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ABSTRACT

MINING USER ACCESS PATTERNS AND IDENTITY
INFORMATION FROM WEB LOGS FOR EFFECTIVE
PERSONALIZATION

Esra Satiroglu
M.S. in Computer Engineering
Supervisor: Prof. Dr. Halil Altay Guvenir
September, 2001

Web is a huge source of data in terms of its usage as a result of being visited
by millions of people on each day. Its usage data is stored in web server logs which
contain a detailed description of every single hit taken by the corresponding web
server. Recently, it has been discovered that analysis of this data for understand-
ing the user behavioral patterns may have critical implications. Understanding
the behavioral patterns of visitors is especially important for e-commerce compa-
nies which try to gain customers and sell products through the web. Interactive
sites that recognize their customer and customize themselves accordingly may
save lots of money to the companies. Usage Based Personalization is a study on
designing such personalized sites. In this thesis, we present a new usage based
personalization system. The system we designed and implemented is capable of
guessing the web pages that may be requested by the on-line visitors during the
rest of their visits. The system shows the subset of these pages with highest scores
as recommendations to the visitors as being attached to the original pages. The
system has two major modules. The off-line module mines the log files off-line
for determining the behavioral patterns of the previous visitors of the web site
considered. The information obtained by the off-line module is utilized by the
on-line module of the system for recognizing new visitors and producing on-line
recommendations. The first criterion for identifying on-line visitors is the paths
followed by them. A path of a particular visitor consists of pages retrieved by him
throughout his visit to the web site. Another criterion considered by the system
is the identity information (IP address or domain name) of the visitors. By using
identity information, it is possible to learn old preferences of the visitor himself

or visitors from similar domains. The similarity between domains is determined
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by the help of the domain name hierarchy which is represented by a hierarchi-
cal tree structure. The leaves of the tree representing domain name hierarchy
contain the domain names of the machines connecting to the Internet while the
inner nodes contain the general domains such as com, edu.tr, etc. In domain
name hierarchy, the similarity between two domains increases as the number of
common parents of them increases. In the light of these observations, for guess-
ing the navigational behavior of a particular visitor, our system makes use of the
common behavioral trends of the visitors whose machines belong to the parent
domains of the domain of that visitor. We have tested the system on the web site
of CS department of Bilkent University. The results of the experiments show the
efficiency and applicability of the system.

Keywords: Personalization, Web Usage Mining, User Access Patterns.



OZET

ETKILI KISISELLESTIRME ICIN WEB

GUNLUKLERININ VERI MADENCILIGI YONTEMI
ILE ANALIZI

Esra Satiroglu
Bilgisayar Mihendisligi, Yiksek Lisans
Tez Yoneticisi: Prof. Dr. Halil Altay Guvenir
Eyluil, 2001

Web, her gin milyonlarca kisi tarafindan ziyaret edilmesi nedeniyle kullanimi
agisindan buytk bir veri kaynagidir. Kullanim verileri, web dagiticilarina ulagan
her turlu veri isteginin kaydedildigi web gunliklerinde saklanmaktadir. Yakin
gecmigte, bu veri toplulugunun kullanici davranig orintilerini anlamak amaci
ile analiz edilmesinin 6nemli sonuclar dogurabilecegi anlagildi. Kullanicilarin
davranigsal oruntilerinin anlagilmasi ozellikle web araciligi ile mugteri kazan-
maya ve urinlerini satmaya calisan elektronik ticaret girketleri i¢in 6nemlidir.
Kullanicilarin1 taniyabilen ve kendisini kullanicilarina gore kigisellestirebilen
etkilesimli web sitelerine sahip olmak sirketlerin oldukca onemli miktarlarda
kar etmesini saglayabilir. Kullamima dayanan kigisellestirme, kigisellegtirilmisg
web siteleri tretmeye yonelik aragtirma alaninin genel adidir. Bu tezde, kul-
lanima dayanan yeni bir kigiselligtirme sistemi tanitilacaktir. Bizim tarafimizdan
tasarlanip gerceklegtirilen bu sistem, bir web sitesinin ziyaret¢ilerinin ziyaret-
lerinin geri kalan kisminda talep edebilecekleri web sayfalarini tahmin etme
yetenegine sahiptir.  Sistem, bu sayfalardan en yiksek skorlu olanlar1 zi-
yaret¢ilerin gortuntiledikleri sayfalara ekler. Tasarlayip gerceklestirdigimiz bu sis-
temin iki ana modili bulunmaktadir. Cevrimdigi modil web ginlik dosyalarini
eski kullanicilarin davranigsal ortntilerini kesfetmek amaci ile ¢evrimdigi olarak
analiz eder. (evrimdigi modil tarafindan elde edilen bilgiler yeni ziyaretcileri
tamimak ve onlar i¢cin oneriler tiretmek amaci ile ¢evrimici modil tarafindan kul-
lanilir. Yeni ziyaretcileri tanimak amaci ile kullanilan ilk kriter bu ziyaretcilerin
web sitesinde izledikleri yollardir. Yol, bir ziyaretcinin web sitesine ziyareti

suresinde goruntiledigi sayfalardan olugur. Yeni ziyaretcileri tanimak amaci ile
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kullanilan diger bir kriterde bu ziyaret¢ilerin siteye baglandiklari makinanin kim-
lik bilgisidir. Kimlik bilgisi, makinanin IP adresi veya etki alani ismidir. Kim-
lik bilgilerini kullanarak ziyaret¢inin kendisinin veya benzer etki alanlarinda bu-
lunan ziyaretcilerin eski tercihlerini égrenmek miimkiin hale gelmektedir. Iki
etki alam arasindaki benzerlik etki alani siradiizeni yardimi ile belirlenir. Etki
alan1 siradiizeni, siradizensel aga¢ yapisi ile temsil edilebilir. Bu agacin en
alt seviyesindeki dugumler Internet’e baglanan makinalarin etki alani isimlerini
icerir. Diger digumler ise com veya edu.tr gibi genel etki alanlarini kapsar.
Bu siradiizende, iki etki alani arasindaki benzerlik bu etki alanlarinin ortak
ata digim sayis1 arttigi strece artar. Bu bilgilerin 1siginda, tasarladigimiz
sistem bir ziyaretc¢inin hangi sayfalari talep edebilecegini anlamak i¢in bu zi-
yaret¢inin Internet’e baglanmak icin kullandigi makinanin etki alaninin ata etki
alanlarina ait olan kullanicilarin ortak davranigsal yonsemelerinden yararlanmak-
tadir. Bu sistem, Bilkent Universitesi BilgisayarMihendisligi bolimtintun web
sitesi tizerinde test edilmig ve sonuclar sistemin verimliligini ve kullanilabilirligini

kanmitlamigtir.

Anahtar sozcukler: Kigisellegtirme, Web Kullanim Analizi, Kullanici Erigim

Oriintiileri.
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Chapter 1

Introduction

Data mining and world wide web (www) are two important research areas whose
incorporation is named as Web Mining in the literature. Web is a huge source
of data in terms of both its content and usage. Every day millions of people
navigate through web for different purposes ranging from shopping to searching
for information. As the size of the web grows, management of the data available
through it becomes more and more difficult. This increase in the size of the data
available through the web have made it necessary to find intelligent ways to reach

the data and analyze the user behavior on it.

Meanwhile, data mining provides techniques for discovering meaningful and
useful information from large volumes of data. The application of the data min-
ing techniques makes it possible to extract various kinds of patterns and relations
hidden in the data which may have critical implications if discovered. Web, be-
cause of being one of the largest data sources available, needs such a treatment to
be kept under control. This need has caused a lot of research on the application of
the data mining methodology to the data obtained through the web. Application
of data mining techniques to the data coming from the web is named as Web
Mining. Web Mining techniques are classified into two according to the type of
data that are processed by them [26].

The first type of data provided by the web is named as the Content Data
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which is the data presented in the pages. Every single person is capable of
contributing to the Content Data on the web with no limitation. So, the web
contains incredible amount of information on every topic that can be thought
of. This information can become valuable if it is retrievable by the other people.
Naturally, each piece of content data is put on a web to be found and used by
people. But, reaching to the desired information on the web is not an easy task,
since the data on it is disorganized and heterogenous. Search engines which have
naive approaches that do not go beyond the keyword search on documents seem to
solve this problem partly, but the data is not categorized, filtered and interpreted
by them.

Web Content Mining aims to develop more intelligent tools for information
retrieval [6]. It uses data mining to develop better techniques for organizing the
unstructured data and for creating more intelligent agents to help the visitors in
finding, filtering and evaluating the desired information sources. Web Content
Mining studies are divided into two categories according to their methodologies,

namely database approach and agent based approach [11].

Database approach to web content mining aims to organize the data available
on the web by collecting it in multilevel databases [9, 30]. In multilevel databases,
the lowest layer contains the pages themselves. As proceeding through the higher
levels, data becomes more generalized. The data in a particular layer is obtained
via generalization or transformation of the data in the lower layers [30]. With
the available powerful querying systems and web mining techniques, the data or-
ganized in that way is accessed and analyzed easily [10, 12]. On the other hand,
agent based approach to web content mining aims to develop intelligent agents
that can discover and organize the information on the web by using domain char-
acteristics, user profiles and user preferences [2, 22, 14]. For example, Harvest [2]
and Parasite [22] use domain specific information about documents for interpret-
ing them. In addition, Syskill & Webert determines the interestingness level of
the documents for the visitors by looking at user profiles [14].

Another type of data provided by the web is named as Usage Data which

consists of the traversal patterns of visitors of the web. Traversal patterns are
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stored in a server log which keeps a record of every access made to the pages
belonging to that server. Log files of popular sites can quickly reach very huge
sizes, because there is no limit on the number of people that can visit the site
and number of pages that can be visited by each person. Fach user visits the site
with potentially different expectations and aims which make him/her to follow a
certain path and visit some pages. The analysis of such behavioral patterns gains
more importance as the size of the web grows and becomes a primary tool for
commerce. Web Usage mining is mainly the analysis of the usage data collected

in web server logs by using the data mining techniques.

Understanding the behavioral patterns of visitors is especially important for
e-commerce companies which try to gain customers and sell products through the
web [13]. Their web sites are the only connection between them and their cus-
tomers, so the design of the web site is critical. Web Usage Mining tools may help
companies in designing more attractive sites for their customers and discovering
the problems that visitors encounter on their visit to the site. Interactive sites
that recognize their customer and present themselves according to their previous
experiences about that kind of customers may save lots of money to the company.
For example, a site may contain advertisements that may be interesting to the
visitor. Or, the links to product pages that are often visited together may be
collected in one page for an easy retrieval by the users. In short, the aim is to

understand the visitors and respond accordingly.

There are lots of commercial tools which analyze the data in the logs and
extract various kinds of statistical information such as the number of visitors of
the site, most popular pages, the characteristics of the users, etc. However, the
analysis performed by these tools is not enough, although it is valuable [29]. The
major drawbacks of these tools are the lack of in-depth analysis, low performance
on huge log files, restrictiveness to the predefined reports and inflexibility. Today,
it is known that log files contain more valuable and critical information which can
be discovered through the application of new or existing data mining techniques.
As a result, Web Usage Mining has became a popular research topic for many

researchers in the last years.
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In this thesis, we present a new usage mining system, called UsageMiner. The
system we designed and implemented is capable of guessing the web pages that
may be requested by the on-line visitors during the rest of their visits. Then, it
shows the subset of these pages with highest scores as recommendations to the
visitor. One of the aims of this study is to provide the user with an easy access
to the pages that he/she may be interested in. For example, at a particular
page the system can discover that the visitor may be interested in another page
which can be reached from the current document after a retrieval of a number
of pages. On the other hand, after the system recommends this page, if the
visitor is really interested, he/she can reach to it just clicking on a link instead
of following a number of links. So, navigation on the site becomes easier for the
visitors. In addition to those, the system is also beneficial for the new visitors who
are not much familiar with the contents of the site. Web site can automatically
discover the interests of these visitors and present itself accordingly. Because, it
can discover the pages that may be interesting to them and recommends these
pages to the visitor. By this way, it becomes much easier for the new visitors to

discover the contents of the site that may be interesting for them.

The system we designed is under the category of personalization studies about
which we will talk about in the next chapter. It has mainly two major modules,
off-line module and on-line module. Off-line module mines the log files off-line
for determining the behavioral patterns of the old visitors. Then, the information
obtained by the off-line part of the system is utilized for recognizing new visitors
and producing on-line recommendations for them. The system tries to recognize
the visitor by looking at the identity information and path followed by them. On
a given page, it combines the pages that are retrieved in the followup by the old
visitors following the same path or coming from similar domains. So, both on-line
and off-line parts of the system have two submodules analyzing the behavioral

patterns of the visitors in terms of path and identity information.

The general architecture of the system that we developed is depicted in Fig-
ure 1.1. As depicted in Figure 1.1, off-line module of the system consists of
two major modules, PathInfoProcessor and HostldentityProcessor. These mod-

ules mine the log files off-line and store the results that they obtain into the
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files called PathInfoFile and HostInfoFile. Besides, on-line module of the system
uses PathInfoFile and HostInfoFile together with the log file of the web site for
producing on-line recommendations for the new visitors. Details of the system
architecture, mining techniques and recommendation process are described in the

following chapters.

OFF-LINE MODULE

PathInfoProcessor HostIdentityProcessor

) ] )
PathInfoFile HostInfoFile SERVER SIDE

Access Log \

»| Recommender

Page Requests of

the visitor
ON-LINE MODULE

Page Request T f/Page with recommendations

Web Browser CLIENT SIDE

Figure 1.1: General Architecture

In this thesis, we firstly give an overview of the literature published about
Web Usage Mining in Chapter 2. In Chapter 3, we will demonstrate the design
and implementation details of the off-line module of our system. Chapter 4 is
devoted to the details on on-line module. Experimental results will be presented

in Chapter 5. Finally, we will conclude with Chapter 6.



Chapter 2

Background

In this chapter, we will give an overview of the existing research on Web Usage
Mining. We borrowed the taxonomy of Web Usage Mining studies from [26].
General Web Usage Mining, Site Modification, System Improvement and Person-
alization are four of the main categories of the research going on related to the
Web Usage Mining. General Web Usage Mining systems aim to discover general
trends and patterns from the log files either by adapting well-known data mining
techniques or by proposing new data mining techniques. The objective of the
Site Modification systems is to improve the design of a web site by suggesting
modifications in its content and structure. The research on System Improvement
focuses on utilizing the web usage mining for improving the web traffic. Lastly,
personalization systems aim to understand individual trends to be used for per-
sonalizing the web sites. Through out the following sections, we will give detailed

description of the projects belonging to each category.

2.1 General Web Usage Mining Systems

General Web Usage Mining systems focus on the analysis of log files using data
mining techniques for discovering general access patterns and trends of users [26].

Majority of the studies under this category aim to discover user navigation paths
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from the log files. In general, navigation path of a visitor is mainly the path
followed by him /her through out his/her visit to the web site. It should be noted
that each different study enlarges this definition by determining some specifica-
tions on what can be accepted as a path. Systems also differentiate on how they
use the paths that are found. Some of the general usage mining systems present
the user navigation paths without any further processing [4, 1, 15]. Some oth-
ers provide a query language for analyzing the paths better [25, 7]. In addition,
there are studies on clustering paths or just user sessions with the aim of finding
similar interest groups among visitors [8, 21]. The other types of studies under
this category proposes to adapt well-known data mining techniques such as as-
sociation rule mining to the problem of web usage mining [6]. In this section, we

will explain each of these studies in detail.

2.1.1 Mining Traversal Paths

One of the existing approaches for mining navigation patterns from log files is to
make use of well known techniques from data mining. The work reported in [4] is
an example for such a study. The aim of the work is to find frequently occurring
paths which are named as maximal reference sequences from the log file by using

a methodology similar to the association rule mining.

The first step of the proposed solution procedure is to traverse the whole log
file for finding maximal forward references for each user. To be able to do that, the
log file is divided into user paths where each path contains the accesses belonging
to a specific user. Then, each user path is processed to find maximal forward
references contained it. A maximal forward reference is defined as a sequence of
pages that are visited consecutively by the visitor in which each page is seen only
once. Whenever a backward reference to a page previously visited is seen, the
current maximum forward reference path is terminated, added into the database
and a new one starts. While travelling through the pages, visitors generally turn
back to the previously visited pages and choose other links from them. It is
pointed out in [3, 4] that the pages seen on the way back to the previous pages

are visited only because of their location, but not their content. In the light of
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this observation, the study concentrates only on forward references.

As an example, assume that the traversal sequence of the Visitor A is as fol-
lows: ( P1, P2, P3, P4, P3, P2, P7). In this example, Visitor A turns back to
the page P3 and P2 consecutively after retrieving page P4. Here, the page P3 is
retrieved only for being able to retrieve page P7 from page P2. The algorithm
forming maximal forward references solves that problem by removing the back-

ward references from the paths. The algorithm produces the following maximum

forward references for Visitor A: (P1 P2 P3 P4, P1 P2 P7)

Once the maximal forward references for each user are formed, the next step
of the solution for mining path traversal patterns is ready for the execution.
In this step, the database containing maximal forward references for all users
is processed to be able to form large reference sequences which are frequently
occurring consecutive subsequences among all maximal forward references. Full
Scan (FS) and selective scan (SC) are two different algorithms for finding the large
reference sequences [4]. FS algorithm is indicated to be similar to the well known
algorithm called Direct Hashing with Pruning (DHP) for mining association rules
with adaptations to the current problem. Because, the problem of finding large
reference sequences from the database of maximal forward references has common
points with finding large itemsets from the database of transactions in association
rule mining. The main difference between these two problems is that the order
of the items in an itemset is not important in association rule mining while it is
crucial in mining traversal patterns. So, Full Scan algorithm changes the joining
strategy used in the candidate generation phase of the DHP algorithm. Selective
Scan algorithm is similar to Full Scan algorithm with optimizations to reduce 1/O

cost. Detailed description of the mentioned algorithms can be found in [4].

Maximal reference sequences are the subset of large reference sequences so
that no maximal reference sequence is contained in the other one. For example,
if the large reference sequences are AB, AE, AGH, ABD then maximal reference
sequences become AE, AGH, ABD. It is indicated in [4] that the sequences ob-
tained through this way can then be used by web masters in redesigning the links

between the pages that are accessed together in making marketting decisions [3].
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2.1.2 Mining Navigation Patterns with Hypertext Prob-

abilistic Grammars

Another study towards the problem of mining access patterns of visitors proposes
to model user navigation sessions as a hypertext probabilistic grammar (HPG) [1].
A user session is defined as a sequence of page requests coming from the same
machine where the time passing between each request is less then a certain time
limit. After the HPG is formed, the paths followed frequently by the visitors are
discovered by applying a special case of depth-first search algorithm on it.

The complete formalism behind HPG is beyond the scope of this thesis and
interested readers may refer to [1]. In short, each terminal and nonterminal
symbol of HPG built from user sessions corresponds to a web page and there
is a one-to-one correspondence between terminal and nonterminal symbols. The
links between web pages are represented by the production rules of the grammar.
Two additional states, S and F' are added into the grammar to represent the
start and finish of the paths. In the corresponding automata, states represent
nonterminal symbols where transitions between states are formed by productions.
Each production originating from a state is attached with a value which is the
probability that the link corresponding to a production was chosen from the links
on a page represented by that state. In case of a start state, the probabilities of
the productions are derived from the rate of the number of times that the page

is visited to the overall number of hits.

When navigating through a web site, visitors may concentrate on unrelated
topics in a single session [1]. Accordingly, the concept of N-Grammar is suitable
to be employed in building HPG. N-Grammar dictates that the link that will be
chosen by a visitor on any page is effected only by the last N pages retrieved
by him/her. In HPG that makes use of the concept of N-Grammar, the number
of states may increase too much if N is chosen to be very large. This is due to
the fact that each distinct consecutive sequence of N pages visited by any user

should have a corresponding state in HPG.

After the construction process, user preferred paths are discovered from HPG
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by applying depth-first search like algorithm [1]. Before mining, the mining expert
should specify support and confidence thresholds which will effect the quality
of the paths discovered. Support threshold ensures that the path is frequently
visited while confidence threshold ensures that the derivation probability of the
corresponding string is high enough. The support value for a particular path is
obtained by looking at the probability of the derivation of the first state of this
path from the start state. In addition, the confidence value is obtained from the
derivation probabilities of other the pages on the path. By the help of support
and confidence thresholds, it becomes possible to discover the paths that describe

the common visitor behavior best [1].

2.1.3 Analysis of Web Logs through OLAP Mining

A totally different approach to web usage mining is to make use of OLAP (On-line
Analytical Processing) technology on mining process. WebLogMiner [29] is one
of the tools which aim to incorporate the OLAP technology and the data mining
techniques. OLAP techniques are being used to obtain a portion of the data
that is interesting to the analyst who can also determine the abstraction level on
which the data will be presented. Then, this data can be used as an input to the
data mining algorithms. Results obtained through mining the data can also be
presented in different ways by using OLAP techniques. So, the mining process

becomes more interactive and flexible.

OLAP technology firstly places the data into a data cube which is stored
in multidimensional array structures or relational databases. Each dimension of
the data cube represents a distinct field of the data, such as URL or domain
name. If the data cube has n dimensions, each cell is characterized by having
distinct values for the fields represented by these dimensions. Each cell in the
datacube stores the number of visitors which have the same values with the values
characterising the cell. The advantage of the data cube representation is to make
it possible to view from different perspectives and abstraction levels which are
performed by the OLAP operations such as drill down, roll up and slice. The

following statements are examples for the simple queries that OLAP can answer
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quickly:
- Hits coming from Turkey, between March 2001 and May 2001
- Hits coming from edu domain on 23/03/2001 with agent Mozilla

In addition to the analysis performed by OLAP technology, WebLogMiner
makes use of data mining techniques to analyze the data to answer questions
that OLAP can not. For this, it applies well-known data mining techniques such
as association rule mining, clustering or time-series analysis on the data stored
in the data cube. For example, by performing time-series analysis, it answers the

following questions:

- What are the typical page request sequences performed by the visitors?

Namely, are there request sequences that are common to most of the visitors?

- What are the event trees belonging to specific time intervals? Here, event

trees contains the traversal patterns of the visitors in an aggregated form.

- How the traffic on a web site changes depending on time? Are there partic-

ular trends on particular times of a day, month etc..

2.1.4 Web Utilization Miner

Web Utilization Miner (WUM) is another data mining tool designed for mining
user navigation patterns from web logs [23, 24, 25]. The distinguishing facility of
this tool is to provide a mining language by which users can dynamically specify
constraints on the mining result. It is indicated in [24] that being an interactive is
an important plus for the data mining system, because interactive mining systems
are capable of responding to the specific interests of the users. WUM is composed

of two major modules: Aggregation service and the query processor [25].

Aggregation service firstly processes the log file and divides it into the visits
that are used in constructing the aggregate tree on which the mining will be

performed [25]. The tree is extended by adding each path seen on the log file.
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While forming the tree, paths that have a common prefix are merged. So, all
paths are represented in the tree at the end. Each node in the aggregate tree
contains a URL, occurrence count and the number of visitors reaching that node
by following the path starting from the root node. Because there exits visits that
contain the same URL more than once, each node is associated with an occurrence
count to show which occurrence of the URL this is. The way of storing paths in
an aggregate tree was chosen for reducing the space requirements and speed up
the mining process. The aggregate tree is built for once and used as input for the

other module.

Query processor is the module that performs the interactive mining on the
aggregate tree constructed by the Aggregation service [25]. The user can specify
structural, textual and statistical constraints on the mining result. For example,
the following query, which is expressed in MINT syntax, will result in a graph
showing navigation patterns between B.HTML and any page whose support is
larger than 1. The wildcard between the nodes means that there may be any
number of nodes between X and Y. But the order of the template variables

should stay the same as given in the query.

select T
nodes as X Y, template X*Y as T
and X.name= B.HTML
and Y.support<1

The algorithm that is used for mining according to the given template and
other constraints firstly finds all possible bindings for all template variables [23].
At first, all possible bindings for the first template variable are found by checking
all nodes in the aggregate tree. This is the first and the last time that the whole
tree is processed by the query processor. After that, only the trees rooted at the
nodes that contains the URLs bound to the first template variable are processed
for finding the possible bindings for the second template variable. Each different
binding obtained for the template variables is named as pattern descriptor. That
is, pattern descriptors contain identifiers that match to the template variables in

given queries and wildcards. Namely, in this step of the algorithm, the structural
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and textual constraints specified by the user are taken into consideration [23].

Next, the algorithm obtains navigation pattern corresponding to each pattern
descriptor found in the first step. The designers of the system define a navigation
pattern as a graph formed according to the pattern descriptor. For each pattern
descriptor, the algorithm firstly finds all branches of the Aggregate Tree that
contains the pattern represented in that descriptor. Then, these branches are
merged at their common prefixes and on the identifiers existing in the pattern
descriptor. While merging the branches, the counts of the nodes that are merged
together are added. After merging, the statistical constraints on the mining result
are checked and a descriptor is ignored if these constraints are not satisfied. At

the end, remaining navigation patterns are shown to the user.

2.1.5 WebSift

WebSift is a web usage mining system which aims to apply well-known data
mining techniques on the usage data obtained through web logs [26, 7]. It divides
the mining process into three main phases: Preprocessing, Pattern Discovery
and Pattern Analysis. The aim of the Preprocessing step is to turn the raw
data in the log file into a form that is suitable for mining. Then, in the second
phase of the usage mining process, well known data mining techniques such as
association rule mining, sequential pattern mining or clustering are applied on the
transactions obtained in the previous phase. In the third phase, creators of the
WebSift system propose to provide a query language and visualization facilities.
Also, in this phase of the mining process, uninteresting results are filtered by

using the Information Filter [7].

Preprocessing step includes cleaning the data, identifying users and sessions
belonging to them, completing the missing references in paths and formatting
the data to obtain the appropriate transaction type for the type of the mining
operation that will be performed [5]. Data cleaning is the removal of irrelevant

and redundant data in the log file such as requests for graphics. Besides, user
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identification tries to identify the requests belonging to each user. Authors indi-
cate that an IP address may not be suitable to differentiate between the users,
because two visitors may be using the same IP at the same time. For the solution
of this problem, they propose to make use of some heuristics. For example, if
two requests come from different types of browsers from the same machine, these
requests are accepted to be performed different users. After the users are deter-
mined, the accesses belonging to them are divided into sessions. Then, the pages
that are not recorded but accessed by the visitor are determined and added to
the sessions. Detailed explanation of the reason for such situations is given in
Chapter 4. In addition, a detailed analysis of data preparation techniques used

in web usage mining are presented in [5].

In the Information Filter, the interestingness level of the rules are determined
by looking at the site structure [7]. Currently, the system proposed in [7] is capa-
ble of determining the interestingness level of frequent itemsets and association
rules with two different techniques: BME (Belief Mined Evidence) and BCE (Be-
liefs with conflicting Evidence). BME finds the frequent itemsets which contain
pages that are not directly linked. Frequent itemsets that contain linked pages
are not that interesting because it is already guessed by the site designer who
put a link between them. On the other hand, if many visitors retrieve pages
that have no link in between together, this may be an interesting result for the
site designer who may notice a deficiency in the site design. The pages that are
linked, but not in the same frequent itemset may also be interesting. BCE finds
that kind of pages. The result shows that the link between these pages is rarely
used by the visitors which may give a clue to the site designer for the removal of

this redundant link.

2.1.6 WAP Mine

Wap (Web Access Pattern) Mine is an efficient data mining algorithm for discov-
ering web access patterns from the Wap Tree (Web Access Pattern Tree) which
is a compact data structure designed for storing the data obtained from the

logs [15]. The end result of the algorithm is the set of frequent access patterns
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which contain pages requested sequentially by enough number of visitors.

Wap Tree is formed by the addition of the frequent access subsequences that
take part in the log in hand. Before the construction of the Wap tree, the log is
traversed once for finding frequent 1-sequences, URLs that are seen in efficient
number of user sessions. Then, the URLs that are not frequent are filtered from
the sessions resulting in a frequent access subsequences. Wap Tree is constructed
by merging the frequent access subsequences on their common prefixes. Another
feature of the Wap Tree is that all nodes that contain the same URL are linked
into a queue and another data structure, header table, contains a pointer to the

head of all queues.

The foundation of the Wap Mine algorithm is based on a heuristic called
Suffix Heuristic [15]. Suffix Heuristic says that if an event (page reference) e is
frequent in the prefixes of sequences that have a suffix which contains pattern P
as a subsequence, then eP is also a pattern. The algorithm for finding frequent se-
quences based on that heuristic is named as conditional search which is employed
in Wap Mine for mining sequences. Wap Mine algorithm processes each event
one by one. For each event (page reference) e, it firstly forms the conditional
tree for that event. Conditional Wap tree for e; contains the set of prefixes of the
subsequences that contain e; as a suffix. After this, the algorithm continues to
mine Conditional Wap Tree recursively. Finally, the results obtained from mining
conditional Wap Tree are concatenated with e;. Page sequences obtained through

this algorithm correspond to the frequent access patterns.

2.1.7 Clustering User Sessions

Another study towards Web Usage Mining proposes to cluster visitors of a web
site based on the page requests taking place on the sessions belonging to them [8].
The aim of this study presented in [8] is to discover the groups of pages that are
visited together by many visitors. This information can then be used by the Web

master in redesigning the Web Site or updating it with extra links between these

pages.
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In this study, a log file of the web site is initially divided into user sessions.
For clustering, each user session should be represented with a vector of pages in
which each entry correspond to the time spent on that page. But, it is indicated
in [8] that in a web site that have lots of pages, the size of the vectors will increase
dramatically. Because, the vectors should have an entry for each page in the web
site. To overcome this, session vectors are generalized by using Attribute Oriented

Induction method.

Entries in the session vector are generalized by looking at the page hi-
erarchy if the web site. A page hierarchy can be derived from the direc-
tory structure of the server and represented in the form of tree. The leaves
of the tree correspond to the URLs. The parents of the leaf nodes keep
the names of the web pages corresponding to innermost directories contain-
ing the URLs represented by their children. The parents of the non-leaf
nodes are the web pages representing outer directories containing them. The
directories are derived directly from the names of the URLs. For exam-
ple, the parent of the URL http://www.umr.edu/~requww/ugcrc97/ee.html is
hitp://www.umr.edu/~requww/ugcre97.

By using the page hierarchy obtained by this way, the pages in the sessions are
generalized as much as specified by the mining expert by using the tree climbing
method from attribute oriented induction [8]. During generalization, each page
is replaced with one of the its parents depending on the level to which pages are
generalized. After generalization of the pages in the session vector, the duplicate
general pages are merged into one by adding the times spent on them. By this
way, the size of the session vectors are decreased dramatically, because the number

of general pages is smaller than the number of URLs.

Sessions obtained by this way are then clustered by using BIRCH hierarchical
clustering algorithm. In BIRCH, clustering is performed by using a tree structure
which it calls as CF tree. In CF tree, leaf nodes contain the current clusters which
are the collection of session vectors while the non-leaf nodes store CF vectors
which characterize the clusters below them. When a new session vector should

be placed into the tree, it goes until a leaf node by choosing the branches that
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are the closest to him/her. The CF vectors of the parent nodes are updated
accordingly. In case there is no matching entry in leaf with given thresholds, the
session vector is put into a new entry in the leaf node. If there is no empty entry,

the leaf is split into two which may cause additional splits in the parent nodes.

2.1.8 Clustering of the Paths Followed by the Visitors

Another study which makes use of the clustering techniques for analyzing web
usage data was presented in [21]. Different from the most of the other usage
mining systems, the system presented in [21] provides a profiler for obtaining more
accurate, reliable and detailed information about the behavior of the visitors of
the web site. The data obtained by this profiler is then used for obtaining the
paths followed by the visitor and times spent on each page of the paths. Then,
these paths are clustered by using Path-Mining method explained in [21].

The profiler provided by the system works on the client side. It is a Java
applet loaded into the client side with the first page request and staying in the
client cache afterwards. A call to this applet is added to each page in the site.
The aim of the Java applet is to determine exact viewing time of the pages and
catching the page views missing due to the retrieval of them from the client
cache instead of a server. In addition to the profiler, each link on each page is
updated to make it transfer more information to the server side when clicked.
This information will be used for determining which links are selected by the
visitor. Then, the link names will be added into the paths so that each pair of
page requests are separated by the link which is selected for retrieving the second
page. The authors indicate that link information may provide additional clues
on user behavior especially if two links from the same page are pointing to the

Same page.

After the page requests and times spent on them are determined for each
visitor, paths found are clustered for obtaining the groups of visitors with simi-

lar interests by using the Path-Mining methodology [21]. Via the usage of this
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methodology, the order of the requests in the path is also taken into considera-
tion on the contrary to the work explained in the previous section. To be able
to this, the system needs a way of measuring the similarity between two paths.
The similarity between two paths is measured by finding the angle between them.
Interested readers can refer to [21] for the way of obtaining this angle. Briefly, the
angle between two paths are calculated by using the inner product over the fea-
ture space where feature space contains all sub paths of these two paths. After the
angles between each pair of paths are calculated, the results are fed into k-means
algorithm for finding clusters of paths. The resulting clusters are considered to

be containing groups of visitors with similar interests [21].

2.2 System Improvement

Research on System Improvement aims to utilize web usage mining for improving
the web traffic and increasing the speed at which the visitors are responded. One
way to do is to provide the web server with the capability of guessing the pages
that may be retrieved by the visitors next and generate the dynamic content of

these pages before user retrieves them.

For guessing the pages, the system proposed by Schecter et. al make use of
the concept of path profile which is constructed from the data contained in the
web logs [20]. Path profile is the set of paths followed by the visitors of a site and
the number of people following them. This system provides an efficient technique
for generating and storing the path profiles. The paths are stored in the form of a
tree in which the paths are merged on their common prefixes. While constructing
the tree, only the paths whose maximal prefix is seen in at least T' of the paths
are added into the tree for reducing the memory cost. By following this rule, the
algorithm for forming the tree is run on the tree more than once to be able to

obtain all paths suiting to the threshold value.

A path profile is then used by on-line working part of the system for guessing

the next access of the user. The system starts with the shortest suffix of the
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current user path and tries to find a path whose maximal prefix matches with it.
As long as a matching path whose maximal prefix equals to the suffix in hand
is found, suffix size is increased. Assume that the pages retrieved by the visitor
A are as follows: [P1, P2, P3]. In that case, the system initially checks the tree
for finding the paths that have a maximal prefix [P3], the smallest suffix of the
user path. Then, the suffix size is increased by one and the paths that have [P2
P3] as maximal prefix are found if there exists any. Assume that [P2 P3 PY] is
such a path. Increase in the suffix size continues as long as the corresponding
paths are found. Assuming that there is a path [P1 P2 P3 PX] in the tree, the
system creates the dynamic content for the page PX automatically. If there exists
no path having [P1 P2 P3| as maximal prefix, then the system will create the
dynamic content for the page PY.

Another prediction technique proposed in [20] is named as point based predic-
tion in which the next page is guessed only by considering the last page retrieved,
not the whole path. Experiments with the system show that agreement predic-
tion technique gives the most accurate results. In this technique, dynamic content
creation of a particular is done only if both point and path based prediction tech-

niques agree on that page.

2.3 Personalization

As a result of the increasing demand to the e-commerce, many companies are
eager to make their sites that exhibit their products more serviceable and effec-
tive for their visitors to be able to turn them into customers [13]. The number
of people visiting the web site of a company may be too high whereas only small
percentage of the visitors may be turning into a customer. The number of cus-
tomers gained through web site heavily depend on the success of the site and
personalization is critical aspect of this success. Web Personalization simply
means to understand the needs and interests of the visitors of the site and re-
spond accordingly. Such a web site recognizes each visitor and customizes itself

by various ways such as determining the information that should be shown to the
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visitor or automatically changing the site structure in a way that will be useful
and attractive for the current user. Personalization is attractive research topic,
because it is critically important for the success of e-commerce companies. Some
of the different techniques for personalization will be explained in the subsequent

sections.

2.3.1 Content Based Filtering

The main idea of Content Based Filtering is to make use of content similarity
between stated user interests and web pages for personalization. WebWatcher [27,
19] is an agent that trusts on content based filtering for personalization of the web
sites. It guides visitors during their navigation through the web site according
to their interests. At the beginning of a visit, WebWatcher asks user to enter his
interest or the thing that he is looking for in the form of keywords. By using this
information, WebWatcher highlights the links that are best suited to the needs
of the visitor on each page retrieved by him/her through out his visit.

WebWatcher accomplishes the task of choosing the best links for that user
by using the information learned from the past users. In addition, the actions
performed by each visitor are continuously used as training samples for improving
the performance of the tool in future recommendations. Three different learning
techniques are tried in WebWatcher: Learning from previous tours, Learning from

Hypertext Structure and the combination of first two [27].

First method proposes to store a description for each link in each page in the
form of a high dimensional feature vector whose each element is an English word.
Interests of the users are also represented by a feature vector. Whenever a visitor
follows a link in a page, the interests of the user which consists of some number
of keywords is added to the description of that link. What is used in choosing
the links to highlight in each page is the descriptions of the links determined
as a result of this learning mechanism. While choosing the links that will be
recommended to the visitor, WebWatcher calculates the similarity of each link in

the page to the interest of the user. The links that will be highlighted are the
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ones with the highest similarity values with the user interest.

To learn from the hypertext structure, WebWatcher makes use of Reinforce-
ment Learning [19]. If we take an agent moving across states as an example
case, the aim of the Reinforcement Learning is to train the agent so that it will
reach the final state from the initial state by choosing the best action to take
in each state it encounters. Here, the action means choosing a next state to go.
Goodness of choosing an action a in state s is represented as Q(s,a). In [27], it
is indicated that the optimal strategy is to choose an action that will maximize
the @) value for the current state. Turning back to hypertext environment, pages
are the states and links are the actions. The system learns Q(s,a) function for
each page and word pair which means that the best action to take is different
for different words in the same page. So, in each page the system recommends
the hyperlinks which maximize the total of () values belong the current page and

words given as an interest of the user.

The third method which is detected to be giving the best results combines
the results obtained from first two methods plus two additional methods [27].
The first additional method chooses the links that are mostly preferred while the
second method chooses the links whose textual content is most similar to the

interest words of the current user.

2.3.2 Usage Based Web Personalization

Most of the recent research on personalization aims to incorporate pattern dis-
covery with personalization, resulting in a usage based Web personalization or
customized usage tracking [13]. In that case, profiles of the visitors are dynam-
ically created according their access patterns. Dynamic creation of profiles is
advantageous when compared to the profiles specified by the visitors themselves.
Older personalization tools and techniques rely on that kind of profiles which are
static and most probably biased. As the time passes, user preferences may change
although static profiles remain unchanged which decreases the performance of the

personalization system. On the other hand, dynamically created profiles capture
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the current interests of users. Dynamically created profiles can not be hundred
percent faultless, but they achieve considerable amount of success in helping users

without waiting for the user asking for it.

Usage-based Web Personalization systems generally comprise two major com-
ponents: Off-line component and on-line recommendation engine [13]. Off-line
component of the system analyzes the log files which contain the footprints of
all visitors visiting the site. It firstly puts the data in the logs into a form that
is amenable for applying data mining techniques. Analysis of log files by vari-
ous data mining techniques results in aggregate usage profiles which are common
profiles of visitors of the web site. Then, the on-line component of the system
matches the current user to these profiles based on his navigation pattern up
to that point and customizes the current page accordingly. Customization can
be done through recommending some links or putting advertisements or product
news that may interest the customer. Through out the following sections, we will

explain current Web Personalization systems and tools in more detail.

2.3.2.1 Analog

Analog [28] is one of the first usage-based Web Personalization systems. Its off-
line module clusters the users of a web site according to their access patterns.
Off-line module firstly processes the log file of the target site to find out user
sessions which are represented as n dimensional vectors where n is the number
of distinct pages in the site. The weights of the entries corresponding to the
pages visited by the visitor is larger than 0, while the weights for non-visited
pages are zero in the session vector. So, the system does not take into account
the order in which pages are retrieved. After all session vectors are obtained in
this way, LEADER algorithm is applied to find clusters. LEADER is a simple
clustering algorithm which has some drawbacks. After clustering is completed,

median vector of each cluster is computed as a representative of the cluster.

The on-line module of the system recommends some links to the active vis-

itors by looking at the pages that they retrieve before. Active user sessions are
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represented as n dimensional vectors as in the off-line module. Whenever user
retrieves a new page, the session vector belonging to that user is updated ac-
cordingly. On-line module of the system tries to match the active user session to
existing clusters. User session is accepted to be matching to a particular cluster
if the number of common pages between user session vector and cluster median is
larger than some threshold value. The pages in the median vectors of matching

clusters are then recommended to the user if they are not already retrieved by

him/her [28].

2.3.2.2 Web Personalizer

Web Personalizer [13] is one of the other systems that makes use of the explained
framework for usage based Web Personalization. The main aim of the off-line
module of the system is to obtain aggregate usage profiles which are represented
as weighted collection of URLs. The reason for preferring this representation
style is to be able to make use of classical vector operations that are used in
clustering. Two different methods for forming the aggregate usage profiles are

presented in [13].

The first method is to cluster the user sessions by using standard clustering
algorithms for grouping the visitors that have similar interests together as in
Analog. This method proposes to represent each user session as a n-dimensional
vector where n is the number of distinct URLSs that exist in the user sessions. The
values kept in each entry of the user session vector can be chosen to be binary to
indicate the existence or nonexistence of that URL in that session. After putting
them into the vector form, user sessions are clustered by using classical clustering
techniques from data mining to obtain session clusters. The next step to form
Aggregate Usage Profiles is to find the mean vector of each cluster. Entries in
the mean vector of a cluster are calculated by finding the ratio of the number of
user sessions that contain the URL that is represented by that entry to the total
number of sessions in that cluster. As a result of this calculation, some of the
URLs are filtered out because of having very low support, which means that only

minority of the user sessions in the cluster contain them. The resulting mean



CHAPTER 2. BACKGROUND 24

vectors are representative aggregate usage profiles for the log data processed.

The other method proposed in [13] clusters URLs instead of sessions. It is
indicated that users that have very different sessions may have common interest
to a group of URLs. This information will remain undiscovered with the previous
method. At the end of this method, each cluster will contain a set of URLs which
tend be together in majority of the sessions. Standard clustering algorithms are
difficult to be applied in that case because of the nature and the size of the
feature space which consists of the sessions. As a consequence, another clustering
technique which is named as Association Rule Hypergraph Partitioning (ARHP)
is employed by this method. The hypergraph to be clustered by this technique
composed of URLs as vertices and the frequent itemsets as the hyperedges which
connect the vertices representing the URLs in that itemset. As known, frequent
itemsets are formed by a well known technique from association rule mining.
Application of the ARHP technique on the hypergraph obtained by this way
results in a set of clusters which contain a set of URLs that are frequently accessed
together. Usage profile for each session is obtained by associating a connectivity

value of the vertex as a weight for the corresponding URL.

As it is in the other usage based personalization systems, on-line component
of the system keeps track of the active user sessions to recommend some links
attached with significance scores to the users. The way to do this is to find ag-
gregate usage profiles that match to the current user session best. The matching
scores are calculated by standard distance and similarity measures between vec-
tors. Besides, site structure becomes effective in calculating the matching scores

by increasing the score of the pages that are farther away from the current page.

History depth is an important concept employed by the on-line component
of the system for obtaining more successful recommendations. It determines the
number of previous pages that will be effective on the recommendation. It is
indicated that user sessions are mostly composed of some number of episodes
which are paths followed for reaching different kinds of information. The length
of episodes is indicated to be 2 or 3 in general. So, by the help of the concept of

history depth, it is aimed to make recommendations based on the pages retrieved
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only in the current episode.

2.4 Site Modification

Another way of benefiting from the usage data discovered from the logs is to
use it to improve the design of the web site. In personalization, web sites are
dynamically customizing themselves differently for each visitor. On the other
hand, site modification systems offer static changes in the structure and content

of the web sites to meet the needs of all visitors [17].

IndexFinder [17, 18, 16] is one example for that kind of tools. It aims to dis-
cover index pages whose addition is very likely to improve the site design. These
pages which are created off-line consist of links to the conceptually related, but
currently unlinked pages which coexist in most of the user sessions. The addition
of automatically created index pages to the site is performed with the authoriza-
tion of the Web Master. Index page creation in IndexFinder is performed in three

phases: processing logs, cluster mining and conceptual clustering [16].

In the first stage of the algorithm proposed in [17], a log is processed to be
divided into visits. What comes next is the calculation of the co-occurrence fre-
quencies between each pair of pages to determine to what extend these pages are
related. Co-occurrence frequency between two pages is simply calculated by tak-
ing the minimum of the two probabilities, probability of the existence of first page
in the visit given the fact that second page is in the visit and visa versa. The co-
occurrence frequency between linked pages is taken as zero to avoid uninteresting
clusters. After the co-occurrence frequencies are calculated, a similarity matrix
is constructed which is then converted into a graph form by taking the pages
as nodes and co-occurrence values as edges between these nodes. Naturally, the
nodes will be unlinked if the co-occurrence frequency between the pages denoted
by them found to be 0 from the similarity matrix. The connected components in
the graph built in this way are accepted as clusters. The pages corresponding to

the nodes of a connected component found by this way are put into one cluster.
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The Cluster Mining algorithm explained in [18] is PageGather which differs from
the other clustering algorithms because of not insisting on putting every instance
in one and only one cluster. Instead, the algorithm discovers small number of

high quality clusters.

The clusters obtained by this way may contain pages that are conceptually
unrelated. Yet, the aim of the IndexFinder system is to produce index pages that
contain links which are conceptually related in addition to be visited together by
the majority of the visitors. This constraint is satisfied by applying a concept
learning algorithm on the clusters found in the previous step [16]. To be able to
apply that algorithm, first each page should be tagged manually with the correct
values for predefined enumerated concepts. Concept Learning algorithm [16] finds
the most common and basic concept that summarizes the pages in the cluster.
Then, the noisy pages that conflict with the concept found are removed from the
cluster while the nonexistent pages that conform to the given concept are joined
to it. Each cluster obtained by this way is used to form one index page which is
composed of the links to the pages that are in that cluster. The candidate pages
are presented to the web master who will give the final decision on the addition

of these pages to the site and the location and the title of them.
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UsageMiner

The aim of the UsageMiner module is to discover the common usage patterns of
the visitors of a given web site by analyzing the log file of the web site. UsageMiner
has two independent submodules: PathInfoProcessor and HostIdentityProcessor.
The aim of the PathInfoProcessor submodule is to find user navigation paths
hidden in the given log file and then store them in a predetermined form to be
utilized by Recommender. On the other hand, HostIdentityProcessor submodule
examines the log file for discovering the relations between identity information

and navigation patterns of visitors and stores the results that it obtains.

Access logs of all web sites continuously grow bigger as new requests are taken
by the web servers which maintain these log files. In this respect, we configured
our usage mining system in such a way that it runs automatically on each day
at a predetermined time for processing the newly added entries of the log file.
For this, as soon as the submodules start execution, they determine the location
of the last entry in the growing log file so that they know from where to start
execution on the next day. So, on each day the submodules start processing
the entries in the access log from where they left on the previous day. In other
words, they skip the entries until that line and process the ones that are added
afterwards. The information learned from the new entries is then aggregated into

the information learned in the previous days.

27
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Before going into the details of this process, we will first explain the first
critical operation performed by the UsageMiner module. This operation is called
as data preparation in majority of the usage mining systems, since in this step the
data is filtered and put into a form that is suitable to be mined. In Section 3.1, we
will explain some of the data preparation techniques utilized by the UsageMiner.
Following this, we will explain the work performed by PathInfoProcessor and

HostInfoProcessor modules in more detail.

3.1 Data Preparation

The only data source for our usage mining system is the server log files of the
web site considered. Log files contain a huge amount of data which is irrelevant
to the usage mining process. In data preparation phase, raw data contained
in the log file is filtered out to eliminate these irrelevant entries. The second
important data preparation task is to put the relevant data into a form that is
amenable for mining. In addition to the common data preparation tasks, both
PathInfoProcessor and HostInfoProcessor require specialized and distinct data
preparation operations. We will explain these specific operations in the sections
devoted to the submodules. On the other hand, data preparation tasks common
to the both submodules will be explained in this section. First of all, we will give

a detailed description of the server log files.

3.1.1 NCSA Combined Log Format

Main data source for our usage mining system is the server log files which are
created and maintained by the web servers. Server access log files store an entry
for every single request the server gets. The format of the log file produced by
the web server depends on the configuration of the server. Two of the possible
log file formats are common log format and combined log format which differ
in the amount of information that they store related to each request. The log

files of the Computer Engineering Department of Bilkent University web server
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(www.cs.bilkent.edu.tr) are created in the NCSA combined log format.

3.1 demonstrates a fragment of the log file of this web site.

d75246a.dorm.bilkent.edu.tr - - [21/Apr/2001:22:06:04 +0300]
"GET /courses.html HTTP/1.1” 304 -"http://www.cs.bilkent.edu.tr/”
"Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)”
d75246a.dorm.bilkent.edu.tr - - [21/Apr/2001:22:06:06 +0300]
"GET / will/courses/CS101/ HTTP/1.1” 304 -
"http://www.cs.bilkent.edu.tr /courses.html”

"Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)”
d75246a.dorm.bilkent.edu.tr - - [21/Apr/2001:22:06:10 +0300]
"GET / will/courses/CS101/examgrades.htm HTTP/1.1” 304 -
"http://www.cs.bilkent.edu.tr/ will/courses/CS101/”
"Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)”
ch4blm.bellglobal.com - - [21/Apr/2001:22:06:11 +0300]

"GET / oulusoy HTTP/1.1” 301 332
"http://www.cs.bilkent.edu.tr/ oulusoy/proj5.html”
"Mozilla/4.0 (compatible; MSIE 5.5;Windows 98)”
ch4blm.bellglobal.com - - [21/Apr/2001:22:06:12 +0300]

"GET / oulusoy/ HTTP/1.1”7 200 4992
"http://www.cs.bilkent.edu.tr/ oulusoy/proj5.html”
"Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)”

Figure 3.1: Fragment of a combined log file

In the following lines, we will explain what each entry stands for.

29

Figure

e Remote Host: This field contains the hostname of the connecting machine.

If the machine does not have DNS hostname, IP Address is used.

75246a.dorm.bilkent.edu.tr - - [21/Apr/2001:22:06:04 +0300]

"GET /courses.html HTTP/1.1” 304 -"http://www.cs.bilkent.edu.tr/”

"Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)”

o Ident and Authuser: Ident is the remote login name of the user. If the

requested document is password protected, Authuser field contains the user

name. Since usually web browsers do not send this information, this field

is empty.
75246a.dorm.bilkent.edu.tr - - [21/Apr/2001:22:06:04 40300]

"GET /courses.html HTTP/1.1” 304 -"http://www.cs.bilkent.edu.tr/”



CHAPTER 3. USAGEMINER 30

"Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)”

e Date: This field contains the date and time of the request.

75246a.dorm.bilkent.edu.tr - - [21/Apr/2001:22:06:04 +0300]
"GET /courses.html HTTP/1.1” 304 -"http://www.cs.bilkent.edu.tr/”
"Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)”

e Request [Method URL Protocol]: Request coming from the visitor is exactly
kept in this field. Method is set to GET for page requests or POST for
form submissions. URL part is reserved for the related URL. Protocol is

HyperText Transfer Protocol used.

75246a.dorm.bilkent.edu.tr - - [21/Apr/2001:22:06:04 +0300]
?GET /courses.html HTTP /1.1” 304 - "http://www.cs.bilkent.edu.tr/”
"Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)”

e Status: Status field contains the return status of the request which shows

whether the transfer was successful or not.

75246a.dorm.bilkent.edu.tr - - [21/Apr/2001:22:06:04 +0300]
"GET /courses.html HTTP/1.1” 304 - "http://www.cs.bilkent.edu.tr/”
"Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)”

e Bytes: The number of bytes sent by the server is stored in bytes field.

75246a.dorm.bilkent.edu.tr - - [21/Apr/2001:22:06:04 +0300]
"GET /courses.html HTTP/1.1” 304 - "http://www.cs.bilkent.edu.tr/”
"Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)”

o Referrer: The URL that directs the user to the current document. If the user

reaches to the current document directly by its address, this field contains

”

75246a.dorm.bilkent.edu.tr - - [21/Apr/2001:22:06:04 +0300]
"GET /courses.html HTTP/1.1” 304 - ”http://www.cs.bilkent.edu.tr/”
"Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)”

o User Agent: This field contains the browser and the operating system used
by the visitor.
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75246a.dorm.bilkent.edu.tr - - [21/Apr/2001:22:06:04 +0300]
"GET /courses.html HTTP/1.1” 304 - "http://www.cs.bilkent.edu.tr/”
”Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)”

3.1.2 TUser Session

In this section, we will define the basic concepts such as wvisitor, file request, page
request or user session which we will use many times throught the rest of the

thesis.

e Visitor: A person accessing the files on a web site from a particular ma-
chine. We try to identify and distinguish visitors by using their IP addresses
or host names. We assume that two requests coming from the same IP ad-
dress or host name are performed by the same visitor. Actually, [P addresses
and host names may not be enough for identifying the visitors in some cases
where the visitors are behind a proxy server or corporate firewalls. Because,
the requests coming from the machines behind a proxy server will contain
the IP address of the proxy server instead of the real IP addresses. So, we
are not able to differentiate between these kinds of machines as many other
usage mining systems. Most accurate solution for this problem seems to
be relying on the user cooperation although some heuristics may be used
for differentiating between visitors. For example, the requests coming from
same [P Address with different agents may be the indication of two different
visitors. Nevertheless, we can not guarantee that we will be able to solve

that problem completely with these kinds of heuristics.

e Valid File Request: Any type of data including graphics, scripts or html
pages requested by the visitor and submitted to him by the corresponding

web server.

e Valid Page Request: Any successfully answered request for one of the
actual web pages taking place in the web site in process. We need to

differentiate between requests for actual web pages and the other types of
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files. Whenever a page containing images, sound facilities, etc. is requested
by a particular visitor, all of the files utilized by that page are retrieved
automatically by the web server which adds a new record to the log file for
each of these file transfers. So, we need to filter the log file for obtaining
actual page requests. This can be performed easily by checking the filename
suffixes of the requested files. The entries which contain request for certain
types of files with suffixes such as GIF, JPG, WAV, CLASS, TXT, etc. are
filtered before running the mining algorithms. In addition to these, we need
to eliminate unsuccessful requests that take place in the log file. A request
is unsuccessful if it is not answered by the corresponding web server. These
kind of situations can easily be detected by looking at the status field of
the log entries. For example, if the status code belonging to a particular log
entry is 404 then we should ignore that entry, because the requested page

of that entry was not found by the web server.

e User Session: Ordered set of page requests performed by a particular
visitor on a given time interval, which is generally 30 minutes. According
to this definition, there must be less than 30 minutes between the first and
last page request in the user session. In Definition 2, user session concept is
defined more formally. Before this, we will define the concept of log entry

in Definition 1 to form a basis for the next definition.

Definition 1 Log File, L is defined as the collection of log entries where each
log entry [ € L has the following attributes:

e [ident is either the ip address or the visitor
e [.time is the time of the request
o [.referreris the referrer page for the request and

o [.target is the requested URL

Definition 2 User session S is defined as S =< idents, PRs > where
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PRs = (R{.referrer, R} target), ........ (RS .referrer, RS target)

R{ € L and R .ident = S.ident for 0 < k <=m

and RS .time — R .time < 30

Each server log is composed of a set of user sessions. For each user session
S € L, tdentg is the host name or the ip address of the visitor having that session
while PRgs (page requests of session S) is the set of accesses taking place in this
session. What we call as access is a (referrer, target) pair corresponding to a valid
page request generated by the visitor having this session. As indicated in Section
3.1.1, the referrer of a particular access is the page containing the link that is
selected for retrieving the target which is the page requested in this access. The
accesses are not added into the user session if they contain a invalid page requests,
for example the requests containing invalid URL name. Note that, throughout
the rest of the thesis, the term user session is being used to refer the PR set of it

in some cases.

To sum up, removing the requests for irrelevant types of files and unsuccessful
requests is the first operation performed in data preparation phase. It is followed
by the determination of the user sessions embedded in the log file. Mainly, these
two operations are the common data preparation tasks for PathInfoProcessor
and HostldentityProcessor. In fact, data preparation and mining are performed
interactively in these modules. So, these operations are not totally independent
from each other. We will explain how user sessions are formed and how mining

is performed in detail in the following sections.

3.2 PathInfoProcessor

PathInfoProcessor which is responsible for mining user navigation paths from a
given access log file is the first submodule of the UsageMiner system. First of all,

in Section 3.2.1 we will describe what we mean by the term path and the method
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of finding paths from a given user session. Formation of the paths is a special
data preparation task performed by PathInfoProcessor. In the latter sections,
we will explain how the paths found in data preparation phase are utilised by

PathInfoProcessor in detail.

3.2.1 Data Preparation for mining paths

In this section, we will explain the method that we utilized for finding the paths
followed by the visitors given the sessions belonging to them. Pages are linked
to each other in the web environment. So, they can be retrieved by following the
links on other pages in addition to reaching them directly via their addresses.
In such an environment, visitors follow certain paths throughout their visit to
the web sites. All paths start from a particular page in the site and expand by
the addition of the new pages retrieved by following the links on the previously
retrieved pages or typing their addresses. In the light of these observations,
path of a particular visitor is the ordered list of pages which are requested by
him /her consecutively. Our aim is to detect these paths as accurately as possible.
Unfortunately, inferring user paths is not an easy task as it seems because of the

nature of the web environment.

The difficulty comes with the usage of BACK and FORWARD buttons pro-
vided by most of the web browsers. As known, recently requested pages are
cached by the web browsers which display these cached copies of pages if visitors
backtracks to them by using BACK and FORWARD buttons. Since no new page
is being requested in such situations, web server does not become aware of the
user behavior, so this kind of situations are not reflected into the access log files.
As an example, consider the user session depicted in Figure 3.2 (note that we did
not give the complete addresses for the pages for saving from space. Namely, in
all addresses we ignored the http://www.cs.bilkent.edu.tr prefix which is common
to all URLs belonging to the CS department web server. For example, /~sesra
is representing the page http://www.cs.bilkent.edu.tr/~sesra.)

The visitor who is the owner of this session firstly retrieves the page /~sesra.
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U= {(-, /~sesra), /*1%/
(/~sesra, [~sesra/courses.html), /*2%*/
(/~sesra/courses.html, /~sesra/courses/cs101), /*3%/
(/~sesra/courses/cs101, /~sesra/courses/cs101/grades.html), /*4%*/
(/~sesra/courses.html, /~sesra/courses/cs102), /*5%/
(/~sesra/courses/cs102, /~sesra/courses/cs102/lectnotes.html)/*6*/ }

Figure 3.2: Example User Session (Note that the numbers attached to the accesses
are showing the order of the accesses in the session).

Then, he retrieves the pages /~sesra/courses.html, /~sesra/courses/cs101 and
/~sesra/courses/cs101/grades.html consecutively. Each of these three pages are
retrieved by following the links on the previously retrieved pages. We draw this
conclusion by looking at the referrer field of the corresponding accesses. When
we come to the fourth access, the referrer page of this access is not the page
retrieved in the previous access. On the contrary, /~sesra/cs102 seems to be
retrieved by following a link on page /~sesra/courses.html, because this page is
the referrer for this access. This means that the visitor had turned back to the
page /~sesra/courses.html before retrieving the page /~sesra/cs102 in such a
way that this move was not noticed by the web server. In this case, we con-
sider that the visitor had pressed the BACK button for turning back to the

/~sesra/courses.html page.

Figure 3.3 shows the user session given in Figure 3.2 graphically. In this
representation, each page retrieved by the visitor is represented with a distinct
box. The paths followed by the visitor can be discovered easily by analyzing this
figure. For example, the paths obtained from the user session depicted in Figure

3.3 are listed below.

Path 1: /~sesra — /[~sesra/courses.html — /~sesra/courses/cs101 —

/~sesra/courses.html/cs101/grades.html

Path2: /~sesra — /[~sesra/courses.html — /~sesra/courses/cs102 —

/~sesra/courses.html/cs102/lecnotes.html

For this user session, there exits one additional path which contains the re-

quested pages in order (Path 3).
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A: /~sesra B: /~sesra/courses.html C: /~sesra/courses/csl01

D: /~sesra/courses/csl0l/grades.html E:/~sesra/courses/csl02

E: /~sesra/courses/csl02/lecturenotes.html

Figure 3.3: Navigational patterns in an example user session

Path 3: /~sesra — /[~sesra/courses.html — /~sesra/courses/cs101 —
/~sesra/courses.html/cs101 /grades.html —

/~sesra/courses/cs102 — [~sesra/courses.html/cs102/lecnotes.html

We have to include this path because it may help us in discovering potentially
important information. If supported with the other paths from the other user
sessions, this path may be important in drawing the following conclusion: The
visitors who are interested in the home page of CS101 course are also interested
in the home pages of the CS102 course. At this point, some readers may think
that including only the last path could be enough for this session without any
further processing. But, if we do not form the second path for that user ses-
sion, it will cost us losing an important information from which we can draw
the following conclusion after checking all user sessions: The visitors retrieving
pages /~sesra and /~sesra/courses.html in order are possibly interested in page

/~sesra/courses/cs102.

In our system, we benefit from the tree representation for finding the paths
hidden in the given user session. For this, the system produces a tree data

structure for representing each user session found from the log file. The algorithm
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Input : User Session containing a set of accesses
Output : PathFindTree containing paths

Procedure:

[1]IndezOfLastNode — -1

[2]For each access, (Referrer, Target) pair in the user session

[3] If this is the first access in the user session

[4] If the Referrer is empty

[5] PathFindTree[++IndexOfLastNode]. URLname — Target
6] End If

[7] Else

8] PathFindTree[++IndexOfLastNode]. URLname «— Referrer
9] PathFind Tree[++IndexOfLastNode].children[0] — Target
[10] PathFindTree[IndexOfLastNode]. URLname «— Target

[11] End Else

[12] End If

[13] Else if the Referrer is empty

[14] lastchild — PathFindTree[IndexOfLastNode].lastchild++

[15] PathFindTree[IndexOfLastNode].children[lastchild]«— Target
[16] PathFindTree[++IndexOfLastNode]. UR Lname «—Target

[17] End Else If

[18] Else

[19] If the Referrer equals to LastPageRetrieved

[20] lastchild — PathFindTree[IndexOfLastNode].lastchild++

[21] PathFindTree[IndexOfLastNode]. children[lastchild] — Target
[22] PathFindTree[++IndexOfLastNode]. UR Lname «—Target
[23] End If

[24] Else

[25] searchindex «— IndexOfLastNode

[26] while (searchindex > 0) and ( found == 0)

[27] if PathFindTree[searchindex].URLname == Re ferrer then found=1
[28] End While

[29] if found==

[30] lastchild — PathFind Tree[searchindex].lastchild++

[31] PathFindTree[searchindex].childrenflastchild] — Target
[32] PathFindTree[++IndexOfLastNode]. URLname —Target
[33] End If

[34] End Else

[35] End Else

[36] LastPageRetrieved — Target

[37] End While

Figure 3.4: Algorithm for forming PathFindTree from a given user session
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which forms the tree data structure given a particular user session is depicted in
Figure 3.4. In this algorithm, which is called as PathFind, the referrer (or the
target if the referrer is empty) of the first access in the user session is put into
the root of the tree (Line 3 - Line 15). Starting from this point, the algorithm
processes each access in the session consecutively. Whenever the referrer of a
particular access which is in process is same as the target of the previous access,
new node is created to contain the target page and added as a child to the latest
node created (Line 22 - Line 27). In this case, there is no backtracking, because
the visitor retrieves a page by choosing a link from the previous page retrieved.
In cases where the referrer field of the access is empty, the same thing is applied
because the visitor retrieves a new page directly by writing its address (Line 16 -
Line 20). We think that if the visitor retrieves a new page by this way, the path

should continue with this page.

On the other hand, if the referrer page of a particular access is not the same
as the target page of the previous access, which means that the visitor did not
follow a link placed on the previously retrieved page, the algorithm takes the
necessary actions to handle backtracking (Line 22 - Line 39). At this point, what
is known is the referrer page for the current access. So, the action that should
be taken is to perform a backward search in the tree data structure for finding
the most recently created node that contains the referrer page (Line 29 - Line
32). Whenever such a node is found, the search operation terminates. At this
point, the target page of the current access is added as new child to the node
found (Line 33 - Line 38). The data structure that we utilized in this algorithm
provides an easy access to the nodes containing the most recent accesses to all

pages in this user session.

At this point, we will explain the data structure we designed. In fact, the
data structure we created is the extension of the tree data structure. The plus
of the data structure we created is to make it possible to understand the order
in which the tree nodes are created. For this, we keep all nodes of the tree in
a linked list. The children of each node are kept in an inner list originating
from the corresponding node in the outer list. Each node of each inner list has

a field named as ContinueAt which shows the index of the child represented by
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B, 1 B, 1
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Jc,2 Jc,21D,3
1| B 1| B
D, 3 J D,3
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3| D 3| D
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4| E 4| E
(a) (b)
5| F 5| F

A: /~sesra B: /~sesra/courses.html C: /~sesra/courses/csl101
D: /~sesra/courses/csl0l/grades.html E:/~sesra/courses/csl02

E: /~sesra/courses/csl02/lecturenotes.html

Figure 3.5: PathFindTree, data structure created for path finding

that node in the outer list. For example, the data structure created for the user

session depicted in Figure 3.2 is depicted in Figure 3.5.b.

Figure 3.5.a shows the PathFindTree just before the processing of 5t access
in given user session. Here, the referrer page existing in the 5 access is not
equal to the target page existing in the 4** access. In this case, the algorithm
starts searching the outer list of the PathFindTree starting from the last node
added so far, 4" node for finding the most recent node containing the referrer
page of the 5" access, which is /~sesra/courses.html. The search terminates at
the first node which contains that page. In our case, 1% node is the most recent
node containing the referrer page of the 5" access. So, the algorithm adds a new
child to 1** node. New child contains the page /~sesra/courses/cs102. After the
addition of the second path, the data structure is as shown Figure 3.5.b.

After the PathFindTree is constructed in this way, the next step of the path
finding process is ready for execution; finding the paths hidden in PathFindTree.
The algorithm for finding paths is shown in Figure 3.6. The algorithm starts by
finding the set of two node paths that contain the root and the pages retrieved
after root (Line 2 - Line 8). Root of the tree contains the referrer page or the

target page if the referrer is empty of the first access. After this, the paths are
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incrementally enlarged in each iteration of the while loop (Line 11 - Line29).
Whenever a node that is added into a path has children, the algorithm creates a
new copies of the path as much as the number of children minus one. New paths
continue to expand independently in the following iterations. The paths obtained

after each iteration in our example are shown below.

o first iteration: A B
e second iteration: A B Cand ABE

e third iteration: ABCDand ABEF

3.2.2 Mining Process

In the previous section, we explained the method that we used for finding the
paths existing in a particular user session. In this section, we will explain the work
performed by PathInfoProcessor whose main goal is to mine user navigation paths
from the access log files. Main steps of the work performed by PathInfoProcessor
is depicted in Figure 3.7. In fact, this section is devoted to the explanation of

each of these steps in detail.

Initially, the first action taken by PathInfoProcessor is to load the data stored
in the path file produced in the last run of the program into the memory and
convert i1t into a suitable form to be updated by the new data which is the usage
data belonging to the visitors visiting the site since the latest run of the Pathln-
foProcessor. The next step contains the processing of the new data. Initially, the
log file is searched for finding the last processed entry in it. The entries after that
one are the ones which are new and unprocessed, because of being added into
the log file after the most recent run of PathInfoProcessor. In step 2, these new
entries are processed for finding the user sessions and the paths hidden in these

sessions. These paths are then added into the PathTree.

The algorithm corresponding to the step 2 of PathInfoProcessor algorithm

is depicted in Figure 3.8. This algorithm is the one which processes the new
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Input : PathFindTree

Output : Paths

Procedure:

[1] & < 0, lastpath «— -1

2] while (k < PathFindTreetree[0].lastchild)

3 lastpath++

4] pathlist[lastpath].path[0] < PathFindTree[0]. URLname
pathlist[lastpath].path[1] «— PathFind Tree[0].children[k]. URLname
pathlist[lastpath].continueat — PathFindTree[0].children[k]. continueat
pathlist[lastpath].lastnode—1

End While

while (pathadded == 1)

| pathadded 0, pathindex 0

| while (pathindex < lastpath)

] if ((nextnode «— pathlist[pathindez].continueat) > -1)

] numofpaths «— PathFindTree[nextnode].lastnode

]

]

ot

lastnode «— pathlist[pathindex].lastnode++
pathlist[pathindez].children/lastnode]«—

PathFind Tree[nextnode].children[0]. UR Lname

[16] pathlist[pathindez].continueat «—

PathFindTreetree [nextnode]. children[0]. continueat

2]
3]
[4]
[5]
[6]
[7]
8]
[9]
[10
[11
[12
[13
[14
[15

6
7
8
9
1
1
1
1
1
1

[17] pathadded—1, currentnode«—1

[18] while (currentnode < pathtree[nextnode].lastnode)

[19] lastpath++

[20] for (i « 0,1 < pathtlist[pathindez].lastnode)

[21] pathtlistflastpath].childrenfi] —
pathtlist[pathindex].children[i]

[22] End For
[23] pathtlistflastpath].children[i] «—
PathFindTree [nextnode]. children[currentnode]. URLname
[24] pathtlist[lastpath].continueat «—
PathFindTree [nextnode]. children[currentnode]. continueat
[25] currentnode+—+
[26] End While
27]  EndIf
[28] End While
[29] End While

Figure 3.6: The algorithm for extracting paths from a given PathFindTree
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Step 1: Load the past data produced in the previous days into PathTree

Step 2: Update the PathTree with the new entries from the active log file

Step 3: Convert the PathTree into a form that can be handled by Recommender
Step 4: Prune and store the tree

Figure 3.7: Main steps of PathInfoProcessor algorithm

entries of the log file and discovers the user sessions. In this algorithm, the new
entries in the log file are read one by one in the order of creation. For each line
read, the algorithm checks all user sessions that it keeps in its active user sessions
database. Whenever the algorithm encounters with a page request from a new
host, it creates a new user session and adds into the database containing all other
user sessions (Line 4 - Line 9). On the other hand, if the request was created
by an existing host, then it is added into the user session belonging to this host
(Line 10 - Line 13). Finally, if the algorithm discovers that 30 minutes has passed
since the creation of a particular user session, then this user session is ended (Line
16 - Line 24). In this case, this user session is removed from the active sessions
database. Before doing this, the algorithm finds the paths followed by the visitor
having that session (Line 17). The paths belonging to the user session are found
by using the algorithms explained in Section 3.2.1. After all paths existing in the
user session are found, these paths are stored for later use (Line 18 - Line 22). In

Section 3.2.3, we will explain the method for storing paths.

3.2.3 Path Tree

After finding the paths for ended user sessions, PathInfoProcessor should store
these paths in some form so that they could be utilized by the on-line part of the
system. In our solution, paths are stored in the form of tree. StorePath algorithm

is responsible for adding the given path into the tree called PathTree.

At this point, it should be noted that paths are not added into the PathTree

as they are formed. Whenever a path is found, only its prefix containing first
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Input : Log File

Output : PathTree

Procedure:

[1] For each new entry in the given log file

[2] Read the next entry from log file

[3] Parse the log entry to obtain the Identity, Referrer, Target and Time
for the request

[4] if the request is generated by a new visitor

[5] Create a new user session

6] Owner of the user session « Identity

[7] Starting time for User session « Time

8] First access of the user session « (Referrer, Target)

9] EndIf

[10] Else

[11] If the request is valid

[12] Add a new access, (Referrer, Target) to the session belonging to
the current visitor

[13] End If

[14] End Else

[15] for each user sessions, S active in the session database

[16] if the session, S is created 30 minutes before

[17] Find paths for this visitor

[18] for each path

[19] for each node, N of the path

[20] Add the sub-path starting from N and containing

the next HustoryDepth nodes into the PathT'ree

[21] End For

[22] End For

[23] Remove the user session, S from the active sessions database

[24] End If

[25] End For

[26] End For

Figure 3.8: The Algorithm for processing the new entries of the given log file
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n nodes is added into the PathTree. The parameter n is called as HistoryDepth
and it is the maximum number of pages that can take place in any path. The
criterion of history depth is utilized by the majority of the usage mining systems.
According to this criteria, only the last n pages requested by the visitor effect
the page that will be retrieved next where n is the history depth. The pages
retrieved before this are accepted as irrelevant to the current access. The value of
n is generally adjusted experimentally. Utilizing from the history depth criterion
requires that it is not necessary to keep paths that have a length larger then n.
As a result, if the HistoryDepth is set to be n, a path starting at any node ends

in n'* node of the real path.

In addition, it should be noted that all prefixes of a given path can also be
accepted as a path. Because, they also hide a navigation pattern in them. As
a result of these, for each path found by the PathFind algorithm, the system
considers each n consecutive node sequence starting from each and every node in
the original path as a candidate path to be added into the path tree. Naturally,
the paths may have smaller lengths if there exists a smaller number of nodes
between the starting node of the new path and the ending node of the original
path. For example, the paths formed out of a real path (A, B, C, D, E) are (A,
B, C), (B, C, D) and (C, D, E) if HistoryDepth is set to 2.

As indicated, paths are stored in the form of a tree which is a well-known data
structure. The reason behind preferring the tree data structure is the easiness
and efficiency that it provides for both off-line and on-line parts of the system
by reducing the space and the time requirements dramatically. Consider the

following two paths:
Path 1: /~sesra — /~sesra/courses — /~sesra/courses/cs101
Path 2: /~sesra — /~sesra/courses — /~sesra/courses/cs102

First two pages existing in these paths are same. In the tree representation,
these two paths are merged, so their common prefix is stored only once. When
all paths followed by the visitors are stored in such a compact data structure,

recommendation process also gets much more painless. The algorithm forming
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Input : PathTree and the path

Output : Updated Path Tree

Procedure:

[1] CurrentNode « Root of the tree

2] for each page, P in the path

3] CurrentPage «— P

4] Childnode + Child of the current node with label CurrentPage
5] if (ChildNode = NULL) /*If there exists such a child*/

6] Increase the count of ChildNode
7] CurrentNode «— ChildNode

8] EndIf

9] else

[
[
[
[
[
[
[
[
[

10] ChildNode «+ Create a new child belonging to CurrentNode with
label CurrentPage

[11] Count of ChildNode « 1

[12] CurrentNode «— ChildNode

[13] End Else

[14]End For

Figure 3.9: The Algorithm for adding a given path into the Path'Tree

the PathTree is depicted in Figure 3.9.

In the PathTree, each node except from the root node contains a page and
corresponding count. The root of the tree just combines the nodes below it. It
does not represent any particular page in the site, because paths may start at
any page in the site. In this tree, the node sequence obtained as a result of a
walk from a root node to any of the leaves is one of the paths followed by the
visitors of the web site in consideration. In addition, the count value associated
with a particular node, N is the number of visitors reaching to the page stored in
N from the root by retrieving the pages that are placed in the nodes which are

in-between the root and N.

While adding a particular path into PathTree, AddPath algorithm either cre-
ates a new node or increments the count of the existing node for each page
belonging to the given path. It starts from the root node whose children are

checked until finding the one which contains the first page in the path. If such a
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node is found, its count is increased by one, after which the children of that node
are traversed for finding the second page in the path. If there does not exist such
a node, the algorithm creates a new node containing the first page and adds it
as a new child to the root node. In general, in cases where the node, say n; that
is reached by matching the first i-1 pages of a given path has no matching child
containing the :** page of the path, the algorithm creates a new child for node n;
containing the 7% page. In this case, all of the remaining pages starting from the
" one are placed into the subtree rooted at n;. On the other hand, if node n;
has a child containing the ¢** page of the path, the algorithm just increases the

count of n; and continues searching for the rest of the pages of the path in the

subtree rooted at n;. The tree built this way contains all possible paths.

As an example, consider that at some point on the execution of the Pathln-
foProcessor, the PathTree obtained is like the one shown in the first figure in
Figure 3.10. Assume that we want to add the path P=(K, B, T) into this tree.
Figure 3.10 demonstrates the step by step addition of this path into the given
PathTree. In this example, the nodes corresponding to the first two pages of the
path could be located in the tree, so the algorithm just increases the counts of
these node. On the other hand, the algorithm creates a new node for the last

page in the path.

3.2.4 Storing PathTree

As indicated earlier, the tree created by PathInfoProcessor will be used by Rec-
ommender, on-line module of the system for finding recommendations matching
to the needs of the visitors. For this reason, PathInfoProcessor should store the
PathTree in such a way that it is understandable and accessible by Recommender.
Here, it is very important that Recommender should spend minimal amount of
time on reaching and using that data, because the speed is critical for the success
of recommendation process. In the light of these observations, we firstly decided
to design Recommender in such a way that it keeps the PathTree in the same way
with the PathInfoProcessor. But, our experiments have shown that the creation

of this tree is a costly operation.
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Figure 3.10: Step by step construction of PathTree

For this reason, we stored the tree in such a form that the Recommender will
spent minimum amount of time on creating and accessing it. Our solution for
this is to convert the PathTree into an one-dimensional form, namely store it in
an array called NewPathTree. In this case, there is one to one correspondence
between the entries of the array and nodes of the PathTree. Each node of the
NewPathTree contains a page, count and the starting and ending indexes, Child-
StartIndex and ChildEndIndex of the entries containing the children of the node
represented in that entry. As a result, if the system needs to find a children of
a particular node in NewPathTree, it finds them in the entries between Child-
Startindexr and ChildEndIndexr where these indexes are obtained from the entry
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which contains the node in consideration. As a result of these, during the pro-
cess of converting the PathTree into NewPathTree, the system does not lose the
parent-child relationships. During this operation, only the representation of the
data changes. Figure 3.12 demonstrates the algorithm performing the conversion

operation.

As an example, NewPathTree corresponding to the original PathTree shown

in first figure of Figure 3.10 is shown in Figure 3.11.

0 root,—-,1,3
1 A,4,4,4
2 K,2,5,5 A: /~sesra
B: /~sesra/courses.html
3 B,4,6,7
C: /~sesra/courses/csl101
4 B,2,10,10 D: /~sesra/courses/csl01l/grades.html
E: /~sesra/courses/csl102
5 c,1,0,0
E: /~sesra/courses/csl02/lecturenotes.html
6 M,3,0,0
7 c,3,0,0
8 M,1,0,0
9 M,2,0,0

Figure 3.11: Converted tree

While converting the PathTree into a one-dimensional form, PathInfoProces-
sor performs pruning on it at the same time. Pruning is done by removing the
redundant data to decrease the size of the PathTree. This operation is simple yet
critical for the success of the recommendation process and really necessary in our
case, because the system adds all paths found into the PathTree and there may be
paths that are followed rarely. After the PathTree obtained completely, it is easy
to detect these paths by just looking at the counts of the nodes. While forming
the NewPathTree, if a particular node of the PathTree has a count smaller than
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Input: PathTree and MinValue
Output: NewPathTree
Procedure:

[1] for each child, ¢; of the root node

[2] if ¢; has a child whose count is larger than Min Value

3] lastnode++

[4] NewPathTree[lastnode]. URLname «— child;.U RLname and
NewPath Tree[index].count «— child;.count

[5] NewPath Tree[lastnode]. ChildStartIndex«— -1

6] NewPath Tree[lastnode].childpointer «— child;.C'hildN ode

[7]  EndIf

[8] End For

[9]

[10] NewPathTree[0].endindex «— lastnode

[11] processed«0

[12] while (processed < lastnode)

[13] nodeinprocess++

[14] if NewPathTree[nodeinprocess].startindex > 1 then nodeinprocess++ End If

[15] else

[16] Get the child pointer of NewPathTree[processed]

[17] startindex «+ lastnode

[18] for each child, ¢; of NewPathTree[processed]

[19] if (¢;.count > MinV alue)

[20] lastnode++

[21] NewPath Tree[lastnode]. URLname «— child;.U RLname and

NewPath Tree[index].count «— child;.count

[22] NewPath Tree[lastnode]. ChildStartIndex «— -1

[23] NewPath Tree[lastnode].childpointer «— child;.C hildNode

[24] End If

[25] End For

[26] if (startindex == lastnode)

[27] NewPath Tree[nodeinprocess].startindex 0

[28] End If

[29] else

[30] NewPath Tree[nodeinprocess]. ChildStartIndex «— startindex+1

[31] NewPath Tree[nodeinprocess]. ChildEndIndex — lastnode

[32] End Else

[33] End Else

[34]

Figure 3.12: The Algorithm for changing the format of the PathTree
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the minimum value needed, this node will not be added into the NewPathTree
as a child to its old parent. Also, the subtree rooted at that node will not be
represented in the NewPathTree. The minimum value needed to make the node
relevant is called as Min Value. In Chapter 5, we will discuss on finding the correct

value for this variable.

As a result, the program performs two different and important tasks together,
changing the format of tree and pruning. Once the tree in the new format is
obtained, it is easy to store it into a permanent storage to be utilized by Recom-
mender. The entries in the NewPathTree are printed one by one in separate lines
of the file called PathInfoFile. Each line of this file contains page address, count
value and ChildStartIndex and ChildEndIndex values. Namely, the :** line of the
PathFile corresponds to the ¢'* entry of the NewPath Tree.

3.3 HostldentityProcessor

HostIdentityProcessor submodule aims to discover relations between identity in-
formation and navigation patterns of visitors. More specifically, the dependencies
of the navigation patterns of the visitors on the identity information of them are
discovered to be used by the Recommender, which will use this knowledge to-
gether with the path information of the visitors for guessing the next requests of
the visitors. Before going into the details of this process, we will explain the way

to obtain identity information of visitors in Section 3.3.1.

3.3.1 Obtaining Identity Information of the visitors

As indicated before, the first field of each entry existing in the log file is either
the IP address or fully qualified domain name of the visitor causing that entry.

In this section, we will explain the details related to these concepts.

Firstly, each computer connecting to the Internet has a unique IP address. 1P

(Internet Protocol) addresses are comprised of four numbers separated by periods.
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Each of these four numbers must be between 0 and 255, e.g. 139.169.11.23. Nat-
urally, IP addresses are incomprehensible for the humans who may not associate
any meaning to the numbers forming them. Because of this reason, computers
are also associated with a particular name which is called as the fully qualified
domain name. By the help of fully qualified names, it becomes possible to learn

more about the computers connecting to the Internet.

Fully qualified domain names should have at least two fields which are sepa-
rated by periods. This time, fields are composed of sequence of characters where
each character is either a digit between 0 and 9 or a letter between a and z.
Here, the values of fields forming the domain names are not chosen randomly.
Even more, each computer is associated with a domain name according to the
predefined hierarchy built on the domain names which is called as domain name

hierarchy.

Topmost level in the hierarchy contains the root domain. The nodes below

the root contain the top-level domains which are listed below.

e com: Companies

e edu: Universities

e mil: Military Organizations

e gov: Government Organizations
e net: Internet Service Providers
e org: Nonprofit Organizations

e Country Names such as tr, de, uk, etc .

Each top-level domain in the domain name hierarchy has a second and lower
level domains. All domains contain the domains below them in the hierarchy.
Domain name hierarchy can also be represented by a hierarchical tree structure

where each node of the tree represents a domain name. Except from the leaves, all
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nodes in the tree contain the names of general domains. So, machines are placed
at the bottom of the tree. General domains which are placed on inner nodes
contain more than one computer. In fact, all of the general domains contain
the domains below them in the tree. As the general domain approaches to the
root, the number of machines contained in it increases. Figure 3.13 contains an
example domain name hierarchy. Note that the hierarchy shown in this figure is

only the small subset of the real domain name hierarchy.

root
7
com tr edu de

gov edu com

metu bilkent ege
cs dorm
/
pc5ll pcb527 pcb544

Figure 3.13: Example Domain Hierarchy

The fully qualified domain name for a particular host is obtained by concate-
nating the domain names of the nodes that are placed on the way from the root
to the leaf node containing the host. As an example, consider the fully qualified
domain name pe511.cs.bilkent.edu.tr which can be obtained by using the domain
name hierarchy depicted in Figure 3.13. It is apparent from the figure that this
domain name is obtained by concatenating the domain names from root domain
to the leaf containing pc511 subdomain. In the following lines, we explain what

each field in given fully qualified domain name means.
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tr: Turkey

edu.tr: Educational organizations in Turkey
bilkent.edu.tr: Bilkent University in Turkey
cs.bilkent.edu.tr: CS Department of Bilkent University

pc51l.cs.bilkent.edu.tr: The machine named as pchl1 on CS department of
Bilkent University.

In this example, the topmost domain containing the corresponding machine is
denoted with tr which is the rightmost field of the fully qualified domain name.
As proceeding into lower levels in the domain hierarchy, the domain gets more
specific. Of course, the number of machines on Bilkent domain is very much

smaller then the number of machines in ¢r domain.

The names of the top-level domains are assigned by the corporation named
as The Internet Corporation for Assigned Names and Numbers (ICANN). The
domains below the top-level are managed by their administrators. Domains are
generally divided into zones depending on the units which are either geographi-
cally or administratively differentiate from each other. The zones are generally
suited to the natural organization of the institutions. For example, universities
may divide their domain space into zones such that each department is assigned

with a different zone. Domain name hierarchy is built by naming these zones.

3.3.2 Identity Information Usage

We believe that the identity information may present very useful clues in predict-
ing the next requests of the visitors. For example, consider a visitor retrieving
the homepage of a particular instructor of CS department of the Bilkent Univer-
sity. Only by looking at the identity of that visitor, we can make a prediction on
the purpose of his visit. For example, if the visitor is from the dorm subdomain

of Bilkent domain which contains the dormitories of the university, he/she may



CHAPTER 3. USAGEMINER 54

request a homepage of one of the undergraduate courses taught by the instruc-
tor, because dormitories are mostly occupied by the undergraduate students. As
another example, consider a visitor retrieving the homepage of CS department of
Bilkent University. If the visitor is from another university or a company, she/he

may be interested in the research going on in the department.

Unfortunately, it is not possible to foresee whether our predictions are really
valid in real life without analyzing the behavior of the visitors. Of course, it is
always possible to make such predictions manually and to test whether they really
work in real life or not. But this is not a feasible way to make use of identity
information, because the predictions produced in this way are so subjective that
may cost us missing hidden patterns between navigation patterns and identity

information.

In our system, the discovery process of dependencies between identity infor-
mation and navigation patterns is fully automated for obtaining more objective
and complete results. In this case, the system only trusts on the usage behavior
of previous visitors. Briefly, we foresee that if the recent visitors coming from
a particular domain show some trends on their navigational behavior, the new
visitors from the similar domains will also be inclined to show the same trends.
In the light of this assumption, our solution procedure summarizes the common

trends in navigational behavior of visitors belonging to each domain.

We think that the most valuable information about a particular visitor is
obtained by analyzing directly the past behavior of him. So, our system keeps
a personal record for every single visitor. On the other hand, the site may have
new visitors about whom the system has no previous knowledge. Even in these
cases, it is possible to learn about possible interests of these visitors. Especially
for that kinds of visitors, we propose to make use of the domain name hierarchy
concept explained in the previous section. Even for the old visitors, usage of this

concept provides valuable information.

If a particular visitor has not visited the site recently, we will try to guess
the behavior of the visitor by looking at the visitors from the similar domains.

Similarity between domains is determined by looking at their position in the
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domain name hierarchy. The similarity between two domains increase as the
number of common parents of them increase in the domain hierarchy tree. For
example, two hosts are most similar if their immediate parents are same. On
the other hand, if only the top-level domains containing the hosts are the same,
the similarity between them is less. If the top-level domains containing them
are not even same, the hosts have no similarity. The reasoning behind these
assumptions is that the probability that professions, interests etc.. are same
for two hosts increase as they become closer. For example, most of the hosts
from dorm.bilkent.edu.tr subdomain belong to the students of Bilkent University,
because dorms are occupied by students and they have similar interests in general,
such as courses. Or, visitors from edu.tr domain are either students or instructors.
In this case, the hosts are less similar. Even in this case, they may have common

interests, compared to the visitor from com domains.

We will try to clarify these issues with an example. Assume that the page
/courses.html which contains the courses taught in the CS department of Bilkent
University has two visitors, A and B whose fully qualified domain names and

navigation patterns are shown below.

A: pchll.cs.bilkent.edu.tr and /courses.html — /cs521.html
B: pch22.cs.bilkent.edu.tr and /courses.html — /csH21.html

Suppose that after these visitors left the site, the page /courses.html was re-
quested by two new visitors, C and D. Additionally assume that, visitor C has
visited the site recently and retrieved the pages /courses.html and /csf12.himl
consecutively while visitor D performed no visit to the site recently. In such a
situation, HostIdentityProcessor produces the page /csf12.html as a recommen-
dation for visitor C by just looking at his past interests. On the other hand, as
indicated visitor D whose fully qualified domain name is pe513.cs.bilkent.edu.tr
has not visited the site recently, so the system does not have a specific information
on him. Besides, the system can learn about the possible interests of this visitor
by considering the parent domains of it. In this example, all of the tree visitors
(A, B and D) are from cs.bilkent.edu.tr domain. Two visitors (A and B) from
this general domain request page /cs521 after /courses.html page. As a result,
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there is a probability that visitor D will also retrieve that page. The probability
increases as the number of visitors from c¢s.bilkent.edu.tr domain following the
same path increases, because this indicates a more common trend among visitors

from that domain.

3.3.3 Processing Identity Information of the Hosts

In this section, we will explain the method utilized by the HostldentityProcessor
for mining the web logs with the aim of discovering relations between navigational
patterns and identities of the hosts. For this, the first possible approach that we
considered was to embed the identity information into the PathTree obtained by
the PathInfoProcessor. But, we thought that this is not a feasible solution for this
problem, because it will cause a decrease in the efficiency of the Recommender
system by expanding the PathTree too much. Each link in the path tree should
be associated with the list of domain names where the number of distinct domains
can easily grow so high. Because of this reason, the processes of obtaining identity
related information and path information are completely separated from each
other in our system. According to our solution procedure, HostIdentityProcessor
does not consider the paths followed by the visitors. It only searches for the pages

that are retrieved by a particular visitor after a retrieval of a particular page.

The main data structure created for keeping the hosts and their navigational
patterns is depicted in Figure 3.14. Almost all operations taking place in that
module interact with this list (HostInfolList) which acts as a database indexed
according to the identifiers (IP address or domain name) of the hosts or general
domains. It is mainly a list of records where each record contains the identifier,
boolean variable showing whether the identifier is fully qualified domain name or
not and a pointer to the data structure containing the navigational patterns of
the visitor or visitors represented in the current entry. These navigation patterns
belong to a particular visitor if the identifier field contains an IP Address or
fully qualified domain name of him. On the other hand, if the identifier field
contains the name of a particular general domain such as e¢s.bilkent.edu.tr then

the navigational patterns of all visitors belonging to that domain are kept in
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pcbll.cs.bilkent.edu.tr

pcx.ghy.co.uk

/~sesra /~sesra/courses.html

Y

d79017.dorm.bilkent.edu.tr

A

/~sesra/personal.html

cs.bilkent.edu.tr /~sesra/courses.html

ghy.co.uk

uk

Figure 3.14: HostInfoList

this entry. Navigational patterns are kept in a list of records where each record
contains a referrer page and a pointer to the list of pages that are retrieved
immediately after this page. So, the system learns which pages are retrieved

after a retrieval of a particular page by each host.

Main steps of the HostIdentityProcessor algorithm are shown in Figure 3.15.
In the first step of the algorithm, data obtained in the previous days is loaded
from the HostInfoFile into the HostInfolList. Then, the HostInfolList is
updated with the data added into the log file since the last run of the program.
In the third step of the algorithm, the data obtained as result of an execution of
the first two steps is stored into permanent storage. Finally, last two steps are
devoted to the task of handling general domains. In these steps, general domains
are found and common navigational behavior of the visitors from these domains
are discovered. Detailed explanation of each of these steps will be presented in

the sequel.
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Step 1: Load the past data produced in the previous days into HostIn folist
Step 2: Update HostInfolist with the new entries from the active log file
Step 3: Print the data file corresponding to HostIn folust

Step 4: Determine all parent domains and add them into the HostInfolust

Step 5: Find the data related to general domains and save it to data file

Figure 3.15: Main steps of the work performed by HostldentityProcessor

Step 2 of the HostIdentityProcessor algorithm is performed by the algorithm
depicted in Figure 3.16. The logic behind the creation and termination of user
sessions is same as the PathInfoProcessor algorithm, in which the sessions are
removed from the session database 30 minutes after their creation. Before the
removal, HostldentityProcessor firstly calls the FindDomain function which is
responsible for finding the index of the entry containing the given host in the
HostInfolust. In this case, the FindDomain function tries to locate the host
which owns the user session in process. FindDomain algorithm traverses the en-
tries in the HostInfolist one by one until finding the index of the entry containing
the given domain name or IP address. If it could not find such an entry, then it
adds a new entry containing to the HostInfolist. In each case, it returns the
index of the entry containing the host. After the index of the entry containing
the given host is found, the data stored in that entry is updated by the addition
of the navigational patterns hidden in the user session. For this, each access
belonging to the user session is reflected into the HostInfolist by calling the
function AddAccess (Figure 3.17).

AddAccess function is responsible for embedding the given access which con-
sists of (SourcePage, TargetPage) pair into the navigational pattern data stored
in the given entry of the HostInfolist. The reason for this operation is that
the host represented in that entry retrieves the page named TargetPage after
retrieving the page named SourcePage. As indicated, the navigational patterns
belonging to a particular host are kept in a list of lists which is pointed by the
entry containing that host in HostIn folist. Each entry in the outer list named
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Input : Web Log File

Output : HostInfoList

Procedure:

[1] For each new entry in the given log file

[2] Read the next entry from the log file

[3] Parse the log entry to obtain the Identity, Referrer, Target and Time
for the request

[4] if the request is generated by a new visitor

[5] Create a new user Session

6] Owner of the user session « Identity

[7] Starting time for User session « Time

8] First access of the user session « (Referrer, Target)

9] EndIf

[10] Else

[11] if the request is valid

[12] Add a new access (Referrer, Target) to the session belonging to

the current visitor
[13] End If
[14] End Else
[15] for each user session, S in the session database
[16] if the session, S is created 30 minutes before
[17] Find the index of the connecting machine in the HostIn foLust
(if it does not exist in the HostInfoList, add a new entry for this machine)

[18] i=0

[19] while (¢ < size of HostInfoList) and (found==0)

[20] if (HostInfoList[t].Identitiy == I[dentity)

[21] Determine if identity is domain name or ip address

[22] for each access (Referrer, Target) in the user session, S
[23] AddAccess (Indentity, Referrer, Target) [*to add the access
[24] Remove the user session, S from the active sessions database
[25] End For

[26] End If

[27] End For

28]

Figure 3.16: The Algorithm for processing the new entries of the log file
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Input : SourcePage, TargetPage, IndexOfHost

Output : HostInfoList updated with the given access
Procedure:

[1] TempSource «— (HostInfoList[IndexOfHost] — SourcePages)

[2] while (TempSource is not null) and (SourcePageFound==0)

[3] if (TempSource. URLname == Referrer)

[4] SourcePageFound «+1

[5] Temp Target = ((TempSource — TargetPages)

[6] while (Temp Target is not null) and ( TargetPage Found==0)
[7] if (TempTarget. URLname == TargetPage)

[8] Temp Target.count++

[9] End If

[10] End While

[11] if (TargetPageFound==0)

[12] Add a new node containing the T'arget Page to the tail of

(TempSource — TargetPages) list
[13] End If
[14] End If
[15] End While
[16] if (SourcePageFound==0)
[17] Add a new node containing SouurcePage to the tail of SourcePages list
[18] (TempSource — TargetPages) — new node containing page named TargetPage
19

End If

Figure 3.17: AddAccess algorithm for adding a given access into the
HostInfolust
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SourcePages contains a particular page, P and a pointer to the list named Tar-
getPages which contains the pages that are visited immediately after P. To be
able to perform the addition of a new access, AddAccess function first searches
the SourcePages list for finding the SourcePage in it. If it could not find such
an entry which means that this page was not retrieved by this visitor recently,
then SourcePages list is enlarged with the addition of the SourcePage to the tail
of it. In such cases, TargetPage is added into the first node of the TargetPages
list originating from the newly added node of SourcePages list. In cases where
the SourcePage is located, the algorithm searches the TargetPages list originating
from the node containing the source page. If a node containing the TargetPage is
found, the algorithm just increments its count by one. Otherwise, which means
that the host has not retrieved the page named TargetPage after the page named
SourcePage recently, a new node containing TargetPage is added into the tail
of the TargetPages list. Here, the process of adding the given access into the
HostInfolist terminates.

3.3.4 Storing the data on HostInfoList

The third step of the work performed by the HostldentityProcessor is to store
the data in HostInfolList into the permanent storage to be used by the Rec-
ommender (Figure 3.18). For this, HostIdentityProcessor saves the contents of
the HostInfolList into a file called HostInfoFile by calling the function named
StoreDomainInformation (Figure3.2.3). The StoreDomainInformation algorithm
processes the each entry in HostInfolist one by one. For each entry, it firstly
saves the name of the host kept in this entry. Each of the consecutive lines start
with a particular source page existing in a SourcePages list of the entry in process
and continues with the target pages that take place in the TargetPages list origi-
nating from the node of that source page. At the end of this process, HostInfoFile
contains the navigational behavior of all hosts encountered by the system. The
data file created by this way is so huge that it would be a time consuming task

for the Recommender module to locate the data related to a particular visitor.

To resolve this, HostIdentityProcessor creates an auxiliary file as an index to
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Input : Hostinfolist

Output : HostInfoFile and IndexFile

Procedure:

[1] for each entry, e; in the HostInfolust

2] StartPosition « Current position of the cursor in HostInfoFile

3]  Print HostInfoList[i].Identity into the HostInfoFile

4]  for each source page, SP€ (HostInfoList[i]— > SourcePages) list

—— — —— —

5] Print the name of the source page into next line
6] for each target page in, (SP € SourcePagee — TargetPages list
7] Print the name of the target page and print empty space
into the current line
8] End For
9]  End For

10] EndPosition «— Current Position of the cursor in DataFile

11] Print HostInfolLust[i].Identity, Start Position and EndPosition
into the IndexFile

[12] Pass to the next line in both files

[13] End For

[
[
[
[

Figure 3.18: Storing the contents of the HostIn folLust into HostInfoFile

the HostInfoFile. Fach line of the index file called IndexFile contains an identifier
(IP address or domain name) and starting position of the data belonging to the
host having this identity. The index file created by this way is much smaller than
HostInfoFile. Recommender can easily find the position of the data related to
a particular host in HostInfoF'ile by searching the index file. So, the system does
not spend any time on searching real data file called HostInfoFile which is much
larger than the index file. So, the huge size of the data stored does not decrease
the performance of the on-line part. Figure 3.19 demonstrates the formats of
the IndexFile and HostinfoFile created for the example HostIn folist shown in
Figure 3.14.

3.3.5 Handling General Domains

As indicated before, the system should have some information about the com-

mon behavioral trends of the visitors belonging to the general domains such as
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pcx.ghy.co.uk 11800 :
»d79017 .dorm.bilkent.edu.tr
d79017.dorm.bilkent.edu.tr 11920 /~sesra /~sesra/courses.html /~sesra/personal.html..
/~sesra/courses.html
pck.metu.edu.tr 12000 :
\\
S
pck.metu.edu.tr
cs.bilkent.edu.tr 223000
tr 990000

Figure 3.19: IndexFile and DataFile created by HostInfoProcessor

cs.bilkent.edu.tr, us, tbm.com, etc. In fact, it is possible to extract this infor-
mation on-line by combining the data belonging to the hosts that take place in
the target general domain. But, this is a time consuming task and the speed
is critical for on-line process. So, this operation should be performed off-line by

HostIdentityProcessor.

HostIdentityProcessor firstly finds all names of general domains by analyzing
the fully qualified domain names existing in the HostIn foList in the 4" step of
its work. For this, it calls AddParents function which traverses the HostIn folist
for once for finding the entries that contain a fully qualified domain name. For
each entry found, it generates all parent domains of the fully qualified domain
existing in that entry and adds them into the HostInfolist if they were not
already added. For example, as a results of a processing of a fully qualified domain
name pcdll.es.bilkent.edu.tr, the following general domain names are already to

HostInfolust: cs.bilkent.edu.tr, bilkent.edu.tr, edu.tr and tr.

The next step is to discover and store the common navigational behavior of
the visitors of each general domain that take place in the HostIn foList by calling
ProcessGeneralDomains function (Figure 3.20). This operation is time consum-
ing, because for each general domain, D all of the entries of the HostIn folust
until the starting point of the general domains are traversed for finding the ones

that contain hosts which belong to D in domain name hierarchy. Whenever such
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a host is found, the data belonging to it is added into the data stored in entry
containing the general domain. For example, the following list contains some of
the hosts in tr general domain: pe5611.cs.bilkent.edu.tr, uds.ege.edu.tr, etc. In
fact, the number of machines is naturally much and much more than this. When-
ever ProcessGeneralDomains function is processing ¢r domain, it must merge the

navigational behavior of all such machines from ¢r domain that take place in the

HostInfolust.

The data related to the general domains is stored into HostInfoF'ile and Index-
File immediately after the addition of the data related to all machines that take
place on them. Then, the data belonging to the general domain is completely
removed from the HostInfolist. The reason for this is to reduce the memory
consumption. For example, if we kept the data belonging to all general domains
such as tr, com, edu.tr, etc. in memory at the same time, the amount of memory
consumption would be too much compared to the case where the data related to

only one general domain is in memory at any moment.
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Input : HostInfoList

Output : Navigational Patterns belonging to the general domains
are printed into HostInfoFile and IndexFile

Procedure:

[1] for each general domain, GG in the HostInfolList

[2]  for each host, H in HostInfoList

3] if (H is a subdomain of GG

[4] for each source page, S recorded in (H — SourcePages) list

[5] for each target page, T' originating from S

[6] Add the access (S, P) into the entry owned by G in HostInfolList
[7] End For

8] End For

9]  EndIf

[10] End For

[11] Print the data related to GG into HostInfoFile

[12] Print the starting position of the data related to G in HostInfoF'ile

into the Index File together with the name of the G
[13] Remove the navigation pattern data belonging to G from HostInfoFile
[14] End For

Figure 3.20: Processing general domains



Chapter 4

Recommender

In this chapter, we will present the on-line part of the system we designed and
implemented. Main goal of the Recommender is to recommend some links to
the on-line visitors. This module is capable of guessing the web pages that may
be interesting to and therefore requested by a particular visitor by discovering
the behavior of the past visitors showing similar navigational behavior and/or
having similar domain or IP information with him /her. The success of the system

depends on the level at which the recommended links are useful for the visitors.

The Recommender system has two separate components, one working in the
client side and the other in the server side. The component in the client side
is a simple Java applet which should be added to each page for making the
recommendation facility available. It is possible to add Java applets into html
codes of the web pages by having a call to them in the html codes of the pages.
For example, Figure 4.1 shows the html code that is calling the applet that
we implemented for showing recommendations. In such situations, the applet
is downloaded from the server and run in the client browser together with the
other files including text and graphics forming the page. Java applets running
in the client browsers are capable of making a network connection to the server
side to exchange data. The first main responsibility of the Java applet is to start
recommendation process by recognizing the visitor via finding the IP Address and

if available fully qualified domain name of the client computer and activating the

66
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<applet code=recommend width="500" height="500">

<param name="MaxNumOfRecommendations" value="7">

<param name="BackgroungColor" wvalue="250,150,100">

<param name="FirstLine" value="Recommendations">
</applet>

Figure 4.1: Example html page calling an applet

component in the server side which will produce the recommendations. Secondly,
it ends the recommendation process by showing the recommendations provided

by the server side in the location of the applet.

The component in the server side is a ¢gi¢ program in which the real process of
finding recommendations takes place. Java applets are capable of communicating
with cgi scripts placed on the server side. To be able to do this, the applet firstly
opens a connection through the cgi script. Via this connection, data exchange
between the applet and cgi program becomes possible. In our case, the applet
sends the IP address and fully qualified domain name of the visitor to the cgi
program after opening a connection with it. The task of cgi program is to find
recommendations and send them back to the java applet via same the connection.
In the following section, we will explain the work performed in the server side in

more detail.

4.1 Recommendation Producing

The first task performed by the cgi program placed on the server side is to find
the pages retrieved by the current visitor recently. This is performed by initiating
a search on the active access log file of the web site. As indicated before, web
servers add a new entry to the access log file for each page request they get in
such a way that the first field of each entry contains either the IP address or fully
qualified domain name of the visitor making that request. So, it becomes possible
to determine the accesses coming from a particular host if the domain name and
IP address identifying it is known. In our case, the identification of the visitor

is provided by the applet running in the client side. The only thing that should
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be done for finding access of the visitor is to search the access log file for finding
the requests made by him/her. Because of the huge sizes of the access log files,
it i1s more appropriate to start searching from the end of the log file. The reason
for this is that the system only looks for the recent accesses and new entries are

added into the end of the file as they arrive.

For speeding up the process of finding accesses, the cgi program reads the
data from the log file in chunks instead of reading one line at a time. Then, it
divides the data read into lines and starting from the last line obtained from the
current chunk, it checks whether the access in that line was performed by the
given host or not. The accesses containing the valid page requests and performed
by the given visitor form the user session and will be used by the cgi program for

finding recommendations.

At this point, we should explain what we mean by the concept recent. The
first criterion for accepting a particular page request as recent is that it should
be performed in last thirty minutes. Secondly, we make use of the HistoryDepth
criteria for determining if the request is recent or not as indicated before. We
accept that only the last n pages retrieved by a particular visitor is effecting
the pages that will be retrieved next where n is the history depth. The pages
retrieved before that are accepted as irrelevant to the current access. In Chapter
5, we will explain the results obtained by changing the HistoryDepth criteria in

off-line and on-line parts of the system.

At this point, the system knows about the each on-line visitor is the identity
of the visitor and the path followed by him/her throughout his visit to the site.
A path is a ordered sequence of pages retrieved by a particular visitor. First page
in the path is the oldest page requested. Naturally, the length of the path can
not exceed n, so if the length of the user path is n at any moment, retrieval of a

new page will result in excluding the first page in it.

In the following three sections, we will explain how the recommendations are
found according to the path and the domain information and then how they are

merged to form the final recommendation set.
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4.2 Finding recommendations according to the

path

The first set of pages that contain candidate recommendations are found by con-
sidering the path followed by the visitor. The goal is to match the path followed
by the visitor with the ones followed by the previous visitors as much as possible.
The idea behind this approach is hidden in the statement that if considerable
amount of previous visitors following a particular path P in the web site retrieves
the same set of pages S in the follow-up, the new visitors of the site following the
same path may also have an interest with the pages in S. Because following the
same path indicates an interest on similar topics. Simply put, the heuristic we

use here is that visitors from the same domain will have similar interests.

Some of the available Web Usage Mining systems do not consider the order in
which the pages are requested by the visitors. Instead, they accept user session
as an unordered set of pages and try to match the current user session with the
past sessions by finding the number of common page requests in them. On the
contrary, we think that the order in which the pages are requested provides more
specific and personalized information about the visitors. On the other hand,
keeping the order information requires much more processing in both on-line and
off-line part of the system. Because, if we consider the paths, the size of the data

that should be stored increases dramatically.

In the light of these observations, the algorithm which is used for searching
the PathTree to find out whether the given path exists in it or not is named as
PathRecommender. If the path exists, PathRecommender then finds the pages
that are following this path in the PathTree.

PathRecommender algorithm firstly reads the file containing the PathTree
created by PathInfoProcessor and creates the same data structure for storing the
paths. The data structure created is a list of records where each record contains
a page, count and the indexes of the entries containing the first and last child of

the node.



CHAPTER 4. RECOMMENDER 70

While searching the PathTree for a particular path, the algorithm firstly checks
the children of the root for finding the first page of the path. The first entry of the
PathTree contains the root node and starting end ending indexes of the children
of the root. So, the nodes between these indexes are the ones checked for the first

node in the path.

If such a node is found, the algorithm searches the subtree rooted at that
node for the rest of the path. Namely, the children of the node found in the
¢ — 1*" iteration are traversed for finding the ¢** page of the path at any iteration
i. At any iteration, the algorithm terminates if no matching node is found. This
means that given path is not followed by enough number of visitors which results
in nonexistence of it in the PathTree. As a result, no page recommendation can

be produced for that path if the algorithm terminates in this way.

The location of the children of a particular node is found by using the Child-
Startindexr and ChildEndIndex of it. For any node, the entries between the Child-
StartIndex and ChildEndIndex contain the children belonging to that node.

If the search for each page succeeds on all iterations then it means that the
path is completely located in the tree. In this case, the path obtained as a result
of a walk from the root of the tree to the last node corresponding to the last
page in the path is equal to the given path. Henceforth, all nodes belonging to
the subtree rooted at the last node represent the pages that are requested by the
past visitors following the given path. So, they form the set of recommendations

obtained for that path.

It should be noted that each page, P, obtained by this algorithm is assigned a
weight value as an indicator of the significance of the statement that the visitors
following the path P retrieve the page P, in the followup. The weights are calcu-
lated by finding the ratio of the number of visitors retrieving P, after following

P to the total number of visitors following the path P.

As an example, consider the PathTree shown in Figure 4.2.a. Assume that we
want to form a recommendation set for a particular visitor following the path (A,

B). According to the algorithm described above, the recommendation set contains
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Figure 4.2: Finding recommendations according to the path information

the pages that are taken into a window in Figure 4.2.b. In this example, the score
of the page N as a recommendation is 1/6, because only one visitor following the

given path retrieves this page in the followup.

In addition to those, PathRecommender algorithm is firstly called to find out
whether the exact path followed by the visitor exists in the PathTree or not. But,
it may not always be possible to find the exact matching for the current user path.
Especially in these cases, PathRecommender algorithm should be called to find
the matching for all postfixes of the complete path. For example, the postfixes
of the path (A, B, C, D) are (B, C, D), (C, D) and (D). Even in cases where the
complete path is located in the PathT'ree, paths obtained by getting the postfixes
of the real path are used to find recommendations. On the other hand, as the
length of postfix path decreases, the strength of the obtained recommendations
decrease. This is because, the similarity between the interests of the visitors

becomes less.
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4.3 Finding recommendations according to the

identity information

Second set of recommendations is produced by looking at the identity information
of the visitors. In producing recommendations according to the path information,
the aim was to realize the interests of the visitor by looking at the navigational
behavior him/her. The identity of the visitor has no importance in either off-line
or on-line part of this process. On the other hand, the past behavior of the visitor
himself/herself or similar visitors can be a strong indicator of the future behavior
of him /her. With this reasoning, our system keeps a personal record for each of
the different hosts visiting the web site. In addition, common behavioral patterns
of the visitors existing in parent domains of the existing domains are also stored.

By this way, it becomes possible to produce more personalized recommendations.

The algorithm for producing recommendations according to the identity infor-
mation of the visitor is named as PersonalRecommender. Simply, the aim of the
PersonalRecommender is to calculate the set of pages that may be requested by
a particular visitor according to the last page request and fully qualified domain
name or [P address of him/her. The algorithm reveals a set which consists of
(page, score) pairs as an output. Each pair contains a page and associated score

which shows how valuable this page as a recommendation.

Assume that PersonalRecommender is searching for the pages that may be re-
trieved after a particular page, P by the visitor having identity V. The algorithm
firstly opens the IndexFile created by HostldentityProcessor for finding the start-
ing position of the data related to the given host in real data file, HostInfoF'ile. As
indicated, IndexFile contains a huge number of lines, each containing IP address,
fully qualified domain name or general domain name and the starting position of
the related data in the data file. Until finding the line containing V, Personal-
Recommender processes each line one by one. It compares the identifier placed
on each line with V. If the host with identity V had performed a recent Visit to
the site, it should have a record in IndexF'ile and HostInfoFile and the location
of the data related to it is found during the search performed on IndexFile.
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The ending position of the data related to the given host is simply determined
by taking the starting position placed in the next line of the Index File. By this
way, the system learns the exact position of the data belonging to the given host
in HostInfoFile. Then, the algorithm directly reads the data between these
positions as a chunk and divides it into lines. Each of the resulting lines, except
from the first one contains a source page and the pages which are retrieved after
the retrieval of the source page. The next task is to find the line containing P as
a source page. If such a line is found, all other pages in that line are candidate

recommendations.

As in PathInfoProcessor, each candidate page obtained by this algorithm is
assigned a weight for showing the strength of the recommendation. For each
page, the weight is calculated by finding the ratio of the number of times that

this page is retrieved to the number of times the source page is retrieved.

PersonalRecommender algorithm initially tries to build a recommendation set
by looking at the past behavior of the visitor himself/herself. On the other hand, if
this visitor has not visited the web site or has not retrieved the page P recently,
then it is not possible to produce recommendations for him/her by looking at
his/her past behavior. In this case, PersonalRecommender makes use of the
domain name hierarchy if the host has a domain name available instead of an IP
address. In such situations, recommendation set is composed of recommendations
resulting from the processing of parent domains of the host. This is achieved
by just applying the same procedure explained above, this time considering the

parent domain.

As explained in the previous sections, each domain has a number of parent
domains which contain hosts with similar characteristics with it according to the
domain name hierarchy. But, as the parent approaches to the root node of the
domain hierarchy tree, this similarity decreases. In the light of these observations,
the weight of the recommendation is decreased as the domain used for producing
it gets more general. Naturally, the recommendations obtained by using the
fully qualified domain name of the visitors are the ones which are most valuable,

because they are produced only by considering the current visitor.
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4.4 Production of the Final Set Of Recommen-

dations

By making use of the path information and identification of the visitors, Recom-
mender system mostly produces too many pages as candidates to be recommended
to the visitor. But, it would not be very helpful and effective for the visitor if
all of these recommendations are directly presented to him/her, because in such
a case he/she has to spend a lot of time and energy on searching through a long
list of recommendations for choosing the best ones. In fact what is convenient is
to provide the system with a good filtering mechanism capable of choosing the

pages that are better then the others.

In the light of these observations, both PersonalRecommender and PathRec-
ommender assign a score to each page they found as a recommendation. Scores
are assigned by considering a number of criterions. Throughout the previous
sections, we talked about these criterions occasionally. To summarize, there are
two criterions effecting the score of the recommendations obtained by PathRec-

ommender. These criterions are listed below.

o Length of the path: As the length of the path increases, recommendation

gains more score.

e Ratio of the number of people that retrieve this page to the number of
people following the given path: As this value increases, recommendation

gets more valuable.

The criterions that are effective on the score of the recommendations produced

by PersonalRecommender are as follows.

e Location of the domain name in the domain name hierarchy: As the do-
main causing the recommendation approaches to the root, the score of the

recommendation increases.
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e Ratio of the number of times that this page is retrieved after the retrieval of
the given page by the visitor himself/herself or the visitors belonging to the

given domain: As this value increases, recommendation gets more valuable.

As a result, score of a particular page, P as a recommendation according to

the path and identity information is as defined in definition.

Definition 3 a) Score of a particular page, P produced by PathRecommender
is named as PathScore, PS for this page and PS = (N2/N1)* L where

o [ = Length of the path considered
e N1= Number of people following the given path and

e N2= Number of people that retrieve this page afterwards

b) Score of a particular page, P produced by HostInfoRecommender is named

as HostInfoScore, HIS for this page and PS = (N2/N1) % D where

e D = Number of dots(’.”) in the domain name
e N1= Number of times given source page retrieved

e N2= Number of times page P is retrieved afterwards

In Definition 3, HostInfoRecommender calculates the number of dots in the
domain name. By this way, we try to understand how general the domain name
is. As the number dots decreases in it, the domain name gets more general. For
example, edu.tr has less dots then pe511.¢s.bilkent.edu.tr and it is more general.
So, recommendations produced by considering edu.tr are less valuable because of
the reasons explained before. In fact, this is not an exact measure but beneficial in

terms of reflecting the domain name hierarchy into the recommendation process.

By taking these criterions into consideration, HostInfoRecommender and

PathRecommender produce two separate set of pages with associated scores. The
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next step is to form a single set out of these two sets. For this, firstly combined
scores of the pages are calculated by adding up the HostldentScore and Pathln-
foScore calculated for them. Naturally, if a particular page is produced as a
recommendation in only one set, its score on the other set is 0. After these scores
are calculated, they are put ordered. Topmost MazNumOfRecoms pages are the
recommendations that will be shown to the visitor. The designers of the page that
will contain the applet can decide on the maximum number of recommendations

that will be shown to the visitor.

After the recommendation set is finalized, the list of links is sent to the client
browser via the connection opened before. Here, they are shown to the visitor
with their scores as being attached to the current page. Whenever a user retrieves
a new page, the applet showing them stops and the applet in new coming page
opens a new connection with the server side and shows the new recommendations

to the visitor.



Chapter 5

Evaluation

In this chapter, we will demonstrate the results of the experiments that we con-
ducted for testing the capabilities of the usage mining system that we imple-
mented. We performed our experiments on the web site of the CS department
of Bilkent University. This web site contains the home pages of instructors and
graduate students along with the home pages of the courses taught in the de-
partment. Besides, it contains some pages introducing the department. The CS
department web site provides a good medium for conducting our experiments,
because it is well-organized and popular enough to see the performance of the

system in real life.

The organization of this chapter is as follows: Firstly, we will present the
results of the experiments conducted for measuring the time and space require-
ments of the system. Then, we will give examples for the recommendation sets

produced for different visitors and discuss about the results.

5.1 Time and Space Requirements of the system

In this section, time and space requirements of the off-line module of the Us-

ageMiner system will be presented. As indicated before, we programmed off-line

7
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Day Log Size Step 1 Step 2 Step 3 Step 4 Path File Size

1 7445258 0 3 0.1 0.3 347440
2 6634418 0.3 8 0.2 0.4 579733
3 6659211 0.4 9 0.2 0.3 800701
4 6369272 0.3 8 0.3 0.6 1061362
3 2848219 0.4 6 0.5 0.5 1221223
6 4768460 0.8 6 0.7 0.6 1387598
7 6989044 0.6 6 0.5 0.5 1701529

Table 5.1: Test Results for PathInfoProcessor Algorithm for one weak. Time
values are in seconds while the sizes are in bytes.

module in such a way that it runs automatically at a predetermined time (when
the load is the minumum) on each day. At each run, it processes the new entries
arising in the log file. These entries are the ones that are added into the access
log file until the last run of the program. Besides, this module is composed of two
submodules, PathInfoProcessor and HostldentityProcessor both operating on the
same log file independent from each other. We will firstly present the test results

for PathInfoProcessor.

Table 5.1 shows the test results for the execution of the PathInfoProcessor on
one weak period, between the dates 01/05/2001 and 08/05/2001. In this table,
the first column contains the number of the day. Namely, :** row contains the
test results for the :** day. The second column is reserved for keeping the size of
the log data processed on each day. In other words, the number in the second
column of the :** row contains the size of the data added into the log file in the
" day. As shown in Figure 3.7, the PathInfoProcessor algorithm has four main
steps. Next four columns in the table are showing the execution times of each of
these steps for each run of the program. Finally, the numbers in the last column
are the sizes of the PathInfoFiles obtained as a result of each run of the program.
As indicated, at any day the Recommender utilizes the PathInfoFile produced by

PathInfoProcessor in the previous day.

The results indicate that the most significant time consumption occurs during
the execution of the 2*¢ step of the PathInfoProcessor algorithm. The reader is

reminded that in this step new entries in the log file are processed for forming
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Log Size H. Depth MinValue Step 1 Step2 Step 3 Step 4 PathlnfoFile

230127517 8 1 0 664 2 2 7400715
230127517 3 3 0 634 0.9 0.8 1381923
230127517 7 3 0 634 0.8 0.6 977672

Table 5.2: Performance of the PathInfoProcessor on a large log file. Time values
are in seconds while the sizes are in bytes.

user sessions and finding the paths followed by the visitors owning them. Then,
these paths are added into the PathTree. Excessive number of 1/0 operations

performed in this step is the reason for the large time consumption.

To see the effect of MinValue and HistoryDepth variables on the results ob-
tained by PathInfoProcessor, we conducted another set of experiments on which
we utilised a larger log file. This log file contains the log data created between
the dates 01/05/2001 and 06/06/2001. This is a long time period, so the size of
the log file is quite huge. Table 5.2 demontrates the results of these experiments.
Each row displays a test results for different experiment. For each experiment,
we set different values for MinV alue and HistoryDepth variables while keeping
the log file same.

Test results demonstrated in Table 5.2 show that decreasing the History Depth
variable causes a decrease in the size of the PathInfoFile obtained, because
HistoryDepth determines the sizes of the paths that are added into the PathTree.
If it increases, larger paths are produced and added into the PathTree. So, the
depth of the PathTree increases as HiustoryDepth gets larger. In this respect, the
size of the data that should be stored in PathInfoFile is also larger.

Furthermore, the size of the PathInfoFile decreases as the value of the variable,
MinValue increases. Becuase more nodes are eliminated during the pruning
phase of the algorithm if the MinValue gets larger. As a result, PathTree stored
into the PathInfoFile gets smaller.

As indicated above, the speed is critical for the success of Recommender algo-
rithm, because the visitors of a web site are generally satisfied with quick answers.

The size of the PathInfoFile is very effective on the speed of the on-line module.



CHAPTER 5. EVALUATION 80

Day Log Size Step 1 Step 2 Step 3 Step4 Step 5 Domain Index

1 7445258 0 10 0.5 1 1 476427 41756
2 6634418 0.3 4 0.2 1 1 667936 60778
3 6659211 0.4 3 1 1 1 881837 82498
4 6369272 0.3 3 1 1 1 1068382 96565
3 2848219 0.4 3 0.5 1 1 1165213 108060
6 4768460 0.3 3 0.7 1 2 1322892 119357
7 6989044 0.6 8 0.6 2 2 1588609 140561

Table 5.3: Test Results for HostIdentProcessor Algorithm for one weak

This is due to the fact that the data stored in this file is read completely into the
memory for each web page loaded by the visitors. So, keeping the HistoryDepth
variable smaller and MinValue variable larger could be good choice. On the
other hand, if we choose very large or small values the quality of the recommen-
dations may decrease. So, we have decided to increase MinV alue as the log file
processed gets larger. In other words, our system automatically sets larger values

for MinValue as the size of the log file increases.

We have also conducted experiments for measuring the time and space re-
quirements of the HostldentityProcessor algorithm. Table 5.3 demonstrates the
results of the experiments. As in PathInfoProcessor, we run the HostInfoProces-
sor algorithm on one weak data. As it isin Table 5.1, the first column of the table
depicted in Table 5.3 is reserved for the day numbers while the second column
is reserved for keeping the size of the log data processed on each day. Different
from PathInfoProcessor, the work performed by HostIdentityProcessor algorithm
is divided into five steps. So, the next five columns in the table are showing the
execution times of each of these steps for each run of the program. Finally, the
numbers in the last two columns are the sizes of the HostInfoFile and IndexFile

obtained as an output of the corresponding run.

The resuts show that the largest time consumption is occured during the exe-
cution of the Step 2 of HostldentityProcessor algorithm. As indicated before, the
reason for this is the number of 1/O operations performed in this step. Addition-

ally, there is a significant time consumption in last two steps of the algorithm. In
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these steps, general domains are formed and the data related to them is discov-

ered.

The results demonstrated in Table 5.3 indicate that the size of the IndexFile
produced is much smaller than the HostInfoFile as we planned. The huge size
of the HostInfoFile produced by the system does not cause a decrease in the
performance of the Recommender because the Recommender does not get this
file into the memory as a whole. As we explained, it only reads the IndexFile
for determining the location of the target data in the HostInfoFile. So, keeping
the size of the IndexFile small is enough for guaranteing the high performance in

recommendation process.

5.2 Sample Outputs

In this section, we will give examples for the outputs produced by the on-line
part of the system, Recommender. In fact, we will present the pages which were
created in two seperate cases to be able to give an idea about the presentation of

the recommendations to the visitor.

In the first example, fully qualified domain name of the visitor in consideration
is d71020.dorm.bilkent.edu.tr. In addition the path followed by him/her contains
the following nodes: (/courses.html, [~guvenir/courses/cs558/). The output

of the program for this visitor is shown in Figure 5.1.

In this example, some of the recommended pages are linked to the lats page
retrieved by the visitor. One of the interesting recommendations is the one con-
taining the page /~tugrul/cs511/cs511.html. Here, both the last page retrieved
last by the visitor and this page are the home pages of the graduate courses in
the department. So, the system discovers that if a particular visitor is interested
in an home page of particular graduate course, he/she may have an interest on

other course pages too.



CHAPTER 5. EVALUATION 82

it fhavw s bikent edu trimguveniricour narktml 01158

Figure 5.1: Recommendation set for the first visitor
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Figure 5.2: Recommendation set for the second visitor

In the second example, fully qualified domain name of the visitor in consid-
eration is d7512b.dorm.bilkent.edu.tr. In addition the path followed by him is
as follows: (/~guvenir, [~guvenir/courses/, [~guvenir/courses/cs315/). The

output of the program for this visitor is shown in Figure 5.2.

In this case, the visitor retrieves a set of pages until reaching to
the home page of a particular undergraduate course having the address,
(/~guvenir/courses/cs315/). In this case, the recommendation set con-
tains the addresses of some of the other undergraduate courses such as

[~ugur[teaching/cs317/.



Chapter 6

Conclusion and Future Work

In this thesis, we presented a new usage based personalization system. The system
we designed and implemented has two major modules, UsageMiner and Recom-
mender. UsageMiner operates off-line for mining the web server log files. On the
other hand, Recommender is capable of producing online recommendations for

the visitors by using the information learned by Usage Miner.

The system we presented in this thesis achieves the task of presenting more
personalized content in web pages. In static web pages, every single person is
presented with the same content. On the other hand, each visitor of the web sites
has different interests and looks for different kinds of information. Considering
this, personalized web sites try to discover the needs and interests of the visitors
dynamically and customize themselves accordingly. As a result, the visitors of
the personalized web sites have the opportunity of reaching to the information

that they desire much more easily than it can be possible in the static web sites.

Personalization of the web sites is really a challenging operation. The biggest
challenge in this area is the existence of the excessive number of visitors en-
countered by the web sites. As the number of visitors of the target web site
gets larger, it becomes much more difficult to differentiate between these visi-
tors. One solution for this could be increasing the amount of the data used in

recognizing the visitors. For example, we can choose to store much more data in

84
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the files produced by off-line part of the system. Unfortunately, the solution is
not that easy because we have to consider the performance of the online module.
Storage of more data means much more processing for the on-line part of the
system. This is a serious drawback for this solution because the speed is critical
in online processes. Users of the web are generally so impatient that they are
dissatisfied with the slow requests. These facts means we should try to minimize
the amount of information that we stored without decreasing the quality of the

recommendations.

Another problem that we encountered while working on the system is related
to the task of recognizing the relevant data to be used as an input to our mining
algorithms. The amount of the irrelevant data contained in the log files is gener-
ally larger than the amount of the relevant data. Even the relevant data requires
to be preprocessed carefully before it can be fed into the mining algorithms. For
this reason, data filtering and preparation is a critical and time consuming op-
eration for web usage mining. The are lots of sources for the irrelevant data in
web usage mining. One source of the irrelevant data is the visitors which visit
the site without any goal. These kinds of visitors may retrieve the pages in the
site randomly. It is important to filter this kind of data for the success of recom-
mendation process. To solve this problem, we consider the data relevant only if

it is supported by enough number of visitors.

The experiments that we performed for testing our system show that the
recommendations produced are successful in most of the cases. Of course, the
best way to measure the success of the recommendations is to observe the num-
ber of times in which our recommendations are utilized by the visitors. If the
recommended pages are really interesting for the visitors, they will follow the
recommended links more. These kinds of analysis can provide a good feedback

for measuring the performance of the system and improving it.

The experiments with the off-line part of the system show that the mining
process is very costly in terms of time. On the other hand, this is not important
for the success of our system, because off-line part of the system works off-line

as the name implies. The main objective in this module is to learn as much as
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possible about the visitors and reduce the size of the data that will be used by

Recommender as much as possible without losing the critical information.

One of the drawbacks of the system is that it is difficult to find a good way for
combining the two distinct recommendation sets produced by looking at the path
and the identity information of the visitors. The scores of the pages in these sets
are calculated by different methods. In spite of this, we just add up the scores
of the pages in these sets while merging them. But, we think that there could
be better ways of calculating the page scores. For the solution of this problem,

better merging strategies can be developed in the future.

In fact, the research that we performed is very open to be expanded be-
cause the idea of utilizing domain information in recommendation process is new
although there are studies on using path information in producing recommen-
dations. In the future work, the system may be modified in such a way that it
only utilizes domain information in producing recommendations. Because, do-
main information says much more about a particular visitor when compared to
the path followed by him/her. Lots of visitors in the site may follow the same
path and all of these visitors are considered to be same in producing recommen-
dations according to the path information. On the other hand, when we utilize
identity information of the visitors we have the opportunity of learning about the
behavior of the visitor himself/herself or the similar visitors. Following this kind
of a strategy may also be good for solving the problem of calculating the scores

of the recommendations.

In fact, the best way to design the off-line part of the system could be giving
the major emphasis on domain information of the visitors while still making use
of the paths followed by them. In this case, the paths followed by each of the
visitors should be stored in such a way that they could be discovered easily by
the Recommender. One way to this could be the formation of a tree containing
the paths for each and every visitor. These trees could then be saved into the
permanent storage and the file containing these trees may be indexed according to
the domain names of the visitors having them as we applied in our system. These

trees could than be utilized by Recommender for producing more personalized
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recommendations for the visitors.

As a conclusion, the system we designed and implemented produces successful
results and the results are open to be improved by future works. The work we

performed could give birth to the new directions of research.
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