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tion of Abnormal ECG Re
ordings usingFeature IntervalsH. Altay G�uvenirBilkent University, Department of Computer EngineeringAnkara, Turkey(guvenir�
s.bilkent.edu.tr)ABSTRACTA new 
lassi�
ation algorithm, 
alled CFI (for Classi�
ation on Feature Inter-vals), is developed and applied to problem of dete
ting abnormal ECG signals.The domain 
ontains re
ords of patients with known diagnosis. Given a train-ing set of su
h re
ords the CFI algorithm learns how to dete
t arrhythmia. CFIrepresents a 
on
ept in the form of feature intervals on ea
h feature dimensionseparately. Classi�
ation in the CFI algorithm is based on a real-valued vot-ing. A geneti
 algorithm is used to sele
t the set of relevant features. The CFIalgorithm 
an de
line to make a predi
tion its 
on�den
e level is low. The per-forman
e of the CFI 
lassi�er is evaluated empiri
ally in terms of 
lassi�
ationa

ura
y and running time.Keywords: ECG, arrhythmia dete
tion, feature intervals, feature sele
tion,
lassi�
ation, ma
hine learning.1 Introdu
tionResear
hers working on arti�
ial intelligen
e have 
reated many algorithms that su

ess-fully learn straightforward abilities. If the 
ontext is well-de�ned and the bounds of theproblem 
an be 
orre
tly en
oded for the 
omputer, then these algorithms 
an often pi
kup a pattern and learn to predi
t it su

essfully. Indu
tive learning is a well-known ap-proa
h to automati
 knowledge a
quisition of su
h patterns and 
lassi�
ation knowledgefrom examples.In several medi
al domains the indu
tive learning systems were a
tually applied;for example, two 
lassi�
ation systems are used in the lo
alization of primary tumor,the prognosti
s of re
urren
e of breast 
an
er, the diagnosis of thyroid diseases, and inrheumatology [12℄. The CRLS is a system for learning 
ategori
al de
ision 
riteria inbiomedi
al domains [17℄. VFI5, a feature proje
tion based learning system, was su

ess-fully applied to di�erential diagnosis of erythemato-squamous diseases [9℄.Classi�
ation learning algorithms are 
omposed of two 
omponents; namely, the train-ing and the predi
tion (
lassi�
ation). The training phase, using some indu
tion algo-rithms, forms a model of the domain from the training examples en
oding some previousexperien
es. The 
lassi�
ation phase, on the other hand, uses this model to predi
t the
lass that a new instan
e (
ase) belongs to.The main requirement for su
h a system is to a
hieve a high predi
tion a

ura
y.Furthermore, a 
lassi�
ation learning algorithm is expe
ted to have a short training andpredi
tion times. Su
h a system should be robust to noisy training instan
es. Also,in some real-world domains, both training and test instan
es may 
ontain some missing



values. Features (attributes) that are used to en
ode instan
es may have di�erent levels ofrelevan
y to the domain. A 
lassi�
ation learning system should be able to learn and/orin
orporate information about the weights of the features. Another requirement mightbe the 
omprehensibility of the learned knowledge by human experts. The advantageof this trait is two folded. Firstly, the human experts 
an 
he
k and verify the learned
lassi�
ation knowledge before it is put to use in real-world domains. Se
ondly, somepreviously unknown fa
ts and patterns may be brought to the attention of human experts,leading to interesting dis
overies in the �eld.Previously developed ma
hine learning algorithms usually possess some of these 
har-a
teristi
s, yet fail to satisfy the others. For example, some algorithms, (e.g., the nearestneighbor and the instan
e based learning algorithms [1, 5℄) develop a model of the domainqui
kly, but it may take quite a long time to make a predi
tion using this model. Onthe other hand, some algorithms (e.g., the neural networks) 
an make a fast predi
tion,however the knowledge they learn is hard to understand and verify for humans.Su

ess of a 
lassi�
ation learning algorithm, in terms of the 
riteria mentioned above,is dire
tly related to the s
heme used for representing the 
lassi�
ation knowledge learned.In this paper we present a knowledge representation te
hnique 
alled 
lassi�
ation on fea-ture intervals (CFI, for short). The representation in CFI is based on Feature Proje
tionsthat has been used previously in CFP [10℄ and k-NNFP [2℄. CFI is applied to the dete
tionof arrhythmia in ECG (ele
tro
ardiogram) signals. Here, we show that CFI algorithm re-sults in highly a

urate predi
tions, has short training and 
lassi�
ation times, is robustto noisy training instan
es and missing feature values, 
an use instan
es with missingfeature values, and produ
es a human readable model of the 
lassi�
ation knowledge.The rationale behind knowledge representation based on feature intervals is thathuman experts maintain knowledge in this form, espe
ially in medi
al domains. Theinput to CFI training algorithm is a set of training instan
es that are the des
riptions ofsubje
ts with known diagnoses. Learning from these training examples, CFI 
onstru
ts arepresentation of the 
lassi�
ation knowledge inherent in these examples. This knowledgeis represented as the proje
tions of the training data set by feature intervals on ea
hfeature dimension separately. Then, for ea
h feature dimension, proje
tion points havingsimilar 
hara
teristi
s are grouped into intervals. Therefore, an interval represents a setof feature values that yield the same 
lassi�
ations.When diagnosing a new subje
t, ea
h feature parti
ipates in the voting pro
ess andthe diagnosis (normal or abnormal) that re
eives the maximum amount of votes is pre-di
ted as the diagnosis of that subje
t. However, 
onsidering the 
ost of mis
lassi�
ationin su
h a domain, CFI may de
line to make a predi
tion its 
on�den
e level is low.Sin
e ea
h feature parti
ipates independently of the others, both in learning and
lassi�
ation, CFI enables an easy and natural way of handling missing feature values bysimply ignoring them. That is, features whose values are unknown do not parti
ipate inthe voting, for that instan
e.The next se
tion will des
ribe the CFI algorithm in detail. Se
tion 3 des
ribes thegeneti
 algorithm used for feature sele
tion. In Se
tion 4, the problem of arrhythmiadete
tion is explained. Appli
ation of the CFI algorithm to this domain is dis
ussed inSe
tion 5. Finally, the last se
tion 
on
ludes with some remarks and plans for futurework.



Training set:

<1,0,B,1>
<3,0,B,1>
<4,5,A,2>
<4,0,C,2>
<4,6,A,2>
<7,1,C,3>
<5,3,?,3>
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<1,3,1,0,0> <4,4,0,1,0> <5,7,0,0,1>

<0,0,0.75,0.25,0> <1,3,0,0,1> <5,6,0,1,0>

<A,A,0,1,0> <B,B,1,0,0> <C,C,0,0.4,0.6>Figure 1: An example training set and the feature intervals 
onstru
ted by CFI.2 The CFI AlgorithmThe CFI 
lassi�
ation algorithm is an improved version of the early FIL, VF1 and VFI5algorithms [3, 7, 9℄. Here, the CFI algorithm is des
ribed in detail and explained throughan example.2.1 Knowledge RepresentationThe CFI 
lassi�
ation algorithm represents a 
on
ept des
ription by a set of featureintervals. The 
lassi�
ation of a new instan
e is based on a voting among the 
lassi�
ationsmade based on the value of ea
h feature separately. Ea
h training example is representedas a ve
tor of nominal (dis
rete) or linear (
ontinuous) feature values and a label thatrepresents its asso
iated 
lass. The CFI algorithm �rst proje
ts all training instan
es onea
h feature separately. Using the proje
tions of the training examples, it 
onstru
ts aset of intervals for ea
h feature. An interval is either a range or a point interval. A rangeinterval is a set of 
onse
utive values of a given feature with the same 
lass value, whereasa point interval is de�ned as a single feature value. For range intervals, lower and upperbounds of the range value, its 
lass value and the vote are maintained. For point intervals,on the other hand, the lower and upper values are the same, but there may be several
lass values. Therefore, an interval is represented by a ve
tor, whose �rst two elementsstore the lower and upper bounds and the remaining elements 
orrespond to the votes forea
h 
lass, as shown below: < lb; ub; V1; V2; : : : Vk > :Here, k is the number of 
lasses in the domain, and Vi represents the vote of the intervalfor 
lass Ci.An example training data set and the 
orresponding feature intervals 
onstru
ted bythe CFI algorithms is shown in Figure 1. The example domain 
onsists of three features,namely f1, f2, and f3, the �rst two of whi
h are linear and the last one is a nominalfeature. The nominal feature 
an take values from the set fA;B;Cg. The 
lass labels areC1, C2, and C3. There are seven training instan
es in this example.



train(TrainingSet):beginfor ea
h feature f/* sort TrainingSet with respe
t to f */sort (f , TrainingSet)/* 
onstru
t a list of point intervals using feature values and 
lass labels */interval list  make intervals (f , TrainingSet)if f is linear/* join adja
ent point intervals to form range intervals */interval list  generalize (interval list)intervals[f ℄  normalize votes (interval list)t = 
ompute min thresholds(TrainingSet):end.generalize (interval list)beginI = �rst interval in interval listwhile I is not empty doI 0 is the interval after Iif majority 
lass(I) = majority 
lass(I 0)/* majority 
lass of an interval is the 
lass with the highest votes */then merge I 0 into Ielse I  I 0end. Figure 2: Training in the CFI algorithm.2.2 TrainingThe training pro
ess in the CFI algorithm is shown in Figure 2. For ea
h feature f , �rst alltraining instan
es are sorted with respe
t to their values for f , forming their proje
tionson f . A point interval is 
onstru
ted for ea
h proje
tion. The lower and upper boundsof the interval are equal to the f value of the 
orresponding training instan
e. Its votefor the 
lass of the training instan
e is the re
ipro
al of the number of times that 
lasso

urs in the all training set. This normalization is to eliminate the e�e
ts of uneven 
lassdistributions in the training set. The votes for the other 
lasses is 0. If the f value of atraining instan
e is unknown (represented by \?" in Figure 1), it is simply ignored for f .Then, if there are several point intervals at the same f value, then they are 
ombined intoone, by adding the 
lass votes. So that, at the end of point interval 
onstru
tion, thereis exa
tly one point interval for ea
h distin
t value of f in the training set. For example,the �rst interval for f2 in Figure 1 is h0; 0; 1; 1=3; 0i. The se
ond and third point intervalsare h1; 1; 0; 0; 1i, and h3; 3; 0; 0; 1i, respe
tively. Then, only for linear features, CFI triesto generalize the point intervals. Conse
utive point intervals whose highest votes are forthe same 
lass are merged forming range intervals. In the example above, the se
ond andthird point intervals of f2 are merged into the range interval h1; 3; 0; 0; 1i. In the last stepof the training pro
ess, the votes of ea
h interval are normalized so that the total votesof the interval for all 
lasses is 1. So, following the example in Figure 1, the �rst interval




lassify(q): /* q: query instan
e to be 
lassi�ed */beginfor ea
h 
lass 
 /* initialize total votes */v
 = 0for ea
h feature fif qf value is knownI = sear
h interval(f; qf )for ea
h 
lass 
v
 = v
 + interval vote(I; 
)p = arg max
(v
); /* predi
ted 
lass is the one with the maximum votes */if vp � t
 return pelse return NO PREDICTIONend. Figure 3: Classi�
ation in the CFI algorithm.on f2 be
omes h0; 0; 0:75; 0:25; 0i.The last step in the training pro
ess is the 
omputation of the threshold ve
tort, whose elements are the minimum vote values required to predi
t ea
h 
lass. Thethreshold values are 
omputed by using the training instan
es as test 
ases and �ndingtheir 
lassi�
ations on the learned feature intervals. The minimum threshold t
 for a 
lass
 is the minimum vote re
eived among the 
orre
tly 
lassi�ed training instan
es of 
lass
. Sin
e all training instan
es are 
orre
tly 
lassi�ed in the example above, the thresholdvalues are 0 for both 
lasses.2.3 Classi�
ationThe 
lassi�
ation (querying) pro
ess in the CFI algorithm is given in Figure 3. The
lassi�
ation in CFI involves a voting s
heme where ea
h feature 
asts its vote. Thepro
ess starts by initializing the votes of ea
h 
lass to zero. If the value of the queryinstan
e q for a feature f is unknown (missing), then that feature does not involve inthe voting. That is, the features 
ontaining missing values are simply ignored. If the qfvalue is known, the interval I into whi
h ef falls is sear
hed. If the qf value does not fallin any interval on f , then again the feature f does not parti
ipate in the voting. If aninterval I is found that in
ludes the qf value, then the votes of I are the votes that f
asts in the voting. Sin
e the sum of the votes of an interval is normalized to 1, duringthe training, ea
h feature has an equal power in the voting. On
e all the features have
ompleted 
asting their votes, the 
lass that re
eived the highest amount of votes is setas the winner of the query instan
e. If the votes re
eived by the winner is above theminimum threshold then the winner is returned as the predi
ted 
lass value; otherwiseno predi
tion is made and the de
ision left to the expert. Con�den
e of a predi
tion is
omputed as vp=Pki=1 vi.Continuing with the example in Figure 1, let the query instan
e be h6; ?; Ci. Sin
ethe f2 value of the query instan
e is unknown, the feature f2 does not parti
ipate in thevoting. The votes of f1 and f3 are h0; 0; 1i and h0; 0:4; 0:6i, respe
tively. The total votes



of the 
lasses are h0; 0:4; 1:6i. Sin
e the 
lass C3 has re
eived the highest amount of votes,1.6, the winner is C3. Sin
e the threshold t3 = 0, C3 is returned as the predi
ted 
lass ofthe test instan
e. 
on�den
e of this predi
tion is 1.6/(0.4+0+1.6) = 80%.3 Feature Sele
tion Using a Geneti
 AlgorithmPra
ti
al 
lassi�
ation problems require the sele
tion of a subset of features from a mu
hlarger set to represent the knowledge to be used in the 
lassi�
ation. This is due to thefa
t that the performan
e of the 
lassi�er and the 
ost of 
lassi�
ation are sensitive to the
hoi
e of the features used in the 
onstru
tion of the 
lassi�er. With the redu
ed set offeatures, the time needed for learning the 
lassi�
ation knowledge and the time requiredfor 
lassi�
ation is redu
ed. Further, by the extra
tion of relevant features and thereforethe elimination of the irrelevant ones, the a

ura
y of the 
lassi�er 
an be in
reased [4, 15℄.Exhaustive evaluation of possible feature subsets is usually unfeasible in pra
ti
esin
e it requires large amount of 
omputational e�ort. Geneti
 Algorithms (GAs) o�er anattra
tive approa
h to �nd near-optimal solutions to su
h optimization problems [6, 14,18℄. GAs are randomized sear
h and optimization te
hniques guided by the prin
iples ofevolution and natural geneti
s, with a large amount of impli
it parallelism [8℄. In GAs,the parameters of the sear
h spa
e are en
oded in the form of strings, 
alled 
hromosomes.A 
olle
tion of su
h strings is 
alled a population. In the 
ase of feature sele
tion problem,ea
h 
hromosome represents a subset of features sele
ted. The size of a 
hromosome isequal to the number of features. Ea
h element of the 
hromosome string is either 1 or 0,where 1 indi
ates that the 
orresponding feature is sele
ted, and 0 otherwise. The goal ofthe sear
h, in this 
ase, is to �nd a 
hromosome that represents a set of features that leadto highest a

ura
y. In the 
ase of several feature subsets with the same best a

ura
y,the one with the smallest 
ardinality is the desired one.Initially a random population is 
reated, representing di�erent points in the sear
hspa
e. Ea
h of the initial population are evaluated a

ording to the �tness fun
tion. Inthe GA used in the experiments, the 
ube of the �ve-fold 
ross-validation a

ura
y isused as the �tness value of a 
hromosome. Then, until a maximum number of generationsis rea
hed, the following three operations are exe
uted in order at ea
h generation ofthe GA sear
h: reprodu
tion, 
rossover, and mutation. The GA used here employs theroulette-wheel sele
tion in the reprodu
tion step. As the 
rossover operation 2-point
rossover is used. After the generation of a new population, all the 
hromosomes 
reatedor mutated are evaluated again. The best 
hromosome is always 
opied to the nextgeneration (elitism) by passing the reprodu
tion step. The best 
hromosome is the onewith the highest �tness value. Among the 
hromosomes that have the same �tness value,the one with the smallest number of features is 
hosen. The values for the parameters ofthe GA used in experimentations are given in Se
tion 5.4 Arrhythmia Dete
tionThe data set used here 
onsists of 526 ECG re
ordings. Ea
h re
ord 
onsists of a set of
lini
al parameters measured on rest ECG signals (Figure 4) automati
ally by a 
ommer-
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ially available system1, and some personal information about the subje
ts. There are279 parameters (features) in a single re
ord.The patient population is divided into two groups based on the investigation of an ex-pert 
ardiologist as Normal and Abnormal, represented by 
lasses C1 and C2, respe
tively.C0 represents no predi
tion. The 
ardiologist was provided with the graphi
al plots ofthe ECG wave forms and the available personal information about the patient, i.e. age,height, weight and sex. There are 246 
ases in the normal group and 280 
ases in theabnormal group. The abnormal group 
onsists of the following abnormalities: Is
hemi
Changes, Old Anterior Myo
ardial Infar
tion, Old Inferior Myo
ardial Infar
tion, SinusTa
hy
ardy, Sinus Brady
ardy, Ventri
ular Premature Contra
tion(PVC), Supraventri
u-lar Premature Contra
tion, Left Bundle Bran
h Blo
k, Right Bundle Bran
h Blo
k, LeftVentri
ule Hypertrophy, Atrial Fibrillation and Flutter.Out of 279 features 206 of them are 
ontinuous valued (linear) and 73 features areBoolean valued (nominal). The �rst four features (f1 � � � f4) are age, sex, height andweight, respe
tively. The remaining features are derived from the ECG wave shown inFigure 4.In the data set used in the experiments 0.33% of the feature values are missing.However, as explained in Se
tion 2, the CFI algorithm is 
apable of handling su
h amissing data set.5 Experiments on the Arrhythmia Data SetIn order to determine the set of relevant features we used a GA as explained in Se
tion 3.In this experiment, the GA had 500 
hromosomes, and ea
h 
hromosome had 279 binary1KardiosisTM system of TEPA A.S�., Ankara, Turkey



Table 1: Predi
tions with all features and with sele
ted features, using 5-fold 
ross-validation. Predi
tionsWith all features With sele
ted featuresA
tual Normal Abnormal No Pred. Normal Abnormal No Pred.Normal (246) 19 2 225 98 4 144Abnormal (280) 1 82 197 1 71 208valued (0 and 1) genes, one for ea
h feature. The value 1 represented the fa
t that the
orresponding feature is sele
ted, and vi
e verse. The GA used 2-point 
rossover, withthe probability of 
rossover p
 = 0:9. The probability of mutation was pm = 5:10�5. TheGA was run for 1000 generations.As the �tness fun
tion, the 
ube of the 5-fold 
ross-validation a

ura
y of the CFIalgorithm using the set of features sele
ted by the 
orresponding 
hromosome is used.The reason for using the 
ube fun
tion is to expand the gap between the �tness valuesfor 
hromosomes with above the default a

ura
y.When no predi
tion for a re
ording is made by the systems, it is sent to a do
tor. Inthat 
ase, an abnormal arrhythmia will be dete
ted by the do
tor. Considering this fa
twe have de�ned the a

ura
y of CFI asa

ura
y = aa + nn + anpaa + an + anp + na + nn + nnphere, aa denotes the number of abnormal 
ases predi
ted as abnormal, while an denotesthe number of abnormal 
ases predi
ted as normal, and anp represents the number ofabnormal 
ases with no predi
tion. Similarly, na, nn and nnp are the number of normal
ases 
lassi�ed as abnormal and normal, and no predi
tion, respe
tively.In order to 
ompute the 5-fold 
ross-validation a

ura
y, the whole data set is par-titioned into �ve equal size subsets. The four of the subsets is used as the training set,and the �fth one is used as the test set. This pro
ess is repeated �ve times, on
e for ea
hsubset being the test set. The �nal a

ura
y is the average of the a

ura
ies obtained inthese �ve runs. This te
hnique ensures that ea
h 
ase is used exa
tly on
e in the test set.We �rst experimented with the CFI on the arrhythmia data set using all features (nofeature sele
tion). The CFI algorithm a
hieved 57% a

ura
y. The training time for ea
hfold was 142 mse
, while the testing time was 14 mse
. The 
lassi�
ation table for allfeatures is given in Table 1.Then, we ran the GA spe
i�ed above to �nd a good set of relevant features, so thatthe a

ura
y of CFI 
an be in
reased. At the end of the 1000th generation of the GA,the best 
hromosome 
ontains only 108 features out of 279. The a

ura
y of the CFIalgorithm with this set of features is 71.7%. With sele
ted set of features, CFI missedonly one arrhythmia 
ase out of 280, 
onsidering that all undetermined 
ases are referredto the do
tor. Using only these 108 relevant features, the training time for ea
h fold was60 mse
, while the testing time was 6 mse
. The 
onfusion table for sele
ted features isgiven in Table 1.



6 Con
lusionsIn this paper, a new 
lassi�
ation algorithm 
alled CFI is developed and applied to thedete
tion of abnormal ECG re
ordings. Sin
e CFI treats ea
h feature, the missing featurevalues that may appear both in the training and test instan
es are simply ignored. In other
lassi�
ation algorithms, su
h as de
ision tree indu
tive learning algorithms, the missingvalues require extra 
are [16℄. This problem has been over
ome by simply omitting thefeature with the missing value in the voting pro
ess of CFI. Also note that the CFIalgorithm is appli
able to 
on
epts where ea
h feature, independent of other features, 
anbe used in the 
lassi�
ation of the 
on
ept. One might think that this requirement maylimit the appli
ability of the CFI, sin
e in some domains the features might be dependenton ea
h other. Holte has pointed out that the most data sets in the UCI repositoryare su
h that, for 
lassi�
ation, their attributes 
an be 
onsidered independently of ea
hother [11℄. Also Kononenko 
laimed that in the data used by human experts there are nostrong dependen
ies between features be
ause features are properly de�ned [12℄. Anotheradvantage of the CFI 
lassi�er is that instead of a 
ategori
al 
lassi�
ation, a more generalprobabilisti
 
lassi�
ation where the 
lassi�er returns a probability distribution over all
lasses is possible to implement with CFI.The original data set of ECG re
ordings that we used 
ontained 279 features. Inorder to sele
t and use only the relevant features, we developed a geneti
 algorithm. Wefound that only 108 features are suÆ
ient for the dete
tion of abnormal 
ases. Usingonly the relevant features in
reased the a

ura
y and de
reased both the training and thepredi
tion times of the CFI algorithm.A
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