ACTIVE AND MOBILE DATA
MANAGEMENT THROUGH EVENT
HISTORY MINING

A DISSERTATION SUBMITTED TO
THE DEPARTMENT OF COMPUTER ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By
Yiicel Saygin
August 2001

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Assoc. Prof. Ozgiir Ulusoy (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Adnan Yazia

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Asst. Prof. Attila Gursoy

1

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Cevdet Aykanat

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Asst. Prof. Nail Akar

Approved for the Institute of Engineering and Science:

Prof. Mehmet Baray
Director of the Institute

111

ABSTRACT

ACTIVE AND MOBILE DATA MANAGEMENT
THROUGH EVENT HISTORY MINING

Yiicel Saygin
Ph.D.in Computer Engineering
Supervisor: Assoc. Prof. ()zgiir Ulusoy

August 2001

An event history is a collection of events that have occurred in an event-based
system over a period of time. There can be various types of events, among which
are temperature changes and power demands in a power management system,
client requests for data items in a data broadcast system, price increase of a
stock in a stock market, and so on. There is a lot of interesting information that
can be extracted from an event history via data mining techniques. Our purpose
in this thesis is to propose methods for extracting this useful information in the
form of event sequences and event associations from a single or two correlated
event histories. We also aim to show how the results of the mining process can be
used for active and mobile data management. The results of the mining process
demonstrate the relationships among the events which are generally captured as
associations or sequences. The relationships among the events are shown to be a
useful tool to enhance an event-based system via event organization, predictive

event detection, and proactive rule execution.

We consider the mining of both a single event history and two correlated event
histories. We first propose a method for mining binary relationships from a single
event history. The binary relationships among events are used to organize the
events into related groups of event. This organization is important because the
number of events in an event-driven system may become very high and unman-
ageable. The groups of related events and the relationships among the events
are exploited for predictive event detection and proactive rule execution in active
database systems. We also consider the mining of two correlated event histories
which are disjoint and the events in one history are related to the events in the

other history. We describe how we can efficiently extract associations among the

v

events spanning different event histories, which we call cross associations.

We have chosen data broadcast in mobile computing environments as a case
study for active data management. One of the important facts in mobile comput-
ing environments with wireless communication medium is that the server-to-client
(downlink) communication bandwidth is much higher than the client-to-server
(uplink) communication bandwidth. This asymmetry makes the dissemination
of data to client machines a desirable approach. However, the dissemination
of data by broadcasting may induce high access latency in case the number of
broadcast data items is large. Our purpose is to show how the features of ac-
tive data management can be used to improve mobile data management through
broadcast data organization and prefetching from the broadcast medium. In or-
der to achieve this, the client requests of data items at the server are considered
as events and the chronological sequence of items that have been requested by
clients is considered as an event history. An event history in broadcast medium is
called a broadcast history. The first step in this work is to analyze the broadcast
history to discover sequential patterns describing the client access behavior. The
sequential patterns are used to organize the data items in the broadcast disk in
such a way that the items requested subsequently are placed close to each other.
Then, we utilize predictive event detection techniques to improve the cache hit
ratio to be able to decrease the access latency. Prediction of future client access
behavior enables clients to prefetch the data from the broadcast disk based on

the rules extracted from the broadcast history.

Keywords: Data mining, event history mining, correlated histories, cross associ-
ations, active database systems, predictive event detection, proactive rule execu-
tion, fuzzy event sets, fuzzy triggers, fuzzy rule execution, similarity based event
detection, broadcast histories, mobile databases, prefetching, broadcast organi-

zation.

OZET

AKTIF VE HAREKETLI VERILERIN OLAY
GECMISLERININ ANALIZI YOLUYLA YONETIMI

Yiicel Saygin
Bilgisayar Mihendisligi, Doktora
Tez Yoneticisi: Dog. Dr. (“)zgiir Ulusoy
Agustos 2001

Olay gecmisgleri, olay tabanli sistemlerde goriilen olaylarin bir zaman dili-
mi igerisinde toplu olarak tutuldugu yerdir. Bir sistemde bircok olay buluna-
bilir, bunlara ornek olarak, gii¢ yonetimi sistemlerinde sicaklik degisimleri ve
elektrik talepleri, veri yayin sisteminde verilere erigim iglemleri, borsada belirli
hisse senetlerinin artisi gosterilebilir. Veri analizi teknikleriyle olay gecmisleri
analiz edilerek bircok faydali bilgi elde edilebilir. Bu tezde amacimiz, tek ya
da birbiriyle ilgili birden fazla olay ge¢miginin analiz edilmesiyle olay dizilerinin
ve olay ilintilerinin ¢ikarilmasidir. Bunun yaninda diger bir hedefimiz de olay
gecmigi analizi yoluyla elde edilen olay dizi ve ilintilerinin aktif ve hareketli
veri yonetiminde nasil kullanilabilecegini de gosterilmesidir. Olay ge¢misi anali-
z1 sonucu elde ettigimiz bilgiler, genelde ilinti veya dizi seklinde gosterilebilir.
Olaylar arasi iligkilerin, olay-tabanli sistemlerin olaylarimin organize edilmesi,
olaylarin 6nceden tahmin edilmesi ve kurallarin 6nceden aktive edilmesi yoluyla

geligtirilmesinde ¢ok yararh oldugu ¢aligmalarimizda tesbit edilmistir.

Bu tezde, hem tek hem de birden fazla birbiriyle iligkili olay ge¢misglerinin
analizi tizerinde calisilmistir. Oncelikle tek bir olay ge¢miginin analizi konusu
ele alinmig ve boyle bir olay ge¢miginden ikili olay iligkilerinin ¢ikarilmasi i¢in
landirilmasi i¢in kullanilmigtir. Bir sistemdeki olaylarin gruplandirilmasi énem-
lidir, ¢inku sistemdeki olay sayisi ¢cok artabilir ve bu durum olaylarin yonetimini
zorlagtirir. (Jaligmamizda, birbiriyle iligkili olay gruplar ve olaylar arasindaki
iligkiler aktif veri tabam sistemlerinde tahmini olay saptamasi ve kurallarin 6nce-
den aktive edilmesi i¢in kullamilmigtir. Birbiriyle iligkili iki olay ge¢misinin a-

nalizi uzerinde de calismalar yapilmisgtir. Birbiriyle iligkili olay ge¢mislerinde iki

vi

vii

ayrik olay kumesi vardir ve bir olay ge¢migindeki olaylar, oteki olay gecmisindeki
olaylarla ilgilidir. Tezimizde, iki olay ge¢misini kapsayan olaylar ¢apraz ilintiler
olarak adlandirilmig ve capraz ilintilerin etkili bir sekilde nasil c¢ikarilabilecegi

anlatilmigtir.

Caligmamizda, aktif veri yonetimi icin, hareketli (mobil) sistem ortamlarinda
veri yayini konusu aragtirma alani olarak secilmistir. Hareketli sistem ortamlarin-
da onemli bir gercek, sunucudan-istemciye, yani asagi-hat, iletisim kapasitesinin,
istemciden-sunucuya, yani yukari-hat, kapasitesinden ¢ok daha yiiksek olmasidir.
Bu asimetri, verilerin yayininin arzu edilen bir veri iletme yontemi olmasini saglar.
Ote yandan, verilerin yayin yoluyla iletilmesi, verilerin cok olmasi durumunda
uzun bekleme siirelerine sebep olur. Bu tezde amaclarimizdan birisi, hareketli
verilerin yonetiminin, yayinlanan verilerin organize edilmesi ve verilerin once-
den istemci hafizasina alinmasi yoluyla iyilestirilmesidir. Bunu saglamak icin,
istemciden sunucaya yapilan veri istekleri birer olay olarak diigtintilmiis ve bu
sekilde istemciden gelen isteklerin diziminden bir olay ge¢misi olugturulmustur.
Yayin ortaminda istemciden gelen veri isteklerinin tutuldugu olay gecmisleri,
caligmamizda yayin gegmisleri olarak adlandirilmigtir. [k olarak, yayin gecmisi
analiz edilerek istemcilerin veri ulagim davranmiglarini gosteren sirali patern-
ler kesfedilmistir. Elde edilen sirali paternler, yayin diskindeki verilerin orga-
nize edilmesi amaciyla kullanilmigtir. Burada onemli olan, yayin diskindeki
verilerin ayni anda sirali olarak istenen veriler birbirine yakin olacak sekilde
yerlestirilmesidir. Daha sonra, tahmini olay saptamasi teknikleri kullamlarak
istemci hafizasina yerinde ulagim oranimin iyilestirilmesi yoluyla istemcilerin veri
ulagim zamaninin azaltilmasina caligilmigtir. Olaylarin tahmini saptanmasi, is-
temcilerin yayin diskinden verileri onceden hafizalarina olay gegmisinden ¢ikarilan

kurallar yardimiyla yiiklemeleri icin kullanilmagtir.

Anahtar sozcukler: veri analizi, olay gecmisi analizi, birbiriyle iligkili ge¢misler,
capraz ilintiler, aktif veri tabam sistemleri, tahmini olay saptamasi, kurallarin
onceden aktive edilmesi, bulanik olay kiumeleri, bulamk tetikler, bulanik kural
uygulamasi, yakinlik derecesine gore olay saptamasi, yayin ge¢misleri, hareketli

veri tabanlari, onceden hafizaya yukleme, yayin organizasyonu.

Acknowledgment

First, T would like to thank my supervisor (")zgiir Ulusoy for his priceless
guidance over the 7 years of my graduate studies. I would also like to thank the
committee members, Prof. Cevdet Aykanat, Prof. Adnan Yazici, Asst. Prof. Nail
Akar, and Asst. Prof. Attila Gursoy for reading and commenting on my thesis.
Our discussions with Bora Ucar and Prof. Cevdet Aykanat on the hypergraph
models and the algorithms we used were especially very helpful. A course taught
by Prof. Adnan Yazici established the necessary fuzzy database background
which was very important for my thesis. Asst. Prof. Nail Akar was very kind
to accept being in my committee and had very useful comments. During her
short trip to Ankara, Ozlem Ogut read the initial version of my thesis (i.e., the

abstract) and provided very constructive feedback.

Part of my research was conducted at Purdue University under the super-
vision of Prof. Ahmed Elmagarmid. The endless experience of Prof. Ahmed
Elmagarmid in research contributed a lot to my academic vision. 1 was very
lucky to meet and conduct joint research with Prof. Elisa Bertino from Univer-
sity of Milan, during her visit to Purdue. During my visit to the University of
Florida at Gainesville, I had a chance to have very helpful discussions with Assoc.

Prof. Abdelsalam Helal on my thesis.

Last but not least I would like to thank my family and all my friends including

the Olympos Tree-house Community for their moral support.

viii

To my family, friends, and of course Sheeba

X

Contents

1 Introduction 1
1.1 Event History Analysis 1
1.2 Organization of Events into Fuzzy Sets 2
1.3 Proactive Rules for Data Broadcast 4
1.4 Summary of Contributions 5
1.5 Organization of The Thesis 6

2 Background and Related Work 7
2.1 Data Mining 7
2.2 Event Histories and Relationships Among Events 11
2.3 Fuzzy Sets and Fuzzy Rules 14
2.4 Active Databases with Fuzzy Extensions 16

2.4.1 Aspects of an Active Database System 16
2.4.2 Fuzzy Rules In Active Database Systems 17
2.5 Data Broadcast oo 19

CONTENTS

3 Analysis of a Single Event History

3.1 Extracting Event Similarities from an Event History
3.1.1 Preliminary Definitions
3.1.2 Shding Window Algorithm
3.1.3 Time Complexity of the Algorithm

3.2 Broadcast History Mining
3.2.1 Sessions and Sequential Patterns
3.2.2 Finding Sequential Patterns in Data Broadcast Histories
3.2.3 Elimination of Obsolete Rules and Incremental Mining

3.3 Summary ... e

Analysis of Correlated Event Histories

4.1 Preliminary Definitions,

4.2 Mining Cross Associations From Correlated Event Histories. . . .
4.2.1 The Merge Algorithm
4.2.2 The Concurrent Algorithm with Early Pruning
4.2.3 Correctness of the Concurrent Algorithm

4.3 Experimental Work00 oo
4.3.1 Performance Evaluation With Synthetic Data
4.3.2 Experiments on Real Data

4.4 Summary ... e e

xi

22

23

23

25

28

29

29

31

33

34

35

35

39

CONTENTS xii

5 Fuzzy and Proactive Rules 58
5.1 Construction of Fuzzy Event Sets 59

5.1.1 Partitioning The Event Space Using Sequential Proximity
Matrix oo 59

5.1.2 Computation of Membership Functions 61

5.2 Application of Sequential Proximity Matrix and Fuzzy Event Sets

to Active Database Systems 0oL 65
5.2.1 Fuzzy Rule Execution and Fuzzy Event Sets 65
5.2.2 Similarity Based Event Detection 68

5.3 Predictive Event Detection and Proactive Rule Execution in Active

Database Systems oo 69
5.3.1 Rule Structure oo 69
5.3.2 FEvent Detection o000 70
5.3.3 Condition Evaluation and Action Execution 72

5.3.4 Coupling Modes and Priority Assignment in Proactive Rule

Execution oo T4

DA Summary e e e 5

6 Broadcast Data Management 7
6.1 Motivationo 78
6.2 Implementation of Sequential Rules as Active Rules 80
6.3 Broadcast Organization Using Sequential Patterns 82

6.3.1 Broadcast Organization By Clustering Data Items 82

CONTENTS X1l

6.3.2 Weighted Topological Sorting of Items Inside a Cluster . . 85

6.4 Utilization of Sequential Rules in Prefetching and Cache Replace-

6.4.1 Rule-based Prefetching and Cache Replacement Strategies 89

6.5 Simulation and Experimental Results 93
6.5.1 The Training and Test Data 93
6.5.2 Simulation Model oo 94
6.5.3 Experimental Results 96

6.6 Summary 103

7 Conclusions and Future Work 104

List of Figures

2.1

3.1

3.2

3.3

3.4

3.5

4.1

4.2

4.3

4.4

4.5

4.6

Membership function of the fuzzy set young 15

Sliding windows, illustrated on the history of power consumption

events L e 24
Sliding Window Algorithm 25
Sample Event Relationship Matrix after processing the first window 26

Sample Event Relationship Matrix after processing the second win-

dow . s 26

Sample Event Relationship Matrix after processing the whole event

history 27
Frequent cross association treeo 0L 45
Concurrent mining algorithm 46
Left candidate generation algorithm 47
CPU time for different support values 50
Effect of confidence pruning for different confidence values 51
Number of database scans for different support values 51

x1v

LIST OF FIGURES XV

4.7

4.8

4.9

5.1

5.2

5.3

5.4

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

Reduction in the number of candidates for different support values 52

CPU time for different skew ratios 53
CPU time for different support values for larger data 53
A sample event grapho oo 60
Event detection and rule execution model 67
Sample proactive rule for power management 71
Sample proactive rule execution 73
Effect of broadcast data organization 79
Effect of prefetching 0. 80
The Hypergraph structure for sequential rules 84
Weighted graph of binary sequential rules. 85
Weighted Topological Sorting Algorithm 87
A typical architecture for a mobile computing system 88
Construction of the set inferred_stems 89
Prefetching algorithm L. 91
Cache Replacement algorithm 92
Object Relationship Diagram of the Simulation Program 94
System Architecture o000 96
Average latency as a function of the cachesize 97
Cache hit ratio as a function of the cachesize 98

LIST OF FIGURES XVi

6.14

6.15

6.16

6.17

6.18

Average latency as a function of the minimum support threshold
(for small support values) 99
Average latency as a function of the minimum support threshold
(for large support values) L 100
Average latency as a function of the minimum confidence threshold 100
Average latency as a function of the maximum number of items
that can be inferred by rules 0000 101
Average latency as a function of the size of the queue that stores

the inferred items 101

List of Tables

2.1

2.2

2.3

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Daily temperature (in Fahrenheit), and relative humidity measures

from Chicago area o 13
A weather event history for the weather data 13
Meaning of weather event labels used 13
User-based partitioning of the broadcast history. 32

Temperature, humidity and the corresponding electricity demand

measurements (in Kilo watts) of residential and industrial customers 36

Two correlated histories, Weather and Power demand 36
Meaning of power consumption event labels used 37
The history obtained by merging the two correlated histories . . . 41
Frequent event sets with minimum support 40% 41
Cross associations after partitioning the frequent event sets 41
Modified Weather and Power demand histories 42

Frequent event sets with minimum support 50% obtained after

merging the historieso o 0oL 42

xXVil

LIST OF TABLES XViii

4.9 Main parameters used for performance experiments 49
4.10 Cross associations for 5 categories and 10% support 55
4.11 Categorization of weather and power consumption measurements. 55
5.1 Coupling mode options L. T4
6.1 Sample database of user requests 78
6.2 Samplerules Lo 78
6.3 Sample sequential patternso 83
6.4 Main parameters of our system 97

Chapter 1

Introduction

An event history is a collection of events that have occurred in an event-based
system over a period of time. Events in a history are recorded in the order of
occurrence together with timestamps that capture the day, hour or a finer granu-
larity time unit supported by the system. Relationships among the events can be
captured from event histories and they can be used to enhance the performance
of event based systems. In this thesis, we demonstrate how event histories and
the relationships among the events can be used for event organization, predictive
event detection, and proactive rule execution in active database systems. We
further show how the concepts of event organization, predictive event detection
and proactive rule execution can be used for broadcast data organization and

prefetching in mobile computing environments.

1.1 Event History Analysis

Event histories may consist of events from the same domain like weather events, or
there may be multiple correlated event histories where the events in each history
correspond to different domains like weather events and power demand events of
companies. A single event history can be divided into multiple correlated event

histories when domain knowledge is available and able to specify what group of

CHAPTER 1. INTRODUCTION 2

events belong to what domain.

There might be different types of event patterns (relationships among events)
that can be extracted from an event history, namely associations, cross associa-
tions, or sequences. In a single event history, an association between two events
implies that their occurrences in the event history are somehow related. For ex-
ample, a price increase of a stock in a stock market may be associated with a price
increase of another stock. We propose a sliding window algorithm to obtain the
similarities among events in a single history. We also describe how a broadcast
event history viewed as a single event history can be analyzed to extract client
request event patterns. Client request event patterns are expressed as sequences.
A sequence is a special case of an event pattern where the events have an or-
dering in the pattern. We define the relationship among two events as a cross
association when the associated events belong to different event histories. Cross
associations exist when there are two or more histories, and events in one of those
histories are related to the events in another history. We call such types of histo-
ries correlated event histories. As an example, it can be claimed that weather and
power demand histories in a power management system are correlated, because
the weather events such as temperature changes can affect the power demand of
households or companies. In this thesis, we provide a framework for cross associ-
ations and multiple correlated event histories. We also propose two data mining
algorithms to extract cross associations from correlated event histories which ex-
ploit early pruning strategies. The first algorithm is based on merging and then
mining the correlated event histories. The second algorithm analyses the two
histories concurrently. It uses early support and confidence pruning strategies
to reduce the number of candidates and the number of database scans. We also

evaluate the performance of the proposed algorithms on synthetic data.

1.2 Organization of Events into Fuzzy Sets

Modularization of rules is an important research issue in active database systems.

In systems where thousands of events may occur and thousands of rules may

CHAPTER 1. INTRODUCTION 3

be fired by these events, it is really very difficult to keep track of the rules.
Therefore, partitioning the whole event space into smaller groups would be helpful
in controlling the rules fired by those events. Partitioning the event space enables
the users of the system to concentrate on a smaller group of related events,

increasing the efficiency and effectiveness of the system.

Consider the demand side management of an electricity producing and selling
company where the power consumption information of individual companies is
stored in a history. Consider also that there are hundreds of companies, which
is usually the case, and each company has more than two power consumption
events, like low, medium, and high power consumption. The number of events in
the system can easily become unmanageable. If there were a way to divide the
whole event space into subsets and deal with each subset individually, the job of

the power dealers would be much easier.

Classification of rules by using semantic constraints in an active database
system was considered before by Baralis et al. in [BCP96]. This process is called
stratification. Fvent-based stratification techniques aim to modularize the rules
by classifying the event space which is done by human interaction and can not be
used when semantic knowledge of events is not available. The rule modularization
approach of Baralis et al. is based on semantic techniques and it is not automated.
However, it is always desirable to automate this process whenever possible. In this
thesis, we deal with the problem of automated rule modularization by partitioning
the events which trigger the rules. Our model for modularizing rules is based on
the analysis of past occurrences of events which are stored in a time based event

history.

We use graph partitioning techniques for dividing the event space using event
relationship matrix into subsets. These subsets are modeled as fuzzy sets, there-
fore we call them fuzzy event sets. Each event has a degree of membership to
a fuzzy event set. Similarity based event detection was proposed as a useful
method in an event based system [SUY99]. Fuzzy event sets are considered to

be the basis of similarity based event detection and fuzzy rule execution in active

CHAPTER 1. INTRODUCTION 4

database systems. In this thesis, we propose a method for extracting the similar-
ities from event histories without the domain knowledge of experts. By utilizing
fuzzy event sets, we introduce the benefits of fuzzy set theory to active database
rule modularization and rule execution. We also describe a new rule execution

model based on fuzzy event sets which gives more flexibility to rule execution.

1.3 Proactive Rules for Data Broadcast

Cross associations, or sequences extracted from event histories are used for predic-
tive event detection which enables us to handle events prior to their occurrence.
Knowing that two events are related (by association, cross association, or se-
quence) and one of the events’ occurrence can be predicted, it is possible to take
an immediate action for the other event which is also expected to occur. As an
example, suppose that a high temperature is cross-associated with a high elec-
tricity demand of households, and also weather events like temperature changes
are predictable. So, if a high temperature is predicted for the next day, the power
generation company can take actions to regulate the electricity demand by using
intelligent power meters that can make selling and buying decisions. Predictive
event detection invokes the notions of proactive event handling and proactive rule
execution. We provide a mechanism to anticipate future events and handle these
events prior to their occurrence. Database systems that are characterized by

proactive event handling can be called proactive database systems.

Broadcast data management in mobile computing environments is a very good
application of event organization, predictive event detection and proactive rule
execution. Broadcasting has become a very popular way of information dissemi-
nation with the advances in mobile computer and wireless technology. However,
unlike on-demand data service, broadcast environments introduce high access la-
tency for clients. This is due to the fact that broadcast forms a uni-directional
stream of data in the air like a tape, and clients need to wait for the particu-
lar data of their interest to appear in the broadcast. With intelligent broadcast

data organization and prediction of future client requests, we aim to decrease this

CHAPTER 1. INTRODUCTION 3

latency.

The broadcast requests issued over time in a mobile database environment
can be stored in a special type of event history called broadcast history where the
events are client requests for broadcast data items. In the broadcast history, a
lot of useful information about the broadcast request patterns and their relative
issuing times are hidden. Our methods for broadcast organization and predictive
detection of future client request events are based on analyzing the broadcast
history using data mining techniques to extract client request event patterns. We
are interested in the extraction of sequences of client data accesses, as well as
clustering the data items. We discuss how we can exploit sequential rules for
organizing data broadcast for efficient data access by mobile clients. The broad-
cast data is viewed as a set of events and it is organized by using the techniques
proposed for event organization. Hypergraph partitioning methods based on se-
quential patterns are used for clustering data items. Predictive event detection in
the context of data broadcast is supported by the sequential rules obtained from
sequential patterns. Predictive event detection is used for predicting the future
client request events. The rules are made available to mobile clients through
broadcasting and they establish a rule base for predictive prefetching. Prefetch-
ing is performed by proactive rule execution. The data items that are going to
be accessed in the near future are loaded to the cache proactively, before they
are actually requested. It is shown through performance experiments that event
based broadcast organization and prefetching in mobile computing environments

improve client waiting time better than the state of the art prefetching methods.

1.4 Summary of Contributions

The main contributions of this thesis can be summarized as follows:

e Analysis of correlated event histories and development of efficient algorithms

for extracting cross associations from correlated event histories;

e Organization of events in an event based system into fuzzy event sets using

CHAPTER 1. INTRODUCTION 6

graph partitioning techniques;

e Development of a framework for predictive event detection, and proactive

rule execution in active database systems;

e Supporting predictive event detection and proactive rule execution in active
database systems with event patterns extracted from a single event history

or correlated event histories; and

e Application of event organization, predictive event detection, and proactive
rule execution to broadcast data management to improve the client waiting

times.

1.5 Organization of The Thesis

We provide the background and related work in Chapter 2 where the concepts we
deal with in this thesis, such as data mining, active database systems, broadcast
environments, and fuzzy set theory are introduced. The work done in mining a
single event history is described in Chapter 3. In Chapter 4, we extend the event
history concept to multiple correlated event histories and develop a framework
for mining two correlated event histories. The results of an extensive performance
study conducted to evaluate the effectiveness of the proposed methods are pro-
vided in the same chapter. Fuzzy and proactive rule execution as an extension to
the standard active rule execution is introduced in Chapter 5. In Chapter 6, we
present how predictive event detection and proactive rule execution techniques
can be used in broadcast data management in mobile computing environments.
The performance impact of loading data items to client cache by predictive de-
tection of client data request events and proactively loading the items to client
cache is evaluated through experiments on a web log. Finally, Chapter 7 summa-
rizes the conclusions drawn from this thesis and proposes some future research

directions in the context of this work.

Chapter 2

Background and Related Work

Data mining is the most relevant research area to our work. We introduce the
related work performed in the context of data mining in Section 2.1. Event his-
tories are introduced in Section 2.2. We use the patterns extracted by mining
the event histories for active and mobile data management. Active data man-
agement is achieved by utilizing event patterns for event organization and fuzzy
rule execution as well as proactive event handling. Mobile data management is
performed by using the patterns of client request events to data items for orga-
nizing the broadcast data and loading the data items to client cache proactively.
We describe the fuzzy set theory and fuzzy inferencing methods in Section 2.3,
and the basic concepts in s are explained in Section 2.4. Proactive event handling
and event organization techniques are considered to be a useful tool in broadcast
data management in mobile computing environments. We describe the basics of

broadcast data management in Section 2.5.

2.1 Data Mining

Concerning the area of data mining, the research issues related to our work in-
clude association mining, sequence mining, and proactive databases. The prob-

lem of finding association rules among items is formally defined by Agrawal et al.

CHAPTER 2. BACKGROUND AND RELATED WORK 8

in [AS94] as follows:

Definition 2.1.1 Let [= {iy,42,...,9,,} be a setl of literals, called items and D
be a set of transactions, v.e., YT € D, T C I. An association rule is denoted by
an implication of the form X =Y, where X CI,Y C I, and XNY = 0. A rule
X = Y is said to hold in the transaction set D with confidence c if ¢% of the
transactions in D that contain X also contain Y. The rule X = Y has support

s in the transaction set D if s% of transactions in D conlain X UY .

The process of finding association rules is organized into two steps:

1. finding the large itemsets (i.e., the set of items with support greater than

the user specified minimum support threshold),

2. finding the association rules using the large itemsets.

The second step is trivial compared to the first step, therefore association rule
finding algorithms concentrate on finding the large itemsets. Apriori, introduced
by Agrawal et al. in [AS94], is the fundamental algorithm for mining associations
from a database of customer transactions. Apriori is based on the fact that all
the subsets of a large itemset are also large. Using this principle, large itemsets

of size k are found only by using the large itemsets of size k — 1.

Dynamic Itemset Counting (DIC) algorithm proposed by Brin et al. is an-
other algorithm for finding large itemsets [BMUT97]. The work presented by
these authors also includes efficient ways for generating implication rules out of
the large itemsets. An online association rule finding algorithm proposed by
Hidber allows the user to change the support threshold during the mining pro-
cess [Hid99]. Mining of multiple-level association rules was studied by Han and
Fu [HF99]. Multiple-level association rules are obtained by analyzing the data
at multiple levels of abstraction. A recent method for finding large itemsets

without candidate generation was proposed by Han et al. [HPY00]. An index

CHAPTER 2. BACKGROUND AND RELATED WORK 9

structure was provided in that work for storing large itemsets and for counting
their supports. Mining frequent patterns using support constraints was described
in [WHHO00]. Mining of quantitative association rules which is based on mining
numerical attributes in large relational databases was studied by Srikant and
Agrawal [SA96]. The approach proposed in that work is based on fine partition-
ing the values and then combining the adjacent partitions. In our case, we are
also dealing with quantitative attributes like temperature, humidity, and power

consumption. However, our main focus is on mining two correlated histories.

Sequences are obtained when the events are recorded together with their oc-
currence time. In general, a sequence s of size n consists of n elements, s1, s9, ..., s,
where s; occurs before s; in the history if + < j. Mining sequences in customer
transactions was investigated by Agrawal and Srikant [AS95]. Sequences in their
work are in the form (s1, S9,...s,) where s;, 2 = 1,...,n, is an itemset. The au-
thors proposed an algorithm that first finds the large itemsets in the data and
then generates sequences by trying to combine these large itemsets. Properties
of cross associations are similar to those of sequences discussed in Agrawal and
Srikant’s work, however due to the nature of the problem we deal with (i.e., min-
ing correlated event histories), we can utilize more efficient algorithms and early
pruning strategies. Mannila et al. in [MTV95] developed an algorithm based on
the Apriori technique to find out which episodes in a given class occur frequently
in a sequence. Their algorithm assumes a single event sequence while we assume
two independent event histories in our algorithms. Mining of co-evolving time se-
quences is explained in [YSJ*00]. In that work, the authors tackle the problem of
online mining of time sequences and proposed methods for predicting the missing
values in real-time. They deal with quantitative data while we are interested in
the events obtained by converting the sensor values. Analysis of event histories
for organizing events is described in [SU01] by Saygin and Ulusoy where events

are partitioned using a single event history.

Mining of large volumes of data for useful information is currently a hot

research topic. Data mining issues can be categorized as:

CHAPTER 2. BACKGROUND AND RELATED WORK 10

e classifications, where we try to partition the data into disjoint

groups [AGIT92],

e associalions, where some correlations among data items are sought [SA95],

and

o sequences where we try to find sequences among data items [AS95].

Discovery of event patterns from event histories (sequences) is very similar to
finding association rules among a set of items. Informally, we have a set of items
and a database consisting of transactions where each transaction contains some
items bought by a customer at a time in a market basket database. The problem
is to find rules like “if somebody buys diapers then he/she buys a bottle of beer

as well”, using the database of customer transactions.

Discovery of event patterns from event sequences is discussed by Bettini et al.
in [BWJL98] and Mannila et al. in [MTV95]. Mannila et al. proposed efficient
algorithms for finding event patterns (they call it frequent episodes) by analyzing
event sequences. The application area used in their work is telecommunication
alarm management. They use a sliding window approach, where the window size
is specified by the user. Bettini et al. provided algorithms based on Mannila
et al.’s sliding window approach for discovering event patterns. They tackled
a more complex problem of finding event patterns where events have multiple

granularities.

Bettini et al. used a sliding window approach for the discovery of event
patterns from event histories [BWJL98]. In this approach, each window can be
viewed as a customer transaction where transaction identifiers are just the window
numbers in the event history. The set of events recorded in the history can be
mapped to a set of items. The problem of finding frequent episodes is the same
as finding large item sets with a given support (i.e., frequency) in the problem of
finding associations. The problem of finding large item sets is a subproblem of
finding associations where an item set is large if its support (i.e., the number of
transactions that contain that item set) is greater than or equal to the minimum

support value provided by the user. However, the problem of finding frequent

CHAPTER 2. BACKGROUND AND RELATED WORK 11

episodes becomes more complex when the user is allowed to specify complex

episode structures.

2.2 Event Histories and Relationships Among

Events

Event histories consist of the sequence of past signaled events. Each event has a

different label. An event occurrence is stored with its timestamp.

Alarms in a telecommunication management system [MTV95], price changes
in a stock exchange market [BWJL98], service requests in event-driven web appli-
cations [LPT99], weather conditions and electricity demand changes in a power
management system are among many possible event types. Although the events in
any system can have different characteristics, the relationships among the events
can still be captured and exploited in that system. There can be three types of
relationships between two events, which are association, cross association, and
sequence. An association between two events implies that the occurrences of the
events are somehow related. For example a price increase of a stock may be

associated with a price increase of another stock in a stock exchange market.

The relationship among two events is a cross association when the associated
events belong to different event histories. Cross associations exist when there are
two or more histories, and events in one of those histories are related to the events
in another history. Such types of histories can be called correlated event histories.
As an example, it can be claimed that weather and power demand histories are
correlated in the context of a power management system, because the weather
events such as temperature changes can affect the power demand of households

or companies.

Sequence relationship between two events describes an association among
events together with the relative sequence of the event occurrence. A good ex-

ample for sequence is the sequential access patterns of clients to data items in a

CHAPTER 2. BACKGROUND AND RELATED WORK 12

server. We are particularly interested in cross associations and sequence relation-

ships among the events in event histories.

Suppose that we have a set of events & = {eq, eq,...,e,}. An event occurrence
is denoted by a pair (e,t) where e € ¢ and ¢ is the timestamp denoting the time
of the occurrence of e. The occurrences of events in a system are recorded in a

basic event history (basic history, for short) which is defined below.

Definition 2.2.1 Let £ = {eq, €3, ...,e,} be a set of events. A basic history H is
the set of past events recorded with their timestamps:

H = {(ei,ti,), (i, Liy)s ey (€40 Li)) Y, where 1y, 5 = 1,...,n, is a limeslamp,
e, €& 7 =1,...,n, and n is the size of the basic history.

Example 2.2.1 Consider the temperature and humidity measurements in Ta-
ble 2.1 from August 2 to August 6 in year 1997 taken from a weather station
near Chicago. These measurements can be converted to events by categorizing the
values. For the sake of simplicity, we have chosen a simple calegorization with
two categories, one for low, and one for high values. By looking at the maximum
and minimum values, we first find the midpoint. Values below the midpoint belong
to the first category, and others belong to the second category. For example, the
maztmum and mintmum temperatures are 80.4 and 64.9, respectively. The mid
point of these values is (80.4 + 64.9)/2, which is equal to 72.65. Temperature
values above 72.65 are considered to belong to category “high temperature” and
the others are assumed to be of category “low temperature”. Table 2.2 shows the
weather event history, denoted by H,,, with events from ¢, = {HT, LT, HH, LH}
which are derived using the weather data shown in Table 2.1. Event labels used

are explained in Table 2.3.

At each time tick, the events signaled at that tick form a set called eventset,
similar to the notion of itemsets in market basket data. The eventset correspond-
ing to the time tick represented by timestamp “1” in Example 2.2.1 is {HT,LH}.
Note that the collection of eventsets signaled over time can be viewed as mar-
ket basket data. Therefore, mining associated events in a history corresponds to

mining frequent (large) itemsets in market basket data.

CHAPTER 2. BACKGROUND AND RELATED WORK

Date Temperature | Humidity
08/02/1997 | 80.4 55.9
08/03/1997 | 76.8 67.2
08/04/1997 | 70.0 7.4
08/05/1997 | 64.9 59.2
08/06/1997 | 66.8 58.7

13

Table 2.1: Daily temperature (in Fahrenheit), and relative humidity measures

from Chicago area

Time Stamp | Events
Stamp

1 {HT, LH}
2 {HT, HH}
3 {LT, HH}
4 {LT, LH}
5 {LT, LH}

Table 2.2: A weather event history for the weather data

Event | Meaning

Label

HT High Temperature
LT Low Temperature
HH High Humidity
LH Low Humidity

Table 2.3: Meaning of weather event labels used

CHAPTER 2. BACKGROUND AND RELATED WORK 14

2.3 Fuzzy Sets and Fuzzy Rules

The theory of fuzzy sets was introduced by Zadeh [Zad65]. For a crisp set (an
ordinary set that we are familiar with) S, which is a subset of the universal set
U, for any element e € U, either ¢ € S or e € S whereas for a fuzzy set there
is a degree of membership in the range [0, 1] for each element belonging to the
universal set. Crisp set theory is a special case of the fuzzy set theory where the
membership degrees of any element belonging to the set is either 0 or 1. A fuzzy
set 1s characterized by its membership function. This membership function gives
us the degree of membership of each element in the universal set to the fuzzy set.
Membership function of a fuzzy set F' on the universal set U is generally denoted

by pr and maps each element x € U to a real number in the range [0, 1], i.e.,

pr(z): U —[0,1].

The fuzzy set theory is best understood with real life examples. Assume that
we have a universal set U for all the ages a human being can have. We can define
a fuzzy set young denoted by Y on U, and assign a membership function py to

Y. A sample membership function can be defined as:

0, z < 10,
z_ 1, 10 < z < 20,

py(z) =4 1 - (2.1)
1, 20 < z < 30,
== 14, 40 < z.

Membership function py is shown graphically in Figure 2.1. According to
that, a person with age 15 is young with a membership degree of 0.5. Calculation
of the membership functions of the union, intersection, and difference of two fuzzy

sets is explained in [KF88].

Fuzzy logic can be viewed as an application area of fuzzy set theory [KCY97].

We may define the degree of truth of the fuzzy proposition “z is a member of

CHAPTER 2. BACKGROUND AND RELATED WORK 15

Hy

I I
I I
I I
I I
| |
10 20 30 40 age

Figure 2.1: Membership function of the fuzzy set young

A7 as the membership degree of = in A. This can be generalized to arbitrary
propositions, like P :“z is F7 where x € A and F' is a linguistic expression such
as, low, high, old, young. The degree of truth of P can be interpreted as the
membership degree p4(2) where A is characterized by the linguistic expression
F [KCY97]. So, using fuzzy logic, we can reason about the degree of truth of

imprecise propositions. Fuzzy logic allows the use of [KF88]:

o fuzzy predicates like old, expensive, high,
o fuzzy quantifiers like many, few, usually,
o fuzzy truth values like very true, mostly false, and

o fuzzy modifiers like almost, likely, extremely.

Some examples of imprecise propositions are “John is tall is true”, and “Mary

is short is fairly false”.

Fuzzy inference rules are the basic building blocks of a fuzzy controller (Mam-
dani type of control which is the most popular fuzzy control approach). In this

approach, fuzzy control is performed in 4 steps [KCY97]:

1. Fuzzification,
2. Fuzzy inferencing,

3. Calculation of the overall conclusion, and

CHAPTER 2. BACKGROUND AND RELATED WORK 16

4. Defuzzification.

At predefined times, the measured values of input variables are received by the
controller and in the first step, the matching rules are determined. In the second
step, an inference is performed by each rule that is selected. In the third step, the
overall conclusion is calculated, and finally in the last step, the overall conclusion

is defuzzified, i.e., converted to a real value. For more details, see [KCY97].

2.4 Active Databases with Fuzzy Extensions

In this section, we introduce the basic aspects of active database systems and the

previous work on fuzzy rules in active databases systems.

2.4.1 Aspects of an Active Database System

Active database systems can be considered as an extension of conventional
database management systems, in such a way that the database system can re-
spond to the state changes in database by automatically executing some actions.
The production rule concept in Artificial Intelligence was modified for the active
database context so that rules can respond to state changes caused by database
operations [HW92]. Expert systems and active database systems are very much
related in that they are both based on the concept of rules although their rule
structures are different. In a typical ADBMS, system responses are declaratively
expressed using Event-Condition-Action (ECA) rules [Day88]. An ECA rule is
composed of an event that triggers the rule, a condition describing a given situa-
tion, and an action to be performed if the condition is satisfied. Primitive events
can be combined to form composite events. Composition of primitive events can
be done with various event constructors, like conjunction, disjunction, or closure.
Coupling modes between event and condition, and between condition and action
determine when the condition should be evaluated relative to the occurrence of

the event, and when the action should be executed relative to the satisfaction of

CHAPTER 2. BACKGROUND AND RELATED WORK 17

the condition, respectively. Rules can be executed sequentially or concurrently
depending on the underlying application [SUC98]. An abstract ECA rule for

electricity producing and selling company is given below:

Event : Power consumption of company A is increased by 20%
Condition: If the temperature and humidity has increased 30%
Action: Increase the production and the price of electricity by 10%

2.4.2 Fuzzy Rules In Active Database Systems

Fuzzy concepts were integrated into expert systems and database systems [BP82,
GSPBY96, BP83, YBP99, YSBP99], and it was previously shown that incorpo-
ration of fuzzy concepts into databases is desirable and does solve the prob-
lems of uncertainty and inherent fuzziness of acquired data [YG99, Pet96].
The use of fuzziness in active database context, which extends the standard
databases by rules, was also shown to be useful [WB98, BW97, SUY99]. Al-
though incorporation of fuzziness to active databases introduces much flexibil-
ity, not much attention has been paid so far to this issue. To the best of
our knowledge, only a research group in VI'T (Finland) worked on fuzzy trig-
gers [BW96, BW97, BKPW97, WB98|. In [BKPW9T], a Condition-Action (CA)
fuzzy trigger was proposed which means that fuzziness was introduced to the CA
part of an Fvent-Condition-Action (FCA) rule. In a later work [BW9T], the con-
cept of CA trigger was extended to a fuzzy ECA rule by introducing the notion
of fuzzy events. A CA fuzzy trigger consists of a fuzzy predicate (i.e., a predicate
that has linguistic terms) on the database as its condition, and a fuzzy action
which is an overall conclusion obtained after evaluating fuzzy conditions. Wolski
and Bouaziz compiled their previous work on fuzzy ECA rules and based their
contributions on a sound theoretical background in [WB98]. A rule with a fuzzy
condition and a crisp action is called a C-fuzzy trigger. The C-fuzzy trigger model
is based on linguistic terms. The maz-min inference method is applied to the rule

set to determine the truth value of the fuzzy predicates. In fuzzy ECA rules, an

CHAPTER 2. BACKGROUND AND RELATED WORK 18

event may fire a set of rules. Fuzzy events are defined as fuzzy sets and use lin-
guistic terms like high, low, and strong [BW9T7]. Formally a primitive fuzzy event
is represented as a tuple < e.,e; > where e, is a crisp event, and ey is a fuzzy
event predicate. When a crisp event is signaled (such as a database update), the
current value v produced upon the operation causing the crisp event is fed into
the membership function of es. The output of the membership function is called
the event match factor, and the fuzzy event is signaled only if the event match
factor is greater than zero [BW97]. Upon the occurrence of the fuzzy event, the
corresponding rules are fired and their conditions (which are fuzzy predicates
on the database) are checked. The action of a rule may be started to execute

depending on the result of condition evaluation.
We may define a fuzzy ECA rule as in the following example:

Event : Power consumption of company A is high
Condition: If the temperature and humidity are high and A is a major
customer

Action: Increase the production and the price of electricity

where the linguistic terms like high, low, and major increase the understand-
ability of the rule. It is very difficult to give exact numbers for the temperature.
Instead, predefined linguistic terms, which are in fact fuzzy sets, can be used

without difficulty by the people who define the rules.

In the above rule, the event “high temperature” is actually a fuzzy event.
When a temperature event is signaled, which is a crisp event, its current value,
say 40°C, is fed into the membership function of the corresponding fuzzy event
(i.e., “high temperature”). Assuming that the membership function of the fuzzy

event is p¢, then the value 1 ¢(40) is called the event match factor.

Another possible application area is the stock exchange market. Price changes
of certain stocks can mimic the price changes of some other related stocks, and
dealers can take actions accordingly. A rule for a stock exchange market control

system can be defined as:

CHAPTER 2. BACKGROUND AND RELATED WORK 19

Event: On a consitderable price reduction in stock A
Condition: TRUFE

Action: Sell a considerable amount of stock A and stock B

In the above rule, the event, considerable price reduction in stock A, is a fuzzy
event. When a price reduction event is signaled, its value, say 12% is fed into the
membership function of the corresponding fuzzy event and the result is used in
fuzzy rule execution. Such a rule is very useful since it automatically issues an
action upon the occurrence of an event, therefore reducing the time required to

take an action.

In this thesis, we extended the formal description of the fuzzy events provided
by Wolski and Bouaziz [WB98], to composite fuzzy events. We also studied fuzzy
coupling modes and introduced the concepts of similarity based event detection

and fuzzy rule execution via scenarios.

2.5 Data Broadcast

We have chosen data broadcast environments for a case study of predictive event
detection and proactive rule execution. The continuous broadcast of data items
from the server to a number of clients can be considered as simulating a rotating
storage medium, or a broadcast disk as proposed in [ZFAA94]. There are two
main approaches for data dissemination through broadcast [AFZ97]:

1. Push based approach where data is broadcast according to predefined user
profiles. This approach does not consider the current client requests.

2. Pull based approach where data is broadcast according to user requests.

This approach is the same as the client-server paradigm.

CHAPTER 2. BACKGROUND AND RELATED WORK 20

Each approach has its own benefits and drawbacks. In the push based ap-
proach, the server sends the data regardless of the current user requests, where
users may end up with receiving unrequired data. In the pull based approach, on
the other hand, the server load is very high since the server has to listen to client
requests. To overcome these drawbacks and make use of the benefits of both ap-
proaches, a hybrid approach was developed by Acharya et al. that combines the
two approaches and is called interleaved push and pull [AFZ97]. In this approach,
there exist both a broadcast channel and a backchannel for the user requests. A
hybrid data delivery model that combines push and pull! was also proposed by
Sthathatos et al. [SRB9T].

In our work, we assume a hybrid broadcast scheme where the user requests
sent by the back channel are logged in the broadcast history. User requests are
processed as in the hybrid scheme of [AFZ97], but the organization of the data
to be broadcast is determined by sequential patterns obtained by mining the

broadcast history.

In broadcast disks, the set of items that are broadcast is called the broadcast
set. The sending sequence of the items in the broadcast set is called the broadcast
schedule. Construction of the broadcast schedule is crucial for the performance
of the broadcast disk. The broadcast schedule affects the waiting times of mobile
clients for the item of their interest to arrive. This problem is similar to the
problem of scheduling disk requests, since we are dealing with a “disk on air” in
a sense [IVB97]. The difference is in that the disk on air is uni-directional and
single-dimensional, since we cannot go back and forth and do random access on
it. Therefore, it is more appropriate to call this new type of storage medium

“one-way tape on air”.

The problem of scheduling the broadcast requests is to determine the sequence
of items in the broadcast schedule. We need to determine what should be put in
the schedule and in what sequence, by taking into account the previous request
event patterns of the clients (i.e., the broadcast history). Organizing the data

on air is similar in a sense to organizing the events in an event based system

IThe authors call them broadcast and unicast, respectively.

CHAPTER 2. BACKGROUND AND RELATED WORK 21

based on the proximity of event signaling. In an event based system, it is very
logical to organize the events in a way that events signaled very close in time are
placed in the same set. Similarly, the broadcast items that are requested together

frequently should be broadcast close to each other in time.

When we are dealing with broadcasting in mobile environments, caching and
prefetching of broadcast items also turn out to be very important from the perfor-
mance viewpoint of the mobile system. The impact of caching in terms of commu-
nication cost in mobile environments was studied by Sistla and Wolfson [SW9S].
It was shown that caching is an important factor for minimizing the communi-
cation cost which is of great importance in mobile computing environments due
to bandwidth limitations. Caching in mobile computing environments has differ-
ent characteristics than caching in a traditional client-server environment. This
is due to the fact that, in mobile computing environments data items that are
not cached are not equidistant to the client since the broadcast disk is single di-
mensional. Some caching strategies were proposed by Acharya et al. considering
this aspect of broadcast disks [AAFZ95]. These strategies take into account the
access probabilities of the cached items together with the frequency of broad-
cast. A prefetching technique for broadcast disks was proposed by Acharya et al.
[AFZ96] which loads the data items to cache before an actual request is made to
these data items. This technique uses a heuristic that calculates a value for each
data page by multiplying the probability of access for that page by the time that
will elapse before that page appears next on the broadcast disk. The decision
whether a data page on broadcast is going to be replaced by one of the data pages

in the mobile client cache is based on the values calculated.

Prefetching in broadcast environments can be achieved by analyzing the
broadcast history of client request events. The resulting client request event
patterns can further be used for predictive event detection and prefetching these
data items. In our work, prefetching is implemented as proactive rule execution

based on predictive event detection.

Chapter 3

Analysis of a Single Event
History

In this chapter, we propose methods to extract the relationships among events
from a single event history. We are particularly interested in finding the similari-
ties of the events in an event history and finding client request event patterns from
a broadcast history. In Section 3.1, we present a method for extracting the simi-
larities between event pairs in an event based system. Event similarities extracted
from an event history are further shown to be useful for the construction of fuzzy
event sets and fuzzy rule execution in active database systems as to be explained
in Chapter 5. In Section 3.2, we describe the analysis of a broadcast history to
obtain client request event patterns. Client request event patterns are used for
broadcast data organization and for loading the data items to mobile client cache

proactively in broadcast environments as to be explained in Chapter 6.

22

CHAPTER 3. ANALYSIS OF A SINGLE EVENT HISTORY 23

3.1 Extracting Event Similarities from an Event

History

Assume that we have a set of events £ = {e1,ea,...,¢,}, and an event history
H where the events are stored in the form: < e, p,t > where e € F, p is the
event parameter (i.e., the value returned by the real event such as the power
consumption), and ¢ is the time-stamp of the event occurrence. Our problem is
to find similarities among the events in F using event history H. There might be
different approaches for obtaining the similarities among events. Our approach
uses the proximity of event occurrences in the event history. If two events are
frequently being fired together in a short period of time, then it is likely that
these events belong to the same context; therefore, they are similar in that sense.
We use a sliding window approach to analyze the event history and obtain the
similarities among the events. In what follows, we explain our approaches in more

detail.

3.1.1 Preliminary Definitions

Definition 3.1.1 A window, win, of size m is a collection of m conseculive time
stamps and the evenls belonging to these lime stamps. win|i] denotes the events

in the i™ timestamp of win, where 1 <1 < m.

Definition 3.1.2 Pivot events are the events that belong Lo the first time stamp

of the current window, i.e., pivol events = win[l].

Example 3.1.1 In Figure 3.1, a sample event history is depicted where the let-
ters a, b, and ¢ correspond to power consumption of three companies and the
subscripts I, and h correspond to low and high power consumption respectively. In
Figure 3.1, wy is a window that covers timestamps, 11 and ty. Pivot events of wq

are ay, by, and c;.

CHAPTER 3. ANALYSIS OF A SINGLE EVENT HISTORY 24

W1 N
a, | ay ay 3 a, a, a, a, ay ay ay
b, | by by, ! b, b, b, b, by by b,
c, . c Ch ! Cp Ch Ch Cy Cy C C
1 1 e | | | | |
t t, t3 t, ts tg t7 tg tg tio

Figure 3.1: Sliding windows, illustrated on the history of power consumption
events

Definition 3.1.3 Inverse distance between two event occurrences, (e;,t;) and
(ej,tx) mimics the distance of occurrence of e; and e;. Inverse distance is a

value in the range (0,1] and we have chosen the formula | to calculate the

1
tp—ti|+1
inverse distance.

Example 3.1.2 In Figure 3.1, the inverse distance belween (ap,t1) and (by,t3)
18 = 0.5. The inverse distance between two concurrent event occurrences

=1.

1
[2—1[+1

(an,t1) and (¢, tq) is ﬁ

The inverse distance of concurrent event occurrences is 1, which is the max-
imum possible value and the inverse distance value between (e;,t;) and (e;,)

goes to 0 as t; — 1; goes to infinity.

Definition 3.1.4 FEvent relationship matriz is an N x N malriz where N is lhe
number of possible evenls that may occur in the system. Fach element m; ; of the
matriz is the cumulalive inverse distance of the occurrence of evenl e; after the

occurrence of event e; observed in the history.

We also take into account the order of event occurrences; i.e., the proximity
of event occurrences in the order ¢;, ¢; (i.e., e; — €;) may be different from that
of the same events in the order e;,¢; (i.e., e; — ¢;). In that sense our notion of

distance has a direction.

CHAPTER 3. ANALYSIS OF A SINGLE EVENT HISTORY 25

Begin
initialize matrix M to 0
initialize window to first m events
repeat
{
Initialize prvot _events to the events
in the first time unit of window
foreach pair of events e;, ¢; in pivot_events
{
increment M|e;, ¢;] by one
increment M|e;, e;] by one
}

foreach event e, in pivol_events

{

foreach event e, in rest of window

{

increment M|e,, e,]
by inverse distance of e, to e,

}
}
}
until the end of H is reached
End

Figure 3.2: Sliding Window Algorithm

3.1.2 Sliding Window Algorithm

In order to construct the event relationship matrix, we use a sliding window ap-
proach similar to the one described by Mannila et al., in [MTV95]. The difference
of our approach from that of Mannila et al. is that, we do not find event patterns,
but try to find pairwise correlations among events in terms of proximity of event
occurrences. We store the results of pairwise correlations in a matrix and use this

intermediate structure to construct fuzzy event sets.

Our sliding window algorithm for mining event histories is presented in Fig-

ure 3.2. The algorithm traces the whole event history in sequence and considers

CHAPTER 3. ANALYSIS OF A SINGLE EVENT HISTORY 26

ap | ar | by | by | e | @
ap | 0.0]00|1.5]0.0]00]|1.5
a; 10.0]0.0|0.0/]0.0]0.010.0
b, | 1.5]10.00.0]0.0]00]|1.5
b; 10.0]0.0|0.0]0.0]0.0]0.0
¢, 10.0]0.0|0.0/]0.0]0.01]0.0
¢ |1.5]100|1.5]0.0]0.0]0.0

Figure 3.3: Sample Event Relationship Matrix after processing the first window

ap, | ar | by | by | e | @
ap | 0.0]0.03.0]0.0]05]|2.5
a; 1 0.0]0.00.0]0.0]0.0]0.0
br 13.0]0.0]00]0.0]05]|2.5
by 10.0]0.0|0.0]0.0]0.0]0.0
¢, 10.0]000.0]0.0]0.0]0.0
¢ |3.0]00|3.0]0.0]05]|0.0

Figure 3.4: Sample Event Relationship Matrix after processing the second window

the events in a window of size m. In Figure 3.1, we have set the window size to
2. The first window, wq, is shown with a rectangle drawn using straight lines. It
covers the events at the first two time stamps, ¢; and ¢3. The window slides one
time unit at each iteration. The second window, ws, is shown in Figure 3.1 with
a rectangle drawn with dashed lines. The second window covers the events with
time stamps ¢, and {3. At each iteration, proximity of the pivot events to the
rest of the elements in the window is updated one by one in the matrix. After
this process, window slides one event to the right and pivot events are updated
again. This process continues until the end of the history is reached, i.e., time
stamp of the pivot events is the last time stamp in the event history. The output
of the algorithm is the event relationship matrix obtained by tracing all the event

history.

The event relationship matrix keeps the proximity of events incrementally. Its

elements are initially set to zero'. We would like to give an example to facilitate

'In case of incremental runs of the algorithm, the contents of the previous matrix are used

CHAPTER 3. ANALYSIS OF A SINGLE EVENT HISTORY 27

ap | ar | by | by | e | @
ap | 0.0]05|801]0.5]20]|6.5
a; 10510005]5.5]4.0]|2.0
b, |801]05|00]05]20]|6.5
by 105155105]0.0]4.0]|2.0
¢, | 1.0]50|1.0]5.0]0.0]|0.5
¢ | 7511075]1.0]0.5]0.0

Figure 3.5: Sample Event Relationship Matrix after processing the whole event
history

understanding of the sliding window algorithm. Assume that we have an event
set & = {an,a, by, by, ch,c}. The event relationship matrix, say M, would be a
6 x 6 square matrix. A sample event history for the given event set is provided
in Figure 3.1 with the first and second event windows shown. Figure 3.1 shows
the first event window wq, of size 2 in the history. Initially, all the entries in the
event relationship matrix are 0. During the first iteration, the pivot events are
ap, b, and ¢;. As the first step, proximity values of the pivot events are updated
in the matrix. As a second step, proximity values of the pivot events to the rest
of the events in the current window are incremented in matrix M. After the first

pass, the matrix is updated as shown in Figure 3.3.

In the second pass, the window is moved one position right, as shown in
Figure 3.1, and the new pivot events are set to ay, b, and ¢;. The same process
is repeated for the new pivot events. After the second pass, entries of the matrix
are as shown in Figure 3.4. The final proximity values of the events are given in

Figure 3.5.

Giving more weight (increased proximity) to the events occurring very close
to the pivot event in the window improves the accuracy of the sliding window

algorithm.

A nice property of the sliding window algorithm is that, it is incremental.

Assume that the time-stamp of the last event processed by the previous run of

as initial values.

CHAPTER 3. ANALYSIS OF A SINGLE EVENT HISTORY 28

the algorithm is ¢;. As the event history grows with time, the algorithm can be
reapplied to the event history starting from ¢; and the matrix values are updated
according to the new event patterns. For some applications, like stock exchange,
very old portions of the event history may be obsolete and misleading. Therefore,
after a reasonable time it may be necessary to discard the old proximity values

and produce them from scratch starting from some point in the history.

The event relationship matrix that is constructed by mining the event history
is used for fuzzy rule execution in active database systems. Fuzzy rule execution is
performed by similarity based event detection and construction of rule scenarios,

which are explained in Section 5.2.

3.1.3 Time Complexity of the Algorithm

Time complexity of the sliding window algorithm is determined by the size of the
event history, size of the window and the maximum possible number of concurrent

events.

Lemma 3.1.1 Time complexily of the sliding window algorithm is O(n x ¢* xm),
where n is the eventl history size, m is the window size and ¢ is the maximum

number of concurrently occurring events in the event history.

Proof

This result is due to the fact that the whole event history is traced for once and
at each slide of the window m comparisons are made. The window is initialized
to first m timestamps, and then the window slides n — 1 times. Therefore, the
total number of iterations at the repeat-until loop is n. At each iteration of
the loop, first the pivot events are initialized and for each pair of events in the

pivot events, the matrix entries are updated. Updating an entry in the matrix
c
takes constant time, and the number of pairs in the pivot events is (.) where

¢ is the maximum number of concurrent events at a time. After that, for each

event in the pivot events, we update the proximity of that event with the rest of

CHAPTER 3. ANALYSIS OF A SINGLE EVENT HISTORY 29

the events in the window. Since there are m — 1 time points in the rest of the
window (excluding the time point of pivot events), this operation is done at most

¢ x ¢ x (m —1) times. Therefore, the maximum possible number of operations
is, n X ((;) + % x (m — 1)) which equals to n x (@ + c2(m —1)). Since

we have calculated the maximum possible number of operations with respect to
the maximum number of concurrent events, the time complexity of the sliding

window algorithm is O(n x ¢ x m) m

The only parameter that we can control in the time complexity formula is
the window size. As the window size increases the precision of the result of the
mining increases, however the time complexity also increases. There is a tradeoff
between the time complexity and precision. The selection of window size should

consider this tradeoff.

3.2 Broadcast History Mining

In this section, we demonstrate how the useful information in the broadcast his-
tory can be extracted in the form of sequential patterns. We discuss the issues
related to the extraction of sequential patterns from broadcast histories and man-

agement of the resulting patterns.

3.2.1 Sessions and Sequential Patterns

Client requests are the events of interest to us in a broadcast history. In order to
mine for sequential event patterns, we assume that the continuous client requests
are organized into discrete sessions. Sessions specify user interest periods, and
a session consists of a sequence of client requests for data items ordered with
respect to the time of reference. The whole database is considered as a set of
sessions. The client requests to data items are considered as events. Ordering
among the sessions is not important while the ordering of the data items inside a

session is important for extracting the sequential patterns. Formally, we have a

CHAPTER 3. ANALYSIS OF A SINGLE EVENT HISTORY 30

set of items, I = {i1,29,...,7,,} and a set of sessions D, such that VS € D, S C [.

Definition 3.2.1 A session S supports a sequence of items X if the items in X

appear in S in the same order as they appear in X, i.e., X is a subsequence of S.

Sequential patterns are obtained from the sessions and the items are ordered
in each session. Sequential patterns are different from associations in that the
ordering of data items is important in a sequential pattern and the order is

determined by the ordering of the items in individual sessions.

A sequential pattern p of size k consists of ordered data items, py, pa, ..., pr,

and is represented as p =< py,p2, ..., Pp >.

Definition 3.2.2 A sequential pattern p has support s if s% of sessions in D
supports p. A session supports a sequential pattern if that pattern appears in the

SES810M.

Sequential rules are obtained from sequential patterns.

Example 3.2.1 For a sequential pattern

p =< P1, P2, -, Pk >, the possible sequential rules are:
< p1 >=< p2,P3,---Pr >,
< P1,P2 >=< P3; P45 Pk >

< P13 P2y ey P11 >=< pPi >

Definition 3.2.3 A sequential rule < pi,p2,.cciPn >=< Ppiils Prizs s Pk >,
where 0 < n < k, has confidence c¢ if c¢% of the transactions that sup-

port < pi,pay...,pn > also supports < pl,p2,....pr >, i.e., confidence(p) =

support(<p1,p2y..sPn>)
support(<pl,p2,...,pp>) "

For a sequential pattern p =< py, ps, ..., pr >, among the possible rules that

can be derived from p, we are interested in the rules with the smallest possible

CHAPTER 3. ANALYSIS OF A SINGLE EVENT HISTORY 31

antecedent (i.e., the first part of the rule). This is due to the fact that the rules
are used for inferencing, and inferencing should start as early as possible. The
rest of the rules trivially meet the confidence requirement. This follows from the
formulation of con fidence(p) as specified above. Support of a sequential pattern
is less than the support of any of its subpattern. Therefore, as the antecedent of

the rule grows, the support of the rule shrinks, making the confidence higher.

3.2.2 Finding Sequential Patterns in Data Broadcast His-

tories

In this subsection, we discuss how broadcast histories can be analyzed to come up
with sequential rules describing the sequential order and frequency of occurrence

of requests for data items in the data broadcast history.

The data mining problem in the context of broadcast disks is to extract use-
ful information hidden in the broadcast history in the form of sequential rules.
Mining of broadcast histories can be performed individually by each data server
in a distributed fashion in case the broadcast history is distributed among the
servers. Distributed rule mining may result in global sequential rules as discussed
in [CNFF96], or each server can maintain its own localized sequential rule set in-
dependent of the other sites. The choice of whether we should use a globalized
or a localized approach is system dependent. A globalized approach is more ben-
eficial in systems where the profiles of the data items kept in each server are
basically the same. However, in case the data items stored in different servers are
completely unrelated, a localized approach is more useful. Security issues also
come into picture when we deal with the analysis of private user access histories.
Autonomous systems may sometimes not be willing to distribute user requests to
the others. This situation can be handled by assigning symbolic ids to users and
distribute the local broadcast results. However, some sites may not be willing to
share valuable information with the other sites. In such a case, using a localized

approach of obtaining sequential rules is the only solution.

There can be two basic approaches for mining the broadcast history depending

CHAPTER 3. ANALYSIS OF A SINGLE EVENT HISTORY 32

usery | (winq,: X 7 y; wing,: 2 y; ...; wing,: p q u)
usery | (wing,: X p; Wing,: U W V; ...; WiNg,: T S)
user, | (Wing,: X ¥; WiNg,: U V) ...; Wik, X Y 7)

Table 3.1: User-based partitioning of the broadcast history.

on how the history of user requests is partitioned:

1. Flat approach.

2. User-based partitioning approach.

The flat approach tries to extract data item request patterns regardless of
who requested them. The user-based partitioning approach, on the other hand,
divides the broadcast history into subsets with respect to the user who requested
them as shown in Table 3.1. Table 3.1 shows the corresponding windows of user
requests for each user, such as user; who had k different request windows. The
analysis is done for each subset of the broadcast history corresponding to a user

independent of the other subsets.

In both approaches, we divide the request set into windows and find the se-
quential rules using the data mining algorithms we have discussed in the preceding
subsection. However, the construction of the windows is different for the two ap-
proaches. In the user-based partitioning approach, windows are clusters of items
requested according to the times of requests; i.e., if a user has requested some
items consecutively with short periods of time in between, then these items should
be put in the same window. We define a window as a group of requests where
the time delay between two consecutive requests is less than a certain threshold.
After requesting a set of items consecutively, if the user waits for a long period of
time before starting another session, then the sequence of items requested in the
new session can be put into another window. In Table 3.1, the requests of usery,
for instance, are divided into & windows. The first window of user;, denoted by

winy,, has three requests, namely the data items x, z, and y. We need to set a

CHAPTER 3. ANALYSIS OF A SINGLE EVENT HISTORY 33

threshold value for the time delay in between two consecutive windows. We may
set this threshold to infinity to put all the items requested by the same user into
the same window, which might be a reasonable approach when there are a lot of
users and each user accesses a reasonable amount of (not too many) items. When
the number of users is small and each user accesses a large amount of documents,
then we need to set a reasonable threshold value. For the flat approach, we de-
termine a fixed window length and use a sliding window approach to construct
the windows. The sliding window approach is based on moving the window one
item further and consider the items in the current window for finding the large

itemsets.

The advantage of the flat approach is that there is no overhead of partitioning
the items into users and clustering the items into windows. But the information
about the users is lost in this approach. In user-based partitioning, the rules
obtained can be considered to be more reliable, as they are based on finding

sequential rules for the same user by partitioning the broadcast history into users.

In order to be able to use the data mining algorithms described in Section 2.1
to obtain sequential rules, we need to map the windows to the sessions and the
data items to the items described in Section 2.1. After that we can execute a
sequential pattern mining algorithm similar to the one in [AS95] to obtain the

sequential patterns.

3.2.3 Elimination of Obsolete Rules and Incremental Min-

ing

Rules that have been constructed through mining may become obsolete after a
certain period of time. The rule set is dynamic in a sense. Therefore, we need
to analyze the whole history periodically, eliminate the obsolete rules and add
new rules if necessary. Mining the broadcast history very frequently is a waste of
server resources, however, using the same set of rules for a long time may affect
the system performance negatively since the current rule set may no longer reflect

the access patterns of the clients. Therefore, determination of the frequency of

CHAPTER 3. ANALYSIS OF A SINGLE EVENT HISTORY 34

mining the broadcast requests is an important issue that needs to be investigated.
We may use the feedback from the users to determine when the rules become
obsolete. If the number of user requests is increasing, we can attribute this to
obsolete rules and when the number of user requests becomes significantly larger
than the initial requests, we may decide to perform the mining process again.
We can determine a threshold value for the time period to wait before restarting
the mining of the broadcast history and find new sequential rules. For very huge
histories, mining the whole history periodically is a waste of resources; therefore,
some incremental methods can be applied to reduce the time spent for remining.

Efficient methods for incremental rule maintenance are proposed in [CHNW96].

3.3 Summary

In this chapter, we have discussed mining a single event history to extract event
similarities and event patterns. We have shown how an event history can be
analyzed to obtain the similarities among events in terms of the proximity of
event occurrence. We have proposed a sliding window algorithm for mining an
event history to construct a structure for storing the event similarities. We have
also proposed methods for analyzing a broadcast history where the events are
client requests to data items. The broadcast history is mined to obtain sequential

patterns of client request events.

Chapter 4

Analysis of Correlated Event

Histories

In this chapter, we define a framework for finding associations among events from
different histories. Dependencies among the events belonging to the same history
are not considered while relating events from different histories. We first provide
the definition of some operations that will be used as the basis for the concept
of cross associations in Section 4.1. In Section 4.2, we discuss some algorithms
for mining cross associations from correlated event histories. In Section 4.3, we
provide the implementation details and the experimental results on both synthetic

and real data sets.

4.1 Preliminary Definitions

Events in one history, called triggering event history, can trigger a set or sequence
of events in another history, called triggered event history. As an example, if we
have two histories, one for weather events and the other for power consumption
events of various companies, it is clear that weather events are triggering events
and power consumption events are triggered events, as power consumption events

cannot alter the weather, while weather can alter power consumption in a region.

35

CHAPTER 4. ANALYSIS OF CORRELATED EVENT HISTORIES 36

Date Temp | Humid | Power | Power
(Resid) | (Indus)
08/02/1997 | 80.4 55.9 1.2 26.8
08/03/1997 | 76.8 67.2 0.9 24.5
08/04/1997 | 70.0 7.4 0.9 35.0
08/05/1997 | 64.9 59.2 0.5 35.7
08/06/1997 | 66.8 58.7 0.5 35.9

Table 4.1: Temperature, humidity and the corresponding electricity demand mea-
surements (in Kilo watts) of residential and industrial customers

Time | Weather | Power

Stamp | Events Events

1 {HT, LH} | {HR, LI}
2 {HT, HH} | {HR, LI}
3 {LT, HH} | {HR, HI}
4 {LT, LH} | {LR, HI}
5 {LT, LH} | {LR, HI}

Table 4.2: Two correlated histories, Weather and Power demand

The data mining problem in case of two correlated event histories is to find inter
history rules that describe the relationship between the events in the triggering

and triggered histories with a certain support and confidence.

For market basket analysis, we derive the association rules from a frequent
itemset by looking at all possible combinations that may result in an associa-
tion rule and selecting the ones that meet the minimum confidence requirement.
However in case we have two histories, H; and H,, with events from ¢; and &
respectively, and H; being the triggering event history, the rules that we are in-
terested in are of the form A = B where A C & and B C &. Associations

spanning two histories are called cross associations.

Example 4.1.1 Two correlated histories, namely weather (H,,) and power (elec-
tricity) demand (H,) are shown in Table /.2. The power events are obtained from
the power demand data shown in Table 4.1. This data is the average hourly power

CHAPTER 4. ANALYSIS OF CORRELATED EVENT HISTORIES 37

Event | Meaning

Label

HR High Residential power consumption
LR Low Residential power consumption
HI High Industrial power consumption
LI Low Industrial power consumption

Table 4.3: Meaning of power consumption event labels used

consumption (in kilowatt-hours), averaged over a day of a typical household (res-
idential) and a small scale industrial corporation (industrial) located in Chicago
area. The power data is sampled at the same time as the corresponding weather
data. Events are derived by using the same categorizalion technique as weather
data. The events of H,, are from the set &, = {HT, LT, HH, LH}, and the events
of H, are from the set £, = {HR, LR, HI,LI}. The meanings of the event labels
are described in Table 2.3 and Table 4.3.

Definition 4.1.1 Lel ¢ be a set of events, H be a basic history with evenls from
¢, and e € & be an event in H. timeTicksy(e) denotles the set of time ticks
where event e occurred in history H. |timeTicksp(e)| denotes the cardinality
of the set of time ticks of e in H. For a set of events E', timeTicksy(E) =
NeeptimeTicksy(e), and timeTicksg(() is defined to be the set of all time licks
in history H.

Two time ticks ¢; and t, are said to be corresponding time ticks in H; and
H, respectively, if ¢; in Hy semantically corresponds to ¢; in Hy. Corresponding
time ticks may have the same value or may have different values. For simplicity,
we will assume that corresponding time ticks in two histories are represented by

the same label.

Definition 4.1.2 Let Hy and H, be two histories with two disjoint sels of events,
& and &, where V(e;, ty) € Hi,e; € & and Y(ej, t)) € Haej € €. Let A and B be

! Note that ¢ denotes the set of all different events that can happen in a history, while E
denotes an event set, i.c., a subset of §.

CHAPTER 4. ANALYSIS OF CORRELATED EVENT HISTORIES 38

lwo event sets. A cross association between A and B, from Hy to Hy is denoted as
Am, £ B, Am, £ Bp, exists if I, 1, such that Ya € A,a € &, (a,t,) € Hy
and Vb € B,b € &,(b,t,) € Hy, and t,,t, are corresponding time ticks in
histories Hy and H-.

In case of correlated event histories, we are interested in association rules
spanning two histories which are defined by the cross associations. Therefore,

cross associations will imply cross association rules.

Example 4.1.2 The cross association, {HT, HH }y, < {HR,LI}g,, exisls
over weather and power demand evenl histories given in Table }.2. A logical
explanation of this association is that a high humidity and temperature triggers
an increase in the usage of ACs that leads to an increased consumption in res-
idences. However, as the electricily demand increases, the price of eleclricily
also increases leading to a decrease in the electricity consumption in the industry.
Electricity companies sell cheap electricity to industry under the condition that
they can cul the electricity for some non-vital units in case of peak eleclricily

demands.

Definition 4.1.3 Let H be a basic history with events from &. Support of an

event set E in history H, denoted by supporty(F) is defined as, supportpy(FE) =

[timeTicks g (E)|
[timeTicks g (D)] +100.

Example 4.1.3 For the history given in Table 2.2,
timeTicksy, (LT) = {3,4,5}, and

timeTicksy, ({LT,LH}) ={3,4,5} N {1,4,5} = {4,5}.
timeTicksy,(0) = {1,2,3,4,5}.

Supporty, ({LT, LH}) = Hrmelichon, ALTLHY] 10 — 2 4 100 = 40%

[timeTicks g, (0)]

The time ticks in temeTicksy(0) correspond to transaction identifiers in the
market basket data, and the notion of support in the context of event sets is the

same as the support of an itemset in market basket analysis.

CHAPTER 4. ANALYSIS OF CORRELATED EVENT HISTORIES 39

Definition 4.1.4 A cross association Ag, = By, has support s% if the percent-
age of the corresponding time ticks in {timeTicksy,(A)UtimeTicksm,(B)} is s.

. q .
Support of a cross association Ay, = By, is denoted as supporty, g, (A, B), and
pp 1 2 pp 1,Ha A D),
[timeTicks g, (A)NtimeTicks g, (B)|
[timeTicks g, (B)UtimeTicks g, (0)]

supportm, m,(A, B) =

A frequent cross association has a support greater than the minimum support

supportr, Hy (A,B)
supports, (A)

. L q .
required. Confidence of a cross association Ay, = By, is
Definition 4.1.5 A frequent cross association Ap, = Bp, ts mazimal if there is

no frequent cross association Al £ By, where AC A" and BU B'.

Example 4.1.4 In Table /.2, let the minimum support and confidence thresh-
olds be 40% and 70%, respectively. Then, the cross association {LT, LH}y, <
{LR,HI}g, will be a frequent cross association since its support is 40%. Con-
fidence of the same cross association is 100% which means thal il meels the

minimum confidence requirement as well. It is also a mazimal cross association.

4.2 Mining Cross Associations From Correlated

Event Histories

Mining for cross associations involves two different event histories and the aim is
to find frequent cross associations. Given two histories H; and Hj, and two sets
of events &1 and ¢ where events in H; are from &; and events in Hy are from &,
and £,N¢ = (). The problem of mining cross associations is to find maximal cross
associations from H; to H,. In the following sections, we provide our approach

for extracting cross associations.

We first present a base algorithm that merges and then extracts the large
itemsets using any standard large itemset extraction algorithm. We then present
another algorithm that considers the correlated event histories separately and

utilizes some early pruning and concurrent candidate generation schemes.

CHAPTER 4. ANALYSIS OF CORRELATED EVENT HISTORIES 40

4.2.1 The Merge Algorithm

The assumption that the two histories have different sets of events enables us to
use an algorithm based on merging the histories. Two event histories, H; and
Hy with events from & and &, respectively are first merged to form a single
history. The history obtained by applying this method to the event histories
given in Table 4.2 is shown in Table 4.4. After the merge step, we find the large
itemsets and then partition them to obtain cross associations. The basic steps of

the algorithm that is based on merging histories are:

1. Merge the two event histories by combining the event sets belonging to

corresponding time ticks.

2

2. Find the frequent event sets, [, using Apriori algorithm. L =

{L1, Ly, ..., L} where L;,i = 1,..., k contains event sets of size ¢, such that

—3dF,, Ey where Fy € L; and F; € L; with ¢ < j and Fy C E,.
3. Partition each event set X, into pairs (X;, X3), where X7 C & and X, C &.

4. Discard the pairs with either X; = () or X, = 0, and store the rest in the

result set.

After applying the last step, the rest of the pairs of event sets gives us the
cross associations that we are looking for. This process is shown in Tables 4.5
and 4.6. Table 4.5 lists the large itemsets. The resulting cross associations after
partitioning the large itemsets are provided in Table 4.6. Note that the pairs
whose left or right hand sides are empty set should be discarded, since they are

not cross associations.

We can utilize some pruning strategies to reduce the number of candidate cross
associations. These pruning strategies lead us to concurrent cross association

mining algorithms.

2Tt is also possible to use another another algorithm to extract the large itemsets.

CHAPTER 4. ANALYSIS OF CORRELATED EVENT HISTORIES 41

Time | Events

Stamp | (Weather and Power)
1 {HT, LH, HR, LI }
{HT, HH, HR, LI}

{LT, HH, HR, HI}

{LT, LH, LR, HI}

{LT, LH, LR, HI}

U= W N

Table 4.4: The history obtained by merging the two correlated histories

Frequent events HT, LT, HH, LH, HR, LR, HI, LI

Frequent event sets of size 2 | {HT, HR },{HT, LI }, {LT, HI }, {LT, LH },
{LT, LR }, {LH, LR }, {LH, HI }, {HR, LI},
{HI, LR}, {HH, HR }

Frequent event sets of size 3 | {HT, HR, LI }, {LT, LH, LR },
(LT, LH, HI }, {LH, LR, LI }

Frequent event sets of size 4 | {LT, LH, LR, HI }

Table 4.5: Frequent event sets with minimum support 40%

Frequent event sets of size 2 | {HT}{HR}, {HT}{LI}, {LT}{HI}, {LT,LH}{},
{LTHLR}, {LH}{LR}, {LH}{HI}, {}{HR, LI},
{H{HI, LR}, {HH}{HR}

Frequent event sets of size 3 | {HT}{HR,LI}, {L'T, LH} {LR }, {LT, LH}{HI},
(LH}{LR, LI }

Frequent event sets of size 4 | {LT, LH}{LR, HI }

Table 4.6: Cross associations after partitioning the frequent event sets

CHAPTER 4. ANALYSIS OF CORRELATED EVENT HISTORIES 42

Time | Weather Power

Stamp | Events (Residential and Industrial)
6 {HW, LT, LH} | {HR, LI}

7 {LW, HT, HH} | {HR, HI}

8 {LW, LT, HH} | {LR, LI}

9 {HW, LT, LH} | {LR, HI}

Table 4.7: Modified Weather and Power demand histories

Frequent events HW, LW, LT, HH, LH, HR, LR, HI, LI

Frequent event sets of size 2 | {HW, LT }, {LT, LH }, {LT, LR }, {LT, LI }

Frequent event sets of size 3 | {HW, LT, LH }

Table 4.8: Frequent event sets with minimum support 50% obtained after merging
the histories

4.2.2 The Concurrent Algorithm with Early Pruning

The merge algorithm is simple but not efficient in terms of the number of database
scans and the number of candidates considered. We propose an algorithm that
can take the advantage of the fact that there are two different histories with two
different sets of events. Consider the two histories given in Table 4.7. These
histories include the wind speed which is another important measure due to its
cooling effect. In the table, LW corresponds to low wind speed and HW cor-
responds to high wind speed. Provided that the minimum support is 50%, the
large itemsets obtained after merging are shown in Table 4.8. As it can be seen
from the table, the longest frequent event set is {HW, LT, LH}, whereas the
longest cross associations are LT S LRand LT & LI, and they are of size 2.
Therefore, we spend an extra scan of the database to find associations that are

not of interest.

The concurrent algorithm finds the frequent event sets and cross associations
at the same time. That is where the name concurrent comes from, and the

algorithm makes use of the following principles stated as lemmas:

CHAPTER 4. ANALYSIS OF CORRELATED EVENT HISTORIES 43

Lemma 4.2.1 Lel Ap, £ By, be a frequenl cross associalion such that
supportm, m,(A, B) > s. Then, supportg,(A) > s and supporty,(B) > s in
histories Hy and Hy, respectively.

This lemma states that the support of the components of a cross association
should be higher than the cross association itself. This is obviously true since
the cross association is a superset of it components. This principle is going to
be used for generating candidate cross associations in the concurrent algorithm.
The concurrent algorithm scans for large itemsets concurrently in both histories,
since only large itemsets can be the components of cross associations. The large
itemsets are then used for generating candidate cross associations with a special

candidate generation scheme.

Lemma 4.2.2 For a cross association Ap, £ B, to be frequent, all cross as-
socialions Ay, £ By, where A" C A and B' C B should also be frequent cross

assoctations.

This principle states that for a cross association to be frequent all its sub-
cross-associations should also be frequent. This is very similar to the Apriori
principle, and will be used for pruning the cross associations while generating the

candidate cross associations.

Lemma 4.2.3 A cross associalion Ap, £ By, has minimum confidence if and
only if all cross associations of the form Ap, < By, where B' C B also have

minimum confidence.

supportr, Hy (A,B)
supports, (A)

We know that supporty, m,(A, B) < supportm, m,(A, B') where B’ C B.

Therefore supportr, m,(A,B) supporty, m,(A,B’)
’ support s, (A) — support g, (A)

L Q .
Proof: Confidence of a cross association Ay, = By, is

This principle will be used for pruning candidate cross associations by using

the confidence of their sub-cross-associations. It tells us that a cross association

CHAPTER 4. ANALYSIS OF CORRELATED EVENT HISTORIES 44

Amn, £ B 1, which does not meet the minimum confidence requirement, can not
generate candidate cross associations such that the left component of the new
cross association is the same and the right component is a superset of By,. This
is because the new cross association will not meet the confidence requirement.
However, Ag, £ Bp, can generate cross associations of the form A, £ By,

where Ag, C Ay, and By, C By,.

The pruning strategies provided in Lemma 4.2.1, Lemma 4.2.2, and
Lemma 4.2.3 are for pruning cross associations. We can also use cross associ-
ations to prune the frequent event sets in histories H; and H;. We eliminate the
large itemsets X in H; and H, at the k' step of the algorithm, provided that
there is no frequent cross association Ag, £ By, where Ay, C X or By, C X.
With this pruning strategy, we ensure that no redundant candidate frequent event

sets are generated.

Benefits of the concurrent cross event set mining algorithm can be summarized

as follows:

e Parallelism; i.e., while we are scanning the database, we can generate event

sets and cross event sets concurrently.

e Pruning; i.e., we can utilize all pruning strategies stated in Lemma 4.2.1,
Lemma 4.2.2, and Lemma 4.2.3. We can also prune the frequent event sets

using cross associations obtained in the intermediate steps.

e The number of database scans is lower than the number required for the

merge algorithm.

Concurrent mining of cross associations is performed by generating the cross
associations while finding the event sets in both histories. At level k, while
candidate event sets of size k are being counted, candidate cross associations

Am, £ By, are counted where |Ag, |, |Bn,| < k.

Our algorithm is based on the Apriori Algorithm. Apriori algorithm finds the

candidate large itemsets C'y41 using only the large itemsets in Lj that are found

CHAPTER 4. ANALYSIS OF CORRELATED EVENT HISTORIES 45

L > 121 122 L12

//IN N

3 . 131 32 133 123 113

NN

L24 L14

L4 ----- - 141 42 \

L15
Figure 4.1: Frequent cross association tree

at the k' scan of the database. Basic steps of our algorithm for finding frequent

cross event sets can be described as follows:

Candidate generation should consider all of the pruning strategies. A frequent
cross association Ag, £ By, will be extended in three different ways to generate

larger candidate frequent event sets:

1. (AU {a), £ Bpg,
2. A, S (BU{b;})n,

3. (AU{ahm S (BU {b}))m,

and all of these event sets should be considered at the same time as candidates.
However, the candidate generation process should avoid redundancies. In order
to avoid the redundancies, we do a breadth first search on the candidate tree
to find the frequent event sets. A sample frequent event set tree is shown in
Figure 4.1. At the root of the tree (the first level), L; contains only L;1, i.e.,
pairs of frequent events. In general, at level k, L contains L, ; which consists of
frequent event sets (A, B), such that |A| =7 and |B| = j, and at least one of ¢, j
is equal to k. The concurrent algorithm is shown in Figure 4.2. At each iteration
of the algorithm, the candidates from L;; are generated as follows:
if 2 =y, then generate C; ;, Cit1,5,Ci 11

else if 2+ < j, then generate C; ;11

CHAPTER 4. ANALYSIS OF CORRELATED EVENT HISTORIES 46

Begin
LT = {Frequent events in Hy}
L2 = {Frequent events in Hy}
k=1
while ((L{* # 0) and (L2 # () do
Cﬁll = aprioriGen(LM)
hashTreelnsert(HT,C{1)
O}Eﬁl = aprioriGen(L?)
if £ =1 then // this is a special case for L. =)
Cr = {(z,y)le € 7" Ny € 11"}
else
Cr =10
for each L;; € L; do
ifi=75=(k—1) then
Cr i1 = multiGenLeft(Lg_1 -1, ijl)
Cr-1x = multiGenRight(Ly—1 -1, ij"’)
Cyr = multiGenLe ft Right(Ly_1 1, L, L}?)
Cr = CrU{Cri—1} U{Croap} U{Crs}
else if j = k then
Cix = multiGenRight(L; y—1, sz’)
Cr=CrU {Cz,k}
else // the case when i = k
Cr,; = multiGenLe ft(Ly_ ;, Lfl)
endfor
hashTreelnsert(HT,Cy)
hashTreelnsert(HT, Cfﬁl)
// count the support of candidate cross associations and frequent event sets
// for each transaction in the order of timestamps
for:=1to N do
concurrent HashCheck(HT, t 1172)
endfor
// Perform confidence pruning in case ¢ < j
CL={ceCi;|Ci; € Cp Ni < jAc.count > minsup A c.con fidence > minconf}
//Check only the support in case i > j
SL={ceCi;|Ci; € Ch N1 > j A c.count > minsup}
Ly=CL U SL
Lt = {c € O |e.count > minsup A (3, 5.t x € Ly; A leftComponent(z) C ¢)}
Lﬁf_l ={ce Cﬁfﬁc.count > mansup A (3, s.t & € Ly A rightComponent(z) C ¢)}
k44
endwhile

End

Figure 4.2: Concurrent mining algorithm

CHAPTER 4. ANALYSIS OF CORRELATED EVENT HISTORIES 47

Begin
multiGenLeft(L; ;, Lg}l)
select p.itemy, ..., p.item;, q.ilem,, p.item,yq, ..., p.atemy;
H
fI‘OIl’l Liﬂ' P, Liﬂ' q, Lz-}-ll T
where p.item; = q.utemq, ..., p.atem;_y = q.atem;_y and p.item; < g.item;
and p.eitemy = r.atemy, ..., p.atem; = r.atem;, q.item; = ratem;yq

End

Figure 4.3: Left candidate generation algorithm

else, generate ;41
Note that, if 2 = 7, then : = j = k since at least of of 7,7 should be equal to k.
Otherwise if 2 < j then j should be equal to k, and if 7 > 5 then 2 should be equal
to k.

The candidate generation algorithm for cross associations is similar to the
Apriori candidate generation. We provide the algorithm for candidate generation
of cross associations in Figure 4.3 where the left component of a given cross
association is extended. Generation of the right component and generation of
both left and right components are similar to the generation of the left component,

therefore they are not provided here.

4.2.3 Correctness of the Concurrent Algorithm

With the candidate generation scheme described above, all possible candidates
are generated with Lj containing L, ; # (), where ¢, < k and, at least one of 7, j

is equal to k.

Suppose that there exist two histories, Hy, and H,, with frequent events
{a,b,c,d}, and {p,q,r, s}, respectively. Initially L; will contain only L;, and the
cross associations in Lq; will be in the form a = p. After the second iteration, L,
will consist of {L12, Lo, La2}. The cross associations in L 2 will be in the form
a = pq, and L, 5 will generate candidates in the form a = pgr. Note that L, ; can

not generate candidates in the form ab = pq since they are already considered

CHAPTER 4. ANALYSIS OF CORRELATED EVENT HISTORIES 48

in the previous iteration as candidates in 5. Similarly L ; contains candidate
itemsets in the form ab = p and it will generate candidates in the form abc =
p. It can not generate candidates in the form ab = pq since they are already
considered in (5, during the previous iteration. In general for ¢,5 < k, L;; will
only generate C; 341, and Ly ; will only generate (44 ;, because the candidates
in Ciq1% and Cf ;41 are processed during the previous iterations. Note also that,
candidates in Citq 41 Will be generated by (41 and candidates in Ciiq j4q
will be generated by Cy j41. Ly will generate Chyq 5, Cr g1, and Cyyq g41 since
none of the candidates are processed in the previous iterations. This candidate

generation scheme allows non-redundant generation of candidates.

Data Structures and the Counting Process:

We have used a hash-tree to store the candidate frequent event sets in the merge
algorithm which was also used in [AS94]. Similarly, for the concurrent algorithm,
a hash-tree is used to store the candidate frequent event sets together with the
candidate cross associations. This way the storage of the candidate frequent
event sets and candidate cross associations is overlapped. Initially, the candidate
frequent event sets in H; are inserted to the hash-tree. This is followed by the
insertion of the candidate cross associations. Then, the candidate frequent event
sets in H, are inserted to the hash-tree by traversing the previously inserted cross

associations.

The merge algorithm performs the counting efficiently on the hash-tree.
Counting of the candidate frequent event sets and counting of the candidate cross
associations are overlapped in the concurrent algorithm. At the k™ step, candi-
date frequent event sets of size k, and candidate cross associations Ag, £ By,
with |Am, |, |Br,| < k are generated and counted together. A frequent event
set X of size k, at a transaction T in history H; is counted only if T' supports
the left component of a cross association Ag, £ By, such that Ay, C X, and
|Ag,| = k — 1. Similarly, a frequent event set X of size k, at a transaction 7" in
history Hs is counted only if T supports the right component of a cross associa-
tion Ag, £ Bp, such that By, C X and |Bg,| = k— 1. This prevents redundant
counting of frequent event sets by cutting the counting process at an early stage

when a transaction does not support the left or right component of any cross

CHAPTER 4. ANALYSIS OF CORRELATED EVENT HISTORIES 49

Symbol | Meaning

|DB| Database size in number of transactions

|T| Average transaction length

| 1] Number of items

skew skew in the size of the two histories

sup minimum support threshold

conf minimum confidence threshold (for confidence pruning)

Table 4.9: Main parameters used for performance experiments

association.

4.3 Experimental Work

We implemented the merge and concurrent algorithms using Perl programming
language. We used both synthetic and real datasets. In order to assess the
performance of the concurrent algorithm relative to the merge algorithm, we
performed several experiments on a PC, running Linux operating system, with
512 MB of main memory, and a Pentium III processor that has a CPU clock rate
of 500 MHz.

4.3.1 Performance Evaluation With Synthetic Data

In order to simulate correlated event histories we used the synthetic data that
was produced by Han et al. [HPY00]. In the performance experiments, trans-
action identifiers are assumed to be timestamps and the data is analyzed in the
order of transaction identifiers. Our main simulation parameters are listed in
Table 4.9. The first data set contains 10K transactions and 1K items. Average
transaction length is 20 items. The second data set contains 100K transactions
and 10K items where the average transaction length is 25 items. To simulate
the correlated histories, each transaction is divided into two transactions and two

separate datasets are constructed. The skew parameter is used to determine how

CHAPTER 4. ANALYSIS OF CORRELATED EVENT HISTORIES 50

conf=50%, |DB|=10K, |T|=20, I=1K, skew=0.5
T

1200 X

G——>© concurrent (with conf prun)
&——= concurrent (w/o conf prun)
V—V merge

1000 &

800

600

CPU Time (secs)

400

200 |

0 1 1 1 1
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Support

Figure 4.4: CPU time for different support values

the data will be partitioned into two histories. The skew is a real number in the
range [0, 1] and it is the ratio of the number of items in the first history to the

number of items in the second history.

In the first experiment, we measured the CPU times produced by the merge
and concurrent algorithms for varying support values. The results displayed in
Figure 4.4 show that the concurrent algorithm with and without confidence prun-
ing outperforms the merge algorithm for all support values. We also conducted
an experiment to measure the effect of confidence pruning for various confidence
values. The results of this experiment are shown in Figure 4.5. As expected, for
increasing confidence values, more and more itemsets are pruned, leading to a

sharp decrease in the CPU time.

The number of database scans is an important issue for the performance of the
data mining algorithms. The number of scans needed for the merge algorithm is
k+1, where k is the size of the largest frequent cross association spanning histories
Hy and H,. The final scan is executed during the search for a cross association of
size k + 1 in the merged history. The number of scans needed for the concurrent
algorithm is Ma:n(m,n) + 1 where m is the maximal size of an event set A in

G . .)
Hy, where Ay, = By, is a frequent cross association for some event set B in Hj.

CHAPTER 4. ANALYSIS OF CORRELATED EVENT HISTORIES

300

sup=0.5% , |DB|=10k, [T|=20, [I|=1k, skew=0.5

280 [
260 7
240 7
220 7
200 7
180 7

CPU Time (secs)

160
140
120

100

Figure 4.5: Effect of confidence pruning for different confidence values

10

conf=50%

20

30

40 50 60 70 80 90
Conf (%)

, IDBJ=10K, [T|=20, |I|=1k , skew=0.5
T

T T T T
G—>© concurrent (with conf prun)
&——= concurrent (w/o conf prun)
V=—V merge

Number of Passes

0
0.25

Figure 4.6: Number of database scans for different support values

0.50

0.75

1.00 1.25 1.50 1.75
Support

2.00

o1

CHAPTER 4. ANALYSIS OF CORRELATED EVENT HISTORIES 52

conf=50%, |DB|=10k, [T|=20, [I|=1k, skew=0.5
100.0 ‘ ‘ ‘

90.0 | G—>© concurrent (with conf prun)
r &——= concurrent (w/o conf prun)

80.0

70.0

60.0

50.0

40.0

30.0

Candidate Reduction (%)

20.0

10.0

0.0 1 1 1
0.50 0.75 1.00 1.25 1.50 1.75

Support

Figure 4.7: Reduction in the number of candidates for different support values

Similarly, n is the maximal size of an event set D in Hy where Cp, £ Dy, 1s a
frequent cross association for some event set C' in Hy. As a result, the concurrent
algorithm provides us the best performance in terms of the number of database
scans. Figure 4.6 displays the number of scans performed by the algorithms as
a function of the support value. As can be seen from the figure, the concurrent
algorithm needs fewer database scans compared to the merge algorithm. When we
also include confidence pruning strategies, the number of scans is further reduced

as shown in the figure.

We measured the reduction in the number of candidates generated as a result
of the pruning strategies for varying support values, and the results are shown
in Figure 4.7. In this figure, the merge algorithm is considered as a base, and
the percentage reduction in the number of candidates is shown for the candidates
obtained after the second iteration of the algorithm. In the first iteration, the

number of candidates are the same for both merge and concurrent algorithms.

The performance impact of skew in the two histories was also evaluated and
the results are presented in Figure 4.8. The skew parameter describes the size
of the first history Hy, relative to the size of the second history Hj, in terms of

the average transaction lengths. For example, a skew of 0.1 indicates that the

CHAPTER 4. ANALYSIS OF CORRELATED EVENT HISTORIES

CPU Time (secs)

sup=0.5%, conf=50%, |DB|= 10K, |T|=20, |I|=1K
T

140.0 +

120.0

100.0

80.0

60.0

40.0 -

20.0 -

0.0 I I

0.1 0.2 0.3

0.4 0.5 0.6 0.7 0.8
skew ratio

0.9

Figure 4.8: CPU time for different skew ratios

CPU Time (1000 secs)

Figure 4.9: CPU time for different support values for larger data

130 | ‘
120 |
110 |
10.0
9.0 |
8.0 |
70 ¢
6.0 |
50 F
40
3.06
20 F
10

conf=50%, [DB|=100k, [T|=25, [I[=10K, skew=0.5
T

G—=>0 concurrent (with conf prun)
&S—=<> merge

0.0 C 1 1
0.25 0.50 0.75

1.00 1.25 1.50 1.75
Support

2.00

33

CHAPTER 4. ANALYSIS OF CORRELATED EVENT HISTORIES 54

ratio of the average transaction length in H; to the average transaction length
in Hy is 1 to 10. A cross association Ag, £ B, is skewed if the size of Ap,
is much smaller than the size of Cy,, or vice versa. Cross associations obtained
from two skewed event histories will also be skewed with a high probability. The
concurrent algorithm is superior to the merge algorithm when there is no skew in
the frequent cross associations. This is obvious since the merge algorithm scans
the database size(Ap,) + size(Bp,) times, where on the average the concurrent
algorithm scans the database only half of the number of database scans needed
for the merge algorithm. If there is skew in the cross associations, then the merge
and concurrent algorithms will perform comparably in terms of the number of
database scans. However, the concurrent algorithm benefits from support and
confidence pruning in case there is skew in the history sizes. Confidence pruning
is more effective in case there is skew towards By, which is also observed in the
experiments. As can be observed in Figure 4.8, the CPU time increases as the
skew is varied from 0.1 to 0.5. The CPU time decreases as the skew is varied
from 0.5 to 0.9, however the CPU time at the skew level of 0.9 is slightly higher
compared to the skew level of 0.1 since confidence pruning works better when the
size of Hy is smaller than the size of Hy. We did not depict the CPU time results
of the merge algorithm with varying skew since the performance of the algorithm
does not change much with skew. This is due to the fact that the merge algorithm

does not exploit the pruning strategies used in the concurrent algorithm.

We tested the proposed algorithms on a larger dataset as well. The new data
set consists of 100K transactions and 10K items. The average transactions length
in this data set is 25 items. We measured the CPU times produced by the merge
and concurrent algorithms for varying support values in this larger data set. The
results displayed in Figure 4.9 show that the concurrent algorithm outperforms

the merge algorithm for larger data sets as well.

4.3.2 Experiments on Real Data

We used the weather and power consumption data in the context of

CIMEG [CIM], collected from Chicago area over one year, from 05/01/1997 to

CHAPTER 4. ANALYSIS OF CORRELATED EVENT HISTORIES

Support

Rule

10%
12 %
11%
10%
11%

{T5} = {k1,n4}
(T4} = {b4, 04}

(T2} = {a5,i5,m3}

{H4} = {15,575}
{H2} = {y2,k1}

Table 4.10: Cross associations for 5 categories and 10% support

H)

H category 1 | category 2

category 3 ‘ category 4 ‘ category 5

Temp(F) 5-21 22 - 38 39 - 55 56 - 72 73 - 85
Hum (%) 39 - 51 32 - 64 65 - 77 78 - 90 91 - 99
comp. a 103 - 301 302 - 500 501 - 699 700 - 898 899 - 1094
comp. b 7- 202 203 - 398 399 - 594 595 - 790 791 - 985
comp. i 198 - 318 319 - 439 440 - 560 561 - 681 682 - 801
comp. j 146 - 389 390 - 633 634 - 877 878 - 1121 1122 - 1363
comp. k 1-94 95 - 188 189 - 282 283 - 376 377 - 466
comp. m || 4930 - 6850 | 6851 - 8771 | 8772 - 10692 | 10693 - 12613 | 12614 - 14530
comp. n 95 - 270 271 - 446 447 - 622 623 - 798 799 - 972
comp. o 374 - 646 647 - 919 920 - 1192 1193 - 1465 1466 - 1735

Table 4.11: Categorization of weather and power consumption measurements

CHAPTER 4. ANALYSIS OF CORRELATED EVENT HISTORIES 56

04/30/98. The weather and power consumption data constitute two different
sets of histories which are correlated. The weather data contain the temperature,
wind speed, pressure and humidity. The power consumption data contain daily
average power consumption of twenty anonymous companies, labeled “a” through
“t”. These companies have different scales of production. Residential power con-
sumption was also contained in the data. We partitioned the data values into
ranges, where each range corresponds to an event. This type of an approach was

also used to create events out of stock price histories [BWJL9S].

After running the cross mining algorithms, we obtained the cross associations
among the weather events like temperature ranges and the power consumption
ranges of different companies. Some of the interesting rules we obtained are shown
in Table 4.10 for five ranges with 10% support, and 30% confidence thresholds.
The capital letters T and H denote the temperature and humidity respectively,
while the lower case letters denote the power consumption of different compa-
nies. The numbers attached to the letters denote the level (category) of power
consumption, temperature, or humidity depending on the label they are attached
to. We used a simple categorization technique utilizing the minimum and max-
imum values as described in Example 2.2.1. The categorization we used for the
weather and power consumption measurements for the events that appear in Ta-
ble 4.10 are provided in Table 4.11 to give a perspective. Company m is a very
large scale company, and the others are large scale companies. Temperature is
given in Fahrenheits, humidity is given by percentage, and the power consump-
tion is given in kilowatt-hours, averaged over a day. As can be seen from the
table, the power consumption of some companies are actually affected by tem-
perature and humidity levels. The first rule in Table 4.10, i.e., {T'5} = {k1,n4}
states that a temperature level of 5 is associated with a power consumption level
of 4 in company n and a power consumption level of 1 in company k. Another
rule, {72} = {ab,15,m3} states that a temperature level of 2, which is a very
low temperature, is associated with a very high power consumption of companies
a and ¢, while being associated with a medium power consumption in company

m which is a very large scale company.

CHAPTER 4. ANALYSIS OF CORRELATED EVENT HISTORIES 57

4.4 Summary

In this chapter, we have introduced a new data mining problem for mining asso-
ciations among events spanning different histories, called cross associations. We
have presented two algorithms, namely the merge and concurrent algorithms, for
extracting cross associations from two correlated event histories. We have evalu-
ated the performance of the proposed algorithms on synthetic data sets, and con-
ducted experiments on different support and confidence values. The performance
results obtained show that a considerable performance improvement is provided
by the concurrent algorithm with pruning strategies over the merge algorithm.
The experiments on synthetic data have proven that processing two correlated
histories separately is a better approach compared to merging and mining the
histories. We have also conducted experiments on the real life weather and power

consumption data.

Chapter 5

Fuzzy and Proactive Rules

In the preceding two chapters, we have explained how a single and correlated

event histories can be analyzed to obtain:

e event similarities that describe binary relationships among events,

e sequential event patterns that represent the sequences of events appearing

frequently in the event history, and

e cross associations that describe associations among events spanning multi-

ple histories.

In this chapter, we show how all these different types of relationships among
events can be used for event detection and rule execution in active database
systems. In Section 5.1, we explain how the similarities among the events that
are captured in a matrix can be used to divide the events in a system into sub-
event-sets modeled as fuzzy sets. We further demonstrate in Section 5.2 how event
similarities and fuzzy event sets can be used for similarity based event detection
and fuzzy rule execution in active databases. In Section 5.3, we show how the
event patterns like associations and cross associations can be used for predictive

event detection and proactive rule execution in active database systems.

38

CHAPTER 5. FUZZY AND PROACTIVE RULES 29

5.1 Construction of Fuzzy Event Sets

Fuzzy event sets are fuzzy sets where the elements are events, and each event
has a degree of membership to the fuzzy event set. A fuzzy event set, Fp,
over a universal event set ¢ is a tuple of the form < E,pu > where £ C ¢ and
g is the membership function that describes the degree of membership of the
events in F to Kp. In Chapter 3, we have explained the construction of the
sequential proximity matrix that describes the similarities of events in terms of
the proximity of event signaling. In the following subsection, we discuss how the
sequential proximity matrix is used for constructing fuzzy event sets and their

membership function.

5.1.1 Partitioning The Event Space Using Sequential

Proximity Matrix

The fuzzy event set construction is done by partitioning the event space using
the sequential proximity matrix. The events in each partition have a degree of
membership greater than 0, and the rest of the events have 0 as their degree
of membership to the fuzzy event set. The exact membership degree functions
are provided later on. The problem here is to partition the set of events into &
subsets such that the resulting subsets are balanced, the total proximities of the
events in all subsets are maximized, and the total similarities among the events
belonging to different subsets are minimized. This problem is similar to the graph
partitioning problem. Given a graph G with costs on its edges, partition the nodes
of GG into subsets no larger than a given maximum size, so as to minimize the total
cost of the edges cut. Following is the formal definition of the graph partitioning
problem [KL70].

Definition 5.1.1 Let G be a graph of n nodes, of size (weighls) w; > 0,i =
1,...,n. Let p be a positive number, such that 0 < w; < p for all 1. Let C' =

Cijyt,7 = 1,...,n be a weighted connectivily matriz describing the edges of G.

CHAPTER 5. FUZZY AND PROACTIVE RULES 60

1 \
a 1 |
! h = a \
! \ 1 '
" “ 3 |
!
! 18 0|11 |
| 1 ! I
! 14 bh T 1 b| 9 |
\ |] |
1
l\ ul 31 |9 |
|
\ 3 \ 1’
\ !
\ !
Y c | / 1 \ Ch /
\ N \ I
\ / \ /
, \ /
Sl S2

Figure 5.1: A sample event graph

Let k be a positive integer. A k-way partition of G is a set of nonempty,
pairwise disjoint subsels vy, ...,vr of G, such that U*_ v; = G. A partition is
admissible if |v;| < p for all i, where |v;| stands for the size of the sel v; and

equals to the sum of the sizes of all the elements of v;.

An exact solution to this problem is shown to be NP-hard in [BJ92].

We simplify the graph partitioning problem defined above so that the weights
of the nodes are all equal to 1. We also set p to the constant value 7 for a
balanced partition. The number of partitions, i.e., the number of fuzzy event
sets 1s application dependent. The weighted connectivity matrix is the sequential

proximity matrix described in Section 3.1.1.

The algorithms provided by Kernighan and Lin assume undirected graphs. In
our case the proximity of event e; to event e; may be different from the proximity
of e; to e, We may consider our sequential proximity matrix as a directed
complete graph where the events correspond to nodes and weights of directed
edges of the form e¢; — e; correspond to the matrix entry M|z, 5]. We convert
our directed graph to a single undirected graph by replacing the directed edges
e; — e; and e; — ¢; with an undirected edge < e;,e; >. Weight of the edge
< ej,e; > is the sum of the weights of ¢; — €; and e; — e;. Collapsing the

directed edges connecting the same nodes to an undirected edge does not affect

CHAPTER 5. FUZZY AND PROACTIVE RULES 61

the outcome of the partition since either both of the edges or none of them are

in the cutset.

METIS Software package can be used for graph partitioning [KK]. The event
graph that results from the sequential proximity matrix given in Figure 3.5 is
provided in Figure 5.1. The nodes of the graph represent the events and the edges
between the nodes represent the similarities between the corresponding events.
The undirected edges of the graph are obtained by summing the weights of the
edges with the same end-points. Two event sets resulting from the partitioning
step are shown in Figure 5.1 by ellipses with dashed lines. The first set, Sy consists
of the events ay, by, and ¢; while the second set, Sy, consists of ay, by, ¢, where a
and b here correspond to the power consumption of industry and ¢ corresponds
to a residential customer. This grouping may show us that in the snapshot of
the power consumption event history, high power consumption of a residential
customer corresponds to low consumption of industry. This situation may occur
in summer where lots of ACs are operated in the houses and the electricity price
goes up forcing the large scale companies to lower their production resulting in

lower power consumption in the industry.

5.1.2 Computation of Membership Functions

One method of obtaining the membership functions for fuzzy event sets is to rely
on the experts of the particular application which is usually the case in fuzzy
control. Since we have the sequential proximity matrix ready at hand, we can
utilize it to construct fuzzy event sets. As we have explained in Section 5.1.1,
fuzzy event sets are constructed using a graph partitioning algorithm. Graph
partitioning is used to cluster strongly related events. We can deduce the average
coherence among the events in a fuzzy event set by taking the average proximity
of all event pairs. The proximity between the event pair (e;,e;) is denoted by
proxzimity(e;, e;) and it is the value stored in the ik row and j'h column in the se-
quential proximity matrix. The average coherence is further used for determining

the membership function of a fuzzy event set.

CHAPTER 5. FUZZY AND PROACTIVE RULES 62

Definition 5.1.2 Coherence of an event e; in a fuzzy event set S is denoted by
Cs(ei), and defined as the average proximity of event e; to the rest of events in

S. Coherence is calculated as follows:
Z . prozimity(e; e)
N GJES/\z#J
Cs(e;) = e

where |S| is the cardinality of the fuzzy event set S and proximity(e;, e;) is the

proximily of e; to e;. We exclude the coherence of an evenl to ilself in coherence

calculation.

Coherence of an event e, in a fuzzy event set S specifies how closely e is related

to S.

Definition 5.1.3 Average Coherence for a fuzzy event set S is denoted by ACs

and calculated as follows:

ACS = Zeieﬁ’g'cs(ei)

Definition 5.1.4 Coherence Deviation of an event e;, in a fuzzy evenl set S is
denoted by C'Dg(e;) and calculated as:

CDs(e;) = Cs(e;) — ACs.
Maximum absolute coherence deviation for a fuzzy event set S, denoted by
MaxCDg, is the mazimum of absolute coherence deviations in that fuzzy event

set, i.e., MaxCDg = maz.,es{|CDs(e;)|}.

Coherence Deviation is a measure of how far is the coherence of an event from

the average coherence.

Definition 5.1.5 Mean Absolute Deviation of a fuzzy event set S is denoted by
MADg and calculated as:
|CDs(ei)l

MADS — ZeiES|S|

Mean Absolute Deviation is an approximate measure of how close are the

different pairwise similarity values in a fuzzy event set.

CHAPTER 5. FUZZY AND PROACTIVE RULES 63

CDs(ei)XMADS
Lemma 5.1.1 The formula, “2xMasCD?

[0,1] for an event ¢; when MaxCDg # 0.

+ 0.5 produces a number in the range

Proof

For any event e;, C'Ds(e;) is in the range (—oo, 00), while MazCDg and M ADsg
are both in the range [0,00). By definition, C'Dg(e;) < MaxCDg, and also
MADs < MaxC Ds. Therefore, we have

CDs(e) MAD
—1 = Feps = land -1 < gri5s5. < 1.

Since MaxCDg # 0, both of the fractions are defined.
CDgl(e; .
-1 < WC(D)S <land —1< #CI?DSS < 1 together imply that
ODs(ei)x MAD
-1 S MazCSDSXMazC%S § L.

This leads to, —0.5 < % < 0.5.

When we add 0.5 to the inequality, we get
CDs(ei)xMAD
0 < Gelaldilins £ 0.5 < 1.

Thus, ODs(ei) xMADs + 0.5 is in the range [0,1] m

2x(MazCDg)?

The membership function of a fuzzy event set S is denoted by pg and calcu-

lated as follows:

0 ife; &8
151') y .
Ogim%ffs +0.5 if e €8N
ps(es) = MazCDg # 0 (5.1)
1 if e; € SA

MaxCDg =0)

An example for the membership calculation for the graph in Figure 5.1 is

given below:

Example 5.1.1 There are two fuzzy event sets, Sy and Sy, in Figure 5.1. We

calculate the membership function for S as follows:

CHAPTER 5. FUZZY AND PROACTIVE RULES 64

1. First we need to calculate the coherence for each event and find the average

coherence.
. stmilarity(ap,bp)+similarity(ap,c)
e The coherence of event ay is Cg (an) = ST
which equals to Cg, (ay) = S'OZﬂ = T7.25.
o (O (b) _ simalarity(bp,ap)+similarity(bp,c) which is C (b) _ 8.046.5 __
Sl h - |Sl|_1 Sl h - 2 -
7.25.
rmalarity(c imalarity(cy,b . .
o 051 (Cl) _ similari y(l,'—'ll}g)j'-jzlmz arity(cr,bn) which is 051 (Cl) — % =T7.5.

2. Average coherence for Sy is calculated as:

ACs, = OSl(ah)+O|S§1(Th)+OSl(Cl) _ 7.25+7325+7.5 — 733

3. Coherence deviation for each event is calculated to find the maximum co-
herence deviation.
® ODSl (ah) = 051 (CL}L) - ACSl = 725 - 733 = —008
® ODSI(bh) = Cgl(bh) - AOSl = 725 - 733 = —008
[] CDSl (Cl) = 051 (Cl) — ACSl == 75 - 733 = 017

o Maximum absolute coherence deviation s, MaxCDg, = 0.17

4. Mean Absolute Deviation is calculated as:
MADg = LZ0081H1-0081+017] _ 14
1 3 .

After obtaining all the intermediate values needed, we can calculate the mem-

bership values of the individual events as:

o us, (ap) = CD;;g;';);C]g;S‘f’Sl +0.5 which is 208X041 4 0.5 = 0.35

o us,(by) = % + 0.5 which is also 0.35.

o Finally the membership value of ¢; is
ILs, (Cl) — 0.17x0.11 + 0.5 =0.82

2x(0.17)2

CHAPTER 5. FUZZY AND PROACTIVE RULES 65

5.2 Application of Sequential Proximity Matrix
and Fuzzy Event Sets to Active Database
Systems

Fuzzy rules have been involved in many areas from control to expert systems.
The application of fuzzy concepts into active database systems has attracted the
attention of some researchers; however, we cannot say that a considerable amount
of research has been conducted addressing this issue. This section is devoted to
the description of fuzzy rule execution in active database systems. In the following
subsections we describe how fuzzy event sets are used for fuzzy rule execution and
how sequential proximity matrix is used for similarity based event detection in

active database systems.

5.2.1 Fuzzy Rule Execution and Fuzzy Event Sets

In the previous sections, we have shown how we can partition the whole event
space ¢ into fuzzy event sets. Scenarios in the active database context are the
aggregation of fuzzy event sets and rules. The idea of scenarios comes from
the need to group rules into sets corresponding to different situations such as a
“high power consumption scenario” in the summer. Dividing the rule space into
scenarios has many advantages. First of all, dealing with a group of related rules
is much easier than dealing with all the rules. Also, the number of rules triggered
can be tuned by pruning the triggered rules using the membership function of the
scenario as will be explained later on. This combined effect of decreased number
of events and rules in consideration will improve the efficiency and effectiveness

of the system.

Assume that we have a set of fuzzy event sets {Fp, Fr,,..., Er,} where
Er, =< F;, p; >. Assume also that the set of rules in the system is R where each
rule is a triple of the form < e,¢,a >, e being the event, ¢ being the condition,

and a being the action. Let events(R;) = {e|r :< e,c,a >€ R;} be the events of

CHAPTER 5. FUZZY AND PROACTIVE RULES 66

the rule set R;. We partition the set of rules R, into subsets, {Ry, Rz, ..., Rx}
such that evenis(R;) C E; for some fuzzy event set Fp, =< Ej,p; > and
RiURyU...URy=Randfor 1 <i<j <k, events(R;) Nevents(R;) = 0. The
scenario corresponding to R;, and Fr, 1 <1,5 <k, is a triple < Ry, E;, p; >.

Example 5.2.1 Assume that we have the sel of rules

R={r <ap,c1,a1 >,r9 :< bp,co,a9 >, r3:< ap,¢3,a3 >,14:< b, chyaq >}
and the two fuzzy event sets

Er, =<{ap, by, a1}, 1 > and Ep, =< {a, by, cp}, pa >.

We first partition R into Ry = {ry :< ap,c1,a1 >,ry :< by, o, a3 >} and
Ry ={r3:<ajcs,a3 >,rqy :< by, cdaq >},

The corresponding scenarios are < Ry, 1,1 > and < Ry, Fq, p2 >.

Event signaling is done by considering the membership degree of the event pa-
rameter in the fuzzy event. We use the fuzzy event structure described in [BW9T]
where a primitive event is a tuple, e :< e., ey >, consisting of a crisp part e, which
is the crisp parameter coming from the system and a fuzzy part e; which denotes

the fuzzy event.

Definition 5.2.1 The strength of an event e :< e.,es > for the ruler :< e,c,a >
in scenario Rgs, :< R;, Fi, i > is defined as :
strength(e,r) = p; * pe,(value(e.))

where value(e.) is the value of the crisp event detected, and p., is the membership
function of the fuzzy event ey. The value of an evenl can be e. ilself in case e, is
coming from a sensor. Or the value can be a parameter to the crisp event such

as a database update event and the updated value.

Each rule has a firing threshold which is used to decide if a rule will be fired or
not. In order to decide whether a rule r will be fired in response to the signaling
of a fuzzy event e, the strength of event e for rule r is calculated and the result is

compared to the threshold value for rule r. If the result is greater than or equal

CHAPTER 5. FUZZY AND PROACTIVE RULES 67

Rule Base

rules
\ triggered

events — . ules
Event Detector »| Condition Monitor »| Scheduler

,,,,,,,,,,,,,,,,,, condition evaluation

action execution

Y /

?

Sensor | — 1 Query Evaluator
vaues | Mining Process |
1] l
detected | :

events |

,,,,,,,,,,,,,,,,,,,

Figure 5.2: Event detection and rule execution model

to the threshold value, then the rule is fired. Threshold values of rules can be

changed dynamically to tune to particular scenarios.

Prioritization of rules in an active database system is very important. Some
rules may be more urgent than the others. The priority of rules can be set
by the people who defined the rules. Another method is to use the events of
the rules to set the priorities. Consider two rules whose events are “significant
temperature change” and “significant pressure change”. If the membership value
of the significant temperature change is much higher than the membership value
for the pressure change, the rule with event “significant temperature change”
should be given higher priority of execution since late execution of that rule may
be hazardous. Strength of the rules is a good indicator of rule priorities and they
can be used to order the rules during rule execution. Prioritization based on the
strength of the rules will give higher priority of execution to the rules with higher

strength values.

The rule execution model provided in [PD99] is modified and depicted in

Figure 5.2. Events are detected by the event detector using the sensor values

CHAPTER 5. FUZZY AND PROACTIVE RULES 68

that are continuously stored in the database. Rules corresponding to the detected
events are obtained from the rule base and their conditions are evaluated. Those
rules whose conditions are satisfied are scheduled for execution by the scheduler.
As an extension to this model, we add the component in the rectangle with dashed
lines. In this modified model, detected events are stored in the event history and
they are fed to the mining process periodically. The mining process together
with the partitioning, produces the fuzzy event sets which are further used by
the event detector. Utilization of the fuzzy event sets and sequential proximity

matrix is explained in the following subsections.

5.2.2 Similarity Based Event Detection

Detection of similar events upon an event occurrence is something very useful
when the cost of missing events is very high in supported applications, like a
nuclear reactor control system. Assume that an event such as “update in tem-
perature level” is detected. Events with a high similarity degree, like “update in
pressure level” should also be signaled automatically. This way, the system can
predict that an event which escaped the event detection process has occurred. In
a power producing and selling company, occurrence of some events can imply the
occurrence of some other events. Advantage of similarity based event detection
in such a system is that, the dealers may assume that the events similar to the

signaled events will occur and can take the necessary actions in advance.

In similarity based event detection, when an event is signaled, other events
which are similar to it should also be fired. Similarity based event detection
considers only primitive events. In order to facilitate similarity based event de-
tection, the sequential proximity matrix explained in Section 3.1.1 is utilized. We
also need similarity thresholds in order to avoid the system to continuously detect

irrelevant events via similarity based event detection.

Definition 5.2.2 Similarily threshold for an event e in a scenario S is the min-
imum similarity requirement for the events in S to be detected automatically by

e via similarity based event detection.

CHAPTER 5. FUZZY AND PROACTIVE RULES 69

Similarity threshold for an event e in a scenario S can be set to be the co-
herence of e in S which is explained in Section 5.1.2. Upon the detection of an
event, e, all the events in the same scenarios as e whose similarity to e is greater
than the similarity threshold will be detected automatically. Similarities of the
events in a scenario are the proximity values in the sequential proximity matrix.

An example would be helpful in explaining similarity based event detection.

Example 5.2.2 Consider the events and the sequential proximity matriz in Fig-
ure 3.5 and the fuzzy event sets in Figure 5.1. Assume that the current scenario
is S1 and ay, is detected. Coherence of a, in S; was calculated in Example 5.1.1
as 7.25. Among the rest of the events in S7 which are by, and ¢;, only by, will be
detected by similarity based event detection since proximity(ay,by) = 8.0 > 7.25,
but ¢; will not be detected since proximaty(an,¢) = 6.5 < 7.25.

Conventional event detection in active database systems is a special case of
similarity based event detection where the similarity relation among the events

is an identity relation and similarity thresholds are equal to infinity.

5.3 Predictive Event Detection and Proactive

Rule Execution in Active Database Systems

In this section, we describe how the event patterns obtained by mining event
histories can be used for predictive event detection and proactive execution of
rules. The rule structure and event detection for predictive event handling are
described in Section 5.3.1 and Section 5.3.2, respectively. Section 5.3.3 explains

the condition evaluation and action execution in case of predictive event detection.

5.3.1 Rule Structure

In a proactive database system, there are three types of rules. The first type is the
standard Event-Condition-Action (ECA) rule. Each ECA rule is associated with

CHAPTER 5. FUZZY AND PROACTIVE RULES 70

two rules, namely, proactive and compensating rules which are the second and
third types, respectively. Although the system views all the rules as independent
from each other, we will consider a rule together with its corresponding proactive
and compensating rule as a triple of the form (R, R,, R.) where R is the ECA
rule, R, is the proactive rule, and R. is the compensating rule. R, R,, and R. are
represented by (e, ¢, a), (€virt, ¢, Gpre), and (T€yirt, Coomps Geomp), Tespectively. A
proactive rule consists of an event which is the virtual event of the corresponding
ECA rule, a condition which is the same as the condition of the ECA rule, and
a preaction. The compensating rule of an ECA rule has an event that is the
negation of the virtual event of the corresponding proactive rule, a standard
condition which checks whether the condition evaluation of the previous signaling
of the same virtual event is true, and a compensating action. This way we
can implement proactive capabilities seamlessly using the ECA rule paradigm,

without changing the rule structure of the existing active database systems.

A sample rule is given in Figure 5.3. This rule describes the action that will
be taken when the temperature level is high. To prevent a shortage in electricity
supply, electricity producers sell cheap electricity to consumers with the condition
that they may cut down the electricity for nonvital units in case of peak demand
like ACs in universities that are not vital. The rule in Figure 5.3 describes a
case where the power supply of ACs in a university will be cut down in case of
high temperatures. Such rules are obtained by using the cross associations that
show the correlation between the high temperature and power consumption of

individual industries.

5.3.2 Event Detection

Events are detected in discrete time periods. The currently detected events are
used together with the extracted patterns and sequences to predict the events in
the future. We assume that proactive event handling is performed at the primitive

event level.

The set of currently signaled events in the system consists of two groups, real

CHAPTER 5. FUZZY AND PROACTIVE RULES 71

RULE

event: When the temperature level is high

EC Coupling: immediate

condition: Check whether it is weekend

CA Coupling: immediate

Action: Curtail the electricity for the nonvital ACs of the nearby university

PROACTIVE RULE

event: When the temperature level is high (virtual)

EC Coupling: immediate

condition: Check whether it is weekend

CA Coupling: immediate

PreAction: Send a warning message to the nearby university indicating that
the electricity for the nonvital ACs will be curtailed

COMPENSATING RULE

event: NOT when the temperature level is high (virtual)

EC Coupling: immediate

condition: Check whether the condition of the proactive rule was true
CA Coupling: immediate

Compensation Action : Withdraw the previously sent warning message

Figure 5.3: Sample proactive rule for power management

CHAPTER 5. FUZZY AND PROACTIVE RULES 72

events and virtual events which are defined as follows:

Definition 5.3.1 Real evenls are the events that are actually signaled by the

state changes or sensors of a system.

Definition 5.3.2 Virtual events are the events signaled via predictive or similar-
ity based event detection. Primitive virtual events are the duals of the real events.
Negation of a virtual event is also a virtual event which is signaled to indicate the

missing occurrence of a real event.

Virtual events are associated with a time frame called event detection frame.

Definition 5.3.3 FEvent detection frame of a virtual event is the lime interval

during which the actual occurrence of the corresponding real event is monitored.

Size of an event detection frame could be fixed for all virtual events or could be
different for different event classes. Transaction boundaries is a good determiner
of event detection frames. Event detection frame for a virtual event could be set
from the virtual event signaling time to the transaction commit or abort point.
At the end of the transaction, compensating actions could be performed prior to
the commit or abort operation. If the virtual event is not actually signaled in the
event detection frame, a negation event of this virtual event is signaled, so that

the effects of the false signaling could be undone or compensated.

5.3.3 Condition Evaluation and Action Execution

We can immediately evaluate the conditions of the rules fired by predictive or
similarity-based event detection, and evaluate their actions; however, in some
cases it may be more meaningful to evaluate the condition and defer the action
until the occurrence of the actual event. This is especially very meaningful when

the action has observable effects and cannot be rolled back.

CHAPTER 5. FUZZY AND PROACTIVE RULES 73

event detection frame

t1l t2 t3

el e2 [0300mp]
[cl][al] [a2] [88 compl
[c2][a2 pre 1

[c3][a3pre]

Figure 5.4: Sample proactive rule execution

One problem with deferred action execution is that conditions may no longer
be true when the actual event is signaled. To alleviate this problem we may define
deadlines for condition validity and execute the actions with valid conditions only,
otherwise check the condition again. However, if the deadline of the action is very
close, then we may rely on the current condition evaluation. For the sample rule
given in Figure 5.3, it is obvious that the condition will not be false since the
days of the week are fixed. Therefore, we can use the result of the condition for

the actual run of the action.

A more reliable way for rule execution with predictive event detection is to
use different actions in case of real event and virtual event detection. When the
virtual event is detected, the corresponding proactive rule is fired instead of the
actual rule. Action (which is called preaction) of the proactive rule is executed if
the condition evaluates to true. Upon the detection of the real event, the action
is executed. When the event never occurs inside a time frame, the event detection
module signals a negation of the corresponding virtual event which fires the com-
pensating rule. Compensating action is executed if the action of the proactive

rule for that event is executed. Referring to Figure 5.4 for the rules:

Rl = ((617 cl? al)? (el'virt7 cl? alpre)? (ﬁelvirt7 clcomp? alcomp))
R2 = ((627 627 CLQ), (62virt7 627 a2pre)7 (_|62virt7 clcomp? a2comp))

RS = ((637 c37 aB)’ (egvinﬂ 637 a3pre)7 (_|63virt7 clcomp? a3comp))

assume that event e; occurs at time ¢; and we have a rule saying that occurrence

CHAPTER 5. FUZZY AND PROACTIVE RULES 74

Regular Rule | Proactive or Compensating rule
immediate immediate, detached, or deferred
detached detached or deferred

deferred deferred

Table 5.1: Coupling mode options

of event e; is followed by the occurrence of events e; and es. Predictive event
detection mechanism tells us that events e; and e3 will occur with a high proba-
Conditions of the rules

bility and therefore signals virtual events ey . , and ej

virt virt®

whose events are e; . and ez .. are checked and their preactions are executed if

virt virt

the corresponding conditions are true. Assuming that the event detection frame
spans from #; to t3, and event ey actually occurs at time {3 which is still in the
event detection frame, we first check for the validity time of condition ¢,. If ¢, is
still valid, then we execute the action. If the condition check is no longer valid,
we need to check it again. Action ay is executed if the condition evaluates to true.
If event e3 does not occur during the event detection frame of e, ,, then condi-
tion ¢s,,,, is evaluated which checks whether the preaction for the corresponding
proactive rule, i.e., a3, ., is executed. Compensating action as_,, is executed in

our example since as,, has already been executed.

5.3.4 Coupling Modes and Priority Assignment in Proac-

tive Rule Execution

Coupling modes are an important functionality provided by active database sys-
tems and should be considered for proactive rule execution. The coupling modes’
of the proactive and compensating rules should be less restrictive compared to
the corresponding rule. Coupling modes in the order of increasing strictness are:
immediate > detached > deferred. According to this order, semantically a
regular rule should not have a less restrictive coupling mode than that of its cor-

responding proactive and compensating rule. Also, a proactive rule should not

!By coupling mode we mean both EC and CA coupling modes.

CHAPTER 5. FUZZY AND PROACTIVE RULES 75

have a less restrictive coupling mode than that of its corresponding compensating
rule. The coupling modes that could be assumed by the proactive and compen-
sating rules for the given coupling mode of a regular rule are shown in Table 5.1.
Let’s first analyze the case of immediate and deferred coupling modes. If the
coupling mode of a rule is deferred, then coupling mode of the corresponding
proactive or compensating rule should also be deferred. This makes sense since
immediate and deferred coupling modes prioritize the rule execution in a sense
and it is not meaningful to give a higher priority to the proactive or compensating
rule than the priority of the actual rule. Also, it does not make sense to assign
deferred coupling mode to the proactive rule and immediate coupling mode to

the compensating rule, since logically compensation will follow preaction.

In the case of detached coupling mode, we should make sure that the commit
order of the rules should be consistent. This could be achieved by a proper

priority assignment mechanism.

The priorities of the proactive and compensating rules should also be lower
than the priority of the corresponding rule since they refer to the future states
of the system. Priority assignment can be done according to the strength of the

estimate.

5.4 Summary

In this chapter, we have proposed some methods for automated construction
of fuzzy event sets which are sets of events where each event has a degree of
membership to a set. Fuzzy event sets are constructed by using the sequential
proximity matrix. Construction of fuzzy event sets is approximated to the well
known graph partitioning problem, and fuzzy event sets are constructed using
graph partitioning algorithms. The sequential proximity matrix is utilized for
similarity based event detection in active database systems. We have also intro-

duced in this chapter, the notion of proactive event handling which is based on

CHAPTER 5. FUZZY AND PROACTIVE RULES 76

predictive event detection. Introduction of predictive event detection and proac-
tive rule execution has necessitated the revision of standard event detection and
rule execution processes in active database systems. We have provided a frame-
work for predictive event detection and introduced a rule structure to support

proactive rule execution in a seamless manner.

Chapter 6

Broadcast Data Management

In a data broadcast environment, client request events to data items are stored in
a broadcast history which is a single history consisting of the events from the same
domain. In Chapter 3, we have discussed how a broadcast history can be mined
to obtain client request event patterns. The client request event patterns mimic
the data items requested in sequence by clients. In Chapter 5, we have described
how the similarities among the events extracted from a single event history can
be used to group events by using graph partitioning techniques. In this chapter,
we use the same idea of grouping events. However, in case of data broadcast, we
obtain sequential patterns of client request events which can be of length larger
than 2. This model of representing the relationships among events differs from
representing the similarities which is a binary relationship. For that reason, we use
hypergraph partitioning techniques, rather than graph partitioning techniques,
to divide the set of broadcast data items into subsets of related data items.
Predictive event detection and proactive rule execution techniques described in
Chapter 5 are applied to the broadcast environment with the aim of improving the
system performance in terms of data access delay. Predictive event detection is
achieved via the event patterns obtained from an event history using data mining
techniques. Predictive event detection in the context of broadcast environments
is used to predict future client data request events. Provided that the future data

request event can be predicted, the data items that are predicted to be requested

77

CHAPTER 6. BROADCAST DATA MANAGEMENT 78

session no | requests
1 eb
2 da
3 ebec
4 daf

Table 6.1: Sample database of user requests

rule | confidence | support
e— b | 100% 50%
d—a | 100% 50%

Table 6.2: Sample rules

in the near future are loaded to the client cache proactively using proactive rule
execution methods. Proactive loading of the data items into client cache is called
prefetching. The motivation for broadcast organization, and proactive loading of
data items to client cache is provided in Section 6.1. We discuss the conversion of
sequential patterns to proactive rules in Section 6.2. Broadcast data organization
using sequential patterns of events is described in Section 6.3. We explain the
details of future data request prediction techniques, and prefetching of data items
into client cache in Section 6.4. In Section 6.5, we show through performance
experiments that the prefetching techniques actually provide better performance

than the state of the art prefetching techniques .

6.1 Motivation

Suppose that we have a set of data items {a,b,c,d, e, f}. A sample broadcast
history over these items consisting of four sessions is shown in Table 6.1. The
sequences extracted from this history with minimum support 50% are (e, b) and
(d,a). The rules obtained out of these sequences with 100% minimum confidence
are € — b and d — a, as shown in Table 6.2. Two broadcast data organizations

are depicted in Figure 6.1. Figure 6.1(a) shows a broadcast schedule without

CHAPTER 6. BROADCAST DATA MANAGEMENT 79

‘ebdacfebde ‘ ‘ebdacfebde
| }
a=<*—»>b d =—a

e AN v AN

Ne vy Ny e/

(a) (b)
Figure 6.1: Effect of broadcast data organization

any intelligent preprocessing, and Figure 6.1(b) shows a schedule where related
items are grouped together and sorted with respect to the order of reference.
Assume that the disk is spinning counter-clockwise and consider the following
client request pattern, e,b,d,a,c, f,e,b,d, e, also shown in Figure 6.1. For this
pattern, if we have the broadcast schedule (a, b, ¢, d, e, f) which does not take into
account the rules, the total waiting time for the client will be 44-34+2+3+243+5+
34243 = 30, and the average latency will be 30/10 = 3.0 broadcast units, which
is an expected value, i.e., half of the disk size. However if we partition the items
to be broadcast into two groups with respect to the sequential patterns obtained
after mining, then we will have {a, ¢, d} and {b, e, f}. Note that, data items that
appear in the same sequential pattern are placed in the same group. When we sort
the data items in the same group with respect to the rules d — a and e — b, we
will have the sequences (d,a,c) and (e, b, f). If we organize the data items to be
broadcast with respect to these sorted groups of items, we will have the broadcast
schedule presented in Figure 6.1(b). In this case, the total waiting time for the
client for the same request pattern willbe 3+14+2+14+143+4+14+241 =19,
and the average latency will be 19/10 = 1.9, which is much lower than 3.0.

Another example that demonstrates the benefits of rule based prefetching is
shown in Figure 6.2. The first two requests of the previous client request pattern
are chosen as a snapshot. The first request is for data item e. While the client
scans the broadcast disk, it checks whether the currently broadcast item is going

to be requested in the future. This prediction is done by using the rules obtained

CHAPTER 6. BROADCAST DATA MANAGEMENT 80

ccocfhe re:t:)esis ‘ cache requests cache requests
lr] [es. | o[e] [en.]
i i
a=<—b

PN VAN VARRAN
N N e/ N/

c —*b

@ (o) ©
Figure 6.2: Effect of prefetching

from the history of previous requests. The current request is e, and there is a rule
stating that if data item e is requested, then data item b will also be requested
in the near future. Therefore, the prefetching decides to replace an item from
the cache with the currently broadcast data item b. This way the client sweeps
the broadcast disk when searching for an item, prefetching the items on the way,

that may be accessed in the future.

These simple examples show that with some intelligent grouping and reorga-
nization of data items, and with predictive prefetching, average latency for clients
can be considerably improved. In the following sections, we describe how we can
extract the sequential patterns out of the client requests. We also explain how
we group data items with respect to the sequential patterns and how we can sort
the data items in the same group taking into account the ordering imposed by se-
quential patterns. We also discuss rule based prefetching and cache replacement

strategies.

6.2 Implementation of Sequential Rules as Ac-

tive Rules

The sequential rules obtained as a result of mining the broadcast history can be

implemented as active rules. Active rules are used to declaratively express system

CHAPTER 6. BROADCAST DATA MANAGEMENT 81

responses and they are usually called Event-Condition-Action (ECA) rules as
explained in Section 2.4.1. We can implement sequential rules as event-action
(EA) rules by dropping the condition (C) part. EA rules have an event and an
action. The conditions of EA rules are assumed to be true by default. A sequential
rule of the form 5; = S5 can be defined as an EA rule with event S; and action S;.
This way we can exploit features of active systems in broadcast environments.
Assuming that we have a set of n data items D = {d;,d,,...,d,}, our set of
primitive events F has n elements as well where each event corresponds to the
arrival of a client request. The primitive event set is defined as £ = {eq, €q, ..., €,}
where e; denotes the arrival of a request for d;. The composite events which are
constructed by using primitive events can be described by using the sequential
rules. For a sequential rule S; = Ss, the head of the rule (i.e., Si) can be
specified as a composite event to be detected. Actions of the rules just affect
the new broadcast schedule by inserting the items that are specified at the tail
of the rule (i.e., S3) to the current schedule. For example, for a rule S; = 53
where S1 =< ds3,dy,ds > and Sy =< dg, dg, d7 >, if the primitive events for the
arrival of requests for data items ds,dy, and ds are es, ey, and es, respectively,
then the composite event for the rule is e. = e3 — €3 — e5 specifying the order of
event occurrence. The action of the rule can be specified as “append data items,
dg, dg, d7 into the new_broadcast_schedule” where new_broadcast_schedule is the

schedule constructed with the help of the sequential rules.

When we implement the sequential rules as EA rules, the system automatically
detects the rules whose events are signaled by the arrival of requests, and then
updates the broadcast schedule accordingly. However, the issue of cascaded rule
triggering should be carefully examined since cascaded rule firing may cause cycles
of triggered rules. Termination of a set of ECA rules was studied in [AWH92].
The cascaded rule firing and the termination problem are beyond the scope of

our work.

CHAPTER 6. BROADCAST DATA MANAGEMENT 82

6.3 Broadcast Organization Using Sequential

Patterns

Our main model for organizing the data items in a broadcast disk is sequential
patterns. Sequential patterns are used to cluster the items that are accessed
together frequently, and also to impose an ordering on the data items inside a

cluster.

6.3.1 Broadcast Organization By Clustering Data Items

Clustering in the context of data mining deals with grouping similar data items to-
gether such that the similarity among different clusters is minimized [HKKM97].
An evaluation of different clustering methods for grouping objects was studied
by Bouguettaya in [Bou96]. In the context of broadcast environments, clustering
can be used to group the data items that are similar to each other. Similarity
of data items is defined by the client access patterns. Items that are frequently
accessed together are considered to be similar. We cluster data items based on
the sequential patterns obtained after mining. In other words, we infer items
that are going to be accessed in the near future based on the rules obtained from
sequential patterns. Clustering based on sequential patterns is therefore a nat-
ural method to use. Han et al. described a clustering method in the context of
transactional data based on association rule hypergraph in [HKKM97]. A hyper-
graph is an extension of the standard graph model where a hyperedge connects
two or more vertices, whereas in standard graphs, an edge connects exactly two
vertices. The hypergraph model perfectly fits to model sequential patterns in
that the items in sequential patterns correspond to the vertices and the sequen-
tial patterns themselves correspond to the hyperedges connecting those vertices.
The notion of similarity in [HKKMO97] is defined by the associations among data
items. They use a hypergraph model to cluster both the transactions and the
data items. However, their methods are generic and not intended for a specific
application like ours. Similar to the clustering method of Han et al., our method

for clustering employs a hypergraph as the data model. However, due to the

CHAPTER 6. BROADCAST DATA MANAGEMENT 83

| Sequence | Support(%) | Rules | Confidence(%) | Weight |

<a,b,e> 2.0 <a>=<bc> 60 220
<a,b>=<c> 80

< b,c,a> 1.0 =<ca> 50 160
<bja>=<a> 60

<bc,d> 2.5 =<ed> 70 260
<bec>=<d> 90

<ce > 2.0 <ec>=><e, f> 60 210
<ce>=>< f> 70

<e f,h> 1.5 <e>=< f,h> 80 230
<e f>=><h> 90

< f,g,h > 1.0 < f>=<g,h> 60 170
< f,g>=><h> 70

Table 6.3: Sample sequential patterns

nature of broadcast disk environment where the sequence of data items is impor-
tant, we use sequential patterns to describe similarities among data items rather
than associations. We believe that, in the case of broadcast, sequential patterns
give more information than pure associations. The strength of similarity is de-
termined by the support of the sequential pattern and confidence of the rules

obtained by the sequential pattern.

The problem we deal with is to partition the set of data items at hand into
k subsets such that the resulting subsets are balanced, the total similarities of
data items in each subset are maximized, and the total similarities among the
data items belonging to different subsets are minimized. This problem is similar

to the graph partitioning problem which was explained in Section 5.1.1.

A hypergraph H = (V, E) is defined as a set of vertices V and a set of
hyperedges F (also called nets). Every hyperedge h; is a subset of vertices.
P ={Vi,Vo,...,Vk} is a K-way partition of H = (V, F) if and only if the fol-

lowing three conditions are satisfied:

eViCcVandV,#0for1 <k<K

CHAPTER 6. BROADCAST DATA MANAGEMENT 84

Figure 6.3: The Hypergraph structure for sequential rules

e UL Vi=V

e ViNnVi=0for1<k<I<K

The partitioning is sometimes referred to as bisection in the case of two-way
partitioning. For K > 2, the partitioning is called multi-way or multiple-way

partitioning by some researchers.

In our model, vertex set of the hypergraph consists of the data items to be
broadcast and hyperedges correspond to sequential patterns. Determination of
edge weights is a crucial point in clustering. We define edge weights based on
both the support of the corresponding sequential pattern and the confidence of
the rules obtained from that sequential pattern. The confidence of the rules is
comparable to numeric value 100, however the supports are usually close to 1.
To ensure a balance between the confidence and support in weight calculation,
we scale the support values to the range 0..100 by dividing the support to the
maximum support value of the sequences and then multiplying the result by 100.
Sample sequences and the rules obtained out of those sequences are provided in
Table 6.3 together with the weights. For the sequential pattern < b,¢,d > in the
table, the possible sequential rules are < b >=< ¢,d > and < b,¢ >=< d >

CHAPTER 6. BROADCAST DATA MANAGEMENT 85

110
150

a—=phb——>c—>—d

130 140
130
150 140

e——f——nh

130
150

g

Figure 6.4: Weighted graph of binary sequential rules

with confidence 70, and 90, respectively. Support of < b,¢,d > is 2.5%. Since the
maximum support among the sequences is also 2.5%, contribution of the support
of < b,¢,d > in the weight calculation of the hyperedge is % x 100 = 100. The
weight is calculated as, 100470490 = 260. Each hyperedge corresponds to one or
more sequential patterns. The weight of a hyperedge is the sum of the support of
the corresponding sequential patterns and the confidence of the rules obtained by
that sequential patterns. The weight for this hyperedge is calculated by summing
the weights of the corresponding sequential patterns, and it is 220 4+ 160 = 380.
The hypergraph corresponding to the sequential patterns given in Table 6.3 is
provided in Figure 6.3. Hyperedge e; which connects three items, a,b, and ¢

corresponds to two sequential patterns, i.e., < a,b,¢c >, and < b,c,a >.

6.3.2 Weighted Topological Sorting of Items Inside a
Cluster

As we have discussed above, clustering of data items based on sequential pat-
terns produces sets of data items that are accessed together frequently. Besides
the clustering, the ordering of the data items inside a cluster is also important.
Therefore, we would like to order the data items inside a cluster such that they

conform to the order imposed by sequential patterns.

In order to perform the ordering inside a cluster we consider the set of sequen-

tial patterns of size two which form a directed graph structure. This graph may

CHAPTER 6. BROADCAST DATA MANAGEMENT 86

contain cycles, and needs not to be connected. For a given set S of sequential
patterns over a set [of items, I constitutes the vertices of the graph. There is

an edge ¢ — j if and only if there is a sequence (¢,7) € S.

The vertices of an acyclic directed graph G can be sorted by labeling the
vertices with the integers from the set {1,2,3,...,n}, where n is the number of
vertices in . If there is an edge from vertex ¢ to vertex 7 in G, then the label
assigned to ¢ is smaller than that of j. Ordering the vertices in this manner is

called the topological sorting of G' [TS92].

The graph of sequential patterns may contain cycles, and in order to topolog-
ically sort the graph, we need to eliminate these cycles. Cycle elimination should
be done in such a way that the edges removed have minimum impact on the
overall ordering of the items. Therefore, we break a cycle by removing the edge
with the minimum weight in the cycle. As described before, weights of the edges
are determined by the support of the sequential pattern, and the confidence of

the rule obtained from that pattern.

The graph structure for the sequential patterns given in Table 6.3 is provided
in Figure 6.4. The cycle @ — b — ¢ — a is broken by removing the minimum
weight edge which is (¢,a). The algorithm used for weighted topological sort
is presented in Figure 6.5. Input of the algorithm is a weighted directed graph
G = (V,E), where V is the set of vertices and E is the set of edges. Output
of the algorithm is the topologically sorted list S of vertices in V. After the
removal of the cycle, vertex a which has zero indegree, is appended to the list of
topologically sorted vertices. Vertex a is removed from the graph together with
the edge (a,b). Similarly, vertex b is chosen next for removal and then vertex
c. After the removal of vertex ¢, we have two vertices which are candidates for
removal: d and e. We choose vertex d since the weight of edge (¢, d) is higher
than the weight of edge (¢, e). The result of the topological sort of the graph is
<a,bc,dye, g, h>.

CHAPTER 6. BROADCAST DATA MANAGEMENT

Begin
Break the cycles in (G using minimum weight heuristic
S0 /] S keeps the sorted list of vertices
Vi € V, werght(vi) = 32, cvi (v, 0)eEniz; weight(vj, v;)
ViV /] V' keeps track of the set of vertices to be removed.
E — F /] E' keeps track of the set of edges to be removed.
while V' # () do
begin
7 — ZU{vilv; € V' Nindegree(v;) = 0}
select v; € Z such that weight(v;) is maximum
append v; to S
Y(vi,v;) € E remove (v;,v;) from K’
remove (v;) from V'
remove (v;) from 7
end
Append rest of the vertices in Z to S in decreasing order of weight

End

Figure 6.5: Weighted Topological Sorting Algorithm

87

CHAPTER 6. BROADCAST DATA MANAGEMENT 88

cel

MH: Mobile Host
MSS : Mobile Support Station

Figure 6.6: A typical architecture for a mobile computing system

6.4 Utilization of Sequential Rules in Prefetch-

ing and Cache Replacement

A typical architecture for mobile computing systems inspired from [IB94] is de-
picted in Figure 6.6. In this architecture, there is a fixed network of Mobile Sup-
port Stations (MSSs). Mobile Hosts (MHs) are the computers which are portable
and capable of wireless communication. Each MH is associated with an MSS,
and MHs are connected to MSSs via wireless links. An MSS is generally fixed

and it provides MHs with a wireless interface inside a prespecified area called a

cell.

We assume that there is a fixed set of data items that is periodically broadcast
to mobile clients. Mobile clients issue requests for data items when the required
items are not in the current broadcast set. The data server responds to client
requests by placing the requested items on the broadcast disk. The server should
carefully decide what portion of the broadcast disk will be dedicated to requests
and what portion will be used for the fixed set of broadcast items. The portion
dedicated to client requests is called pull bandwidth, and the portion dedicated
to the frequently requested items is called the push bandwidth [AFZ97]. We are
particularly interested in the organization of the push bandwidth and prefetching
of the data items from the broadcast disk.

CHAPTER 6. BROADCAST DATA MANAGEMENT 89

Begin
inferred_items = ()
for every sequential rule Sy = S; do
if there is a match for S7 in the current n requests then
inferred_ttems = in ferred_items U Sy
endif
endfor

End

Figure 6.7: Construction of the set inferred_items

The following subsections discuss the automated use of sequential rules for

prefetching and cache replacement in broadcast environments.

6.4.1 Rule-based Prefetching and Cache Replacement

Strategies

Both prefetching and cache replacement strategies exploit the sequential rules
obtained by mining the broadcast history. The set of data items inferred by the
sequential rules (that we denote by inferred_items) is used as a base for rule
based prefetching and caching strategies. The set in ferred_items is constructed
by using the algorithm given in Figure 6.7. The prefetching algorithm looks at
the current n requests to predict what will be requested next. The predicted
items are stored in the set of inferred_items. In case the number of rules is
large, we limit the number of inferred items by sorting them in decreasing order
of priority and selecting the items with relatively high priority. The priority of
each inferred item is determined by the confidence of the rule that has inferred

it.

In order to perform rule-based prefetching and cache replacement, the mobile
clients should be aware of the sequential rules in the current cell. This can be

provided by ensuring that the rules also appear in the broadcast set; i.e., they are

CHAPTER 6. BROADCAST DATA MANAGEMENT 90

broadcast periodically. Broadcasting of rules together with the data items induces
an overhead on the broadcast disk since the size of broadcast disk increases with
the addition of sequential rules. However, the number of the rules in the system is
usually much smaller than the number of broadcast items, therefore the induced
overhead turns out to be negligible. When a mobile client enters a cell, it fetches
the current rule set in its new cell at the time sequential rules are broadcast.
This also induces an overhead on mobile clients which may not be significant if
the client does not move from one cell to another frequently. However, in case
the cell sizes are small and the mobile client changes its cell frequently, loading
and setting up the current rule set may take a considerable amount of time. This
problem can be overcome by examining the profiles and mobility patterns of the
users. The client on a mobile computer decides to load the current rule set if the
user of the computer who enters a new cell will stay in this cell for a sufficiently
long period of time. This information can be explicitly obtained from the user.
A better approach could be to use user profiles if they are available. User profiles

can contain information like [IB92]:

e Probabilities of relocation between any two locations within a location

server base (MSS).
e Average number of calls per unit time.

e Average number of moves per unit time.

The problem of prefetching broadcast items is discussed in [AFZ96]. Prefetch-
ing 1s useful when the data items to be used subsequently are already on the air,
ready to be retrieved. We suggest that sequential rules generated from broadcast

histories can also be used in prefetching broadcast items.

The rule set loaded by the clients is utilized for prefetching data items in the
broadcast set. Clients and the server symmetrically and synchronously utilize
the sequential rules. The server uses the rules to organize the broadcast requests
and clients use the rules to do prefetching. Clients consider current n requests
they have issued and do prefetching using the rules broadcast by the server.

Prefetching, used with a rule-based cache replacement strategy can decrease the

CHAPTER 6. BROADCAST DATA MANAGEMENT 91

Begin
if bcast atem is not in cache then
if beastitem is in in ferred_items — cached_items then
pvalue = rule_con f(becast item)
if minimum pvalue of cached_items > pvalue then
perform prefetching

endif
End

Figure 6.8: Prefetching algorithm

waiting times of the mobile clients for the arrival of required broadcast items
when those items are available on the broadcast channel. This is very intuitive
since fetching a data item beforehand when it is available means that the client
does not have to wait for the data to appear on the broadcast when it is actually

required.

We have compared our approach with the prefetching method called PT that
takes the broadcast environment into account. This method was proposed by
Acharya et al. in [AFZ96]. PT considers both the access probabilities of a data
page and the time that the page will be broadcast again for prefetching. Fach page
is associated with a value, called the pt value, which is used for prefetching and
cache replacement decisions. PT computes the pt value of a page by multiplying
the probability of access (P) of the page with the time (7') that will elapse for
the page to reappear on the broadcast. Broadcast page is replaced with the page
in the cache which has the minimum pt¢ value if the minimum pt value is less than

the pt value of the broadcast page.

The algorithm we use for prefetching is presented in Figure 6.8. Similar to the
PT method, a value is associated with each data item to be used for prefetching,
which is called the pvalue of the item. Prefetching of a data item is performed for
data items that are not cache resident. Prefetching is performed if the pvalue of

the item on broadcast is greater than the minimum pvalue of the cache resident

CHAPTER 6. BROADCAST DATA MANAGEMENT 92

Begin
if cached_items — in ferred_items = () then
for each data item in in ferred_items N cached 2tem do
replace the data item supported by a rule with the least confidence
else
replace a data item in cached_items — in ferred_items using their pvalues
endif
End

Figure 6.9: Cache Replacement algorithm

data items. The pvalue of a data item corresponds to the confidence of the rule
that inferred that item (denoted by rule_con f(bcast_item)) if the item is in the

list of inferred_items.

Cache replacement is also an important issue for mobile clients considering
the limitations on wireless bandwidth and cache capacity of mobile computers.
Clients can use the sequential rules broadcast by the servers (or MSSs) in deter-
mining which items should be replaced in their cache. Clients consider a window
of current n requests in order to determine the next items that might be needed
by the user and do the cache replacement according to their rule-based predic-
tions. The rule-based cache replacement algorithm we propose is provided in
Figure 6.9. The algorithm first determines the data items that will probably be
requested in the near future by using both the sequential rules and the last n
requests issued by the client, as shown in Figure 6.7. These data items are accu-
mulated in the set in ferred_items. Any cache replacement strategy can be used
on the set cached_items — inferred_tems, i.e., the difference between the set
of data items currently residing in the cache and the data items inferred by the
sequential rules. Another possible approach is to use the set of inferred items for
determining the replacement probabilities of cached items, instead of completely
isolating them from the set of items to be considered for cache replacement. Both
of the approaches can be classified as hybrid since they are taking the advantages

of both conventional and rule-based cache replacement strategies.

CHAPTER 6. BROADCAST DATA MANAGEMENT 93

There might be a special case where the size of the set of items inferred by the
rules as candidates to be requested in the near future may exceed the cache size.
There are two possible approaches that might be adopted for cache replacement

to handle such a case:

e Consider the inferred items for replacement in the order of timestamps of

requests.

e Consider the inferred items for replacement in the order of confidences of

the rules that have inferred them.

With the first approach, the temporal order of the requests is considered,
and the items inferred as a result of requests which have been issued earlier are
preferred to be kept in the cache. The second approach prioritizes the rules
according to their confidences; i.e., among any two data items, the one inferred
by the rule with a higher confidence has higher priority than the other item. The

item with the lowest priority is replaced first.

6.5 Simulation and Experimental Results

We implemented the data mining algorithms, and the rule based scheduling and
prefetching mechanisms to show the effectiveness of the proposed methods. A
Web log was used for simulating the broadcast history. We think that requests
for Web pages are actually a good approximation to the list of past requests by
mobile clients. The simulation model we used and the experimental results are

provided in Section 6.5.2 and Section 6.5.3, respectively.

6.5.1 The Training and Test Data

We used the anonymous Web data from www.microsoft.com created by J. S.

Breese, D. Heckerman, and C. M. Kadie from Microsoft. Data was created by

CHAPTER 6. BROADCAST DATA MANAGEMENT 94

| se [|boadastdik |

rule base ‘<—‘ client ‘
cache

Figure 6.10: Object Relationship Diagram of the Simulation Program

sampling and processing the www.microsoft.com logs and donated to the Ma-
chine Learning Data Repository stored at University of California at Irvine Web
site [mic]. The Web log data keeps track of the use of Microsoft Web site by 38000
anonymous, randomly-selected users. For each user, the data records list all the
areas of the Web sites that the user visited in a one week timeframe. The number
of instances is 32711 for training and 5000 for testing. Each instance represents
an anonymous, randomly selected user of the Web site. The number of attributes

is 294 where each attribute is an area of the www.microsoft.com Web site.

We selected 50 most frequent data items for broadcasting. This is a reasonable
method since in broadcast environments only the frequently accessed items are
broadcast while the others are requested through the back channel. However,
since the set of 50 data items is too small for a broadcast disk, we replicated
these 50 data items together with the requests and the rules corresponding to

these items, and constructed a disk of 200 data items.

6.5.2 Simulation Model

The whole system consists of three independent parts:

e Rule extraction module,
e Broadcast organization module, and

e Broadcast simulation module.

CHAPTER 6. BROADCAST DATA MANAGEMENT 95

The rule extraction module performs the task of extracting sequential rules
from the Web log. Rule sets with different minimum confidence and support
requirements can be constructed by the rule extraction module. The resulting
sequential rules are written to a file in a specific format to be read later by the
broadcast organization and broadcast simulation modules. The broadcast orga-
nization module performs clustering of data items using hypergraph partitioning
based on sequential patterns. We used the PATOH hypergraph partitioning tool
for our experiments [CA99]. The broadcast organization module also performs
weighted topological sort of data items inside clusters. Details of the clustering
and topological sorting of data items are provided in Section 6.3. Main objects
of the broadcast simulation module and their relationship are depicted in Fig-
ure 6.10. The objects are server, client, cache, broadcast disk, and rule base.
Both the server and client objects have a common rule base and a broadcast disk.
The client object interacts with the server object by sending broadcast requests
to 1it. The server and client objects interact with the broadcast disk by placing
new items to the broadcast disk and fetching data items from the broadcast disk,
respectively. The rule base object is constructed by reading the rule file gener-
ated by the data mining module and is shared by the client and server objects.
The rule base object is contacted by the client and server objects for prefetching
and broadcast scheduling, respectively. The client has a cache object to store a

limited amount of requested items.

The architecture of our system is depicted in Figure 6.11. In this architecture,
we use the the microsoft Web logs to simulate the broadcast history. The sequence
of Web logs that are organized into sessions is fed into the data mining program
to be used for extracting sequential rules. The resulting rule set is fed into the
rule base which is then used for broadcast organization, cache replacement, and
prefetching. The Web log provided for testing is used for simulating the requests

of a client.

As we present in Figure 6.11, our broadcast environment has a server that
sends data items in the broadcast disk, and a client that reads data items on the
broadcast disk and sends data item requests whenever necessary. Broadcast disk

is organized by the server using the sequential patterns. Clients use the sequential

CHAPTER 6. BROADCAST DATA MANAGEMENT 96

Back Channel

Server y

Broadcast Disk

A

A4

Inference
Engine | |

Rule Base Client

[Data Mining Programj

Rule Extraction Region Client Requests

Web AccessLog

Figure 6.11: System Architecture

rules for prefetching from the broadcast disk.

We assume a simple broadcast structure, as this would be sufficient for con-
structing an execution environment that would enable us to measure the effec-

tiveness of extracted rules over client requests.

6.5.3 Experimental Results

We implemented the rule mining algorithms on our Web log. We extracted rules
with different support values and evaluated their effect on the performance. Our
main performance metric is the average latency. We also measured the client
cache hit ratio. A decrease in the average latency is an indication of how useful
the proposed methods are. The average latency can decrease as a result of both
increased cache hit ratio via prefetching methods, and better data organization
in the broadcast disk. An increase in the cache hit ratio will also decrease the
number of requests sent to the server on the backlink channel, and thus, lead to

both saving of the scarce energy sources of the mobile computers and reduction

CHAPTER 6. BROADCAST DATA MANAGEMENT 97

Broadcast Size Maximum size of the broadcast disk

Cache Size Maximum size of the client cache

Minimum Support Minimum support value of the extracted rules
Minimum Confidence | Minimum confidence value of the extracted rules

Mazx Inferred Maximum number of items that can be inferred by rules
Queue Size Size of the queue that stores the inferred items

Table 6.4: Main parameters of our system
Broadcast Size = 200, Support = 1% Confidence = 20%

Average Latency

100 -

PR T (TR NS (SR EN T AT R NI NI S
0 14 18 22 26 30 34 38 42 46 50
Cache Size

T
2 6 1
Figure 6.12: Average latency as a function of the cache size

in the server load.

Data mining is performed in main memory. The running time of the data
mining algorithm does not exceed a few minutes. Considering that the mining
process is not done very frequently, the running time is not significant. The
running time of the rule checking algorithm is not significant either since the
number of rules is not so large. We observed in our experiments that the optimum

number of rules for the best cache hit ratio does not exceed a few hundreds.

The basic parameters of our system are presented in Table 6.4. As the broad-
cast size does not have a serious impact on the cache hit ratio, we assumed a

fixed broadcast size of 200 data items in all our experiments.

CHAPTER 6. BROADCAST DATA MANAGEMENT 98

Broadcast Size = 200,
I

Support = 1% Confidence = 20%
60.0

50.0

40.0

30.0

Hit Ratio (%0)

20.0

10.0

0.0\\\\\\\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\
2 6 10 14 18 22 26 30 34 38 42 46 50
Cache Size

Figure 6.13: Cache hit ratio as a function of the cache size

We performed experiments under varying values of the cluster size, and the
best results for the test data were obtained with a cluster size of four. We set the
minimum support threshold to 1% and minimum confidence threshold to 20%
for the first part of the experiments which aims to evaluate the impact of cache
size. We varied the cache size to observe how the average latency is affected.
The cache size is measured in terms of the number of items, assuming that the
items retrieved are html documents, possibly with images. The average latency

is measured in terms of broadcast ticks.

We compared our rule based prefetching method (RB) with the state of the
art prefetching algorithm! (PT) for broadcast disks. We also evaluated the per-
formance of a base algorithm (BASE) which does not do prefetching, and only
performs LRU based cache replacement. PT is a very good heuristic when the
locations of the data items in the disk and their relative access frequencies are
known. However with an extra knowledge which describes the sequence of data
item accesses by clients (i.e., by involving RB) further improvement in the per-

formance is possible, as can be seen in Figure 6.12. The cache hit ratios obtained

with the methods RB, PT, and BASE are provided in Figure 6.13. As can be

1See Section 6.4.1.

CHAPTER 6. BROADCAST DATA MANAGEMENT 99

Cache Size = 20, Confidence = 20%
600 T T I T I T I T I T I T I

560 - __—

60T 6—5PT
540 | .

52.0
500 |]
480 -]
460 -]
440 -]
20 -]

Average Latency

400 I | I | I | I | I | I | I | I | I
01 02 03 04 05 06 07 08 09 1.0
Minimum Support (%)

Figure 6.14: Average latency as a function of the minimum support threshold
(for small support values)

observed from both figures, all three methods react similarly to the changes in
the cache size. As expected, increasing the cache size leads to an increase in
cache hit ratio and a decrease in average latency. For any cache size value tested,
the cache hit ratio values obtained with RB and PT are much higher compared
to that with BASE, which leads to much better performance for RB and PT in
terms of the average latency. Comparing RB and PT, it can be observed that
except for large cache sizes tested, the cache hit ratio and the corresponding aver-
age latency values obtained with RB are consistently better than those with PT.
Large cache size values (i.e., cache size > 30) lead to comparable performance
results for these two algorithms. RB does not provide an improvement in the
performance for large cache size values, because most of the data items inferred
by the rules are already stored in the cache. For small cache sizes, the content
of the cache is more dynamic and RB is more effective in this case. Performance
improvement by RB is achieved via rule based prefetching and cache replacement.
Prefetching and cache replacement works hand in hand with RB as well as PT,
i.e., these two algorithms prioritize the cache items using the rule weights and pt

values, respectively.

CHAPTER 6. BROADCAST DATA MANAGEMENT 100

Cache Size = 20, Confidence = 20%

640]
620" o ops
60.0
58.0 |
56.0 |
54.0 |
52.0 ¢
500 |
480 |
460 |
44,0]
1207]

Average Latency

400 [I | I | I | I | I | I | I | I | I]
10 20 30 40 50 60 70 80 90 100
Minimum Support (%)

Figure 6.15: Average latency as a function of the minimum support threshold
(for large support values)

Cache Size = 20. Support = 1%
1000 T T T T T T

95.0 |
90.0 - ©©RB

L o—oPT
85.0 -

80.0 |
75.0 -
70.0 |
65.0 -
60.0 -

55.0 %\®\
50.0 |- B
450 - B

40.0 I I I I I I I I
5

1
15 25 35 45 55 65 75 85 95
Minimum Confidence (%)

Average Latency

Figure 6.16: Average latency as a function of the minimum confidence threshold

CHAPTER 6. BROADCAST DATA MANAGEMENT 101

Cache Size = 20, Sup = 1%, Conf = 20%
800 [T I T I T I T I T I T I T I T I]
770 | .
- G—ORB]
740 L O—0PT]
710 - 1

880G]
65.0 3
62.0 |]
59.0 .
56.0]
530 |]

50.0"\‘\‘\‘\‘\‘\‘\‘\‘
1 2 3 4 5 6 7 8 9 10

Max Inferred

Average Latency

Figure 6.17: Average latency as a function of the maximum number of items that
can be inferred by rules

Cache Size = 20, Support = 1%, confidence = 20%
600 | I I I I I I I I I I I I I I

B0 5—ors]
560 & OPT 1
540]
5204
500 |]
480
460 |
440 |
£0 |
400 |

Average Latency

1 1 1 1 1 1 1 1 1 1 1 1 1 1
56 7 8 9 101112 13 14 1516 17 18 19 20
Queue Size

Figure 6.18: Average latency as a function of the size of the queue that stores
the inferred items

CHAPTER 6. BROADCAST DATA MANAGEMENT 102

In order to evaluate the impact of the minimum support and confidence thresh-
old on the performance of the rule based prefetching, we also conducted experi-
ments by varying these two parameters. The results obtained in these experiments
are provided in Figures 6.14, 6.15, and 6.16. We conducted two separate exper-
iments in investigating the performance impact of different support values; one
for small support values (in the range 0.1-1.0 in steps of 0.1), and one for large
support values (in the range 1.0-10.0, in steps of 1.0). The performance results
obtained for these two sets of support values are provided in Figures 6.14 and 6.15,
respectively. As the support is increased for small support values, the average
latency decreases since the rules chosen become more effective. The best results
are obtained for the minimum support values of 0.6 through 2.0. When the sup-
port is increased further, the average latency starts to increase since the number
of rules decreases. The performance impact of the confidence was also examined
by varying its value from 5 to 100 in steps of 5. The results are similar to those
obtained with the minimum support experiments, as shown in Figure 6.16. For
small confidence values it is possible to improve the performance by increasing
the confidence threshold. However, after a certain confidence threshold (i.e., 25%
in this experiment), increasing the confidence leads to an increase in the average
latency since less number of rules, and thus less number of inferred items, are

involved for large confidence values.

We also conducted experiments to investigate the performance impact of the
maximum number of items inferred at each step (i.e., maz inferred) and size of
the queue that stores the inferred items (i.e., queue size). The results of these
two experiments are displayed in Figures 6.17 and 6.18, respectively. As the
maximum number of inferred items is increased, the average latency decreases up
to a certain point (i.e., maz inferred = 5 in this experiment). Further increase
in the maximum number of inferred items does not improve the performance,
because the number of items inferred can not be increased any more. A similar
performance pattern is also observed by varying the size of the queue that stores
the inferred items (Figure 6.18). Some of the items stored in the queue may
become obsolete after a while, and they are pushed out of the queue as new items

are inferred. For large queue sizes, increasing the queue size does not lead to

CHAPTER 6. BROADCAST DATA MANAGEMENT 103

better performance, because this would just increase the fraction of obsolete items

stored in the queue, and such items do not have any effect on the performance.

6.6 Summary

In this chapter, we have discussed some data mining techniques to be used for
broadcasting data in mobile computing environments. We have proposed a new
method of organizing the data broadcast in mobile environments using the se-
quential rules obtained by mining the broadcast history. The sequential rules
are used as a base for clustering data items and thus for data organization in
the broadcast disk. We have also shown that sequential rules are beneficial for
prefetching of data items by mobile clients. A cache replacement mechanism for
mobile computers has been proposed which utilizes the sequential rules to deter-
mine the items to be replaced in the cache. The proposed methods have been
evaluated through performance experiments on a Web log. The rules resulted
from mining a Web log have been used to test the effectiveness of the proposed

methods.

Chapter 7

Conclusions and Future Work

In this thesis, we have explored data mining techniques for mining both single and
multiple correlated event histories to obtain event patterns. We have shown how
a single event history can be mined via a sliding window algorithm to extract
similarities among events in terms of the proximity of event occurrence. We
have also proposed methods for mining broadcast histories that store client data

request events to obtain sequential patterns of data requests.

We have introduced a new data mining problem for mining associations among
events spanning different correlated event histories. These types of event patterns
are called cross associations. We have presented two algorithms (concurrent and
merge) for extracting cross associations from two correlated event histories. The
performance of the proposed algorithms has been evaluated on synthetic data sets.
We have conducted experiments on different support and confidence values. It
has been proven through the experiments that processing two correlated histories
separately in a concurrent manner is a better approach compared to merging
and mining the histories. This result is due to the fact that considering the two
histories separately allows the use of confidence and support pruning strategies
on both cross associations and frequent event sets. We have also conducted

experiments on the real life weather and power consumption data in the context

of the CIMEG project [CIM].

104

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 105

We have demonstrated that the event patterns obtained by data mining tech-
niques from both single and correlated event histories have many implications in

active and mobile data management:

e From the active data management perspective, the event patterns are used
to divide the event set into smaller related groups of events which we call
fuzzy event sets. We have proposed methods for automated construction
of fuzzy event sets for unsupervised event organization and rule modular-
ization. Fuzzy event sets are constructed via standard graph partitioning
methods by modeling the similarities among the events as a graph struc-
ture. Event similarities are further used for similarity based event detection
in active databases. With fuzzy events and fuzzy event sets, a priority as-
signment mechanism for sequential rule execution can be utilized based on
membership functions of fuzzy events to fuzzy event sets. Organization of
rules into groups of related rules, which are further mapped to fuzzy event
sets, increases the efficiency and modularity of rule execution. The event
patterns and the groups of events are used for similarity based event de-
tection and fuzzy rule execution in active database systems. As another
extension to active database systems, we have shown that the event pat-
terns can also be used for predictive event detection and proactive rule
execution. Predictive event detection and proactive rule execution in active
database systems is a novel idea that aims to improve the system perfor-
mance especially for real-time applications where detecting critical events
before they actually happen, and executing actions proactively are crucial.
We have provided a framework for predictive event detection and proac-
tive rule execution where the event detection mechanism of existing active

database systems can be seamlessly used to support these new features.

e From the mobile data management perspective, we have shown that in
data broadcast environments, the broadcast data can be organized into
groups of related data items as in the case of the organization of events
into fuzzy event sets. We have shown that client request event patterns

can be extracted from the broadcast history via data mining techniques.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 106

The event patterns which are expressed as sequential patterns of client re-
quest events can be used to group the data items requested close to each
other in time. Our novel method of organizing the data broadcast in mo-
bile environments uses the sequential client access event patterns obtained
by mining the broadcast history. With this approach, we have achieved a
considerable decrease in the delay experienced by the clients while waiting
for the required data items. This result is due to the fact that the data
items that are requested together in a time frame are placed close together
in the broadcast. We have also shown that sequential rules obtained from
the sequential patterns of client request events are beneficial for proactive
loading (i.e., prefetching) of the data items to the cache of mobile clients.
A cache replacement mechanism for mobile computers has been proposed
which utilizes the event patterns to determine the items to be replaced in
the cache. The proposed methods for prediction and prefetching have been
evaluated through performance experiments on a Web log. The rules result-
ing from mining a Web log have been used to test the effectiveness of the
proposed methods. The performance of our methods has been compared
with a state of the art prefetching technique, as well as a base algorithm.
It has been observed through performance experiments that a considerable
increase in the cache hit ratio can be obtained when the rule based broad-
cast organization, cache replacement and prefetching techniques are used
together. The increase in the cache hit ratio leads to lower average latency

especially for small cache sizes which is typical for mobile devices.

In our work on broadcast data management, we have not dealt with the tem-
porality issues. However, temporal information can also be exploited for schedul-
ing broadcast requests. Temporal sequential rules can be obtained by mining
the broadcast history considering the relative times of the broadcast requests as
well. The issue of mining temporal patterns is discussed in [BWJL.98]. Temporal
sequential rules can improve the effectiveness of rule-based scheduling by consid-
ering the time of the requests as well as the sequence of requests. The issue of

utilization of temporal sequential rules in broadcasting is left as a future work.

Our work on active data management can also be extended in several ways. In

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 107

some active database system applications there might be more than two correlated
event histories, and pairwise correlations among these event histories might be
more complex compared to the case of two correlated event histories. Consider
an application that deals with the stock exchange information in different stock
exchange markets. An abrupt change in one of those markets, say NASDAQ
can have a ripple effect on the other stock exchange markets. In this case the
relationship among multiple correlated event histories is a star schema. This can
be a complex relationship and it may not be obvious which events trigger which
other events. As a future work, our algorithms will be extended to a collection
of histories of size larger than two. Sometimes the events in two histories may
be related to each other with a phase difference. For example, the temperature
change may affect the power consumption not in the same hour it happens but
in the next hour. Mining cross associations with a phase difference will also be

considered as a future work.

Bibliography

[AAFZ95]

[AFZ96]

[AFZ97]

[AGI+92]

[AS94]

[AS95]

S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broadcast disks:
Data management for asymmetric communication environments. In
Proceedings of the ACM SIGMOD International Conference on the
Management of Data, San Jose, California, June 1995.

S. Acharya, M. Franklin, and S. Zdonik. Prefetching from a broadcast
disk. In Proceedings of the 12th International Conference on Data
Engineering(ICDE’96), New Orleans, LA, February 1996.

S. Acharya, M. Franklin, and S. Zdonik. Balancing push and pull fro
data broadcast. In Proceedings of the ACM SIGMOD International
Conference on the Management of Data, Tucson, Arizona, May 1997.

R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and A. Swami. An
interval classifier for database mining applications. In Proceedings of
the 18th Int’l Conference on Very Large Databases, pages 560-573,
Vancouver, August 1992.

R. Agrawal and R. Srikant. Fast algorithms for mining association
rules. In Proc. of the 20th Int’l Conference on Very Large Databases,
Santiago, Chile, September 1994.

R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. of
the Int’l Conference on Data Engineering (ICDE), Taipei, Taiwan,
March 1995.

108

BIBLIOGRAPHY 109

[AWH92]

[BCP96]

[BJ92]

[BKPWOT]

[BMUTY7]

[Bou96]

[BP82]

[BP83]

[BW96]

A. Aiken, J. Widom, and J. M. Hellerstein. Behavior of database
production rules: Termination, confluence, and observable determin-
ism. In Proceedings of ACM-SIGMOD Conference on Management
of Data, pages 59-68, 1992.

E. Baralis, S. Ceri, and S. Paraboschi. Modularization techniques for
active rules design. ACM Transactions on Database Systems, 21(1),
1996.

T.N. Bui and C. Jones. Finding good approximate vertex and edge
partitions is np-hard. Information Processing Lelters, 42(3), 1992.

T. Bouaziz, J. Karvonen, A. Pesonen, and A. Wolski. Design and im-
plementation of tempo fuzzy triggers. In Lecture Notes in Computer
Science, volume 1308, pages 91-100, Toulouse, Fran, September 1997.
Springer.

S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset
counting and implication rules for market basket data. In Proceedings
of the ACM SIGMOD International Conference on Management of
Data, 1997.

A. Bouguettaya. On-line clustering. [EEFE Transactions on Knowl-
edge and Data Engineering, 8(2), 1996.

B. Buckles and F. Petry. A fuzzy model for relational databases.
International Journal of Fuzzy Sets and Systems, 7:213-226, 1982.

B. P. Buckles and F. E. Petry. Information-theoretic characterization
of fuzzy relational databases. [FEFE Trans. on Systems, Man and
Cybernetics, 13(1):74-77, February 1983.

T. Bouaziz and A. Wolski. Incorporating Fuzzy Inference into
Database Triggers. Technical report, VI'T Information Technology,
November 1996.

BIBLIOGRAPHY 110

[BW97]

[BWJL9g]

[CA99]

[CHNW96]

[CTM]

[CNFF96]

[Day88]

[GSPBYG]

[HF99]

T. Bouaziz and A. Wolski. Applying fuzzy events to approximate
reasoning in active databases. In Proceedings of the 6th IFEE Inter-
national Conference on Fuzzy Systems(FUZZ-IEEE’97), Barcelona,
Catalonia, Spain, July 1997.

C. Bettini, X. S. Wang, S. Jajodia, and J-L. Lin. Discovering frequent
event patterns with multiple granularities in time sequences. [FFKE

Transactions on Knowledge and Data FEngineering, 10(2), 1998.

U.V. Catalyurek and C. Aykanat. Hypergraph-partitioning based
decompostion for parallel sparse-matrix vector multiplication. IEFE

Transactions on Parallel and Distributed Systems, 10:673-693, 1999.

D. W-L. Cheung, J. Han, V. Ng, and C. Y. Wong. Maintenance of
discovered association rules in large databases: An incremental up-
dating technique. In Proceedings of the 12th International Conference
on Data Engineering (ICDE), pages 106-114, 1996.

Consortium for the Intelligent Management of the Electric Power

Grid (CIMEG). http://helios.ecn.purdue.edu/~cimeg.

D. W-L. Cheung, V. Ng, A. W-C. Fu, and Y. Fu. Efficient mining
of association rules in distributed database. IEEFE Transactions on

Knowledge and Data Engineering, 8(6), 1996.

U. Dayal. Active database management systems. In Proceedings of
the Third International Conference on Data and Knowledge Bases,
pages 150-169, Jerusalem, June 1988.

R. George, R. Srikanth, F. E. Petry, and B. P. Buckles. Uncertainty
management issues in object-oriented database systems. IEEFE Trans.

on Fuzzy Systems, 4(2):179-192, May 1996.

J. Han and Y. Fu. Discovery of multiple-level association rules from
large databases. TEEFE Transactions on Knowledge and Data Engi-
neering, 11(5), 1999.

BIBLIOGRAPHY 111

[Hid99]

[HKKMO7]

[HPY00]

[HW92]

[1B92]

[1B94]

[IVBT]

[KCY97]

[KFSS]

[KK]

C. Hidber. Online association rule mining. In Proceedings of the
ACM SIGMOD International Conference on Management of Dala,
1999.

E-H. Han, G. Karypis, V. Kumar, and B. Mobasher. Clustering
based on association rule hypergraphs. In Proccedings of SIGMOD 97

Workshop on Research Issues in Data Mining and Knowledge Dis-
covery (DMKDI7), 1997.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candi-
date generation. In Proc. of ACM-SIGMOD Int. Conf. on Manage-
ment of Data (SIGMOD’2000), Dallas, TX, May 2000.

E. N. Hanson and J. Widom. An Ouverview of Production Rules in
Database Systems. Technical report, University of Florida, Depart-

ment of Computer and Information Sciences, October 1992.

T. Imielski and B. R. Badrinath. Querying in highly distributed en-
vironments. In Proceedings of the 18th VLDB Conference, Columbia,
Canada, 1992.

T. Imielinski and B. R. Badrinath. Mobile wireless computing: Chal-
lenges in data management. Communications of the ACM, pages

19-27. October 1994.

T. Imielinski, S. Viswanathan, and B. R. Badrinath. Data on air:
Organization and access. IEEFE Transactions on Knowledge and Data

Engineering, 9(3), 1997.

G. J. Klir, U. H. St. Clair, and B. Yuan. Fuzzy Set Theory Founda-
tions and Applications. Prentice Hall PTR, 1997.

G. J. Klirand T. A. Folger. Fuzzy Sets, Uncertainty and Information.
Prentice Hall, 1988.

G. Karypis and V. Kumar. METIS Software Package for Partition-
ing Unstructured Graphs, Partitioning Meshes, and Computing Fill-
Reducing Orderings of Sparce Matrices, Version 4.0. University of

BIBLIOGRAPHY 112

[KL70]

[LPT99]

[mic]

[MTV95]

[PD99]

[Pet96]

[SA95]

[SA96]

[SRBYT]

[SU01]

Minnesota, Department of Computer Science/ Army HPC Research
Center, Mineappolis, MN 55455.

B. W. Kerninghan and S. Lin. An efficient heuristic procedure for
partitioning graphs. Bell System Technical Journal, 49(2), 1970.

L. Liu, C. Pu, and W. Tang. Continual queries for internet scale

event-driven information delivery. IEFE Transactions on Knowledge

and Data Engineering, 11(4), 1999.

University of california at irvine machine learning repository,

http://www.ics.uci.edu/"mlearn/mlsummary.html.

H. Mannila, H. Toivonen, and A. 1. Verkamo. Discovery of fre-
quent episodes in event sequences. In Proceedings of the 1st Inter-
national Conference on Knowledge Discovery and Datamining, Mon-

treal, Canada, August 1995.

N. W. Paton and O. Diaz. Active database systems. ACM Computing
Surveys, 31(1):1-29, 1999.

F. E. Petry. Fuzzy Databases: Principles and Applications. Kluwer
Press, 1996.

R. Srikant and R. Agrawal. Mining generalized association rules. In
Proc. of the 21st Int’l Conference on Very Large Databases, Zurich,
Switzerland, September 1995.

R. Srikant and R. Agrawal. Mining quantitative association rules in
large relational tables. In Proceedings of the ACM SIGMOD Inter-

national Conference on Management of Data, 1996.

K. Stathatos, N. Roussopoulos, and J. 5. Baras. Adaptive data broad-
cast in hybrid networks. In Proceedings of the 23rd VLDB Conference,
Athens, Greece, 1997.

Y. Saygin and O. Ulusoy. Automated construction of fuzzy event sets
and its application to active databases. IEFE Transactions on Fuzzy

Systems, 9(3), 2001.

BIBLIOGRAPHY 113

[SUCYS]

[SUY99]

[SWOS]

[TS92]

[WB9S]

[WHHOO]

[YBP99]

[YG99]

[YSBP99]

[YSJ*00]

Y. Saygin, O. Ulusoy, and Sharma Chakravarthy. Concurrent rule

execution in active databases. Information Systems, 23(1), 1998.

Y. Saygin, O. Ulusoy, and A. Yazici. Dealing with fuzziness in active
mobile databases. Information Sciences, 120(1-4), 1999.

A. P. Sistla and O. Wolfson. Minimization of communication cost
through caching in mobile environments. IEFE Transactions on Par-

allel and Distributed Systems, 9(4), April 1998.

K. Thulasiraman and M. N. S. Swamy. Graphs: Theory and Algo-
rithms. A Wiley and Sons, Inc., 1992.

A. Wolski and T. Bouaziz. Fuzzy triggers: Incorporating imprecise
reasoning into active databases. In Proceedings of the 14th Int’l Con-
ference on Data Engineering(ICDFE’98), Orlando, Florida, February
1998.

K. Wang, Y. He, and J. Han. Mining frequent itemsets using support
constraints. In Proc. 2000 Int. Conf. on on Very Large Data Bases
(VLDB’00),, Cairo, Egypt, 2000.

A. Yazicr, B. P. Buckles, and F. E. Petry. Handling Complex and
Uncertain Information in the ExIFO and N F? Data Models. IEEE
Trans. on Fuzzy Systems, 7(6):659-676, 1999.

A. Yazicr and R. George. Fuzzy Database Modeling. Springer-Verlag,
Heidelberg, 1999.

A. Yazici, A. Soysal, B. P. Buckles, and F. E. Petry. Uncertainty in a
nested relational database model. Data and Knowledge Engineering,

30(3):275-301, 1999.

B-K. Yi, N.D. Sidiropoulos, T. Johnson, H.V. Jagadish, C. Faloutsos,
and A. Biliris. Online data mining for co-evolving time sequences. In

Proc. of the Sixteenth International Conference on Data FEngineering

(ICDE’00), San Diego, 2000.

BIBLIOGRAPHY 114

[Z.ad65)

[ZFAA94]

L.A. Zadeh. Fuzzy sets. Information and Control, 8:338-353, 1965.

S. Zdonik, M. Franklin, R. Alonso, and S. Acharya. Are “Disks in
the Air” just pie in the sky. In Proceedings of the IEEFE Workshop

on Mobile Computing Systems and Applications, Santa Cruz, CA,
December 1994.

