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ABSTRACT

ON-LINE NEW EVENT DETECTION AND
TRACKING IN A MULTI-RESOURCE ENVIRONMENT

Hakan Kurt
M.S. in Computer Engineering
Supervisor: Prof. Dr. H. Altay Giivenir
September, 2001

As the amount of electronically available information resources increase, the need

for information also increases. Today, it is almost impossible for a person to keep
track all the information resources and find new events as soon as possible. In
this thesis, we present an on-line new event detection and tracking system, which
automatically detects new events from multiple news resources and immediately
start tracking events as they evolve. Since we implemented the on-line version
of event detection approach, the novelty decision about a news story is done be-
fore processing the next one. We also present a new threshold, called support
threshold, used in detection process to decrease the number of new event alarms,
that are caused by informative and one-time-only news. The support threshold
can be used to tune the weights of news resources. We implemented the tracking
phase as an unsupervised learning process, that is, detected events are automati-
cally tracked by training the system using the first news story of an event. Since
events evolve over time, an unsupervised adaptation is used to retrain the track-
ing system in order to increase the tracking system performance. Adaptation is
achieved by adding predicted documents to the training process. From the corpus
observations, we conclude that one news story can be associated to more than
one event. For this reason, the tracking system can relate a news story to more
than one event. The on-line new event detection and tracking system has been
tested on the Reuters news feed, available on the Internet. The Reuters news
feed, that we used, comprises four independent news resources. The news stories
are in Turkish.

Keywords: Event detection, event tracking, information retrieval.
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OZET

COK KANALLI KAYNAK ORTAMINDA QEVRIMICT
YENI OLAY BELIRLEME VE TAKIBI

Hakan Kurt
Bilgisayar Miihendisligi, Yiiksek Lisans
Tez Yoneticisi: Prof. Dr. H. Altay Giivenir
Eyliil, 2001

Elektronik ortamdaki bilgi miktar1 arttikca bilgiye olan ihtiyac da artmak-
tadir. Bugiin, bir kiginin biitiin bigi kaynaklarini takip etmesi ve yeni olaylari
olabildigince kisa zamanda bulmasi hemen hemen imkansizdir. Bu tezde, bir-
den fazla haber kaynagindan otomatik olarak yeni olaylar1 belirleyen ve olaylar
geligtikce onlar1 aninda takibe baglayan, ¢evrimici yeni olay belirleme ve takip sis-
temi sunuyoruz. Olay belirleme yaklagiminin ¢evrimici versiyonunu uyguladigimiz
icin, haber metni hakkindaki yenilik karar1 bir sonraki haber isleme alinmadan
yapilmaktadir. Ayrica, destek esigi olarak adlandirdigimiz, belirleme igleminde,
bilgi verici ve bir seferlik haberler tarafindan sebep olunan yeni olay alarmlarinin
sayisini azaltmak maksadiyla kullanilan yeni bir egigi de tanitiyoruz. Destek
esigi, haber kaynaklarinin agirligini ayarlamak icin de kullanilabilir. Takip etme
safhasini, denetlemesiz 6grenme metodu geklinde uyguladik, yani belirlenen olay-
lar bir olayin ilk haberini kullanarak otomatik olarak takip edilir. Olaylar zaman
gectikce gelistigi icin, takip etme sisteminin performansini arttirmak maksadiyla,
bir denetlemesiz adaptasyon yontemi takip sistemini tekrar egitmek icin kullanilir.
Adaptasyon tahmin edilen dokiimanlarin egitim islemine eklenmesiyle saglanir.
Toplanan haberlerin incelenmesinden, bir haber metninin birden fazla olaydan
bahsedebilecegi sonucuna vardik. Bu sebeple, takip sistemi bir haber metnini
birden fazla olayla iligkilendirecek sekilde uygulandi. Cevrimici yeni olay belir-
leme ve takip sistemi, Internet’te mevcut olan, Reuters haber kaynaginda teste-
dildi. Kullandigimiz Reuters haber kaynagi dort bagimsiz haber kaynagini icerir
ve haberleri Thirkce’dir.

Anahtar sozcikler: Olay belirleme, olay takibi, bilgi erigimi.
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Chapter 1

Introduction

The rapidly-growing amount of electronically available information threatens to
overwhelm human attention, raising new challenges for information retrieval tech-
nology. Traditional query-based retrieval is useful when one knows more precisely
the nature of the events or facts one is seeking, and less useful when one wants
specific information but can only formulate a larger category-query sharing few if
any terms with the potentially most useful texts. In short, information retrieval
based on immediate-content-focused queries is often insufficient for obtaining a
variety of relevant stories and tracking the gradual evolution of events through
time [26].

It would be desirable for an intelligent system to automatically detect signifi-
cant events from large volume of news stories with a desired level of abstraction,

alert the new events as they happen, and track events as they evolve.

In this thesis, we discuss and evaluate solutions to on-line new event detec-
tion from chronologically-ordered streams of news stories coming, from multiple

resources, and track events over time.
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1.1 Event Analysis

Event means some unique thing that happens at some point in time. The notion
of an event differs from a broader category of events both in spatial /temporal
localization and in specificity [3]. Specific time and place information differs
event from the broader category “topic”. For example, Kocaeli earthquake in
1999 is an event but not a topic, while the term earthquakes refers to a topic but

not, an event.

From a journalist’s perspective, a news story about an event will typically

specify :

When the event occurred?

e Who was involved?

Where it took place?

How it happened?

e The impact, significance, or consequence of the event on the intended au-

dience.

However, as an event evolves, many of these properties are either not initially
known, or be assumed to be known by the audience and therefore are not refer-
enced within the text of documents relating to the same event. As a result, the
lack of certain event properties and the appearance of new lexical features within
documents relating to the same event should be expected as the event evolves
[14, 15].

Several patterns emerged from observations of temporal event distributions

[3, 26, 28] and also several properties of events derived:

e Events might be unexpected or expected.

e Events are often associated with news bursts.
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News stories discussing the same event tend to be temporally proximate.

A time gap between bursts of topically similar stories is often an indication

of different events.

e A significant vocabulary shift and rapid changes in term frequency distri-

bution are typical of stories reporting a new event.

e Events are typically reported in a relatively brief time window (e.g. 1-4

weeks) and contain fewer reports than broader topics.

1.2 News Analysis

A detailed investigation of news is also required, since events are told in news

stories.

News can be defined as a new information about a subject of some public

interest that is shared with some portion of the public [19)].

News is the unusual. It is also something fresh, something that people have
not heard before and, crucially, is of interest to readers. That means not just
matters which affect the public or have an impact on public life, but also what is

of interest to the public [16].

For most consumers, most of the time, news is what is happening locally. Like
any business person, the news provider serves his or her basic market first [12].
All the news providers in the world give priority to the events in their country,
unless a very important event happens in another part of the world. Also, news
providers give information about the local events such as local crimes, theaters,

concerts etc., since, people want to learn what is happening around them.

From the definitions given above, it can be concluded that news stories which
give information about an event are only the subset of news. This means that we
need to find a system, which can select only the news stories that belongs to an

event. Since events are often associated with news bursts, waiting for other news
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stories which support the event can be a solution to the problem. Thus, only the
events that are supported by more than one news stories are known by the user,

and the others are hidden.

Some properties of news stories make the detection and tracking process dif-
ficult:

e A news story might be about one or more events. We have observed many
news stories, in the corpus, which give information about more than one
event. As a result, we conclude that one news story may give information

about one or more than one event.

e When a new event happens, all of the news stories give information about
that event only (answers to when, where, how and who type of questions).
After a while, the amount of new information about the event decreases.
Subsequently, news stories about the event usually turn to the discussions
about the event with a broader perspective, that is topic related. For exam-
ple, after a skyjack event, the news stories usually turn to the discussions
about the security considerations of the airports, skyjack events in the past

etc.

1.3 Event Detection Methods

New event detection is an unsupervised learning task, sub-divided into two forms.
One is retrospective detection, which entails the discovery of previously uniden-
tified events in a chronologically-ordered accumulation of stories. The other is
on-line detection, where the goal is to identify the onset of new events from live
news feeds in real-time. Both forms of detection intentionally lack advance knowl-
edge of novel events, but may have access to unlabelled historical news stories for

use as contrast sets [26].

The new event detection system has two on-line models of operation: imme-

diate and delayed. In immediate mode, a strict real-time application is assumed,
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and the system indicates whether the current document contains or does not con-
tain discussion of a new event before looking at the next document. In delayed
mode, classification decisions deferred for a prespecified time interval. For exam-
ple, the system could collect news throughout the day and provide the user with

new events at the end of the day [14].

The detection system developed for this thesis works in immediate mode but
the new event alarms are deferred until a userdefined support threshold is ex-

ceeded.

1.4 Event Tracking

Event tracking is defined to be the task of associating incoming stories with
events known to the system. In the tracking task, a target event is given, and
each successive story must be classified as to whether or not it discusses the
target event [3]. The objective of event tracking is to correctly classify all of the

subsequent stories.

We have the same objective, but a different approach is applied. According
to the previous studies, a news story can be related to only one event, since there
are only small number of counter examples in their corpus. However, we found
that this assumption is too strong for our corpus. As a result of this fact, we
implemented our tracking system with a weaker assumption: the first news story
of an event cannot be related to the existing events in the past, but the other

news stories can be related to more than one event.

1.5 Overview of the Thesis

In this thesis, solutions to the on-line new event detection and tracking problem
for multi-resource news feed case is introduced. Our approach to the on-line new

event detection and tracking problem is different from the other approaches that
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we found in the literature. The differences are shown in Table 1.1.

Table 1.1: Comparison of our approach with previous work.

| Previous Approaches

| Our Approach

Divide the problem into two parts;
on-line new event detection and event

On-line new event detection and event
tracking are done together.

tracking.

For every new event found by the sys-
tem, an alarm is issued.

New event alarm is issued whenever
a user-defined supporting document is
found.

Resource information of the news sto-
ries is NOT used.

Resource information is used in support
threshold calculations.

Handle event tracking problem as a su-
pervised learning task.

User interaction is NOT needed. All
new events are tracked.

User gives a number of sample stories
to train the tracking system (usually 4).

Number of training stories is one that
is the first story of an event.

One document can NOT belong to
more than one event.

One document can belong to more than
one event.

No work done about Turkish news.

Our implementation is done by using
Turkish news stories.

We define the on-line new event detection and tracking problem as:

On-line new event detection and tracking is to find the first document that

talks about an event which is not previously reported, warn the user about

the new event after a given amount of supporting document are observed

from one or multiple resources, and track each event without user interac-

tion.

In order to test our approach, we created a corpus which spans the period
from January 2,2001 to March 31,2001 with 46,530 Turkish news stories from the

Reuters newswire. Corpus consists of four different news resources of Reuters,

which are Anadolu News Agency, Diinya News Agency, Istanbul Stock Exchange

Company News and Reuters News itself. Anadolu News Agency news stories con-

tain political, sports, economical, cultural, local and other types of events. Diinya

News Agency news stories usually contain economical and political events, and

long comments about economical and political events. Istanbul Stock Exchange
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Company News contains only short stock market news stories. Reuters News
contains economical news stories in general. From 46,530 news, we selected 15

events which form 1322 (2.8% of the corpus) stories to test our approach.

In the next chapter, information about previous work about on-line new event
detection and tracking is given. In Chapter 3, our solutions for on-line new event
detection part of the problem with detailed information about the document
representation, similarity and threshold calculations are presented. Than, we
present our event tracking approach. At the end of the Chapter 3, a complete
algorithm of our system is given. Chapter 4 presents the evaluation methodology,
effectiveness measures, and results of our experiments respectively. Conclusions

of the thesis and plans for future work are discussed in Chapter 5.

Detailed information of our corpus is given in the Appendix.



Chapter 2

Related Work

The main motivation of this thesis is affected from the studies and results of a
research called Topic Detection and Tracking (TDT). TDT is a Defence Advanced
Research Project Agency (DARPA)-sponsored initiative to investigate the state
of the art in finding and following new events in a stream of broadcast news

stories.

The basic idea for TDT originated in 1996. A pilot study laid the essential
groundwork in 1997, producing a small corpus and establishing feasibility. Dur-
ing 1998 and 1999, TDT research blossomed, with new and more challenging
tasks, many more participating sites, and considerably larger multilingual cor-
pora (adding automatic speech recognition (ASR) data in 1998 and Chinese data
in 1999) [21].

TDT research is continuing under the new DARPA program known as TIDES
(Translingual Information Detection, Extraction, and Summarization) with 28

organizations and universities [13].

For research purposes, TIDES is placing primary emphasis on English, Chi-
nese, and Arabic — three important, challenging, and very different languages.

Some other groups work on Korean, Japanese, or Spanish.

The approaches described below are taken from the articles and reports of

this project group.
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2.1 On-line New Event Detection Approaches

In this section, we will give the approaches to solve the on-line new event detec-
tion problem. Only the approaches about immediate mode are given, since our

implementation is on immediate mode of on-line event detection'.

2.1.1 The CMU Approach

The CMU (Carnegie Mellon University) approach uses conventional vector space
model to represent the documents and traditional clustering techniques in infor-

mation retrieval to represent the events [17].

Each document is represented using a vector of weighted terms which can
be either words or phrases. In choosing a term weighting system, low weights
should be assigned to high-frequency words that occur in many documents of a
collection, and high weights to terms that are important in particular documents
but unimportant in the remainder of the collection. A well-known term weight-
ing system following that prescription assigns weight w;; to term 7} in document
Dy in proportion to the frequency of occurrence of the term in Dy, and in in-
verse proportion to the number of documents to which the term is assigned [17].
Such a weighting system is known as a TFXIDF (Term Frequency times Inverse
Document Frequency) weighting system. To allow a meaningful final retrieval
similarity, it is convenient to use a length normalization factor as part of the
term weighting formula. Under these considerations, for term weighting, “ltc”

(logarithm of the term frequency) version of the TF-IDF schema [1, 7] is used as:

Wiy = (1 + logy (fir)) * loga ()
i \/Zjﬂil[(l + logy(fir)) * logQ(nﬂj)]Q

(2.1)

where w; is the weight of word 7 in document k£ and f;; be the frequency of the
word ¢ in document k, N the number of documents in the training corpus, n; the

number of times word ¢ occurs in the training corpus, and M corresponds to the

'Small amount of deferral period before a decision is considered as in immediate mode. This
amount is taken as less than 10 news stories for TDT implementations.
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number of words in the corpus. If the word does not appear in the training corpus

(n; =0 or n; = 0), a default value 1 is used instead of these values.

For story and cluster representation, CMU uses the conventional vector space
model. A story is presented as a vector whose dimensions are the stemmed unique
terms in the corpus, and whose elements are the term (word or phrase) weights
in the story. A cluster is represented using a prototype vector (or centroid) which
is the normalized sum of story vectors in the cluster. The similarity of two stories

k and ¢ is defined as the cosine value of the corresponding story vectors:
ij\il Wik * Wijq
M M

\/( j=1 wfk) * (ijl wqu)

where sim(k, ¢) is the cosine similarity value, w;y, is the weight of word j in docu-

sim(k,q) = (2.2)

ment k, wj, is the weight of word j in document ¢,M corresponds to the number
of words in the corpus, Z?il w?k is the sum of squares of the word weights in
document k, and Z;‘il w‘?q is the sum of squares of the word weights in document
q. Similarly, the similarity of two cluster is defined as the cosine value of the
corresponding prototype vectors (i.e., cluster representatives, or centroids). As a
clustering algorithm, incremental (single-pass) clustering algorithm with a time

window is used (see Figure 2.1 for detailed information about the algorithm).

As it is described in Figure 2.1, the single-pass clustering algorithm is straight-
forward. It sequentially processes the input documents, one at a time, and grows
clusters incrementally. A new document is absorbed by the most similar cluster
in the past if the similarity between the document and the cluster is above a pre-
selected clustering threshold (t.); otherwise, the document is treated as the seed
of a new cluster. By adjusting the threshold, one can obtain clusters at different

levels of granularity.

CMU applied two types of time penalty functions to the similarity values
between the current document z and cluster ¢. The purpose of the first function
is to get the similarity values of the documents in the time window by weighting

the similarity scores uniformly:

sim(z,c) if ¢ has any member-document in the time window

0 otherwise

sim(z,c) = {



CHAPTER 2. RELATED WORK 11

1. The documents are processed sequentially.

2. The representation for the first document becomes the cluster representative
of the first cluster.

3. Each subsequent document is matched against all cluster representatives
existing at its processing time.

4. A given document is assigned to one cluster (or more if overlap is allowed)
according to some similarity measure.

5. When a document is assigned to a cluster, the representative for that cluster
is recomputed.

6. If a document fails a certain similarity test, it becomes the cluster repre-
sentative of a new cluster.

Figure 2.1: Single-pass clustering algorithm

where sim(x,c) is the cosine similarity.

The other one is a linear decaying weight function. The purpose of this func-
tion is to decrease the influence of the clusters as the number of documents

between a cluster ¢ and the document z increase:

(1 — L)% sim(z,c) if ¢ has any member-document in the time window

sim(z,c) = {

0 otherwise

where ¢ is the number of documents between the current document z and the
most recent member-document in cluster ¢, and m is the number of documents

prior to z in time window.

Novelty decision is made by thresholding the maximum similarity score be-
tween the document and any cluster in the time window [3, 26, 28]. The confidence

score for the novelty decision is defined as:
score(i) = 1 — argmax{sim(i, c)'} (2.3)

where i is the current document and sim(i,c)’ is the similarity value between

document ¢ and any cluster in the time window.
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2.1.2 The UMass Approach

The new-event detection algorithm in the UMass (University of Massachusetts,
Ambherst) was implemented by combining the ranked-retrieval mechanisms of In-
query [9], a feature extraction and selection process based on relevance feedback

[2], and the routing architecture of InRoute [8].

Events and documents are represented by queries. A modified version of the
single-pass clustering algorithm (given in Figure 2.1) is used for new event detec-
tion. This algorithm processes each new document on the stream sequentially, as

shown in Figure 2.2.

1. Use feature extraction and selection techniques to build a query represen-
tation to define the document’s content.

2. Determine the query’s initial threshold by evaluating the new document
with the query.

3. Compare the new document against previous queries in memory.

4. If the document does not trigger any previous query by exceeding its thresh-
old, flag the document as containing a new event.

5. If the document triggers an existing query, flag the document as not con-
taining a new event.

6. (Optional) Add the document to the agglomeration list of queries it trig-
gered.

7. (Optional) Rebuild existing queries using the document.

8. Add new query to memory.

Figure 2.2: On-line new event detection algorithm of UMass [6, 14, 15].

The document representation used in the system is a set of belief values cor-

responding to each feature specified in a query. Belief values are produced by
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Inquery’s belief function, which is composed of TF-IDF. For any instance of doc-

ument d and collection ¢ :

d; = belief(q;,d,c) = 0.4+ 0.6 x ¢ f * idf (2.4)
where
t
tf = (2.5)
t+0.5+1.5% Lw;”_dl

lOg( 02}0.5)
idf = — 4~ (2.6)

log(|c| + 1)

and t is the number of times feature ¢; occurs in the document, df (document fre-
quency) is the number of documents in which the feature appears in the auxiliary
corpus, dl is the document’s length, avg_dl is the average document length in the

auxiliary corpus, and |c| is the number of documents in the auxiliary corpus.

An automatic process creates a classifier from single or multiple documents.
The classifier formulation process has three main steps: feature selection, weight
assignment, and threshold estimation. The selected features and weights are used

to construct a classifier using Inquery’s query syntax.

The feature selection begins with collecting statistics from the words appear-
ing in the training documents. The words that do not play a role in the catego-
rization of a news document are called stopwords. Stopwords are removed from

the documents, than the remaining words are sorted by the following measure:

T nr
— >0 2.7
R NR (2.7)

where R is the number of relevant documents and NR is the number of non-
relevant documents in the training sample. The values r and nr are the number
of documents in the corresponding relevant and non-relevant training sample

containing the word. The top n words are used for weight assignment as:

ik = C1 % tfrel — Cg * tfnom"el (28)

where tf,¢ is average tf score (Equation 2.5) for the word in relevant documents,

and £ f,onrer 1S the average tf score for the word in non-relevant documents. The
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constants ¢; and ¢y are determined empirically, and it is found that setting ¢; =

cs = 0.5 works well.

A similarity value is calculated when comparing a document d to a query ¢

using the #WSUM operator of Inquery:

N
Yie1 Qi

2.9
Zi\i1 ik ( )

sim(q;, d;) =

If a classifier is created at time ¢, that is, when the last relevant training
document arrives, then the resulting classifier’s threshold for a document arriving

at a later time j is computed as:
threshold(q;,d;) = 0.4 + 6 = (sim(q;, d;)) — 0.4) 4+ 8 * (date; — date;)  (2.10)

where sim(q;, d;) is the similarity value between the classifier and the document
from which it was formulated (Equation 2.9), and 0.4 is an Inquery constant. The
value of (date; — date;) is the number of days between the arrival of document d;
and the formulation of the classifier ¢;. The values for 6 and 3 control the new

event classification decisions.

When deciding whether a new event has arrived, decision scores are used as:
decision(q;, d;) = sim(g;, d;) — threshold(g;, d;) (2.11)

Decision scores greater than 0 imply that documents d; and d; are similar in

content, and thus document d; does not discuss a new event [3, 6, 14, 15].

2.1.3 Dragon Approach

Dragon used the k-means algorithm to solve to on-line detection problem, by
executing only the first pass of the algorithm [3]. Following this procedure, the
first story in the corpus defines an initial cluster. The remaining stories in the
corpus are processed sequentially; for each one, the “distance” to each of the
existing clusters is computed. A story is inserted into the closest cluster unless

this distance is greater than a threshold, in which case a new cluster is created.
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The decision to create a new cluster is equivalent to declaring the appearance of

a new event.

Dragon used a new measure to compute the distances between a given story
and existing clusters by smoothing the cluster distribution with a background
distribution, and then preventing the cluster from being “dragged” by the story
distribution. Two improvements were also made: a story-background distance
was subtracted from the story-cluster distance (to compensate for the fact that
small clusters tend to look a lot like background after smoothing), and a decay
term was introduced to cause clusters to have a limited duration in time. This
term is just a decay parameter times the distance between the number of the story
represented by the distribution of the story count for a word and the number

midway between the first and last stories in the cluster.

By adjusting the decay parameter and the overall threshold the on-line detec-

tion system can be tuned.

2.1.4 UPenn Approach

UPenn (University of Pennsylvania) used the idf-weighted cosine coefficient [18].
It is a document similarity metric where documents are represented as vectors of
an n-dimensional space, where n is the number of unique terms in the database.
For their implementation, they weighted only the topic vector (vector which rep-
resents the event) by idf and left the story vector under test unchanged. The

resulting calculation for the similarity measure becomes:

YLtk tfiq * idf (w)
\/( j]\/ilt jzkj)*( j]\/ilt ]'2(])

where sim(k,q) is the cosine similarity value between documents &k and ¢, ¢fjx

sim(k,q) = (2.12)

is the term frequency of word j in document k, ¢f;, is the term frequency of
word j in document ¢, Z?il t ffk is the sum of squares of the term frequencies
in document k, and Z?ﬁl t ijq is the sum of squares of the term frequencies in

document q.
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Of the feature selection methods, they selected not the best but a simpler
method between the approaches that they implemented: For each story, word
counts (#f) are sorted, than n most frequent ones are kept. They set the number

of selected features to 50.

As a system parameter, a deferral period is defined to be the number of
files (each containing multiple stories) the system is allowed to process before it

associates an event with the stories contained in the files.

The UPenn approach uses the single-linkage (nearest neighbor) clustering
method to represent each event. This method begins with all stories in their
own singleton clusters. Two clusters are merged if the similarity between any

story of the first cluster and any story of the second cluster exceeds a threshold.

To implement the clustering, the UPenn approach takes the stories of each
deferral period and created an inverted index. Then each story, in turn, is com-
pared with all preceding stories (including those from previous deferral periods).
When the similarity metric for two stories exceeds a threshold their clusters are
merged. The clusters of earlier deferral periods cannot merge since they have
already been reported. If a story cannot be merged with an existing cluster, it

becomes a new cluster which means a new event.

2.1.5 BBN Technologies’ Approach

The BBN approach uses an incremental A&-means algorithm for clustering stories.
For comparing stories, it utilizes a probabilistic document similarity metric and

a traditional vector-space metric.

Although it is similar, the clustering algorithm they used is not precisely a k-
means algorithm, because the number of clusters £ is not given beforehand. This
algorithm involves an iteration through the data that the system is permitted to

modify and making appropriate changes during each iteration (see Figure 2.3).

As a similarity metric, they utilize a probabilistic metric called the BBN topic
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1. Use the incremental clustering algorithm (see Figure 2.1 for details) to pro-
cess stories up to the end of the current modifiable window.

2. Compare each story in the modifiable window with the old clusters to de-
termine whether each story should be merged with that cluster or used as
a seed for a new cluster.

3. Modify all the clusters at once according to the new assignments.
4. Iterate steps (2)-(3) until the clustering does not change.

5. Look at the next few stories and go to (1).

Figure 2.3: On-line new event detection algorithm of BBN Technologies

spotting metric which is derived from Bayes’ Rule:

p(C19) ~ p(C) - T] 2l

w psn) (2:19)

where p(C|S) is the probability that the given story belongs to the cluster C,
p(C) is the a priori probability that any new story will be relevant to cluster
C, p(sp) is the occurrence probability of a story word s,, and p'(s,|C) is the
smoothed probability that a word in a story on the topic represented by cluster
C' would be s,,. Smoothing is done because of the zero probability of unobserved

words for the topic as:

P'(50]C) = - p(salC) + (1 = @) - p(sn) (2.14)

The BBN approach models p(s,|C) with a two-state mixture model, where
one state is a distribution of the words in all of the stories in the group, and the

other state is a distribution from the whole corpus.

There are two types of metrics that are useful for the clustering algorithm: se-
lection metric, which is the maximum probability value of the BBN topic spotting
metric and thresholding metric, which is the binary decision metric to combine
the story with a cluster. A score normalization method is used to produce im-

proved scores [20].
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2.1.6 Summary of New Event Detection Approaches

Summary of the new event detection approaches are shown in Figure 2.4, where

N/A means no information available.

CMU UMass Dragon UPenn BBN
Words are | ltc version | TF-IDF N/A TF-IDF | probabilistic
weighted by | of TF-IDF
using
Documents vector query N/A vector vector
are repre- | space represen- space space
sented by model tation model model
Events are | single-pass | single- k-means nearest incremental
represented clustering | pass clustering | neighbor | k-means
by  clusters clustering cluster- | clustering
using ing
Similarity be- | cosine sim- | previous distance cosine probabilistic
tween a given | ilarity queries between similar- | similarity
document to run on | document | ity
a cluster is new docu- | to clusters
calculated by ment
Time  win- | used used used N/A N/A
dowing

Figure 2.4: Summary of New Event Detection Approaches
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2.2 Event Tracking Approaches

Event tracking, according to the TDT, can be considered as a text categorization

problem subject to the following constraints [25]:

e Each event of interest is defined by a set of positive instances (documents)
that are manually identified before tracking starts; no other knowledge is

available.

e As soon as a new document arrives, a binary (YES/NO) decision must

made by the tracking system with respect to each defined event.

e Any document preceding the document being evaluated may be used as
training data. However, only the previously-identified positive instances
are labelled; the rest of the documents are not, although some of these

unlabelled documents may actually be positive instances.

e When training on an event, relevance judgements for other events are as-

sumed to be unknown.

As a result, event tracking for TDT is a supervised learning task. A target
event is given by N, number of training documents, and each successive story
must be classified as to whether or not it discusses the target event. The tracking

task is to correctly classify all of the incoming stories [3].

The official event tracking evaluation of TDT restricted the number (N;) of

positive training examples per event to be 1,2,4,8 an 16, respectively [26].

2.2.1 CMU Approach

Researchers in CMU developed three methods for tracking events: a k-Nearest
Neighbor (kNN) classifier, a Decision-Tree Induction (dtree) classifier and Rocchio
[3, 24, 25, 26].
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2.2.1.1 K-Nearest Neighbor Classification (kNN)

This method adapted conventional M-way classification kNN to the 2-way clas-
sification problem of event tracking by constructing a 2-way kNN for each event.
The system converts an input story into a vector as it arrives and compares it to
the training stories, and select the k£ nearest neighbors based on the cosine similar-
ity between the input story and the training stories. The documents, given by the
user to track an event, are used as the positive training stories, and the other sto-
ries in the corpus are used as negative training documents. The confidence score
for a YES prediction on the input story is computed by summing the similarity
scores for the positive and negative stories respectively in the k-neighborhood,
and taking the difference between the two sums:

si(z,k,D) = > cos(z,y) — > cos(z,2) (2.15)

yer, 2€Qk

where z is the test document; y (z) is a positive (negative) training document;
D is the training set of documents; £ is the number of nearest neighbors of z in
D, which the system uses to compute the score; Py (Qy) is the set of positive

(negative) instances among the k nearest neighbors of x in D.

Binary decisions are obtained by thresholding locally on the confidence scores

generated by each event-specific classifier.

Also, two modified version of kNN are used. In the first modified version, they
take kp(< k) nearest positive examples and kn(< k) nearest negative examples
from the k-neighborhood, and average the similarity scores of the two subsets
respectively. The confidence score for the YES prediction on the input story is
defined to be:

1 1

So(x, kp, kn, D) = Tl > cos(z,y) — Vol > cos(z, 2) (2.16)
p yEUk,, "l 2eVin,

where Uy, consists of the kp nearest neighbors of x among the positive documents
in the training set; and Vj, consists of the kn nearest neighbors of z among the
negative documents in the training set. By introducing the parameters kp and
kn in addition to k, and by suitably choosing the parameter values, behavior of

the tracking system can be adjusted effectively.
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The second version is almost the same as Equation 2.15 except using the score

averages instead of score sums as:

1 1
s3(z,k,D) = B > cos(z,y) — o > cos(z, 2) (2.17)

2€EQL

where z is the test document; y(z) is a positive (negative) training document;
D is the training set of documents; £ is the number of nearest neighbors of z in
D, which the system uses to compute the score; P, (Qy) is the set of positive
(negative) instances among the &k nearest neighbors of z in D. This modification

prevents negative examples to dominate.

2.2.1.2 Decision Trees

In the CMU approach, decision trees are constructed by selecting the feature
with maximal information gain as the root node, and dividing the training data
according to the values of this feature; then for each branch finding the feature
which maximizes information gain over the training instances for that branch,
and so on recursively. One potential disadvantage of decision trees is that, unlike
kNN, they cannot generate a continuously varying tradeoff between miss and false

alarms, or recall and precision. The parameters are tuned by cross-validation [26].

2.2.1.3 Rocchio

Rocchio is a classic information retrieval method for query expansion using rele-
vance judgements on documents. It has been applied to text categorization in a

modified form:

>z (2.18)

ZGSn

:’Y y+y
E SV

YER
where ¢(D, ) is the prototype or the centroid of a category and Rocchio’s rep-
resentation of the event. D is a training set, R € D consists of the training
documents relevant to the query,y is the weight of the component, summation
Sn, € D — R consists of the n most-similar (as measured by cosine similarity)

negative instances to the positive centroid.
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This formula allows to selectively use the negative examples that lie in the
neighborhood of the positive centroid. A test document can be scored by com-
puting the cosine similarity between the test document x and the prototype of
the event ¢(D,):

r(x,c(D,7)) = cos(z,c(D, 7)) (2.19)

A binary decision is obtained by thresholding on this score.

2.2.2 UMass Approach

The same text representation for event detection is also applied in event tracking.
A classifier is formulated automatically from the lexical features of the training
set of documents using the operators from Inquery’s query language. An event
discussed in a set of relevant training documents is represented with a classifier
comprising a query syntax and threshold. A separate threshold is estimated for
each classifier, and documents on the stream that have similarity exceeding the
threshold are classified as positive instances of an event, that is, the contents of
the document are assumed to discuss the same event as the relevant document(s)

with which the classifier was formulated.

Similarity scores from Equation 2.9 are needed to be normalized to produce
good decision scores for tracking. They found that the most effective way was to
normalize similarity scores using a standard normal transformation. The general
form of the transformation is

sim(gi, d;) — p
g

decision_score(q;, d;) = (2.20)

where sim(g;, d;) is the similarity between classifier ¢; and document d;. p is the
mean, and o is the standard deviation of a distribution of similarity values using

Equation 2.9.

To increase the ability of the tracking system, they implemented the adaptive
version of their tracking system. The adaptive version is needed since the discus-
sion of an event changes over time. This idea is a form of unsupervised learning.

An adaptive version of the tracking system can rebuild the query after it “tracks”
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a news story on a given event. Experiments show that adaptive tracking works
well if the number of training documents are high (N; > 4) [3, 5, 14].

2.2.3 Dragon Approach

Dragon Systems uses statistical approaches in their tracking implementation.
Event models were build from the words in the /V; training stories, after stopwords
were removed with some appropriate smoothing. In order to provide a more
accurate smoothing for the event model, the mixture of the background topic
models that best approximates the unsmoothed event model taken as the backoff
distribution. Therefore, there is a different backoff model for every event and

every value of V;.

A score for each story against its set of background models , as well as against
the event model is computed, and the score difference between the best back-
ground model and the event model is reported. A threshold is applied to this
difference to determine whether a story is about the event or not. This threshold

can be adjusted to tune the tracker’s output characteristics [3].

2.2.4 UPenn Approach

The UPenn approach uses the same weighting, comparison and future selection
methods which are described in section 2.1.4 for event tacking. Results indicate
that very simple feature selection with no normalization of topic scores performed
best.

2.2.5 BBN Technologies’ Approach

The BBN approach uses the same approach that they used in event detection
(see Section 2.1.5 for details). In addition to the topic spotting metric, they

calculated two additional metrics called information retrieval (IR) metric and
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relevance feedback (RF) metric.

The IR metric looks at the problem in exactly the positive way. Given a query
Q, the probability that any new story S is relevant to the query is calculated. In
this case, it is assumed that the query was generated by a model estimated from

the story.
p(SisR|Q) ~ p(SisR) - [] p(¢alS) (2.21)

Again, the BBN approach uses a two-state model, where one state is a unigram
distribution estimated from the story .S, and the other is the unigram distribution

from the hole corpus.

The RF measure is similar to the IR measure. Instead of using all of the
words in the relevant stories, only those words that are common to at least two

of the irrelevant stories are used.

Besides that, they also implemented causal unsupervised adaptation for their
training documents, since more relevant stories usually lead to better models.
Their unsupervised adaptation algorithm looks for a test story with very high
score, adds it as a relevant story and re-train the system before working on the

next test story.

In order to achieve optimum system performance and comparable scores, a

statistical hypothesis test method is used to normalize scores.

Since different systems focus on different features of the stories, it seems rea-
sonable to combine the probability scores from any tracking system. A linear
combination of the log scores from the above three systems and the time decay

method are used to increase system performance [10, 20].

2.2.6 Combining Multiple Learning Strategies

This approach hypothesize that, by combining the output scores of classifiers
whose errors tend to be uncorrelated, the resulting system will have much less

cross-collection and cross-event performance variance than those of the individual
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classifiers. This system is called as Best Overall Result Generator (BORG) [24].

BORG limits its empirical validation to Rocchio (see Section 2.2.1.3), the two
variants of kNN (see Section 2.2.1.1) and BBN topic spotting language modelling
(see Section 2.2.5) with a more careful analysis on the behavior of these classifiers

and the conditions under which it combines them.

Decision Error Trade-off curve [11] of the classifiers is used as the primary
means of analyzing the error patterns each produces. Given a validation set,

following procedure shown in Figure 2.5 is used to generate a BORG system.

1. Run each classifier with different parameter settings, resulting in a set of
system generated scores and a DET curve per run.

2. Select the runs whose DET curves are either globally optimal, or signifi-
cantly better than other runs in a local region.

3. Combine the system output of selected runs by first normalizing the scores
of each system and then compute the sum of the scores of multiple runs per
test document. The normalization formula is

/ r—p
= 2.22
v s.d. ( )

where z is the original score, p is the mean of the scores for the run, and
s.d. is their standard deviation. This results in a set of scores of BORG;
re-normalize these scores in the same way.

4. Find the optimal threshold for BORG on the validation set.

Figure 2.5: Best Overall Result Generator (BORG) algorithm
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2.2.7 Summary of Event Tracking Approaches

Summary of the event tracking approaches, are shown in Figure 2.6.

Approach

Summary

CMU

Training documents are used as positive, other documents are used
as negative training documents. Three methods are used to make
a decision about the given document.

e kNN classifier
e Decision trees induction

e Rocchio

UMass

Training documents are represented by a query and a threshold.
Similarity to the given document is found by running the query on
it. If the similarity exceeds the threshold, we conclude that the
given document is about given event.

Dragon

Event models are produced by using training documents. Distance
between event models and given model is calculated with a statis-
tical method. A threshold is applied to obtain the binary decision.

UPenn

UPenn uses the similarity values, found in detection process. Bi-
nary decision is obtained by thresholding these values.

BBN

BBN uses the same probabilistic method. Two additional metrics:
IR metric and RF metric are also calculated. Binary decision is
obtained by combining these three metrics.

BORG

Combines the output scores of four classifiers:
e Rocchio
e Two variants of kNN classifier

e BBN topic spotting model

Figure 2.6: Summary of Event Tracking Approaches




Chapter 3

On-line New Event Detection

and Tracking

A solution to on-line new event detection and tracking problem is presented in this
chapter. On-line new event detection phase of the implementation is discussed
first, since, the novelty decision about a new document is done first. After the
event detection section, our solution to event tracking problem is given. The

complete algorithm is given in the last section.

3.1 On-line New Event Detection

Our approach for on-line new event detection is based on the difference between
an event and a news. Since every news item does not necessarily give information
about an event, we need not to be informed about all the events found by the
system. As a result, our detection system suggests that new event detections

should be alarmed after a user-defined amount of supporting documents found.

27
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3.1.1 Preprocessing

Preprocessing is the first step in our implementation as in any other text catego-
rization implementations. In this step, we transform the documents, which are
typically strings of characters, into a representation convenient for detection algo-
rithm. This process is done by deeper investigation of the documents. Frequent
words that carry no information, called stopwords, (i.e. pronouns, prepositions,
conjunctions etc.) are needed to be removed. Also removing suffixes from the
word roots, called word stemming, are needed to increase the system perfor-

mance [1]. As a result, preprocessing phase includes:

e Removing tags (i.e., time, resource info, etc.).

Removing stopwords.

Performing word stemming.

Performing simple corrections.

In our implementation, deep lexical analysis of the words was not done, instead,
a simple list of words that contains the word stems was prepared, and the words
that start with any of the word in this list by its word stem were replaced. Also,
the corpus that we study has a lot of incorrectly written words. In order to reduce
the effect of these words, a one-to-one matching list of important names is used

to correct them.

3.1.2 Document Representation

We implemented a commonly used document representation technique so called
vector space model. In the vector space model, documents (stories) are repre-
sented using a vector of weighted terms. There are several ways of determining
the weight of a word in a document, but most of the approaches are based on

two empirical observations regarding text:
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e The more times a word occurs in a document, the more relevant it is to the

topic of the document.

e The more times the word occurs throughout all documents in the collection,

the more poorly it discriminates between documents.

According to the criteria listed above, terms in a document vector are sta-
tistically weighted using the term frequency (TF) and the Inverse Document
Frequency (IDF). As a weighting schema, we selected tfc (term frequency com-
ponent) weighting, which take into account both the frequency of the word in a
document and the frequency of the word throughout all documents in the col-
lection. Furthermore, it takes into account that documents may be of different

lengths. Tfc weights are calculated using the Equation below:

fir * log ()
\/Zj]\/il[fjk * 109(%)]2

(3.1)

Wik =

where w;; is the weight of word ¢ in document k£ and f;; is the frequency of the
word 7 in document k, N is the number of documents in the collection, n; is the
total number of times word ¢ that occurs in the hole collection, and M corresponds
to the number of words in the auxiliary corpus. If the word does not appear in
the auxiliary corpus (n; = 0 or n; = 0), a default value 1 is used instead of these

values.

In order to use static IDF values, we used the incremental IDF. Since new
stories arrive continuously, the new vocabulary from incoming documents should

be inserted into the IDF calculations [28]. The incremental version of the IDF is
defined to be:

N,
IDF(M,) = lOg(n(tp)) (32)
7p

where p is the current time, ¢ is a word, N, is the number of accumulated doc-
uments up to the current point in time, and ng p) is the number of documents

that contains the word ¢ up to the current point.



CHAPTER 3. ON-LINE NEW EVENT DETECTION AND TRACKING 30

As a result, the word weighting formula becomes:
fik * lOg(an, )
- (3.3)
VA e # Log ()P

Wik =

T(t,5)
3.1.3 Document Comparison

We did not grow any cluster, to represent events, in the implementation. Keeping
individual documents without clustering makes the novelty test more difficult for
the current story to pass, because this story must be sufficiently different from
all of the past stories, a stronger condition compared to being different from an
average of past stories [26]. As a result, the current story with all the existing

stories in the time window is computed.

A similarity value is calculated while comparing two documents. The similar-
ity of two documents is defined as the cosine value of the corresponding document

vectors:
§M Wik * W
j=1 Yik Jq

\/( j]\/il w?k) * ( ;’Vil wjz'q)

where sim(k, q) is the cosine similarity value between documents k and ¢, wjy is

sim(k,q) = (3.4)

the weight of word j in document k, wj, is the weight of word j in document ¢,
Y M, w?, is the sum of squares of the word weights in document k, and 302, w?,

is the sum of squares of the word weights in document gq.

Since we are using tfc weighting schema (Equation 3.3), the sum of squares
of the word weights for a document is equal to 1, and the denominator of the

similarity equation becomes 1. So, we can simplify Equation 3.4 as:

M
sim(k,q) = wji, * wjg (3.5)
Jj=1

3.1.4 Time Window

We also added the time penalty functionality to document similarity calculations

[3, 26, 28]. We used day-based windowing with an exponential smoothing. Given
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the current document k in day date, in the input stream, we impose a time
window of m days prior to day d, and define the modified similarity between k

and any document ¢ in the time window in day date,:

, , sim(k, q) if (datey, — date,) <1
sim(k,q) = » )
(datey, — date,)™ x sim(k,q) if (datey — date,) > 1
If a document’s date does not fall into the time window, the similarity between
that document and the current document is not computed. That is sim(k, q) is

assumed to be 0.

In order to apply the time penalty function, a two-phased method is used.
In the first phase, we keep the k most similar documents in the time window
without applying the smoothing function. This method allows us to find the
k most similar documents in the time window. In the second phase, we apply
the smoothing function to them. This process prevents the domination of the
recent documents even if they are not similar to the older ones and increases the

importance of the recent ones within the neighbors.

3.1.5 Novelty Decision

An additional threshold called novelty threshold (t,) was used [26]. If the maximal
similarity score between the current document and any document in the past are
below the novelty threshold, then this document is labelled as “NEW” | meaning
that it is the first story of a new event; otherwise a flag of “OLD” is issued. By
tuning the novelty threshold, one can adjust the sensitivity to novelty in on-line

detection. We formulate this approach with a decision score:
decision(d;) = arg max{sim(i, ¢)'} — threshold (3.6)

where d; is the current document, arg max.{sim(i, c¢)’} is the maximum similarity
value between document ¢ and any document in the time window, and threshold

is the user-defined novelty threshold.

If the decision score is positive, then we assume that the document does not
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discuss a new event. On the contrary, negative decision score is the indication of

the new event.

In addition to the binary (New or Old) prediction, a confidence score is also
computed for each incoming document, indicating how new this document is as

measured by the system [26, 28]. This score is defined to be:
score(i) = 1 — argmax{sim(i, c)'} (3.7)

where i is the current document and max{sim(i,c)'} is the maximum similarity

value between document ¢ and any cluster in the time window.

3.1.6 Support Threshold

One of the main drawback of the previous on-line new event detection imple-
mentations is that they focus on the first story detection and did not focus on
the number of alarms. We observed from the experiments that the number of
new event alarms are so high that user of the system must look at the new event

alarms many times in a day.

In order to decrease the number of new event alarms, we added a new user-
defined threshold called support threshold (ts). By the help of this threshold, the

number of new event alarms can be decremented enormously.

Our approach is originated from the difference of the event and news (see
Section 1.1 and 1.2 for details). As it is described in related section, news can
be informative. We have observed many news stories that are talking about
local events, local activities, results of the sportive activities etc. These type of
one-time-only informative news stories should be eliminated and hidden from the

user.

Our hypothesis is simple:

If a new event is worth for alarming, it should be supported by up-

coming news in a short time.
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Since we assume a multi-resource environment, supporting news stories come
rapidly. Because, all the news agencies rapidly react to new and important events.

The more important the event is, the faster the reaction of the agencies will be.

Also, the user can define the support threshold easily. It is defined as the
number of news stories needed from each resource before an alarm is issued.
First, it is expressed by words. Then it is formulated by defining a weight for each
resource, a test condition and an overall threshold. The resulting representation
of the support threshold is also easy and understandable. User can change this

definition easily.

Support threshold is checked when a new document is inserted into an event.
An example of a support threshold can be defined as: “wait one supporting news
story from any news resource including itself” This definition can be formulated
as:

srcy + Ssrco + srceg + sreq > 1

where sr¢; is the number of documents, in a given event, which belongs to resource
number 7. We call the left-hand-side of the equation as support value. First,
support value of an event is calculated. Then, the threshold is checked according
to the condition. If the solution of the equation is true, then new event alarm for

the event is issued. If the solution of the equation is false, nothing is done.

As a result, we make new event decision immediately, however we delay new
event alarm until a support threshold is exceeded. This approach decreases the
number of new event alarms dramatically, even if the support threshold is kept
very small such as “wait one supporting news from any news resource including

itself”.

3.2 Event Tracking

We implemented event tracking as an unsupervised learning task. The tracking
process starts immediately after detection of a new event. Therefore, our tracking

system is trained with only one document (N, = 1), which is the news story of the
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first document of an event. It is clear that as the number of training documents
increases, the system performance also increases. Furthermore, events evolve over
time. So it is always natural to add more training documents to a given event.
This process is called as unsupervised adaptation [10], and we applied it by adding
each tracked event to the training documents. We also propose that a news story
can talk about more than one event, so it can belong to more then one event.
In this chapter, we give our solutions to the event tracking problem according to

considerations given above.

Our event tracking approach uses the similarity scores obtained from the new
event detection calculations by keeping the k£ most similar documents and their
similarity scores to the given document. If the decision for the given story in
event detection phase is “old”, these k similarity information is used in the k-
Nearest Neighbor (kNN) classification method to find the related events of the

given document.

3.2.1 K-Nearest Neighbor Classification

Since it is found as a robust approach to text categorization, ranking among the
top-performing classifiers in cross-method evaluations on benchmark collections,
the kNN classification method is used for event tracking [23, 25, 27].

The kNN algorithm is quite simple [27]: given a test document, the system
finds the k nearest neighbors among the training documents, and uses the cate-
gories of the k neighbors to weight the category candidates. The similarity score
of each neighbor document to the test document is used as the weight of the
categories of the neighbor document. If several of the k£ nearest neighbors share
a category, then the per-neighbor weights of that category are added together,
and the resulting weighted sum is used as the likelihood score of that category
with respect to the test document. By sorting the scores of candidate categories,
a ranked list is obtained for the test document. By thresholding on these scores,

binary category assignments are obtained.
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Yang et al. adapted conventional M-way classification kNN to the 2-way kNN
classification problem of event tracking by constructing a 2-way kNN for each

event (see Section 2.2.1.1 on Page 20 for details).

The performance of kNN depends on the choice of the value of k. Optimizing
the value of k in event tracking is a problem, due to the very small number
of positive examples in the training set. Using a large value of k£ will retrieve
many negative examples whose sum could easily exceed the sum of the positive
examples, even if each negative example is very dissimilar to the test document
and thus has a small similarity score. Using a small value of k£ will cause the
system to retrieve only negative examples for a test document unless it is very
close to a positive training example. To solve this problem, two alternatives
of Formula 2.15 were used to calculate the confidence score for kNN algorithm.
One of them is the Formula 2.16, and the other is the one which we used in our
tracking implementation as:
1
1R

s(z, k. D) S cos(,y) — —— 3 cos(z, 2) (3.8)

yeEPy |Qk| 2E€Q

where z is the test document; y(z) is a positive (negative) training document;
D is the training set of documents; k£ is the number of nearest neighbors of z
in D, which the system use to compute the score; Py (Qg) is the set of positive

(negative) instances among the k nearest neighbors of x in D.

Empirical results show that both of the new variants of kNN can significantly

improve the tracking performance of the original kNN [25].

3.2.2 Event Tracking Method

Event tracking starts with k£ nearest neighbors of a given document which are
found in detection phase. Next, the events that at least one neighbor exists in
their event lists are found. Than, we calculate the Equation 3.8 for each event.
While we are calculating the kNN scores for a given event, the documents which
are in the event list of a given event are used as the positive training documents,

and the others are used as negative training documents. Decision is made by
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thresholding the results of Equation 3.8:
decision(z) = s(x, k, D) — threshold (3.9)

We add the document information to the events which has a positive decision

scores.

3.3 On-line New Event Detection and Tracking
Algorithm

With the considerations described in this chapter, our on-line new event detection
and tracking algorithm processes each new document sequentially, as shown in

Figure 3.1.
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Vo)

10.

Prepare a vector space model of the document (Equation 3.3).

Remove the old documents that exceed the time window according to the
date of new document.

Calculate the similarities (Equation 3.5) between the new document and
existing documents in the time window. Keep £ maximum similarity values
and information about them.

. Apply time penalty function to & maximum similarity values.

Calculate the decision score (Equation 3.6) for the new document.

If the decision score for the current document does not result in a positive
value, flag the document as containing a new event. Calculate support value
for the new event (Section 3.1.6).

aining o now avant Thane
AlllllE a 11ICW ©vollv. 111011,

(a) Find all events that contain at least one of the neighbors.
(b) For each event, found in previous step:
i. Calculate the kNN score (Equation 3.8).

i. Calculate the kNN decision score(Equation 3.9).
iii. If the decision score does not result a positive score, ignore it.

—

iv. If the decision score results a positive value, add the document
to the event list and recalculate support values for those events
(Section 3.1.6).

. If the support value of any event exceeds the support threshold, perform

new event alarm process.
Adjust document counts to calculate the df value of the next document.

Add the new document to the time window.

Figure 3.1: On-line new event detection and tracking algorithm.




Chapter 4

Experimental Design and Results

Effectiveness measures of our system were evaluated using the stories related to
the 15 selected events (about 2.8% of the entire corpus). Although, the detection
and tracking system were run on the entire corpus. The results were obtained
on a personal computer with Intel Celeron MMX' - 400 Mhz. CPU and 64 MB
of main memory. The process time of a document, including the preprocessing
phase, changes between 1 to 15 seconds with an average of 3 seconds. Length
of the document, window size, and kNN threshold effects the processing time.

Window size has the maximum effect among them.

4.1 Evaluation Methodology

In this section, we discuss the effectiveness measures that were used to evaluate

our experiments.

! Celeron is a registered trademark of Intel Corporation.

38
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4.1.1 Effectiveness Measures

To evaluate the effectiveness of the on-line detection results, a two-by-two con-
tingency table is used for each event, as shown in Table 4.1, where a, b, ¢ and d

are document counts in the corresponding cases.

Table 4.1: Contingency table for on-line detection

NEW is true | OLD is true
System-predicted NEW a b
System-predicted OLD ¢ d

Since there are only 15 events defined, and each event has only one first story,
the total number of true New stories is 15 for the entire corpus. This is a small
number for a statistically reliable estimation of performance. To improve the
reliability, an 11-pass evaluation was conducted [3, 26]. The first pass used the
entire corpus; the second pass used the modified corpus after moving (“skipping”)
the first story of each event; the third pass used the modified corpus after moving
the first two stories of each event, and so on. The eleven passes are labelled as
Nskip = 0,1, ..

global contingency table then was obtained by summing the corresponding cells

.,10. A contingency table was computed for each value of Ngp; a

in the per-Ng;, contingency table.

Tracking effectiveness is calculated by using the contingency table, which is
similar to Table 4.1.

Table 4.2: Contingency table for tracking

YES is true | NO is true
System-predicted YES a b
System-predicted NO ¢ d

4.1.2 Performance Measures

Six performance measures of effectiveness are also defined by using the contin-

gency table values. These measures are given in Table 4.3.
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Table 4.3: Performance measures for on-line detection and tracking.

Name Formula Condition
Miss m= if a + ¢ > 0, otherwise undefined
False Alarm f= HLd if b+ d > 0, otherwise undefined
Recall r= 2t if a + ¢ > 0, otherwise undefined
Precision =5 if a +b > 0, otherwise undefined
F Fy = (ff;) = (QaiZJrc) if (2a 4+ b+ ¢) > 0, otherwise undefined
Cost C':cn%—i-agﬁ where n=a+b+c+d

F score equally weights the recall and precision values, which is a desired
condition [17]. Cost of detection Cye; and cost of tracking Cy., can be calculated
by selecting different values for the parameters a;; and a. In our implementation,
we selected a; = 0.2 and ay = 0.98 for detection task cost calculations [22], and

a; = 0.1 and ay = 1.0 for tracking task cost calculations [25].

Global performance over all events is evaluated using two methods: the micro
average, obtained by first summing the corresponding cells in the contingency
tables of the individual events and computing the global performance scores from
the combined table, and the macro average, obtained by computing per-event per-
formance first and averaging them. The micro-average introduces a scoring bias
towards frequently-reported events, and the macro-average towards less-reported

events; both are informative [25].

4.2 Experimental Results

In order to test our implementation, we run the algorithm in 4 different window
sizes: 15, 10, 7 and 4 days, including the current date of the document which
is tested. The previous works [26, 28] suggest that the window sizes between
1 to 6 weeks provide good performance. But we have also seen that the data
sizes are too small in previous implementations. For example, Yang et al. [28]
suggest a window size of 2500 documents which cover about 6 weeks, but we
have reached that average document count in 4 days of window size, because the

average number of documents per day is about 600 in weekdays, and about 300
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Table 4.4: Average number of documents in experiment windows.
Window Size | Average Number of Documents

4 days 2089
7 days 3628
10 days 5165
15 days 7701

on weekends (see Figure A.2). The average document counts, for each window
sizes, are given in Table 4.4. As it is seen from Table 4.4, the document counts for

window sizes of 7, 10, and 15 days are relatively higher than the previous works.

4.2.1 Time Windowing Parameter Selection

For the time penalty function parameter «, in Section 3.1.4, we selected o« = 0.25.
This value is selected to keep the penalty function value greater than 0.5 for a

considerable time period.

Events are typically reported within 4-week time window (see Section 1.1),
so we selected the half of this period (14 days) as a suitable date difference for
decreasing the similarity of a document by 0.5. As it can be seen from Figure

4.1, the function value becomes 0.5 when the time difference is equal to 16 days.

4.2.2 11-pass Test Results

We calculated the performance measures for each window size, in order to find
the optimum threshold for new event detection process. The optimum detection

threshold is selected according to the following considerations:

e Around the crossing point of recall and precision values. That is, we tried
to keep the recall and precision values equal. When a choice must be made

between them, the former is generally preferable [17].

e Which maximizes the Fj score [26, 28].
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Figure 4.1: Value of time penalty function for oo = 0.25.

e Which minimizes both miss and false alarm rates [4].

e Which minimizes the Cly;.

Since Fi score equally weights the recall and precision values, maximum value
of the F} score must be around the crossing point of recall and precision values.
Likewise, miss and false alarm rates directly effect the cost function. Minimizing
the cost minimizes the miss and false alarm rates. As a result, optimum threshold
is selected by plotting the F} and Cly,; scores to a chart, and then by selecting the
optimum point accordingly. An example of such chart is given for micro-averaged
values of 15 day window size in Figure 4.2. Since at that point F} score has a local
maximum, and Cj,.; value is very close to the minimum, the optimum threshold

was selected as (0.1493.

Optimum thresholds for all window sizes are selected by using the same
methodology. Results are given in Table 4.5. According to the results obtained

from the optimum performance measures, optimum thresholds are selected as
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Figure 4.2: On-line detection F; and Cy.; curves for micro-averaged values of 15
day window size.



CHAPTER 4. EXPERIMENTAL DESIGN AND RESULTS 44

Table 4.5: Optimum threshold values(m,f,r,p values are given in percentages).

window size | type | threshold m f r p F Clet

15 days micro | 0.1493 | 69.1% | 1.96% | 30.9% | 16.1% | 0.212 | 0.157

15 days macro | 0.1493 | 69.1% | 1.97% | 30.9% | 15.8% | 0.209 | 0.157

10 days micro | 0.1381 | 72.1% | 1.42% | 27.9% | 19.3% | 0.228 | 0.158
10 days macro | 0.1381 | 72.1% | 1.42% | 27.9% | 19.1% | 0.226 | 0.158

7 davs micro 0.1308 71.5% | 1.58% | 28.5% | 18.0% | 0.221 | 0.159

UQys | il Vo O veiauoO L. /U 1.0 /U L0.U /0 10.U/U | Veddldl | VedUo

7 days macro | 0.1398 | 71.5% | 1.58% | 28.5% | 17.7% | 0.218 | 0.159

4 days micro | 0.1381 | 69.7% | 2.15% | 30.3% | 14.7% | 0.198 | 0.160
4 days macro | 0.1381 | 69.7% | 2.15% | 30.3% | 14.5% | 0.196 | 0.160

0.15 for 15 day window size and 0.14 for the other window sizes. We tested our
on-line new event detection and tracking implementation by using these threshold

values.

We can observe from Table 4.5 that macro-averaged and micro-averaged values
are almost the same. This result is normal, since we used only the documents of
events as an entire corpus in performance calculations. While we were calculating
the macro-average measures, the summation of a,b,c, and d values are equal to
the number of documents of a given event. As a result, macro-averaged values
are calculated independently for each event. Since there is no relation among the
event calculations, the micro-averaged and micro-averaged values should be very

close to each other.

4.2.3 Event Tracking Results

In order to test the effectiveness of the tracking system, we run the tracking
process with optimal detection threshold and 10 different decision threshold values
of the Equation 3.9. This process helps us to understand the effect of the kNN

decision thresholds.

The selected kNN decision threshold values and the macro averaged tracking
performance results of 15 day window size, according to the optimum detection
threshold 0.15 is given in Table 4.6. In that table, kNN threshold means kNN

decision threshold value which is shown in Equation 3.9. Macro averaged Cl, is
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Table 4.6: Macro averaged tracking results for 0.15 detection threshold with 15
days window size(m,f,r,p values are given in percentages).

kNN threshold m f T p Cirk F
0.200 78.1% | 0.0007% | 21.9% | 94.4% | 0.00172 | 0.32
0.100 70.5% | 0.0170% | 29.5% | 73.1% | 0.00165 | 0.34
0.090 66.5% | 0.0126% | 33.5% | 74.9% | 0.00158 | 0.38
0.080 67.6% | 0.0203% | 32.4% | 68.2% | 0.00155 | 0.37
0.075 66.4% | 0.0287% | 33.6% | 64.2% | 0.00153 | 0.36
0.070 67.3% | 0.0401% | 32.7% | 57.2% | 0.00153 | 0.33
0.065 67.0% | 0.0474% | 33.0% | 51.0% | 0.00152 | 0.32
0.060 64.9% | 0.1687% | 35.1% | 35.1% | 0.00162 | 0.29
0.055 60.3% | 0.2644% | 39.7% | 33.1% | 0.00169 | 0.28
0.050 57.0% | 0.5658% | 43.0% | 29.2% | 0.00192 | 0.28

Table 4.7: Optimum decision thresholds for tracking system.

window size | kNN threshold
15 days 0.065
10 days 0.065
7 days 0.070
4 days 0.055

used as primary measure [25], and 0.065 is selected as an optimum kNN threshold.

By applying the same process for the other window sizes, optimum decision

thresholds are selected. The optimum decision thresholds are shown in Table 4.7.

Since performance measures are calculated by using contingency table, the
comparison between our tracking method and simple kNN method (described is
Section 2.2.1.1) is done by using the results found in the contingency tables of
each method. The comparison values for 15 day window size is given in Table 4.8.

kN N; means the previous method, while kN N,, means our proposed method.

As it can be seen from Table 4.8, we have achieved better a and ¢ values,
and worse b value. In fact, these results can be expected. Because our tracking
approach has the ability to relate a document to more than one event. This

ability decreases the amount of ¢ value, but can increase the amount of b value.
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Table 4.8: Comparison of the contingency table results.
kNN kNN, | kNN, | ENN,, | ENN; | kENN,, | kNN, | kNN, | kNN

threshold a a b b c c d d
0.200 119 116 5 1 1203 1206 | 45203 | 45207
0.100 180 179 118 39 1142 1143 | 45090 | 45169
0.090 228 208 88 51 1094 1114 | 45120 | 45157

0.080 257 235 141 74 1065 | 1087 | 45067 | 45134
0.075 271 250 200 107 1051 1072 | 45008 | 45101
0.070 284 235 279 129 1038 | 1087 | 44929 | 45079

0 N06H 207 247 220 195 1095 1075 AART7R A50R2
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0.060 309 245 1172 142 1013 | 1077 | 44036 | 45066
0.055 325 249 1837 191 997 1073 | 43371 | 45017
0.050 374 261 3935 225 948 1061 | 41273 | 44983

It should not be forgotten that while we were calculating the primary measure
Cire, b is multiplied by «; which is taken as 0.1, and ¢ is multiplied by as which
is taken as 1.0. This means that the effect of ¢ on the tracking cost is 10 times

greater than the effect of b.

4.2.4 The Effect of Support Threshold

Our main contribution to on-line new event detection problem is adding one
additional threshold, called support threshold by using the resource information of
the news stories. Our aim is to reduce the number of new event alarms according
to the user needs. In order to check the effect of the support threshold, we
selected 13 different functions as shown in Table 4.9. In this table, Sr¢; means
the amount of documents, from resource number i, Src, means the amount of
documents from the resource of the first document of a given event. First ten
methods can be called as simple methods, since alarm is issued after a determined
amount of supporting documents are found, regardless of their resource. Method
11 looks for a supporting document which is different from the resource of the
first document of a given event. All of the resources must support the event
in method 12. Method 13 is the most important one. It shows the priority or
the confidence of the user. As it can be seen from the definition in Table 4.9,

some weighting values are given to the resources in method 13. If a document
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Table 4.9: Support threshold evaluation methods.

Method # Alarm if the result is true

1-10 Srey 4+ Sreg + Sres + Srey > 1

2 Srey 4+ Sreg + Sres + Srey > 2

3 Srey + Sreg + Srez + Srey > 3

4 ST01+ST02+ST03+STC4 >4

5 ST61+STCQ+ST63+STC4>5

6 ST61+STCQ+ST63+STC4>6

7 ST61+STCQ+ST63+STC4>7

8 Srey + Sreg + Sres + Sreg > 8

9 Srey + Sreg + Sres + Sreqg > 9

10 Srey + Sreg + Sres + Sreq > 10

11 Srey + Sreg + Sres + Srey — Sreg > 1

12 ((Srey > 0) A (Sreg > 0) A (Sres > 0) A (Sreq > 0)) = true
13 Srep 4 (2% Sreg) + (8% Srez) + (12 Sreq) > 11

Table 4.10: Number of new event alarms for the methods 1-10.
Window Size | total# 1 2 3 4 5

15 days 11343 | 5975 | 4423 | 3617 | 3134 | 2760
10 days 11978 | 6297 | 4628 | 3739 | 3210 | 2785
7 days 13789 | 6893 | 4902 | 3897 | 3297 | 2819
4 days 11691 | 6028 | 4403 | 3652 | 3161 | 2840
Window Size | total# 6 7 8 9 10

11242 AR | 9952 | 9N4R | 182 | 1725

1 R A‘)‘7C
19 Gays 11999 Lal4 LLTT FAVE To) 15069 1{309

10 days 11978 | 2495 | 2271 | 2056 | 1890 | 1731
7 days 13789 | 2507 | 2235 | 1997 | 1809 | 1655
4 days 11691 | 2568 | 2362 | 2203 | 2074 | 1956

belongs to the resource 4, then new event alarm is issued immediately, otherwise

the system waits until the summation exceeds the given amount.

The results of the evaluation of the first 10 methods, for each window size
at their optimum thresholds, are given in Table 4.10, where total# means the
number of total new event alarms issued without using the support threshold,
and the numbers at the top of each column indicate the method number. We can
easily conclude that, even with a simple usage of support threshold, the number

of new event alarms can be decreased dramatically.

The results of the evaluation of more complex but also more useful support
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Table 4.11: The analysis of the number of new event alarms for the methods

11-13.

window size | 15 days | 10 days | 7 days | 4 days
Method # total# 11343 11978 | 13789 | 11691
NoA 3097 3265 3420 | 3380
11 min 2 2 2 2
max 177 164 105 263
avg 0.7 0.4 4.6 7.2
NoA 224 199 141 225
12 min 4 4 4 4
max 290 298 107 626
avg 33.7 27.6 16.1 57.9
NoA 3291 3394 3525 | 3408
13 min 1 1 1 1
max 8 8 8 8
avg 0.1 5.0 4.9 0.1

threshold methods are investigated with a deeper analysis, so the result of the

analysis is given in a different table (Table 4.11), where NoA means the number

of alarms, min is the minimum, maz is the maximum and avg is the average

number of documents tracked by the system before an alarm issued. As it can

be derived from the table, the number of documents needed to issue an alarm,

are different for each event. For example, in method 13, an alarm can be issued

immediately when a new event detected from a desired news resource Srcy. The

maximum values of methods 11 and 12 shows that waiting for a support from

more than one resource with a uniform weighting can delay the alarm time very

much, but as it can be derived from the maximum value of method 13, nonuniform

weighting works better.



Chapter 5

Conclusion and Future Work

This thesis presents new approaches to the on-line new event detection and track-

ing problem.

Different than the previous studies, we assume a multi resource environment.
By using resource information of news stories, obtained from this environment,
we define a new concept, called support threshold, as the number of news stories
needed from each resource before an alarm is issued. Support threshold is used
to decrease the number of new event alarms and it can be adjusted by the user.
Furthermore, user can define the priority or the weights of the news resources
by using the support threshold. Experimental results showed that the support

threshold significantly decreases the number of new event alarms.

Another new approach that we implemented is relating a news story to more
than one event. This approach is also promising some improvements, but it
needs further investigation. As a future work, unsupervised adaptation part of
the process can be implemented by using another threshold, which is greater
than the detection threshold, to increase the system performance and decrease

the effect of the incorrectly tracked events.

Unfortunately, the relationship between events and topics is not so simple and

well defined in real life. Most of the time events consist of sub-events and topics
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consist of broader topics. Moreover one event can cause to a new event. This close
and usually uncertain relation causes difficulties in implementation and increases
the false alarm and/or miss rate of the system. But level of abstraction for topics
and events can be defined and adjusted by the user with the adjustments of the
thresholds.

From a statistical learning point-of-view, it is more difficult to identify docu-
ments as instances of small, living events than of large, stable topics. The small
size of an event also presents special difficulties in tuning the parameters of the
tracking system to produce optimal results [25]. Consequently, an effective de-
tection and tracking system can be implemented by detecting the topic of the
event and than testing for the novelty of the document. This process can easily

incorporated to our implementation.
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Appendix A

Corpus Information

In order to test our approach, we created a corpus which spans the period from
January 2, 2001 to March 31, 2001 with 46,530 Turkish news stories from the
Reuters newswire. Corpus consists of four independent news resources of Reuters,

which are :

1. Anadolu News Agency

2. Reuters News

w

. Diinya News Agency

4. Istanbul Stock Exchange Company News

Anadolu News Agency news stories contain political, sports, economical, cul-
tural, local and other types of events. Reuters News usually contain economi-
cal news stories. Diinya News Agency news stories usually contain economical
and political events, and long comments about economical and political events.
Istanbul Stock Exchange Company News contain only stock market news stories

which are usually very short.

The majority of the corpus documents (69%) belongs to the Anadolu News

Agency and the minority of the documents (2%) are come from Istanbul Stock
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Distiribution of the Documents

Istanbul SE Company News
2%

Diinya News
Agency 18%

Reuters News
11%

‘Anadolu News
Agency 69%

Figure A.1: Distribution of documents in the corpus.

Exchange Company News. The distribution of the documents in the corpus is

shown in Figure A.1.

We can expect to have more news stories in weekdays with respect to the
weekends. Figure A.2 shows that the average number of weekday documents
are almost twice the size of weekend documents. The overall average number of
weekday documents is 611 while the average number of weekend documents is
300.

From the 46,530 news, we selected 15 events which form 1322 (2.8%) stories
to test our approach. The distribution of events across the corpus is shown in
Figure A.3. The points in the figure means that there exists at least one news

story in that day.

The events used for evaluation are listed with the number of event documents

about the event in Table A.1.
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Figure A.2: Average number of documents per day, according to the weeks of the

corpus.
Table A.1: Selected events from the corpus.
No | Event # of Docs.
1 | Ship sink in Kemer 40
2 | Sisli police station bombing 33
3 | Launching of Tiirksat 2A 31
4 | Operation “White Energy” 174
5 | Prof. Zekeriya Beyaz assault 65
6 | Operation “First Curtain” 23
7 | Armenian Assimilation Law in France 358
8 | Gaffar Okkan assassination 222
9 | Death of the representative Fevzi Sithanlioglu 98
10 | MGK Cirisis 182
11 | Skyjack of Russian Airplane 32
12 | Cancellation of immunity of representative Mustafa Bayram 22
13 | MGK March meeting 14
14 | Fire in Traffic Hospital 11
15 | Ismail Cem in the USA 17




o7

APPENDIX A. CORPUS INFORMATION

sde(

00/¢€  00/8L/€  00/HHE  00M/E  00/9¢/c  00/6HC OO/ 00/  (O/6e/t  O0/ge/k  00/GHE  00/8/L  OO/HL
0
.............. Q@ e - 0000 - €660 P
...................................................................................... €0 - 006 - .

......................................................................... 0 0090 - - 0000000000 - -
€

.......... 000000 @---------0----0----- 0000 -0- 000000 - 00000 900000- 6000000000 -
14
........................................ @ - G- 000000 - :
....... Q- e G - - 00000000 - 9

....... 0----0-----9-00 ------00 --- 900 - -00---00000 00- 90000000000000000000000- 00000 -0000000--0-00
L

000 -0 ---0--0-00-------------------- 9-000--0--000- 000 000 -0000000000000 - ---------------------------
8
..... - 000000000000 ;

......................................... BOOOOBOO00 - -
0l

............ L L e e D B D e e EEEEEEE R,
H

A A 4 e e s ettt bl it il e el it it Rl
¢l

B4 4 44 A bbbl it Rl il etk ittt Rt i il il etk Rt R
€l

||||||||||||| ..llllllllllllllllllll||||||||||||||||||||||||||||||||l||||||||||||||||||||||||||||||||||||||||||||||
12

2L L R R R e e D e e e e e E e
Gl
9l

SAIQUUITN] JUDAT

Figure A.3: Distribution of events across the corpus.



