A RULE-BASED VIDEO DATABASE SYSTEM
ARCHITECTURE*

Mehmet Emin Dénderler, Ozgiir Ulusoy and Ugur Giidiikbay
Department of Computer Engineering, Bilkent University

Bilkent, 06533 Ankara, Turkey
e-mail: {mdonder, oulusoy, gudukbay }@Qcs.bilkent.edu.tr

Abstract

We propose a novel architecture for a video database system incorporating both spatio-
temporal and semantic (annotation, event/activity and category-based) query facilities. The
originality of our approach lies in the fact that we intend to provide full support for spatio-
temporal, relative object-motion and similarity-based object-trajectory queries by a rule-
based system utilizing a knowledge-base while using an object-relational database to answer
semantic-based queries. Our method of extracting and modeling spatio-temporal relations
is also a unique one such that we segment video clips into shots using spatial relationships
between objects in video frames rather than applying a traditional scene detection algorithm.
The technique we use is simple, yet novel and powerful in terms of effectiveness and user
query satisfaction: video clips are segmented into shots whenever the current set of relations
between objects changes and the video frames, where these changes occur, are chosen as key
frames. The directional, topological and third-dimension relations used for shots are those
of the key frames selected to represent the shots and this information is kept, along with
frame numbers of the key frames, in a knowledge-base as Prolog facts. The system has a
comprehensive set of inference rules to reduce the number of facts stored in the knowledge-
base because a considerable number of facts, which otherwise would have to be stored
explicitly, can be derived by rules with some extra effort.

Keywords: content-based retrieval, spatio-temporal relations, video databases, knowledge

representation, rule-based video modeling, inference rules, information systems.

1 Introduction

There is an increasing demand toward multimedia technology in recent years. Especially, first
image and later video databases have attracted a great deal of attention. One common property
of image and video databases is the existence of spatial relationships between salient objects.
Besides, video data has also a time dimension, and consequently, objects change their locations
and relative positions with respect to each other in time. Because of this, we talk about spatio-

temporal relationships instead of spatial or temporal relationships alone for video data.

This paper proposes a novel architecture for a video database system having both spatio-

temporal and semantic (annotation, event/activity and category-based) query facilities. The

*This work is supported by the Scientific and Research Council of Turkey (TUBITAK) under Project Code
199E025.

architecture is original in that we intend to provide full support for spatio-temporal, relative
object-motion and similarity-based object-trajectory queries by a rule-based system utilizing
a knowledge-base while using an object-relational database so as to answer semantic-based
queries. Our method of extracting and modeling spatio-temporal relations is also a unique one:
video clips are segmented into shots with respect to the spatial relationships between objects in
video frames in comparison to a conventional scene detection algorithm. We believe that our
approach to use spatial relations for segmenting video clips into shots yields an intuitive and
simple representation of video data. Moreover, it also provides more effective and precise
answers to the user queries that involve objects’ relative spatial positions in time dimension
since stored facts are generated based upon objects’ relative positions and key frames are de-

tected when a change on the set of spatial relations occurs.

There is a very limited number of proposals in the literature that consider both spatial and
temporal features of video objects in an integrated manner. Detailed discussion of some of the

proposals related to our work and their comparison to our approach are provided in Section 2.

The contributions of this paper can be shortly stated as follows:

Video modeling and querying The proposed system uses a rule-based approach for modeling
and querying spatio-temporal relations. It keeps in its knowledge-base only a relatively
small number of relations as facts deriving the rest using a rule-based inference mechanism
provided by Prolog. The query processor extracts spatio-temporal and semantic parts from
queries and sends them to proper system components. Intermediate answers returned from
these components are integrated seamlessly by the query processor to form final query

results.

Video segmentation A novel approach is proposed for the segmentation of video clips based
on the spatial relationships between salient objects in video data. Video clips are segmented
into shots whenever the current set of relations between video salient objects changes,
thereby helping us to determine parts of videos where the spatial relationships do not
change at all. Nevertheless, we do not make any shot detection or do any image processing
for the segmentation of video data: minimum bounding rectangles (MBRs) of the salient
objects are manually specified before the relationship information is extracted from video
frames. Apart from MBR specification, fact-extraction process for the directional and

topological relations is carried out automatically.

Retrieval Granularity To the best of our knowledge, all the systems proposed in the literature
so far associate video features with scenes that are defined to be the smallest logical units
of video clips. However, our data model supports a finer granularity for query processing,
which is independent of semantic segmentation of video clips: it allows users to retrieve

any segment of a video clip, in addition to semantic video units, as a result of a query.

Directional relations To determine which directional relation holds between two objects, the
center points of the objects’ MBRs are used. Thus, directional relations can also be defined

for overlapping objects as opposed to other works that are based on Allen’s temporal
interval algebra [2, 6, 12, 13].

Third-Dimension (3D) Relations Some additional relations were also defined on the third-
dimension (z-axis of three dimensional space) and rules were implemented for them. How-
ever, they were not experimented due to the fact that they have not yet been fully incor-
porated into our fact-extraction tool. The 3D relations defined in the system are infrontof,
behind, strictlyinfrontof, strictlybehind, touchfrombehind, touchedfrombehind and samelevel.
We present the rules for these relations together with the rest of the spatio-temporal rules

in Appendix A.

Currently, our video database system can answer a broad range of spatio-temporal queries
using its knowledge-base. We intend to provide full support for relative object-motion, similarity-

based object-trajectory and semantic queries as well. These features are under development.

The organization of this paper is as follows: Section 2 presents a brief introduction of the
research done in literature regarding spatio-temporal relationships and their representation for
modeling and querying of video data. Overall architecture of the proposed video database system
and the rule-based approach to represent spatio-temporal relations between video salient objects
are introduced in Section 3. Section 4 gives some example queries based on an imaginary soccer
game through which our rule-based approach is demonstrated. Section 5 presents the results
of our performance tests regarding the efficiency of the proposed system in terms of space and
time criteria, and its scalability with respect to the number of salient objects per frame and
the total number of frames in video. We make our conclusions and state our future work in

Sections 6 and 7, respectively. Finally, the list of our inference rules is provided in Appendix A.

2 Related Work

There are not many studies that have appeared in the literature regarding the spatio-temporal
modeling of video data. However, spatio-temporal relations between video objects constitute an
integral part of the query types to be expected from users. Consequently, it is necessary for a
video database system to employ efficient and effective spatio-temporal modeling and indexing

of video data.

As mentioned in [14], there is a very limited number of proposals in the literature that
take into account both spatial and temporal properties of video salient objects in an integrated
manner. Some of the proposed index structures are MR-trees and RT-trees [17], 3D R-trees
[15] and HR-trees [10]. These structures are some adaptations of the well-known R-tree family.
There are also quadtree based indexing structures, such as Querlapping Linear Quadtrees [16],

proposed for spatio-temporal indexing.

3D R-trees consider time as an extra dimension to the original two-dimensional space. Thus,
objects represented by two-dimensional MBRs are now captured by three-dimensional minimum

bounding boxes (MBBs). However, if this approach were to be used for moving objects, a lot

of empty space would be introduced within objects’ MBBs since the movement of an object is
captured by using only one MBB. Thus, it is not a proper representation mechanism for video

data, where objects frequently change their positions in time.

RT-trees are proposed to solve this dead space problem by incorporating the time information
by means of time intervals inside the R-tree structure. However, whenever an object changes its
position, a new entry with temporal information must be inserted to the structure. This causes
the generation of many entries that makes the RT-tree grow considerably. Furthermore, time
information stored with nodes plays a complementary role and RT-trees are not able to answer

temporal queries such as “find all objects that exist in the database within a given interval’.

MR-trees and HR-trees use the concept of overlapping B-trees [7]. They have separate index
structures for each time point where a change occurs in an object position within the video
data. It is space-efficient if the number of objects changing their locations is low because index
structures may have some common paths for those objects that have not moved. Nevertheless,
if the number of moving objects is large, they become inefficient. Detailed discussion of all these

index structures can be found in [14].

All these approaches incorporate the MBR representation of spatial information within index
structures. Thus, to answer spatio-temporal queries, directional and topological relations should
be computed and checked for query satisfaction, which is a costly operation when performed

during query processing.

Our rule-based approach to model spatio-temporal relations in video data eliminates the need
for the computation of relations at the time of query processing, thereby cutting down the query
response time considerably. In our approach, a key frame represents some consecutive frames
in a video with no change in the set of spatial relations between video objects in the frames.
Computed spatial relations for each key frame are stored to model and query video data for

spatio-temporal relations.

Liet al. describe an effort somewhat similar to our approach, where some spatial relations are
computed by associated methods of objects while others may be derived using a set of inference
rules [6]. Nonetheless, the system introduced in [5, 6] does not explicitly store a set of spatio-
temporal relations from which a complete set of relations between all objects can be derived
by rules as we do, and consequently, relations which cannot be derived by rules are computed
during query processing. Our approach of pre-computing and storing a set of relations that
cannot be derived by the set of inference rules a priori to querying reduces the computational
cost of queries considerably since there is no need at all to compute any spatio-temporal relation
using any coordinate information at the time of query processing. All the relations that are not
stored explicitly in the fact-base can be easily derived by the inference rules.

In [5], a new video model is introduced. In this model, there is no restriction on how videos
are segmented. After the segmentation, shots are grouped in a hierarchy on the basis of the
common video objects they contain, developing an index structure, called CVOT. However,
employed as a common practice by all the systems proposed in the literature to the best of our

knowledge, video features are associated with scenes that are defined to be the smallest logical

units of videos. In our approach, spatio-temporal relations between video objects and object-
trajectories are represented as facts in a knowledge-base, and they are not explicitly related to
semantic units of videos. It is because users may also wish to see only the parts of a video, where
the conditions given in a query are satisfied, rather than the scenes that contain these segments.
Thus, our system returns precise answers for spatio-temporal queries in terms of frame intervals

whereas this functionality is not implemented in CVOT.

In [9], a unified framework for characterizing multimedia information systems, which is built
on top of the implementations of individual media, is proposed. Some of user queries may not
be answered efficiently using these data structures; therefore, for each media-instance, some
feature constraints are stored as a logic program. Nonetheless, temporal aspects and relations
are not taken into account in the model and complex queries involving aggregate operations as
well as uncertainty and time in queries require further work to be done. In addition, though
the framework incorporates some feature constraints as facts to extend its query range, it does
not provide a complete deductive system as we do. The authors extend their work defining
feature-subfeature relationships in [8]. When a query cannot be answered, it is relaxed by
substituting a subfeature for a feature. This relaxation technique provides some support for
reasoning with uncertainty. In [1], a special kind of segment tree called frame segment tree
and a set of arrays to represent objects, events, activities and their associations are introduced.
The proposed model is based on the generic multimedia model described in [9]. The additional
concepts here are activities, events and their associations with objects, thereby relating them to
the frame sequences. The proposed data model and the algorithms for handling different types
of queries were implemented within a prototype, called Advanced Video Information System
(AVIS). However, the semantics of the temporal queries, such as “Find all the events Tom is
involved in after he finds out that he has been admitted to a college” and those more complex
than this one, are not addressed, which we plan to support using temporal operators to query

events.

Sistla et al. propose a graph and automata based approach to find the minimal set of spatial
relations between objects in a picture given a set of relations that is a superset of the minimal set
[13, 12]. They provide algorithms to find the minimal set from a superset as well as to deduce all
the relations possible from the minimal set itself for a picture. However, the authors restrict the
directional relations to be defined only for disjoint objects as opposed to our approach where
overlapping objects may also have directional relations. Moreover, the set of inference rules
considered in their implementation is rather small compared to ours. They do not incorporate
any 3D relation, either. Furthermore, our fact-extraction algorithm is simpler and it extracts
spatio-temporal, appearance and trajectory properties of objects from a video even though we
do not claim that it produces the minimal set of spatial relations in a video frame as they do

for a picture.

A content-based logic video query language, CVQL, is proposed in [4]. Users retrieve
video data specifying spatial and temporal relationships for salient objects. An elimination-
based preprocessing for filtering unqualified videos and a behavior-based approach for video

function evaluation are also introduced. For video evaluation, an index structure, called

Me-index, is proposed. Using this index structure, frame sequences satisfying a query predicate
can be retrieved. Nonetheless, topological relations between salient objects are not supported
since an object is represented by a point in 2D space. Hence, the system cannot answer topo-

logical queries. Our system provides full support for spatio-temporal querying of video data.

3 The System Architecture and the Rule-based Approach

3.1 Overall System Architecture

Figure 1 illustrates the overall architecture of our target Web-based video database system. The
proposed system is built on a client-server architecture. Users access the video database system

over the Internet through a Java client Applet.

Users may query the system with sketches. A visual query is formed by a collection of ob-
jects with different attributes including relative object-motion, object-trajectory with similarity
measure, spatio-temporal ordering of objects in time, annotations and events. Motion is sketched
as an arbitrary polygonal trajectory with relative speed information for each query object. An-
notations may also be used to query the system based on keywords. Users are able to browse
the video collection before posing complex and specific queries. A text-based SQL-like query

language is also available for experienced users.

Web clients communicate user queries, transformed to SQL-like text-based query lan-
guage expressions if visual queries are given, to the query processor. Query processor is
responsible for retrieving and responding queries. It first separates the keyword, activity/event
and category-based query conditions in a query from those that could be answered by the
knowledge-base. The former type of conditions is organized and sent as regular SQL queries to
an object-relational database whereas the latter part is reconstructed as Prolog queries. Inter-
mediate results returned by these two system components are integrated by the query processor

and final results are sent to Web clients.

Raw video data and video data features are stored separately. The feature database contains
semantic properties of videos used for keyword, activity/event and category-based queries on
video data. These features are generated and maintained by a video annotator tool being
developed as a Java application. The knowledge-base is used to answer spatio-temporal, object-
appearance and object-trajectory queries and the facts-base is populated by the fact-extractor

tool, which is a Java application as well.

3.2 Knowledge-base Structure

Rules have been extensively used in knowledge representation and reasoning. The reason why we
employed a rule-based approach to model and query spatio-temporal relations between salient
objects is that it is very space efficient: only a relatively small number of facts needs to be

stored in the knowledge-base and the rest can be derived by the inference rules, which yields a

Video Clips Extracted Facts
| Fact-Extractor » Knowledge—Base
) i i
Users WEB Client Query _ Y
— | Visual Query Interface | Query Processor
)\ Results)\
Y Y
Video Database Feature Database
ORACLE DBMS
Video Annotator j

Figure 1: Overall Architecture of Our Target Video Database System

substantial improvement in storage space. Besides, our rule-based approach provides an easy-

to-process and easy-to-understand structure for a video database system.

In the knowledge-base, each fact' has a single frame number, which is of a key frame. This
representation scheme allows Prolog, our inference engine, to process spatio-temporal queries
faster and easier than it would with frame intervals attached to the facts, because frame interval
processing to form final query results can be carried out efficiently by some optimized code,
written in C or C++, outside the Prolog environment. Therefore, the rules used for querying
video data, which we call query rules, have frame-number variables as a component. A second
set of rules that we call extraction rules was also created to work with frame intervals in order
to extract spatio-temporal relations from video clips. Extracted spatio-temporal relations are
converted to be stored as facts with frame numbers of the key frames attached in the knowledge-
base and these facts are used by the query rules for query processing in the system. In short,
spatio-temporal relations in video clips are stored as Prolog facts in the knowledge-base in a
key-frame basis and the extraction rules are only used to extract the spatio-temporal relations

from video data.

The reason of using a second set of rules with frame intervals to extract spatio-temporal
relations is that it is much easier and more convenient to create the facts-base by first populating
an initial facts-base with frame intervals and then converting this facts-base to the one with frame
numbers of the key frames in comparison to directly creating the final facts-base in the process
of fact-extraction. The main difficulty, if a second set of rules with frame intervals had not

been used while extracting spatio-temporal relations, would be detecting the key frames of a

!Except for appear and object-trajectory facts, which have frame intervals as a component instead of frame

numbers because of storage space, ease of processing and processing cost considerations.

video clip when processing it frame by frame at the same time. It is not a problem so far as
the coding is concerned, but since the program creating the facts-base would perform this key
frame detection operation for each frame, it would take whole a lot of time to process a video

clip compared to our method.

In the knowledge-base, only are the basic facts stored, but not those that can be derived by
rules according to our fact-extraction algorithm. Nonetheless, using a frame number instead of
a frame interval introduces some space overhead because the number of facts increases due to
the repetitions of some relations for each key frame over a frame interval. Nevertheless, it also

greatly reduces the complexity of the rules and improves the overall query response time.

The algorithm developed for converting an initial facts-base to the one incorporated into
the knowledge-base is very simple. It is based on the simple observation that key frames are
the starting frames of the intervals associated with the facts in the initial facts-base. After the
detection of the key frames, each fact with a frame interval is converted into a group of facts
with frame numbers of the key frames. For example, if west(A, B, [1, 100]) is a fact in the
initial facts-base and 1, 10 and 50 are the key frames that fall into the frame interval range of
[1, 100], then, this fact is converted to the following facts in the knowledge-base: west(A, B, 1),
west(A, B, 10) and west(A, B, 50).

In the system, facts are stored in terms of four directional relations, west, south, south-west
and north-west, six topological relations, cover, equal, inside, disjoint, touch and overlap, and
four 3D relations defined on the z-axis of three dimensional space, infrontof, strictlyinfrontof,
touchfrombehind and samelevel, because the query rules are designed to work on these types of
explicitly stored facts. However, there are also rules for east, north, north-east, south-east, right,
left, below, above, behind, strictlybehind, touchedfrombehind, contains and covered-by. These rules
do not work directly with the stored facts, but rather they are used to invoke related rules. For
example, let’s suppose that there is a relation stored as a fact for the pair of objects (A, B),
such as west(A, B, 1), where A and B are object identifiers and 1 is the frame number of the
relation. When a query “east(B, A, F)” is posed to the system, the rule east is used to call the
rule west with the order of objects switched. That is, it is checked to see if west(A, B, F) can
be satisfied. Since there is a fact west(A, B, 1) stored in the facts-base, the system returns 1 for

F as the result of the query.

Above argument also holds for the extraction rules only this time for extracting relations from
a video clip rather than working on stored facts. Therefore, the organization of the extraction

rules is the same as that of the query rules.

Four types of inference rules, strict directional, strict topological, heterogeneous directional and
topological and 3D relations, were defined with respect to the relations’ types in the rule body.
For example, directional rules have only directional relations in their body whilst heterogeneous
rules incorporate both directional and topological components. The complete listing of our

inference rules is given in Appendix A.

In addition, some other facts, such as object-trajectory and appear facts, are also stored in

the knowledge-base. These facts have frame intervals rather than frame numbers attached as

Relation Inverse Meaning

A infrontof B B behind A AAA BBB

or
AAABBB and A overlap B
or
AAA
BBB
A strictlyinfrontof B B strictlybehind A AAA BBB
or
AAABBB
or
AAA
BBB
A samelevel B B samelevel A AAA
BBBBBB
or
AAAAAA
BBB
or
AAA
BBBBBB
or
AAA
BBB

A touchfrombehind B | B touchedfrombehind A | BBBAAA

Table 1: Definitions of 3D relations

a component. Appear facts are used to derive some trivial facts, equal(A,A), overlap(A,A) and
samelevel(A,A), as well as to answer object-appearance queries in video clips by rules. Object-
trajectory facts are intended to be used for answering relative object-motion and similarity-based

object-trajectory queries when the system is completed.

Table 1 presents semantic meanings of our 3D relations based on Allen’s temporal in-
terval algebra. The relations behind, strictlybehind and touchedfrombehind are inverses of
infrontof, strictlyinfrontof and touchfrombehind, respectively. The inverse relation of samelevel
is itself. The relations infrontof and behind require that objects overlap in 2D-space whereas
strictlyinfrontof and strictlybehind do not imply this condition. Further information on direc-

tional and topological relations can be found in [3, 11].

3.3 Fact Extraction Algorithm

The algorithm for deciding what relations to store as facts in the knowledge-base is illustrated
as a pseudo-code in Figure 2. In this algorithm, objects at each frame, x, are ordered with
respect to the center-point x-axis values of objects’ MBRs. Index values of the objects are used
as object labels after this sorting process. Then, objects are paired with respect to their labels

starting with the object whose label is 0. The directional and topological relations are computed

for each possible object pair whose first object’s label is smaller than that of the second object
and whose label distance is one. The label distance of an object pair is defined as the absolute
numerical difference between the object labels. After exhausting all the pairs with the label
distance one, the same operation is carried out for the pairs of objects whose label distance is
two. This process is continued in the same manner and terminated when the distance reaches

the number of objects in the frame.

Initially, the set of relations, 7, is empty. All directional and topological relations are com-
puted for each object pair as described above for the current frame being processed and the
computed relations are put in the array A in order. Then, for each relation in A, starting with
the first one indexed 0, it is checked to see if it is possible to derive the computed relation
from the relations in 7 by the extraction rules. For example, for the first frame, if a relation
cannot be derived from 7 using the rules, this relation is added to n with the frame interval
[1, 1]. Otherwise, it is ignored since it can be derived. For the consecutive frames, if a com-
puted relation cannot be derived, an additional check is made to see whether there is such a
relation in 1 that holds for a frame interval up to the current frame processed. If so, the frame
interval of that relation is extended with the current frame by increasing the last component
of its interval by one. Otherwise, the computed relation is added to n with the frame interval
[current frame, current frame]. The set of relations obtained at the end contains the relations
that must be stored as facts in the knowledge-base after conversion. The rest of the relations

may be derived from these facts by rules.

For 3D relations, computation cannot be done automatically since 3D coordinates of the
objects are unknown and cannot be extracted from video frames. Hence, these relations are
entered manually for each object-pair of interest and those that can be derived by rules are
eliminated automatically by the fact-extraction tool. The tool can perform an interactive conflict
check for 3D relations and has some facilities to keep the existing set of 3D relations intact for
the consecutive frames as well as to edit this set with error-and-conflict check on the current set
for the purpose of easy generation of 3D relations. Generation of 3D relations is carried out for
each frame of a video clip at the same time while the rest of the spatio-temporal relations are
extracted. These 3D relations are then put in A and they, along with the rest of the relations,

are also used for key frame detection.

The initial fact-base, 7, is also populated with the appear and object-trajectory facts. For
each object, an appear fact is kept where it appears in video represented with a list of frame
intervals. Furthermore, for each object, an object-trajectory fact is added for the entire video.
These facts are copied to the final facts-base without any conversion. Appear facts are also used
to detect key frames if an object appears when there is no object in the previous frame or if an

object disappears while it is the only object in the previous frame.

Our approach greatly reduces the number of relations to be stored as facts in the knowledge-
base, which also depends on some other factors as well, such as the number of salient objects,
the frequency of change in spatial relations, and the relative spatial locations of the objects

with respect to each other. Nevertheless, it is not claimed that the set of relations stored in the

10

1. Start with an empty set of facts, 7.

2. Set m to the number of frames in video

3. For (currentFrame = 0; currentFrame < m; currentFrame + +)

4.

5.
6.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

34.
35.
36.
37.
38.
39.
40.

41.
42.
43.
44.
45.

Begin
Set k to be the object array of the current frame
Sort k in ascending order on x-axis coordinates of object MBR center points
(* Use object index values in the sorted array as object labels *)
Set n = |k| (Number of objects in the frame)
For (i =0; i< mn;i++)
Begin
If (there exist an object-appearance fact for 7] in n)
Update this fact accordingly for currentFrame
Else
Put a new object-appearance fact for x[¢] in 7
If (there exist an object-trajectory fact for k[i] in n)
Update this fact accordingly for currentFrame
Else
Put a new object-trajectory fact for [i] in n
EndFor
Set A to be an empty array
Set indezx to 0
For (labelDistance = 1; labelDistance < n; label Distance + +)

Begin
For (indez! = 1; index! < n — labelDistance; indexl + +)
Begin
index?2 = indexl + label Distance
Find dirRelation(k[indezl], k[index?2]) and put it in A\[index]
Increment indez by 1
Find topRelation(k[indezl], k[index2]) and put it in A[index]
Increment index by 1
EndFor
EndFor

Put 3D relations in A incrementing index by 1 at each step
Reorder A with respect to the dependency criteria among relations as follows:
* A relation with a smaller index value is placed before a relation of the same
type with a bigger index value
* The order of placement is (a), (b), (c), (d), (e), (f), (g) and (h)
a) {equal}, b) directional relations, c) {cover, touch}
d) {inside}, e) {overlap, disjoint}, f) {samelevel, touchfrombehind}
g) {infrontof}, h) {strictlyinfrontof}
Update 7 as follows: (* Facts-base population *)
For (i = 0; i < indezx; i+ +)
Begin
If (A\[i] can be derived by eztraction rules using the relations in)
Skip and ignore the relation
Else
If (38 € n such that 3 is the same as A[i] except for its frame
interval, whose ending frame is currentFrame — 1)
Extend the frame interval of # by 1 to currentFrame
Else

Put A[4] in n with the frame interval [currentFrame, currentFrame]

EndFor
EndFor

Figure 2: Fact-Extraction Algorithm

11

‘ Order | Relation Dependencies

1 equal None

2 Directional Relations equal

3 cover, touch equal

4 inside equal, cover

5 overlap, disjoint equal, cover, touch, inside

6 samelevel, touchfrombehind None

7 infrontof touchfrombehind

8 strictlyinfrontof samelevel, touchfrombehind, infrontof

Table 2: Dependencies Among Rules

knowledge-base is the minimal set of facts that must be stored because the number of facts to
be stored depends on the labeling order of objects in our method and we use the x-axis ordering
to reduce this number. Our heuristic in this approach is that if it is started with the pairs of
objects whose label distance is smaller, most of the relations may not need to be stored as facts
for the pairs of objects with a bigger label distance. The reason is that these relations might
be derived from those already considered to be stored in the knowledge-base. In addition, since
the spatial relations are ordered according to the dependency criteria given in Table 2 before
deciding which relations to store in the facts-base, no dependent relation is stored just because

a relation of different type it depends on has not been processed yet.

The fact-extraction process is semi-automatic: objects’ MBRs are specified manually and 3D
relations are entered by the user through graphical components. Users do not have to draw
each MBR for consecutive frames because MBR resizing, moving and deletion facilities are
provided for convenience. Moreover, the tool performs 3D-relation conflict check and eliminates
the derivable 3D relations from the set as they are entered by the user. The set for 3D relations
is also kept intact for subsequent frames so that the user can update it without having to
reenter any relation that already exists in the set. Nevertheless, with this user intervention
involved, it is not possible to make a complete complexity analysis of the algorithm. During our
experience with the tool, it is observed that the time to populate a facts-base for a given video
is dominated by the time spent interacting with the tool. However, since the fact extraction
process is carried out offline, it does not have any influence on the system’s performance. When
the user intervention part is ignored, the complexity of our algorithm can be roughly stated as
O(mn?) where m is the number of frames processed and n is the average number of objects per
frame. It is a rough estimation because the facts-base is populated as frames are processed and
it is not possible to guess the size of the facts-base or the number of each relation put in the set

by type at any time during the process.

12

3.4 Directional Relation Computation

According to our definition, overlapping objects can also have directional relations associated
except for the pairs of objects that are equal to each other, as opposed to the case where Allen’s

temporal interval algebra is used to define the directional relations.

In order to determine which directional relation holds between two objects, the center points
of the objects’ MBRs are used. Obviously, if the center points of the objects’ MBRs are the
same, then there is no directional relation between the two objects. Otherwise, the most intuitive
directional relation is chosen with respect to the closeness of the line segment between the center
points of the objects’ MBRs to the eight directional line segments. For that, the origin of the
directional system is placed at the center of the MBR of the object for which the relation is
defined. In the example given in Figure 3, object A is to the west of object B because the
center of object B’s MBR is closer to the directional line segment east than the one for south-
east. Moreover, these two objects overlap with each other, but a directional relation can still
be defined for them. As a special case, if the center points of objects’ MBRs fall exactly onto
the middle of two directional segments, which one to be considered is decided as follows: the
absolute distance of the objects” MBRs is computed on x and y axes with respect to the far-
most vertex coordinates on the region, where the two directional line segments in question
reside. If the distance in x-axis is greater, then the line segment that is closer to the x-axis is
selected. Otherwise, the other one is chosen. Here, the objects’ relative sizes and positions in
2D coordinate system implicitly play an important role in making the decision. Our approach
to find the directional relations between two salient objects can be formally expressed as in
Definitions 1 and 2.

Definition 1 The directional relation B(A,B) is defined to be in the opposite direction to the
directional line segment which originates from the center of object A’s MBR, and is the closest
to the center of object B’s MBR.

Definition 2 The inverse of a directional relation B(A,B), 371 (B,A), is the directional relation
defined in the opposite direction.

According to Definition 1, given two objects A and B, if the center of object B’s MBR is closer
to the directional line segment east in comparison to the others when the directional system’s
origin is at the center of object A’s MBR, then the directional relation between objects A and
B is west(A, B), where object A is the one for which the relation is defined. Thus, object A is
to the west of object B. Using Description 2, it can be concluded that object B is to the east of

object A. The rest of the directional relations can be determined in the same way.

4 Query Examples

This section provides some query examples based on an imaginary soccer game fragment

between England’s two teams Arsenal and Liverpool. These queries do not have any 3D-relation

13

SW ¥vS§S se

west(A,B), east(B,A)
Figure 3: Directional Relation Computation

component. Nor do they contain any relative object-motion or similarity-based object-trajectory
components because algorithms to process such queries are still under development. In the
examples, the word “player(s)” is used for the member(s) of a soccer team except for the goal-

keeper. Prolog query predicates and query results are only provided for the first query, Query 1.
Query 1 “Give the number of passes for each player of Arsenal’.

Query: pass X Y arsenal, where X and Y are variables that stand for the players of Arsenal

who give and take the passes, respectively.
Query Predicates:

pass(X, Y, T) :- fmember(X, T), fmember(Y, T), X \= Y,
p-touch(X, ball, F1), p-inside(ball, field, F1),
noother (X, ball, F1), p-touch(Y, ball, F2), F2 > F1,
p-inside(ball, field, F2), noother(Y, ball, F2),
fkframe(L, F1, F2), checklist(p-inside(ball, field), L),
checklist(notouch(ball), L).

fmember (X, T) :- (getmembers(L, T), member(X, L), not(goalkeeper(X, T))).

noother(X, Y, F) :- findall(Z, p-touch(Z, Y, F), L),
forall (member(Z, L), Z = X).

fkframe(L, F1, F2) :- keyframes(K), findall(X, kframes(X, K, F1, F2), L).

keyframes([1, 10, 21, 25, 31, 35, 55, 61, 80, 91, 95, 101, 105, 111, 115,
121, 125, 131, 135, 141, 150, 161, 165, 171, 172, 175, 181]).

kframes(X, L, F1, F2) :- member(X, L), X > F1, X < F2.
notouch(X, F) :- not(p-touch(Z, X, F)).
goalkeeper (X, T) :- getmembers(Y, T), last(X, Y).

getmembers(X, T) :- (T = arsenal, X = [dixon, keown, adams, winterburn,
ljunberg, petit, vieira, overmars, kanu, bergkamp, seaman]);
(T = liverpool, X = [staunton, henchoz, hyypia, heggem,

carragher, redknapp, hamann, smicer, owen, camara, westerveld]).

14

Explanation: It is assumed that if a player touches the ball alone, it is in his control.
Consequently, if a player of Arsenal touches the ball for some time and then transfers the
control of it to another player of his team, this event is considered as a pass from that player to
another one in his team. Moreover, the ball should not be played (touched) by anyone else and

it should also stay inside the field during this event.
The result of this query is:

Player:keown Passes(given):1
Player:adams Passes(given):2
Player:kanu Passes(given):1

Player:bergkamp Passes(given):1

Team:arsenal Total Passes:5

Query 2 “Give the number of shoots to the goalkeeper of the opponent team for each player

of Arsenal’.

Query: shoot X arsenal, where X is a variable that stands for the players of Arsenal who

shoot.

Explanation: In this query, we are interested in finding the number of shoots to the goalkeeper
of Liverpool by each player of Arsenal. In order to answer this query, the facts of touch to the
ball are found for each player of Arsenal. For each fact found, it is also checked if there is a fact
of touch to the ball for the opponent team’s goalkeeper, whose frame number is bigger. Then, a
check is made to see if there is no other touch to the ball between these two events and also if
the ball is inside the field during the entire period. If all above conditions are satisfied, this is
considered a shoot to the goalkeeper. Then, all such occasions are counted to find the number

of shoots to the goalkeeper by each player of Arsenal.

Query 3 “Give the average ball control (play) time in frames for each player of Arsenal’.

Query: hold X arsenal, where X is a variable that stands for the players of Arsenal who
play with the ball.

Explanation: As it is assumed that when a player touches the ball alone, it is in his control,
the ball control time for a player is computed with respect to the frame intervals during which
he is in touch with the ball. Therefore, the following operation is performed for each player of
Arsenal so as to answer this query: frame intervals during which a player touches the ball are
found and the number of frames in the intervals are summed up. Divided by the number of
frame intervals found, this gives for the player the average ball control time in frames. Since in
a soccer game, a player may touch the ball outside the field as well, only are the frame intervals
when the ball is inside the field considered. It is also possible to give the time information in

seconds provided that the frame rate of the video is known.

15

Original Video ‘ Total # of Frames ‘ Total # of Objects | Max. # of Objects in a Frame

Jornal.mpg 5254 21 4
Smurfs.avi 4185 13 6

Table 3: Specifications of the movie fragments

Query 4 “Give the number of ball losses to the opponent team’s players for Adams of Arsenal’.

Query: loss adams arsenal.

Explanation: if Adams of Arsenal touches the ball for some time and then the control of the
ball goes to a player of the opponent team, this event is considered as a ball loss from Adams to
an opponent player. Furthermore, the ball should not be played (touched) by anyone else and
it should stay inside the field during this event.

Query 5 “Give the number of kicks to outside field for Adams of Arsenal’.

Query: outside adams arsenal.

Explanation: First, the key frames when Adams of Arsenal is in touch with the ball while
the ball is inside the field are found. Then, for each key frame found, a fact with a bigger frame
number, representing the ball being outside the field, is searched. If there is no touch to the ball
between these two events, then this is a kick outside the field. All such occasions are counted
to find the number of kicks outside the field by Adams.

5 Performance and Scalability Experiments

In order to show that our video database system is scalable in terms of the number of salient
objects per frame and the total number of frames in a video clip as well as to demonstrate the
space savings due to our rule-based approach, some program-generated synthetic video data was
used. These tests constitute the first part of the overall tests. In the second part, the system’s
performance was tested on some real video clip fragments with the consideration of space and
time efficiency criteria to show its applicability in real-life applications. The real video clip
fragments were extracted from jornal.mpg, MPEG-7 Test Data set CD-14, Port. news, and a
Smurfs cartoon episode named Bigmouth’s Friend. Table 3 presents some information about

these video fragments.

In order to make a judgement on how successful our fact-extraction algorithm is in eliminating
the redundant facts for both synthetic and real video data, two facts-bases were created. The
first facts-base consists only of the basic facts extracted by the fact-extraction algorithm while
the second one comprises all the facts computed again with this algorithm, but this time with
its fact-reduction feature turned off. Since the two facts-bases were created using the same video
data for synthetic and real video separately, the sizes of the resultant facts-bases give us an idea
about how well our fact-reduction feature works as well as how efficient our approach is for space

considerations.

16

5.1 Tests with Program-Generated Video Data

For the space efficiency tests, the number of objects per frame was selected as 8, 15 and 25 while
the total number of frames was fixed to 100. To show the system’s scalability in terms of the
number of objects per frame, the total number of frames was chosen to be 100 and the number
of objects per frame was varied from 4 to 25. For the scalability test with respect to the total
number of frames, the number of objects was fixed to 8 whilst the total number of frames was
varied from 100 to 1000.

Figures 4-6 give the space efficiency test results as bar charts for 8, 15 and 25 objects per
frame for a 1000-frame synthetic video data. In these figures, Facts-base 1 is the facts-base with
redundant facts eliminated whereas Facts-base 2 is the other facts-base that contains all the
relations computed by the fact-extraction algorithm with its fact-reduction feature turned off.
The numbers corresponding to these fields present the number of facts stored for each relation

separately and in total for all relations in respective facts-bases.

il
3]
1
a8
[
©
b5
°
g
=)
Z
West South North- | South- Equal Cover | Inside | Touch | Disjoint | Overlap All
west west
M Facts-base 1 | 7240 4290 6018 4257 0 79 16 1 22068 383 44352
OFacts-base 2 | 9141 5300 7944 5391 0 79 16 1 27101 383 55160

Figure 4: Space Efficiency Test Results (8 Objects and 1000 Frames)

Four different types of queries were used for the scalability tests by taking four possible
combinations of object-variable unifications that can be used to query the system. The queries

are based on the west and disjoint relations and they are given in Table 4.

In the first part of the tests, where the system’s scalability in terms of the number of objects
per frame was checked, 1 and 7 were used in queries as object identifiers while for the second
part, in which the system was tested for its scalability on the total number of frames, 1 and

0 were selected as object identifiers. In our test data, positive integer identifiers were used

17

250000

200000

150000

100000

Number of Facts

50000

[+

West South North- | ‘South- Equal | Cover | Inside | Touch | Disjoint = Overlap All
west west
M Facts-base 1 | 22763 | 13910 | 17274 | 14079 114 50 35 73392 1129 | 142746
OFacts-base 2 | 32626 | 19322 | 30560 | 21652 114 50 35 102832 | 1129 | 208320
Figure 5: Space Efficiency Test Results (15 Objects and 1000 Frames)

600000

500000

400000

300000

Number of Facts

200000

100000

0
West South North- | South- Equal Cover | Inside | Touch | Disjoint | Overlap All
west west
M Facts-base 1 | 58765 | 33528 | 36022 | 37987 592 274 188 186538 | 3235 | 357129
OFacts-base 2 | 93620 | 56442 | 75875 | 71763 596 274 188 295392 | 3250 | 599400

Figure 6: Space Efficiency Test Results (25 Objects and 1000 Frames)

18

X Y | Query Format ‘

Not Unified | Not Unified | west(X, Y, F), disjoint(X, Y, F)
Unified Not Unified west(1, Y, F), disjoint(1, Y, F)
Not Unified Unified west(X, 7/0, F), disjoint(X, 7/0, F)

Unified Unified west(1, 7/0, F), disjoint(1, 7/0, F)

Table 4: Queries for the Scalability Tests

for each object for the sake of simplicity, but in real video, salient objects are annotated by
some meaningful textual names they can be remembered with. In our tests, each query returns

non-empty results. Figures 7-14 provide the graphs obtained from the tests.

5.2 Tests with Real Video Data

We present our space efficiency test results as bar charts in Figures 15 and 16 for the video
fragments taken from jornal.mpg and smurfs.avi, respectively. For the time efficiency tests, four
queries were used for each of the video fragments. The queries used on the news report video

fragment are as follows:

Query 1: Show the fragments of the clip where priest, interviewee2 and intervieweed appear

together, and also interviewee? is to the left of interviewee3.

Query 2: Show the fragments of the clip where reporter! and reporter? appear together with

priest who is in his car.

Query 3: Show the fragments of the clip where man8 is to the west of man4 who is to the

east of woman?2.

Query 4: Show the longest possible fragments of the clip where mané is first to the left of

mand, and later he becomes to the right of mand.

The first query is a directional-appearance query on salient objects priest, interviewee2 and
intervieweed. Query 2 is a topological-appearance query and Query 3 is a directional query.
The last query, Query 4, is a motion query based on directional relations between salient objects

mand and mano.

The second query assumes that if a person is inside a car or covered-by a car, then he/she
is in that car. This assumption may not be correct depending on the camera view, but yet, it
could be handled easily using the 3D relation samelevel. Nonetheless, since our tests are based
on 2D spatial relations, no 3D relation is considered even though the system has a set of 3D
inference rules as well. The results obtained for the queries are given in Table 5. The queries

posed on the Smurfs video fragment are as follows:

Query 1: Give the parts of the video clip where bigmouth is below robotsmurf while robotsmurf
starts moving from bigmouth’s left to his right and then goes from his right to his left

19

Time (Second)

Time (Second)

Time (Second)

12000 11899.16
10000
8000 [~
6000 -
4000
314540
2000 - 1378
r 705.6.
o8 77 s qoas il AX—T
4 5 g % é (‘) Ilﬂ II] I‘Z]I3]I4]‘5 Ilﬁ |I7]‘8 IIQ ZIO il 2‘2 2‘3 2‘4 25
Number of Objects
Figure 7: Query 1: west(X, Y, F), disjoint(X, Y, F) (100 Frames)

500 49338
400 —
300
200 |~
100 -

ot ago _am 8T 6 e

I4 5 ‘6 7 é 9 IIO l‘l I‘Z II3]‘4 1‘5 Ilﬁ 1‘7 1‘8 |I9 2‘0 2‘] 2‘2 2‘3 i4 25

Number of Objects
Figure 8: Query 2: west(1, Y, F), disjoint(1, Y, F) (100 Frames)

600

i 52§.21
500 —
400 —
300 —
200 —
100 |~

QP4 105 5.65

Number of Objects

Figure 9: Query 3: west(X, 7, F), disjoint(X, 7, F) (100 Frames)

20

60

I 51.63
50
40(-
=
g |
2
@ 30
o
E L
=
20—
10—
0J4 0.28 0.63
4 % ‘6 % F‘i ‘; IIO l‘l 1‘2 II3]‘4 1‘5 Ilﬁ 1‘7 1‘8 |I9 2‘0 Z‘I 2‘2 2‘3 2‘4 25
Number of Objects
Figure 10: Query 4: west(1, 7, F), disjoint(1, 7, F) (100 Frames)
3000
2799.98
2500 —
204140
2000 —
) L
: 1598
B 1500
g I 1221
£
1000 — 892.
I 558,
500 — 363.6,
L 186.4:
18139 72[64 , , . , . , ,
100 2(‘)0 3(‘)0 4(‘)0 560 (1(‘)0 760 8(‘)() 960 1000
Number of Frames
Figure 11: Query 5: west(X, Y, F), disjoint(X, Y, F) (8 Objects)
350
300 —
250
o
5 200
9
3 |
o
E 1501
[_‘ .
100
50—
3.8
0 | | | : ! . ! |

+ t + t +
100 200 300 400 500 600 700 800 900 1000

Number of Frames

Figure 12: Query 6: west(1, Y, F), disjoint(1, Y, F) (8 Objects)

21

Time (Second)

Time (Second)

500

463.21
400 -
358
300 -
268
200 196,
r 132,
100 -
71.7
L 41.23
25.41
186 228 ‘ . ‘
100 200 300 400 500 600 700 800 900 1000
Number of Frames
Figure 13: Query 7: west(X, 0, F), disjoint(X, 0, F) (8 Objects)
80
L 73198
70
6ol 58,
501
L 43,
40
L 32,
301
20k 19.
i 11.8
10
| b 421 6.38
0.9 - , l , . , . A
100 200 300 400 500 600 700 800 900 1000

Number of Frames

Figure 14: Query 8: west(1, 0, F), disjoint(1, 0, F) (8 Objects)

22

600

500

400

Number of Facts
(%)
&
C‘D

200

100

M Facts-base 1
O Facts-base 2

1200

1000

800

600

Number of Facts

400

200

Overlap

118
294

Figure 15: Space Efficiency Test Results for jornal.mpg

M Facts-base 1
O Facts-base 2

South North- Overlap All
west
115 18 100 39 0 0 12 0 231 94 604
139 18 142 39 12 0 462 196 1008

Figure 16: Space Efficiency Test Results for smurfs.avi

23

‘ Query # | Reduced Set (Sec.) ‘

Queryl 0.04
Query2 0.03
Query3 0.01
Query4 0.02

Table 5: Time Efficiency Test Results for jornal.mpg

‘ Query # | Reduced Set (Sec.) ‘

Queryl 0.13
Query2 0.03
Query3 0.01
Query4 0.03

Table 6: Time Efficiency Test Results for smurfs.avi

repeating this as many times as it happens in the video fragment.

Query 2: Give the parts of the video clip where Gargamel is to the southwest of his father
and boyking, who is between soldier! and soldier2 (to his left and his right) and is in some

distance with Gargamel and his father.

Query 3: Give the parts of the video clip where lazysmurf, farmersmurf, grouchysmurf,
smurfette and handysmurf all appear together such that lazysmurf is to the west of

handysmurf and smurfette is to the east of farmersmurf.

Query 4: Give the parts of the video clip where robotsmurf and bigmouth are close to each
other (not disjoint) and robotsmurf is to the right of bigmouth, and there is no other object

of interest that appears.

Query 1 is a directional-motion query while Query 2 is a directional-topological query. The
third query is a directional-appearance query and the last one is a directional-topological-
appearance query. In Query 1, we are interested in finding the largest sequences of frames
in the fragment repeating the motion condition stated as many times as possible sequentially
in the video. Thus, the final answer returned by the system is the set of video frame intervals
where this motion is repeated as many times as possible sequentially in the video. For Query
2, it is concluded that two objects are in some distance and not close to each other if their
MBRs are disjoint. If the objects are close to each other, then it is decided that their MBRs
are not disjoint as in Query 4. These assumptions are only our semantic definitions of being
two objects close to each other or in a distance. Therefore, these queries are partially based on

these semantic definitions. Table 5 shows the results obtained for the queries.

In the tests conducted with program-generated video data, there is a 19.59% savings from the
space for the sample data of 8 objects and 1000 frames. The space savings for the sample video
of 15 objects and 1000 frames is 31.47% while it is 40.42% for 25 objects and 1000 frames. With

24

real data, for the first video fragment jornal.mpg, our rule-based approach provides a savings of

37.5% from the space. The space savings for the other fragment, smurfs.avi, is 40%.

The space savings obtained from the program-generated video data is relatively low compared
to that obtained from the real video fragments. We believe that the reason behind such a
behavior is due to the random simulation of the motion of objects in our synthetic test data:
while creating the synthetic video data, the motion pattern of objects was simulated randomly
changing objects’ MBR coordinates by choosing only one object to move at each frame. However,
in real video, objects generally move slower causing the set of spatial relations to change over
a longer period of frames. During the tests with the synthetic video data, it is also observed
that space savings do not change when the number of frames is increased while the number of
objects of interest per frame is fixed. The test results obtained for the synthetic data comply
with those obtained for the real video. Some differences seen in the results are due to the fact
that synthetic data was produced by a program, therefore not being able to perfectly simulate

a real-life scenario.

The results plotted in Figures 7-14 show that the system is scalable in terms of the number
of objects and the number of frames when either of these numbers is increased while the other is
fixed. The time value deviations in some graphs are due to the data sets that had to be created

separately for each object set, thereby each set having possibly different facts.

The results obtained from the time efficiency tests on real video data show that the system
has a reasonable response time, which is a small fraction of a second. Therefore, we can claim

that our system is reasonably fast enough for spatio-temporal user queries.

6 Conclusions

A novel architecture has been proposed for a video database system incorporating both spatio-
temporal and semantic (annotation, event/activity and category-based) query facilities. The
proposed system handles spatio-temporal queries using a knowledge-base, which consists of a
fact-base and a comprehensive set of rules implemented in Prolog, while the semantic part is
handled by an object-relational database. Intermediate query results returned from these two

system components are integrated seamlessly by the query processor and sent to the Web clients.

Our approach to represent spatio-temporal relations in video data is unique in that we seg-
ment video clips into shots using spatial relationships between objects in video frames rather
than applying a traditional scene detection algorithm. This technique is simple, yet novel and
powerful in terms of effectiveness and user query satisfaction: video clips are segmented into
shots whenever the current set of relations between objects changes, and the video frames, where
these changes occur, are chosen as key frames. The directional, topological and 3D relations
used for shots are those of the key frames that have been selected to represent the shots, and
this information is kept, along with frame numbers of the key frames, in a knowledge-base as
Prolog facts. The set of rules in the knowledge-base considerably reduces the number of facts

that need to be stored for spatio-temporal querying of video data while also keeping the system’s

25

response time in a reasonable value as the test results show.

7 Future Work

We have been working on designing an SQL-like text-based video query language as well as
a graphical user interface to support visual query facilities in the system. Currently, queries
are given to the system as Prolog predicates. Users will be able to formulate spatial, tem-
poral, spatio-temporal, relative object-motion, similarity-based object-trajectory and object-
appearance queries as well as keyword, activity /event and category-based queries on video data
using the visual query interface or the text-based video query language. A query will first be
processed by an interpreter, which will separate the keyword, activity /event and category-based
query conditions from those that could be answered using the knowledge-base. The former type
of conditions will be organized and sent as regular SQL queries to an object-relational database
and the latter part will be reformulated as Prolog queries. Intermediate results returned by
the two system components will be integrated and final results will be transferred to the Web

clients.

We have also been working on enhancing the system with capabilities to provide full support
for relative object-motion and similarity-based object-trajectory queries. The system, when
completed, will be a Web-based video database system. Users will be able to query the system
using animated sketches. A query scene will be formed as a collection of objects with different
attributes. Attributes will include relative object-motion, object-trajectory with similarity mea-
sure, spatio-temporal ordering of objects in time, annotations and event specification. Motion
will be specified as an arbitrary polygonal trajectory with relative speed information for each
query object. Annotations will be used to query the system based on keywords. There will also
be a category grouping of video clips in the database so that a user is able to browse the video

collection before actually posing a query.

References

[1] S. Adali, K.S. Candan, S. Chen, K. Erol, and V.S. Subrahmanian. Advanced video infor-
mation system: Data structures and query processing. A CM-Springer Multimedia Systems
Journal, 4:172-186, August 1996.

[2] J.F. Allen. Maintaining knowledge about temporal intervals. Communications of ACM,
26(11):832-843, 1983.

[3] M. Egenhofer and R. Franzosa. Point-set spatial relations. Int’l Journal of Geographical
Information Systems, 5(2):161-174, 1991.

[4] T.C.T. Kuo and A.L.P. Chen. Content-based query processing for video databases. IEEE
Transactions on Multimedia, 1(2), March 2000.

26

[5]

[12]

[13]

[14]

[15]

[16]

J.Z. Li, M.T. OZSU, and D. Szafron. Modeling of video temporal relationships in an object
database management system. In Proc. of Multimedia Computing and Networking, pages
80-91, San Jose, CA, USA, February 1996.

J.Z. Li, M.T. Ozsu, and D. Szafron. Spatial reasoning rules in multimedia management
systems. In Proc. of International Conference on Multimedia Modeling, pages 119-133,

Toulouse, France, November 1996.

Y. Manolopoulos and G. Kapetanakis. Overlapping B+ trees for temporal data. In Pro-
ceedings of the 5th Jerusalem Conference on Information Technology (JCIT), 1990.

S. Marcus and V.S. Subrahmanian. Foundations of multimedia information systems. JACM,
43(3), May 1996.

S. Markus and V.S. Subrahmanian. Multimedia Database System: Issues and Research Di-
rections (eds. V.S. Subrahmanian and S. Jajodia), chapter Towards a Theory of Multimedia
Database Systems, pages 1-35. Springer-Verlag, 1996.

M.A. Nascimento and J.R.O. Silva. Towards historical R-trees. In Proceedings of ACM
Symposium on Applied Computing (ACM-SAC), 1998.

D. Papadias, Y. Theodoridis, T. Sellis, and M. Egenhofer. Topological relations in the world
of minimum bounding rectangles: A study with R-trees. In Proceedings of ACM SIGMOD
International Conference on Management of Data, pages 92-103, San Jose, CA, USA, 1996.

A.P. Sistla and C. Yu. Retrieval of pictures using a similarity-based approach employing
indices on spatial relationships. In Proc. of the 21st VLDB Conference, Zurich, Switzerland,
September 1995.

A.P. Sistla and C. Yu. Reasoning about qualitative spatial relationships. Journal of Auto-
mated Reasoning, 25(4):291-328, November 2000.

Y. Theodoridis, J.R.O. Silva, and M.A. Nascimento. On the generation of spatio-temporal
datasets. In Proceedings of the 6th Int’l Symposium on Large Spatial Databases (SSD),
LNCS Series, Hong Kong, China, July 1999. Springer-Verlag.

Y. Theodoridis, M. Vazirgiannis, and T. Sellis. Spatio-temporal indexing for large multi-
media applications. In Proceedings of the 3rd IEEE Conference on Multimedia Computing
and Systems (ICMCS), 1996.

T. Tzouramanis, M. Vassilakopoulos, and Y. Manolopoulos. Overlapping linear quadtrees:
A spatio-temporal access method. In Proceedings of the 6th Int’l ACM Workshop on
Geographical Information Systems (ACM-GIS), 1998.

X. Xu, J. Han, and W. Lu. RT-tree: An improved R-tree index structure for spatio-
temporal databases. In Proceedings of the 4th International Symposium on Spatial Data
Handling (SDH), 1990.

27

A List of Inference Rules

In this appendix, we give our set of strict directional, strict topological, heterogeneous directional
and topological and 3D rules. In defining the rules, the following terminology has been adopted:
if the relation r1 implies the relation r9, 11 = r9 is used. Moreover, if r1 = r9 and r9 = 71,
it is demonstrated by r; <= ro. In addition, there is also a rule set for appear, which is
used to derive trivial facts, equal(A,A), overlap(A,A) and samelevel(A,A) , as well as to answer

object-appearance queries in video clips. This set is given below:
appear(A) <= equal(A,A)
appear(A) <= overlap(A,A)
appear(A) <= samelevel(A,A)

A.1 Strict Directional Rules

Rule Set 1.1 (Inverse Property) The relations west, north, north-west, north-east, right and
above are inverses of east, south, south-east, south-west, left and below, respectively.

a) west(A,B) <= east(B,A)

b) north(A,B) <= south(B,A)

c) north-west(A,B) <= south-east(B,A)

d) north-east(A,B) <= south-west(B,A)

e) right(A,B) < left(B,A)

f) above(A,B) <= below(B,A)

Rule Set 1.2 (Transitivity) If 8 € S, where S is the set of directional relations, then

Rule Set 1.3 The relations right, left, above and below can be expressed by other directional
rules.

a) east(A,B) V north-east(A,B) V south-east(A,B) <= right(A,B)

b) west(A,B) V north-west(A,B) V south-west(A,B) <= left(A,B)

c) north(A,B) V north-east(A,B) V north-west(A,B) <= above(A,B)

d) south(A,B) V south-east(A,B) V south-west(A,B) <= below(A,B)

A.2 Strict Topological Rules

Rule Set 2.1 (Inverse Property) The relations inside and cover are inverses of contains and

covered-by, respectively.

a) inside(A,B) <= contains(B,A)
b) cover(A,B) <= covered-by(B,A)

Rule Set 2.2 (Reflexivity) The relations equal and overlap are reflexive.

28

a) equal(A,A)
b) overlap(A,A)

Rule Set 2.3 (Symmetry) The relations equal, overlap, disjoint and touch are symmetric.
equal(A,B) <= equal(B,A)

overlap(A,B) <= overlap(B,A)

disjoint(A,B) <= disjoint(B,A)

touch(A,B) <= touch(B,A)

a
b
c
d

 — 2

Rule Set 2.4 (Transitivity) The relations inside and equal are transitive.

a) inside(A,B) A inside(B,C) = inside(A,C)
b) equal(A,B) A equal(B,C) = equal(A,C)

Rule Set 2.5 The relations inside, equal and cover imply the relation overlap.

a) inside(A,B) = overlap(A,B)
b) equal(A,B) = overlap(A,B)
c) cover(A,B) = overlap(A,B)

Rule Set 2.6 The relationships between equal and {cover, inside, disjoint, touch, overlap} are

as follows:

) A cover(B,C) = cover(A,C
) A cover(C,B) = cover(C,A)
) cover) A equal(A,C) C,B

d) cover(A,B) A equal(B,C) A,

e) equal(A,B) A inside(B,C) (A,C
) equal(A,B) A inside(C,B) = inside(C,A
g) inside(A,B) A equal(A,C) = inside(C,B)
h) inside(A,B) A equal(B,C) = inside(A,C)
i) equal(A,B) A disjoint(

j) disjoint(A,B) A equal(
k) equal(A,B) A overlap(B,C) = overlap(A,C)
1) overlap(A,B) A equal(B,C) = owverlap(A,C)
m) equal(A,B) A touch(B,C) = touch(A,C)
n) touch(A,B) A equal(B,C) = touch(A,C)

a) equal(A,
A,
A

@ oW

b) equal(
(

o

= cover(C,

bl

=)
QO Qw QA

= cover(
= inside

.:
e

,C) = disjoint(A,C)
,C) = disjoint(A,C)
(A,C

W @

YW w

Rule Set 2.7 The relationships between disjoint and {inside, touch, cover} are as follows:

29

a) inside(A,B) A disjoint(B,C) = disjoint(A,C)
b) disjoint(A,B) A inside(C,B) = disjoint(A,C)
c) inside(A,B) A touch(B,C) = disjoint(A,C)
d) touch(A,B) A inside(C,B) = disjoint(A,C)
e) cover(AB) A disjoint(C,A) = disjoint(C,B)
f) disjoint(A,B) A cover(A,C) = disjoint(C,B)

Rule Set 2.8 The relationships between overlap and {inside, cover} are as follows (excluding
those given by Rule Set 2.5):

a) inside(A,B) A overlap(C,A) = overlap(B,C)
b) overlap(A,B) A inside(B,C) = overlap(A,C)
c) cover(AB) A overlap(B,C) = overlap(A,C)
d) overlap(A,B) A cover(C,B) = overlap(A,C)

Rule Set 2.9 The relationships between inside and cover are as follows:

a) inside(A,B) A cover(C,B) = inside(A,C)
b) inside(A,C) A cover(A,B) = inside(B,C)
c) cover(AB) A cover(B,C) A not(inside(C,A)) = cover(A,C)

A.3 Heterogeneous Directional and Topological Rules

Rule Set 3.1 If 8 € S, where S is the set of directional relations, then

a) equal(A,B) A B(B,C) = B(A,C)
b) B(A,B) A equal(B,C) = ((A,C)

A.4 3D Rules

Rule Set 4.1 (Reflexivity) The relation samelevel is reflexive.

samelevel(A,A)

Rule Set 4.2 (Symmetry) The relation samelevel is symmetric.

samelevel(A,B) = samelevel(B,A)

Rule Set 4.3 (Inverse Property) The relations infrontof, strictlyinfrontof and touchfrombehind

are inverses of behind, strictlybehind and touchedfrombehind, respectively.

a) infrontof(A,B) <= behind(B,A)
b) strictlyinfrontof(A,B) <= strictlybehind(B,A)
c) touchfrombehind(A,B) <= touchedfrombehind(B,A)

Rule Set 4.4 (Transitivity) The relations strictlyinfrontof and samelevel are transitive.

30

a) strictlyinfrontof(A,B) A strictlyinfrontof(B,C) = strictlyinfrontof(A,C)
b) samelevel(A,B) A samelevel(B,C) = samelevel(A,C)

Rule Set 4.5 The relationship between touchfrombehind and infrontof is as follows:
touchfrombehind(A,B) = infrontof(B,A)

Rule Set 4.6 The relationships between strictlyinfrontof and samelevel are as follows:
a) samelevel(A,B) A strictlyinfrontof(B,C) = strictlyinfrontof(A,C)

b) strictlyinfrontof(A,B) A samelevel(B,C) = strictlyinfrontof(A,C)

Rule Set 4.7 The relationship between infrontof and strictlyinfrontof is as follows:

infrontof(A,B) = strictlyinfrontof(A,B)

31

