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ABSTRACT

A new classification algorithm, called CFI (for Classification on Feature Inter-
vals), is developed and applied to problem of detecting abnormal ECG signals.
The domain contains records of patients with known diagnosis. Given a train-
ing set of such records the CFT algorithm learns how to detect arrhythmia. CFI
represents a concept in the form of feature intervals on each feature dimension
separately. Classification in the CFI algorithm is based on a real-valued vot-
ing. A genetic algorithm is used to select the set of relevant features. The CFI
algorithm can decline to make a prediction its confidence level is low. The per-
formance of the CFT classifier is evaluated empirically in terms of classification
accuracy and running time.

Keywords: ECG, arrhythmia detection, feature intervals, feature selection,
classification, machine learning.

1 Introduction

Researchers working on artificial intelligence have created many algorithms that success-
fully learn straightforward abilities. If the context is well-defined and the bounds of the
problem can be correctly encoded for the computer, then these algorithms can often pick
up a pattern and learn to predict it successfully. Inductive learning is a well-known ap-
proach to automatic knowledge acquisition of such patterns and classification knowledge
from examples.

In several medical domains the inductive learning systems were actually applied;
for example, two classification systems are used in the localization of primary tumor,
the prognostics of recurrence of breast cancer, the diagnosis of thyroid diseases, and in
rheumatology [12]. The CRLS is a system for learning categorical decision criteria in
biomedical domains [17]. VFI5, a feature projection based learning system, was success-
fully applied to differential diagnosis of erythemato-squamous diseases [9].

Classification learning algorithms are composed of two components; namely, the train-
ing and the prediction (classification). The training phase, using some induction algo-
rithms, forms a model of the domain from the training examples encoding some previous
experiences. The classification phase, on the other hand, uses this model to predict the
class that a new instance (case) belongs to.

The main requirement for such a system is to achieve a high prediction accuracy.
Furthermore, a classification learning algorithm is expected to have a short training and
prediction times. Such a system should be robust to noisy training instances. Also,
in some real-world domains, both training and test instances may contain some missing



values. Features (attributes) that are used to encode instances may have different levels of
relevancy to the domain. A classification learning system should be able to learn and/or
incorporate information about the weights of the features. Another requirement might
be the comprehensibility of the learned knowledge by human experts. The advantage
of this trait is two folded. Firstly, the human experts can check and verify the learned
classification knowledge before it is put to use in real-world domains. Secondly, some
previously unknown facts and patterns may be brought to the attention of human experts,
leading to interesting discoveries in the field.

Previously developed machine learning algorithms usually possess some of these char-
acteristics, yet fail to satisfy the others. For example, some algorithms, (e.g., the nearest
neighbor and the instance based learning algorithms [1, 5]) develop a model of the domain
quickly, but it may take quite a long time to make a prediction using this model. On
the other hand, some algorithms (e.g., the neural networks) can make a fast prediction,
however the knowledge they learn is hard to understand and verify for humans.

Success of a classification learning algorithm, in terms of the criteria mentioned above,
is directly related to the scheme used for representing the classification knowledge learned.
In this paper we present a knowledge representation technique called classification on fea-
ture intervals (CFL, for short). The representation in CFI is based on Feature Projections
that has been used previously in CFP [10] and k-NNFP [2]. CFTis applied to the detection
of arrhythmia in ECG (electrocardiogram) signals. Here, we show that CFT algorithm re-
sults in highly accurate predictions, has short training and classification times, is robust
to noisy training instances and missing feature values, can use instances with missing
feature values, and produces a human readable model of the classification knowledge.

The rationale behind knowledge representation based on feature intervals is that
human experts maintain knowledge in this form, especially in medical domains. The
input to CFT training algorithm is a set of training instances that are the descriptions of
subjects with known diagnoses. Learning from these training examples, CFI constructs a
representation of the classification knowledge inherent in these examples. This knowledge
is represented as the projections of the training data set by feature intervals on each
feature dimension separately. Then, for each feature dimension, projection points having
similar characteristics are grouped into intervals. Therefore, an interval represents a set
of feature values that yield the same classifications.

When diagnosing a new subject, each feature participates in the voting process and
the diagnosis (normal or abnormal) that receives the maximum amount of votes is pre-
dicted as the diagnosis of that subject. However, considering the cost of misclassification
in such a domain, CFI may decline to make a prediction its confidence level is low.

Since each feature participates independently of the others, both in learning and
classification, CFI enables an easy and natural way of handling missing feature values by
simply ignoring them. That is, features whose values are unknown do not participate in
the voting, for that instance.

The next section will describe the CFI algorithm in detail. Section 3 describes the
genetic algorithm used for feature selection. In Section 4, the problem of arrhythmia
detection is explained. Application of the CFI algorithm to this domain is discussed in
Section 5. Finally, the last section concludes with some remarks and plans for future
work.
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Figure 1: An example training set and the feature intervals constructed by CFI.

2 The CFI Algorithm

The CFT classification algorithm is an improved version of the early FIL, VF1 and VFI5
algorithms [3, 7, 9]. Here, the CFI algorithm is described in detail and explained through
an example.

2.1 Knowledge Representation

The CFT classification algorithm represents a concept description by a set of feature
intervals. The classification of a new instance is based on a voting among the classifications
made based on the value of each feature separately. Each training example is represented
as a vector of nominal (discrete) or linear (continuous) feature values and a label that
represents its associated class. The CFI algorithm first projects all training instances on
each feature separately. Using the projections of the training examples, it constructs a
set of intervals for each feature. An interval is either a range or a point interval. A range
interval is a set of consecutive values of a given feature with the same class value, whereas
a point interval is defined as a single feature value. For range intervals, lower and upper
bounds of the range value, its class value and the vote are maintained. For point intervals,
on the other hand, the lower and upper values are the same, but there may be several
class values. Therefore, an interval is represented by a vector, whose first two elements
store the lower and upper bounds and the remaining elements correspond to the votes for
each class, as shown below:
< Ibyub, Vi, Vo, ...V}, > .

Here, k is the number of classes in the domain, and V; represents the vote of the interval
for class C;.

An example training data set and the corresponding feature intervals constructed by
the CFT algorithms is shown in Figure 1. The example domain consists of three features,
namely fi, fo, and f3, the first two of which are linear and the last one is a nominal
feature. The nominal feature can take values from the set {A, B,C}. The class labels are
Ci, Cy, and (5. There are seven training instances in this example.



train(TrainingSet):
begin
for each feature f
/* sort TrainingSet with respect to f */
sort (f, TrainingSet)
/* construct a list of point intervals using feature values and class labels */
interval_list < make_intervals (f, TrainingSet)
if f is linear
/* join adjacent point intervals to form range intervals */
interval list < generalize (interval_list)
intervals[f] « normalize_votes (interval_list)
t = compute_min_thresholds(TrainingSet):
end.

generalize (interval_list)
begin
I = first interval in interval_list
while I is not empty do
I' is the interval after
if majority class(I) = majority_class(I")
/* majority_class of an interval is the class with the highest votes */
then merge I’ into I
else [ < I
end.

Figure 2: Training in the CFI algorithm.

2.2 Training

The training process in the CFI algorithm is shown in Figure 2. For each feature f, first all
training instances are sorted with respect to their values for f, forming their projections
on f. A point interval is constructed for each projection. The lower and upper bounds
of the interval are equal to the f value of the corresponding training instance. Its vote
for the class of the training instance is the reciprocal of the number of times that class
occurs in the all training set. This normalization is to eliminate the effects of uneven class
distributions in the training set. The votes for the other classes is 0. If the f value of a
training instance is unknown (represented by “?” in Figure 1), it is simply ignored for f.
Then, if there are several point intervals at the same f value, then they are combined into
one, by adding the class votes. So that, at the end of point interval construction, there
is exactly one point interval for each distinct value of f in the training set. For example,
the first interval for f, in Figure 1 is (0,0, 1,1/3,0). The second and third point intervals
are (1,1,0,0,1), and (3,3,0,0, 1), respectively. Then, only for linear features, CFI tries
to generalize the point intervals. Consecutive point intervals whose highest votes are for
the same class are merged forming range intervals. In the example above, the second and
third point intervals of f, are merged into the range interval (1,3,0,0,1). In the last step
of the training process, the votes of each interval are normalized so that the total votes
of the interval for all classes is 1. So, following the example in Figure 1, the first interval



classify(q): /* ¢: query instance to be classified */
begin
for each class ¢ /* initialize total votes */
v, =0
for each feature f
if ¢¢ value is known
I = search_interval(f, ¢r)
for each class ¢
Ve = v, + interval_vote(I, c)
p = arg max.(v.); /* predicted class is the one with the maximum votes */
if v, > t. return p
else return NO_PREDICTION
end.

Figure 3: Classification in the CFT algorithm.

on f> becomes (0,0,0.75,0.25,0).

The last step in the training process is the computation of the threshold vector
t, whose elements are the minimum vote values required to predict each class. The
threshold values are computed by using the training instances as test cases and finding
their classifications on the learned feature intervals. The minimum threshold ¢, for a class
¢ is the minimum vote received among the correctly classified training instances of class
c. Since all training instances are correctly classified in the example above, the threshold
values are 0 for both classes.

2.3 Classification

The classification (querying) process in the CFI algorithm is given in Figure 3. The
classification in CFI involves a voting scheme where each feature casts its vote. The
process starts by initializing the votes of each class to zero. If the value of the query
instance ¢ for a feature f is unknown (missing), then that feature does not involve in
the voting. That is, the features containing missing values are simply ignored. If the ¢
value is known, the interval I into which ey falls is searched. If the ¢; value does not fall
in any interval on f, then again the feature f does not participate in the voting. If an
interval I is found that includes the ¢; value, then the votes of I are the votes that f
casts in the voting. Since the sum of the votes of an interval is normalized to 1, during
the training, each feature has an equal power in the voting. Once all the features have
completed casting their votes, the class that received the highest amount of votes is set
as the winner of the query instance. If the votes received by the winner is above the
minimum threshold then the winner is returned as the predicted class value; otherwise
no prediction is made and the decision left to the expert. Confidence of a prediction is
computed as v,/>F, v;.

Continuing with the example in Figure 1, let the query instance be (6,7, C). Since
the f5 value of the query instance is unknown, the feature f; does not participate in the
voting. The votes of f; and f3 are (0,0, 1) and (0, 0.4, 0.6), respectively. The total votes



of the classes are (0,0.4,1.6). Since the class C3 has received the highest amount of votes,
1.6, the winner is C3. Since the threshold 3 = 0, C'5 is returned as the predicted class of
the test instance. confidence of this prediction is 1.6/(0.4+0+1.6) = 80%.

3 Feature Selection Using a Genetic Algorithm

Practical classification problems require the selection of a subset of features from a much
larger set to represent the knowledge to be used in the classification. This is due to the
fact that the performance of the classifier and the cost of classification are sensitive to the
choice of the features used in the construction of the classifier. With the reduced set of
features, the time needed for learning the classification knowledge and the time required
for classification is reduced. Further, by the extraction of relevant features and therefore
the elimination of the irrelevant ones, the accuracy of the classifier can be increased [4, 15].

Exhaustive evaluation of possible feature subsets is usually unfeasible in practice
since it requires large amount of computational effort. Genetic Algorithms (GAs) offer an
attractive approach to find near-optimal solutions to such optimization problems [6, 14,
18]. GAs are randomized search and optimization techniques guided by the principles of
evolution and natural genetics, with a large amount of implicit parallelism [8]. In GAs,
the parameters of the search space are encoded in the form of strings, called chromosomes.
A collection of such strings is called a population. In the case of feature selection problem,
each chromosome represents a subset of features selected. The size of a chromosome is
equal to the number of features. Each element of the chromosome string is either 1 or 0,
where 1 indicates that the corresponding feature is selected, and 0 otherwise. The goal of
the search, in this case, is to find a chromosome that represents a set of features that lead
to highest accuracy. In the case of several feature subsets with the same best accuracy,
the one with the smallest cardinality is the desired one.

Initially a random population is created, representing different points in the search
space. Each of the initial population are evaluated according to the fitness function. In
the GA used in the experiments, the cube of the five-fold cross-validation accuracy is
used as the fitness value of a chromosome. Then, until a maximum number of generations
is reached, the following three operations are executed in order at each generation of
the GA search: reproduction, crossover, and mutation. The GA used here employs the
roulette-wheel selection in the reproduction step. As the crossover operation 2-point
crossover is used. After the generation of a new population, all the chromosomes created
or mutated are evaluated again. The best chromosome is always copied to the next
generation (elitism) by passing the reproduction step. The best chromosome is the one
with the highest fitness value. Among the chromosomes that have the same fitness value,
the one with the smallest number of features is chosen. The values for the parameters of
the GA used in experimentations are given in Section 5.

4 Arrhythmia Detection

The data set used here consists of 526 ECG recordings. Each record consists of a set of
clinical parameters measured on rest ECG signals (Figure 4) automatically by a commer-
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Figure 4: Time interval measurements done on a heart beat.

cially available system!, and some personal information about the subjects. There are

279 parameters (features) in a single record.

The patient population is divided into two groups based on the investigation of an ex-
pert cardiologist as Normal and Abnormal, represented by classes C'; and Cy, respectively.
Cy represents no prediction. The cardiologist was provided with the graphical plots of
the ECG wave forms and the available personal information about the patient, i.e. age,
height, weight and sex. There are 246 cases in the normal group and 280 cases in the
abnormal group. The abnormal group consists of the following abnormalities: Ischemic
Changes, Old Anterior Myocardial Infarction, Old Inferior Myocardial Infarction, Sinus
Tachycardy, Sinus Bradycardy, Ventricular Premature Contraction(PVC), Supraventricu-
lar Premature Contraction, Left Bundle Branch Block, Right Bundle Branch Block, Left
Ventricule Hypertrophy, Atrial Fibrillation and Flutter.

Out of 279 features 206 of them are continuous valued (linear) and 73 features are
Boolean valued (nominal). The first four features (f;---f4) are age, sex, height and
weight, respectively. The remaining features are derived from the ECG wave shown in
Figure 4.

In the data set used in the experiments 0.33% of the feature values are missing.
However, as explained in Section 2, the CFT algorithm is capable of handling such a
missing data set.

5 Experiments on the Arrhythmia Data Set

In order to determine the set of relevant features we used a GA as explained in Section 3.
In this experiment, the GA had 500 chromosomes, and each chromosome had 279 binary
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Table 1: Predictions with all features and with selected features, using 5-fold cross-
validation.

Predictions
With all features With selected features
Actual Normal Abnormal No_Pred. Normal Abnormal No_Pred.
Normal (246) 19 2 225 98 4 144
Abnormal (280) 1 82 197 1 71 208

valued (0 and 1) genes, one for each feature. The value 1 represented the fact that the
corresponding feature is selected, and vice verse. The GA used 2-point crossover, with
the probability of crossover p, = 0.9. The probability of mutation was p,, = 5.107°. The
GA was run for 1000 generations.

As the fitness function, the cube of the 5-fold cross-validation accuracy of the CFI
algorithm using the set of features selected by the corresponding chromosome is used.
The reason for using the cube function is to expand the gap between the fitness values
for chromosomes with above the default accuracy.

When no prediction for a recording is made by the systems, it is sent to a doctor. In
that case, an abnormal arrhythmia will be detected by the doctor. Considering this fact
we have defined the accuracy of CFI as

Qg + Ny + QApp
Oq + Qp + Qpp + Ng + Ny + N

accuracy =

here, a, denotes the number of abnormal cases predicted as abnormal, while a, denotes
the number of abnormal cases predicted as normal, and a,, represents the number of
abnormal cases with no prediction. Similarly, n,, n, and ny, are the number of normal
cases classified as abnormal and normal, and no prediction, respectively.

In order to compute the 5-fold cross-validation accuracy, the whole data set is par-
titioned into five equal size subsets. The four of the subsets is used as the training set,
and the fifth one is used as the test set. This process is repeated five times, once for each
subset being the test set. The final accuracy is the average of the accuracies obtained in
these five runs. This technique ensures that each case is used exactly once in the test set.

We first experimented with the CFI on the arrhythmia data set using all features (no
feature selection). The CFT algorithm achieved 57% accuracy. The training time for each
fold was 142 msec, while the testing time was 14 msec. The classification table for all
features is given in Table 1.

Then, we ran the GA specified above to find a good set of relevant features, so that
the accuracy of CFI can be increased. At the end of the 1000th generation of the GA,
the best chromosome contains only 108 features out of 279. The accuracy of the CFI
algorithm with this set of features is 71.7%. With selected set of features, CFI missed
only one arrhythmia case out of 280, considering that all undetermined cases are referred
to the doctor. Using only these 108 relevant features, the training time for each fold was
60 msec, while the testing time was 6 msec. The confusion table for selected features is
given in Table 1.



6 Conclusions

In this paper, a new classification algorithm called CFT is developed and applied to the
detection of abnormal ECG recordings. Since CFI treats each feature, the missing feature
values that may appear both in the training and test instances are simply ignored. In other
classification algorithms, such as decision tree inductive learning algorithms, the missing
values require extra care [16]. This problem has been overcome by simply omitting the
feature with the missing value in the voting process of CFI. Also note that the CFI
algorithm is applicable to concepts where each feature, independent of other features, can
be used in the classification of the concept. One might think that this requirement may
limit the applicability of the CFI, since in some domains the features might be dependent
on each other. Holte has pointed out that the most data sets in the UCI repository
are such that, for classification, their attributes can be considered independently of each
other [11]. Also Kononenko claimed that in the data used by human experts there are no
strong dependencies between features because features are properly defined [12]. Another
advantage of the CFI classifier is that instead of a categorical classification, a more general
probabilistic classification where the classifier returns a probability distribution over all
classes is possible to implement with CFI.

The original data set of ECG recordings that we used contained 279 features. In
order to select and use only the relevant features, we developed a genetic algorithm. We
found that only 108 features are sufficient for the detection of abnormal cases. Using
only the relevant features increased the accuracy and decreased both the training and the
prediction times of the CFI algorithm.
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