �rst interval in interval listwhile I is not empty doI 0 is the interval after Iif majority lass(I) = majority lass(I 0)/* majority lass of an interval is the lass with the highest votes */then merge I 0 into Ielse I  I 0end. Figure 2: Training in the CFI algorithm.2.2 TrainingThe training proess in the CFI algorithm is shown in Figure 2. For eah feature f , �rst alltraining instanes are sorted with respet to their values for f , forming their projetionson f . A point interval is onstruted for eah projetion. The lower and upper boundsof the interval are equal to the f value of the orresponding training instane. Its votefor the lass of the training instane is the reiproal of the number of times that lassours in the all training set. This normalization is to eliminate the e�ets of uneven lassdistributions in the training set. The votes for the other lasses is 0. If the f value of atraining instane is unknown (represented by \?" in Figure 1), it is simply ignored for f .Then, if there are several point intervals at the same f value, then they are ombined intoone, by adding the lass votes. So that, at the end of point interval onstrution, thereis exatly one point interval for eah distint value of f in the training set. For example,the �rst interval for f2 in Figure 1 is h0; 0; 1; 1=3; 0i. The seond and third point intervalsare h1; 1; 0; 0; 1i, and h3; 3; 0; 0; 1i, respetively. Then, only for linear features, CFI triesto generalize the point intervals. Conseutive point intervals whose highest votes are forthe same lass are merged forming range intervals. In the example above, the seond andthird point intervals of f2 are merged into the range interval h1; 3; 0; 0; 1i. In the last stepof the training proess, the votes of eah interval are normalized so that the total votesof the interval for all lasses is 1. So, following the example in Figure 1, the �rst interval



lassify(q): /* q: query instane to be lassi�ed */beginfor eah lass  /* initialize total votes */v = 0for eah feature fif qf value is knownI = searh interval(f; qf )for eah lass v = v + interval vote(I; )p = arg max(v); /* predited lass is the one with the maximum votes */if vp � t return pelse return NO PREDICTIONend. Figure 3: Classi�ation in the CFI algorithm.on f2 beomes h0; 0; 0:75; 0:25; 0i.The last step in the training proess is the omputation of the threshold vetort, whose elements are the minimum vote values required to predit eah lass. Thethreshold values are omputed by using the training instanes as test ases and �ndingtheir lassi�ations on the learned feature intervals. The minimum threshold t for a lass is the minimum vote reeived among the orretly lassi�ed training instanes of lass. Sine all training instanes are orretly lassi�ed in the example above, the thresholdvalues are 0 for both lasses.2.3 Classi�ationThe lassi�ation (querying) proess in the CFI algorithm is given in Figure 3. Thelassi�ation in CFI involves a voting sheme where eah feature asts its vote. Theproess starts by initializing the votes of eah lass to zero. If the value of the queryinstane q for a feature f is unknown (missing), then that feature does not involve inthe voting. That is, the features ontaining missing values are simply ignored. If the qfvalue is known, the interval I into whih ef falls is searhed. If the qf value does not fallin any interval on f , then again the feature f does not partiipate in the voting. If aninterval I is found that inludes the qf value, then the votes of I are the votes that fasts in the voting. Sine the sum of the votes of an interval is normalized to 1, duringthe training, eah feature has an equal power in the voting. One all the features haveompleted asting their votes, the lass that reeived the highest amount of votes is setas the winner of the query instane. If the votes reeived by the winner is above theminimum threshold then the winner is returned as the predited lass value; otherwiseno predition is made and the deision left to the expert. Con�dene of a predition isomputed as vp=Pki=1 vi.Continuing with the example in Figure 1, let the query instane be h6; ?; Ci. Sinethe f2 value of the query instane is unknown, the feature f2 does not partiipate in thevoting. The votes of f1 and f3 are h0; 0; 1i and h0; 0:4; 0:6i, respetively. The total votes



of the lasses are h0; 0:4; 1:6i. Sine the lass C3 has reeived the highest amount of votes,1.6, the winner is C3. Sine the threshold t3 = 0, C3 is returned as the predited lass ofthe test instane. on�dene of this predition is 1.6/(0.4+0+1.6) = 80%.3 Feature Seletion Using a Geneti AlgorithmPratial lassi�ation problems require the seletion of a subset of features from a muhlarger set to represent the knowledge to be used in the lassi�ation. This is due to thefat that the performane of the lassi�er and the ost of lassi�ation are sensitive to thehoie of the features used in the onstrution of the lassi�er. With the redued set offeatures, the time needed for learning the lassi�ation knowledge and the time requiredfor lassi�ation is redued. Further, by the extration of relevant features and thereforethe elimination of the irrelevant ones, the auray of the lassi�er an be inreased [4, 15℄.Exhaustive evaluation of possible feature subsets is usually unfeasible in pratiesine it requires large amount of omputational e�ort. Geneti Algorithms (GAs) o�er anattrative approah to �nd near-optimal solutions to suh optimization problems [6, 14,18℄. GAs are randomized searh and optimization tehniques guided by the priniples ofevolution and natural genetis, with a large amount of impliit parallelism [8℄. In GAs,the parameters of the searh spae are enoded in the form of strings, alled hromosomes.A olletion of suh strings is alled a population. In the ase of feature seletion problem,eah hromosome represents a subset of features seleted. The size of a hromosome isequal to the number of features. Eah element of the hromosome string is either 1 or 0,where 1 indiates that the orresponding feature is seleted, and 0 otherwise. The goal ofthe searh, in this ase, is to �nd a hromosome that represents a set of features that leadto highest auray. In the ase of several feature subsets with the same best auray,the one with the smallest ardinality is the desired one.Initially a random population is reated, representing di�erent points in the searhspae. Eah of the initial population are evaluated aording to the �tness funtion. Inthe GA used in the experiments, the ube of the �ve-fold ross-validation auray isused as the �tness value of a hromosome. Then, until a maximum number of generationsis reahed, the following three operations are exeuted in order at eah generation ofthe GA searh: reprodution, rossover, and mutation. The GA used here employs theroulette-wheel seletion in the reprodution step. As the rossover operation 2-pointrossover is used. After the generation of a new population, all the hromosomes reatedor mutated are evaluated again. The best hromosome is always opied to the nextgeneration (elitism) by passing the reprodution step. The best hromosome is the onewith the highest �tness value. Among the hromosomes that have the same �tness value,the one with the smallest number of features is hosen. The values for the parameters ofthe GA used in experimentations are given in Setion 5.4 Arrhythmia DetetionThe data set used here onsists of 526 ECG reordings. Eah reord onsists of a set oflinial parameters measured on rest ECG signals (Figure 4) automatially by a ommer-
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Intrinsic Deflection timeFigure 4: Time interval measurements done on a heart beat.ially available system1, and some personal information about the subjets. There are279 parameters (features) in a single reord.The patient population is divided into two groups based on the investigation of an ex-pert ardiologist as Normal and Abnormal, represented by lasses C1 and C2, respetively.C0 represents no predition. The ardiologist was provided with the graphial plots ofthe ECG wave forms and the available personal information about the patient, i.e. age,height, weight and sex. There are 246 ases in the normal group and 280 ases in theabnormal group. The abnormal group onsists of the following abnormalities: IshemiChanges, Old Anterior Myoardial Infartion, Old Inferior Myoardial Infartion, SinusTahyardy, Sinus Bradyardy, Ventriular Premature Contration(PVC), Supraventriu-lar Premature Contration, Left Bundle Branh Blok, Right Bundle Branh Blok, LeftVentriule Hypertrophy, Atrial Fibrillation and Flutter.Out of 279 features 206 of them are ontinuous valued (linear) and 73 features areBoolean valued (nominal). The �rst four features (f1 � � � f4) are age, sex, height andweight, respetively. The remaining features are derived from the ECG wave shown inFigure 4.In the data set used in the experiments 0.33% of the feature values are missing.However, as explained in Setion 2, the CFI algorithm is apable of handling suh amissing data set.5 Experiments on the Arrhythmia Data SetIn order to determine the set of relevant features we used a GA as explained in Setion 3.In this experiment, the GA had 500 hromosomes, and eah hromosome had 279 binary1KardiosisTM system of TEPA A.S�., Ankara, Turkey



Table 1: Preditions with all features and with seleted features, using 5-fold ross-validation. PreditionsWith all features With seleted featuresAtual Normal Abnormal No Pred. Normal Abnormal No Pred.Normal (246) 19 2 225 98 4 144Abnormal (280) 1 82 197 1 71 208valued (0 and 1) genes, one for eah feature. The value 1 represented the fat that theorresponding feature is seleted, and vie verse. The GA used 2-point rossover, withthe probability of rossover p = 0:9. The probability of mutation was pm = 5:10�5. TheGA was run for 1000 generations.As the �tness funtion, the ube of the 5-fold ross-validation auray of the CFIalgorithm using the set of features seleted by the orresponding hromosome is used.The reason for using the ube funtion is to expand the gap between the �tness valuesfor hromosomes with above the default auray.When no predition for a reording is made by the systems, it is sent to a dotor. Inthat ase, an abnormal arrhythmia will be deteted by the dotor. Considering this fatwe have de�ned the auray of CFI asauray = aa + nn + anpaa + an + anp + na + nn + nnphere, aa denotes the number of abnormal ases predited as abnormal, while an denotesthe number of abnormal ases predited as normal, and anp represents the number ofabnormal ases with no predition. Similarly, na, nn and nnp are the number of normalases lassi�ed as abnormal and normal, and no predition, respetively.In order to ompute the 5-fold ross-validation auray, the whole data set is par-titioned into �ve equal size subsets. The four of the subsets is used as the training set,and the �fth one is used as the test set. This proess is repeated �ve times, one for eahsubset being the test set. The �nal auray is the average of the auraies obtained inthese �ve runs. This tehnique ensures that eah ase is used exatly one in the test set.We �rst experimented with the CFI on the arrhythmia data set using all features (nofeature seletion). The CFI algorithm ahieved 57% auray. The training time for eahfold was 142 mse, while the testing time was 14 mse. The lassi�ation table for allfeatures is given in Table 1.Then, we ran the GA spei�ed above to �nd a good set of relevant features, so thatthe auray of CFI an be inreased. At the end of the 1000th generation of the GA,the best hromosome ontains only 108 features out of 279. The auray of the CFIalgorithm with this set of features is 71.7%. With seleted set of features, CFI missedonly one arrhythmia ase out of 280, onsidering that all undetermined ases are referredto the dotor. Using only these 108 relevant features, the training time for eah fold was60 mse, while the testing time was 6 mse. The onfusion table for seleted features isgiven in Table 1.



6 ConlusionsIn this paper, a new lassi�ation algorithm alled CFI is developed and applied to thedetetion of abnormal ECG reordings. Sine CFI treats eah feature, the missing featurevalues that may appear both in the training and test instanes are simply ignored. In otherlassi�ation algorithms, suh as deision tree indutive learning algorithms, the missingvalues require extra are [16℄. This problem has been overome by simply omitting thefeature with the missing value in the voting proess of CFI. Also note that the CFIalgorithm is appliable to onepts where eah feature, independent of other features, anbe used in the lassi�ation of the onept. One might think that this requirement maylimit the appliability of the CFI, sine in some domains the features might be dependenton eah other. Holte has pointed out that the most data sets in the UCI repositoryare suh that, for lassi�ation, their attributes an be onsidered independently of eahother [11℄. Also Kononenko laimed that in the data used by human experts there are nostrong dependenies between features beause features are properly de�ned [12℄. Anotheradvantage of the CFI lassi�er is that instead of a ategorial lassi�ation, a more generalprobabilisti lassi�ation where the lassi�er returns a probability distribution over alllasses is possible to implement with CFI.The original data set of ECG reordings that we used ontained 279 features. Inorder to selet and use only the relevant features, we developed a geneti algorithm. Wefound that only 108 features are suÆient for the detetion of abnormal ases. Usingonly the relevant features inreased the auray and dereased both the training and thepredition times of the CFI algorithm.AknowledgmentsThis projet is supported, in part, by TUBITAK (Sienti� and Tehnial Researh Coun-il of Turkey) under Grant EEEAG-153. The authors thank Prof. Hayrettin K�oymen andDr. Ayhan C�ekin for providing the neessary equipment and data for the projet.Referenes[1℄ D. W. Aha, D. Kibler and M. K. Albert, \Instane-based learning algorithms", Ma-hine Learning, Vol. 6, 1991, pp. 37-66.[2℄ A. Akku�s, and H. A. G�uvenir, \K nearest neighbor lassi�ation on feature proje-tions", Pro. of ICML'96, 1996, pp. 12-19.[3℄ A. Akku�s, \Bath learning of disjoint feature intervals," MS. Thesis, Bilkent Univer-sity, Dept. of Computer Engr. & Info. Si., 1996.[4℄ H. Almuallim and T. G. Dietterih, \Learning Boolean onepts in the presene ofmany irrelevant features", Arti�ial Intelligene, Vol. 69, 1994, pp. 279-305.[5℄ S. Cost and S. Salzberg, A weighted nearest neighbor algorithm for learning withsymboli features", Mahine Learning, Vol. 10, 1993, pp. 57-78.[6℄ G. Demir�oz and H. A. G�uvenir, Geneti algorithms to learn feature weights for thenearest neighbor algorithm", Pro. of BENELEARN-96, 1996, pp. 117-126.[7℄ G. Demir�oz and H. A. G�uvenir, \Classi�ation by voting feature intervals", Pro. ofNinth ECML, (Springer-Verlag, LNAI 1224), 1997, pp. 85-92.
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